1
|
Moradi M, Montazeri EA, Rafiei Asl S, Pormohammad A, Farshadzadeh Z, Dayer D, Turner RJ. In Vitro and In Vivo Antibacterial and Antibiofilm Activity of Zinc Sulfate (ZnSO 4) and Carvacrol (CV) Alone and in Combination with Antibiotics Against Pseudomonas aeruginosa. Antibiotics (Basel) 2025; 14:367. [PMID: 40298523 PMCID: PMC12024227 DOI: 10.3390/antibiotics14040367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Biofilm-embedded bacteria, such as Pseudomonas aeruginosa (P. aeruginosa), are highly resistant to antibiotics, making their treatment challenging. Plant-based natural compounds (PBCs) and metal(loid)-based antimicrobials (MBAs) are promising alternatives. This study evaluated the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and synergistic effects of zinc sulfate (ZnSO4), carvacrol (CV), and antibiotics (ciprofloxacin [CIP], tobramycin [TOB], and azithromycin [AZM]) against P. aeruginosa PAO1. Methods: The MIC and MBC of ZnSO4, CV, and antibiotics were determined using a 96-well plate method. Cytotoxicity was assessed via MTT assay. Fractional inhibitory concentration (FIC), fractional bactericidal concentration (FBC), minimal biofilm inhibition concentration (MBIC), and minimum biofilm eradication concentration (MBEC) indices were calculated for each combination of agents. Checkerboard assays identified interactions, and the effectiveness of combinations was further evaluated in a mouse chronic lung infection model with treatments delivered intratracheally, intraperitoneally, and orally. Results: TOB had the lowest MIC and MBC values, proving most effective against P. aeruginosa PAO1. Strong synergy was observed with CV + ZnSO4 (CV + Zn) combined with CIP, CV with CIP, and CV + Zn with TOB, as indicated by low FIC indices. CV + Zn with TOB and CV with TOB had low FBC indices, while CV + Zn with AZM showed antagonism. In vivo, intratracheal TOB + CV + Zn reduced lung inflammation and tissue involvement, yielding the best histopathological outcomes. The MIC of CIP and TOB was reduced 5-fold and 4-fold, respectively, when combined with CV + Zn. Conclusions: CV + Zn demonstrated strong synergistic effects with antibiotics and effectively managed P. aeruginosa lung infections in mice. These findings highlight its potential as an innovative therapy for biofilm-associated infections.
Collapse
Affiliation(s)
- Melika Moradi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran; (M.M.); (Z.F.)
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Effat Abbasi Montazeri
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran; (M.M.); (Z.F.)
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Sirous Rafiei Asl
- Cancer, Environmental and Petroleum Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran;
- Alimentary Tract Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Ali Pormohammad
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Zahra Farshadzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran; (M.M.); (Z.F.)
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Dian Dayer
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran;
| | - Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada;
| |
Collapse
|
2
|
Chen X, Zhang R, Yuan J. Vertical confinement enhances surface exploration in bacterial twitching motility. Environ Microbiol 2024; 26:e16679. [PMID: 39039815 DOI: 10.1111/1462-2920.16679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024]
Abstract
Bacteria are often found in environments where space is limited, and they attach themselves to surfaces. One common form of movement on these surfaces is bacterial twitching motility, which is powered by the extension and retraction of type IV pili. Although twitching motility in unrestricted conditions has been extensively studied, the effects of spatial confinement on this behaviour are not well understood. In this study, we explored the diffusive properties of individual twitching Pseudomonas aeruginosa cells in spatially confined conditions. We achieved this by placing the bacteria between layers of agarose and glass, and then tracking the long-term twitching motility of individual cells. Interestingly, we found that while confinement reduced the immediate speed of twitching, it paradoxically increased diffusion. Through a combination of mechanical and geometrical analysis, as well as numerical simulations, we showed that this increase in diffusion could be attributed to mechanical factors. The constraint imposed by the agarose altered the diffusion pattern of the bacteria from normal to superdiffusion. These findings provide valuable insights into the motile behaviour of bacteria in confined environments.
Collapse
Affiliation(s)
- Xiao Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Rongjing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Junhua Yuan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
3
|
Jiang B, Qiu H, Lu C, Lu M, Li Y, Dai W. Uncovering the GacS-mediated role in evolutionary progression through trajectory reconstruction in Pseudomonas aeruginosa. Nucleic Acids Res 2024; 52:3856-3869. [PMID: 38477346 DOI: 10.1093/nar/gkae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
The genetic diversities of subpopulations drive the evolution of pathogens and affect their ability to infect hosts and cause diseases. However, most studies to date have focused on the identification and characterization of adaptive mutations in single colonies, which do not accurately reflect the phenotypes of an entire population. Here, to identify the composition of variant subpopulations within a pathogen population, we developed a streamlined approach that combines high-throughput sequencing of the entire population cells with genotyping of single colonies. Using this method, we reconstructed a detailed quorum-sensing (QS) evolutionary trajectory in Pseudomonas aeruginosa. Our results revealed a new adaptive mutation in the gacS gene, which codes for a histidine kinase sensor of a two-component system (TCS), during QS evolution. This mutation reduced QS activity, allowing the variant to sweep throughout the whole population, while still being vulnerable to invasion by the emerging QS master regulator LasR-null mutants. By tracking the evolutionary trajectory, we found that mutations in gacS facilitated QS-rewiring in the LasR-null mutant. This rapid QS revertant caused by inactive GacS was found to be associated with the promotion of ribosome biogenesis and accompanied by a trade-off of reduced bacterial virulence on host cells. In conclusion, our findings highlight the crucial role of the global regulator GacS in modulating the progression of QS evolution and the virulence of the pathogen population.
Collapse
Affiliation(s)
- Bo Jiang
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Huifang Qiu
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Chenghui Lu
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingqi Lu
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yuanhao Li
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Weijun Dai
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Chance DL, Wang W, Waters JK, Mawhinney TP. Insights on Pseudomonas aeruginosa Carbohydrate Binding from Profiles of Cystic Fibrosis Isolates Using Multivalent Fluorescent Glycopolymers Bearing Pendant Monosaccharides. Microorganisms 2024; 12:801. [PMID: 38674745 PMCID: PMC11051836 DOI: 10.3390/microorganisms12040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Pseudomonas aeruginosa contributes to frequent, persistent, and, often, polymicrobial respiratory tract infections for individuals with cystic fibrosis (CF). Chronic CF infections lead to bronchiectasis and a shortened lifespan. P. aeruginosa expresses numerous adhesins, including lectins known to bind the epithelial cell and mucin glycoconjugates. Blocking carbohydrate-mediated host-pathogen and intra-biofilm interactions critical to the initiation and perpetuation of colonization offer promise as anti-infective treatment strategies. To inform anti-adhesion therapies, we profiled the monosaccharide binding of P. aeruginosa from CF and non-CF sources, and assessed whether specific bacterial phenotypic characteristics affected carbohydrate-binding patterns. Focusing at the cellular level, microscopic and spectrofluorometric tools permitted the solution-phase analysis of P. aeruginosa binding to a panel of fluorescent glycopolymers possessing distinct pendant monosaccharides. All P. aeruginosa demonstrated significant binding to glycopolymers specific for α-D-galactose, β-D-N-acetylgalactosamine, and β-D-galactose-3-sulfate. In each culture, a small subpopulation accounted for the binding. The carbohydrate anomeric configuration and sulfate ester presence markedly influenced binding. While this opportunistic pathogen from CF hosts presented with various colony morphologies and physiological activities, no phenotypic, physiological, or structural feature predicted enhanced or diminished monosaccharide binding. Important to anti-adhesive therapeutic strategies, these findings suggest that, regardless of phenotype or clinical source, P. aeruginosa maintain a small subpopulation that may readily associate with specific configurations of specific monosaccharides. This report provides insights into whole-cell P. aeruginosa carbohydrate-binding profiles and into the context within which successful anti-adhesive and/or anti-virulence anti-infective agents for CF must contend.
Collapse
Affiliation(s)
- Deborah L. Chance
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Department of Pediatrics, University of Missouri School of Medicine, Columbia, MO 65212, USA;
| | - Wei Wang
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
| | - James K. Waters
- Experiment Station Chemical Laboratories, University of Missouri, Columbia, MO 65211, USA;
| | - Thomas P. Mawhinney
- Department of Pediatrics, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
- Experiment Station Chemical Laboratories, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
5
|
Bottery MJ, Johansen HK, Pitchford JW, Friman VP. Co-occurring microflora and mucin drive Pseudomonas aeruginosa diversification and pathoadaptation. ISME COMMUNICATIONS 2024; 4:ycae043. [PMID: 38707844 PMCID: PMC11067959 DOI: 10.1093/ismeco/ycae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 05/07/2024]
Abstract
While several environmental factors contribute to the evolutionary diversification of the pathogenic bacterium Pseudomonas aeruginosa during cystic fibrosis lung infections, relatively little is known about the impact of the surrounding microbiota. By using in vitro experimental evolution, we show that the presence of Stenotrophomonas maltophilia, Staphylococcus aureus, or them both, prevent the evolution of loss of virulence, which repeatedly occurs in the absence of these species due to mutations in regulators of the Pseudomonas Quinolone Signal quorum sensing system, vqsM and pqsR. Moreover, the strength of the effect of co-occurring species is attenuated through changes in the physical environment by the addition of mucin, resulting in selection for phenotypes resembling those evolved in the absence of the co-occurring species. Together, our findings show that variation in mucosal environment and the surrounding polymicrobial environment can determine the evolutionary trajectory of P. aeruginosa, partly explaining its diversification and pathoadaptation from acute to chronic phenotype during cystic fibrosis lung infections.
Collapse
Affiliation(s)
- Michael J Bottery
- Division of Evolution Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Helle Krogh Johansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen 9301, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jon W Pitchford
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
- Department of Mathematics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Ville-Petri Friman
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
- Department of Microbiology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
6
|
Disney-McKeethen S, Seo S, Mehta H, Ghosh K, Shamoo Y. Experimental evolution of Pseudomonas aeruginosa to colistin in spatially confined microdroplets identifies evolutionary trajectories consistent with adaptation in microaerobic lung environments. mBio 2023; 14:e0150623. [PMID: 37847036 PMCID: PMC10746239 DOI: 10.1128/mbio.01506-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023] Open
Abstract
IMPORTANCE Antibiotic resistance remains one of the great challenges confronting public health in the world today. Individuals with compromised immune systems or underlying health conditions are often at an increased for bacterial infections. Patients with cystic fibrosis (CF) produce thick mucus that clogs airways and provides a very favorable environment for infection by bacteria that further decrease lung function and, ultimately, mortality. CF patients are often infected by bacteria such as Pseudomonas aeruginosa early in life and experience a series of chronic infections that, over time, become increasingly difficult to treat due to increased antibiotic resistance. Colistin is a major antibiotic used to treat CF patients. Clinical and laboratory studies have identified PmrA/PmrB and PhoP/PhoQ as responsible for increased resistance to colistin. Both have been identified in CF patient lungs, but why, in some cases, is it one and not the other? In this study, we show that distinct evolutionary trajectories to colistin resistance may be favored by the microaerobic partitioning found within the damaged CF lung.
