1
|
Deng H, Wang Y, Lei JR, Chen ZZ, Liang ZQ, Zeng NK. Four New Species of Strobilomyces (Boletaceae, Boletales) from Hainan Island, Tropical China. J Fungi (Basel) 2023; 9:1128. [PMID: 38132729 PMCID: PMC10744113 DOI: 10.3390/jof9121128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023] Open
Abstract
Strobilomyces, one of the most noticeable genera of Boletaceae (Boletales), is both ecologically and economically important. Although many studies have focused on Strobilomyces in China, the diversity still remains incompletely understood. In the present study, several collections of Strobilomyces from Hainan Island, tropical China were studied based on morphology and molecular phylogenetic analyses. Four species are described as new, viz. S. baozhengii, S. conicus, S. hainanensis, and S. pachycystidiatus. Detailed descriptions, color photos of fresh basidiomata, and line drawings of microstructures of the four species are presented.
Collapse
Affiliation(s)
- Hui Deng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
- College of Science, Hainan University, Haikou 570228, China
| | - Yi Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Jin-Rui Lei
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou 571100, China
| | - Zong-Zhu Chen
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou 571100, China
| | - Zhi-Qun Liang
- College of Science, Hainan University, Haikou 570228, China
| | - Nian-Kai Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
2
|
Han YX, Liang ZQ, Zeng NK. Notes on four species of Russula subgenus Heterophyllidiae (Russulaceae, Russulales) from southern China. Front Microbiol 2023; 14:1140127. [PMID: 37025637 PMCID: PMC10072125 DOI: 10.3389/fmicb.2023.1140127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Heterophyllidiae, one of the main subgenus of Russula (Russulaceae, Russulales), is both ecologically and economically important. Although many studies have focused on subgenus Heterophyllidiae in China, the diversity, taxonomy, and molecular phylogeny still remained incompletely understood. In the present study, two new species, R. discoidea and R. niveopicta, and two known taxa, R. xanthovirens and R. subatropurpurea, were described based on morphology and molecular phylogenetic analyses of ITS and 28S DNA sequences with new collections of subgenus Heterophyllidiae from southern China. Both morphological and phylogenetic analyses consistently confirmed that R. niveopicta and R. xanthovirens belong to the subsect. Virescentinae, R. discoidea and R. subatropurpurea come under subsect. Heterophyllae, and R. prasina is synonymized with R. xanthovirens.
Collapse
Affiliation(s)
- Yun-Xiao Han
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Zhi-Qun Liang
- College of Science, Hainan University, Haikou, China
- *Correspondence: Zhi-Qun Liang,
| | - Nian-Kai Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
- Nian-Kai Zeng,
| |
Collapse
|
3
|
Zhang YZ, Qin HZ, Chen ZH, Lin WF, Liang ZQ, Jiang S, Zeng NK. Updated taxonomy of Chinese Cantharellus subgenera Afrocantharellus and Magni (Hydnaceae, Cantharellales): Three new taxa and amended descriptions of one previous species. Front Microbiol 2023; 14:1109831. [PMID: 37007503 PMCID: PMC10064096 DOI: 10.3389/fmicb.2023.1109831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/13/2023] [Indexed: 03/19/2023] Open
Abstract
Cantharellus, one of the main genera of Hydnaceae (Cantharellales), is both ecologically and economically important. Although many studies have focused on this genus in China, the taxonomy should be further updated. In the present study, Cantharellus subgenera Afrocantharellus and Magni were investigated based on morphology and molecular phylogenetic analyses with new collections from China. Five phylogenetic species were recognized among the studied collections, three of which were described as new: C. bellus, C. cineraceus, and C. laevigatus; one was previously described taxon: C. hygrophoroides; and the remaining species was not defined due to the paucity of the materials. Among the four described species, both C. bellus and C. laevigatus are members of subgen. Magni, whereas C. cineraceus and C. hygrophoroides belong to subgen. Afrocantharellus.
Collapse
Affiliation(s)
- Yu-Zhuo Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
- College of Science, Hainan University, Haikou, China
| | - Hua-Zhi Qin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Zuo-Hong Chen
- College of Life Science, Hunan Normal University, Changsha, China
| | - Wen-Fei Lin
- Institute of Edible and Medicinal Fungi, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhi-Qun Liang
- College of Science, Hainan University, Haikou, China
| | - Shuai Jiang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- Yinggeling Substation, Hainan Tropical Rainforest National Park, Baisha, China
| | - Nian-Kai Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
| |
Collapse
|
4
|
Holt CC, Boscaro V, Van Steenkiste NWL, Herranz M, Mathur V, Irwin NAT, Buckholtz G, Leander BS, Keeling PJ. Microscopic marine invertebrates are reservoirs for cryptic and diverse protists and fungi. MICROBIOME 2022; 10:161. [PMID: 36180959 PMCID: PMC9523941 DOI: 10.1186/s40168-022-01363-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Microbial symbioses in marine invertebrates are commonplace. However, characterizations of invertebrate microbiomes are vastly outnumbered by those of vertebrates. Protists and fungi run the gamut of symbiosis, yet eukaryotic microbiome sequencing is rarely undertaken, with much of the focus on bacteria. To explore the importance of microscopic marine invertebrates as potential symbiont reservoirs, we used a phylogenetic-focused approach to analyze the host-associated eukaryotic microbiomes of 220 animal specimens spanning nine different animal phyla. RESULTS Our data expanded the traditional host range of several microbial taxa and identified numerous undescribed lineages. A lack of comparable reference sequences resulted in several cryptic clades within the Apicomplexa and Ciliophora and emphasized the potential for microbial invertebrates to harbor novel protistan and fungal diversity. CONCLUSIONS Microscopic marine invertebrates, spanning a wide range of animal phyla, host various protist and fungal sequences and may therefore serve as a useful resource in the detection and characterization of undescribed symbioses. Video Abstract.
Collapse
Affiliation(s)
- Corey C Holt
- Department of Botany, University of British Columbia, Vancouver, Canada.
- Hakai Institute, Heriot Bay, Canada.
| | - Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, Canada
- Hakai Institute, Heriot Bay, Canada
| | - Niels W L Van Steenkiste
- Department of Botany, University of British Columbia, Vancouver, Canada
- Hakai Institute, Heriot Bay, Canada
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Maria Herranz
- Department of Botany, University of British Columbia, Vancouver, Canada
- Hakai Institute, Heriot Bay, Canada
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Varsha Mathur
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | | - Gracy Buckholtz
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Brian S Leander
- Department of Botany, University of British Columbia, Vancouver, Canada
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
5
|
Zhang YZ, Lin WF, Buyck B, Liang ZQ, Su MS, Chen ZH, Zhang P, Jiang S, An DY, Zeng NK. Morphological and Phylogenetic Evidences Reveal Four New Species of Cantharellus Subgenus Cantharellus (Hydnaceae, Cantharellales) From China. Front Microbiol 2022; 13:900329. [PMID: 35832819 PMCID: PMC9271865 DOI: 10.3389/fmicb.2022.900329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Species of Cantharellus subgenus Cantharellus are interesting and important for their mycorrhizal properties, medicinal values, and edibility. In China, there are many undescribed species of the subgenus. In this study, four new species of subg. Cantharellus, viz. Cantharellus albopileatus, Cantharellus chuiweifanii, Cantharellus pinetorus, and Cantharellus ravus from Hainan and Hunan Provinces, respectively, were described based on morphological and phylogenetic evidence as a contribution to the knowledge of the species diversity in China. Detailed descriptions, color photographs of fresh basidiomata, and line drawings of microstructures of these four new species are presented as well as comparisons with related species.
