1
|
Encina-Robles J, Pérez-Villalobos V, Bustamante P. The HicAB System: Characteristics and Biological Roles of an Underappreciated Toxin-Antitoxin System. Int J Mol Sci 2024; 25:12165. [PMID: 39596231 PMCID: PMC11594946 DOI: 10.3390/ijms252212165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Small genetic elements known as toxin-antitoxin (TA) systems are abundant in bacterial genomes and involved in stress response, phage inhibition, mobile genetic elements maintenance and biofilm formation. Type II TA systems are the most abundant and diverse, and they are organized as bicistronic operons that code for proteins (toxin and antitoxin) able to interact through a nontoxic complex. However, HicAB is one of the type II TA systems that remains understudied. Here, we review the current knowledge of HicAB systems in different bacteria, their main characteristics and the existing evidence to associate them with some biological roles, are described. The accumulative evidence reviewed here, though modest, underscores that HicAB systems are underexplored TA systems with significant potential for future research.
Collapse
Affiliation(s)
| | | | - Paula Bustamante
- Molecular and Cellular Microbiology Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| |
Collapse
|
2
|
Mongillo J, Zedda N, Rinaldo N, Bellini T, Manfrinato MC, Du Z, Yang R, Stenseth NC, Bramanti B. Differential pathogenicity and lethality of bubonic plague (1720-1945) by sex, age and place. Proc Biol Sci 2024; 291:20240724. [PMID: 39045692 PMCID: PMC11267469 DOI: 10.1098/rspb.2024.0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
COVID-19 brought back to the attention of the scientific community that males are more susceptible to infectious diseases. What is clear for other infections-that sex and gender differences influence both risk of infection and mortality-is not yet fully elucidated for plague, particularly bubonic plague, although this knowledge can help find specific defences against a disease for which a vaccine is not yet available. To address this question, we analysed data on plague from hospitals in different parts of the world since the early eighteenth century, which provide demographic information on individual patients, diagnosis and course of the disease in the pre-antibiotic era. Assuming that the two sexes were equally represented, we observe a worldwide prevalence of male cases hospitalized at any age, a result which seems better explained by gender-biased (thus cultural) behaviours than biological sex-related factors. Conversely, case fatality rates differ among countries and geographic macro-areas, while globally, lethality appears slightly prevalent in young females and older adults (regardless of sex). Logistic regression models confirm that the main risk factor for bubonic plague death was the geographical location of the cases and being older than 50 years, whereas sex only showcased a slight trend.
Collapse
Affiliation(s)
- J. Mongillo
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara44121, Italy
| | - N. Zedda
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara44121, Italy
| | - N. Rinaldo
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara44121, Italy
| | - T. Bellini
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara44121, Italy
- University Strategic Center for Studies on Gender Medicine, University of Ferrara, Ferrara44121, Italy
| | - M. C. Manfrinato
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara44121, Italy
| | - Z. Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People‘s Republic of China
| | - R. Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People‘s Republic of China
| | - N. C. Stenseth
- Center for Pandemics and One Health Research, Sustainable Health Unit (SUSTAINIT), Faculty of Medicine, University of Oslo, Oslo0316, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo0316, Norway
- Vanke School of Public Health, Tsinghua University, Beijing100084, People‘s Republic of China
| | - B. Bramanti
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara44121, Italy
- University Strategic Center for Studies on Gender Medicine, University of Ferrara, Ferrara44121, Italy
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo0316, Norway
| |
Collapse
|
3
|
Pitta JLDLP, Bezerra MF, Fernandes DLRDS, de Block T, Novaes ADS, de Almeida AMP, Rezende AM. Genomic Analysis of Yersinia pestis Strains from Brazil: Search for Virulence Factors and Association with Epidemiological Data. Pathogens 2023; 12:991. [PMID: 37623951 PMCID: PMC10459997 DOI: 10.3390/pathogens12080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
Yersinia pestis, the etiological agent of the plague, is considered a genetically homogeneous species. Brazil is currently in a period of epidemiological silence but plague antibodies are still detected in sentinel animals, suggesting disease activity in the sylvatic cycle. The present study deployed an in silico approach to analyze virulence factors among 407 Brazilian genomes of Y. pestis belonging to the Fiocruz Collection (1966-1997). The pangenome analysis associated several known virulence factors of Y. pestis in clades according to the presence or absence of genes. Four main strain clades (C, E, G, and H) exhibited the absence of various virulence genes. Notably, clade G displayed the highest number of absent genes, while clade E showed a significant absence of genes related to the T6SS secretion system and clade H predominantly demonstrated the absence of plasmid-related genes. These results suggest attenuation of virulence in these strains over time. The cgMLST analysis associated genomic and epidemiological data highlighting evolutionary patterns related to the isolation years and outbreaks of Y. pestis in Brazil. Thus, the results contribute to the understanding of the genetic diversity and virulence within Y. pestis and the potential for utilizing genomic data in epidemiological investigations.
Collapse
Affiliation(s)
- João Luiz de Lemos Padilha Pitta
- Microbiology Department of Aggeu Magalhães Institute—FIOCRUZ PE, Recife 50740-465, PE, Brazil; (M.F.B.); (D.L.R.d.S.F.); (A.M.P.d.A.)
- Bioinformatics Platform of Aggeu Magalhães Institute—FIOCRUZ PE, Recife 50740-465, PE, Brazil
| | - Matheus Filgueira Bezerra
- Microbiology Department of Aggeu Magalhães Institute—FIOCRUZ PE, Recife 50740-465, PE, Brazil; (M.F.B.); (D.L.R.d.S.F.); (A.M.P.d.A.)
| | | | - Tessa de Block
- Department of Clinical Sciences—Institute of Tropical Medicine, 2000 Antwerp, Belgium;
| | - Ane de Souza Novaes
- Department of Biological Sciences—Federal University of Vale do São Francisco—UNIVASF, Petrolina 56300-000, PE, Brazil;
| | - Alzira Maria Paiva de Almeida
- Microbiology Department of Aggeu Magalhães Institute—FIOCRUZ PE, Recife 50740-465, PE, Brazil; (M.F.B.); (D.L.R.d.S.F.); (A.M.P.d.A.)
| | - Antonio Mauro Rezende
- Microbiology Department of Aggeu Magalhães Institute—FIOCRUZ PE, Recife 50740-465, PE, Brazil; (M.F.B.); (D.L.R.d.S.F.); (A.M.P.d.A.)
- Bioinformatics Platform of Aggeu Magalhães Institute—FIOCRUZ PE, Recife 50740-465, PE, Brazil
| |
Collapse
|
4
|
Balamayooran G, Atkins HM, Andrews RN, Michalson KT, Hutchison AR, LeGrande AC, Wilson QN, Gee MK, Aycock ST, Jorgensen MJ, Young RW, Kock ND, Caudell DL. Epizootic Yersinia enterocolitica in captive African green monkeys ( Chlorocebus aethiops sabaeus). Front Vet Sci 2022; 9:922961. [PMID: 36504866 PMCID: PMC9727084 DOI: 10.3389/fvets.2022.922961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
Yersinia enterocolitica is a Gram-negative bacterium that typical results in enterocolitis in humans and poses significant worldwide risks to public health. An outbreak of yersiniosis in the Vervet/African green monkey colony at the WFSM during the winter of 2015-2016 accounted for widespread systemic infection with high morbidity and mortality. Most of the cases had extensive necrosis with suppuration and large colonies of bacilli in the large bowel and associated lymph nodes; however, the small intestine, stomach, and other organs were also regularly affected. Positive cultures of Yersinia enterocolitica were recovered from affected tissues in 20 of the 23 cases. Carrier animals in the colony were suspected as the source of the infection because many clinically normal animals were culture-positive during and after the outbreak. In this study, we describe the gross and histology findings and immune cell profiles in different organs of affected animals. We found increased numbers of myeloid-derived phagocytes and CD11C-positive antigen-presenting cells and fewer adaptive T and B lymphocytes, suggesting an immunocompromised state in these animals. The pathogen-mediated microenvironment may have contributed to the immunosuppression and rapid spread of the infection in the vervets. Further studies in vervets could provide a better understanding of Yersinia-mediated pathogenesis and immunosuppression, which could be fundamental to understanding chronic and systemic inflammatory diseases in humans.
Collapse
|
5
|
Repair of Iron Center Proteins—A Different Class of Hemerythrin-like Proteins. Molecules 2022; 27:molecules27134051. [PMID: 35807291 PMCID: PMC9268430 DOI: 10.3390/molecules27134051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Repair of Iron Center proteins (RIC) form a family of di-iron proteins that are widely spread in the microbial world. RICs contain a binuclear nonheme iron site in a four-helix bundle fold, two basic features of hemerythrin-like proteins. In this work, we review the data on microbial RICs including how their genes are regulated and contribute to the survival of pathogenic bacteria. We gathered the currently available biochemical, spectroscopic and structural data on RICs with a particular focus on Escherichia coli RIC (also known as YtfE), which remains the best-studied protein with extensive biochemical characterization. Additionally, we present novel structural data for Escherichia coli YtfE harboring a di-manganese site and the protein’s affinity for this metal. The networking of protein interactions involving YtfE is also described and integrated into the proposed physiological role as an iron donor for reassembling of stress-damaged iron-sulfur centers.
Collapse
|
6
|
Chen J, Byun H, She Q, Liu Z, Ruggeberg KG, Pu Q, Jung IJ, Zhu D, Brockett MR, Hsiao A, Zhu J. S-Nitrosylation of the virulence regulator AphB promotes Vibrio cholerae pathogenesis. PLoS Pathog 2022; 18:e1010581. [PMID: 35714156 PMCID: PMC9246220 DOI: 10.1371/journal.ppat.1010581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/30/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022] Open
Abstract
Vibrio cholerae is the etiologic agent of the severe human diarrheal disease cholera. To colonize mammalian hosts, this pathogen must defend against host-derived toxic compounds, such as nitric oxide (NO) and NO-derived reactive nitrogen species (RNS). RNS can covalently add an NO group to a reactive cysteine thiol on target proteins, a process called protein S-nitrosylation, which may affect bacterial stress responses. To better understand how V. cholerae regulates nitrosative stress responses, we profiled V. cholerae protein S-nitrosylation during RNS exposure. We identified an S-nitrosylation of cysteine 235 of AphB, a LysR-family transcription regulator that activates the expression of tcpP, which activates downstream virulence genes. Previous studies show that AphB C235 is sensitive to O2 and reactive oxygen species (ROS). Under microaerobic conditions, AphB formed dimer and directly repressed transcription of hmpA, encoding a flavohemoglobin that is important for NO resistance of V. cholerae. We found that tight regulation of hmpA by AphB under low nitrosative stress was important for V. cholerae optimal growth. In the presence of NO, S-nitrosylation of AphB abolished AphB activity, therefore relieved hmpA expression. Indeed, non-modifiable aphBC235S mutants were sensitive to RNS in vitro and drastically reduced colonization of the RNS-rich mouse small intestine. Finally, AphB S-nitrosylation also decreased virulence gene expression via debilitation of tcpP activation, and this regulation was also important for V. cholerae RNS resistance in vitro and in the gut. These results suggest that the modulation of the activity of virulence gene activator AphB via NO-dependent protein S-nitrosylation is critical for V. cholerae RNS resistance and colonization.
Collapse
Affiliation(s)
- Jiandong Chen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hyuntae Byun
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Qianxuan She
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhi Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Karl-Gustav Ruggeberg
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Qinqin Pu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - I-Ji Jung
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dehao Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mary R. Brockett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ansel Hsiao
- Department of Microbiology & Plant Pathology, University of California Riverside, Riverside, California, United States of America
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
7
|
What do we know about osmoadaptation of Yersinia pestis? Arch Microbiol 2021; 204:11. [PMID: 34878588 DOI: 10.1007/s00203-021-02610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
The plague agent Yersinia pestis mainly spreads among mammalian hosts and their associated fleas. Production of a successful mammal-flea-mammal life cycle implies that Y. pestis senses and responds to distinct cues in both host and vector. Among these cues, osmolarity is a fundamental parameter. The plague bacillus lives in a tightly regulated environment in the mammalian host, while osmolarity fluctuates in the flea gut (300-550 mOsM). Here, we review the mechanisms that enable Y. pestis to perceive fluctuations in osmolarity, as well as genomic plasticity and physiological adaptation of the bacterium to this stress.