Collapse
Affiliation(s)
| | - Seokju Seo
- Department of Biosciences, Rice University, Houston , Texas , USA
| | - Heer Mehta
- Department of Biosciences, Rice University, Houston , Texas , USA
| | - Karukriti Ghosh
- Department of Biosciences, Rice University, Houston , Texas , USA
| | - Yousif Shamoo
- Department of Biosciences, Rice University, Houston , Texas , USA
| |
Collapse
|
7
|
Lai K, Fireizen Y, Morphew T, Randhawa I. Pediatric Patients with Tracheostomies and Its Multifacet Association with Lower Airway Infections: An 8-Year Retrospective Study in a Large Tertiary Center. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2023; 36:133-142. [PMID: 38134318 DOI: 10.1089/ped.2022.0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Background: Lower respiratory tract infections frequently complicate the care of children with chronic tracheostomies. Pediatric patients have significantly more risk to have tracheostomy infections than adults. Better understanding of modifiable risk factors for pulmonary exacerbations may improve the care of technology-dependent children. Methods: A retrospective single-center cohort study conducted on children with tracheostomy and chronic home ventilator to determine the incidence of pulmonary exacerbations leading to hospitalizations, emergency room (ER) visits, and antibiotic prescriptions. Oral and nebulized antibiotic prescriptions were collected and correlated to the type of exacerbation. Results: Gram-negative enteric organisms were the most common microbes seen in the lower airways, with Pseudomonas aeruginosa cultured in 86% of the subjects. P. aeruginosa presence predicted a 4-fold increased rate of pulmonary-related hospitalization. In pediatric patients with chronic respiratory failure, 64% of readmissions were pulmonary or tracheostomy related. When compared to standard care subjects on dual agent, alternating monthly nebulized antibiotic therapy (for chronic pseudomonas colonization) experienced 41% fewer hospitalizations [incidence rate ratios (IRR) 0.59 (0.18), P = 0.08], 46% fewer ER visits [IRR 0.56 (0.16), P = 0.04], and 41% fewer pulmonary-related ER visits [IRR 0.59 (0.19), P = 0.94]. Discussion: Children who require artificial airways are at an increased risk for bacterial bronchopulmonary infections. Most notable risk factors for hospitalization in tracheostomized children included neurologic impairment, dysphagia, aspiration, gastrotomy tube dependence, and gastroesophageal reflux disease. Pathogenic microbes such as P. aeruginosa species, certain gram-negative bacteria, candida, and yeast also predicted increased hospitalizations. Use of nebulized antibiotics prophylaxis in a subset of patients predicted lower rates of hospitalization or ER visits. More studies are needed to assess whether there is increased antimicrobial resistance with this strategy, and whether the benefits persist in the long-term nebulized antibiotics utilization.
Collapse
Affiliation(s)
- Khanh Lai
- Department of Pediatric Pulmonology, Intermountain Primary Children's Hospital-University of Utah, Salt Lake City, Utha, USA
| | - Yaron Fireizen
- Pulmonary Division, MemorialCare Miller Children's and Women's Hospital, Long Beach, California, USA
- Department of Pediatric Pulmonary, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Tricia Morphew
- Pulmonary Division, MemorialCare Miller Children's and Women's Hospital, Long Beach, California, USA
- Department of Pediatric Pulmonary, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Inderpal Randhawa
- Pulmonary Division, MemorialCare Miller Children's and Women's Hospital, Long Beach, California, USA
- Department of Pediatric Pulmonary, School of Medicine, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
8
|
Khan P, Waheed A, Azeem M, Parveen A, Yameen MA, Iqbal J, Ali M, Wang S, Qayyum S, Noor A, Naqvi TA. Essential Oil from Tagetes minuta Has Antiquorum Sensing and Antibiofilm Potential against Pseudomonas aeruginosa Strain PAO1. ACS OMEGA 2023; 8:35866-35873. [PMID: 37810677 PMCID: PMC10551919 DOI: 10.1021/acsomega.3c03507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Biofilms are complex communities of microorganisms that are enclosed in a matrix that shows increased resistance to antimicrobial and immunological encounters. Mostly, the traditional methods to control biofilm are exhausted; therefore, the aim is to evaluate the potential of essential oil (EO) from Tagetes minuta to encounter biofilm and other related virulence factors. The EO of T. minuta was extracted through steam-distillation, analyzed on gas chromatography-mass spectrometry, and the biofilm inhibition assays were performed with various concentrations of EO. Mainly the EO from T. minuta contains cis-β-ocimene (29.1%), trans-tagetenone (23.1%), and cis-tagetenone (17.7%). The virulence factors were monitored while applying different concentrations of EO and it was recorded that the EO from T. minuta significantly inhibited the virulence factors linked with quorum sensing (QS), such as pyocyanin production, protease production, and swarming motility. Biofilm formation is one of the most important virulence factors associated with the QS pathway and was inhibited up to 79% in the presence of EO. Antibacterial activity against the PAO1 of EO was not so promising particularly and it has high MIC (325 μg/mL) and MBC (5000 μg/mL). EO is quite efficient to inhibit biofilm in a very small concentration of 20 μg/mL, which confirms that the biofilm inhibition by EO is not by killing bacterial cells but by inhibiting the QS pathway. The study on PAO1 constructs carrying various QS reported genes confirmed that the EO interferes with the QS pathway that ultimately controls various virulence factors caused by PAO1.
Collapse
Affiliation(s)
- Palwasha Khan
- Department
of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan
| | - Amara Waheed
- Department
of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan
| | - Muhammad Azeem
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan
| | - Amna Parveen
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan
| | - Muhammad Arfat Yameen
- Department
of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan
| | - Jamshed Iqbal
- Centre
for Advanced Drug Research, COMSATS University
Islamabad, Abbottabad
Campus, Abbottabad 22044, Pakistan
| | - Muhammad Ali
- Department
of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan
| | - Shiwei Wang
- Key
Laboratory of Resources Biology and Biotechnology in Western China,
School of Life Sciences, Northwest University, Ministry of Education, Xi’an 710069, China
| | - Sadaf Qayyum
- Department
of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Hofuf 31982, Al-Hassa, Saudi Arabia
| | - Awal Noor
- Department
of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Hofuf 31982, Al-Hassa, Saudi Arabia
| | - Tatheer Alam Naqvi
- Department
of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan
| |
Collapse
|
9
|
Llanos A, Achard P, Bousquet J, Lozano C, Zalacain M, Sable C, Revillet H, Murris M, Mittaine M, Lemonnier M, Everett M. Higher levels of Pseudomonas aeruginosa LasB elastase expression are associated with early-stage infection in cystic fibrosis patients. Sci Rep 2023; 13:14208. [PMID: 37648735 PMCID: PMC10468528 DOI: 10.1038/s41598-023-41333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Pseudomonas aeruginosa is a common pathogen in cystic fibrosis (CF) patients and a major contributor to progressive lung damage. P. aeruginosa elastase (LasB), a key virulence factor, has been identified as a potential target for anti-virulence therapy. Here, we sought to differentiate the P. aeruginosa isolates from early versus established stages of infection in CF patients and to determine if LasB was associated with either stage. The lasB gene was amplified from 255 P. aeruginosa clinical isolates from 70 CF patients from the Toulouse region (France). Nine LasB variants were identified and 69% of the isolates produced detectable levels of LasB activity. Hierarchical clustering using experimental and clinical data distinguished two classes of isolates, designated as 'Early' and 'Established' infection. Multivariate analysis revealed that the isolates from the Early infection class show higher LasB activity, fast growth, tobramycin susceptibility, non-mucoid, pigmented colonies and wild-type lasR genotype. These traits were associated with younger patients with polymicrobial infections and high pFEV1. Our findings show a correlation between elevated LasB activity in P. aeruginosa isolates and early-stage infection in CF patients. Hence, it is this patient group, prior to the onset of chronic disease, that may benefit most from novel therapies targeting LasB.
Collapse
Affiliation(s)
- Agustina Llanos
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France.
| | - Pauline Achard
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Justine Bousquet
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Clarisse Lozano
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Magdalena Zalacain
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Carole Sable
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Hélène Revillet
- Service de Bactériologie-Hygiène, CHU de Toulouse, Toulouse, France
- IRSD, INSERM, Université de Toulouse, INRAE, ENVT, UPS, Toulouse, France
| | - Marlène Murris
- Adult Cystic Fibrosis Centre, Pulmonology Unit, Hôpital Larrey, CHU de Toulouse, Toulouse, France
| | | | - Marc Lemonnier
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Martin Everett
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| |
Collapse
|
10
|
Key FM, Khadka VD, Romo-González C, Blake KJ, Deng L, Lynn TC, Lee JC, Chiu IM, García-Romero MT, Lieberman TD. On-person adaptive evolution of Staphylococcus aureus during treatment for atopic dermatitis. Cell Host Microbe 2023; 31:593-603.e7. [PMID: 37054679 PMCID: PMC10263175 DOI: 10.1016/j.chom.2023.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/14/2023] [Accepted: 03/10/2023] [Indexed: 04/15/2023]
Abstract
The opportunistic pathogen Staphylococcus aureus frequently colonizes the inflamed skin of people with atopic dermatitis (AD) and worsens disease severity by promoting skin damage. Here, we show, by longitudinally tracking 23 children treated for AD, that S. aureus adapts via de novo mutations during colonization. Each patient's S. aureus population is dominated by a single lineage, with infrequent invasion by distant lineages. Mutations emerge within each lineage at rates similar to those of S. aureus in other contexts. Some variants spread across the body within months, with signatures of adaptive evolution. Most strikingly, mutations in capsule synthesis gene capD underwent parallel evolution in one patient and across-body sweeps in two patients. We confirm that capD negativity is more common in AD than in other contexts, via reanalysis of S. aureus genomes from 276 people. Together, these findings highlight the importance of the mutation level when dissecting the role of microbes in complex disease.
Collapse
Affiliation(s)
- Felix M Key
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Veda D Khadka
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carolina Romo-González
- Experimental Bacteriology Laboratory, National Institute for Pediatrics, Mexico City, Mexico
| | - Kimbria J Blake
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Liwen Deng
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tucker C Lynn
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jean C Lee
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | - Tami D Lieberman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
11
|
Wang X, Blumenfeld R, Feng XQ, Weitz DA. 'Phase transitions' in bacteria - From structural transitions in free living bacteria to phenotypic transitions in bacteria within biofilms. Phys Life Rev 2022; 43:98-138. [PMID: 36252408 DOI: 10.1016/j.plrev.2022.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 12/05/2022]
Abstract
Phase transitions are common in inanimate systems and have been studied extensively in natural sciences. Less explored are the rich transitions that take place at the micro- and nano-scales in biological systems. In conventional phase transitions, large-scale properties of the media change discontinuously in response to continuous changes in external conditions. Such changes play a significant role in the dynamic behaviours of organisms. In this review, we focus on some transitions in both free-living and biofilms of bacteria. Particular attention is paid to the transitions in the flagellar motors and filaments of free-living bacteria, in cellular gene expression during the biofilm growth, in the biofilm morphology transitions during biofilm expansion, and in the cell motion pattern transitions during the biofilm formation. We analyse the dynamic characteristics and biophysical mechanisms of these phase transition phenomena and point out the parallels between these transitions and conventional phase transitions. We also discuss the applications of some theoretical and numerical methods, established for conventional phase transitions in inanimate systems, in bacterial biofilms.
