1
|
de Martin X, Oliva B, Santpere G. Recruitment of homodimeric proneural factors by conserved CAT-CAT E-boxes drives major epigenetic reconfiguration in cortical neurogenesis. Nucleic Acids Res 2024; 52:12895-12917. [PMID: 39494521 PMCID: PMC11602148 DOI: 10.1093/nar/gkae950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Proneural factors of the basic helix-loop-helix family coordinate neurogenesis and neurodifferentiation. Among them, NEUROG2 and NEUROD2 subsequently act to specify neurons of the glutamatergic lineage. Disruption of these factors, their target genes and binding DNA motifs has been linked to various neuropsychiatric disorders. Proneural factors bind to specific DNA motifs called E-boxes (hexanucleotides of the form CANNTG, composed of two CAN half sites on opposed strands). While corticogenesis heavily relies on E-box activity, the collaboration of proneural factors on different E-box types and their chromatin remodeling mechanisms remain largely unknown. Here, we conducted a comprehensive analysis using chromatin immunoprecipitation followed by sequencing (ChIP-seq) data for NEUROG2 and NEUROD2, along with time-matched single-cell RNA-seq, ATAC-seq and DNA methylation data from the developing mouse cortex. Our findings show that these factors are highly enriched in transiently active genomic regions during intermediate stages of neuronal differentiation. Although they primarily bind CAG-containing E-boxes, their binding in dynamic regions is notably enriched in CAT-CAT E-boxes (i.e. CATATG, denoted as 5'3' half sites for dimers), which undergo significant DNA demethylation and exhibit the highest levels of evolutionary constraint. Aided by HT-SELEX data reanalysis, structural modeling and DNA footprinting, we propose that these proneural factors exert maximal chromatin remodeling influence during intermediate stages of neurogenesis by binding as homodimers to CAT-CAT motifs. This study provides an in-depth integrative analysis of the dynamic regulation of E-boxes during neuronal development, enhancing our understanding of the mechanisms underlying the binding specificity of critical proneural factors.
Collapse
Affiliation(s)
- Xabier de Martin
- Neurogenomics Group, Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), Dr. Aiguader, 88, Barcelona 08003, Catalonia, Spain
| | - Baldomero Oliva
- Structural Bioinformatics Lab (GRIB-IMIM), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr. Aiguader, 88, Barcelona 08003 Catalonia, Spain
| | - Gabriel Santpere
- Neurogenomics Group, Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), Dr. Aiguader, 88, Barcelona 08003, Catalonia, Spain
- Department of Neuroscience, Yale School of Medicine, 333 Cedar st., New Haven, CT 06510, USA
| |
Collapse
|
2
|
Culhalik D, Gellisch M, Morosan-Puopolo G, Saberi D. The Effects of Atoh8 on Postnatal Murine Neurogenesis. Cells Tissues Organs 2024; 214:96-103. [PMID: 39191233 PMCID: PMC11965850 DOI: 10.1159/000540440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/11/2024] [Indexed: 08/29/2024] Open
Abstract
INTRODUCTION Basic helix-loop-helix (bHLH) transcription factors are expressed in various organs and are involved in diverse developmental processes. The mouse atonal homolog 8 (Atoh8), a bHLH transcription factor, plays a crucial role in various developmental processes, especially as a regulator of neurogenesis in the retina. Besides, Atoh8 expression has been observed in the central nervous system. The function of Atoh8 during the postnatal neurogenesis is still unclear. METHODS This study focuses on elucidating the impact of Atoh8 on postnatal neurogenesis in the brain, particularly in selected regions: the subventricular zone (SVZ), rostral migratory stream (RMS), and olfactory bulb (OB), across different life stages, using male homozygous Atoh8-knockout (M6KO) mice. Our morphometric analysis is based on immunohistochemically labeled markers for neuroblasts (doublecortin) and proliferation (phospho-histone H3, PHH3) as well as pan neuronal markers. RESULTS In Atoh8-/- mice, alteration in the postnatal neurogenesis can be observed. Immunohistochemical analysis revealed a significant reduction in doublecortin-positive neuroblasts within the SVZ of neonatal M6KO mice compared to wild-type mice. Interestingly, no differences in cell number and distribution were observed in the subsequent migration of neuroblasts through the RMS to the OB. Proliferating PHH3-positive neuronal progenitor cells were significantly diminished in the proliferation rate in both the SVZ and RMS of neonatal and young M6KO mice. Furthermore, in the glomerular layer of the OB, significantly fewer neurons were detected in the neonatal stage. CONCLUSION In conclusion, Atoh8 emerges as a positive regulator of postnatal neurogenesis in the brain. Its role encompasses the promotion of neuroblast formation, modulation of proliferation rates, differentiation, and maintenance of mature neurons. Understanding the intricacies of Atoh8 function provides valuable insights into the complex regulatory mechanisms governing neurogenesis. INTRODUCTION Basic helix-loop-helix (bHLH) transcription factors are expressed in various organs and are involved in diverse developmental processes. The mouse atonal homolog 8 (Atoh8), a bHLH transcription factor, plays a crucial role in various developmental processes, especially as a regulator of neurogenesis in the retina. Besides, Atoh8 expression has been observed in the central nervous system. The function of Atoh8 during the postnatal neurogenesis is still unclear. METHODS This study focuses on elucidating the impact of Atoh8 on postnatal neurogenesis in the brain, particularly in selected regions: the subventricular zone (SVZ), rostral migratory stream (RMS), and olfactory bulb (OB), across different life stages, using male homozygous Atoh8-knockout (M6KO) mice. Our morphometric analysis is based on immunohistochemically labeled markers for neuroblasts (doublecortin) and proliferation (phospho-histone H3, PHH3) as well as pan neuronal markers. RESULTS In Atoh8-/- mice, alteration in the postnatal neurogenesis can be observed. Immunohistochemical analysis revealed a significant reduction in doublecortin-positive neuroblasts within the SVZ of neonatal M6KO mice compared to wild-type mice. Interestingly, no differences in cell number and distribution were observed in the subsequent migration of neuroblasts through the RMS to the OB. Proliferating PHH3-positive neuronal progenitor cells were significantly diminished in the proliferation rate in both the SVZ and RMS of neonatal and young M6KO mice. Furthermore, in the glomerular layer of the OB, significantly fewer neurons were detected in the neonatal stage. CONCLUSION In conclusion, Atoh8 emerges as a positive regulator of postnatal neurogenesis in the brain. Its role encompasses the promotion of neuroblast formation, modulation of proliferation rates, differentiation, and maintenance of mature neurons. Understanding the intricacies of Atoh8 function provides valuable insights into the complex regulatory mechanisms governing neurogenesis.
Collapse
Affiliation(s)
- Dilek Culhalik
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Ruhr-University, Bochum, Germany
| | - Morris Gellisch
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Ruhr-University, Bochum, Germany
- Faculty of Health, Department of Operative Dentistry and Preventive Dentistry, Witten/Herdecke University, Witten, Germany
| | - Gabriela Morosan-Puopolo
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Ruhr-University, Bochum, Germany
| | - Darius Saberi
- Fraunhofer Institute for Translational Medicine and Pharmacology, Göttingen, Germany
- Department of Neurology, University Medical Center, Göttingen, Germany
| |
Collapse
|
3
|
Kumar M, Sahni S, A V, Kumar D, Kushwah N, Goel D, Kapoor H, Srivastava AK, Faruq M. Molecular clues unveiling spinocerebellar ataxia type-12 pathogenesis. iScience 2024; 27:109768. [PMID: 38711441 PMCID: PMC11070597 DOI: 10.1016/j.isci.2024.109768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Spinocerebellar Ataxia type-12 (SCA12) is a neurodegenerative disease caused by tandem CAG repeat expansion in the 5'-UTR/non-coding region of PPP2R2B. Molecular pathology of SCA12 has not been studied in the context of CAG repeats, and no appropriate models exist. We found in human SCA12-iPSC-derived neuronal lineage that expanded CAG in PPP2R2B transcript forms nuclear RNA foci and were found to sequester variety of proteins. Further, the ectopic expression of transcript containing varying length of CAG repeats exhibits non-canonical repeat-associated non-AUG (RAN) translation in multiple frames in HEK293T cells, which was further validated in patient-derived neural stem cells using specific antibodies. mRNA sequencing of the SCA12 and control neurons have shown a network of crucial transcription factors affecting neural fate, in addition to alteration of various signaling pathways involved in neurodevelopment. Altogether, this study identifies the molecular signatures of SCA12 disorder using patient-derived neuronal cell lines.
Collapse
Affiliation(s)
- Manish Kumar
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR -IGIB), Mall Road, Delhi 110007, India
- CSIR-HRDC Campus, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shweta Sahni
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR -IGIB), Mall Road, Delhi 110007, India
- Department of Neurology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vivekanand A
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR -IGIB), Mall Road, Delhi 110007, India
- CSIR-HRDC Campus, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Deepak Kumar
- Division of Genomics and Molecular Medicine, CSIR - Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India
- Department of Zoology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India
| | - Neetu Kushwah
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR -IGIB), Mall Road, Delhi 110007, India
| | - Divya Goel
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Himanshi Kapoor
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR -IGIB), Mall Road, Delhi 110007, India
| | - Achal K. Srivastava
- Department of Neurology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mohammed Faruq
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR -IGIB), Mall Road, Delhi 110007, India
- CSIR-HRDC Campus, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
4
|
Epigenetic genes and epilepsy - emerging mechanisms and clinical applications. Nat Rev Neurol 2022; 18:530-543. [PMID: 35859062 DOI: 10.1038/s41582-022-00693-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 12/21/2022]
Abstract
An increasing number of epilepsies are being attributed to variants in genes with epigenetic functions. The products of these genes include factors that regulate the structure and function of chromatin and the placing, reading and removal of epigenetic marks, as well as other epigenetic processes. In this Review, we provide an overview of the various epigenetic processes, structuring our discussion around five function-based categories: DNA methylation, histone modifications, histone-DNA crosstalk, non-coding RNAs and chromatin remodelling. We provide background information on each category, describing the general mechanism by which each process leads to altered gene expression. We also highlight key clinical and mechanistic aspects, providing examples of genes that strongly associate with epilepsy within each class. We consider the practical applications of these findings, including tissue-based and biofluid-based diagnostics and precision medicine-based treatments. We conclude that variants in epigenetic genes are increasingly found to be causally involved in the epilepsies, with implications for disease mechanisms, treatments and diagnostics.
Collapse
|
5
|
Seng C, Luo W, Földy C. Circuit formation in the adult brain. Eur J Neurosci 2022; 56:4187-4213. [PMID: 35724981 PMCID: PMC9546018 DOI: 10.1111/ejn.15742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Neurons in the mammalian central nervous system display an enormous capacity for circuit formation during development but not later in life. In principle, new circuits could be also formed in adult brain, but the absence of the developmental milieu and the presence of growth inhibition and hundreds of working circuits are generally viewed as unsupportive for such a process. Here, we bring together evidence from different areas of neuroscience—such as neurological disorders, adult‐brain neurogenesis, innate behaviours, cell grafting, and in vivo cell reprogramming—which demonstrates robust circuit formation in adult brain. In some cases, adult‐brain rewiring is ongoing and required for certain types of behaviour and memory, while other cases show significant promise for brain repair in disease models. Together, these examples highlight that the adult brain has higher capacity for structural plasticity than previously recognized. Understanding the underlying mechanisms behind this retained plasticity has the potential to advance basic knowledge regarding the molecular organization of synaptic circuits and could herald a new era of neural circuit engineering for therapeutic repair.