Collapse
|
8
|
Wan X, Brynildsen MP. Robustness of nitric oxide detoxification to nitrogen starvation in Escherichia coli requires RelA. Free Radic Biol Med 2021; 176:286-297. [PMID: 34624482 DOI: 10.1016/j.freeradbiomed.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 01/18/2023]
Abstract
Reactive nitrogen species and nutrient deprivation are two elements of the immune response used to eliminate pathogens within phagosomes. Concomitantly, pathogenic bacteria have evolved defense systems to cope with phagosomal stressors, which include enzymes that detoxify nitric oxide (•NO) and respond to nutrient scarcity. A deeper understanding of how those defense systems are deployed under adverse conditions that contain key elements of phagosomes will facilitate targeting of those systems for therapeutic purposes. Here we investigated how Escherichia coli detoxifies •NO in the absence of useable nitrogen, because nitrogen availability is limited in phagosomes due to the removal of nitrogenous compounds (e.g., amino acids). We hypothesized that nitrogen starvation would impair •NO detoxification by E. coli because it depresses translation rates and the main E. coli defense enzyme, Hmp, is synthesized in response to •NO. However, we found that E. coli detoxifies •NO at the same rate regardless of whether useable nitrogen was present. We confirmed that the nitrogen in •NO and its autoxidation products could not be used by E. coli under our experimental conditions, and discovered that •NO eliminated differences in carbon and oxygen consumption between nitrogen-replete and nitrogen-starved cultures. Interestingly, E. coli does not consume measurable extracellular nitrogen during •NO stress despite the need to translate defense enzymes. Further, we found that RelA, which responds to uncharged tRNA, was required to observe the robustness of •NO detoxification to nitrogen starvation. These data demonstrate that E. coli is well poised to detoxify •NO in the absence of useable nitrogen and suggest that the stringent response could be a useful target to potentiate the antibacterial activity of •NO.
Collapse
Affiliation(s)
- Xuanqing Wan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
9
|
Quinn JD, Weening EH, Miller VL. PsaF Is a Membrane-Localized pH Sensor That Regulates psaA Expression in Yersinia pestis. J Bacteriol 2021; 203:e0016521. [PMID: 34060904 PMCID: PMC8407435 DOI: 10.1128/jb.00165-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/21/2021] [Indexed: 12/30/2022] Open
Abstract
The Yersinia pestis pH 6 antigen (PsaA) forms fimbria-like structures and is required for full virulence during bubonic plague. High temperature and low pH regulate PsaA production, and while recent work has uncovered the molecular aspects of temperature control, the mechanisms underlying this unusual regulation by pH are poorly understood. Using defined growth conditions, we recently showed that high levels of PsaE and PsaF (two regulatory proteins required for expression of psaA) are present at mildly acidic pH, but these levels are greatly reduced at neutral pH, resulting in low psaA expression. In prior work, the use of translational reporters suggested that pH had no impact on translation of psaE and psaF, but rather affected protein stability of PsaE and/or PsaF. Here, we investigated the pH-dependent posttranslational mechanisms predicted to regulate PsaE and PsaF stability. Using antibodies that recognize the endogenous proteins, we showed that the amount of PsaE and PsaF is defined by a distinct pH threshold. Analysis of histidine residues in the periplasmic domain of PsaF suggested that it functions as a pH sensor and indicated that the presence of PsaF is important for PsaE stability. At neutral pH, when PsaF is absent, PsaE appears to be targeted for proteolytic degradation by regulated intramembrane proteolysis. Together, our work shows that Y. pestis utilizes PsaF as a pH sensor to control psaA expression by enhancing the stability of PsaE, an essential psaA regulatory protein. IMPORTANCE Yersinia pestis is a bacterial pathogen that causes bubonic plague in humans. As Y. pestis cycles between fleas and mammals, it senses the environment within each host to appropriately control gene expression. PsaA is a protein that forms fimbria-like structures and is required for virulence. High temperature and low pH together stimulate psaA transcription by increasing the levels of two essential integral membrane regulators, PsaE and PsaF. Histidine residues in the PsaF periplasmic domain enable it to function as a pH sensor. In the absence of PsaF, PsaE (a DNA-binding protein) appears to be targeted for proteolytic degradation, thus preventing expression of psaA. This work offers insight into the mechanisms that bacteria use to sense pH and control virulence gene expression.
Collapse
Affiliation(s)
- Joshua D. Quinn
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eric H. Weening
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Virginia L. Miller
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Bath PM, Coleman CM, Gordon AL, Lim WS, Webb AJ. Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Res 2021; 10:536. [PMID: 35685687 PMCID: PMC9171293 DOI: 10.12688/f1000research.51270.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Although the antimicrobial potential of nitric oxide (NO) is widely published, it is little used clinically. NO is a key signalling molecule modulating vascular, neuronal, inflammatory and immune responses. Endogenous antimicrobial activity is largely mediated by high local NO concentrations produced by cellular inducible nitric oxide synthase, and by derivative reactive nitrogen oxide species including peroxynitrite and S-nitrosothiols. NO may be taken as dietary substrate (inorganic nitrate, L-arginine), and therapeutically as gaseous NO, and transdermal, sublingual, oral, intranasal and intravenous nitrite or nitrate. Numerous preclinical studies have demonstrated that NO has generic static and cidal activities against viruses (including β-coronaviruses such as SARS-CoV-2), bacteria, protozoa and fungi/yeasts in vitro. Therapeutic effects have been seen in animal models in vivo, and phase II trials have demonstrated that NO donors can reduce microbial infection. Nevertheless, excess NO, as occurs in septic shock, is associated with increased morbidity and mortality. In view of the dose-dependent positive and negative effects of NO, safety and efficacy trials of NO and its donors are needed for assessing their role in the prevention and treatment of infections. Trials should test dietary inorganic nitrate for pre- or post-exposure prophylaxis and gaseous NO or oral, topical or intravenous nitrite and nitrate for treatment of mild-to-severe infections, including due to SARS-CoV-2 (COVID-19). This review summarises the evidence base from in vitro, in vivo and early phase clinical studies of NO activity in viral, bacterial, protozoal and fungal infections.
Collapse
Affiliation(s)
- Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, Notts, NG7 2UH, UK
| | - Christopher M Coleman
- Division of Infection, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
| | - Adam L Gordon
- Unit of Injury, Inflammation and Recovery Sciences, University of Nottingham, Derby, Derbyshire, DE22 3NE, UK
- NIHR Applied Research Collaboration-East Midlands (ARC-EM), Nottingham, Notts, UK
| | - Wei Shen Lim
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
| | - Andrew J Webb
- Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, Kings College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
11
|
Bath PM, Coleman CM, Gordon AL, Lim WS, Webb AJ. Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Res 2021; 10:536. [PMID: 35685687 PMCID: PMC9171293 DOI: 10.12688/f1000research.51270.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/18/2023] Open
Abstract
Although the antimicrobial potential of nitric oxide (NO) is widely published, it is little used clinically. NO is a key signalling molecule modulating vascular, neuronal, inflammatory and immune responses. Endogenous antimicrobial activity is largely mediated by high local NO concentrations produced by cellular inducible nitric oxide synthase, and by derivative reactive nitrogen oxide species including peroxynitrite and S-nitrosothiols. NO may be taken as dietary substrate (inorganic nitrate, L-arginine), and therapeutically as gaseous NO, and transdermal, sublingual, oral, intranasal and intravenous nitrite or nitrate. Numerous preclinical studies have demonstrated that NO has generic static and cidal activities against viruses (including β-coronaviruses such as SARS-CoV-2), bacteria, protozoa and fungi/yeasts in vitro. Therapeutic effects have been seen in animal models in vivo, and phase II trials have demonstrated that NO donors can reduce microbial infection. Nevertheless, excess NO, as occurs in septic shock, is associated with increased morbidity and mortality. In view of the dose-dependent positive and negative effects of NO, safety and efficacy trials of NO and its donors are needed for assessing their role in the prevention and treatment of infections. Trials should test dietary inorganic nitrate for pre- or post-exposure prophylaxis and gaseous NO or oral, topical or intravenous nitrite and nitrate for treatment of mild-to-severe infections, including due to SARS-CoV-2 (COVID-19). This review summarises the evidence base from in vitro, in vivo and early phase clinical studies of NO activity in viral, bacterial, protozoal and fungal infections.
Collapse
Affiliation(s)
- Philip M. Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, Notts, NG7 2UH, UK
| | - Christopher M. Coleman
- Division of Infection, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
| | - Adam L. Gordon
- Unit of Injury, Inflammation and Recovery Sciences, University of Nottingham, Derby, Derbyshire, DE22 3NE, UK
- NIHR Applied Research Collaboration-East Midlands (ARC-EM), Nottingham, Notts, UK
| | - Wei Shen Lim
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
| | - Andrew J. Webb
- Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, Kings College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
12
|
Salas A, Cabrera JJ, Jiménez-Leiva A, Mesa S, Bedmar EJ, Richardson DJ, Gates AJ, Delgado MJ. Bacterial nitric oxide metabolism: Recent insights in rhizobia. Adv Microb Physiol 2021; 78:259-315. [PMID: 34147187 DOI: 10.1016/bs.ampbs.2021.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a reactive gaseous molecule that has several functions in biological systems depending on its concentration. At low concentrations, NO acts as a signaling molecule, while at high concentrations, it becomes very toxic due to its ability to react with multiple cellular targets. Soil bacteria, commonly known as rhizobia, have the capacity to establish a N2-fixing symbiosis with legumes inducing the formation of nodules in their roots. Several reports have shown NO production in the nodules where this gas acts either as a signaling molecule which regulates gene expression, or as a potent inhibitor of nitrogenase and other plant and bacteria enzymes. A better understanding of the sinks and sources of NO in rhizobia is essential to protect symbiotic nitrogen fixation from nitrosative stress. In nodules, both the plant and the microsymbiont contribute to the production of NO. From the bacterial perspective, the main source of NO reported in rhizobia is the denitrification pathway that varies significantly depending on the species. In addition to denitrification, nitrate assimilation is emerging as a new source of NO in rhizobia. To control NO accumulation in the nodules, in addition to plant haemoglobins, bacteroids also contribute to NO detoxification through the expression of a NorBC-type nitric oxide reductase as well as rhizobial haemoglobins. In the present review, updated knowledge about the NO metabolism in legume-associated endosymbiotic bacteria is summarized.
Collapse
Affiliation(s)
- Ana Salas
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
13
|
Genome Scale Analysis Reveals IscR Directly and Indirectly Regulates Virulence Factor Genes in Pathogenic Yersinia. mBio 2021; 12:e0063321. [PMID: 34060331 PMCID: PMC8262890 DOI: 10.1128/mbio.00633-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The iron-sulfur cluster coordinating transcription factor IscR is important for the virulence of Yersinia pseudotuberculosis and a number of other bacterial pathogens. However, the IscR regulon has not yet been defined in any organism. To determine the Yersinia IscR regulon and identify IscR-dependent functions important for virulence, we employed chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) of Y. pseudotuberculosis expressing or lacking iscR following iron starvation conditions, such as those encountered during infection. We found that IscR binds to the promoters of genes involved in iron homeostasis, reactive oxygen species metabolism, and cell envelope remodeling and regulates expression of these genes in response to iron depletion. Consistent with our previous work, we also found that IscR binds in vivo to the promoter of the Ysc type III secretion system (T3SS) master regulator LcrF, leading to regulation of T3SS genes. Interestingly, comparative genomic analysis suggested over 93% of IscR binding sites were conserved between Y. pseudotuberculosis and the related plague agent Yersinia pestis. Surprisingly, we found that the IscR positively regulated sufABCDSE Fe-S cluster biogenesis pathway was required for T3SS activity. These data suggest that IscR regulates the T3SS in Yersinia through maturation of an Fe-S cluster protein critical for type III secretion, in addition to its known role in activating T3SS genes through LcrF. Altogether, our study shows that iron starvation triggers IscR to coregulate multiple, distinct pathways relevant to promoting bacterial survival during infection.