Collapse
Affiliation(s)
- Yu-Zhuo Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
- College of Science, Hainan University, Haikou, China
| | - Wen-Fei Lin
- Institute of Edible and Medicinal Fungi, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Bart Buyck
- UMR 7205, Institut Systématique, Evolution, Biodiversité, Muséum National d’Histoire Naturelle, Sorbonne Université, CNRS, Paris, France
| | - Zhi-Qun Liang
- College of Science, Hainan University, Haikou, China
| | - Ming-Sheng Su
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Zuo-Hong Chen
- College of Life Science, Hunan Normal University, Changsha, China
| | - Ping Zhang
- College of Life Science, Hunan Normal University, Changsha, China
| | - Shuai Jiang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- Yinggeling Substation, Hainan Tropical Rainforest National Park, Baisha, China
| | - Dong-Yu An
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Nian-Kai Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
| |
Collapse
|
6
|
A contribution to knowledge of Gyroporus (Gyroporaceae, Boletales) in China: three new taxa, two previous species, and one ambiguous taxon. Mycol Prog 2022. [DOI: 10.1007/s11557-021-01754-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Bizarria R, Kooij PW, Rodrigues A. Climate Change Influences Basidiome Emergence of Leaf-Cutting Ant Cultivars. J Fungi (Basel) 2021; 7:912. [PMID: 34829201 PMCID: PMC8623619 DOI: 10.3390/jof7110912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Maintaining symbiosis homeostasis is essential for mutualistic partners. Leaf-cutting ants evolved a long-term symbiotic mutualism with fungal cultivars for nourishment while using vertical asexual transmission across generations. Despite the ants' efforts to suppress fungal sexual reproduction, scattered occurrences of cultivar basidiomes have been reported. Here, we review the literature for basidiome occurrences and associated climate data. We hypothesized that more basidiome events could be expected in scenarios with an increase in temperature and precipitation. Our field observations and climate data analyses indeed suggest that Acromyrmex coronatus colonies are prone to basidiome occurrences in warmer and wetter seasons. Even though our study partly depended on historical records, occurrences have increased, correlating with climate change. A nest architecture with low (or even the lack of) insulation might be the cause of this phenomenon. The nature of basidiome occurrences in the A. coronatus-fungus mutualism can be useful to elucidate how resilient mutualistic symbioses are in light of climate change scenarios.
Collapse
Affiliation(s)
- Rodolfo Bizarria
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil
| | - Pepijn W. Kooij
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil
| | - Andre Rodrigues
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil
| |
Collapse
|
8
|
Beigel K, Matthews AE, Kellner K, Pawlik CV, Greenwold M, Seal JN. Cophylogenetic analyses of Trachymyrmex ant-fungal specificity: "One to one with some exceptions". Mol Ecol 2021; 30:5605-5620. [PMID: 34424571 DOI: 10.1111/mec.16140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 01/18/2023]
Abstract
Over the past few decades, large-scale phylogenetic analyses of fungus-gardening ants and their symbiotic fungi have depicted strong concordance among major clades of ants and their symbiotic fungi, yet within clades, fungus sharing is widespread among unrelated ant lineages. Sharing has been explained using a diffuse coevolution model within major clades. Understanding horizontal exchange within clades has been limited by conventional genetic markers that lack both interspecific and geographic variation. To examine whether reports of horizontal exchange were indeed due to symbiont sharing or the result of employing relatively uninformative molecular markers, samples of Trachymyrmex arizonensis and Trachymyrmex pomonae and their fungi were collected from native populations in Arizona and genotyped using conventional marker genes and genome-wide single nucleotide polymorphisms (SNPs). Conventional markers of the fungal symbionts generally exhibited cophylogenetic patterns that were consistent with some symbiont sharing, but most fungal clades had low support. SNP analysis, in contrast, indicated that each ant species exhibited fidelity to its own fungal subclade with only one instance of a colony growing a fungus that was otherwise associated with a different ant species. This evidence supports a pattern of codivergence between Trachymyrmex species and their fungi, and thus a diffuse coevolutionary model may not accurately predict symbiont exchange. These results suggest that fungal sharing across host species in these symbioses may be less extensive than previously thought.
Collapse
Affiliation(s)
- Katherine Beigel
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Alix E Matthews
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA.,College of Sciences and Mathematics and Molecular Biosciences Program, Arkansas State University, Jonesboro, Arkansas, USA
| | - Katrin Kellner
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Christine V Pawlik
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Matthew Greenwold
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Jon N Seal
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| |
Collapse
|
9
|
Jiang S, Mi HX, Xie HJ, Zhang X, Chen Y, Liang ZQ, Zeng NK. Neoboletus infuscatus, a new tropical bolete from Hainan, southern China. MYCOSCIENCE 2021; 62:205-211. [PMID: 37091322 PMCID: PMC9157763 DOI: 10.47371/mycosci.2021.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022]
Abstract
Neoboletus infuscatus (Boletaceae, Boletales) is described as a new species from Yinggeling of Hainan Tropical Rainforest National Park, southern China. It is morphologically characterized by a large basidioma with a nearly glabrous, brownish yellow, yellowish brown to pale brown pileus, pores orangish red when young, yellowish brown to brown when old, context and hymenophore staining blue when injured, a yellow stipe with red punctuations, surfaces of the pileus and the stipe usually covered with a thin layer of white pruina when young. Phylogenetic analyses of DNA sequences from part of the 28S gene, the nuclear rDNA internal transcribed spacer (ITS) region, and part of the translation elongation factor 1-α gene (TEF1) also confirm that N. infuscatus forms an independent lineage within Neoboletus. Detailed morphological description, color photos of fresh basidiomata and line-drawings of microstructures are provided.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University
- Yinggeling Branch of Hainan Tropical Rainforest National Park
| | - Hong-Xu Mi
- Yinggeling Branch of Hainan Tropical Rainforest National Park
| | - Hui-Jing Xie
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University
| | - Xu Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University
| | - Yun Chen
- Yinggeling Branch of Hainan Tropical Rainforest National Park
| | | | - Nian-Kai Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University
| |
Collapse
|
10
|
Stoy KS, Gibson AK, Gerardo NM, Morran LT. A need to consider the evolutionary genetics of host-symbiont mutualisms. J Evol Biol 2020; 33:1656-1668. [PMID: 33047414 DOI: 10.1111/jeb.13715] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/20/2020] [Accepted: 09/27/2020] [Indexed: 12/28/2022]
Abstract
Despite the ubiquity and importance of mutualistic interactions, we know little about the evolutionary genetics underlying their long-term persistence. As in antagonistic interactions, mutualistic symbioses are characterized by substantial levels of phenotypic and genetic diversity. In contrast to antagonistic interactions, however, we, by and large, do not understand how this variation arises, how it is maintained, nor its implications for future evolutionary change. Currently, we rely on phenotypic models to address the persistence of mutualistic symbioses, but the success of an interaction almost certainly depends heavily on genetic interactions. In this review, we argue that evolutionary genetic models could provide a framework for understanding the causes and consequences of diversity and why selection may favour processes that maintain variation in mutualistic interactions.
Collapse
Affiliation(s)
- Kayla S Stoy
- Department of Biology, Emory University, Atlanta, GA, USA.,Population Biology, Ecology, and Evolution Program, Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
| | - Amanda K Gibson
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | - Levi T Morran
- Department of Biology, Emory University, Atlanta, GA, USA
| |
Collapse
|
11
|
Merényi Z, Prasanna AN, Wang Z, Kovács K, Hegedüs B, Bálint B, Papp B, Townsend JP, Nagy LG. Unmatched Level of Molecular Convergence among Deeply Divergent Complex Multicellular Fungi. Mol Biol Evol 2020; 37:2228-2240. [PMID: 32191325 PMCID: PMC7403615 DOI: 10.1093/molbev/msaa077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Convergent evolution is pervasive in nature, but it is poorly understood how various constraints and natural selection limit the diversity of evolvable phenotypes. Here, we analyze the transcriptome across fruiting body development to understand the independent evolution of complex multicellularity in the two largest clades of fungi-the Agarico- and Pezizomycotina. Despite >650 My of divergence between these clades, we find that very similar sets of genes have convergently been co-opted for complex multicellularity, followed by expansions of their gene families by duplications. Over 82% of shared multicellularity-related gene families were expanding in both clades, indicating a high prevalence of convergence also at the gene family level. This convergence is coupled with a rich inferred repertoire of multicellularity-related genes in the most recent common ancestor of the Agarico- and Pezizomycotina, consistent with the hypothesis that the coding capacity of ancestral fungal genomes might have promoted the repeated evolution of complex multicellularity. We interpret this repertoire as an indication of evolutionary predisposition of fungal ancestors for evolving complex multicellular fruiting bodies. Our work suggests that evolutionary convergence may happen not only when organisms are closely related or are under similar selection pressures, but also when ancestral genomic repertoires render certain evolutionary trajectories more likely than others, even across large phylogenetic distances.