Collapse
Affiliation(s)
- Charlotte Seng
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| | - Wenshu Luo
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| |
Collapse
|
6
|
Heng JIT, Viti L, Pugh K, Marshall OJ, Agostino M. Understanding the impact of ZBTB18 missense variation on transcription factor function in neurodevelopment and disease. J Neurochem 2022; 161:219-235. [PMID: 35083747 PMCID: PMC9302683 DOI: 10.1111/jnc.15572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 01/07/2022] [Indexed: 12/01/2022]
Abstract
Mutations to genes that encode DNA‐binding transcription factors (TFs) underlie a broad spectrum of human neurodevelopmental disorders. Here, we highlight the pathological mechanisms arising from mutations to TF genes that influence the development of mammalian cerebral cortex neurons. Drawing on recent findings for TF genes including ZBTB18, we discuss how functional missense mutations to such genes confer non‐native gene regulatory actions in developing neurons, leading to cell‐morphological defects, neuroanatomical abnormalities during foetal brain development and functional impairment. Further, we discuss how missense variation to human TF genes documented in the general population endow quantifiable changes to transcriptional regulation, with potential cell biological effects on the temporal progression of cerebral cortex neuron development and homeostasis. We offer a systematic approach to investigate the functional impact of missense variation in brain TFs and define their direct molecular and cellular actions in foetal neurodevelopment, tissue homeostasis and disease states.![]()
Collapse
Affiliation(s)
- Julian I-T Heng
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Neuroscience Laboratories, Sarich Neuroscience Institute, Crawley, WA, Australia.,Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Leon Viti
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Kye Pugh
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Owen J Marshall
- Menzies Institute for Medical Research, The University of Tasmania, Hobart, Australia
| | - Mark Agostino
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Institute for Computation, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
7
|
Nakagawa K, Islam S, Ueda M, Nakagawa T. Endoplasmic reticulum stress contributes to the decline in doublecortin expression in the immature neurons of mice with long-term obesity. Sci Rep 2022; 12:1022. [PMID: 35046482 PMCID: PMC8770636 DOI: 10.1038/s41598-022-05012-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/03/2022] [Indexed: 12/25/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) plays an important role in hippocampus-dependent function. The number of doublecortin (Dcx)-positive immature neurons in the dentate gyrus decreases over time, especially in the early stages of Alzheimer’s disease (AD), and is further reduced in later stages of AD. Obesity in midlife is associated with dementia later in life; however, the underlying mechanisms by which obesity results in the development of dementia later in life remain unknown. Here, we show that endoplasmic reticulum (ER) stress was activated in the hippocampus and processes of Dcx-expressing immature neurons were shortened, coexpressing CHOP in APP23 AD model mice with high-fat diet-induced long-term obesity and in aged Leprdb/db (db/db) mice. Moreover, in cells differentiating from hippocampal neurospheres, Dcx mRNA was rapidly degraded via a microRNA (miRNA) pathway after thapsigargin treatment in vitro. These results indicate that loss of Dcx mRNA induced by ER stress during AHN may cause memory impairment in obese individuals later in life.
Collapse
Affiliation(s)
- Kiyomi Nakagawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Saiful Islam
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram Laboratories, Chattogram, 4220, Bangladesh
| | - Masashi Ueda
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Toshiyuki Nakagawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.
| |
Collapse
|
8
|
Hulme AJ, Maksour S, St-Clair Glover M, Miellet S, Dottori M. Making neurons, made easy: The use of Neurogenin-2 in neuronal differentiation. Stem Cell Reports 2021; 17:14-34. [PMID: 34971564 PMCID: PMC8758946 DOI: 10.1016/j.stemcr.2021.11.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Directed neuronal differentiation of human pluripotent stem cells (hPSCs), neural progenitors, or fibroblasts using transcription factors has allowed for the rapid and highly reproducible differentiation of mature and functional neurons. Exogenous expression of the transcription factor Neurogenin-2 (NGN2) has been widely used to generate different populations of neurons, which have been used in neurodevelopment studies, disease modeling, drug screening, and neuronal replacement therapies. Could NGN2 be a “one-glove-fits-all” approach for neuronal differentiations? This review summarizes the cellular roles of NGN2 and describes the applications and limitations of using NGN2 for the rapid and directed differentiation of neurons.
Collapse
Affiliation(s)
- Amy J Hulme
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Simon Maksour
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Mitchell St-Clair Glover
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Sara Miellet
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
9
|
Washausen S, Knabe W. Responses of Epibranchial Placodes to Disruptions of the FGF and BMP Signaling Pathways in Embryonic Mice. Front Cell Dev Biol 2021; 9:712522. [PMID: 34589483 PMCID: PMC8473811 DOI: 10.3389/fcell.2021.712522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022] Open
Abstract
Placodes are ectodermal thickenings of the embryonic vertebrate head. Their descendants contribute to sensory organ development, but also give rise to sensory neurons of the cranial nerves. In mammals, the signaling pathways which regulate the morphogenesis and neurogenesis of epibranchial placodes, localized dorsocaudally to the pharyngeal clefts, are poorly understood. Therefore, we performed mouse whole embryo culture experiments to assess the impact of pan-fibroblast growth factor receptor (FGFR) inhibitors, anti-FGFR3 neutralizing antibodies or the pan-bone morphogenetic protein receptor (BMPR) inhibitor LDN193189 on epibranchial development. We demonstrate that each of the three paired epibranchial placodes is regulated by a unique combination of FGF and/or bone morphogenetic protein (BMP) signaling. Thus, neurogenesis depends on fibroblast growth factor (FGF) signals, albeit to different degrees, in all epibranchial placodes (EP), whereas only EP1 and EP3 significantly rely on neurogenic BMP signals. Furthermore, individual epibranchial placodes vary in the extent to which FGF and/or BMP signals (1) have access to certain receptor subtypes, (2) affect the production of Neurogenin (Ngn)2+ and/or Ngn1+ neuroblasts, and (3) regulate either neurogenesis alone or together with structural maintenance. In EP2 and EP3, all FGF-dependent production of Ngn2+ neuroblasts is mediated via FGFR3 whereas, in EP1, it depends on FGFR1 and FGFR3. Differently, production of FGF-dependent Ngn1+ neuroblasts almost completely depends on FGFR3 in EP1 and EP2, but not in EP3. Finally, FGF signals turned out to be responsible for the maintenance of both placodal thickening and neurogenesis in all epibranchial placodes, whereas administration of the pan-BMPR inhibitor, apart from its negative neurogenic effects in EP1 and EP3, causes only decreases in the thickness of EP3. Experimentally applied inhibitors most probably not only blocked receptors in the epibranchial placodes, but also endodermal receptors in the pharyngeal pouches, which act as epibranchial signaling centers. While high doses of pan-FGFR inhibitors impaired the development of all pharyngeal pouches, high doses of the pan-BMPR inhibitor negatively affected only the pharyngeal pouches 3 and 4. In combination with partly concordant, partly divergent findings in other vertebrate classes our observations open up new approaches for research into the complex regulation of neurogenic placode development.
Collapse
Affiliation(s)
- Stefan Washausen
- Prosektur Anatomie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Wolfgang Knabe
- Prosektur Anatomie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
10
|
Tutukova S, Tarabykin V, Hernandez-Miranda LR. The Role of Neurod Genes in Brain Development, Function, and Disease. Front Mol Neurosci 2021; 14:662774. [PMID: 34177462 PMCID: PMC8221396 DOI: 10.3389/fnmol.2021.662774] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/11/2021] [Indexed: 01/14/2023] Open
Abstract
Transcriptional regulation is essential for the correct functioning of cells during development and in postnatal life. The basic Helix-loop-Helix (bHLH) superfamily of transcription factors is well conserved throughout evolution and plays critical roles in tissue development and tissue maintenance. A subgroup of this family, called neural lineage bHLH factors, is critical in the development and function of the central nervous system. In this review, we will focus on the function of one subgroup of neural lineage bHLH factors, the Neurod family. The Neurod family has four members: Neurod1, Neurod2, Neurod4, and Neurod6. Available evidence shows that these four factors are key during the development of the cerebral cortex but also in other regions of the central nervous system, such as the cerebellum, the brainstem, and the spinal cord. We will also discuss recent reports that link the dysfunction of these transcription factors to neurological disorders in humans.
Collapse
Affiliation(s)
- Svetlana Tutukova
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Cell- and Neurobiology, Berlin, Germany
| | - Victor Tarabykin
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Cell- and Neurobiology, Berlin, Germany
| | - Luis R Hernandez-Miranda
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Cell- and Neurobiology, Berlin, Germany
| |
Collapse
|
11
|
He L, Jones J, He W, Bjork BC, Wen J, Dai Q. PRDM16 regulates a temporal transcriptional program to promote progression of cortical neural progenitors. Development 2021; 148:dev.194670. [PMID: 33597191 PMCID: PMC7990860 DOI: 10.1242/dev.194670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/11/2021] [Indexed: 01/07/2023]
Abstract
Radial glia (RG) in the neocortex sequentially generate distinct subtypes of projection neurons, accounting for the diversity and complex assembly of cortical neural circuits. Mechanisms that drive the rapid and precise temporal progression of RG are beginning to be elucidated. Here, we reveal that the RG-specific transcriptional regulator PRDM16 promotes the transition of early to late phase of neurogenesis in the mouse neocortex. Loss of Prdm16 delays the timely progression of RG, leading to defective cortical laminar organization. Our genomic analyses demonstrate that PRDM16 regulates a subset of genes that are dynamically expressed between early and late neurogenesis. We show that PRDM16 suppresses target gene expression through limiting chromatin accessibility of permissive enhancers. We further confirm that crucial target genes regulated by PRDM16 are neuronal specification genes, cell cycle regulators and molecules required for neuronal migration. These findings provide evidence to support the finding that neural progenitors temporally shift the gene expression program to achieve neural cell diversity.