Collapse
|
14
|
Patterson GE, McIntyre KM, Clough HE, Rushton J. Societal Impacts of Pandemics: Comparing COVID-19 With History to Focus Our Response. Front Public Health 2021; 9:630449. [PMID: 33912529 PMCID: PMC8072022 DOI: 10.3389/fpubh.2021.630449] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
COVID-19 has disrupted everyday life worldwide and is the first disease event since the 1918 H1N1 Spanish influenza (flu) pandemic to demand an urgent global healthcare response. There has been much debate on whether the damage of COVID-19 is due predominantly to the pathogen itself or our response to it. We compare SARS-CoV-2 against three other major pandemics (1347 Black Death, 1520's new world smallpox outbreaks, and 1918 Spanish Flu pandemic) over the course of 700 years to unearth similarities and differences in pathogen, social and medical context, human response and behavior, and long-term social and economic impact that should be used to shape COVID-19 decision-making. We conclude that <100 years ago, pandemic disease events were still largely uncontrolled and unexplained. The extensive damage wreaked by historical pandemics on health, economy, and society was a function of pathogen characteristics and lack of public health resources. Though there remain many similarities in patterns of disease spread and response from 1300 onwards, the major risks posed by COVID-19 arise not from the pathogen, but from indirect effects of control measures on health and core societal activities. Our understanding of the epidemiology and effective treatment of this virus has rapidly improved and attention is shifting toward the identification of long-term control strategies that balance consideration of health in at risk populations, societal behavior, and economic impact. Policymakers should use lessons from previous pandemics to develop appropriate risk assessments and control plans for now-endemic COVID-19, and for future pandemics.
Collapse
Affiliation(s)
- Grace E Patterson
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - K Marie McIntyre
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Helen E Clough
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jonathan Rushton
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
15
|
Bouvenot T, Dewitte A, Bennaceur N, Pradel E, Pierre F, Bontemps-Gallo S, Sebbane F. Interplay between Yersinia pestis and its flea vector in lipoate metabolism. THE ISME JOURNAL 2021; 15:1136-1149. [PMID: 33479491 PMCID: PMC8182812 DOI: 10.1038/s41396-020-00839-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/22/2020] [Accepted: 11/11/2020] [Indexed: 01/29/2023]
Abstract
To thrive, vector-borne pathogens must survive in the vector's gut. How these pathogens successfully exploit this environment in time and space has not been extensively characterized. Using Yersinia pestis (the plague bacillus) and its flea vector, we developed a bioluminescence-based approach and employed it to investigate the mechanisms of pathogenesis at an unprecedented level of detail. Remarkably, lipoylation of metabolic enzymes, via the biosynthesis and salvage of lipoate, increases the Y. pestis transmission rate by fleas. Interestingly, the salvage pathway's lipoate/octanoate ligase LplA enhances the first step in lipoate biosynthesis during foregut colonization but not during midgut colonization. Lastly, Y. pestis primarily uses lipoate provided by digestive proteolysis (presumably as lipoyl peptides) rather than free lipoate in blood, which is quickly depleted by the vector. Thus, spatial and temporal factors dictate the bacterium's lipoylation strategies during an infection, and replenishment of lipoate by digestive proteolysis in the vector might constitute an Achilles' heel that is exploited by pathogens.
Collapse
Affiliation(s)
- Typhanie Bouvenot
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Amélie Dewitte
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nadia Bennaceur
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Elizabeth Pradel
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - François Pierre
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Sébastien Bontemps-Gallo
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Florent Sebbane
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
16
|
Hinnebusch BJ, Jarrett CO, Bland DM. Molecular and Genetic Mechanisms That Mediate Transmission of Yersinia pestis by Fleas. Biomolecules 2021; 11:210. [PMID: 33546271 PMCID: PMC7913351 DOI: 10.3390/biom11020210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
The ability to cause plague in mammals represents only half of the life history of Yersinia pestis. It is also able to colonize and produce a transmissible infection in the digestive tract of the flea, its insect host. Parallel to studies of the molecular mechanisms by which Y. pestis is able to overcome the immune response of its mammalian hosts, disseminate, and produce septicemia, studies of Y. pestis-flea interactions have led to the identification and characterization of important factors that lead to transmission by flea bite. Y. pestis adapts to the unique conditions in the flea gut by altering its metabolic physiology in ways that promote biofilm development, a common strategy by which bacteria cope with a nutrient-limited environment. Biofilm localization to the flea foregut disrupts normal fluid dynamics of blood feeding, resulting in regurgitative transmission. Many of the important genes, regulatory pathways, and molecules required for this process have been identified and are reviewed here.
Collapse
Affiliation(s)
- B. Joseph Hinnebusch
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (C.O.J.); (D.M.B.)
| | | | | |
Collapse
|
17
|
Kent JE, Fujimoto LM, Shin K, Singh C, Yao Y, Park SH, Opella SJ, Plano GV, Marassi FM. Correlating the Structure and Activity of Y. pestis Ail in a Bacterial Cell Envelope. Biophys J 2020; 120:453-462. [PMID: 33359463 DOI: 10.1016/j.bpj.2020.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022] Open
Abstract
Understanding microbe-host interactions at the molecular level is a major goal of fundamental biology and therapeutic drug development. Structural biology strives to capture biomolecular structures in action, but the samples are often highly simplified versions of the complex native environment. Here, we present an Escherichia coli model system that allows us to probe the structure and function of Ail, the major surface protein of the deadly pathogen Yersinia pestis. We show that cell surface expression of Ail produces Y. pestis virulence phenotypes in E. coli, including resistance to human serum, cosedimentation of human vitronectin, and pellicle formation. Moreover, isolated bacterial cell envelopes, encompassing inner and outer membranes, yield high-resolution solid-state NMR spectra that reflect the structure of Ail and reveal Ail sites that are sensitive to the bacterial membrane environment and involved in the interactions with human serum components. The data capture the structure and function of Ail in a bacterial outer membrane and set the stage for probing its interactions with the complex milieu of immune response proteins present in human serum.
Collapse
Affiliation(s)
- James E Kent
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Lynn M Fujimoto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Kyungsoo Shin
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Chandan Singh
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Yong Yao
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Sang Ho Park
- Department Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Stanley J Opella
- Department Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Francesca M Marassi
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| |
Collapse
|
18
|
Yersinia pestis Plasminogen Activator. Biomolecules 2020; 10:biom10111554. [PMID: 33202679 PMCID: PMC7696990 DOI: 10.3390/biom10111554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
The Gram-negative bacterium Yersinia pestis causes plague, a fatal flea-borne anthropozoonosis, which can progress to aerosol-transmitted pneumonia. Y. pestis overcomes the innate immunity of its host thanks to many pathogenicity factors, including plasminogen activator, Pla. This factor is a broad-spectrum outer membrane protease also acting as adhesin and invasin. Y. pestis uses Pla adhesion and proteolytic capacity to manipulate the fibrinolytic cascade and immune system to produce bacteremia necessary for pathogen transmission via fleabite or aerosols. Because of microevolution, Y. pestis invasiveness has increased significantly after a single amino-acid substitution (I259T) in Pla of one of the oldest Y. pestis phylogenetic groups. This mutation caused a better ability to activate plasminogen. In paradox with its fibrinolytic activity, Pla cleaves and inactivates the tissue factor pathway inhibitor (TFPI), a key inhibitor of the coagulation cascade. This function in the plague remains enigmatic. Pla (or pla) had been used as a specific marker of Y. pestis, but its solitary detection is no longer valid as this gene is present in other species of Enterobacteriaceae. Though recovering hosts generate anti-Pla antibodies, Pla is not a good subunit vaccine. However, its deletion increases the safety of attenuated Y. pestis strains, providing a means to generate a safe live plague vaccine.
Collapse
|
19
|
Susat J, Bonczarowska JH, Pētersone-Gordina E, Immel A, Nebel A, Gerhards G, Krause-Kyora B. Yersinia pestis strains from Latvia show depletion of the pla virulence gene at the end of the second plague pandemic. Sci Rep 2020; 10:14628. [PMID: 32884081 PMCID: PMC7471286 DOI: 10.1038/s41598-020-71530-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/04/2020] [Indexed: 11/28/2022] Open
Abstract
Ancient genomic studies have identified Yersinia pestis (Y. pestis) as the causative agent of the second plague pandemic (fourteenth–eighteenth century) that started with the Black Death (1,347–1,353). Most of the Y. pestis strains investigated from this pandemic have been isolated from western Europe, and not much is known about the diversity and microevolution of this bacterium in eastern European countries. In this study, we investigated human remains excavated from two cemeteries in Riga (Latvia). Historical evidence suggests that the burials were a consequence of plague outbreaks during the seventeenth century. DNA was extracted from teeth of 16 individuals and subjected to shotgun sequencing. Analysis of the metagenomic data revealed the presence of Y. pestis sequences in four remains, confirming that the buried individuals were victims of plague. In two samples, Y. pestis DNA coverage was sufficient for genome reconstruction. Subsequent phylogenetic analysis showed that the Riga strains fell within the diversity of the already known post-Black Death genomes. Interestingly, the two Latvian isolates did not cluster together. Moreover, we detected a drop in coverage of the pPCP1 plasmid region containing the pla gene. Further analysis indicated the presence of two pPCP1 plasmids, one with and one without the pla gene region, and only one bacterial chromosome, indicating that the same bacterium carried two distinct pPCP1 plasmids. In addition, we found the same pattern in the majority of previously published post-Black Death strains, but not in the Black Death strains. The pla gene is an important virulence factor for the infection of and transmission in humans. Thus, the spread of pla-depleted strains may, among other causes, have contributed to the disappearance of the second plague pandemic in eighteenth century Europe.
Collapse
Affiliation(s)
- Julian Susat
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Joanna H Bonczarowska
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | | | - Alexander Immel
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Guntis Gerhards
- Institute of Latvian History, University of Latvia, Kalpaka bulvāris 4, Riga, 1050, Latvia
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany.
| |
Collapse
|
20
|
Chou WK, Vaikunthan M, Schröder HV, Link AJ, Kim H, Brynildsen MP. Synergy Screening Identifies a Compound That Selectively Enhances the Antibacterial Activity of Nitric Oxide. Front Bioeng Biotechnol 2020; 8:1001. [PMID: 32984281 PMCID: PMC7477088 DOI: 10.3389/fbioe.2020.01001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/31/2020] [Indexed: 01/04/2023] Open
Abstract
Antibiotic resistance poses a serious threat to global health. To reinforce the anti-infective arsenal, many novel therapeutic strategies to fight bacterial infections are being explored. Among them, anti-virulence therapies, which target pathways important for virulence, have attracted much attention. Nitric oxide (NO) defense systems have been identified as critical for the pathogenesis of various bacteria, making them an appealing therapeutic target. In this study, we performed chemical screens to identify inhibitors of NO detoxification in Escherichia coli. We found that 2-mercaptobenzothiazole (2-MBT) can potently inhibit cellular detoxification of NO, achieving a level of inhibition that resembled the effect of genetically removing Hmp, the dominant detoxification enzyme under oxygenated conditions. Further analysis revealed that in the presence of NO, 2-MBT impaired the catalysis of Hmp and synthesis of Hmp and other proteins, whereas in its absence there were minimal perturbations to growth and protein synthesis. In addition, by studying the structure-activity relationship of 2-MBT, we found that both sulfur atoms in 2-MBT were vital for its inhibition of NO detoxification. Interestingly, when 2-mercaptothiazole (2-MT), which lacked the benzene ring, was used, differing biological activities were observed, although they too were NO dependent. Specifically, 2-MT could still prohibit NO detoxification, though it did not interfere with Hmp catalysis; rather, it was a stronger inhibitor of protein synthesis and it reduced the transcript levels of hmp, which was not observed with 2-MBT. Overall, these results provide a strong foundation for further exploration of 2-MBT and 2-MT for therapeutic applications.