Collapse
Affiliation(s)
- Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Arun N Prasanna
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Zheng Wang
- Department of Biostatistics, Yale University, New Haven, CT
| | - Károly Kovács
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, Metabolic Systems Biology Lab, Szeged, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, Metabolic Systems Biology Lab, Szeged, Hungary
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale University, New Haven, CT
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| |
Collapse
|
12
|
High diversity and multiple invasions to North America by fungi grown by the northern-most Trachymyrmex and Mycetomoellerius ant species. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2019.100878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Boyle JH, Martins D, Musili PM, Pierce NE. Population Genomics and Demographic Sampling of the Ant-Plant Vachellia drepanolobium and Its Symbiotic Ants From Sites Across Its Range in East Africa. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Smith CC, Weber JN, Mikheyev AS, Roces F, Bollazzi M, Kellner K, Seal JN, Mueller UG. Landscape genomics of an obligate mutualism: Concordant and discordant population structures between the leafcutter ant Atta texana and its two main fungal symbiont types. Mol Ecol 2019; 28:2831-2845. [PMID: 31141257 DOI: 10.1111/mec.15111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022]
Abstract
To explore landscape genomics at the range limit of an obligate mutualism, we use genotyping-by-sequencing (ddRADseq) to quantify population structure and the effect of host-symbiont interactions between the northernmost fungus-farming leafcutter ant Atta texana and its two main types of cultivated fungus. Genome-wide differentiation between ants associated with either of the two fungal types is of the same order of magnitude as differentiation associated with temperature and precipitation across the ant's entire range, suggesting that specific ant-fungus genome-genome combinations may have been favoured by selection. For the ant hosts, we found a broad cline of genetic structure across the range, and a reduction of genetic diversity along the axis of range expansion towards the range margin. This population-genetic structure was concordant between the ants and one cultivar type (M-fungi, concordant clines) but discordant for the other cultivar type (T-fungi). Discordance in population-genetic structures between ant hosts and a fungal symbiont is surprising because the ant farmers codisperse with their vertically transmitted fungal symbionts. Discordance implies that (a) the fungi disperse also through between-nest horizontal transfer or other unknown mechanisms, and (b) genetic drift and gene flow can differ in magnitude between each partner and between different ant-fungus combinations. Together, these findings imply that variation in the strength of drift and gene flow experienced by each mutualistic partner affects adaptation to environmental stress at the range margin, and genome-genome interactions between host and symbiont influence adaptive genetic differentiation of the host during range evolution in this obligate mutualism.
Collapse
Affiliation(s)
- Chad C Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas
| | - Jesse N Weber
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas.,Department of Biological Sciences, University of Alaska, Anchorage, Alaska
| | | | - Flavio Roces
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Martin Bollazzi
- Section of Entomology, Universidad de la República, Montevideo, Uruguay
| | - Katrin Kellner
- Department of Biology, University of Texas at Tyler, Tyler, Texas
| | - Jon N Seal
- Department of Biology, University of Texas at Tyler, Tyler, Texas
| | - Ulrich G Mueller
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas
| |
Collapse
|
15
|
Howe J, Schiøtt M, Boomsma JJ. Horizontal partner exchange does not preclude stable mutualism in fungus-growing ants. Behav Ecol 2018. [DOI: 10.1093/beheco/ary176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jack Howe
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Schiøtt
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Bracewell RR, Vanderpool D, Good JM, Six DL. Cascading speciation among mutualists and antagonists in a tree-beetle-fungi interaction. Proc Biol Sci 2018; 285:rspb.2018.0694. [PMID: 30051849 DOI: 10.1098/rspb.2018.0694] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/01/2018] [Indexed: 11/12/2022] Open
Abstract
Cascading speciation is predicted to occur when multiple interacting species diverge in parallel as a result of divergence in one species promoting adaptive differentiation in other species. However, there are few examples where ecological interactions among taxa have been shown to result in speciation that cascades across multiple trophic levels. Here, we test for cascading speciation occurring among the western pine beetle (Dendroctonus brevicomis), its primary host tree (Pinus ponderosa), and the beetle's fungal mutualists (Ceratocystiopsis brevicomi and Entomocorticium sp. B). We assembled genomes for the beetle and a fungal symbiont and then generated reduced representation genomic data (RADseq) from range-wide samples of these three interacting species. Combined with published data for the host tree, we present clear evidence that the tree, the beetle, and the fungal symbionts are all genetically structured into at least two distinct groups that have strongly codiverged with geographical isolation. We then combine our genomic results with diverse population and laboratory-based data to show evidence for reproductive isolation at each level of the cascade and for coevolution of both antagonistic and mutualistic species interactions within this complex network.
Collapse
Affiliation(s)
- R R Bracewell
- Department of Ecosystem and Conservation Sciences, The University of Montana, 32 Campus Drive, Missoula, MT, USA
| | - D Vanderpool
- Division of Biological Sciences, The University of Montana, 32 Campus Drive, Missoula, MT, USA
| | - J M Good
- Division of Biological Sciences, The University of Montana, 32 Campus Drive, Missoula, MT, USA
| | - D L Six
- Department of Ecosystem and Conservation Sciences, The University of Montana, 32 Campus Drive, Missoula, MT, USA
| |
Collapse
|
17
|
Mueller UG, Kardish MR, Ishak HD, Wright AM, Solomon SE, Bruschi SM, Carlson AL, Bacci M. Phylogenetic patterns of ant-fungus associations indicate that farming strategies, not only a superior fungal cultivar, explain the ecological success of leafcutter ants. Mol Ecol 2018; 27:2414-2434. [PMID: 29740906 DOI: 10.1111/mec.14588] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/18/2023]
Abstract
To elucidate fungicultural specializations contributing to ecological dominance of leafcutter ants, we estimate the phylogeny of fungi cultivated by fungus-growing (attine) ants, including fungal cultivars from (i) the entire leafcutter range from southern South America to southern North America, (ii) all higher-attine ant lineages (leafcutting genera Atta, Acromyrmex; nonleafcutting genera Trachymyrmex, Sericomyrmex) and (iii) all lower-attine lineages. Higher-attine fungi form two clades, Clade-A fungi (Leucocoprinus gongylophorus, formerly Attamyces) previously thought to be cultivated only by leafcutter ants, and a sister clade, Clade-B fungi, previously thought to be cultivated only by Trachymyrmex and Sericomyrmex ants. Contradicting this traditional view, we find that (i) leafcutter ants are not specialized to cultivate only Clade-A fungi because some leafcutter species ranging across South America cultivate Clade-B fungi; (ii) Trachymyrmex ants are not specialized to cultivate only Clade-B fungi because some Trachymyrmex species cultivate Clade-A fungi and other Trachymyrmex species cultivate fungi known so far only from lower-attine ants; (iii) in some locations, single higher-attine ant species or closely related cryptic species cultivate both Clade-A and Clade-B fungi; and (iv) ant-fungus co-evolution among higher-attine mutualisms is therefore less specialized than previously thought. Sympatric leafcutter ants can be ecologically dominant when cultivating either Clade-A or Clade-B fungi, sustaining with either cultivar-type huge nests that command large foraging territories; conversely, sympatric Trachymyrmex ants cultivating either Clade-A or Clade-B fungi can be locally abundant without achieving the ecological dominance of leafcutter ants. Ecological dominance of leafcutter ants therefore does not depend primarily on specialized fungiculture of L. gongylophorus (Clade-A), but must derive from ant-fungus synergisms and unique ant adaptations.
Collapse
Affiliation(s)
- Ulrich G Mueller
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas
| | - Melissa R Kardish
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas.,Center for Population Biology, University of California, Davis, California
| | - Heather D Ishak
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas.,Department of Medicine, Stanford University, Stanford, California
| | - April M Wright
- Department of Biological Science, Southeastern Louisiana University, Hammond, Louisiana
| | - Scott E Solomon
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas.,Department of Entomology, Smithsonian Institution, Washington, District of Columbia
| | - Sofia M Bruschi
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas.,Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Alexis L Carlson
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas
| | - Maurício Bacci
- Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| |
Collapse
|
18
|
Toman J, Flegr J. General environmental heterogeneity as the explanation of sexuality? Comparative study shows that ancient asexual taxa are associated with both biotically and abiotically homogeneous environments. Ecol Evol 2018; 8:973-991. [PMID: 29375771 PMCID: PMC5773305 DOI: 10.1002/ece3.3716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/13/2017] [Accepted: 11/20/2017] [Indexed: 11/22/2022] Open
Abstract
Ecological theories of sexual reproduction assume that sexuality is advantageous in certain conditions, for example, in biotically or abiotically more heterogeneous environments. Such theories thus could be tested by comparative studies. However, the published results of these studies are rather unconvincing. Here, we present the results of a new comparative study based exclusively on the ancient asexual clades. The association with biotically or abiotically homogeneous environments in these asexual clades was compared with the same association in their sister, or closely related, sexual clades. Using the conservative definition of ancient asexuals (i.e., age >1 million years), we found eight pairs of taxa of sexual and asexual species, six differing in the heterogeneity of their inhabited environment on the basis of available data. The difference between the environmental type associated with the sexual and asexual species was then compared in an exact binomial test. The results showed that the majority of ancient asexual clades tend to be associated with biotically, abiotically, or both biotically and abiotically more homogeneous environments than their sexual controls. In the exploratory part of the study, we found that the ancient asexuals often have durable resting stages, enabling life in subjectively homogeneous environments, live in the absence of intense biotic interactions, and are very often sedentary, inhabiting benthos, and soil. The consequences of these findings for the ecological theories of sexual reproduction are discussed.