Collapse
Affiliation(s)
- Li He
- Department of Molecular Bioscience, the Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Jennifer Jones
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Weiguo He
- Department of Molecular Bioscience, the Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Bryan C Bjork
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Jiayu Wen
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, 2601 Canberra, Australia
| | - Qi Dai
- Department of Molecular Bioscience, the Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
12
|
Oproescu AM, Han S, Schuurmans C. New Insights Into the Intricacies of Proneural Gene Regulation in the Embryonic and Adult Cerebral Cortex. Front Mol Neurosci 2021; 14:642016. [PMID: 33658912 PMCID: PMC7917194 DOI: 10.3389/fnmol.2021.642016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
Historically, the mammalian brain was thought to lack stem cells as no new neurons were found to be made in adulthood. That dogma changed ∼25 years ago with the identification of neural stem cells (NSCs) in the adult rodent forebrain. However, unlike rapidly self-renewing mature tissues (e.g., blood, intestinal crypts, skin), the majority of adult NSCs are quiescent, and those that become 'activated' are restricted to a few neurogenic zones that repopulate specific brain regions. Conversely, embryonic NSCs are actively proliferating and neurogenic. Investigations into the molecular control of the quiescence-to-proliferation-to-differentiation continuum in the embryonic and adult brain have identified proneural genes encoding basic-helix-loop-helix (bHLH) transcription factors (TFs) as critical regulators. These bHLH TFs initiate genetic programs that remove NSCs from quiescence and drive daughter neural progenitor cells (NPCs) to differentiate into specific neural cell subtypes, thereby contributing to the enormous cellular diversity of the adult brain. However, new insights have revealed that proneural gene activities are context-dependent and tightly regulated. Here we review how proneural bHLH TFs are regulated, with a focus on the murine cerebral cortex, drawing parallels where appropriate to other organisms and neural tissues. We discuss upstream regulatory events, post-translational modifications (phosphorylation, ubiquitinylation), protein-protein interactions, epigenetic and metabolic mechanisms that govern bHLH TF expression, stability, localization, and consequent transactivation of downstream target genes. These tight regulatory controls help to explain paradoxical findings of changes to bHLH activity in different cellular contexts.
Collapse
Affiliation(s)
- Ana-Maria Oproescu
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sisu Han
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Kawaguchi A. Neuronal Delamination and Outer Radial Glia Generation in Neocortical Development. Front Cell Dev Biol 2021; 8:623573. [PMID: 33614631 PMCID: PMC7892903 DOI: 10.3389/fcell.2020.623573] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022] Open
Abstract
During neocortical development, many neuronally differentiating cells (neurons and intermediate progenitor cells) are generated at the apical/ventricular surface by the division of neural progenitor cells (apical radial glial cells, aRGs). Neurogenic cell delamination, in which these neuronally differentiating cells retract their apical processes and depart from the apical surface, is the first step of their migration. Since the microenvironment established by the apical endfeet is crucial for maintaining neuroepithelial (NE)/aRGs, proper timing of the detachment of the apical endfeet is critical for the quantitative control of neurogenesis in cerebral development. During delamination, the microtubule-actin-AJ (adherens junction) configuration at the apical endfeet shows dynamic changes, concurrent with the constriction of the AJ ring at the apical endfeet and downregulation of cadherin expression. This process is mediated by transcriptional suppression of AJ-related molecules and multiple cascades to regulate cell adhesion and cytoskeletal architecture in a posttranscriptional manner. Recent advances have added molecules to the latter category: the interphase centrosome protein AKNA affects microtubule dynamics to destabilize the microtubule-actin-AJ complex, and the microtubule-associated protein Lzts1 inhibits microtubule assembly and activates actomyosin systems at the apical endfeet of differentiating cells. Moreover, Lzts1 induces the oblique division of aRGs, and loss of Lzts1 reduces the generation of outer radial glia (oRGs, also called basal radial glia, bRGs), another type of neural progenitor cell in the subventricular zone. These findings suggest that neurogenic cell delamination, and in some cases oRG generation, could be caused by a spectrum of interlinked mechanisms.
Collapse
Affiliation(s)
- Ayano Kawaguchi
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
Tissue-Specific Ferritin- and GFP-Based Genetic Vectors Visualize Neurons by MRI in the Intact and Post-Ischemic Rat Brain. Int J Mol Sci 2020; 21:ijms21238951. [PMID: 33255702 PMCID: PMC7728074 DOI: 10.3390/ijms21238951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Neurogenesis is considered to be a potential brain repair mechanism and is enhanced in stroke. It is difficult to reconstruct the neurogenesis process only from the histological sections taken from different animals at different stages of brain damage and restoration. Study of neurogenesis would greatly benefit from development of tissue-specific visualization probes. (2) Purpose: The study aimed to explore if overexpression of ferritin, a nontoxic iron-binding protein, under a doublecortin promoter can be used for non-invasive visualization of neurogenesis using magnetic resonance imaging (MRI). (3) Methods: Ferritin heavy chain (FerrH) was expressed in the adeno-associated viral backbone (AAV) under the doublecortin promoter (pDCX), specific for young neurons, in the viral construct AAV-pDCX-FerrH. Expression of the enhanced green fluorescent protein (eGFP) was used as an expression control (AAV-pDCX-eGFP). The viral vectors or phosphate-buffered saline (PBS) were injected intracerebrally into 18 adult male Sprague–Dawley rats. Three days before injection, rats underwent transient middle-cerebral-artery occlusion or sham operation. Animals were subjected to In vivo MRI study before surgery and on days 7, 14, 21, and 28 days after injection using a Bruker BioSpec 11.7 T scanner. Brain sections obtained on day 28 after injection were immunostained for ferritin, young (DCX) and mature (NeuN) neurons, and activated microglia/macrophages (CD68). Additionally, RT-PCR was performed to confirm ferritin expression. (4) Results: T2* images in post-ischemic brains of animals injected with AAV-pDCX-FerrH showed two distinct zones of MRI signal hypointensity in the ipsilesioned hemisphere starting from 14 days after viral injection—in the ischemic lesion and near the lateral ventricle and subventricular zone (SVZ). In sham-operated animals, only one zone of hypointensity near the lateral ventricle and SVZ was revealed. Immunochemistry showed that ferritin-expressing cells in ischemic lesions were macrophages (88.1%), while ferritin-expressing cells near the lateral ventricle in animals both after ischemia and sham operation were mostly mature (55.7% and 61.8%, respectively) and young (30.6% and 7.1%, respectively) neurons. RT-PCR confirmed upregulated expression of ferritin in the caudoputamen and corpus callosum. Surprisingly, in animals injected with AAV-pDCX-eGFP we similarly observed two zones of hypointensity on T2* images. Cellular studies also showed the presence of mature (81.5%) and young neurons (6.1%) near the lateral ventricle in both postischemic and sham-operated animals, while macrophages in ischemic lesions were ferritin-positive (98.2%). (5) Conclusion: Ferritin overexpression induced by injection of AAV-pDCX-FerrH was detected by MRI using T2*-weighted images, which was confirmed by immunochemistry showing ferritin in young and mature neurons. Expression of eGFP also caused a comparable reduced MR signal intensity in T2*-weighted images. Additional studies are needed to investigate the potential and tissue-specific features of the use of eGFP and ferritin expression in MRI studies.
Collapse
|
15
|
Sun N, Dou X, Tang Z, Zhang D, Ni N, Wang J, Gao H, Ju Y, Dai X, Zhao C, Gu P, Ji J, Feng C. Bio-inspired chiral self-assemblies promoted neuronal differentiation of retinal progenitor cells through activation of metabolic pathway. Bioact Mater 2020; 6:990-997. [PMID: 33102941 PMCID: PMC7560590 DOI: 10.1016/j.bioactmat.2020.09.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 12/30/2022] Open
Abstract
Retinal degeneration is a main class of ocular diseases. So far, retinal progenitor cell (RPC) transplantation has been the most potential therapy for it, in which promoting RPCs neuronal differentiation remains an unmet challenge. To address this issue, innovatively designed L/ d - phenylalanine based chiral nanofibers (LPG and DPG) are employed and it finds that chirality of fibers can efficiently regulate RPCs differentiation. qPCR, western blot, and immunofluorescence analysis show that right-handed helical DPG nanofibers significantly promote RPCs neuronal differentiation, whereas left-handed LPG nanofibers decrease this effect. These effects are mainly ascribed to the stereoselective interaction between chiral helical nanofibers and retinol-binding protein 4 (RBP4, a key protein in the retinoic acid (RA) metabolic pathway). The findings of chirality-dependent neuronal differentiation provide new strategies for treatment of neurodegenerative diseases via optimizing differentiation of transplanted stem cells on chiral nanofibers.
Collapse
Affiliation(s)
- Na Sun
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, 200240, Shanghai, China
| | - Zhimin Tang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Dandan Zhang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ni Ni
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jiajing Wang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Huiqin Gao
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yahan Ju
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaochan Dai
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, 200240, Shanghai, China
| | - Ping Gu
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jing Ji
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, 200240, Shanghai, China
| |
Collapse
|
16
|
Son AI, Mohammad S, Sasaki T, Ishii S, Yamashita S, Hashimoto-Torii K, Torii M. Dual Role of Rbpj in the Maintenance of Neural Progenitor Cells and Neuronal Migration in Cortical Development. Cereb Cortex 2020; 30:6444-6457. [PMID: 32780108 DOI: 10.1093/cercor/bhaa206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 06/09/2020] [Accepted: 07/06/2020] [Indexed: 12/30/2022] Open
Abstract
The development of the cerebral cortex is directed by a series of methodically precise events, including progenitor cell proliferation, neural differentiation, and cell positioning. Over the past decade, many studies have demonstrated the critical contributions of Notch signaling in neurogenesis, including that in the developing telencephalon. However, in vivo evidence for the role of Notch signaling in cortical development still remains limited partly due to the redundant functions of four mammalian Notch paralogues and embryonic lethality of the knockout mice. Here, we utilized the conditional deletion and in vivo gene manipulation of Rbpj, a transcription factor that mediates signaling by all four Notch receptors, to overcome these challenges and examined the specific roles of Rbpj in cortical development. We report severe structural abnormalities in the embryonic and postnatal cerebral cortex in Rbpj conditional knockout mice, which provide strong in vivo corroboration of previously reported functions of Notch signaling in neural development. Our results also provide evidence for a novel dual role of Rbpj in cell type-specific regulation of two key developmental events in the cerebral cortex: the maintenance of the undifferentiated state of neural progenitor cells, and the radial and tangential allocation of neurons, possibly through stage-dependent differential regulation of Ngn1.
Collapse
Affiliation(s)
- Alexander I Son
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Shahid Mohammad
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Toru Sasaki
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Seiji Ishii
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Satoshi Yamashita
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20010, USA.,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Masaaki Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20010, USA.,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
17
|
Kim K, Gibboney S, Razy-Krajka F, Lowe EK, Wang W, Stolfi A. Regulation of Neurogenesis by FGF Signaling and Neurogenin in the Invertebrate Chordate Ciona. Front Cell Dev Biol 2020; 8:477. [PMID: 32656209 PMCID: PMC7324659 DOI: 10.3389/fcell.2020.00477] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022] Open
Abstract
Neurogenesis is a complex sequence of cellular processes and behaviors driven by the coordinated expression of conserved effectors. The bipolar tail neurons (BTNs) of Ciona develop according to a highly dynamic, yet highly stereotyped developmental program and thus could serve as an accessible model system for neurogenesis, including underlying cell behaviors like neuronal delamination, migration, and polarized axon outgrowth. Here we investigate both the upstream events that shape BTN neurogenesis through spatiotemporal regulation of the conserved proneural factor Neurog, spatiotemporal, and the gene expression profile of differentiating BTNs downstream of Neurog activity. We show that, although early FGF signaling is required for Neurog expression and BTN specification, Fgf8/17/18 is expressed in tail tip cells at later stages and suppresses sustained Neurog expression in the anterior BTN (aBTN) lineage, such that only one cell (the one furthest from the source of Fgf8/17/18) maintains Neurog expression and becomes a neuron. Curiously, Fgf8/17/18 might not affect neurogenesis of the posterior BTNs (pBTNs), which are in direct contact with the Fgf8/17/18-expressing cells. Finally, to profile gene expression associated with BTN neurogenesis we performed RNAseq of isolated BTN lineage cells in which BTN neurogenesis was enhanced or suppressed by perturbing Neurog function. This allowed us to identify several candidate genes that might play conserved roles in neurogenesis and neuronal migration in other animals, including mammals.