Collapse
Affiliation(s)
- Xiaoling Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China; John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford St, Cambridge, MA, 02138, USA.
| | - Raphael Blumenfeld
- Gonville & Caius College, University of Cambridge, Trinity St., Cambridge CB2 1TA, UK
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford St, Cambridge, MA, 02138, USA; Department of Physics, Harvard University, 9 Oxford St, Cambridge, MA, 02138, USA
| |
Collapse
|
12
|
Hall-Stoodley L, McCoy KS. Biofilm aggregates and the host airway-microbial interface. Front Cell Infect Microbiol 2022; 12:969326. [PMID: 36081767 PMCID: PMC9445362 DOI: 10.3389/fcimb.2022.969326] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Biofilms are multicellular microbial aggregates that can be associated with host mucosal epithelia in the airway, gut, and genitourinary tract. The host environment plays a critical role in the establishment of these microbial communities in both health and disease. These host mucosal microenvironments however are distinct histologically, functionally, and regarding nutrient availability. This review discusses the specific mucosal epithelial microenvironments lining the airway, focusing on: i) biofilms in the human respiratory tract and the unique airway microenvironments that make it exquisitely suited to defend against infection, and ii) how airway pathophysiology and dysfunctional barrier/clearance mechanisms due to genetic mutations, damage, and inflammation contribute to biofilm infections. The host cellular responses to infection that contribute to resolution or exacerbation, and insights about evaluating and therapeutically targeting airway-associated biofilm infections are briefly discussed. Since so many studies have focused on Pseudomonas aeruginosa in the context of cystic fibrosis (CF) or on Haemophilus influenzae in the context of upper and lower respiratory diseases, these bacteria are used as examples. However, there are notable differences in diseased airway microenvironments and the unique pathophysiology specific to the bacterial pathogens themselves.
Collapse
Affiliation(s)
- Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, United States
- *Correspondence: Luanne Hall-Stoodley,
| | - Karen S. McCoy
- Division of Pulmonary Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
13
|
Mateu-Borrás M, González-Alsina A, Doménech-Sánchez A, Querol-García J, Fernández FJ, Vega MC, Albertí S. Pseudomonas aeruginosa adaptation in cystic fibrosis patients increases C5a levels and promotes neutrophil recruitment. Virulence 2022; 13:215-224. [PMID: 35094639 PMCID: PMC8802900 DOI: 10.1080/21505594.2022.2028484] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) disease is characterized by an intense airway inflammatory response mediated by neutrophils and chronic respiratory infections caused by P. aeruginosa. High levels of the complement component C5a, the strongest neutrophil chemoattractant molecule, are commonly found in the CF lung and have been associated with a worsening of the disease. In this study, we investigated how the isolates from CF patients modulate the levels of C5a and identified the bacterial factors involved. We demonstrated that most isolates from airway chronic infections induce the production and accumulation of C5a, an effect attributable to the loss of C5a cleavage by the exoproteases alkaline protease (AprA) and elastase B (LasB). Furthermore, we found that lack of the bacterial protease-dependent C5a degradation is due to mutations in the master regulator LasR. Thus, complementation of a non-C5a-cleaving CF isolate with a functional wild-type LasR restored its ability to express both proteases, cleave C5a and reduce neutrophil recruitment in vitro. These findings suggest that the non-cleaving C5a phenotype acquired by the LasR variants frequently isolated in CF patients may account for the strong neutrophilia and general neutrophil dysfunction predisposing toward increased inflammation and reduced bacterial clearance described in CF patients.
Collapse
Affiliation(s)
- Margalida Mateu-Borrás
- Instituto Universitario de Investigación En Ciencias de La Salud, Universidad de Las Islas Baleares and Instituto de Investigación Sanitaria de Les Illes Balears, Palma de Mallorca, Spain
| | - Alex González-Alsina
- Instituto Universitario de Investigación En Ciencias de La Salud, Universidad de Las Islas Baleares and Instituto de Investigación Sanitaria de Les Illes Balears, Palma de Mallorca, Spain
| | - Antonio Doménech-Sánchez
- Instituto Universitario de Investigación En Ciencias de La Salud, Universidad de Las Islas Baleares and Instituto de Investigación Sanitaria de Les Illes Balears, Palma de Mallorca, Spain
| | - Javier Querol-García
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Francisco J. Fernández
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mª Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sebastián Albertí
- Instituto Universitario de Investigación En Ciencias de La Salud, Universidad de Las Islas Baleares and Instituto de Investigación Sanitaria de Les Illes Balears, Palma de Mallorca, Spain
| |
Collapse
|
14
|
Castro RAD, Borrell S, Gagneux S. The within-host evolution of antimicrobial resistance in Mycobacterium tuberculosis. FEMS Microbiol Rev 2021; 45:fuaa071. [PMID: 33320947 PMCID: PMC8371278 DOI: 10.1093/femsre/fuaa071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) has been responsible for the greatest number of human deaths due to an infectious disease in general, and due to antimicrobial resistance (AMR) in particular. The etiological agents of human TB are a closely-related group of human-adapted bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Understanding how MTBC populations evolve within-host may allow for improved TB treatment and control strategies. In this review, we highlight recent works that have shed light on how AMR evolves in MTBC populations within individual patients. We discuss the role of heteroresistance in AMR evolution, and review the bacterial, patient and environmental factors that likely modulate the magnitude of heteroresistance within-host. We further highlight recent works on the dynamics of MTBC genetic diversity within-host, and discuss how spatial substructures in patients' lungs, spatiotemporal heterogeneity in antimicrobial concentrations and phenotypic drug tolerance likely modulates the dynamics of MTBC genetic diversity in patients during treatment. We note the general characteristics that are shared between how the MTBC and other bacterial pathogens evolve in humans, and highlight the characteristics unique to the MTBC.
Collapse
Affiliation(s)
- Rhastin A D Castro
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| |
Collapse
|
15
|
LasR-deficient Pseudomonas aeruginosa variants increase airway epithelial mICAM-1 expression and enhance neutrophilic lung inflammation. PLoS Pathog 2021; 17:e1009375. [PMID: 33690714 PMCID: PMC7984618 DOI: 10.1371/journal.ppat.1009375] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/22/2021] [Accepted: 02/13/2021] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas aeruginosa causes chronic airway infections, a major determinant of lung inflammation and damage in cystic fibrosis (CF). Loss-of-function lasR mutants commonly arise during chronic CF infections, are associated with accelerated lung function decline in CF patients and induce exaggerated neutrophilic inflammation in model systems. In this study, we investigated how lasR mutants modulate airway epithelial membrane bound ICAM-1 (mICAM-1), a surface adhesion molecule, and determined its impact on neutrophilic inflammation in vitro and in vivo. We demonstrated that LasR-deficient strains induce increased mICAM-1 levels in airway epithelial cells compared to wild-type strains, an effect attributable to the loss of mICAM-1 degradation by LasR-regulated proteases and associated with enhanced neutrophil adhesion. In a subacute airway infection model, we also observed that lasR mutant-infected mice displayed greater airway epithelial ICAM-1 expression and increased neutrophilic pulmonary inflammation. Our findings provide new insights into the intricate interplay between lasR mutants, LasR-regulated proteases and airway epithelial ICAM-1 expression, and reveal a new mechanism involved in the exaggerated inflammatory response induced by lasR mutants.
Collapse
|
16
|
Peignier A, Parker D. Pseudomonas aeruginosa Can Degrade Interferon λ, Thereby Repressing the Antiviral Response of Bronchial Epithelial Cells. J Interferon Cytokine Res 2020; 40:429-431. [PMID: 32672514 DOI: 10.1089/jir.2020.0057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Adeline Peignier
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
17
|
Azimi S, Roberts AEL, Peng S, Weitz JS, McNally A, Brown SP, Diggle SP. Allelic polymorphism shapes community function in evolving Pseudomonas aeruginosa populations. ISME JOURNAL 2020; 14:1929-1942. [PMID: 32341475 DOI: 10.1038/s41396-020-0652-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/31/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that chronically infects the lungs of individuals with cystic fibrosis (CF) by forming antibiotic-resistant biofilms. Emergence of phenotypically diverse isolates within CF P. aeruginosa populations has previously been reported; however, the impact of heterogeneity on social behaviors and community function is poorly understood. Here we describe how this heterogeneity impacts on behavioral traits by evolving the strain PAO1 in biofilms grown in a synthetic sputum medium for 50 days. We measured social trait production and antibiotic tolerance, and used a metagenomic approach to analyze and assess genomic changes over the duration of the evolution experiment. We found that (i) evolutionary trajectories were reproducible in independently evolving populations; (ii) over 60% of genomic diversity occurred within the first 10 days of selection. We then focused on quorum sensing (QS), a well-studied P. aeruginosa trait that is commonly mutated in strains isolated from CF lungs. We found that at the population level, (i) evolution in sputum medium selected for decreased the production of QS and QS-dependent traits; (ii) there was a significant correlation between lasR mutant frequency, the loss of protease, and the 3O-C12-HSL signal, and an increase in resistance to clinically relevant β-lactam antibiotics, despite no previous antibiotic exposure. Overall, our findings provide insights into the effect of allelic polymorphism on community functions in diverse P. aeruginosa populations. Further, we demonstrate that P. aeruginosa population and evolutionary dynamics can impact on traits important for virulence and can lead to increased tolerance to β-lactam antibiotics.
Collapse
Affiliation(s)
- Sheyda Azimi
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aled E L Roberts
- Microbiology & Infectious Diseases Group, Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Shengyun Peng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joshua S Weitz
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Samuel P Brown
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Stephen P Diggle
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
18
|
Lange J, Heidenreich K, Higelin K, Dyck K, Marx V, Reichel C, van Wamel W, den Reijer M, Görlich D, Kahl BC. Staphylococcus aureus Pathogenicity in Cystic Fibrosis Patients-Results from an Observational Prospective Multicenter Study Concerning Virulence Genes, Phylogeny, and Gene Plasticity. Toxins (Basel) 2020; 12:toxins12050279. [PMID: 32357453 PMCID: PMC7290773 DOI: 10.3390/toxins12050279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus and cystic fibrosis (CF) are closely interlinked. To date, however, the impact of S. aureus culture in CF airways on lung function and disease progression has only been elucidated to a limited degree. This analysis aims to identify bacterial factors associated to clinical deterioration. Data were collected during an observational prospective multi-center study following 195 patients from 17 centers. The average follow-up time was 80 weeks. S. aureus isolates (n = 3180) were scanned for the presence of 25 virulence genes and agr-types using single and multiplex PCR. The presence of specific virulence genes was not associated to clinical deterioration. For the agr-types 1 and 4, however, a link to the subjects’ clinical status became evident. Furthermore, a significant longitudinal decrease in the virulence gene quantity was observed. Analyses of the plasticity of the virulence genes revealed significantly increased plasticity rates in the presence of environmental stress. The results suggest that the phylogenetic background defines S. aureus pathogenicity rather than specific virulence genes. The longitudinal loss of virulence genes most likely reflects the adaptation process directed towards a persistent and colonizing rather than infecting lifestyle.