Collapse
Affiliation(s)
- Jan Toman
- Faculty of ScienceLaboratory of Evolutionary BiologyDepartment of Philosophy and History of SciencesCharles UniversityPragueCzech Republic
| | - Jaroslav Flegr
- Faculty of ScienceLaboratory of Evolutionary BiologyDepartment of Philosophy and History of SciencesCharles UniversityPragueCzech Republic
| |
Collapse
|
19
|
Mueller UG, Ishak HD, Bruschi SM, Smith CC, Herman JJ, Solomon SE, Mikheyev AS, Rabeling C, Scott JJ, Cooper M, Rodrigues A, Ortiz A, Brandão CRF, Lattke JE, Pagnocca FC, Rehner SA, Schultz TR, Vasconcelos HL, Adams RMM, Bollazzi M, Clark RM, Himler AG, LaPolla JS, Leal IR, Johnson RA, Roces F, Sosa-Calvo J, Wirth R, Bacci M. Biogeography of mutualistic fungi cultivated by leafcutter ants. Mol Ecol 2017; 26:6921-6937. [PMID: 29134724 DOI: 10.1111/mec.14431] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/19/2017] [Accepted: 10/04/2017] [Indexed: 01/03/2023]
Abstract
Leafcutter ants propagate co-evolving fungi for food. The nearly 50 species of leafcutter ants (Atta, Acromyrmex) range from Argentina to the United States, with the greatest species diversity in southern South America. We elucidate the biogeography of fungi cultivated by leafcutter ants using DNA sequence and microsatellite-marker analyses of 474 cultivars collected across the leafcutter range. Fungal cultivars belong to two clades (Clade-A and Clade-B). The dominant and widespread Clade-A cultivars form three genotype clusters, with their relative prevalence corresponding to southern South America, northern South America, Central and North America. Admixture between Clade-A populations supports genetic exchange within a single species, Leucocoprinus gongylophorus. Some leafcutter species that cut grass as fungicultural substrate are specialized to cultivate Clade-B fungi, whereas leafcutters preferring dicot plants appear specialized on Clade-A fungi. Cultivar sharing between sympatric leafcutter species occurs frequently such that cultivars of Atta are not distinct from those of Acromyrmex. Leafcutters specialized on Clade-B fungi occur only in South America. Diversity of Clade-A fungi is greatest in South America, but minimal in Central and North America. Maximum cultivar diversity in South America is predicted by the Kusnezov-Fowler hypothesis that leafcutter ants originated in subtropical South America and only dicot-specialized leafcutter ants migrated out of South America, but the cultivar diversity becomes also compatible with a recently proposed hypothesis of a Central American origin by postulating that leafcutter ants acquired novel cultivars many times from other nonleafcutter fungus-growing ants during their migrations from Central America across South America. We evaluate these biogeographic hypotheses in the light of estimated dates for the origins of leafcutter ants and their cultivars.
Collapse
Affiliation(s)
- Ulrich G Mueller
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Heather D Ishak
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Sofia M Bruschi
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Chad C Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Jacob J Herman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Scott E Solomon
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil.,Department of Ecology & Evolutionary Biology, Rice University, Houston, TX, USA
| | - Alexander S Mikheyev
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,Okinawa Institute of Science & Technology, Kunigami, Okinawa, Japan
| | - Christian Rabeling
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jarrod J Scott
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Michael Cooper
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Andre Rodrigues
- Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Adriana Ortiz
- Universidad Nacional de Colombia, Medellin, Colombia
| | | | - John E Lattke
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Fernando C Pagnocca
- Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Stephen A Rehner
- Mycology and Nematology Genomic Diversity and Biology Laboratory, Beltsville, MD, USA
| | - Ted R Schultz
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | | - Rachelle M M Adams
- Department of Evolution, Ecology & Organismal Biology, Museum of Biological Diversity, Columbus, OH, USA
| | - Martin Bollazzi
- Section of Entomology, Universidad de la República, Montevideo, Uruguay
| | - Rebecca M Clark
- Integrative Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Anna G Himler
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,Department of Biology, College of Idaho, Caldwell, ID, USA
| | - John S LaPolla
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Department of Biological Sciences, Towson University, Towson, MD, USA
| | - Inara R Leal
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Robert A Johnson
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Flavio Roces
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Würzburg, Germany
| | | | - Rainer Wirth
- Department of Plant Ecology and Systematics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Maurício Bacci
- Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| |
Collapse
|
20
|
Nieuwenhuis BPS, James TY. The frequency of sex in fungi. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0540. [PMID: 27619703 DOI: 10.1098/rstb.2015.0540] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 12/16/2022] Open
Abstract
Fungi are a diverse group of organisms with a huge variation in reproductive strategy. While almost all species can reproduce sexually, many reproduce asexually most of the time. When sexual reproduction does occur, large variation exists in the amount of in- and out-breeding. While budding yeast is expected to outcross only once every 10 000 generations, other fungi are obligate outcrossers with well-mixed panmictic populations. In this review, we give an overview of the costs and benefits of sexual and asexual reproduction in fungi, and the mechanisms that evolved in fungi to reduce the costs of either mode. The proximate molecular mechanisms potentiating outcrossing and meiosis appear to be present in nearly all fungi, making them of little use for predicting outcrossing rates, but also suggesting the absence of true ancient asexual lineages. We review how population genetic methods can be used to estimate the frequency of sex in fungi and provide empirical data that support a mixed mode of reproduction in many species with rare to frequent sex in between rounds of mitotic reproduction. Finally, we highlight how these estimates might be affected by the fungus-specific mechanisms that evolved to reduce the costs of sexual and asexual reproduction.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Bart P S Nieuwenhuis
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109-1048, USA
| |
Collapse
|
21
|
An DY, Liang ZQ, Jiang S, Su MS, Zeng NK. Cantharellus hainanensis, a new species with a smooth hymenophore from tropical China. MYCOSCIENCE 2017. [DOI: 10.1016/j.myc.2017.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
de Man TJB, Stajich JE, Kubicek CP, Teiling C, Chenthamara K, Atanasova L, Druzhinina IS, Levenkova N, Birnbaum SSL, Barribeau SM, Bozick BA, Suen G, Currie CR, Gerardo NM. Small genome of the fungus Escovopsis weberi, a specialized disease agent of ant agriculture. Proc Natl Acad Sci U S A 2016; 113:3567-72. [PMID: 26976598 PMCID: PMC4822581 DOI: 10.1073/pnas.1518501113] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many microorganisms with specialized lifestyles have reduced genomes. This is best understood in beneficial bacterial symbioses, where partner fidelity facilitates loss of genes necessary for living independently. Specialized microbial pathogens may also exhibit gene loss relative to generalists. Here, we demonstrate that Escovopsis weberi, a fungal parasite of the crops of fungus-growing ants, has a reduced genome in terms of both size and gene content relative to closely related but less specialized fungi. Although primary metabolism genes have been retained, the E. weberi genome is depleted in carbohydrate active enzymes, which is consistent with reliance on a host with these functions. E. weberi has also lost genes considered necessary for sexual reproduction. Contrasting these losses, the genome encodes unique secondary metabolite biosynthesis clusters, some of which include genes that exhibit up-regulated expression during host attack. Thus, the specialized nature of the interaction between Escovopsis and ant agriculture is reflected in the parasite's genome.