Collapse
Affiliation(s)
- Wen Kang Chou
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Mathini Vaikunthan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Hendrik V. Schröder
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States
- Frick Chemistry Laboratory, Department of Chemistry, Princeton University, Princeton, NJ, United States
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Hahn Kim
- Frick Chemistry Laboratory, Department of Chemistry, Princeton University, Princeton, NJ, United States
- Small Molecule Screening Center, Princeton University, Princeton, NJ, United States
| | - Mark P. Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States
| |
Collapse
|
21
|
Role of the Nitric Oxide Reductase NorVW in the Survival and Virulence of Enterohaemorrhagic Escherichia coli during Infection. Pathogens 2020; 9:pathogens9090683. [PMID: 32825770 PMCID: PMC7558590 DOI: 10.3390/pathogens9090683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 01/20/2023] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) are bacterial pathogens responsible for life-threatening diseases in humans, such as hemolytic and uremic syndrome. It has been previously demonstrated that the interplay between EHEC and nitric oxide (NO), a mediator of the host immune innate response, is critical for infection outcome, since NO affects both Shiga toxin (Stx) production and adhesion to enterocytes. In this study, we investigated the role of the NO reductase NorVW in the virulence and fitness of two EHEC strains in a murine model of infection. We determined that the deletion of norVW in the strain O91:H21 B2F1 has no impact on its virulence, whereas it reduces the ability of the strain O157:H7 620 to persist in the mouse gut and to produce Stx. We also revealed that the fitness defect of strain 620 ΔnorVW is strongly attenuated when mice are treated with an NO synthase inhibitor. Altogether, these results demonstrate that the NO reductase NorVW participates in EHEC resistance against NO produced by the host and promotes virulence through the modulation of Stx synthesis. The contribution of NorVW in the EHEC infectious process is, however, strain-dependent and suggests that the EHEC response to nitrosative stress is complex and multifactorial.
Collapse
|
22
|
Singh C, Lee H, Tian Y, Schesser Bartra S, Hower S, Fujimoto LM, Yao Y, Ivanov SA, Shaikhutdinova RZ, Anisimov AP, Plano GV, Im W, Marassi FM. Mutually constructive roles of Ail and LPS in Yersinia pestis serum survival. Mol Microbiol 2020; 114:510-520. [PMID: 32462782 DOI: 10.1111/mmi.14530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 01/12/2023]
Abstract
The outer membrane is a key virulence determinant of gram-negative bacteria. In Yersinia pestis, the deadly agent that causes plague, the protein Ail and lipopolysaccharide (LPS)6 enhance lethality by promoting resistance to human innate immunity and antibiotics, enabling bacteria to proliferate in the human host. Their functions are highly coordinated. Here we describe how they cooperate to promote pathogenesis. Using a multidisciplinary approach, we identify mutually constructive interactions between Ail and LPS that produce an extended conformation of Ail at the membrane surface, cause thickening and rigidification of the LPS membrane, and collectively promote Y. pestis survival in human serum, antibiotic resistance, and cell envelope integrity. The results highlight the importance of the Ail-LPS assembly as an organized whole, rather than its individual components, and provide a handle for targeting Y. pestis pathogenesis.
Collapse
Affiliation(s)
- Chandan Singh
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Hwayoung Lee
- Department of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Ye Tian
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sara Schesser Bartra
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Suzanne Hower
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lynn M Fujimoto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yong Yao
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sergey A Ivanov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russian Federation
| | - Rima Z Shaikhutdinova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russian Federation
| | - Andrey P Anisimov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russian Federation
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wonpil Im
- Department of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Francesca M Marassi
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
23
|
For the Greater (Bacterial) Good: Heterogeneous Expression of Energetically Costly Virulence Factors. Infect Immun 2020; 88:IAI.00911-19. [PMID: 32041785 DOI: 10.1128/iai.00911-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacterial populations are phenotypically heterogeneous, which allows subsets of cells to survive and thrive following changes in environmental conditions. For bacterial pathogens, changes within the host environment occur over the course of the immune response to infection and can result in exposure to host-derived, secreted antimicrobials or force direct interactions with immune cells. Many recent studies have shown host cell interactions promote virulence factor expression, forcing subsets of bacterial cells to battle the host response, while other bacteria reap the benefits of this pacification. It still remains unclear whether virulence factor expression is truly energetically costly within host tissues and whether expression is sufficient to impact the growth kinetics of virulence factor-expressing cells. However, it is clear that slow-growing subsets of bacteria emerge during infection and that these subsets are particularly difficult to eliminate with antibiotics. This minireview will focus on our current understanding of heterogenous virulence factor expression and discuss the evidence that supports or refutes the hypothesis that virulence factor expression is linked to slowed growth and antibiotic tolerance.
Collapse
|
24
|
Abstract
Flavohaemoglobins were first described in yeast as early as the 1970s but their functions were unclear. The surge in interest in nitric oxide biology and both serendipitous and hypothesis-driven discoveries in bacterial systems have transformed our understanding of this unusual two-domain globin into a comprehensive, yet undoubtedly incomplete, appreciation of its pre-eminent role in nitric oxide detoxification. Here, I focus on research on the flavohaemoglobins of microorganisms, especially of bacteria, and update several earlier and more comprehensive reviews, emphasising advances over the past 5 to 10 years and some controversies that have arisen. Inevitably, in light of space restrictions, details of nitric oxide metabolism and globins in higher organisms are brief.
Collapse
Affiliation(s)
- Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Sheffield, S10 2TN, UK
| |
Collapse
|
25
|
Hooker-Romero D, Mettert E, Schwiesow L, Balderas D, Alvarez PA, Kicin A, Gonzalez AL, Plano GV, Kiley PJ, Auerbuch V. Iron availability and oxygen tension regulate the Yersinia Ysc type III secretion system to enable disseminated infection. PLoS Pathog 2019; 15:e1008001. [PMID: 31869388 PMCID: PMC6946166 DOI: 10.1371/journal.ppat.1008001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/07/2020] [Accepted: 11/10/2019] [Indexed: 11/21/2022] Open
Abstract
The enteropathogen Yersinia pseudotuberculosis and the related plague agent Y. pestis require the Ysc type III secretion system (T3SS) to subvert phagocyte defense mechanisms and cause disease. Yet type III secretion (T3S) in Yersinia induces growth arrest and innate immune recognition, necessitating tight regulation of the T3SS. Here we show that Y. pseudotuberculosis T3SS expression is kept low under anaerobic, iron-rich conditions, such as those found in the intestinal lumen where the Yersinia T3SS is not required for growth. In contrast, the Yersinia T3SS is expressed under aerobic or anaerobic, iron-poor conditions, such as those encountered by Yersinia once they cross the epithelial barrier and encounter phagocytic cells. We further show that the [2Fe-2S] containing transcription factor, IscR, mediates this oxygen and iron regulation of the T3SS by controlling transcription of the T3SS master regulator LcrF. IscR binds directly to the lcrF promoter and, importantly, a mutation that prevents this binding leads to decreased disseminated infection of Y. pseudotuberculosis but does not perturb intestinal colonization. Similar to E. coli, Y. pseudotuberculosis uses the Fe-S cluster occupancy of IscR as a readout of oxygen and iron conditions that impact cellular Fe-S cluster homeostasis. We propose that Y. pseudotuberculosis has coopted this system to sense entry into deeper tissues and induce T3S where it is required for virulence. The IscR binding site in the lcrF promoter is completely conserved between Y. pseudotuberculosis and Y. pestis. Deletion of iscR in Y. pestis leads to drastic disruption of T3S, suggesting that IscR control of the T3SS evolved before Y. pestis split from Y. pseudotuberculosis. The Yersinia type III secretion system (T3SS) is an important virulence factor of the enteropathogen Yersinia pseudotuberculosis as well as Yersinia pestis, the causative agent of plague. Although the T3SS promotes Yersinia survival in the host, its activity is not compatible with bacterial growth. Therefore, Yersinia must control where and when to express the T3SS to optimize fitness within the mammalian host. Here we show that Yersinia sense iron availability and oxygen tension, which vary between the intestinal environment and deeper tissues. Importantly, we show that eliminating the ability of Y. pseudotuberculosis to control its T3SS in response to iron and oxygen does not affect colonization of the intestine, where the T3SS is dispensable for growth. However, loss of T3SS control by iron and oxygen severely decreases disseminated infection. We propose that Y. pseudotuberculosis senses iron availability and oxygen tension to detect crossing the intestinal epithelial barrier. As the mechanism by which iron and oxygen control the T3SS is completely conserved between Y. pseudotuberculosis and Y. pestis, yet Y. pestis is not transmitted through the intestinal route, we propose that Y. pestis has retained this T3SS regulatory mechanism to suit its new infection cycle.
Collapse
Affiliation(s)
- Diana Hooker-Romero
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
| | - Erin Mettert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Leah Schwiesow
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - David Balderas
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
| | - Pablo A. Alvarez
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
| | - Anadin Kicin
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
| | - Azuah L. Gonzalez
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
| | - Gregory V. Plano
- Department of Microbiology and Immunology, University of Miami, Miami, FL, United States of America
| | - Patricia J. Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
- * E-mail:
| |
Collapse
|
26
|
Iron-Sulfur Cluster Repair Contributes to Yersinia pseudotuberculosis Survival within Deep Tissues. Infect Immun 2019; 87:IAI.00533-19. [PMID: 31331956 PMCID: PMC6759291 DOI: 10.1128/iai.00533-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 01/10/2023] Open
Abstract
To successfully colonize host tissues, bacteria must respond to and detoxify many different host-derived antimicrobial compounds, such as nitric oxide (NO). NO has direct antimicrobial activity through attack on iron-sulfur (Fe-S) cluster-containing proteins. NO detoxification plays an important role in promoting bacterial survival, but it remains unclear if repair of Fe-S clusters is also important for bacterial survival within host tissues. To successfully colonize host tissues, bacteria must respond to and detoxify many different host-derived antimicrobial compounds, such as nitric oxide (NO). NO has direct antimicrobial activity through attack on iron-sulfur (Fe-S) cluster-containing proteins. NO detoxification plays an important role in promoting bacterial survival, but it remains unclear if repair of Fe-S clusters is also important for bacterial survival within host tissues. Here we show that the Fe-S cluster repair protein YtfE contributes to the survival of Yersinia pseudotuberculosis within the spleen following nitrosative stress. Y. pseudotuberculosis forms clustered centers of replicating bacteria within deep tissues, where peripheral bacteria express the NO-detoxifying gene hmp. ytfE expression also occurred specifically within peripheral cells at the edges of microcolonies. In the absence of ytfE, the area of microcolonies was significantly smaller than that of the wild type (WT), consistent with ytfE contributing to the survival of peripheral cells. The loss of ytfE did not alter the ability of cells to detoxify NO, which occurred within peripheral cells in both WT and ΔytfE microcolonies. In the absence of NO-detoxifying activity by hmp, NO diffused across ΔytfE microcolonies, and there was a significant decrease in the area of microcolonies lacking ytfE, indicating that ytfE also contributes to bacterial survival in the absence of NO detoxification. These results indicate a role for Fe-S cluster repair in the survival of Y. pseudotuberculosis within the spleen and suggest that extracellular bacteria may rely on this pathway for survival within host tissues.