Collapse
Affiliation(s)
- Jonas Lange
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Kathrin Heidenreich
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Katharina Higelin
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Kristina Dyck
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Vanessa Marx
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Christian Reichel
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Willem van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands; (W.v.W.); (M.d.R.)
| | - Martijn den Reijer
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands; (W.v.W.); (M.d.R.)
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University Hospital Münster, 48149 Münster, Germany;
| | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
- Correspondence: ; Tel.: +49-251-8355358
| |
Collapse
|
19
|
Abu‐Toamih Atamni HJ, Iraqi FA. Efficient protocols and methods for high-throughput utilization of the Collaborative Cross mouse model for dissecting the genetic basis of complex traits. Animal Model Exp Med 2019; 2:137-149. [PMID: 31773089 PMCID: PMC6762040 DOI: 10.1002/ame2.12074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022] Open
Abstract
The Collaborative Cross (CC) mouse model is a next-generation mouse genetic reference population (GRP) designated for a high-resolution quantitative trait loci (QTL) mapping of complex traits during health and disease. The CC lines were generated from reciprocal crosses of eight divergent mouse founder strains composed of five classical and three wild-derived strains. Complex traits are defined to be controlled by variations within multiple genes and the gene/environment interactions. In this article, we introduce and present variety of protocols and results of studying the host response to infectious and chronic diseases, including type 2 diabetes and metabolic diseases, body composition, immune response, colorectal cancer, susceptibility to Aspergillus fumigatus, Klebsiella pneumoniae, Pseudomonas aeruginosa, sepsis, and mixed infections of Porphyromonas gingivalis and Fusobacterium nucleatum, which were conducted at our laboratory using the CC mouse population. These traits are observed at multiple levels of the body systems, including metabolism, body weight, immune profile, susceptibility or resistance to the development and progress of infectious or chronic diseases. Herein, we present full protocols and step-by-step methods, implemented in our laboratory for the phenotypic and genotypic characterization of the different CC lines, mapping the gene underlying the host response to these infections and chronic diseases. The CC mouse model is a unique and powerful GRP for dissecting the host genetic architectures underlying complex traits, including chronic and infectious diseases.
Collapse
Affiliation(s)
- Hanifa J. Abu‐Toamih Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivRamat AvivIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivRamat AvivIsrael
| |
Collapse
|
20
|
Singh SB, McLearn-Montz AJ, Milavetz F, Gates LK, Fox C, Murry LT, Sabus A, Porterfield HS, Fischer AJ. Pathogen acquisition in patients with cystic fibrosis receiving ivacaftor or lumacaftor/ivacaftor. Pediatr Pulmonol 2019; 54:1200-1208. [PMID: 31012285 PMCID: PMC6641998 DOI: 10.1002/ppul.24341] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/14/2019] [Accepted: 04/05/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND The cystic fibrosis transmembrane conductance regulator (CFTR) modulators ivacaftor and lumacaftor/ivacaftor improve the status of existing infections in patients with cystic fibrosis (CF). It is unknown how well these drugs protect patients against incident infections. We hypothesized that CFTR modulator treatment would decrease new infections with Pseudomonas aeruginosa or Staphylococcus aureus. METHODS We retrospectively studied a single-center cohort of patients with CF during two time periods (2008-2011, Era 1) and (2012-2015, Era 2) based on the January 2012 approval of ivacaftor. Using Kaplan-Meier analysis, we compared the time to any new infection with P. aeruginosa, methicillin-resistant S. aureus (MRSA), or methicillin-sensitive S. aureus (MSSA) that was absent during a 2-year baseline. We stratified the analysis based on whether patients received ivacaftor or lumacaftor/ivacaftor during Era 2. We used the log-rank test and considered P < 0.05 statistically significant. RESULTS For patients receiving ivacaftor or lumacaftor/ivacaftor in Era 2, there was a statistically significant delay in the time to new bacterial acquisition in Era 2 vs. Era 1 ( P = 0.008). For patients who did not receive CFTR modulators, there was a trend toward slower acquisition of new bacterial infections in Era 2 compared to Era 1, but this was not statistically significant ( P = 0.10). CONCLUSIONS Patients receiving ivacaftor or lumacaftor/ivacaftor for CF had significantly delayed acquisition of P. aeruginosa and S. aureus after these drugs were released. This method for analyzing incident infections may be useful for future studies of CFTR modulators and bacterial acquisition in CF registry cohorts.
Collapse
Affiliation(s)
- Sachinkumar B Singh
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Amanda J McLearn-Montz
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Francesca Milavetz
- Department of Pharmacy Practice and Science, University of Iowa College of Pharmacy, Iowa City, Iowa
| | - Levi K Gates
- Department of Pharmacy Practice and Science, University of Iowa College of Pharmacy, Iowa City, Iowa
| | - Christopher Fox
- Department of Pharmacy Practice and Science, University of Iowa College of Pharmacy, Iowa City, Iowa
| | - Logan T Murry
- Department of Pharmacy Practice and Science, University of Iowa College of Pharmacy, Iowa City, Iowa
| | - Ashley Sabus
- Department of Pharmacy Practice and Science, University of Iowa College of Pharmacy, Iowa City, Iowa
| | - Harry S Porterfield
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Anthony J Fischer
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
21
|
Kordes A, Preusse M, Willger SD, Braubach P, Jonigk D, Haverich A, Warnecke G, Häussler S. Genetically diverse Pseudomonas aeruginosa populations display similar transcriptomic profiles in a cystic fibrosis explanted lung. Nat Commun 2019; 10:3397. [PMID: 31363089 PMCID: PMC6667473 DOI: 10.1038/s41467-019-11414-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 07/03/2019] [Indexed: 12/20/2022] Open
Abstract
Previous studies have demonstrated substantial genetic diversification of Pseudomonas aeruginosa across sub-compartments in cystic fibrosis (CF) lungs. Here, we isolate P. aeruginosa from five different sampling areas in the upper and lower airways of an explanted CF lung, analyze ex vivo transcriptional profiles by RNA-seq, and use colony re-sequencing and deep population sequencing to determine the genetic diversity within and across the various sub-compartments. We find that, despite genetic variation, the ex vivo transcriptional profiles of P. aeruginosa populations inhabiting different regions of the CF lung are similar. Although we cannot estimate the extent to which the transcriptional response recorded here actually reflects the in vivo transcriptomes, our results indicate that there may be a common in vivo transcriptional profile in the CF lung environment.
Collapse
Affiliation(s)
- Adrian Kordes
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, 30625, Germany
| | - Matthias Preusse
- Institute for Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany
| | - Sven D Willger
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, 30625, Germany
- Institute for Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany
| | - Peter Braubach
- Institute of Pathology, Hannover Medical School, Hannover, 30625, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (Deutsches Zentrum für Lungenforschung [DZL]), Hannover, 30625, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, 30625, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (Deutsches Zentrum für Lungenforschung [DZL]), Hannover, 30625, Germany
| | - Axel Haverich
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (Deutsches Zentrum für Lungenforschung [DZL]), Hannover, 30625, Germany
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, 30625, Germany
| | - Gregor Warnecke
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (Deutsches Zentrum für Lungenforschung [DZL]), Hannover, 30625, Germany
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, 30625, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, 30625, Germany.
- Institute for Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany.
| |
Collapse
|
22
|
Morgan SJ, Lippman SI, Bautista GE, Harrison JJ, Harding CL, Gallagher LA, Cheng AC, Siehnel R, Ravishankar S, Usui ML, Olerud JE, Fleckman P, Wolcott RD, Manoil C, Singh PK. Bacterial fitness in chronic wounds appears to be mediated by the capacity for high-density growth, not virulence or biofilm functions. PLoS Pathog 2019; 15:e1007511. [PMID: 30893371 PMCID: PMC6448920 DOI: 10.1371/journal.ppat.1007511] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/04/2019] [Accepted: 12/07/2018] [Indexed: 12/19/2022] Open
Abstract
While much is known about acute infection pathogenesis, the understanding of chronic infections has lagged. Here we sought to identify the genes and functions that mediate fitness of the pathogen Pseudomonas aeruginosa in chronic wound infections, and to better understand the selective environment in wounds. We found that clinical isolates from chronic human wounds were frequently defective in virulence functions and biofilm formation, and that many virulence and biofilm formation genes were not required for bacterial fitness in experimental mouse wounds. In contrast, genes involved in anaerobic growth, some metabolic and energy pathways, and membrane integrity were critical. Consistent with these findings, the fitness characteristics of some wound impaired-mutants could be represented by anaerobic, oxidative, and membrane-stress conditions ex vivo, and more comprehensively by high-density bacterial growth conditions, in the absence of a host. These data shed light on the bacterial functions needed in chronic wound infections, the nature of stresses applied to bacteria at chronic infection sites, and suggest therapeutic targets that might compromise wound infection pathogenesis. Chronic infections are poorly understood, hard to model, and treatment resistant. Future progress depends upon understanding infection pathogenesis. Our study suggests that many bacterial virulence and biofilm formation functions are not required for fitness of infecting bacteria in chronic wounds. Instead, we found that functions that mitigate stresses associated with high-density bacterial growth are critical for infection. These findings suggest new approaches to model and target chronic bacterial infections.
Collapse
Affiliation(s)
- Sarah J. Morgan
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Soyeon I. Lippman
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Gilbert E. Bautista
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Joe J. Harrison
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Christopher L. Harding
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Larry A. Gallagher
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Ann-Chee Cheng
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Richard Siehnel
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Sumedha Ravishankar
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Marcia L. Usui
- Department of Medicine, University of Washington, Seattle WA, United States of America
| | - John E. Olerud
- Department of Medicine, University of Washington, Seattle WA, United States of America
| | - Philip Fleckman
- Department of Medicine, University of Washington, Seattle WA, United States of America
| | - Randall D. Wolcott
- Southwest Regional Wound Care Center, Lubbock, TX, United States of America
| | - Colin Manoil
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
- * E-mail: (CM); (PKS)
| | - Pradeep K. Singh
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
- * E-mail: (CM); (PKS)
| |
Collapse
|
23
|
Faure E, Kwong K, Nguyen D. Pseudomonas aeruginosa in Chronic Lung Infections: How to Adapt Within the Host? Front Immunol 2018; 9:2416. [PMID: 30405616 PMCID: PMC6204374 DOI: 10.3389/fimmu.2018.02416] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/01/2018] [Indexed: 01/29/2023] Open
Abstract
Bacteria that readily adapt to different natural environments, can also exploit this versatility upon infection of the host to persist. Pseudomonas aeruginosa, a ubiquitous Gram-negative bacterium, is harmless to healthy individuals, and yet a formidable opportunistic pathogen in compromised hosts. When pathogenic, P. aeruginosa causes invasive and highly lethal disease in certain compromised hosts. In others, such as individuals with the genetic disease cystic fibrosis, this pathogen causes chronic lung infections which persist for decades. During chronic lung infections, P. aeruginosa adapts to the host environment by evolving toward a state of reduced bacterial invasiveness that favors bacterial persistence without causing overwhelming host injury. Host responses to chronic P. aeruginosa infections are complex and dynamic, ranging from vigorous activation of innate immune responses that are ineffective at eradicating the infecting bacteria, to relative host tolerance and dampened activation of host immunity. This review will examine how P. aeruginosa subverts host defenses and modulates immune and inflammatory responses during chronic infection. This dynamic interplay between host and pathogen is a major determinant in the pathogenesis of chronic P. aeruginosa lung infections.