Collapse
Affiliation(s)
- Tom J B de Man
- Department of Biology, Emory University, Atlanta, GA 30322
| | - Jason E Stajich
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521
| | - Christian P Kubicek
- Institute of Chemical Engineering, Vienna University of Technology, 1060 Vienna, Austria
| | | | - Komal Chenthamara
- Institute of Chemical Engineering, Vienna University of Technology, 1060 Vienna, Austria
| | - Lea Atanasova
- Institute of Chemical Engineering, Vienna University of Technology, 1060 Vienna, Austria
| | - Irina S Druzhinina
- Institute of Chemical Engineering, Vienna University of Technology, 1060 Vienna, Austria
| | | | | | - Seth M Barribeau
- Department of Biology, Emory University, Atlanta, GA 30322; Department of Biology, East Carolina University, Greenville, NC 27858
| | | | - Garret Suen
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706
| | | |
Collapse
|
23
|
Zeng NK, Liang ZQ, Wu G, Li YC, Yang ZL, Liang ZQ. The genus Retiboletus in China. Mycologia 2016; 108:363-80. [PMID: 26740536 DOI: 10.3852/15-072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/16/2015] [Indexed: 11/10/2022]
Abstract
Species of the genus Retiboletus (Boletaceae, Boletales) in China are investigated based on morphology and phylogenetic analyses of DNA sequences from nuc rDNA internal transcribed spacer (ITS) and partial 28S regions and sequences from the translation elongation factor 1-a gene (tef1a). Six lineages are recovered among the collections studied. Five of these are documented and presented in the present paper, including three new species and two new combinations. The remaining species is not described due to the paucity of material. The specimens from China identified as "R. ornatipes" or "R. retipes" are in fact R. sinensis or R. kauffmanii, those labeled "R. griseus" are either R. fuscus or R. pseudogriseus A key to all known taxa of the genus is provided. Phylogenetic relationships of taxa within Retiboletus are partially resolved. A preliminary biogeographical analysis shows that allied species of Retiboletus between eastern Asia and North/Central America are common but there are no Retiboletus species common to both continents. Species of Retiboletus in Japan and southern China are conspecific or closely related.
Collapse
Affiliation(s)
- Nian-Kai Zeng
- College of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Zhi-Qun Liang
- College of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Gang Wu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yan-Chun Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhu L Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhi-Qun Liang
- College of Materials and Chemistry Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
24
|
Adalberto PR, Golfeto CC, Moreira AC, Almeida FG, Ferreira D, Cass QB, Souza DHF. Characterization of an Exopolygalacturonase from <i>Leucoagaricus gongylophorus</i>, the Symbiotic Fungus of <i>Atta sexdens</i>. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/aer.2016.41002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Kooij PW, Poulsen M, Schiøtt M, Boomsma JJ. Somatic incompatibility and genetic structure of fungal crops in sympatric Atta colombica and Acromyrmex echinatior leaf-cutting ants. FUNGAL ECOL 2015; 18:10-17. [PMID: 26865859 PMCID: PMC4705864 DOI: 10.1016/j.funeco.2015.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Obligate mutualistic symbioses rely on mechanisms that secure host-symbiont commitments to maximize host benefits and prevent symbiont cheating. Previous studies showed that somatic incompatibilities correlate with neutral-marker-based genetic distances between fungal symbionts of Panamanian Acromyrmex leaf-cutting ants, but the extent to which this relationship applies more generally remained unclear. Here we showed that genetic distances accurately predicted somatic incompatibility for Acromyrmex echinatior symbionts irrespective of whether neutral microsatellites or AFLP markers were used, but that such correlations were weaker or absent in sympatric Atta colombica colonies. Further analysis showed that the symbiont clades maintained by A. echinatior and A. colombica were likely to represent separate gene pools, so that neutral markers were unlikely to be similarly correlated with incompatibility loci that have experienced different selection regimes. We suggest that evolutionarily derived claustral colony founding by Atta queens may have removed selection for strong incompatibility in Atta fungi, as this condition makes the likelihood of symbiont swaps much lower than in Acromyrmex, where incipient nests stay open because queens have to forage until the first workers emerge.
Collapse
|
26
|
James TY. Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns. FUNGAL BIOL REV 2015. [DOI: 10.1016/j.fbr.2015.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Kooij PW, Aanen DK, Schiøtt M, Boomsma JJ. Evolutionarily advanced ant farmers rear polyploid fungal crops. J Evol Biol 2015; 28:1911-24. [PMID: 26265100 PMCID: PMC5014177 DOI: 10.1111/jeb.12718] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 07/28/2015] [Indexed: 12/25/2022]
Abstract
Innovative evolutionary developments are often related to gene or genome duplications. The crop fungi of attine fungus-growing ants are suspected to have enhanced genetic variation reminiscent of polyploidy, but this has never been quantified with cytological data and genetic markers. We estimated the number of nuclei per fungal cell for 42 symbionts reared by 14 species of Panamanian fungus-growing ants. This showed that domesticated symbionts of higher attine ants are polykaryotic with 7-17 nuclei per cell, whereas nonspecialized crops of lower attines are dikaryotic similar to most free-living basidiomycete fungi. We then investigated how putative higher genetic diversity is distributed across polykaryotic mycelia, using microsatellite loci and evaluating models assuming that all nuclei are either heterogeneously haploid or homogeneously polyploid. Genetic variation in the polykaryotic symbionts of the basal higher attine genera Trachymyrmex and Sericomyrmex was only slightly enhanced, but the evolutionarily derived crop fungi of Atta and Acromyrmex leaf-cutting ants had much higher genetic variation. Our opposite ploidy models indicated that the symbionts of Trachymyrmex and Sericomyrmex are likely to be lowly and facultatively polyploid (just over two haplotypes on average), whereas Atta and Acromyrmex symbionts are highly and obligatorily polyploid (ca. 5-7 haplotypes on average). This stepwise transition appears analogous to ploidy variation in plants and fungi domesticated by humans and in fungi domesticated by termites and plants, where gene or genome duplications were typically associated with selection for higher productivity, but allopolyploid chimerism was incompatible with sexual reproduction.
Collapse
Affiliation(s)
- P W Kooij
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - D K Aanen
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - M Schiøtt
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - J J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Meirelles LA, Solomon SE, Bacci M, Wright AM, Mueller UG, Rodrigues A. Shared Escovopsis parasites between leaf-cutting and non-leaf-cutting ants in the higher attine fungus-growing ant symbiosis. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150257. [PMID: 26473050 PMCID: PMC4593684 DOI: 10.1098/rsos.150257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/07/2015] [Indexed: 05/31/2023]
Abstract
Fungus-gardening (attine) ants grow fungus for food in protected gardens, which contain beneficial, auxiliary microbes, but also microbes harmful to gardens. Among these potentially pathogenic microorganisms, the most consistently isolated are fungi in the genus Escovopsis, which are thought to co-evolve with ants and their cultivar in a tripartite model. To test clade-to-clade correspondence between Escovopsis and ants in the higher attine symbiosis (including leaf-cutting and non-leaf-cutting ants), we amassed a geographically comprehensive collection of Escovopsis from Mexico to southern Brazil, and reconstructed the corresponding Escovopsis phylogeny. Contrary to previous analyses reporting phylogenetic divergence between Escovopsis from leafcutters and Trachymyrmex ants (non-leafcutter), we found no evidence for such specialization; rather, gardens from leafcutters and non-leafcutters genera can sometimes be infected by closely related strains of Escovopsis, suggesting switches at higher phylogenetic levels than previously reported within the higher attine symbiosis. Analyses identified rare Escovopsis strains that might represent biogeographically restricted endemic species. Phylogenetic patterns correspond to morphological variation of vesicle type (hyphal structures supporting spore-bearing cells), separating Escovopsis with phylogenetically derived cylindrical vesicles from ancestral Escovopsis with globose vesicles. The new phylogenetic insights provide an improved basis for future taxonomic and ecological studies of Escovopsis.