Collapse
Affiliation(s)
- Kwantae Kim
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Susanne Gibboney
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Elijah K. Lowe
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Wei Wang
- Department of Biology, New York University, New York, NY, United States
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
18
|
Jossin Y. Molecular mechanisms of cell polarity in a range of model systems and in migrating neurons. Mol Cell Neurosci 2020; 106:103503. [PMID: 32485296 DOI: 10.1016/j.mcn.2020.103503] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 05/23/2020] [Indexed: 01/09/2023] Open
Abstract
Cell polarity is defined as the asymmetric distribution of cellular components along an axis. Most cells, from the simplest single-cell organisms to highly specialized mammalian cells, are polarized and use similar mechanisms to generate and maintain polarity. Cell polarity is important for cells to migrate, form tissues, and coordinate activities. During development of the mammalian cerebral cortex, cell polarity is essential for neurogenesis and for the migration of newborn but as-yet undifferentiated neurons. These oriented migrations include both the radial migration of excitatory projection neurons and the tangential migration of inhibitory interneurons. In this review, I will first describe the development of the cerebral cortex, as revealed at the cellular level. I will then define the core molecular mechanisms - the Par/Crb/Scrib polarity complexes, small GTPases, the actin and microtubule cytoskeletons, and phosphoinositides/PI3K signaling - that are required for asymmetric cell division, apico-basal and front-rear polarity in model systems, including C elegans zygote, Drosophila embryos and cultured mammalian cells. As I go through each core mechanism I will explain what is known about its importance in radial and tangential migration in the developing mammalian cerebral cortex.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
19
|
Nestin Selectively Facilitates the Phosphorylation of the Lissencephaly-Linked Protein Doublecortin (DCX) by cdk5/p35 to Regulate Growth Cone Morphology and Sema3a Sensitivity in Developing Neurons. J Neurosci 2020; 40:3720-3740. [PMID: 32273484 DOI: 10.1523/jneurosci.2471-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/24/2020] [Accepted: 03/24/2020] [Indexed: 11/21/2022] Open
Abstract
Nestin, an intermediate filament protein widely used as a marker of neural progenitors, was recently found to be expressed transiently in developing cortical neurons in culture and in developing mouse cortex. In young cortical cultures, nestin regulates axonal growth cone morphology. In addition, nestin, which is known to bind the neuronal cdk5/p35 kinase, affects responses to axon guidance cues upstream of cdk5, specifically, to Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, and changes in microtubules and actin filaments are well studied. In contrast, the roles of intermediate filament proteins in this process are poorly understood, even in cultured neurons. Here, we investigate the molecular mechanism by which nestin affects growth cone morphology and Sema3a sensitivity. We find that nestin selectively facilitates the phosphorylation of the lissencephaly-linked protein doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected by nestin. We uncover that this substrate selectivity is based on the ability of nestin to interact with DCX, but not with other cdk5 substrates. Nestin thus creates a selective scaffold for DCX with activated cdk5/p35. Last, we use cortical cultures derived from Dcx KO mice to show that the effects of nestin on growth cone morphology and on Sema3a sensitivity are DCX-dependent, thus suggesting a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating the intracellular kinase signaling environment in developing neurons. The sex of animal subjects is unknown.SIGNIFICANCE STATEMENT Nestin, an intermediate filament protein highly expressed in neural progenitors, was recently identified in developing neurons where it regulates growth cone morphology and responsiveness to the guidance cue Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, but the roles of intermediate filaments in this process are poorly understood. We now report that nestin selectively facilitates phosphorylation of the lissencephaly-linked doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected. This substrate selectivity is based on preferential scaffolding of DCX, cdk5, and p35 by nestin. Additionally, we demonstrate a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating intracellular kinase signaling in developing neurons.
Collapse
|
20
|
Fueyo R, Iacobucci S, Pappa S, Estarás C, Lois S, Vicioso-Mantis M, Navarro C, Cruz-Molina S, Reyes JC, Rada-Iglesias Á, de la Cruz X, Martínez-Balbás MA. Lineage specific transcription factors and epigenetic regulators mediate TGFβ-dependent enhancer activation. Nucleic Acids Res 2019; 46:3351-3365. [PMID: 29438503 PMCID: PMC5909450 DOI: 10.1093/nar/gky093] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/01/2018] [Indexed: 11/25/2022] Open
Abstract
During neurogenesis, dynamic developmental cues, transcription factors and histone modifying enzymes regulate the gene expression programs by modulating the activity of neural-specific enhancers. How transient developmental signals coordinate transcription factor recruitment to enhancers and to which extent chromatin modifiers contribute to enhancer activity is starting to be uncovered. Here, we take advantage of neural stem cells as a model to unravel the mechanisms underlying neural enhancer activation in response to the TGFβ signaling. Genome-wide experiments demonstrate that the proneural factor ASCL1 assists SMAD3 in the binding to a subset of enhancers. Once located at the enhancers, SMAD3 recruits the histone demethylase JMJD3 and the remodeling factor CHD8, creating the appropriate chromatin landscape to allow enhancer transcription and posterior gene activation. Finally, to analyze the phenotypical traits owed to cis-regulatory regions, we use CRISPR–Cas9 technology to demonstrate that the TGFβ-responsive Neurog2 enhancer is essential for proper neuronal polarization.
Collapse
Affiliation(s)
- Raquel Fueyo
- Department of Molecular Genomics. Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Simona Iacobucci
- Department of Molecular Genomics. Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Stella Pappa
- Department of Molecular Genomics. Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Conchi Estarás
- Department of Molecular Genomics. Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Sergio Lois
- Vall d'Hebron Institute of Research (VHIR), Passeig de la Vall d'Hebron, 119; E-08035 Barcelona, Spain. Institut Català per la Recerca i Estudis Avançats (ICREA), Barcelona 08018, Spain
| | - Marta Vicioso-Mantis
- Department of Molecular Genomics. Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Claudia Navarro
- Department of Molecular Genomics. Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Sara Cruz-Molina
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany
| | - José Carlos Reyes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Americo Vespucio 41092 Seville, Spain
| | - Álvaro Rada-Iglesias
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany
| | - Xavier de la Cruz
- Vall d'Hebron Institute of Research (VHIR), Passeig de la Vall d'Hebron, 119; E-08035 Barcelona, Spain. Institut Català per la Recerca i Estudis Avançats (ICREA), Barcelona 08018, Spain
| | - Marian A Martínez-Balbás
- Department of Molecular Genomics. Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| |
Collapse
|
21
|
Kostin A, Alam MA, McGinty D, Szymusiak R, Alam MN. Chronic Suppression of Hypothalamic Cell Proliferation and Neurogenesis Induces Aging-Like Changes in Sleep–Wake Organization in Young Mice. Neuroscience 2019; 404:541-556. [DOI: 10.1016/j.neuroscience.2019.01.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 12/14/2018] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
|
22
|
Conditional Inactivation of Pen-2 in the Developing Neocortex Leads to Rapid Switch of Apical Progenitors to Basal Progenitors. J Neurosci 2019; 39:2195-2207. [PMID: 30692224 DOI: 10.1523/jneurosci.2523-18.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 12/16/2022] Open
Abstract
The transition of apical progenitors (APs) to basal progenitors (BPs) is an important neurogenic process during cortical expansion. Presenilin enhancer 2 (Pen-2, also named as Psenen) is a key subunit of γ-secretase and has been implicated in neurodevelopmental disease. However, it remains unknown how Pen-2 may regulate the maintenance of APs. To address this question, we generated a conditional KO (cKO) mouse in which Pen-2 is specifically inactivated in neural progenitor cells in the telencephalon. Both male and female embryos were used. We show that Pen-2 cKO cortices display remarkable depletion of Aps, but transient increase on BPs, compared with controls. We demonstrate that the proliferation rate of APs or BPs is not changed, but the switch of APs to BPs is dramatically accelerated in Pen-2 cKO cortices. Molecular analyses reveal decreased levels of Hes1 and Hes5 but increased levels of Ngn2 and NeuroD1 in Pen-2 KO cells. We report that expression of Notch1 intracellular domain in Pen-2 cKO cortices restores the population of APs and BPs. In summary, these findings highlight a central role of the Notch signaling in Pen-2-dependent maintenance of neural stem cells in the developing neocortex.SIGNIFICANCE STATEMENT Presenilin enhancer 2 (Pen-2) has been implicated in neurodevelopmental disease. However, mechanisms by which Pen-2 regulates cortical development are not understood. In this study, we generated neural progenitor cell-specific Pen-2 conditional KO mice. We observe depletion of apical progenitors and transiently increased the number of basal progenitors in the developing neocortex of Pen-2 mutant mice. Mechanistic analyses reveal decreased levels of Hes1 and Hes5, but increased levels of neurogenic transcription factors in Pen-2 mutant cortices, compared with controls. We demonstrate that reintroduction of Notch intracellular domain into mutant mice restores the population of apical progenitors to basal progenitors. The above findings strongly suggest that the Pen-2-Notch pathway plays an essential role in the maintenance of neural stem cells during cortical development.
Collapse
|
23
|
Kugler JE, Wu Y, Katikala L, Passamaneck YJ, Addy J, Caballero N, Oda-Ishii I, Maguire JE, Li R, Di Gregorio A. Positioning a multifunctional basic helix-loop-helix transcription factor within the Ciona notochord gene regulatory network. Dev Biol 2019; 448:119-135. [PMID: 30661645 DOI: 10.1016/j.ydbio.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/27/2018] [Accepted: 01/01/2019] [Indexed: 11/26/2022]
Abstract
In a multitude of organisms, transcription factors of the basic helix-loop-helix (bHLH) family control the expression of genes required for organ development and tissue differentiation. The functions of different bHLH transcription factors in the specification of nervous system and paraxial mesoderm have been widely investigated in various model systems. Conversely, the knowledge of the role of these regulators in the development of the axial mesoderm, the embryonic territory that gives rise to the notochord, and the identities of their target genes, remain still fragmentary. Here we investigated the transcriptional regulation and target genes of Bhlh-tun1, a bHLH transcription factor expressed in the developing Ciona notochord as well as in additional embryonic territories that contribute to the formation of both larval and adult structures. We describe its possible role in notochord formation, its relationship with the key notochord transcription factor Brachyury, and suggest molecular mechanisms through which Bhlh-tun1 controls the spatial and temporal expression of its effectors.