Collapse
Affiliation(s)
- Emmanuel Faure
- Department of Medicine, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Kelly Kwong
- Department of Medicine, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Dao Nguyen
- Department of Medicine, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
24
|
Dar HH, Tyurina YY, Mikulska-Ruminska K, Shrivastava I, Ting HC, Tyurin VA, Krieger J, St Croix CM, Watkins S, Bayir E, Mao G, Armbruster CR, Kapralov A, Wang H, Parsek MR, Anthonymuthu TS, Ogunsola AF, Flitter BA, Freedman CJ, Gaston JR, Holman TR, Pilewski JM, Greenberger JS, Mallampalli RK, Doi Y, Lee JS, Bahar I, Bomberger JM, Bayır H, Kagan VE. Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. J Clin Invest 2018; 128:4639-4653. [PMID: 30198910 DOI: 10.1172/jci99490] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/26/2018] [Indexed: 12/29/2022] Open
Abstract
Ferroptosis is a death program executed via selective oxidation of arachidonic acid-phosphatidylethanolamines (AA-PE) by 15-lipoxygenases. In mammalian cells and tissues, ferroptosis has been pathogenically associated with brain, kidney, and liver injury/diseases. We discovered that a prokaryotic bacterium, Pseudomonas aeruginosa, that does not contain AA-PE can express lipoxygenase (pLoxA), oxidize host AA-PE to 15-hydroperoxy-AA-PE (15-HOO-AA-PE), and trigger ferroptosis in human bronchial epithelial cells. Induction of ferroptosis by clinical P. aeruginosa isolates from patients with persistent lower respiratory tract infections was dependent on the level and enzymatic activity of pLoxA. Redox phospholipidomics revealed elevated levels of oxidized AA-PE in airway tissues from patients with cystic fibrosis (CF) but not with emphysema or CF without P. aeruginosa. We believe that the evolutionarily conserved mechanism of pLoxA-driven ferroptosis may represent a potential therapeutic target against P. aeruginosa-associated diseases such as CF and persistent lower respiratory tract infections.
Collapse
Affiliation(s)
- Haider H Dar
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and
| | - Karolina Mikulska-Ruminska
- Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Institute of Physics, Nicolaus Copernicus University, Torun, Poland
| | - Indira Shrivastava
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and.,Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hsiu-Chi Ting
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and
| | - James Krieger
- Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Erkan Bayir
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and
| | - Gaowei Mao
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and.,Department of Critical Care Medicine
| | | | - Alexandr Kapralov
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew R Parsek
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Tamil S Anthonymuthu
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and.,Department of Critical Care Medicine
| | | | | | - Cody J Freedman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | | | - Theodore R Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | | | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rama K Mallampalli
- Department of Medicine and.,Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | | | | | - Ivet Bahar
- Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Hülya Bayır
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and.,Department of Critical Care Medicine
| | - Valerian E Kagan
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and.,Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Chemistry and.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Laboratory of Navigational Redox Lipidomics, Institute of Regenerative Medicine, IM Sechenov Moscow State Medical University, Moscow, Russia
| |
Collapse
|
25
|
Abu Toamih Atamni H, Nashef A, Iraqi FA. The Collaborative Cross mouse model for dissecting genetic susceptibility to infectious diseases. Mamm Genome 2018; 29:471-487. [PMID: 30143822 DOI: 10.1007/s00335-018-9768-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022]
Abstract
Infectious diseases, also known as communicable diseases, refer to a full range of maladies caused by pathogen invasion to the host body. Host response towards an infectious pathogen varies between individuals, and can be defined by responses from asymptomatic to lethal. Host response to infectious pathogens is considered as a complex trait controlled by gene-gene (host-pathogen) and gene-environment interactions, leading to the extensive phenotypic variations between individuals. With the advancement of the human genome mapping approaches and tools, various genome-wide association studies (GWAS) were performed, aimed at mapping the genetic basis underlying host susceptibility towards infectious pathogens. In parallel, immense efforts were invested in enhancing the genetic mapping resolution and gene-cloning efficacy, using advanced mouse models including advanced intercross lines; outbred populations; consomic, congenic; and recombinant inbred lines. Notwithstanding the evident advances achieved using these mouse models, the genetic diversity was low and quantitative trait loci (QTL) mapping resolution was inadequate. Consequently, the Collaborative Cross (CC) mouse model was established by full-reciprocal mating of eight divergent founder strains of mice (A/J, C57BL/6J, 129S1/SvImJ, NOD/LtJ, NZO/HiLtJ, CAST/Ei, PWK/PhJ, and WSB/EiJ) generating a next-generation mouse genetic reference population (CC lines). Presently, the CC mouse model population comprises a set of about 200 recombinant inbred CC lines exhibiting a unique high genetic diversity and which are accessible for multidisciplinary studies. The CC mouse model efficacy was validated by various studies in our lab and others, accomplishing high-resolution (< 1 MB) QTL genomic mapping for a variety of complex traits, using about 50 CC lines (3-4 mice per line). Herein, we present a number of studies demonstrating the power of the CC mouse model, which has been utilized in our lab for mapping the genetic basis of host susceptibility to various infectious pathogens. These include Aspergillus fumigatus, Klebsiella pneumoniae, Porphyromonas gingivalis and Fusobacterium nucleatum (causing oral mixed infection), Pseudomonas aeruginosa, and the bacterial toxins Lipopolysaccharide and Lipoteichoic acid.
Collapse
Affiliation(s)
- Hanifa Abu Toamih Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Aysar Nashef
- Department of Prosthodontics, Dental school, The Hebrew University, Hadassah Jerusalem, Israel
- Department of Cranio-maxillofacial Surgery, Poria Medical Centre, The Azrieli School of Medicine, Bar Ilan University, Safed, Israel
| | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel.
| |
Collapse
|
26
|
O'Brien S, Fothergill JL. The role of multispecies social interactions in shaping Pseudomonas aeruginosa pathogenicity in the cystic fibrosis lung. FEMS Microbiol Lett 2018; 364:3958795. [PMID: 28859314 PMCID: PMC5812498 DOI: 10.1093/femsle/fnx128] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is a major pathogen in the lungs of cystic fibrosis (CF) patients. However, it is now recognised that a diverse microbial community exists in the airways comprising aerobic and anaerobic bacteria as well as fungi and viruses. This rich soup of microorganisms provides ample opportunity for interspecies interactions, particularly when considering secreted compounds. Here, we discuss how P. aeruginosa-secreted products can have community-wide effects, with the potential to ultimately shape microbial community dynamics within the lung. We focus on three well-studied traits associated with worsening clinical outcome in CF: phenazines, siderophores and biofilm formation, and discuss how secretions can shape interactions between P. aeruginosa and other commonly encountered members of the lung microbiome: Staphylococcus aureus, the Burkholderia cepacia complex, Candida albicans and Aspergillus fumigatus. These interactions may shape the evolutionary trajectory of P. aeruginosa while providing new opportunities for therapeutic exploitation of the CF lung microbiome.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Center for Adaptation to a Changing Environment (ACE), ETH Zürich, 8092 Zürich, Switzerland.,Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Joanne L Fothergill
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7B3, UK
| |
Collapse
|
27
|
Cigana C, Bianconi I, Baldan R, De Simone M, Riva C, Sipione B, Rossi G, Cirillo DM, Bragonzi A. Staphylococcus aureus Impacts Pseudomonas aeruginosa Chronic Respiratory Disease in Murine Models. J Infect Dis 2017; 217:933-942. [DOI: 10.1093/infdis/jix621] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023] Open
Affiliation(s)
| | | | - Rossella Baldan
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | | | - Camilla Riva
- Infections and Cystic Fibrosis Unit, Milano, Italy
| | | | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | | |
Collapse
|
28
|
Stefani S, Campana S, Cariani L, Carnovale V, Colombo C, Lleo MM, Iula VD, Minicucci L, Morelli P, Pizzamiglio G, Taccetti G. Relevance of multidrug-resistant Pseudomonas aeruginosa infections in cystic fibrosis. Int J Med Microbiol 2017; 307:353-362. [PMID: 28754426 DOI: 10.1016/j.ijmm.2017.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/15/2023] Open
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa is an important issue for physicians who take care of patients with cystic fibrosis (CF). Here, we review the latest research on how P. aeruginosa infection causes lung function to decline and how several factors contribute to the emergence of antibiotic resistance in P. aeruginosa strains and influence the course of the infection course. However, many aspects of the practical management of patients with CF infected with MDR P. aeruginosa are still to be established. Less is known about the exact role of susceptibility testing in clinical strategies for dealing with resistant infections, and there is an urgent need to find a tool to assist in choosing the best therapeutic strategy for MDR P. aeruginosa infection. One current perception is that the selection of antibiotic therapy according to antibiogram results is an important component of the decision-making process, but other patient factors, such as previous infection history and antibiotic courses, also need to be evaluated. On the basis of the known issues and the best current data on respiratory infections caused by MDR P. aeruginosa, this review provides practical suggestions to optimize the diagnostic and therapeutic management of patients with CF who are infected with these pathogens.
Collapse
Affiliation(s)
- S Stefani
- Department of Biomedical and Biotechnological Sciences, Division of Microbiology, University of Catania, Catania, Italy.
| | - S Campana
- Department of Paediatric Medicine, Cystic Fibrosis Centre, Anna Meyer Children's University Hospital, Florence, Italy
| | - L Cariani
- Cystic Fibrosis Microbiology Laboratory, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - V Carnovale
- Department of Translational Medical Sciences, Cystic Fibrosis Center, University "Federico II", Naples, Italy
| | - C Colombo
- Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - M M Lleo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - V D Iula
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy
| | - L Minicucci
- Microbiology Laboratory, Cystic Fibrosis Center, G. Gaslini Institute, Genoa, Italy
| | - P Morelli
- Department of Paediatric, Cystic Fibrosis Center, G. Gaslini Institute, Genoa, Italy
| | - G Pizzamiglio
- Respiratory Disease Department, Cystic Fibrosis Center Adult Section, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - G Taccetti
- Department of Paediatric Medicine, Cystic Fibrosis Centre, Anna Meyer Children's University Hospital, Florence, Italy
| |
Collapse
|
29
|
Nielsen SM, Meyer RL, Nørskov-Lauritsen N. Differences in Gene Expression Profiles between Early and Late Isolates in Monospecies Achromobacter Biofilm. Pathogens 2017; 6:E20. [PMID: 28534862 PMCID: PMC5488654 DOI: 10.3390/pathogens6020020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/12/2017] [Accepted: 05/14/2017] [Indexed: 11/30/2022] Open
Abstract
Bacteria of genus Achromobacter are emerging pathogens in cystic fibrosis (CF) capable of biofilm formation and development of antimicrobial resistance. Evolutionary adaptions in the transition from primary to chronic infection were assessed by transcriptomic analysis of successive isolates of Achromobacter xylosoxidans from a single CF patient. Several efflux pump systems targeting antimicrobial agents were upregulated during the course of the disease, whereas all genes related to motility were downregulated. Genes annotated to subsystems of sulfur metabolism, protein metabolism and potassium metabolism exhibited the strongest upregulation. K+ channel genes were hyperexpressed, and a putative sulfite oxidase was more than 1500 times upregulated. The transcriptome patterns indicated a pivotal role of sulfur metabolism and electrical signalling in Achromobacter biofilms during late stage CF lung disease.