Collapse
Affiliation(s)
- Lucas A. Meirelles
- Department of Biochemistry and Microbiology, UNESP—São Paulo State University, Rio Claro, São Paulo, Brazil
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | | - Mauricio Bacci
- Center for the Study of Social Insects, UNESP—São Paulo State University, Rio Claro, São Paulo, Brazil
| | - April M. Wright
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Ulrich G. Mueller
- Department of Biochemistry and Microbiology, UNESP—São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Andre Rodrigues
- Department of Biochemistry and Microbiology, UNESP—São Paulo State University, Rio Claro, São Paulo, Brazil
| |
Collapse
|
29
|
Schultz TR, Sosa-Calvo J, Brady SG, Lopes CT, Mueller UG, Bacci M, Vasconcelos HL. The Most Relictual Fungus-Farming Ant Species Cultivates the Most Recently Evolved and Highly Domesticated Fungal Symbiont Species. Am Nat 2015; 185:693-703. [DOI: 10.1086/680501] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Meirelles LA, Montoya QV, Solomon SE, Rodrigues A. New light on the systematics of fungi associated with attine ant gardens and the description of Escovopsis kreiselii sp. nov. PLoS One 2015; 10:e0112067. [PMID: 25617836 PMCID: PMC4305282 DOI: 10.1371/journal.pone.0112067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/08/2014] [Indexed: 11/18/2022] Open
Abstract
Since the formal description of fungi in the genus Escovopsis in 1990, only a few studies have focused on the systematics of this group. For more than two decades, only two Escovopsis species were described; however, in 2013, three additional Escovopsis species were formally described along with the genus Escovopsioides, both found exclusively in attine ant gardens. During a survey for Escovopsis species in gardens of the lower attine ant Mycetophylax morschi in Brazil, we found four strains belonging to the pink-colored Escovopsis clade. Careful examination of these strains revealed significant morphological differences when compared to previously described species of Escovopsis and Escovopsioides. Based on the type of conidiogenesis (sympodial), as well as morphology of conidiogenous cells (percurrent), non-vesiculated conidiophores, and DNA sequences, we describe the four new strains as a new species, Escovopsis kreiselii sp. nov. Phylogenetic analyses using three nuclear markers (Large subunit RNA; translation elongation factor 1-alpha; and internal transcribed spacer) from the new strains as well as available sequences in public databases confirmed that all known fungi infecting attine ant gardens comprise a monophyletic group within the Hypocreaceae family, with very diverse morphological characteristics. Specifically, Escovopsis kreiselii is likely associated with gardens of lower-attine ants and its pathogenicity remains uncertain.
Collapse
Affiliation(s)
- Lucas A. Meirelles
- Department of Biochemistry and Microbiology, UNESP Univ Estadual Paulista, Rio Claro, SP, Brazil
| | - Quimi V. Montoya
- Department of Biochemistry and Microbiology, UNESP Univ Estadual Paulista, Rio Claro, SP, Brazil
| | - Scott E. Solomon
- Department of Biosciences, Rice University, Houston, TX, United States of America
| | - Andre Rodrigues
- Department of Biochemistry and Microbiology, UNESP Univ Estadual Paulista, Rio Claro, SP, Brazil
- * E-mail:
| |
Collapse
|
31
|
A geographical extension of the North American genus Bothia (Boletaceae, Boletales) to East Asia with a new species B. fujianensis from China. Mycol Prog 2014. [DOI: 10.1007/s11557-014-1015-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
De Fine Licht HH, Boomsma JJ. Variable interaction specificity and symbiont performance in Panamanian Trachymyrmex and Sericomyrmex fungus-growing ants. BMC Evol Biol 2014; 14:244. [PMID: 25471204 PMCID: PMC4262973 DOI: 10.1186/s12862-014-0244-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cooperative benefits of mutualistic interactions are affected by genetic variation among the interacting partners, which may have consequences for interaction-specificities across guilds of sympatric species with similar mutualistic life histories. The gardens of fungus-growing (attine) ants produce carbohydrate active enzymes that degrade plant material collected by the ants and offer them food in exchange. The spectrum of these enzyme activities is an important symbiont service to the host but may vary among cultivar genotypes. The sympatric occurrence of several Trachymyrmex and Sericomyrmex higher attine ants in Gamboa, Panama provided the opportunity to do a quantitative study of species-level interaction-specificity. RESULTS We genotyped the ants for Cytochrome Oxidase and their Leucoagaricus fungal cultivars for ITS rDNA. Combined with activity measurements for 12 carbohydrate active enzymes, these data allowed us to test whether garden enzyme activity was affected by fungal strain, farming ants or combinations of the two. We detected two cryptic ant species, raising ant species number from four to six, and we show that the 38 sampled colonies reared a total of seven fungal haplotypes that were different enough to represent separate Leucoagaricus species. The Sericomyrmex species and one of the Trachymyrmex species reared the same fungal cultivar in all sampled colonies, but the remaining four Trachymyrmex species largely shared the other cultivars. Fungal enzyme activity spectra were significantly affected by both cultivar species and farming ant species, and more so for certain ant-cultivar combinations than others. However, relative changes in activity of single enzymes only depended on cultivar genotype and not on the ant species farming a cultivar. CONCLUSIONS Ant cultivar symbiont-specificity varied from almost full symbiont sharing to one-to-one specialization, suggesting that trade-offs between enzyme activity spectra and life-history traits such as desiccation tolerance, disease susceptibility and temperature sensitivity may apply in some combinations but not in others. We hypothesize that this may be related to ecological specialization in general, but this awaits further testing. Our finding of both cryptic ant species and extensive cultivar diversity underlines the importance of identifying all species-level variation before embarking on estimates of interaction specificity.
Collapse
Affiliation(s)
- Henrik H De Fine Licht
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.
- Present address: Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Denmark.
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
33
|
De Fine Licht HH, Boomsma JJ, Tunlid A. Symbiotic adaptations in the fungal cultivar of leaf-cutting ants. Nat Commun 2014; 5:5675. [DOI: 10.1038/ncomms6675] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 10/24/2014] [Indexed: 11/09/2022] Open
|
34
|
Bracewell RR, Six DL. Broadscale specificity in a bark beetle-fungal symbiosis: a spatio-temporal analysis of the mycangial fungi of the western pine beetle. MICROBIAL ECOLOGY 2014; 68:859-870. [PMID: 25004995 DOI: 10.1007/s00248-014-0449-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
Whether and how mutualisms are maintained through ecological and evolutionary time is a seldom studied aspect of bark beetle-fungal symbioses. All bark beetles are associated with fungi and some species have evolved structures for transporting their symbiotic partners. However, the fungal assemblages and specificity in these symbioses are not well known. To determine the distribution of fungi associated with the mycangia of the western pine beetle (Dendroctonus brevicomis), we collected beetles from across the insect's geographic range including multiple genetically distinct populations. Two fungi, Entomocorticium sp. B and Ceratocystiopsis brevicomi, were isolated from the mycangia of beetles from all locations. Repeated sampling at two sites in Montana found that Entomocorticium sp. B was the most prevalent fungus throughout the beetle's flight season, and that females carrying that fungus were on average larger than females carrying C. brevicomi. We present evidence that throughout the flight season, over broad geographic distances, and among genetically distinct populations of beetle, the western pine beetle is associated with the same two species of fungi. In addition, we provide evidence that one fungal species is associated with larger adult beetles and therefore might provide greater benefit during beetle development. The importance and maintenance of this bark beetle-fungus interaction is discussed.
Collapse
Affiliation(s)
- Ryan R Bracewell
- Department of Ecosystem and Conservation Sciences, College of Forestry, The University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA,
| | | |
Collapse
|
35
|
Li YC, Li F, Zeng NK, Cui YY, Yang ZL. A new genus Pseudoaustroboletus (Boletaceae, Boletales) from Asia as inferred from molecular and morphological data. Mycol Prog 2014. [DOI: 10.1007/s11557-014-1011-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Li YC, Ortiz-Santana B, Zeng NK, Feng B, Yang ZL. Molecular phylogeny and taxonomy of the genus Veloporphyrellus. Mycologia 2014; 106:291-306. [PMID: 24782497 DOI: 10.3852/106.2.291] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Veloporphyrellus is a genus known from North and Central America, southeastern Asia, and Africa. Because species of this genus are phenotypically similar to some taxa in several genera, such as Boletellus, Leccinum, Strobilomyces, Suillus and Tylopilus s.l. belonging to Boletales, its phylogenetic disposition has never been addressed. We analyzed four DNA regions, the nuclear ribosomal LSU and tef-1α, and the mitochondrial mtSSU and atp6 genes, to investigate the phylogenetic disposition of Veloporphyrellus. Although the monophyly of the genus and its systematic placement within the Boletaceae was well supported, its relationship to other genera was not resolved. Morphologically Veloporphyrellus is distinguished from other boletoid genera by the combination of the pinkish or grayish pink hymenophore, the membranous veil hanging on the pilea margin, the trichoderm-like pileus covering and the smooth basidiospores. Five species, including two new species and two new combinations, are described and illustrated. A key to the species of Veloporphyrellus also is provided.