Collapse
Affiliation(s)
- Jamie E Kugler
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Yushi Wu
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Lavanya Katikala
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Yale J Passamaneck
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Jermyn Addy
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Natalia Caballero
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Izumi Oda-Ishii
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Julie E Maguire
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Raymond Li
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Anna Di Gregorio
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA.
| |
Collapse
|
24
|
Cargnin F, Kwon JS, Katzman S, Chen B, Lee JW, Lee SK. FOXG1 Orchestrates Neocortical Organization and Cortico-Cortical Connections. Neuron 2018; 100:1083-1096.e5. [PMID: 30392794 DOI: 10.1016/j.neuron.2018.10.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/16/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022]
Abstract
The hallmarks of FOXG1 syndrome, which results from mutations in a single FOXG1 allele, include cortical atrophy and corpus callosum agenesis. However, the etiology for these structural deficits and the role of FOXG1 in cortical projection neurons remain unclear. Here we demonstrate that Foxg1 in pyramidal neurons plays essential roles in establishing cortical layers and the identity and axon trajectory of callosal projection neurons. The neuron-specific actions of Foxg1 are achieved by forming a transcription complex with Rp58. The Foxg1-Rp58 complex directly binds and represses Robo1, Slit3, and Reelin genes, the key regulators of callosal axon guidance and neuronal migration. We also found that inactivation of one Foxg1 allele specifically in cortical neurons was sufficient to cause cerebral cortical hypoplasia and corpus callosum agenesis. Together, this study reveals a novel gene regulatory pathway that specifies neuronal characteristics during cerebral cortex development and sheds light on the etiology of FOXG1 syndrome. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Francesca Cargnin
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ji-Sun Kwon
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sol Katzman
- Genomics Institute, University of California, Santa Cruz, CA 95064, USA
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Jae W Lee
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Soo-Kyung Lee
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
25
|
Mair DB, Ames HM, Li R. Mechanisms of invasion and motility of high-grade gliomas in the brain. Mol Biol Cell 2018; 29:2509-2515. [PMID: 30325290 PMCID: PMC6254577 DOI: 10.1091/mbc.e18-02-0123] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/04/2018] [Accepted: 08/10/2018] [Indexed: 11/30/2022] Open
Abstract
High-grade gliomas are especially difficult tumors to treat due to their invasive behavior. This has led to extensive research focusing on arresting glioma cell migration. Cell migration involves the sensing of a migratory cue, followed by polarization in the direction of the cue, and reorganization of the actin cytoskeleton to allow for a protrusive leading edge and a contractile trailing edge. Transmission of these forces to produce motility also requires adhesive interactions of the cell with the extracellular microenvironment. In glioma cells, transmembrane receptors such as CD44 and integrins bind the cell to the surrounding extracellular matrix that provides a substrate on which the cell can exert the requisite forces for cell motility. These various essential parts of the migratory machinery are potential targets to halt glioma cell invasion. In this review, we discuss the mechanisms of glioma cell migration and how they may be targeted in anti-invasion therapies.
Collapse
Affiliation(s)
- Devin B. Mair
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Heather M. Ames
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
26
|
Dennis DJ, Han S, Schuurmans C. bHLH transcription factors in neural development, disease, and reprogramming. Brain Res 2018; 1705:48-65. [PMID: 29544733 DOI: 10.1016/j.brainres.2018.03.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 01/16/2023]
Abstract
The formation of functional neural circuits in the vertebrate central nervous system (CNS) requires that appropriate numbers of the correct types of neuronal and glial cells are generated in their proper places and times during development. In the embryonic CNS, multipotent progenitor cells first acquire regional identities, and then undergo precisely choreographed temporal identity transitions (i.e. time-dependent changes in their identity) that determine how many neuronal and glial cells of each type they will generate. Transcription factors of the basic-helix-loop-helix (bHLH) family have emerged as key determinants of neural cell fate specification and differentiation, ensuring that appropriate numbers of specific neuronal and glial cell types are produced. Recent studies have further revealed that the functions of these bHLH factors are strictly regulated. Given their essential developmental roles, it is not surprising that bHLH mutations and de-regulated expression are associated with various neurological diseases and cancers. Moreover, the powerful ability of bHLH factors to direct neuronal and glial cell fate specification and differentiation has been exploited in the relatively new field of cellular reprogramming, in which pluripotent stem cells or somatic stem cells are converted to neural lineages, often with a transcription factor-based lineage conversion strategy that includes one or more of the bHLH genes. These concepts are reviewed herein.
Collapse
Affiliation(s)
- Daniel J Dennis
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N3M5, Canada
| | - Sisu Han
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
27
|
Avansini SH, Torres FR, Vieira AS, Dogini DB, Rogerio F, Coan AC, Morita ME, Guerreiro MM, Yasuda CL, Secolin R, Carvalho BS, Borges MG, Almeida VS, Araújo PAOR, Queiroz L, Cendes F, Lopes-Cendes I. Dysregulation of NEUROG2 plays a key role in focal cortical dysplasia. Ann Neurol 2018; 83:623-635. [PMID: 29461643 PMCID: PMC5901021 DOI: 10.1002/ana.25187] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Focal cortical dysplasias (FCDs) are an important cause of drug-resistant epilepsy. In this work, we aimed to investigate whether abnormal gene regulation, mediated by microRNA, could be involved in FCD type II. METHODS We used total RNA from the brain tissue of 16 patients with FCD type II and 28 controls. MicroRNA expression was initially assessed by microarray. Quantitative polymerase chain reaction, in situ hybridization, luciferase reporter assays, and deep sequencing for genes in the mTOR pathway were performed to validate and further explore our initial study. RESULTS hsa-let-7f (p = 0.039), hsa-miR-31 (p = 0.0078), and hsa-miR34a (p = 0.021) were downregulated in FCD type II, whereas a transcription factor involved in neuronal and glial fate specification, NEUROG2 (p < 0.05), was upregulated. We also found that the RND2 gene, a NEUROG2-target, is upregulated (p < 0.001). In vitro experiments showed that hsa-miR-34a downregulates NEUROG2 by binding to its 5'-untranslated region. Moreover, we observed strong nuclear expression of NEUROG2 in balloon cells and dysmorphic neurons and found that 28.5% of our patients presented brain somatic mutations in genes of the mTOR pathway. INTERPRETATION Our findings suggest a new molecular mechanism, in which NEUROG2 has a pivotal and central role in the pathogenesis of FCD type II. In this way, we found that the downregulation of hsa-miR-34a leads to upregulation of NEUROG2, and consequently to overexpression of the RND2 gene. These findings indicate that a faulty coupling in neuronal differentiation and migration mechanisms may explain the presence of aberrant cells and complete dyslamination in FCD type II. Ann Neurol 2018;83:623-635.
Collapse
Affiliation(s)
- Simoni H Avansini
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Fábio R Torres
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - André S Vieira
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Danyella B Dogini
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Fabio Rogerio
- Department of Anatomical Pathology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Ana C Coan
- Department of Neurology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Marcia E Morita
- Department of Neurology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Marilisa M Guerreiro
- Department of Neurology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Clarissa L Yasuda
- Department of Neurology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Rodrigo Secolin
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Benilton S Carvalho
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Murilo G Borges
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Vanessa S Almeida
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Patrícia A O R Araújo
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Luciano Queiroz
- Department of Anatomical Pathology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Fernando Cendes
- Department of Neurology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| |
Collapse
|
28
|
Lacomme M, Medevielle F, Bourbon HM, Thierion E, Kleinjan DJ, Roussat M, Pituello F, Bel-Vialar S. A long range distal enhancer controls temporal fine-tuning of PAX6 expression in neuronal precursors. Dev Biol 2018; 436:94-107. [PMID: 29486153 DOI: 10.1016/j.ydbio.2018.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
Abstract
Proper embryonic development relies on a tight control of spatial and temporal gene expression profiles in a highly regulated manner. One good example is the ON/OFF switching of the transcription factor PAX6 that governs important steps of neurogenesis. In the neural tube PAX6 expression is initiated in neural progenitors through the positive action of retinoic acid signaling and downregulated in neuronal precursors by the bHLH transcription factor NEUROG2. How these two regulatory inputs are integrated at the molecular level to properly fine tune temporal PAX6 expression is not known. In this study we identified and characterized a 940-bp long distal cis-regulatory module (CRM), located far away from the PAX6 transcription unit and which conveys positive input from RA signaling pathway and indirect repressive signal(s) from NEUROG2. These opposing regulatory signals are integrated through HOMZ, a 94 bp core region within E940 which is evolutionarily conserved in distant organisms such as the zebrafish. We show that within HOMZ, NEUROG2 and RA exert their opposite temporal activities through a short 60 bp region containing a functional RA-responsive element (RARE). We propose a model in which retinoic acid receptors (RARs) and NEUROG2 repressive target(s) compete on the same DNA motif to fine tune temporal PAX6 expression during the course of spinal neurogenesis.
Collapse
Affiliation(s)
- Marine Lacomme
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France; Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal, Québec, Canada
| | - François Medevielle
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Henri-Marc Bourbon
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Elodie Thierion
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Dirk-Jan Kleinjan
- 1UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Mélanie Roussat
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Fabienne Pituello
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Sophie Bel-Vialar
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
29
|
Amini R, Rocha-Martins M, Norden C. Neuronal Migration and Lamination in the Vertebrate Retina. Front Neurosci 2018; 11:742. [PMID: 29375289 PMCID: PMC5767219 DOI: 10.3389/fnins.2017.00742] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/20/2017] [Indexed: 01/04/2023] Open
Abstract
In the retina, like in most other brain regions, developing neurons are arranged into distinct layers giving the mature tissue its stratified appearance. This process needs to be highly controlled and orchestrated, as neuronal layering defects lead to impaired retinal function. To achieve successful neuronal layering and lamination in the retina and beyond, three main developmental steps need to be executed: First, the correct type of neuron has to be generated at a precise developmental time. Second, as most retinal neurons are born away from the position at which they later function, newborn neurons have to move to their final layer within the developing tissue, a process also termed neuronal lamination. Third, these neurons need to connect to their correct synaptic partners. Here, we discuss neuronal migration and lamination in the vertebrate retina and summarize our knowledge on these aspects of retinal development. We give an overview of how lamination emerges and discuss the different modes of neuronal translocation that occur during retinogenesis and what we know about the cell biological machineries driving them. In addition, retinal mosaics and their importance for correct retinal function are examined. We close by stating the open questions and future directions in this exciting field.