Collapse
Affiliation(s)
- Signe M Nielsen
- Department of Clinical Medicine, Health, Aarhus University, DK-8200 Aarhus, Denmark.
- Department of Clinical Microbiology, Aarhus University Hospital, DK-8200 Aarhus, Denmark.
| | - Rikke L Meyer
- Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus, Denmark.
| | | |
Collapse
|
30
|
Jeukens J, Freschi L, Vincent AT, Emond-Rheault JG, Kukavica-Ibrulj I, Charette SJ, Levesque RC. A Pan-Genomic Approach to Understand the Basis of Host Adaptation in Achromobacter. Genome Biol Evol 2017; 9:1030-1046. [PMID: 28383665 PMCID: PMC5405338 DOI: 10.1093/gbe/evx061] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2017] [Indexed: 12/13/2022] Open
Abstract
Over the past decade, there has been a rising interest in Achromobacter sp., an emerging opportunistic pathogen responsible for nosocomial and cystic fibrosis lung infections. Species of this genus are ubiquitous in the environment, can outcompete resident microbiota, and are resistant to commonly used disinfectants as well as antibiotics. Nevertheless, the Achromobacter genus suffers from difficulties in diagnosis, unresolved taxonomy and limited understanding of how it adapts to the cystic fibrosis lung, not to mention other host environments. The goals of this first genus-wide comparative genomics study were to clarify the taxonomy of this genus and identify genomic features associated with pathogenicity and host adaptation. This was done with a widely applicable approach based on pan-genome analysis. First, using all publicly available genomes, a combination of phylogenetic analysis based on 1,780 conserved genes with average nucleotide identity and accessory genome composition allowed the identification of a largely clinical lineage composed of Achromobacter xylosoxidans, Achromobacter insuavis, Achromobacter dolens, and Achromobacter ruhlandii. Within this lineage, we identified 35 positively selected genes involved in metabolism, regulation and efflux-mediated antibiotic resistance. Second, resistome analysis showed that this clinical lineage carried additional antibiotic resistance genes compared with other isolates. Finally, we identified putative mobile elements that contribute 53% of the genus's resistome and support horizontal gene transfer between Achromobacter and other ecologically similar genera. This study provides strong phylogenetic and pan-genomic bases to motivate further research on Achromobacter, and contributes to the understanding of opportunistic pathogen evolution.
Collapse
Affiliation(s)
- Julie Jeukens
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Luca Freschi
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Antony T Vincent
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Quebec City, Quebec, Canada.,Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Quebec City, Quebec, Canada
| | | | - Irena Kukavica-Ibrulj
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Quebec City, Quebec, Canada.,Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Quebec City, Quebec, Canada
| | - Roger C Levesque
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
31
|
High virulence sub-populations in Pseudomonas aeruginosa long-term cystic fibrosis airway infections. BMC Microbiol 2017; 17:30. [PMID: 28158967 PMCID: PMC5291983 DOI: 10.1186/s12866-017-0941-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/25/2017] [Indexed: 11/24/2022] Open
Abstract
Background Pseudomonas aeruginosa typically displays loss of virulence-associated secretions over the course of chronic cystic fibrosis infections. This has led to the suggestion that virulence is a costly attribute in chronic infections. However, previous reports suggest that overproducing (OP) virulent pathotypes can coexist with non-producing mutants in the CF lung for many years. The consequences of such within-patient phenotypic diversity for the success of this pathogen are not fully understood. Here, we provide in-depth quantification of within-host variation in the production of three virulence associated secretions in the Liverpool cystic fibrosis epidemic strain of P. aeruginosa, and investgate the effect of this phenotypic variation on virulence in acute infections of an insect host model. Results Within-patient variation was present for all three secretions (pyoverdine, pyocyanin and LasA protease). In two out of three patients sampled, OP isolates coexisted with under-producing mutants. In the third patient, all 39 isolates were under-producers of all three secretions relative to the transmissible ancestor LESB58. Finally, this phenotypic variation translated into variation in virulence in an insect host model. Conclusions Within population variation in the production of P. aeruginosa virulence-associated secretions can lead to high virulence sub-populations persisting in patients with chronic CF infections. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-0941-6) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Abstract
Infection is one of the leading causes of human mortality and morbidity. Exposure to microbial agents is obviously required. However, also non-microbial environmental and host factors play a key role in the onset, development and outcome of infectious disease, resulting in large of clinical variability between individuals in a population infected with the same microbe. Controlled and standardized investigations of the genetics of susceptibility to infectious disease are almost impossible to perform in humans whereas mouse models allow application of powerful genomic techniques to identify and validate causative genes underlying human diseases with complex etiologies. Most of current animal models used in complex traits diseases genetic mapping have limited genetic diversity. This limitation impedes the ability to create incorporated network using genetic interactions, epigenetics, environmental factors, microbiota, and other phenotypes. A novel mouse genetic reference population for high-resolution mapping and subsequently identifying genes underlying the QTL, namely the Collaborative Cross (CC) mouse genetic reference population (GRP) was recently developed. In this chapter, we discuss a variety of approaches using CC mice for mapping genes underlying quantitative trait loci (QTL) to dissect the host response to polygenic traits, including infectious disease caused by bacterial agents and its toxins.
Collapse
|
33
|
Lorenz A, Pawar V, Häussler S, Weiss S. Insights into host-pathogen interactions from state-of-the-art animal models of respiratory Pseudomonas aeruginosa infections. FEBS Lett 2016; 590:3941-3959. [PMID: 27730639 DOI: 10.1002/1873-3468.12454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 12/29/2022]
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen that can cause acute respiratory infections in immunocompetent patients or chronic infections in immunocompromised individuals and in patients with cystic fibrosis. When acquiring the chronic infection state, bacteria are encapsulated within biofilm structures enabling them to withstand diverse environmental assaults, including immune reactions and antimicrobial therapy. Understanding the molecular interactions within the bacteria, as well as with the host or other bacteria, is essential for developing innovative treatment strategies. Such knowledge might be accumulated in vitro. However, it is ultimately necessary to confirm these findings in vivo. In the present Review, we describe state-of-the-art in vivo models that allow studying P. aeruginosa infections in molecular detail. The portrayed mammalian models exclusively focus on respiratory infections. The data obtained by alternative animal models which lack lung tissue, often provide molecular insights that are easily transferable to mammals. Importantly, these surrogate in vivo systems reveal complex molecular interactions of P. aeruginosa with the host. Herein, we also provide a critical assessment of the advantages and disadvantages of such models.
Collapse
Affiliation(s)
- Anne Lorenz
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research, TWINCORE GmbH, A Joint Venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Germany
| | - Vinay Pawar
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Department of Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute of Immunology, Medical School Hannover, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research, TWINCORE GmbH, A Joint Venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Germany.,Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute of Immunology, Medical School Hannover, Germany
| |
Collapse
|
34
|
Sommer LM, Alanin MC, Marvig RL, Nielsen KG, Høiby N, von Buchwald C, Molin S, Johansen HK. Bacterial evolution in PCD and CF patients follows the same mutational steps. Sci Rep 2016; 6:28732. [PMID: 27349973 PMCID: PMC4923847 DOI: 10.1038/srep28732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/08/2016] [Indexed: 11/25/2022] Open
Abstract
Infections with Pseudomonas aeruginosa increase morbidity in primary ciliary dyskinesia (PCD) and cystic fibrosis (CF) patients. Both diseases are associated with a defect of the mucociliary clearance; in PCD caused by non-functional cilia, in CF by changed mucus. Whole genome sequencing of P. aeruginosa isolates from CF patients has shown that persistence of clonal lineages in the airways is facilitated by genetic adaptation. It is unknown whether this also applies to P. aeruginosa airway infections in PCD. We compared within-host evolution of P. aeruginosa in PCD and CF patients. P. aeruginosa isolates from 12 PCD patients were whole genome sequenced and phenotypically characterised. Ten out of 12 PCD patients were infected with persisting clone types. We identified convergent evolution in eight genes, which are also important for persistent infections in CF airways: genes related to antibiotic resistance, quorum sensing, motility, type III secretion and mucoidity. We document phenotypic and genotypic parallelism in the evolution of P. aeruginosa across infected patients with different genetic disorders. The parallel changes and convergent adaptation and evolution may be caused by similar selective forces such as the intensive antibiotic treatment and the inflammatory response, which drive the evolutionary processes.
Collapse
Affiliation(s)
- Lea M Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Mikkel Christian Alanin
- Department of Otorhinolaryngology - Head and Neck Surgery and Audiology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Rasmus L Marvig
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Denmark.,Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Kim Gjerum Nielsen
- Danish PCD Centre, Paediatric Pulmonary Service, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Denmark.,Institute of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Christian von Buchwald
- Department of Otorhinolaryngology - Head and Neck Surgery and Audiology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Søren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark.,Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Helle Krogh Johansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Denmark
| |
Collapse
|
35
|
Dynamics of Mutations during Development of Resistance by Pseudomonas aeruginosa against Five Antibiotics. Antimicrob Agents Chemother 2016; 60:4229-36. [PMID: 27139485 DOI: 10.1128/aac.00434-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/26/2016] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes considerable morbidity and mortality, specifically during intensive care. Antibiotic-resistant variants of this organism are more difficult to treat and cause substantial extra costs compared to susceptible strains. In the laboratory, P. aeruginosa rapidly developed resistance to five medically relevant antibiotics upon exposure to stepwise increasing concentrations. At several time points during the acquisition of resistance, samples were taken for whole-genome sequencing. The increase in the MIC of ciprofloxacin was linked to specific mutations in gyrA, parC, and gyrB, appearing sequentially. In the case of tobramycin, mutations in fusA, HP02880, rplB, and capD were induced. The MICs of the beta-lactam compounds meropenem and ceftazidime and the combination of piperacillin and tazobactam correlated linearly with beta-lactamase activity but not always with individual mutations. The genes that were mutated during the development of beta-lactam resistance differed for each antibiotic. A quantitative relationship between the frequency of mutations and the increase in resistance could not be established for any of the antibiotics. When the adapted strains are grown in the absence of the antibiotic, some mutations remained and others were reversed, but this reversal did not necessarily lower the MIC. The increased MIC came at the cost of moderately reduced cellular functions or a somewhat lower growth rate. In all cases except ciprofloxacin, the increase in resistance seems to be the result of complex interactions among several cellular systems rather than individual mutations.