Collapse
|
27
|
Temperature Control of psaA Expression by PsaE and PsaF in Yersinia pestis. J Bacteriol 2019; 201:JB.00217-19. [PMID: 31138630 PMCID: PMC6657601 DOI: 10.1128/jb.00217-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022] Open
Abstract
Y. pestis is a Gram-negative bacterial pathogen that causes bubonic plague. As a vector-borne pathogen, Y. pestis fluctuates between an arthropod vector (flea) and mammalian host. As such, Y. pestis must recognize environmental signals encountered within each host environment and respond by appropriately regulating gene expression. PsaA is a key Y. pestis mammalian virulence determinant that forms fimbriae. Our work provides evidence that Y. pestis utilizes multiple posttranscriptional mechanisms to regulate the levels of two PsaA regulatory proteins in response to both temperature and pH. This study offers insight into mechanisms that bacteria utilize to sense environmental cues and regulate the expression of determinants required for mammalian disease. PsaA, the subunit of the fimbria originally referred to as the “pH 6 antigen,” is required for full virulence of Yersinia pestis during bubonic plague. The expression of psaA is dependent upon specific environmental signals, and while the signals (high temperature and acidic pH) are defined, the mechanisms underlying this regulation remain unclear. In the closely related species Yersinia pseudotuberculosis, psaA transcription requires two regulatory genes, psaE and psaF, and it is speculated that posttranscriptional regulation of PsaE and/or PsaF contributes to the regulation of psaA transcription. Few studies have examined the regulation of psaA expression in Y. pestis, and prior to this work, the roles of psaE and psaF in Y. pestis had not been defined. The data presented here show that both psaE and psaF are required for psaA transcription in Y. pestis and that the impact of temperature and pH is mediated through discrete posttranscriptional effects on PsaE and PsaF. By generating antibodies that recognize endogenous PsaE and PsaF, we determined that the levels of both proteins are impacted by temperature and pH. High temperature is required for psaE and psaF translation via discrete mechanisms mediated by the mRNA 5′ untranslated region (UTR) upstream of each gene. Additionally, levels of PsaE and PsaF are impacted by pH. We show that PsaF enhances the stability of PsaE, and thus, both PsaE and PsaF are required for psaA transcription. Our data indicate that the environmental signals (temperature and pH) impact the expression of psaA by affecting the translation of psaE and psaF and the stability of PsaE and PsaF. IMPORTANCEY. pestis is a Gram-negative bacterial pathogen that causes bubonic plague. As a vector-borne pathogen, Y. pestis fluctuates between an arthropod vector (flea) and mammalian host. As such, Y. pestis must recognize environmental signals encountered within each host environment and respond by appropriately regulating gene expression. PsaA is a key Y. pestis mammalian virulence determinant that forms fimbriae. Our work provides evidence that Y. pestis utilizes multiple posttranscriptional mechanisms to regulate the levels of two PsaA regulatory proteins in response to both temperature and pH. This study offers insight into mechanisms that bacteria utilize to sense environmental cues and regulate the expression of determinants required for mammalian disease.
Collapse
|
28
|
Abstract
The human and animal pathogens Yersinia pestis, which causes bubonic and pneumonic plague, and Yersinia pseudotuberculosis and Yersinia enterocolitica, which cause gastroenteritis, share a type 3 secretion system which injects effector proteins, Yops, into host cells. This system is critical for virulence of all three pathogens in tissue infection. Neutrophils are rapidly recruited to infected sites and all three pathogens frequently interact with and inject Yops into these cells during tissue infection. Host receptors, serum factors, and bacterial adhesins appear to collaborate to promote neutrophil- Yersinia interactions in tissues. The ability of neutrophils to control infection is mixed depending on the stage of infection and points to the efficiency of Yops and other bacterial factors to mitigate bactericidal effects of neutrophils. Yersinia in close proximity to neutrophils has higher levels of expression from yop promoters, and neutrophils in close proximity to Yersinia express higher levels of pro-survival genes than migrating neutrophils. In infected tissues, YopM increases neutrophil survival and YopH targets a SKAP2/SLP-76 signal transduction pathway. Yet the full impact of these and other Yops and other Yersinia factors on neutrophils in infected tissues has yet to be understood.
Collapse
Affiliation(s)
- Joan Mecsas
- Department of Molecular Biology and Microbiology, 136 Harrison Ave, Tufts University School of Medicine, Boston, MA, 02111, USA
| |
Collapse
|
29
|
DksA Controls the Response of the Lyme Disease Spirochete Borrelia burgdorferi to Starvation. J Bacteriol 2019; 201:JB.00582-18. [PMID: 30478087 PMCID: PMC6351744 DOI: 10.1128/jb.00582-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022] Open
Abstract
The pathogenic spirochete Borrelia burgdorferi senses and responds to changes in the environment, including changes in nutrient availability, throughout its enzootic cycle in Ixodes ticks and vertebrate hosts. This study examined the role of DnaK suppressor protein (DksA) in the transcriptional response of B. burgdorferi to starvation. Wild-type and dksA mutant B. burgdorferi strains were subjected to starvation by shifting cultures grown in rich complete medium, Barbour-Stoenner-Kelly II (BSK II) medium, to a defined mammalian tissue culture medium, RPMI 1640, for 6 h under microaerobic conditions (5% CO2, 3% O2). Microarray analyses of wild-type B. burgdorferi revealed that genes encoding flagellar components, ribosomal proteins, and DNA replication machinery were downregulated in response to starvation. DksA mediated transcriptomic responses to starvation in B. burgdorferi, as the dksA-deficient strain differentially expressed only 47 genes in response to starvation compared to the 500 genes differentially expressed in wild-type strains. Consistent with a role for DksA in the starvation response of B. burgdorferi, fewer CFU of dksA mutants were observed after prolonged starvation in RPMI 1640 medium than CFU of wild-type B. burgdorferi spirochetes. Transcriptomic analyses revealed a partial overlap between the DksA regulon and the regulon of RelBbu, the guanosine tetraphosphate and guanosine pentaphosphate [(p)ppGpp] synthetase that controls the stringent response; the DksA regulon also included many plasmid-borne genes. Additionally, the dksA mutant exhibited constitutively elevated (p)ppGpp levels compared to those of the wild-type strain, implying a regulatory relationship between DksA and (p)ppGpp. Together, these data indicate that DksA, along with (p)ppGpp, directs the stringent response to effect B. burgdorferi adaptation to its environment.IMPORTANCE The Lyme disease bacterium Borrelia burgdorferi survives diverse environmental challenges as it cycles between its tick vectors and various vertebrate hosts. B. burgdorferi must withstand prolonged periods of starvation while it resides in unfed Ixodes ticks. In this study, the regulatory protein DksA is shown to play a pivotal role controlling the transcriptional responses of B. burgdorferi to starvation. The results suggest that DksA gene regulatory activity impacts B. burgdorferi metabolism, virulence gene expression, and the ability of this bacterium to complete its natural life cycle.
Collapse
|
30
|
Andrianaivoarimanana V, Rajerison M, Jambou R. Exposure to Yersinia pestis increases resistance to plague in black rats and modulates transmission in Madagascar. BMC Res Notes 2018; 11:898. [PMID: 30551741 PMCID: PMC6295079 DOI: 10.1186/s13104-018-3984-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES In Madagascar, plague (Yersinia pestis infection) is endemic in the central highlands, maintained by the couple Rattus rattus/flea. The rat is assumed to die shortly after infection inducing migration of the fleas. However we previously reported that black rats from endemic areas can survive the infection whereas those from non-endemic areas remained susceptible. We investigate the hypothesis that lineages of rats can acquire resistance to plague and that previous contacts with the bacteria will affect their survival, allowing maintenance of infected fleas. For this purpose, laboratory-born rats were obtained from wild black rats originating either from plague-endemic or plague-free zones, and were challenged with Y. pestis. Survival rate and antibody immune responses were analyzed. RESULTS Inoculation of low doses of Y. pestis greatly increase survival of rats to subsequent challenge with a lethal dose. During challenge, cytokine profiles support activation of specific immune response associated with the bacteria control. In addition, F1 rats from endemic areas exhibited higher survival rates than those from non-endemic ones, suggesting a selection of a resistant lineage. In Madagascar, these results support the role of black rat as long term reservoir of infected fleas supporting maintenance of plague transmission.
Collapse
Affiliation(s)
- Voahangy Andrianaivoarimanana
- Unité Peste, Institut Pasteur de Madagascar, Ambatofotsikely, P.O. Box 1274, Antananarivo, Madagascar
- Unité d’Immunologie, Institut Pasteur de Madagascar, Ambatofotsikely, P.O. Box 1274, Antananarivo, Madagascar
| | - Minoarisoa Rajerison
- Unité Peste, Institut Pasteur de Madagascar, Ambatofotsikely, P.O. Box 1274, Antananarivo, Madagascar
| | - Ronan Jambou
- Unité d’Immunologie, Institut Pasteur de Madagascar, Ambatofotsikely, P.O. Box 1274, Antananarivo, Madagascar
- Department of Parasites and Insect Vectors, Pasteur Institute, 28 rue Dr Roux, 75015 Paris, France
| |
Collapse
|
31
|
Davis KM. All Yersinia Are Not Created Equal: Phenotypic Adaptation to Distinct Niches Within Mammalian Tissues. Front Cell Infect Microbiol 2018; 8:261. [PMID: 30128305 PMCID: PMC6088192 DOI: 10.3389/fcimb.2018.00261] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/13/2018] [Indexed: 01/30/2023] Open
Abstract
Yersinia pseudotuberculosis replicates within mammalian tissues to form clustered bacterial replication centers, called microcolonies. A subset of bacterial cells within microcolonies interact directly with host immune cells, and other subsets of bacteria only interact with other bacteria. This establishes a system where subsets of Yersinia have distinct gene expression profiles, which are driven by their unique microenvironments and cellular interactions. When this leads to alterations in virulence gene expression, small subsets of bacteria can play a critical role in supporting the replication of the bacterial population, and can drive the overall disease outcome. Based on the pathology of infections with each of the three Yersinia species that are pathogenic to humans, it is likely that this specialization of bacterial subsets occurs during all Yersiniae infections. This review will describe the pathology that occurs during infection with each of the three human pathogenic Yersinia, in terms of the structure of bacterial replication centers and the specific immune cell subsets that bacteria interact with, and will also describe the outcome these interactions have or may have on bacterial gene expression.