Collapse
Affiliation(s)
- Rana Amini
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
30
|
Adnani L, Han S, Li S, Mattar P, Schuurmans C. Mechanisms of Cortical Differentiation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:223-320. [DOI: 10.1016/bs.ircmb.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Fontenot MR, Berto S, Liu Y, Werthmann G, Douglas C, Usui N, Gleason K, Tamminga CA, Takahashi JS, Konopka G. Novel transcriptional networks regulated by CLOCK in human neurons. Genes Dev 2017; 31:2121-2135. [PMID: 29196536 PMCID: PMC5749161 DOI: 10.1101/gad.305813.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/07/2017] [Indexed: 01/01/2023]
Abstract
Fontenot et al. show that CLOCK regulates the expression of genes involved in neuronal migration. Dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. The molecular mechanisms underlying human brain evolution are not fully understood; however, previous work suggested that expression of the transcription factor CLOCK in the human cortex might be relevant to human cognition and disease. In this study, we investigated this novel transcriptional role for CLOCK in human neurons by performing chromatin immunoprecipitation sequencing for endogenous CLOCK in adult neocortices and RNA sequencing following CLOCK knockdown in differentiated human neurons in vitro. These data suggested that CLOCK regulates the expression of genes involved in neuronal migration, and a functional assay showed that CLOCK knockdown increased neuronal migratory distance. Furthermore, dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. These data support a role for CLOCK-regulated transcriptional cascades involved in human brain evolution and function.
Collapse
Affiliation(s)
- Miles R Fontenot
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Stefano Berto
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yuxiang Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Gordon Werthmann
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Connor Douglas
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Noriyoshi Usui
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kelly Gleason
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
32
|
Qin R, Cao S, Lyu T, Qi C, Zhang W, Wang Y. CDYL Deficiency Disrupts Neuronal Migration and Increases Susceptibility to Epilepsy. Cell Rep 2017; 18:380-390. [PMID: 28076783 DOI: 10.1016/j.celrep.2016.12.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/06/2016] [Accepted: 12/14/2016] [Indexed: 11/30/2022] Open
Abstract
During brain development, the correct migration of newborn neurons is one of the determinants of circuit formation, and neuronal migration defects may lead to neurological and psychiatric disorders. The molecular mechanisms underlying neuronal migration and related disorders are poorly understood. Here, we report that Chromodomain Y-like (CDYL) is critical for neuronal migration in mice. Knocking down CDYL caused neuronal migration defects and disrupted both mobility and multipolar-to-bipolar transition of migrating neurons. We find that CDYL regulates neuronal migration by transcriptionally repressing RhoA. In addition, CDYL deficiency increased the excitability of cortical pyramidal neurons and the susceptibility of mice to convulsant-induced seizures. These results demonstrate that CDYL is a regulator of neuronal migration and shed light on the pathogenesis of seizure-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rui Qin
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Shuai Cao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Tianjie Lyu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Cai Qi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Weiguang Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| |
Collapse
|
33
|
ACAP3, the GTPase-activating protein specific to the small GTPase Arf6, regulates neuronal migration in the developing cerebral cortex. Biochem Biophys Res Commun 2017; 493:1089-1094. [PMID: 28919417 DOI: 10.1016/j.bbrc.2017.09.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 11/22/2022]
Abstract
The GTPase-activating protein (GAP) specific to the small GTPase Arf6, ACAP3, is known to regulate morphogenesis of neurons in vitro. However, physiological significance of ACAP3 in the brain development in vivo remains unclear. Here, we show that ACAP3 is involved in neuronal migration in the developing cerebral cortex of mice. Knockdown of ACAP3 in the developing cortical neurons of mice in utero significantly abrogated neuronal migration in the cortical layer, which was restored by ectopic expression of wild type of ACAP3, but not by its GAP-inactive mutant. Furthermore, morphological changes of neurons during migration in the cortical layer were impeded in ACAP3-knocked-down cortical neurons. These results provide evidence that ACAP3 plays a crucial role in migration of cortical neurons by regulating their morphological change during development of cerebral cortex.
Collapse
|
34
|
Sur A, Magie CR, Seaver EC, Meyer NP. Spatiotemporal regulation of nervous system development in the annelid Capitella teleta. EvoDevo 2017; 8:13. [PMID: 28775832 PMCID: PMC5539756 DOI: 10.1186/s13227-017-0076-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/20/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND How nervous systems evolved remains an unresolved question. Previous studies in vertebrates and arthropods revealed that homologous genes regulate important neurogenic processes such as cell proliferation and differentiation. However, the mechanisms through which such homologs regulate neurogenesis across different bilaterian clades are variable, making inferences about nervous system evolution difficult. A better understanding of neurogenesis in the third major bilaterian clade, Spiralia, would greatly contribute to our ability to deduce the ancestral mechanism of neurogenesis. RESULTS Using whole-mount in situ hybridization, we examined spatiotemporal gene expression for homologs of soxB, musashi, prospero, achaete-scute, neurogenin, and neuroD in embryos and larvae of the spiralian annelid Capitella teleta, which has a central nervous system (CNS) comprising a brain and ventral nerve cord. For all homologs examined, we found expression in the neuroectoderm and/or CNS during neurogenesis. Furthermore, the onset of expression and localization within the developing neural tissue for each of these genes indicates putative roles in separate phases of neurogenesis, e.g., in neural precursor cells (NPCs) versus in cells that have exited the cell cycle. Ct-soxB1, Ct-soxB, and Ct-ngn are the earliest genes expressed in surface cells in the anterior and ventral neuroectoderm, while Ct-ash1 expression initiates slightly later in surface neuroectoderm. Ct-pros is expressed in single cells in neural and non-neural ectoderm, while Ct-msi and Ct-neuroD are localized to differentiating neural cells in the brain and ventral nerve cord. CONCLUSIONS These results suggest that the genes investigated in this article are involved in a neurogenic gene regulatory network in C. teleta. We propose that Ct-SoxB1, Ct-SoxB, and Ct-Ngn are involved in maintaining NPCs in a proliferative state. Ct-Pros may function in division of NPCs, Ct-Ash1 may promote cell cycle exit and ingression of NPC daughter cells, and Ct-NeuroD and Ct-Msi may control neuronal differentiation. Our results support the idea of a common genetic toolkit driving neural development whose molecular architecture has been rearranged within and across clades during evolution. Future functional studies should help elucidate the role of these homologs during C. teleta neurogenesis and identify which aspects of bilaterian neurogenesis may have been ancestral or were derived within Spiralia.
Collapse
Affiliation(s)
- Abhinav Sur
- Biology Department, Clark University, 950 Main St., Worcester, MA 01610-1400 USA
| | - Craig R. Magie
- Department of Biological Sciences, Quinnipiac University, 275 Mount Carmel Ave., Hamden, CT 06518-1905 USA
| | - Elaine C. Seaver
- Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Blvd., St. Augustine, FL 32080-8610 USA
| | - Néva P. Meyer
- Biology Department, Clark University, 950 Main St., Worcester, MA 01610-1400 USA
| |
Collapse
|
35
|
Nishimura YV, Nabeshima YI, Kawauchi T. Morphological and Molecular Basis of Cytoplasmic Dilation and Swelling in Cortical Migrating Neurons. Brain Sci 2017; 7:brainsci7070087. [PMID: 28753911 PMCID: PMC5532600 DOI: 10.3390/brainsci7070087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 11/16/2022] Open
Abstract
During corticogenesis, neuronal migration is an essential step for formation of a functional brain, and abnormal migration is known to cause various neurological disorders. Neuronal migration is not just a simple movement of the cell body, but a consequence of various morphological changes and coordinated subcellular events. Recent advances in in vivo and ex vivo cell biological approaches, such as in utero gene transfer, slice culture and ex vivo chemical inhibitor techniques, have revealed details of the morphological and molecular aspects of neuronal migration. Migrating neurons have been found to have a unique structure, dilation or swelling, at the proximal region of the leading process; this structure is not found in other migrating cell types. The formation of this structure is followed by nuclear deformation and forward movement, and coordination of this three-step sequential morphological change (the dilation/swelling formation, nuclear elongation and nuclear movement) is essential for proper neuronal migration and the construction of a functional brain structure. In this review, we will introduce the morphological features of this unique structure in migrating neurons and summarize what is known about the molecules regulating the dilation/swelling formation and nuclear deformation and movement.
Collapse
Affiliation(s)
- Yoshiaki V Nishimura
- Division of Neuroscience, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi 981-8558, Japan.
| | - Yo-Ichi Nabeshima
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation, 2-2 Minatojima-Minamimachi Chuo-ku, Kobe 650-0047, Japan.
| | - Takeshi Kawauchi
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation, 2-2 Minatojima-Minamimachi Chuo-ku, Kobe 650-0047, Japan.
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
36
|
Fyn regulates multipolar-bipolar transition and neurite morphogenesis of migrating neurons in the developing neocortex. Neuroscience 2017; 352:39-51. [PMID: 28363782 DOI: 10.1016/j.neuroscience.2017.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 01/03/2023]
Abstract
Fyn is a non-receptor protein tyrosine kinase that belongs to Src family kinases. Fyn plays a critical role in neuronal migration, but the mechanism remains unclear. Here, we reported that suppression of Fyn expression in mouse cerebral cortex led to migration defects of both early-born and late-born neurons. Morphological analysis showed that loss of Fyn function impaired multipolar-bipolar transition of newly generated neurons and neurite formation in the early phase of migration. Moreover, Fyn inhibition increased the length of leading process and decreased the branching number of the migrating cortical neurons. Together, these results indicate that Fyn controls neuronal migration by regulating the cytoskeletal dynamics and multipolar-bipolar transition of newly generated neurons during cortical development.
Collapse
|
37
|
Ascl1 promotes tangential migration and confines migratory routes by induction of Ephb2 in the telencephalon. Sci Rep 2017; 7:42895. [PMID: 28276447 PMCID: PMC5343589 DOI: 10.1038/srep42895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/18/2017] [Indexed: 01/13/2023] Open
Abstract
During development, cortical interneurons generated from the ventral telencephalon migrate tangentially into the dorsal telencephalon. Although Achaete-scute family bHLH transcription factor 1 (Ascl1) plays important roles in the developing telencephalon, whether Ascl1 regulates tangential migration remains unclear. Here, we found that Ascl1 promoted tangential migration along the ventricular zone/subventricular zone (VZ/SVZ) and intermediate zone (IZ) of the dorsal telencephalon. Distal-less homeobox 2 (Dlx2) acted downstream of Ascl1 in promoting tangential migration along the VZ/SVZ but not IZ. We further identified Eph receptor B2 (Ephb2) as a direct target of Ascl1. Knockdown of EphB2 disrupted the separation of the VZ/SVZ and IZ migratory routes. Ephrin-A5, a ligand of EphB2, was sufficient to repel both Ascl1-expressing cells in vitro and tangentially migrating cortical interneurons in vivo. Together, our results demonstrate that Ascl1 induces expression of Dlx2 and Ephb2 to maintain distinct tangential migratory routes in the dorsal telencephalon.