Collapse
|
36
|
Gill SK, Hui K, Farne H, Garnett JP, Baines DL, Moore LS, Holmes AH, Filloux A, Tregoning JS. Increased airway glucose increases airway bacterial load in hyperglycaemia. Sci Rep 2016; 6:27636. [PMID: 27273266 PMCID: PMC4897689 DOI: 10.1038/srep27636] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/19/2016] [Indexed: 01/15/2023] Open
Abstract
Diabetes is associated with increased frequency of hospitalization due to bacterial lung infection. We hypothesize that increased airway glucose caused by hyperglycaemia leads to increased bacterial loads. In critical care patients, we observed that respiratory tract bacterial colonisation is significantly more likely when blood glucose is high. We engineered mutants in genes affecting glucose uptake and metabolism (oprB, gltK, gtrS and glk) in Pseudomonas aeruginosa, strain PAO1. These mutants displayed attenuated growth in minimal medium supplemented with glucose as the sole carbon source. The effect of glucose on growth in vivo was tested using streptozocin-induced, hyperglycaemic mice, which have significantly greater airway glucose. Bacterial burden in hyperglycaemic animals was greater than control animals when infected with wild type but not mutant PAO1. Metformin pre-treatment of hyperglycaemic animals reduced both airway glucose and bacterial load. These data support airway glucose as a critical determinant of increased bacterial load during diabetes.
Collapse
Affiliation(s)
- Simren K. Gill
- Mucosal Infection & Immunity Group, Section of Virology, Imperial College London, St Mary’s Campus, London, W2 1PG, UK
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Kailyn Hui
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Hugo Farne
- Airway Disease Infection Section, National Heart & Lung Institute, Imperial College London, London, W2 1PG, UK
| | - James P. Garnett
- Institute for Infection and Immunity, St George’s, University of London, London SW17 0RE, UK
| | - Deborah L. Baines
- Institute for Infection and Immunity, St George’s, University of London, London SW17 0RE, UK
| | - Luke S.P. Moore
- Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, London W12 0HS, UK
| | - Alison H. Holmes
- Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, London W12 0HS, UK
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - John S. Tregoning
- Mucosal Infection & Immunity Group, Section of Virology, Imperial College London, St Mary’s Campus, London, W2 1PG, UK
| |
Collapse
|
37
|
De Simone M, Spagnuolo L, Lorè NI, Cigana C, De Fino I, Broman KW, Iraqi FA, Bragonzi A. Mapping genetic determinants of host susceptibility to Pseudomonas aeruginosa lung infection in mice. BMC Genomics 2016; 17:351. [PMID: 27169516 PMCID: PMC4866434 DOI: 10.1186/s12864-016-2676-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/28/2016] [Indexed: 12/16/2022] Open
Abstract
Background P. aeruginosa is one of the top three causes of opportunistic human bacterial infections. The remarkable variability in the clinical outcomes of this infection is thought to be associated with genetic predisposition. However, the genes underlying host susceptibility to P. aeruginosa infection are still largely unknown. Results As a step towards mapping these genes, we applied a genome wide linkage analysis approach to a mouse model. A large F2 intercross population, obtained by mating P. aeruginosa-resistant C3H/HeOuJ, and susceptible A/J mice, was used for quantitative trait locus (QTL) mapping. The F2 progenies were challenged with a P. aeruginosa clinical strain and monitored for the survival time up to 7 days post-infection, as a disease phenotype associated trait. Selected phenotypic extremes of the F2 distribution were genotyped with high-density single nucleotide polymorphic (SNP) markers, and subsequently QTL analysis was performed. A significant locus was mapped on chromosome 6 and was named P. aeruginosa infection resistance locus 1 (Pairl1). The most promising candidate genes, including Dok1, Tacr1, Cd207, Clec4f, Gp9, Gata2, Foxp1, are related to pathogen sensing, neutrophils and macrophages recruitment and inflammatory processes. Conclusions We propose a set of genes involved in the pathogenesis of P. aeruginosa infection that may be explored to complement human studies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2676-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maura De Simone
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenza Spagnuolo
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicola Ivan Lorè
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Cigana
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ida De Fino
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Karl W Broman
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Alessandra Bragonzi
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
38
|
Winstanley C, O'Brien S, Brockhurst MA. Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections. Trends Microbiol 2016; 24:327-337. [PMID: 26946977 PMCID: PMC4854172 DOI: 10.1016/j.tim.2016.01.008] [Citation(s) in RCA: 477] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/06/2016] [Accepted: 01/25/2016] [Indexed: 12/02/2022]
Abstract
Pseudomonas aeruginosa populations undergo a characteristic evolutionary adaptation during chronic infection of the cystic fibrosis (CF) lung, including reduced production of virulence factors, transition to a biofilm-associated lifestyle, and evolution of high-level antibiotic resistance. Populations of P. aeruginosa in chronic CF lung infections typically exhibit high phenotypic diversity, including for clinically important traits such as antibiotic resistance and toxin production, and this diversity is dynamic over time, making accurate diagnosis and treatment challenging. Population genomics studies reveal extensive genetic diversity within patients, including for transmissible strains the coexistence of highly divergent lineages acquired by patient-to-patient transmission. The inherent spatial structure and spatial heterogeneity of selection in the CF lung appears to play a key role in driving P. aeruginosa diversification. During chronic lung infections of CF patients common genetic adaptations occur in P. aeruginosa, such as conversion to mucoidy, loss of virulence factors, and resistance to antibiotics. Although pathoadaptive mutations in regulatory proteins are common, the actual regulators affected vary between populations. P. aeruginosa populations in CF lungs exhibit high levels of phenotypic diversity. Fine-scale population genomics approaches reveal that divergent sublineages can coexist, with evidence for regional isolation in the spatially structured and heterogeneous lung environment. Experimental evolution is beginning to provide insights into the selective drivers of evolution in P. aeruginosa infection, including the role of social interactions.
Collapse
Affiliation(s)
- Craig Winstanley
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, Ronald Ross Building, University of Liverpool, 8 West Derby Street, Liverpool, L69 7BE, UK.
| | - Siobhan O'Brien
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | | |
Collapse
|
39
|
Prieto CI, Palau MJ, Martina P, Achiary C, Achiary A, Bettiol M, Montanaro P, Cazzola ML, Leguizamón M, Massillo C, Figoli C, Valeiras B, Perez S, Rentería F, Diez G, Yantorno OM, Bosch A. [Cystic Fibrosis Cloud database: An information system for storage and management of clinical and microbiological data of cystic fibrosis patients]. Rev Argent Microbiol 2016; 48:27-37. [PMID: 26895996 DOI: 10.1016/j.ram.2015.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 11/03/2015] [Accepted: 11/22/2015] [Indexed: 11/29/2022] Open
Abstract
The epidemiological and clinical management of cystic fibrosis (CF) patients suffering from acute pulmonary exacerbations or chronic lung infections demands continuous updating of medical and microbiological processes associated with the constant evolution of pathogens during host colonization. In order to monitor the dynamics of these processes, it is essential to have expert systems capable of storing and subsequently extracting the information generated from different studies of the patients and microorganisms isolated from them. In this work we have designed and developed an on-line database based on an information system that allows to store, manage and visualize data from clinical studies and microbiological analysis of bacteria obtained from the respiratory tract of patients suffering from cystic fibrosis. The information system, named Cystic Fibrosis Cloud database is available on the http://servoy.infocomsa.com/cfc_database site and is composed of a main database and a web-based interface, which uses Servoy's product architecture based on Java technology. Although the CFC database system can be implemented as a local program for private use in CF centers, it can also be used, updated and shared by different users who can access the stored information in a systematic, practical and safe manner. The implementation of the CFC database could have a significant impact on the monitoring of respiratory infections, the prevention of exacerbations, the detection of emerging organisms, and the adequacy of control strategies for lung infections in CF patients.
Collapse
Affiliation(s)
- Claudia I Prieto
- CINDEFI, CONICET-CCT La Plata, Centro de Biotecnología Aplicada, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - María J Palau
- Sala de Microbiología, Hospital de Niños «Sor María Ludovica», La Plata, Buenos Aires, Argentina
| | - Pablo Martina
- CINDEFI, CONICET-CCT La Plata, Centro de Biotecnología Aplicada, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Carlos Achiary
- Infocom S.A., Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrés Achiary
- Infocom S.A., Ciudad Autónoma de Buenos Aires, Argentina
| | - Marisa Bettiol
- Sala de Microbiología, Hospital de Niños «Sor María Ludovica», La Plata, Buenos Aires, Argentina
| | | | - María L Cazzola
- Sala de Bacteriología, Hospital HIGA, La Plata, Buenos Aires, Argentina
| | - Mariana Leguizamón
- CINDEFI, CONICET-CCT La Plata, Centro de Biotecnología Aplicada, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Cintia Massillo
- CINDEFI, CONICET-CCT La Plata, Centro de Biotecnología Aplicada, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Cecilia Figoli
- CINDEFI, CONICET-CCT La Plata, Centro de Biotecnología Aplicada, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Brenda Valeiras
- CINDEFI, CONICET-CCT La Plata, Centro de Biotecnología Aplicada, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Silvia Perez
- Sala de Bacteriología, Hospital HIGA, La Plata, Buenos Aires, Argentina
| | - Fernando Rentería
- Servicio de Neumonología, Hospital de Niños «Sor María Ludovica», La Plata, Buenos Aires, Argentina
| | - Graciela Diez
- Servicio de Neumonología, Hospital de Niños «Sor María Ludovica», La Plata, Buenos Aires, Argentina
| | - Osvaldo M Yantorno
- CINDEFI, CONICET-CCT La Plata, Centro de Biotecnología Aplicada, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Alejandra Bosch
- CINDEFI, CONICET-CCT La Plata, Centro de Biotecnología Aplicada, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
40
|
Bianconi I, Jeukens J, Freschi L, Alcalá-Franco B, Facchini M, Boyle B, Molinaro A, Kukavica-Ibrulj I, Tümmler B, Levesque RC, Bragonzi A. Comparative genomics and biological characterization of sequential Pseudomonas aeruginosa isolates from persistent airways infection. BMC Genomics 2015; 16:1105. [PMID: 26714629 PMCID: PMC4696338 DOI: 10.1186/s12864-015-2276-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/06/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa establishes life-long chronic airway infections in cystic fibrosis (CF) patients. As the disease progresses, P. aeruginosa pathoadaptive variants are distinguished from the initially acquired strain. However, the genetic basis and the biology of host-bacteria interactions leading to a persistent lifestyle of P. aeruginosa are not understood. As a model system to study long term and persistent CF infections, the P. aeruginosa RP73, isolated 16.9 years after the onset of airways colonization from a CF patient, was investigated. Comparisons with strains RP1, isolated at the onset of the colonization, and clonal RP45, isolated 7 years before RP73 were carried out to better characterize genomic evolution of P. aeruginosa in the context of CF pathogenicity. RESULTS Virulence assessments in disease animal model, genome sequencing and comparative genomics analysis were performed for clinical RP73, RP45, RP1 and prototype strains. In murine model, RP73 showed lower lethality and a remarkable capability of long-term persistence in chronic airways infection when compared to other strains. Pathological analysis of murine lungs confirmed advanced chronic pulmonary disease, inflammation and mucus secretory cells hyperplasia. Genomic analysis predicted twelve genomic islands in the RP73 genome, some of which distinguished RP73 from other prototype strains and corresponded to regions of genome plasticity. Further, comparative genomic analyses with sequential RP isolates showed signatures of pathoadaptive mutations in virulence factors potentially linked to the development of chronic infections in CF. CONCLUSIONS The genome plasticity of P. aeruginosa particularly in the RP73 strain strongly indicated that these alterations may form the genetic basis defining host-bacteria interactions leading to a persistent lifestyle in human lungs.