Collapse
Affiliation(s)
- Kimberly M Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
32
|
Bobrov AG, Kirillina O, Fosso MY, Fetherston JD, Miller MC, VanCleave TT, Burlison JA, Arnold WK, Lawrenz MB, Garneau-Tsodikova S, Perry RD. Zinc transporters YbtX and ZnuABC are required for the virulence of Yersinia pestis in bubonic and pneumonic plague in mice. Metallomics 2018; 9:757-772. [PMID: 28540946 DOI: 10.1039/c7mt00126f] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A number of bacterial pathogens require the ZnuABC Zinc (Zn2+) transporter and/or a second Zn2+ transport system to overcome Zn2+ sequestration by mammalian hosts. Previously we have shown that in addition to ZnuABC, Yersinia pestis possesses a second Zn2+ transporter that involves components of the yersiniabactin (Ybt), siderophore-dependent iron transport system. Synthesis of the Ybt siderophore and YbtX, a member of the major facilitator superfamily, are both critical components of the second Zn2+ transport system. Here we demonstrate that a ybtX znu double mutant is essentially avirulent in mouse models of bubonic and pneumonic plague while a ybtX mutant retains high virulence in both plague models. While sequestration of host Zn is a key nutritional immunity factor, excess Zn appears to have a significant antimicrobial role in controlling intracellular bacterial survival. Here, we demonstrate that ZntA, a Zn2+ exporter, plays a role in resistance to Zn toxicity in vitro, but that a zntA zur double mutant retains high virulence in both pneumonic and bubonic plague models and survival in macrophages. We also confirm that Ybt does not directly bind Zn2+in vitro under the conditions tested. However, we detect a significant increase in Zn2+-binding ability of filtered supernatants from a Ybt+ strain compared to those from a strain unable to produce the siderophore, supporting our previously published data that Ybt biosynthetic genes are involved in the production of a secreted Zn-binding molecule (zincophore). Our data suggest that Ybt or a modified Ybt participate in or promote Zn-binding activity in culture supernatants and is involved in Zn acquisition in Y. pestis.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Willcocks SJ, Stabler RA, Atkins HS, Oyston PF, Wren BW. High-throughput analysis of Yersinia pseudotuberculosis gene essentiality in optimised in vitro conditions, and implications for the speciation of Yersinia pestis. BMC Microbiol 2018; 18:46. [PMID: 29855259 PMCID: PMC5984423 DOI: 10.1186/s12866-018-1189-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 05/18/2018] [Indexed: 12/12/2022] Open
Abstract
Background Yersinia pseudotuberculosis is a zoonotic pathogen, causing mild gastrointestinal infection in humans. From this comparatively benign pathogenic species emerged the highly virulent plague bacillus, Yersinia pestis, which has experienced significant genetic divergence in a relatively short time span. Much of our knowledge of Yersinia spp. evolution stems from genomic comparison and gene expression studies. Here we apply transposon-directed insertion site sequencing (TraDIS) to describe the essential gene set of Y. pseudotuberculosis IP32953 in optimised in vitro growth conditions, and contrast these with the published essential genes of Y. pestis. Results The essential genes of an organism are the core genetic elements required for basic survival processes in a given growth condition, and are therefore attractive targets for antimicrobials. One such gene we identified is yptb3665, which encodes a peptide deformylase, and here we report for the first time, the sensitivity of Y. pseudotuberculosis to actinonin, a deformylase inhibitor. Comparison of the essential genes of Y. pseudotuberculosis with those of Y. pestis revealed the genes whose importance are shared by both species, as well as genes that were differentially required for growth. In particular, we find that the two species uniquely rely upon different iron acquisition and respiratory metabolic pathways under similar in vitro conditions. Conclusions The discovery of uniquely essential genes between the closely related Yersinia spp. represent some of the fundamental, species-defining points of divergence that arose during the evolution of Y. pestis from its ancestor. Furthermore, the shared essential genes represent ideal candidates for the development of novel antimicrobials against both species. Electronic supplementary material The online version of this article (10.1186/s12866-018-1189-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samuel J Willcocks
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Richard A Stabler
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Helen S Atkins
- Microbiology, CBR Division, DSTL Porton Down, Salisbury, SP4 0JQ, UK
| | - Petra F Oyston
- Microbiology, CBR Division, DSTL Porton Down, Salisbury, SP4 0JQ, UK
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
34
|
Silva LO, Nobre LS, Mil-Homens D, Fialho A, Saraiva LM. Repair of Iron Centers RIC protein contributes to the virulence of Staphylococcus aureus. Virulence 2018; 9:312-317. [PMID: 29020514 PMCID: PMC5955197 DOI: 10.1080/21505594.2017.1389829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RICs are a family of bacterial proteins involved in the repair of iron centers containing proteins damaged by the antimicrobial reactive species liberated by the innate immune system of infected hosts. Staphylococcus aureus is a human pathogen with increasing antibiotic resistance that also contains a RIC-like protein. In this work, we show that the survival of S. aureus within macrophages decreases upon inactivation of ric, and that the viability was restored to levels similar to the wild-type strain by reintroduction of ric via in trans complementation. Importantly, in macrophages that do not produce reactive oxygen species, the lower survival of the ric mutant was no longer observed. In lung epithelial cells, the intracellular viability of the S. aureus ric mutant was also shown to be lower than that of the wild-type. The wax moth larvae Galleria mellonella infected with S. aureus ric mutant presented an approximately 2.5-times higher survival when compared to the wild-type strain. Moreover, significantly lower bacterial loads were determined in the larvae hemolymph infected with strains not expressing ric, and complementation assays confirmed that this behavior was related to RIC. Furthermore, expression of the S. aureus ric gene within the larvae increased along the course of infection with a ~20-fold increase after 8 h of infection. Altogether, the data show that RIC is important for the virulence of S. aureus.
Collapse
Affiliation(s)
- Liliana O Silva
- a Instituto de Tecnologia Química e Biológica NOVA , Av. da República Oeiras , Portugal
| | - Lígia S Nobre
- a Instituto de Tecnologia Química e Biológica NOVA , Av. da República Oeiras , Portugal
| | - Dalila Mil-Homens
- b Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico , Av. Rovisco Pais, 1, Lisboa , Portugal
| | - Arsénio Fialho
- b Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico , Av. Rovisco Pais, 1, Lisboa , Portugal
| | - Lígia M Saraiva
- a Instituto de Tecnologia Química e Biológica NOVA , Av. da República Oeiras , Portugal
| |
Collapse
|
35
|
Murch AL, Skipp PJ, Roach PL, Oyston PCF. Whole genome transcriptomics reveals global effects including up-regulation of Francisella pathogenicity island gene expression during active stringent response in the highly virulent Francisella tularensis subsp. tularensis SCHU S4. MICROBIOLOGY-SGM 2017; 163:1664-1679. [PMID: 29034854 PMCID: PMC5845702 DOI: 10.1099/mic.0.000550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During conditions of nutrient limitation bacteria undergo a series of global gene expression changes to survive conditions of amino acid and fatty acid starvation. Rapid reallocation of cellular resources is brought about by gene expression changes coordinated by the signalling nucleotides' guanosine tetraphosphate or pentaphosphate, collectively termed (p)ppGpp and is known as the stringent response. The stringent response has been implicated in bacterial virulence, with elevated (p)ppGpp levels being associated with increased virulence gene expression. This has been observed in the highly pathogenic Francisella tularensis sub spp. tularensis SCHU S4, the causative agent of tularaemia. Here, we aimed to artificially induce the stringent response by culturing F. tularensis in the presence of the amino acid analogue l-serine hydroxamate. Serine hydroxamate competitively inhibits tRNAser aminoacylation, causing an accumulation of uncharged tRNA. The uncharged tRNA enters the A site on the translating bacterial ribosome and causes ribosome stalling, in turn stimulating the production of (p)ppGpp and activation of the stringent response. Using the essential virulence gene iglC, which is encoded on the Francisella pathogenicity island (FPI) as a marker of active stringent response, we optimized the culture conditions required for the investigation of virulence gene expression under conditions of nutrient limitation. We subsequently used whole genome RNA-seq to show how F. tularensis alters gene expression on a global scale during active stringent response. Key findings included up-regulation of genes involved in virulence, stress responses and metabolism, and down-regulation of genes involved in metabolite transport and cell division. F. tularensis is a highly virulent intracellular pathogen capable of causing debilitating or fatal disease at extremely low infectious doses. However, virulence mechanisms are still poorly understood. The stringent response is widely recognized as a diverse and complex bacterial stress response implicated in virulence. This work describes the global gene expression profile of F. tularensis SCHU S4 under active stringent response for the first time. Herein we provide evidence for an association of active stringent response with FPI virulence gene expression. Our results further the understanding of the molecular basis of virulence and regulation thereof in F. tularensis. These results also support research into genes involved in (p)ppGpp production and polyphosphate biosynthesis and their applicability as targets for novel antimicrobials.
Collapse
Affiliation(s)
- Amber L Murch
- CBR Division, Defence Science and Technology Laboratory, Salisbury, UK
| | - Paul J Skipp
- School of Chemistry, University of Southampton, Southampton, UK
| | - Peter L Roach
- School of Chemistry, University of Southampton, Southampton, UK
| | - Petra C F Oyston
- CBR Division, Defence Science and Technology Laboratory, Salisbury, UK
| |
Collapse
|
36
|
Dutta SK, Yao Y, Marassi FM. Structural Insights into the Yersinia pestis Outer Membrane Protein Ail in Lipid Bilayers. J Phys Chem B 2017; 121:7561-7570. [PMID: 28726410 DOI: 10.1021/acs.jpcb.7b03941] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Yersinia pestis the causative agent of plague, is highly pathogenic and poses very high risk to public health. The outer membrane protein Ail (Adhesion invasion locus) is one of the most highly expressed proteins on the cell surface of Y. pestis, and a major target for the development of medical countermeasures. Ail is essential for microbial virulence and is critical for promoting the survival of Y. pestis in serum. Structures of Ail have been determined by X-ray diffraction and solution NMR spectroscopy, but the protein's activity is influenced by the detergents in these samples, underscoring the importance of the surrounding environment for structure-activity studies. Here we describe the backbone structure of Ail, determined in lipid bilayer nanodiscs, using solution NMR spectroscopy. We also present solid-state NMR data obtained for Ail in membranes containing lipopolysaccharide (LPS), a major component of the bacterial outer membranes. The protein in lipid bilayers, adopts the same eight-stranded β-barrel fold observed in the crystalline and micellar states. The membrane composition, however, appears to have a marked effect on protein dynamics, with LPS enhancing conformational order and slowing down the 15N transverse relaxation rate. The results provide information about the way in which an outer membrane protein inserts and functions in the bacterial membrane.
Collapse
Affiliation(s)
- Samit Kumar Dutta
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yong Yao
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Francesca M Marassi
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
37
|
Tissue dual RNA-seq allows fast discovery of infection-specific functions and riboregulators shaping host-pathogen transcriptomes. Proc Natl Acad Sci U S A 2017; 114:E791-E800. [PMID: 28096329 DOI: 10.1073/pnas.1613405114] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pathogenic bacteria need to rapidly adjust their virulence and fitness program to prevent eradication by the host. So far, underlying adaptation processes that drive pathogenesis have mostly been studied in vitro, neglecting the true complexity of host-induced stimuli acting on the invading pathogen. In this study, we developed an unbiased experimental approach that allows simultaneous monitoring of genome-wide infection-linked transcriptional alterations of the host and colonizing extracellular pathogens. Using this tool for Yersinia pseudotuberculosis-infected lymphatic tissues, we revealed numerous alterations of host transcripts associated with inflammatory and acute-phase responses, coagulative activities, and transition metal ion sequestration, highlighting that the immune response is dominated by infiltrating neutrophils and elicits a mixed TH17/TH1 response. In consequence, the pathogen's response is mainly directed to prevent phagocytic attacks. Yersinia up-regulates the gene and expression dose of the antiphagocytic type III secretion system (T3SS) and induces functions counteracting neutrophil-induced ion deprivation, radical stress, and nutritional restraints. Several conserved bacterial riboregulators were identified that impacted this response. The strongest influence on virulence was found for the loss of the carbon storage regulator (Csr) system, which is shown to be essential for the up-regulation of the T3SS on host cell contact. In summary, our established approach provides a powerful tool for the discovery of infection-specific stimuli, induced host and pathogen responses, and underlying regulatory processes.