Collapse
Affiliation(s)
- Yan-Chun Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | | | | | | | | |
Collapse
|
37
|
Seal JN, Schiøtt M, Mueller UG. Ant-fungus species combinations engineer physiological activity of fungus gardens. ACTA ACUST UNITED AC 2014; 217:2540-7. [PMID: 24803469 DOI: 10.1242/jeb.098483] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fungus-gardening insects are among the most complex organisms because of their extensive co-evolutionary histories with obligate fungal symbionts and other microbes. Some fungus-gardening insect lineages share fungal symbionts with other members of their lineage and thus exhibit diffuse co-evolutionary relationships, while others exhibit little or no symbiont sharing, resulting in host-fungus fidelity. The mechanisms that maintain this symbiont fidelity are currently unknown. Prior work suggested that derived leaf-cutting ants in the genus Atta interact synergistically with leaf-cutter fungi (Attamyces) by exhibiting higher fungal growth rates and enzymatic activities than when growing a fungus from the sister-clade to Attamyces (so-called 'Trachymyces'), grown primarily by the non-leaf cutting Trachymyrmex ants that form, correspondingly, the sister-clade to leaf-cutting ants. To elucidate the enzymatic bases of host-fungus specialization in leaf-cutting ants, we conducted a reciprocal fungus-switch experiment between the ant Atta texana and the ant Trachymyrmex arizonensis and report measured enzymatic activities of switched and sham-switched fungus gardens to digest starch, pectin, xylan, cellulose and casein. Gardens exhibited higher amylase and pectinase activities when A. texana ants cultivated Attamyces compared with Trachymyces fungi, consistent with enzymatic specialization. In contrast, gardens showed comparable amylase and pectinase activities when T. arizonensis cultivated either fungal species. Although gardens of leaf-cutting ants are not known to be significant metabolizers of cellulose, T. arizonensis were able to maintain gardens with significant cellulase activity when growing either fungal species. In contrast to carbohydrate metabolism, protease activity was significantly higher in Attamyces than in Trachymyces, regardless of the ant host. Activity of some enzymes employed by this symbiosis therefore arises from complex interactions between the ant host and the fungal symbiont.
Collapse
Affiliation(s)
- J N Seal
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX 75799, USA Integrative Biology, University of Texas at Austin, 1 University Station C0930, Austin, TX 78712, USA
| | - M Schiøtt
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - U G Mueller
- Integrative Biology, University of Texas at Austin, 1 University Station C0930, Austin, TX 78712, USA
| |
Collapse
|
38
|
Lange L, Grell MN. The prominent role of fungi and fungal enzymes in the ant–fungus biomass conversion symbiosis. Appl Microbiol Biotechnol 2014; 98:4839-51. [DOI: 10.1007/s00253-014-5708-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/15/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
|
39
|
Molecular phylogenetic analyses redefine seven major clades and reveal 22 new generic clades in the fungal family Boletaceae. FUNGAL DIVERS 2014. [DOI: 10.1007/s13225-014-0283-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Augustin JO, Groenewald JZ, Nascimento RJ, Mizubuti ESG, Barreto RW, Elliot SL, Evans HC. Yet more "weeds" in the garden: fungal novelties from nests of leaf-cutting ants. PLoS One 2013; 8:e82265. [PMID: 24376525 PMCID: PMC3869688 DOI: 10.1371/journal.pone.0082265] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/25/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Symbiotic relationships modulate the evolution of living organisms in all levels of biological organization. A notable example of symbiosis is that of attine ants (Attini; Formicidae: Hymenoptera) and their fungal cultivars (Lepiotaceae and Pterulaceae; Agaricales: Basidiomycota). In recent years, this mutualism has emerged as a model system for studying coevolution, speciation, and multitrophic interactions. Ubiquitous in this ant-fungal symbiosis is the "weedy" fungus Escovopsis (Hypocreales: Ascomycota), known only as a mycoparasite of attine fungal gardens. Despite interest in its biology, ecology and molecular phylogeny--noting, especially, the high genetic diversity encountered--which has led to a steady flow of publications over the past decade, only two species of Escovopsis have formally been described. METHODS AND RESULTS We sampled from fungal gardens and garden waste (middens) of nests of the leaf-cutting ant genus Acromyrmex in a remnant of subtropical Atlantic rainforest in Minas Gerais, Brazil. In culture, distinct morphotypes of Escovopsis sensu lato were recognized. Using both morphological and molecular analyses, three new species of Escovopsis were identified. These are described and illustrated herein--E. lentecrescens, E. microspora, and E. moelleri--together with a re-description of the genus and the type species, E. weberi. The new genus Escovopsioides is erected for a fourth morphotype. We identify, for the first time, a mechanism for horizontal transmission via middens. CONCLUSIONS The present study makes a start at assigning names and formal descriptions to these specific fungal parasites of attine nests. Based on the results of this exploratory and geographically-restricted survey, we expect there to be many more species of the genus Escovopsis and its relatives associated with nests of both the lower and higher Attini throughout their neotropical range, as suggested in previous studies.
Collapse
Affiliation(s)
- Juliana O. Augustin
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Johannes Z. Groenewald
- Centraalbureau voor Schimmelcultures–Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Robson J. Nascimento
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Eduardo S. G. Mizubuti
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Robert W. Barreto
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Simon L. Elliot
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Harry C. Evans
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Centre for Agriculture and Biosciences International, Egham, Surrey, United Kingdom
| |
Collapse
|
41
|
Cyatta abscondita: taxonomy, evolution, and natural history of a new fungus-farming ant genus from Brazil. PLoS One 2013; 8:e80498. [PMID: 24260403 PMCID: PMC3829880 DOI: 10.1371/journal.pone.0080498] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/03/2013] [Indexed: 12/02/2022] Open
Abstract
Cyatta abscondita, a new genus and species of fungus-farming ant from Brazil, is described based on morphological study of more than 20 workers, two dealate gynes, one male, and two larvae. Ecological field data are summarized, including natural history, nest architecture, and foraging behavior. Phylogenetic analyses of DNA sequence data from four nuclear genes indicate that Cyatta abscondita is the distant sister taxon of the genus Kalathomyrmex, and that together they comprise the sister group of the remaining neoattine ants, an informal clade that includes the conspicuous and well-known leaf-cutter ants. Morphologically, Cyatta abscondita shares very few obvious character states with Kalathomyrmex. It does, however, possess a number of striking morphological features unique within the fungus-farming tribe Attini. It also shares morphological character states with taxa that span the ancestral node of the Attini. The morphology, behavior, and other biological characters of Cyatta abscondita are potentially informative about plesiomorphic character states within the fungus-farming ants and about the early evolution of ant agriculture.
Collapse
|
42
|
Jesovnik A, Sosa-Calvo J, Lopes CT, Vasconcelos HL, Schultz TR. Nest architecture, fungus gardens, queen, males and larvae of the fungus-growing ant Mycetagroicus inflatus Brandão & Mayhé-Nunes. INSECTES SOCIAUX 2013; 60:531-542. [PMID: 24273337 PMCID: PMC3824567 DOI: 10.1007/s00040-013-0320-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 06/02/2023]
Abstract
All known fungus-growing ants (tribe Attini) are obligately symbiotic with their cultivated fungi. The fungal cultivars of "lower" attine ants are facultative symbionts, capable of living apart from ants, whereas the fungal cultivars of "higher" attine ants, including leaf-cutting genera Atta and Acromyrmex, are highly specialized, obligate symbionts. Since higher attine ants and fungi are derived from lower attine ants and fungi, understanding the evolutionary transition from lower to higher attine agriculture requires understanding the historical sequence of change in both ants and fungi. The biology of the poorly known ant genus Mycetagroicus is of special interest in this regard because it occupies a phylogenetic position intermediate between lower and higher ant agriculture. Here, based on the excavations of four nests in Pará, Brazil, we report the first biological data for the recently described species Mycetagroicus inflatus, including the first descriptions of Mycetagroicus males and larvae. Like M. cerradensis, the only other species in the genus for which nesting biology is known, the garden chambers of M.inflatus are unusually deep and the garden is most likely relocated vertically in rainy and dry seasons. Due to the proximity of nests to the Araguaia River, it is likely that even the uppermost chambers and nest entrances of M. inflatus are submerged during the rainy season. Most remarkably, all three examined colonies of M. inflatus cultivate the same fungal species as their congener, M. cerradensis, over 1,000 km away, raising the possibility of long-term symbiont fidelity spanning speciation events within the genus.