Collapse
|
38
|
SFPQ associates to LSD1 and regulates the migration of newborn pyramidal neurons in the developing cerebral cortex. Int J Dev Neurosci 2016; 57:1-11. [PMID: 28034769 DOI: 10.1016/j.ijdevneu.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 12/24/2022] Open
Abstract
The development of the cerebral cortex requires the coordination of multiple processes ranging from the proliferation of progenitors to the migration and establishment of connectivity of the newborn neurons. Epigenetic regulation carried out by the COREST/LSD1 complex has been identified as a mechanism that regulates the development of pyramidal neurons of the cerebral cortex. We now identify the association of the multifunctional RNA-binding protein SFPQ to LSD1 during the development of the cerebral cortex. In vivo reduction of SFPQ dosage by in utero electroporation of a shRNA results in impaired radial migration of newborn pyramidal neurons, in a similar way to that observed when COREST or LSD1 expressions are decreased. Diminished SFPQ expression also associates to decreased proliferation of progenitor cells, while it does not affect the acquisition of neuronal fate. These results are compatible with the idea that SFPQ, plays an important role regulating proliferation and migration during the development of the cerebral cortex.
Collapse
|
39
|
Wang CY, Shahi P, Huang JTW, Phan NN, Sun Z, Lin YC, Lai MD, Werb Z. Systematic analysis of the achaete-scute complex-like gene signature in clinical cancer patients. Mol Clin Oncol 2016; 6:7-18. [PMID: 28123722 PMCID: PMC5244854 DOI: 10.3892/mco.2016.1094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022] Open
Abstract
The achaete-scute complex-like (ASCL) family, also referred to as ‘achaete-scute complex homolog’ or ‘achaete-scute family basic helix-loop-helix transcription factor’, is critical for proper development of the nervous system and deregulation of ASCL plays a key role in psychiatric and neurological disorders. The ASCL family consists of five members, namely ASCL1, ASCL2, ASCL3, ASCL4 and ASCL5. The ASCL1 gene serves as a potential oncogene during lung cancer development. There is a correlation between increased ASCL2 expression and colon cancer development. Inhibition of ASCL2 reduced cellular proliferation and tumor growth in xenograft tumor experiments. Although previous studies demonstrated involvement of ASCL1 and ASCL2 in tumor development, little is known on the remaining ASCL family members and their potential effect on tumorigenesis. Therefore, a holistic approach to investigating the expression of ASCL family genes in diverse types of cancer may provide new insights in cancer research. In this study, we utilized a web-based microarray database (Oncomine; www.oncomine.org) to analyze the transcriptional expression of the ASCL family in clinical cancer and normal tissues. Our bioinformatics analysis revealed the potential involvement of multiple ASCL family members during tumor onset and progression in multiple types of cancer. Compared to normal tissue, ASCL1 exhibited a higher expression in cancers of the lung, pancreas, kidney, esophagus and head and neck, whereas ASCL2 exhibited a high expression in cancers of the breast, colon, stomach, lung, head and neck, ovary and testis. ASCL3, however, exhibited a high expression only in breast cancer. Interestingly, ASCL1 expression was downregulated in melanoma and in cancers of the bladder, breast, stomach and colon. ASCL2 exhibited low expression levels in sarcoma, melanoma, brain and prostate cancers. Reduction in the expression of ASCL3 was detected in lymphoma, bladder, cervical, kidney and epithelial cancers. Similarly, ASCL5 exhibited low expression in the majority of brain cancer subtypes, such as glioblastoma and oligodendroglioma. This analysis supports the hypothesis that specific ASCL members may play an important role in cancer development. Collectively, our data suggest that alterations in the expression of ASCL gene family members are correlated with cancer development. Furthermore, ASCL family members were categorized according to cancer subtype. The aim of this report was to provide novel insights to the significance of the ASCL family in various cancers and our findings suggested that the ASCL gene family may be an ideal target for future cancer studies.
Collapse
Affiliation(s)
- Chih-Yang Wang
- Department of Anatomy, University of California, San Francisco, CA 94143, USA; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan 11114, R.O.C.; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan 11114, R.O.C
| | - Payam Shahi
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143, USA
| | - John Ting Wei Huang
- Department of Oncology, University of California, San Francisco, CA 94143, USA
| | - Nam Nhut Phan
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh 7000, Vietnam; Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan 11114, R.O.C
| | - Zhengda Sun
- Department of Radiology, University of California, San Francisco, CA 94143, USA
| | - Yen-Chang Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan 11114, R.O.C
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan 11114, R.O.C.; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan 11114, R.O.C
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
40
|
Ortiz-López L, Vega-Rivera NM, Babu H, Ramírez-Rodríguez GB. Brain-Derived Neurotrophic Factor Induces Cell Survival and the Migration of Murine Adult Hippocampal Precursor Cells During Differentiation In Vitro. Neurotox Res 2016; 31:122-135. [DOI: 10.1007/s12640-016-9673-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/01/2016] [Accepted: 09/20/2016] [Indexed: 01/09/2023]
|
41
|
Oishi K, Nakagawa N, Tachikawa K, Sasaki S, Aramaki M, Hirano S, Yamamoto N, Yoshimura Y, Nakajima K. Identity of neocortical layer 4 neurons is specified through correct positioning into the cortex. eLife 2016; 5. [PMID: 26880563 PMCID: PMC4764574 DOI: 10.7554/elife.10907] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/28/2016] [Indexed: 11/13/2022] Open
Abstract
Many cell-intrinsic mechanisms have been shown to regulate neuronal subtype specification in the mammalian neocortex. However, how much cell environment is crucial for subtype determination still remained unclear. Here, we show that knockdown of Protocadherin20 (Pcdh20), which is expressed in post-migratory neurons of layer 4 (L4) lineage, caused the cells to localize in L2/3. The ectopically positioned "future L4 neurons" lost their L4 characteristics but acquired L2/3 characteristics. Knockdown of a cytoskeletal protein in the future L4 neurons, which caused random disruption of positioning, also showed that those accidentally located in L4 acquired the L4 characteristics. Moreover, restoration of positioning of the Pcdh20-knockdown neurons into L4 rescued the specification failure. We further suggest that the thalamocortical axons provide a positional cue to specify L4 identity. These results suggest that the L4 identity is not completely determined at the time of birth but ensured by the surrounding environment after appropriate positioning.
Collapse
Affiliation(s)
- Koji Oishi
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Nao Nakagawa
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes for Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies, Okazaki, Japan
| | - Kashiko Tachikawa
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Shinji Sasaki
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Michihiko Aramaki
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Shinji Hirano
- Department of Cell Biology, Kansai Medical University, Osaka, Japan
| | - Nobuhiko Yamamoto
- Laboratory of Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yumiko Yoshimura
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes for Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies, Okazaki, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Tang BL. Rab, Arf, and Arl-Regulated Membrane Traffic in Cortical Neuron Migration. J Cell Physiol 2015; 231:1417-23. [DOI: 10.1002/jcp.25261] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| |
Collapse
|
43
|
Decoding the molecular mechanisms of neuronal migration using in utero electroporation. Med Mol Morphol 2015; 49:63-75. [DOI: 10.1007/s00795-015-0127-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/08/2015] [Indexed: 12/20/2022]
|
44
|
Tomé M, Sepúlveda JC, Delgado M, Andrades JA, Campisi J, González MA, Bernad A. miR-335 correlates with senescence/aging in human mesenchymal stem cells and inhibits their therapeutic actions through inhibition of AP-1 activity. Stem Cells 2015; 32:2229-44. [PMID: 24648336 DOI: 10.1002/stem.1699] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/25/2014] [Accepted: 03/02/2014] [Indexed: 12/13/2022]
Abstract
MicroRNAs, small noncoding RNAs, regulate gene expression primarily at the posttranscriptional level. We previously found that miR-335 is critically involved in the regulation and differentiation capacity of human mesenchymal stem cells (hMSCs) in vitro. In this study, we investigated the significance of miR-335 for the therapeutic potential of hMSCs. Analysis of hMSCs in ex vivo culture demonstrated a significant and progressive increase in miR-335 that is prevented by telomerase. Expression levels of miR-335 were also positively correlated with donor age of hMSCs, and were increased by stimuli that induce cell senescence, such as γ-irradiation and standard O2 concentration. Forced expression of miR-335 resulted in early senescence-like alterations in hMSCs, including: increased SA-β-gal activity and cell size, reduced cell proliferation capacity, augmented levels of p16 protein, and the development of a senescence-associated secretory phenotype. Furthermore, overexpression of miR-335 abolished the in vivo chondro-osseous potential of hMSCs, and disabled their immunomodulatory capacity in a murine experimental model of lethal endotoxemia. These effects were accompanied by a severely reduced capacity for cell migration in response to proinflammatory signals and a marked reduction in Protein Kinase D1 phosphorylation, resulting in a pronounced decrease of AP-1 activity. Our results demonstrate that miR-335 plays a key role in the regulation of reparative activities of hMSCs and suggests that it might be considered a marker for the therapeutic potency of these cells in clinical applications.
Collapse
Affiliation(s)
- María Tomé
- Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
45
|
Orchestration of Neuronal Differentiation and Progenitor Pool Expansion in the Developing Cortex by SoxC Genes. J Neurosci 2015. [PMID: 26203155 DOI: 10.1523/jneurosci.1663-15.2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
As the cerebral cortex forms, specialized molecular cascades direct the expansion of progenitor pools, the differentiation of neurons, or the maturation of discrete neuronal subtypes, together ensuring that the correct amounts and classes of neurons are generated. In several neural systems, the SoxC transcriptional regulators, particularly Sox11 and Sox4, have been characterized as functioning exclusively and redundantly in promoting neuronal differentiation. Using the mouse cerebral cortex as a model, Sox11 and Sox4 were examined in the formation of the most complex part of the mammalian brain. Anticipated prodifferentiation roles were observed. Distinct expression patterns and mutant phenotypes, however, reveal that Sox11 and Sox4 are not redundant in the cortex, but rather act in overlapping and discrete populations of neurons. In particular, Sox11 acts in early-born neurons; binding to its partner protein, Neurogenin1, leads to selective targeting and transactivation of a downstream gene, NeuroD1. In addition to neuronal expression, Sox4 was unexpectedly expressed in intermediate progenitor cells, the transit amplifying cell of the cerebral cortex. Sox4 mutant analyses reveal a requirement for Sox4 in IPC specification and maintenance. In intermediate progenitors, Sox4 partners with the proneural gene Neurogenin2 to activate Tbrain2 and then with Tbrain2 to maintain this cell fate. This work reveals an intricately structured molecular architecture for SoxC molecules, with Sox11 acting in a select set of cortical neurons and Sox4 playing an unanticipated role in designating secondary progenitors.
Collapse
|
46
|
Namba T, Funahashi Y, Nakamuta S, Xu C, Takano T, Kaibuchi K. Extracellular and Intracellular Signaling for Neuronal Polarity. Physiol Rev 2015; 95:995-1024. [PMID: 26133936 DOI: 10.1152/physrev.00025.2014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neurons are one of the highly polarized cells in the body. One of the fundamental issues in neuroscience is how neurons establish their polarity; therefore, this issue fascinates many scientists. Cultured neurons are useful tools for analyzing the mechanisms of neuronal polarization, and indeed, most of the molecules important in their polarization were identified using culture systems. However, we now know that the process of neuronal polarization in vivo differs in some respects from that in cultured neurons. One of the major differences is their surrounding microenvironment; neurons in vivo can be influenced by extrinsic factors from the microenvironment. Therefore, a major question remains: How are neurons polarized in vivo? Here, we begin by reviewing the process of neuronal polarization in culture conditions and in vivo. We also survey the molecular mechanisms underlying neuronal polarization. Finally, we introduce the theoretical basis of neuronal polarization and the possible involvement of neuronal polarity in disease and traumatic brain injury.