Collapse
|
38
|
Chou WK, Brynildsen MP. A biochemical engineering view of the quest for immune-potentiating anti-infectives. Curr Opin Chem Eng 2016. [DOI: 10.1016/j.coche.2016.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Green ER, Clark S, Crimmins GT, Mack M, Kumamoto CA, Mecsas J. Fis Is Essential for Yersinia pseudotuberculosis Virulence and Protects against Reactive Oxygen Species Produced by Phagocytic Cells during Infection. PLoS Pathog 2016; 12:e1005898. [PMID: 27689357 PMCID: PMC5045184 DOI: 10.1371/journal.ppat.1005898] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022] Open
Abstract
All three pathogenic Yersinia species share a conserved virulence plasmid that encodes a Type 3 Secretion System (T3SS) and its associated effector proteins. During mammalian infection, these effectors are injected into innate immune cells, where they block many bactericidal functions, including the production of reactive oxygen species (ROS). However, Y. pseudotuberculosis (Yptb) lacking the T3SS retains the ability to colonize host organs, demonstrating that chromosome-encoded factors are sufficient for growth within mammalian tissue sites. Previously we uncovered more than 30 chromosomal factors that contribute to growth of T3SS-deficient Yptb in livers. Here, a deep sequencing-based approach was used to validate and characterize the phenotype of 18 of these genes during infection by both WT and plasmid-deficient Yptb. Additionally, the fitness of these mutants was evaluated in immunocompromised mice to determine whether any genes contributed to defense against phagocytic cell restriction. Mutants containing deletions of the dusB-fis operon, which encodes the nucleoid associated protein Fis, were markedly attenuated in immunocompetent mice, but were restored for growth in mice lacking neutrophils and inflammatory monocytes, two of the major cell types responsible for restricting Yersinia infection. We determined that Fis was dispensable for secretion of T3SS effectors, but was essential for resisting ROS and regulated the transcription of several ROS-responsive genes. Strikingly, this protection was critical for virulence, as growth of ΔdusB-fis was restored in mice unable to produce ROS. These data support a model in which ROS generated by neutrophils and inflammatory monocytes that have not been translocated with T3SS effectors enter bacterial cells during infection, where their bactericidal effects are resisted in a Fis-dependent manner. This is the first report of the requirement for Fis during Yersinia infection and also highlights a novel mechanism by which Yptb defends against ROS in mammalian tissues. The pathogenic members of the genus Yersinia share a conserved virulence plasmid that primarily serves to encode a Type 3 Secretion System and its associated effector proteins. During mammalian infection, these effectors are targeted toward phagocytic cells, where they neutralize a multitude of functions, including oxidative burst. However, it has previously been reported that strains of Yersinia pseudotuberculosis lacking the virulence plasmid retain the ability to grow in mammalian tissue sites, suggesting that the Yersinia chromosome encodes a number of poorly appreciated factors that enable survival in mammalian tissue sites, even in the absence of a functional T3SS. Here, we further characterize a number of these factors, including the operon dusB-fis. Using a variety of in vitro and vivo approaches, we determined that Fis regulates the transcription of several genes implicated in ROS resistance and that dusB-fis is essential for preventing growth restriction by ROS produced by the NADPH complex of phagocytes, even in a T3SS-expressing strain. Combined, these data suggest a model in which, during tissue infection, Yersinia evade killing by ROS through both T3SS-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Erin R. Green
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Stacie Clark
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Gregory T. Crimmins
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Matthias Mack
- Universitatsklinikum Regensburg, Innere Medizin II/Nephrologie-Transplantation, Regensburg, Germany
| | - Carol A. Kumamoto
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Joan Mecsas
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
40
|
Diphenyl diselenide supplementation in infected mice by Toxoplasma gondii: Protective effect on behavior, neuromodulation and oxidative stress caused by disease. Exp Parasitol 2016; 169:51-8. [PMID: 27472985 DOI: 10.1016/j.exppara.2016.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/14/2016] [Accepted: 07/22/2016] [Indexed: 01/05/2023]
Abstract
The aim of this study was to evaluate the effect of subcutaneous administration of diphenyl diselenide (PhSe)2 on animal behavior and activities of acetylcholinesterase (AChE), adenylate kinase (AK), and creatine kinase (CK) in the brain of mice infected by Toxoplasma gondii. In addition, thiobarbituric acid reactive species (TBARS) levels and glutathione (GR, GPx and GST) activity were also evaluated. For the study, 40 female mice were divided into four groups of 10 animals each: group A (uninfected and untreated), group B (uninfected and treated with (PhSe)2), group C (infected and untreated) and group D (infected and treated with (PhSe)2). The mice were inoculated with 50 cysts of the ME49 strain of T. gondii. After infection the animals of the groups B and D were treated on days 1 and 20 post-infection (PI) with 5.0 μmol/kg of (PhSe)2 subcutaneously. Behavioral tests were conducted on days 29 PI to assess memory loss (object recognition), anxiety (elevated plus maze), locomotor and exploratory activity (Open Field) and it was found out that infected and untreated animals (group C) had developed anxiety and memory impairment, and the (PhSe)2 treatment did not reverse these behavioral changes on infected animals treated with (PhSe)2 (group D). The results showed an increase on AChE activity (P < 0.01) in the brain of infected and untreated animals (group C) compared to the uninfected and untreated animals (group A). The AK and CK activities decreased in infected and untreated animals (group C) compared to the uninfected and untreated animals (group A) (P < 0.01), however the (PhSe)2 treatment did not reverse these alterations. Infected and untreated animals (group C) showed increased TBARS levels and GR activity, and decreased GPx and GST activities when compared to uninfected and untreated animals (group A). Infected animals treated with (PhSe)2 (group D) decreased TBARS levels and GR activity, while increased GST activity when compared to infected and untreated animals (group C). It was concluded that (PhSe)2 showed antioxidant activity, but the dose used had no anti-inflammatory effect and failed to reverse the behavioral changes caused by the parasite.
Collapse
|
41
|
Oyston PCF, Williamson ED. Modern Advances against Plague. ADVANCES IN APPLIED MICROBIOLOGY 2016; 81:209-41. [PMID: 22958531 DOI: 10.1016/b978-0-12-394382-8.00006-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Plague has been a scourge of humanity, responsible for the deaths of millions. The etiological agent, Yersinia pestis, has evolved relatively recently from an enteropathogen, Yersinia pseudotuberculosis. The evolution of the plague pathogen has involved a complex series of genetic acquisitions, deletions, and rearrangements in its transition from an enteric niche to becoming a systemic, flea-vectored pathogen. With the advent of modern molecular biology techniques, we are starting to understand how the organism adapts to the diverse niches it encounters and how to combat the threat it poses.
Collapse
|
42
|
Perry RD, Bobrov AG, Fetherston JD. The role of transition metal transporters for iron, zinc, manganese, and copper in the pathogenesis of Yersinia pestis. Metallomics 2016; 7:965-78. [PMID: 25891079 DOI: 10.1039/c4mt00332b] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Yersinia pestis, the causative agent of bubonic, septicemic and pneumonic plague, encodes a multitude of Fe transport systems. Some of these are defective due to frameshift or IS element insertions, while others are functional in vitro but have no established role in causing infections. Indeed only 3 Fe transporters (Ybt, Yfe and Feo) have been shown to be important in at least one form of plague. The yersiniabactin (Ybt) system is essential in the early dermal/lymphatic stages of bubonic plague, irrelevant in the septicemic stage, and critical in pneumonic plague. Two Mn transporters have been characterized (Yfe and MntH). These two systems play a role in bubonic plague but the double yfe mntH mutant is fully virulent in a mouse model of pneumonic plague. The same in vivo phenotype occurs with a mutant lacking two (Yfe and Feo) of four ferrous transporters. A role for the Ybt siderophore in Zn acquisition has been revealed. Ybt-dependent Zn acquisition uses a transport system completely independent of the Fe-Ybt uptake system. Together Ybt components and ZnuABC play a critical role in Zn acquisition in vivo. Single mutants in either system retain high virulence in a mouse model of septicemic plague while the double mutant is completely avirulent.
Collapse
Affiliation(s)
- Robert D Perry
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA.
| | | | | |
Collapse
|
43
|
Chen S, Thompson KM, Francis MS. Environmental Regulation of Yersinia Pathophysiology. Front Cell Infect Microbiol 2016; 6:25. [PMID: 26973818 PMCID: PMC4773443 DOI: 10.3389/fcimb.2016.00025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Hallmarks of Yersinia pathogenesis include the ability to form biofilms on surfaces, the ability to establish close contact with eukaryotic target cells and the ability to hijack eukaryotic cell signaling and take over control of strategic cellular processes. Many of these virulence traits are already well-described. However, of equal importance is knowledge of both confined and global regulatory networks that collaborate together to dictate spatial and temporal control of virulence gene expression. This review has the purpose to incorporate historical observations with new discoveries to provide molecular insight into how some of these regulatory mechanisms respond rapidly to environmental flux to govern tight control of virulence gene expression by pathogenic Yersinia.
Collapse
Affiliation(s)
- Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University Washington, DC, USA
| | - Matthew S Francis
- Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden; Department of Molecular Biology, Umeå UniversityUmeå, Sweden
| |
Collapse
|
44
|
Robinson JL, Brynildsen MP. Construction and Experimental Validation of a Quantitative Kinetic Model of Nitric Oxide Stress in Enterohemorrhagic Escherichia coli O157:H7. Bioengineering (Basel) 2016; 3:E9. [PMID: 28952571 PMCID: PMC5597167 DOI: 10.3390/bioengineering3010009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/01/2016] [Indexed: 12/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are responsible for large outbreaks of hemorrhagic colitis, which can progress to life-threatening hemolytic uremic syndrome (HUS) due to the release of Shiga-like toxins (Stx). The presence of a functional nitric oxide (NO·) reductase (NorV), which protects EHEC from NO· produced by immune cells, was previously found to correlate with high HUS incidence, and it was shown that NorV activity enabled prolonged EHEC survival and increased Stx production within macrophages. To enable quantitative study of EHEC NO· defenses and facilitate the development of NO·-potentiating therapeutics, we translated an existing kinetic model of the E. coli K-12 NO· response to an EHEC O157:H7 strain. To do this, we trained uncertain model parameters on measurements of [NO·] and [O₂] in EHEC cultures, assessed parametric and prediction uncertainty with the use of a Markov chain Monte Carlo approach, and confirmed the predictive accuracy of the model with experimental data from genetic mutants lacking NorV or Hmp (NO· dioxygenase). Collectively, these results establish a methodology for the translation of quantitative models of NO· stress in model organisms to pathogenic sub-species, which is a critical step toward the application of these models for the study of infectious disease.
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
45
|
Inactivation of Peroxiredoxin 6 by the Pla Protease of Yersinia pestis. Infect Immun 2015; 84:365-74. [PMID: 26553463 DOI: 10.1128/iai.01168-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/02/2015] [Indexed: 02/03/2023] Open
Abstract
Pneumonic plague represents the most severe form of disease caused by Yersinia pestis due to its ease of transmission, rapid progression, and high mortality rate. The Y. pestis outer membrane Pla protease is essential for the development of pneumonic plague; however, the complete repertoire of substrates cleaved by Pla in the lungs is not known. In this study, we describe a proteomic screen to identify host proteins contained within the bronchoalveolar lavage fluid of mice that are cleaved and/or processed by Y. pestis in a Pla-dependent manner. We identified peroxiredoxin 6 (Prdx6), a host factor that contributes to pulmonary surfactant metabolism and lung defense against oxidative stress, as a previously unknown substrate of Pla. Pla cleaves Prdx6 at three distinct sites, and these cleavages disrupt both the peroxidase and phospholipase A2 activities of Prdx6. In addition, we found that infection with wild-type Y. pestis reduces the abundance of extracellular Prdx6 in the lungs compared to that after infection with Δpla Y. pestis, suggesting that Pla cleaves Prdx6 in the pulmonary compartment. However, following infection with either wild-type or Δpla Y. pestis, Prdx6-deficient mice exhibit no differences in bacterial burden, host immune response, or lung damage from wild-type mice. Thus, while Pla is able to disrupt Prdx6 function in vitro and reduce Prdx6 levels in vivo, the cleavage of Prdx6 has little detectable impact on the progression or outcome of pneumonic plague.
Collapse
|
46
|
Guinet F, Avé P, Filali S, Huon C, Savin C, Huerre M, Fiette L, Carniel E. Dissociation of Tissue Destruction and Bacterial Expansion during Bubonic Plague. PLoS Pathog 2015; 11:e1005222. [PMID: 26484539 PMCID: PMC4615631 DOI: 10.1371/journal.ppat.1005222] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 09/22/2015] [Indexed: 01/14/2023] Open
Abstract
Activation and/or recruitment of the host plasmin, a fibrinolytic enzyme also active on extracellular matrix components, is a common invasive strategy of bacterial pathogens. Yersinia pestis, the bubonic plague agent, expresses the multifunctional surface protease Pla, which activates plasmin and inactivates fibrinolysis inhibitors. Pla is encoded by the pPla plasmid. Following intradermal inoculation, Y. pestis has the capacity to multiply in and cause destruction of the lymph node (LN) draining the entry site. The closely related, pPla-negative, Y. pseudotuberculosis species lacks this capacity. We hypothesized that tissue damage and bacterial multiplication occurring in the LN during bubonic plague were linked and both driven by pPla. Using a set of pPla-positive and pPla-negative Y. pestis and Y. pseudotuberculosis strains in a mouse model of intradermal injection, we found that pPla is not required for bacterial translocation to the LN. We also observed that a pPla-cured Y. pestis caused the same extensive histological lesions as the wild type strain. Furthermore, the Y. pseudotuberculosis histological pattern, characterized by infectious foci limited by inflammatory cell infiltrates with normal tissue density and follicular organization, was unchanged after introduction of pPla. However, the presence of pPla enabled Y. pseudotuberculosis to increase its bacterial load up to that of Y. pestis. Similarly, lack of pPla strongly reduced Y. pestis titers in LNs of infected mice. This pPla-mediated enhancing effect on bacterial load was directly dependent on the proteolytic activity of Pla. Immunohistochemistry of Pla-negative Y. pestis-infected LNs revealed extensive bacterial lysis, unlike the numerous, apparently intact, microorganisms seen in wild type Y. pestis-infected preparations. Therefore, our study demonstrates that tissue destruction and bacterial survival/multiplication are dissociated in the bubo and that the primary action of Pla is to protect bacteria from destruction rather than to alter the tissue environment to favor Y. pestis propagation in the host. The hallmark of bubonic plague, a disease that ravaged Medieval Europe and is still prevalent in several countries, is the bubo, a highly inflammatory and painful lymph node, which is characterized by high concentrations of bacteria within a severely damaged organ. Yersinia pestis, the causative agent, expresses a surface protease, Pla, critical to the development of bubonic plague. This multitarget protease has the potential to activate the fibrinolytic pathway and to promote destruction of extracellular protein networks within tissues. Hence, it was expected that Pla was responsible for the tissue destructions of the bubo, and consequently, for bacterial propagation and virulence. However, we found, using various engineered Yersinia strains in a mouse model of bubonic plague, that Pla proteolytic activity was dispensable for lymph node alteration, but was required to achieve high bacterial loads in the organ. Further analysis showed that Pla is essential for preventing the bacteria from being destroyed in the host. Therefore, the role of Pla as a virulence factor is to protect Y. pestis survival and integrity in the host, rather than to assist its spread through tissue destruction.