Collapse
Affiliation(s)
- A. Jesovnik
- Department of Entomology, Maryland Center for Systematic Entomology, University of Maryland, 4112 Plant Science Bldg., College Park, MD 20742 USA
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC 188 CE517, Washington, DC 20013-7012 USA
| | - J. Sosa-Calvo
- Department of Entomology, Maryland Center for Systematic Entomology, University of Maryland, 4112 Plant Science Bldg., College Park, MD 20742 USA
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC 188 CE517, Washington, DC 20013-7012 USA
| | - C. T. Lopes
- Instituto de Biologia, Universidade Federal de Uberlândia, C.P. 593, 38400-902 Uberlândia, MG Brazil
| | - H. L. Vasconcelos
- Instituto de Biologia, Universidade Federal de Uberlândia, C.P. 593, 38400-902 Uberlândia, MG Brazil
| | - T. R. Schultz
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC 188 CE517, Washington, DC 20013-7012 USA
| |
Collapse
|
43
|
Instability of novel ant-fungal associations constrains horizontal exchange of fungal symbionts. Evol Ecol 2013. [DOI: 10.1007/s10682-013-9665-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Blatrix R, Debaud S, Salas-Lopez A, Born C, Benoit L, McKey DB, Attéké C, Djiéto-Lordon C. Repeated evolution of fungal cultivar specificity in independently evolved ant-plant-fungus symbioses. PLoS One 2013; 8:e68101. [PMID: 23935854 PMCID: PMC3723801 DOI: 10.1371/journal.pone.0068101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/24/2013] [Indexed: 11/19/2022] Open
Abstract
Some tropical plant species possess hollow structures (domatia) occupied by ants that protect the plant and in some cases also provide it with nutrients. Most plant-ants tend patches of chaetothyrialean fungi within domatia. In a few systems it has been shown that the ants manure the fungal patches and use them as a food source, indicating agricultural practices. However, the identity of these fungi has been investigated only in a few samples. To examine the specificity and constancy of ant-plant-fungus interactions we characterised the content of fungal patches in an extensive sampling of three ant-plant symbioses (Petalomyrmex phylax/Leonardoxa africana subsp. africana, Aphomomyrmex afer/Leonardoxa africana subsp. letouzeyi and Tetraponera aethiops/Barteria fistulosa) by sequencing the Internal Transcribed Spacers of ribosomal DNA. For each system the content of fungal patches was constant over individuals and populations. Each symbiosis was associated with a specific, dominant, primary fungal taxon, and to a lesser extent, with one or two specific secondary taxa, all of the order Chaetothyriales. A single fungal patch sometimes contained both a primary and a secondary taxon. In one system, two founding queens were found with the primary fungal taxon only, one that was shown in a previous study to be consumed preferentially. Because the different ant-plant symbioses studied have evolved independently, the high specificity and constancy we observed in the composition of the fungal patches have evolved repeatedly. Specificity and constancy also characterize other cases of agriculture by insects.
Collapse
Affiliation(s)
- Rumsaïs Blatrix
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS/CIRAD-Bios/Université Montpellier 2, Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Joy JB. Symbiosis catalyses niche expansion and diversification. Proc Biol Sci 2013; 280:20122820. [PMID: 23390106 PMCID: PMC3574373 DOI: 10.1098/rspb.2012.2820] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/11/2013] [Indexed: 11/12/2022] Open
Abstract
Interactions between species are important catalysts of the evolutionary processes that generate the remarkable diversity of life. Symbioses, conspicuous and inherently interesting forms of species interaction, are pervasive throughout the tree of life. However, nearly all studies of the impact of species interactions on diversification have concentrated on competition and predation leaving unclear the importance of symbiotic interaction. Here, I show that, as predicted by evolutionary theories of symbiosis and diversification, multiple origins of a key innovation, symbiosis between gall-inducing insects and fungi, catalysed both expansion in resource use (niche expansion) and diversification. Symbiotic lineages have undergone a more than sevenfold expansion in the range of host-plant taxa they use relative to lineages without such fungal symbionts, as defined by the genetic distance between host plants. Furthermore, symbiotic gall-inducing insects are more than 17 times as diverse as their non-symbiotic relatives. These results demonstrate that the evolution of symbiotic interaction leads to niche expansion, which in turn catalyses diversification.
Collapse
Affiliation(s)
- Jeffrey B Joy
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6.
| |
Collapse
|
46
|
Seal JN, Gus J, Mueller UG. Fungus-gardening ants prefer native fungal species: do ants control their crops? Behav Ecol 2012. [DOI: 10.1093/beheco/ars109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
47
|
Caldera EJ, Currie CR. The population structure of antibiotic-producing bacterial symbionts of Apterostigma dentigerum ants: impacts of coevolution and multipartite symbiosis. Am Nat 2012; 180:604-17. [PMID: 23070321 DOI: 10.1086/667886] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fungus-growing ants (Attini) are part of a complex symbiosis with Basidiomycetous fungi, which the ants cultivate for food, Ascomycetous fungal pathogens (Escovopsis), which parasitize cultivars, and Actinobacteria, which produce antibiotic compounds that suppress pathogen growth. Earlier studies that have characterized the association between attine ants and their bacterial symbionts have employed broad phylogenetic approaches, with conclusions ranging from a diffuse coevolved mutualism to no specificity being reported. However, the geographic mosaic theory of coevolution proposes that coevolved interactions likely occur at a level above local populations but within species. Moreover, the scale of population subdivision is likely to impact coevolutionary dynamics. Here, we describe the population structure of bacteria associated with the attine Apterostigma dentigerum across Central America using multilocus sequence typing (MLST) of six housekeeping genes. The majority (90%) of bacteria that were isolated grouped into a single clade within the genus Pseudonocardia. In contrast to studies that have suggested that Pseudonocardia dispersal is high and therefore unconstrained by ant associations, we found highly structured ([Formula: see text]) and dispersal-limited (i.e., significant isolation by distance; [Formula: see text], [Formula: see text]) populations over even a relatively small scale (e.g., within the Panama Canal Zone). Estimates of recombination versus mutation were uncharacteristically low compared with estimates for free-living Actinobacteria (e.g., [Formula: see text] in La Selva, Costa Rica), which suggests that recombination is constrained by association with ant hosts. Furthermore, Pseudonocardia population structure was correlated with that of Escovopsis species ([Formula: see text], [Formula: see text]), supporting the bacteria's role in disease suppression. Overall, the population dynamics of symbiotic Pseudonocardia are more consistent with a specialized mutualistic association than with recently proposed models of low specificity and frequent horizontal acquisition.
Collapse
Affiliation(s)
- Eric J Caldera
- Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
48
|
Symbiont fidelity and the origin of species in fungus-growing ants. Nat Commun 2012; 3:840. [DOI: 10.1038/ncomms1844] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 04/12/2012] [Indexed: 11/08/2022] Open
|
49
|
Adalberto PR, José dos Santos F, Golfeto CC, Costa Iemma MR, Ferreira de Souza DH, Cass QB. Immobilization of pectinase from Leucoagaricus gongylophorus on magnetic particles. Analyst 2012; 137:4855-9. [DOI: 10.1039/c2an35682a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
50
|
Rodrigues A, Mueller UG, Ishak HD, Bacci M, Pagnocca FC. Ecology of microfungal communities in gardens of fungus-growing ants (Hymenoptera: Formicidae): a year-long survey of three species of attine ants in Central Texas. FEMS Microbiol Ecol 2011; 78:244-55. [PMID: 21671963 DOI: 10.1111/j.1574-6941.2011.01152.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We profiled the microfungal communities in gardens of fungus-growing ants to evaluate possible species-specific ant-microfungal associations and to assess the potential dependencies of microfungal diversity on ant foraging behavior. In a 1-year survey, we isolated microfungi from nests of Cyphomyrmex wheeleri, Trachymyrmex septentrionalis and Atta texana in Central Texas. Microfungal prevalence was higher in gardens of C. wheeleri (57%) than in the gardens of T. septentrionalis (46%) and A. texana (35%). Culture-dependent methods coupled with a polyphasic approach of species identification revealed diverse and changing microfungal communities in all the sampling periods. Diversity analyses showed no obvious correlations between the number of observed microfungal species, ant species, or the ants' changing foraging behavior across the seasons. However, both correspondence analysis and 5.8S-rRNA gene unifrac analyses suggested structuring of microfungal communities by ant host. These host-specific differences may reflect in part the three different environments where ants were collected. Most interestingly, the specialized fungal parasite Escovopsis was not isolated from any attine garden in this study near the northernmost limit of the range of attine ants, contrasting with previous studies that indicated a significant incidence of this parasite in ant gardens from Central and South America. The observed differences of microfungal communities in attine gardens suggest that the ants are continuously in contact with a diverse microfungal species assemblage.
Collapse
Affiliation(s)
- Andre Rodrigues
- Center for the Study of Social Insects, UNESP - São Paulo State University, Rio Claro, SP, Brazil.
| | | | | | | | | |
Collapse
|