Collapse
Affiliation(s)
- Takashi Namba
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Funahashi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Nakamuta
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chundi Xu
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Takano
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
47
|
Zhao J, Lin Q, Kim KJ, Dardashti FD, Kim J, He F, Sun Y. Ngn1 inhibits astrogliogenesis through induction of miR-9 during neuronal fate specification. eLife 2015; 4:e06885. [PMID: 26271009 PMCID: PMC4577824 DOI: 10.7554/elife.06885] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 08/12/2015] [Indexed: 11/25/2022] Open
Abstract
It has been postulated that a proneural factor, neurogenin 1 (Ngn1), simultaneously activates the neurogenic program and inhibits the alternative astrogliogenic program when specifying the neuronal fate. While Ngn1 substantially suppresses the activation of the astrogliogenic Jak-Stat pathway, the underlying molecular mechanism was unknown. Here, by employing in vivo and in vitro approaches, we report that Ngn1 binds to the promoter of a brain-enriched microRNA, miR-9, and activates its expression during neurogenesis. Subsequently, our in vitro study showed that miR-9 directly targets mRNAs of Lifr-beta, Il6st (gp130), and Jak1 to down-regulate these critical upstream components of the Jak-Stat pathway, achieving inhibition of Stat phosphorylation and consequently, suppression of astrogliogenesis. This study revealed Ngn1 modulated non-coding RNA epigenetic regulation during cell fate specifications. DOI:http://dx.doi.org/10.7554/eLife.06885.001 The brain processes information from all over the body through a complex network of cells called neurons. Other brain cells—including star-shaped cells called astrocytes—support this network. Both neurons and astrocytes originate from the same group of stem cells, which first give rise to neurons in a process called neurogenesis before they switch to producing astrocytes. A protein called neurogenin 1 promotes neurogenesis and suppresses the formation of astrocytes by regulating the activity of particular genes. It does so by binding to a region within the genes called the promoter. A cell communication system (or ‘signaling pathway’) known as the Jak-Stat pathway is required for brain stem cells to make astrocytes. Previous research has shown that neurogenin 1 is present at high levels when stem cells start to make neurons, which leads to the inactivation the Jak-Stat pathway. However, when stem cells start to make astrocytes, the levels of neurogenin 1 decrease and the Jak-Stat pathway is activated. This signaling pathway therefore acts as a switch for the transition from neurogenesis to the formation of astrocytes, but it is not clear exactly how it works. When a gene is active, its DNA sequence is copied to make molecules of ribonucleic acid (RNA). These molecules can be used as templates to assemble proteins—known as messenger RNAs. Alternatively, they may be processed to make another type of RNA called microRNA, which can switch off the activity of particular genes by promoting the destruction of particular messenger RNAs. Zhao et al. studied neurogenesis in the mouse brain and found that neurogenin 1 can directly bind to the promoter of a gene that makes a microRNA called miR-9. The experiments show that neurogenin 1 increases the activity of this gene so that the amount of miR-9 in brain stem cells increases during neurogenesis. In turn, this microRNA lowers the activity of several critical genes that encode proteins involved in the Jak-Stat pathway. Zhao et al.'s findings reveal that neurogenin 1 promotes neurogenesis and inhibits astrocyte formation by regulating the production of miR-9. The Jak-Stat pathway plays important roles in nerve injury, neural repair, and the immune system, so drugs that target miR-9 may have the potential to be developed into new therapies to treat diseases that affect the nervous system. DOI:http://dx.doi.org/10.7554/eLife.06885.002
Collapse
Affiliation(s)
- Jing Zhao
- Department of Psychiatry and Behavioral Sciences and Intellectual Development and Disabilities Research Center, University of California, Los Angeles, Los Angeles, United States
| | - Quan Lin
- Department of Psychiatry and Behavioral Sciences and Intellectual Development and Disabilities Research Center, University of California, Los Angeles, Los Angeles, United States
| | - Kevin J Kim
- Department of Psychiatry and Behavioral Sciences and Intellectual Development and Disabilities Research Center, University of California, Los Angeles, Los Angeles, United States
| | - Faranak D Dardashti
- Department of Psychiatry and Behavioral Sciences and Intellectual Development and Disabilities Research Center, University of California, Los Angeles, Los Angeles, United States
| | - Jennifer Kim
- Department of Psychiatry and Behavioral Sciences and Intellectual Development and Disabilities Research Center, University of California, Los Angeles, Los Angeles, United States
| | - Fei He
- Department of Psychiatry and Behavioral Sciences and Intellectual Development and Disabilities Research Center, University of California, Los Angeles, Los Angeles, United States
| | - Yi Sun
- Department of Psychiatry and Behavioral Sciences and Intellectual Development and Disabilities Research Center, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
48
|
Rusanescu G, Mao J. Immature spinal cord neurons are dynamic regulators of adult nociceptive sensitivity. J Cell Mol Med 2015. [PMID: 26223362 PMCID: PMC4594677 DOI: 10.1111/jcmm.12648] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is a debilitating condition with unknown mechanism. Nociceptive sensitivity may be regulated by genetic factors, some of which have been separately linked to neuronal progenitor cells and neuronal differentiation. This suggests that genetic factors that interfere with neuronal differentiation may contribute to a chronic increase in nociceptive sensitivity, by extending the immature, hyperexcitable stage of spinal cord neurons. Although adult rodent spinal cord neurogenesis was previously demonstrated, the fate of these progenitor cells is unknown. Here, we show that peripheral nerve injury in adult rats induces extensive spinal cord neurogenesis and a long-term increase in the number of spinal cord laminae I–II neurons ipsilateral to injury. The production and maturation of these new neurons correlates with the time course and modulation of nociceptive behaviour, and transiently mimics the cellular and behavioural conditions present in genetically modified animal models of chronic pain. This suggests that the number of immature neurons present at any time in the spinal cord dorsal horns contributes to the regulation of nociceptive sensitivity. The continuous turnover of these neurons, which can fluctuate between normal and injured states, is a dynamic regulator of nociceptive sensitivity. In support of this hypothesis, we find that promoters of neuronal differentiation inhibit, while promoters of neurogenesis increase long-term nociception. TrkB agonists, well-known promoters of nociception in the short-term, significantly inhibit long-term nociception by promoting the differentiation of newly produced immature neurons. These findings suggest that promoters of neuronal differentiation may be used to alleviate chronic pain.
Collapse
Affiliation(s)
- Gabriel Rusanescu
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jianren Mao
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Chu W, Yuan J, Huang L, Xiang X, Zhu H, Chen F, Chen Y, Lin J, Feng H. Valproic Acid Arrests Proliferation but Promotes Neuronal Differentiation of Adult Spinal NSPCs from SCI Rats. Neurochem Res 2015; 40:1472-86. [PMID: 26023063 DOI: 10.1007/s11064-015-1618-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/02/2015] [Accepted: 05/18/2015] [Indexed: 11/29/2022]
Abstract
Although the adult spinal cord contains a population of multipotent neural stem/precursor cells (NSPCs) exhibiting the potential to replace neurons, endogenous neurogenesis is very limited after spinal cord injury (SCI) because the activated NSPCs primarily differentiate into astrocytes rather than neurons. Valproic acid (VPA), a histone deacetylase inhibitor, exerts multiple pharmacological effects including fate regulation of stem cells. In this study, we cultured adult spinal NSPCs from chronic compressive SCI rats and treated with VPA. In spite of inhibiting the proliferation and arresting in the G0/G1 phase of NSPCs, VPA markedly promoted neuronal differentiation (β-tubulin III(+) cells) as well as decreased astrocytic differentiation (GFAP(+) cells). Cell cycle regulator p21(Cip/WAF1) and proneural genes Ngn2 and NeuroD1 were increased in the two processes respectively. In vivo, to minimize the possible inhibitory effects of VPA to the proliferation of NSPCs as well as avoid other neuroprotections of VPA in acute phase of SCI, we carried out a delayed intraperitoneal injection of VPA (150 mg/kg/12 h) to SCI rats from day 15 to day 22 after injury. Both of the newborn neuron marker doublecortin and the mature neuron marker neuron-specific nuclear protein were significantly enhanced after VPA treatment in the epicenter and adjacent segments of the injured spinal cord. Although the impaired corticospinal tracks had not significantly improved, Basso-Beattie-Bresnahan scores in VPA treatment group were better than control. Our study provide the first evidence that administration of VPA enhances the neurogenic potential of NSPCs after SCI and reveal the therapeutic value of delayed treatment of VPA to SCI.
Collapse
Affiliation(s)
- Weihua Chu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No. 29, Gaotanyan Street, Shapingba District, Chongqing, 400038, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Garcez PP, Diaz-Alonso J, Crespo-Enriquez I, Castro D, Bell D, Guillemot F. Cenpj/CPAP regulates progenitor divisions and neuronal migration in the cerebral cortex downstream of Ascl1. Nat Commun 2015; 6:6474. [PMID: 25753651 PMCID: PMC4366522 DOI: 10.1038/ncomms7474] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 01/30/2015] [Indexed: 01/10/2023] Open
Abstract
The proneural factor Ascl1 controls multiple steps of neurogenesis in the embryonic brain, including progenitor division and neuronal migration. Here we show that Cenpj, also known as CPAP, a microcephaly gene, is a transcriptional target of Ascl1 in the embryonic cerebral cortex. We have characterized the role of Cenpj during cortical development by in utero electroporation knockdown and found that silencing Cenpj in the ventricular zone disrupts centrosome biogenesis and randomizes the cleavage plane orientation of radial glia progenitors. Moreover, we show that downregulation of Cenpj in post-mitotic neurons increases stable microtubules and leads to slower neuronal migration, abnormal centrosome position and aberrant neuronal morphology. Moreover, rescue experiments shows that Cenpj mediates the role of Ascl1 in centrosome biogenesis in progenitor cells and in microtubule dynamics in migrating neurons. These data provide insights into genetic pathways controlling cortical development and primary microcephaly observed in humans with mutations in Cenpj. The proneural factor Ascl1/Mash1 is an important regulator of embryonic neurogenesis. Here the authors identify that the microcephaly protein Cenpj/CPAP is essential for several microtubule-dependent steps in the neurogenic program driven by Ascl1 in the developing cerebral cortex.
Collapse
Affiliation(s)
- Patricia P Garcez
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Javier Diaz-Alonso
- Department of Biochemistry and Molecular Biology I, School of Biology and Instituto Universitario de Investigaciones Neuroquímicas (IUIN), Complutense University, 28040 Madrid, Spain
| | - Ivan Crespo-Enriquez
- Department of Craniofacial Development &Stem Cell Biology, King's College London, Guy's Tower Wing, Floor 27, London SE1 9RT, UK
| | - Diogo Castro
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Donald Bell
- Confocal and Image Analysis Laboratory, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - François Guillemot
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| |
Collapse
|