Collapse
Affiliation(s)
- Françoise Guinet
- Unité de Recherche Yersinia, Institut Pasteur, Paris, France
- * E-mail: (FG); (EC)
| | - Patrick Avé
- Unité d’Histopathologie Humaine et Modèles Animaux, Institut Pasteur, Paris, France
| | - Sofia Filali
- Unité de Recherche Yersinia, Institut Pasteur, Paris, France
| | - Christèle Huon
- Unité de Recherche Yersinia, Institut Pasteur, Paris, France
| | - Cyril Savin
- Unité de Recherche Yersinia, Institut Pasteur, Paris, France
| | - Michel Huerre
- Unité de Recherche et d’Expertise d’Histotechnologie et Pathologie, Institut Pasteur, Paris, France
| | - Laurence Fiette
- Unité d’Histopathologie Humaine et Modèles Animaux, Institut Pasteur, Paris, France
| | - Elisabeth Carniel
- Unité de Recherche Yersinia, Institut Pasteur, Paris, France
- * E-mail: (FG); (EC)
| |
Collapse
|
47
|
Derbise A, Hanada Y, Khalifé M, Carniel E, Demeure CE. Complete Protection against Pneumonic and Bubonic Plague after a Single Oral Vaccination. PLoS Negl Trop Dis 2015; 9:e0004162. [PMID: 26473734 PMCID: PMC4608741 DOI: 10.1371/journal.pntd.0004162] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/22/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND No efficient vaccine against plague is currently available. We previously showed that a genetically attenuated Yersinia pseudotuberculosis producing the Yersinia pestis F1 antigen was an efficient live oral vaccine against pneumonic plague. This candidate vaccine however failed to confer full protection against bubonic plague and did not produce F1 stably. METHODOLOGY/PRINCIPAL FINDINGS The caf operon encoding F1 was inserted into the chromosome of a genetically attenuated Y. pseudotuberculosis, yielding the VTnF1 strain, which stably produced the F1 capsule. Given orally to mice, VTnF1 persisted two weeks in the mouse gut and induced a high humoral response targeting both F1 and other Y. pestis antigens. The strong cellular response elicited was directed mostly against targets other than F1, but also against F1. It involved cells with a Th1-Th17 effector profile, producing IFNγ, IL-17, and IL-10. A single oral dose (108 CFU) of VTnF1 conferred 100% protection against pneumonic plague using a high-dose challenge (3,300 LD50) caused by the fully virulent Y. pestis CO92. Moreover, vaccination protected 100% of mice from bubonic plague caused by a challenge with 100 LD50 Y. pestis and 93% against a high-dose infection (10,000 LD50). Protection involved fast-acting mechanisms controlling Y. pestis spread out of the injection site, and the protection provided was long-lasting, with 93% and 50% of mice surviving bubonic and pneumonic plague respectively, six months after vaccination. Vaccinated mice also survived bubonic and pneumonic plague caused by a high-dose of non-encapsulated (F1-) Y. pestis. SIGNIFICANCE VTnF1 is an easy-to-produce, genetically stable plague vaccine candidate, providing a highly efficient and long-lasting protection against both bubonic and pneumonic plague caused by wild type or un-encapsulated (F1-negative) Y. pestis. To our knowledge, VTnF1 is the only plague vaccine ever reported that could provide high and durable protection against the two forms of plague after a single oral administration.
Collapse
Affiliation(s)
- Anne Derbise
- Unité de recherche Yersinia, Institut Pasteur, Paris, France
| | - Yuri Hanada
- Unité de recherche Yersinia, Institut Pasteur, Paris, France
| | - Manal Khalifé
- Unité de recherche Yersinia, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
48
|
Vadyvaloo V, Hinz AK. A LysR-Type Transcriptional Regulator, RovM, Senses Nutritional Cues Suggesting that It Is Involved in Metabolic Adaptation of Yersinia pestis to the Flea Gut. PLoS One 2015; 10:e0137508. [PMID: 26348850 PMCID: PMC4562620 DOI: 10.1371/journal.pone.0137508] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 08/17/2015] [Indexed: 11/18/2022] Open
Abstract
Yersinia pestis has evolved as a clonal variant of Yersinia pseudotuberculosis to cause flea-borne biofilm–mediated transmission of the bubonic plague. The LysR-type transcriptional regulator, RovM, is highly induced only during Y. pestis infection of the flea host. RovM homologs in other pathogens regulate biofilm formation, nutrient sensing, and virulence; including in Y. pseudotuberculosis, where RovM represses the major virulence factor, RovA. Here the role that RovM plays during flea infection was investigated using a Y. pestis KIM6+ strain deleted of rovM, ΔrovM. The ΔrovM mutant strain was not affected in characteristic biofilm gut blockage, growth, or survival during single infection of fleas. Nonetheless, during a co-infection of fleas, the ΔrovM mutant exhibited a significant competitive fitness defect relative to the wild type strain. This competitive fitness defect was restored as a fitness advantage relative to the wild type in a ΔrovM mutant complemented in trans to over-express rovM. Consistent with this, Y. pestis strains, producing elevated transcriptional levels of rovM, displayed higher growth rates, and differential ability to form biofilm in response to specific nutrients in comparison to the wild type. In addition, we demonstrated that rovA was not repressed by RovM in fleas, but that elevated transcriptional levels of rovM in vitro correlated with repression of rovA under specific nutritional conditions. Collectively, these findings suggest that RovM likely senses specific nutrient cues in the flea gut environment, and accordingly directs metabolic adaptation to enhance flea gut colonization by Y. pestis.
Collapse
Affiliation(s)
- Viveka Vadyvaloo
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, 99164, United States of America
- * E-mail:
| | - Angela K. Hinz
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, 99164, United States of America
| |
Collapse
|
49
|
High-throughput, signature-tagged mutagenic approach to identify novel virulence factors of Yersinia pestis CO92 in a mouse model of infection. Infect Immun 2015; 83:2065-81. [PMID: 25754198 DOI: 10.1128/iai.02913-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/26/2015] [Indexed: 12/18/2022] Open
Abstract
The identification of new virulence factors in Yersinia pestis and understanding their molecular mechanisms during an infection process are necessary in designing a better vaccine or to formulate an appropriate therapeutic intervention. By using a high-throughput, signature-tagged mutagenic approach, we created 5,088 mutants of Y. pestis strain CO92 and screened them in a mouse model of pneumonic plague at a dose equivalent to 5 50% lethal doses (LD50) of wild-type (WT) CO92. From this screen, we obtained 118 clones showing impairment in disseminating to the spleen, based on hybridization of input versus output DNA from mutant pools with 53 unique signature tags. In the subsequent screen, 20/118 mutants exhibited attenuation at 8 LD50 when tested in a mouse model of bubonic plague, with infection by 10/20 of the aforementioned mutants resulting in 40% or higher survival rates at an infectious dose of 40 LD50. Upon sequencing, six of the attenuated mutants were found to carry interruptions in genes encoding hypothetical proteins or proteins with putative functions. Mutants with in-frame deletion mutations of two of the genes identified from the screen, namely, rbsA, which codes for a putative sugar transport system ATP-binding protein, and vasK, a component of the type VI secretion system, were also found to exhibit some attenuation at 11 or 12 LD50 in a mouse model of pneumonic plague. Likewise, among the remaining 18 signature-tagged mutants, 9 were also attenuated (40 to 100%) at 12 LD50 in a pneumonic plague mouse model. Previously, we found that deleting genes encoding Braun lipoprotein (Lpp) and acyltransferase (MsbB), the latter of which modifies lipopolysaccharide function, reduced the virulence of Y. pestis CO92 in mouse models of bubonic and pneumonic plague. Deletion of rbsA and vasK genes from either the Δlpp single or the Δlpp ΔmsbB double mutant augmented the attenuation to provide 90 to 100% survivability to mice in a pneumonic plague model at 20 to 50 LD50. The mice infected with the Δlpp ΔmsbB ΔrbsA triple mutant at 50 LD50 were 90% protected upon subsequent challenge with 12 LD50 of WT CO92, suggesting that this mutant or others carrying combinational deletions of genes identified through our screen could potentially be further tested and developed into a live attenuated plague vaccine(s).
Collapse
|
50
|
van Lier CJ, Tiner BL, Chauhan S, Motin VL, Fitts EC, Huante MB, Endsley JJ, Ponnusamy D, Sha J, Chopra AK. Further characterization of a highly attenuated Yersinia pestis CO92 mutant deleted for the genes encoding Braun lipoprotein and plasminogen activator protease in murine alveolar and primary human macrophages. Microb Pathog 2015; 80:27-38. [PMID: 25697665 PMCID: PMC4363157 DOI: 10.1016/j.micpath.2015.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 01/31/2023]
Abstract
We recently characterized the Δlpp Δpla double in-frame deletion mutant of Yersinia pestis CO92 molecularly, biologically, and immunologically. While Braun lipoprotein (Lpp) activates toll-like receptor-2 to initiate an inflammatory cascade, plasminogen activator (Pla) protease facilitates bacterial dissemination in the host. The Δlpp Δpla double mutant was highly attenuated in evoking bubonic and pneumonic plague, was rapidly cleared from mouse organs, and generated humoral and cell-mediated immune responses to provide subsequent protection to mice against a lethal challenge dose of wild-type (WT) CO92. Here, we further characterized the Δlpp Δpla double mutant in two murine macrophage cell lines as well as in primary human monocyte-derived macrophages to gauge its potential as a live-attenuated vaccine candidate. We first demonstrated that the Δpla single and the Δlpp Δpla double mutant were unable to survive efficiently in murine and human macrophages, unlike WT CO92. We observed that the levels of Pla and its associated protease activity were not affected in the Δlpp single mutant, and, likewise, deletion of the pla gene from WT CO92 did not alter Lpp levels. Further, our study revealed that both Lpp and Pla contributed to the intracellular survival of WT CO92 via different mechanisms. Importantly, the ability of the Δlpp Δpla double mutant to be phagocytized by macrophages, to stimulate production of tumor necrosis factor-α and interleukin-6, and to activate the nitric oxide killing pathways of the host cells remained unaltered when compared to the WT CO92-infected macrophages. Finally, macrophages infected with either the WT CO92 or the Δlpp Δpla double mutant were equally efficient in their uptake of zymosan particles as determined by flow cytometric analysis. Overall, our data indicated that although the Δlpp Δpla double mutant of Y. pestis CO92 was highly attenuated, it retained the ability to elicit innate and subsequent acquired immune responses in the host similar to that of WT CO92, which are highly desirable in a live-attenuated vaccine candidate.
Collapse
Affiliation(s)
- Christina J van Lier
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bethany L Tiner
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sadhana Chauhan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Vladimir L Motin
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Eric C Fitts
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Duraisamy Ponnusamy
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Ashok K Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|