Collapse
Affiliation(s)
- Irene Bianconi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| | - Julie Jeukens
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Canada.
| | - Luca Freschi
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Canada.
| | - Beatriz Alcalá-Franco
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| | - Marcella Facchini
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| | - Brian Boyle
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Canada.
| | | | - Irena Kukavica-Ibrulj
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Canada.
| | | | - Roger C Levesque
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Canada.
| | - Alessandra Bragonzi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
41
|
Varga JJ, Barbier M, Mulet X, Bielecki P, Bartell JA, Owings JP, Martinez-Ramos I, Hittle LE, Davis MR, Damron FH, Liechti GW, Puchałka J, dos Santos VAPM, Ernst RK, Papin JA, Albertí S, Oliver A, Goldberg JB. Genotypic and phenotypic analyses of a Pseudomonas aeruginosa chronic bronchiectasis isolate reveal differences from cystic fibrosis and laboratory strains. BMC Genomics 2015; 16:883. [PMID: 26519161 PMCID: PMC4628258 DOI: 10.1186/s12864-015-2069-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/03/2015] [Indexed: 01/24/2023] Open
Abstract
Background Pseudomonas aeruginosa is an environmentally ubiquitous Gram-negative bacterium and important opportunistic human pathogen, causing severe chronic respiratory infections in patients with underlying conditions such as cystic fibrosis (CF) or bronchiectasis. In order to identify mechanisms responsible for adaptation during bronchiectasis infections, a bronchiectasis isolate, PAHM4, was phenotypically and genotypically characterized. Results This strain displays phenotypes that have been associated with chronic respiratory infections in CF including alginate over-production, rough lipopolysaccharide, quorum-sensing deficiency, loss of motility, decreased protease secretion, and hypermutation. Hypermutation is a key adaptation of this bacterium during the course of chronic respiratory infections and analysis indicates that PAHM4 encodes a mutated mutS gene responsible for a ~1,000-fold increase in mutation rate compared to wild-type laboratory strain P. aeruginosa PAO1. Antibiotic resistance profiles and sequence data indicate that this strain acquired numerous mutations associated with increased resistance levels to β-lactams, aminoglycosides, and fluoroquinolones when compared to PAO1. Sequencing of PAHM4 revealed a 6.38 Mbp genome, 5.9 % of which were unrecognized in previously reported P. aeruginosa genome sequences. Transcriptome analysis suggests a general down-regulation of virulence factors, while metabolism of amino acids and lipids is up-regulated when compared to PAO1 and metabolic modeling identified further potential differences between PAO1 and PAHM4. Conclusions This work provides insights into the potential differential adaptation of this bacterium to the lung of patients with bronchiectasis compared to other clinical settings such as cystic fibrosis, findings that should aid the development of disease-appropriate treatment strategies for P. aeruginosa infections. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2069-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John J Varga
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Emory + Children's Center for Cystic Fibrosis Research, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA. .,Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.
| | - Xavier Mulet
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma, de Mallorca, Spain.
| | - Piotr Bielecki
- Synthetic and Systems Biology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany. .,Present address: Immunobiology Department, Yale University, School of Medicine, New Haven, CT, 06511, USA.
| | - Jennifer A Bartell
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| | - Joshua P Owings
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Emory + Children's Center for Cystic Fibrosis Research, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| | | | - Lauren E Hittle
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, University of Maryland, Baltimore, MD, USA.
| | - Michael R Davis
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA. .,Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.
| | - George W Liechti
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| | - Jacek Puchałka
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma, de Mallorca, Spain. .,Present address: Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany.
| | - Vitor A P Martins dos Santos
- Systems and Synthetic Biology, Wageningen University, Wageningen, Netherlands. .,Present address: Chair of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands. .,Present address: LifeGlimmer GmbH, Berlin, Germany.
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, University of Maryland, Baltimore, MD, USA.
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| | - Sebastian Albertí
- IUNICS, University of the Balearic Islands, Palma, de Mallorca, Spain.
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma, de Mallorca, Spain.
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Emory + Children's Center for Cystic Fibrosis Research, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
42
|
Abstract
Submucosal glands contribute to airway surface liquid (ASL), a film that protects all airway surfaces. Glandular mucus comprises electrolytes, water, the gel-forming mucin MUC5B, and hundreds of different proteins with diverse protective functions. Gland volume per unit area of mucosal surface correlates positively with impaction rate of inhaled particles. In human main bronchi, the volume of the glands is ∼ 50 times that of surface goblet cells, but the glands diminish in size and frequency distally. ASL and its trapped particles are removed from the airways by mucociliary transport. Airway glands have a tubuloacinar structure, with a single terminal duct, a nonciliated collecting duct, then branching secretory tubules lined with mucous cells and ending in serous acini. They allow for a massive increase in numbers of mucus-producing cells without replacing surface ciliated cells. Active secretion of Cl(-) and HCO3 (-) by serous cells produces most of the fluid of gland secretions. Glands are densely innervated by tonically active, mutually excitatory airway intrinsic neurons. Most gland mucus is secreted constitutively in vivo, with large, transient increases produced by emergency reflex drive from the vagus. Elevations of [cAMP]i and [Ca(2+)]i coordinate electrolyte and macromolecular secretion and probably occur together for baseline activity in vivo, with cholinergic elevation of [Ca(2+)]i being mainly responsive for transient increases in secretion. Altered submucosal gland function contributes to the pathology of all obstructive diseases, but is an early stage of pathogenesis only in cystic fibrosis.
Collapse
Affiliation(s)
- Jonathan H Widdicombe
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jeffrey J Wine
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| |
Collapse
|
43
|
Park AJ, Murphy K, Surette MD, Bandoro C, Krieger JR, Taylor P, Khursigara CM. Tracking the Dynamic Relationship between Cellular Systems and Extracellular Subproteomes in Pseudomonas aeruginosa Biofilms. J Proteome Res 2015; 14:4524-37. [PMID: 26378716 DOI: 10.1021/acs.jproteome.5b00262] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The transition of the opportunistic pathogen Pseudomonas aeruginosa from free-living bacteria into surface-associated biofilm communities represents a viable target for the prevention and treatment of chronic infectious disease. We have established a proteomics platform that identified 2443 and 1142 high-confidence proteins in P. aeruginosa whole cells and outer-membrane vesicles (OMVs), respectively, at three time points during biofilm development (ProteomeXchange identifier PXD002605). The analysis of cellular systems, specifically the phenazine biosynthetic pathway, demonstrates that whole-cell protein abundance correlates to end product (i.e., pyocyanin) concentrations in biofilm but not in planktonic cultures. Furthermore, increased cellular protein abundance in this pathway results in quantifiable pyocyanin in early biofilm OMVs and OMVs from both growth modes isolated at later time points. Overall, our data indicate that the OMVs being released from the surface of the biofilm whole cells have unique proteomes in comparison to their planktonic counterparts. The relative abundance of OMV proteins from various subcellular sources showed considerable differences between the two growth modes over time, supporting the existence and preferential activation of multiple OMV biogenesis mechanisms under different conditions. The consistent detection of cytoplasmic proteins in all of the OMV subproteomes challenges the notion that OMVs are composed of outer membrane and periplasmic proteins alone. Direct comparisons of outer-membrane protein abundance levels between OMVs and whole cells shows ratios that vary greatly from 1:1 and supports previous studies that advocate the specific inclusion, or "packaging", of proteins into OMVs. The quantitative analysis of packaged protein groups suggests biogenesis mechanisms that involve untethered, rather than absent, peptidoglycan-binding proteins. Collectively, individual protein and biological system analyses of biofilm OMVs show that drug-binding cytoplasmic proteins and porins are potentially shuttled from the whole cell into the OMVs and may contribute to the antibiotic resistance of P. aeruginosa whole cells within biofilms.
Collapse
Affiliation(s)
- Amber J Park
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada , N1G 2W1
| | - Kathleen Murphy
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada , N1G 2W1
| | - Matthew D Surette
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada , N1G 2W1
| | - Christopher Bandoro
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada , N1G 2W1
| | - Jonathan R Krieger
- SPARC BioCentre, The Hospital for Sick Children , Toronto, Ontario, Canada , M5G 0A4
| | - Paul Taylor
- SPARC BioCentre, The Hospital for Sick Children , Toronto, Ontario, Canada , M5G 0A4
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada , N1G 2W1
| |
Collapse
|
44
|
Michalska M, Wolf P. Pseudomonas Exotoxin A: optimized by evolution for effective killing. Front Microbiol 2015; 6:963. [PMID: 26441897 PMCID: PMC4584936 DOI: 10.3389/fmicb.2015.00963] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas Exotoxin A (PE) is the most toxic virulence factor of the pathogenic bacterium Pseudomonas aeruginosa. This review describes current knowledge about the intoxication pathways of PE. Moreover, PE represents a remarkable example for pathoadaptive evolution, how bacterial molecules have been structurally and functionally optimized under evolutionary pressure to effectively impair and kill their host cells.
Collapse
Affiliation(s)
- Marta Michalska
- Department of Urology, Medical Center, University of Freiburg Freiburg, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center, University of Freiburg Freiburg, Germany
| |
Collapse
|
45
|
LaFayette SL, Houle D, Beaudoin T, Wojewodka G, Radzioch D, Hoffman LR, Burns JL, Dandekar AA, Smalley NE, Chandler JR, Zlosnik JE, Speert DP, Bernier J, Matouk E, Brochiero E, Rousseau S, Nguyen D. Cystic fibrosis-adapted Pseudomonas aeruginosa quorum sensing lasR mutants cause hyperinflammatory responses. SCIENCE ADVANCES 2015; 1:e1500199. [PMID: 26457326 PMCID: PMC4597794 DOI: 10.1126/sciadv.1500199] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/06/2015] [Indexed: 05/23/2023]
Abstract
Cystic fibrosis lung disease is characterized by chronic airway infections with the opportunistic pathogen Pseudomonas aeruginosa and severe neutrophilic pulmonary inflammation. P. aeruginosa undergoes extensive genetic adaptation to the cystic fibrosis (CF) lung environment, and adaptive mutations in the quorum sensing regulator gene lasR commonly arise. We sought to define how mutations in lasR alter host-pathogen relationships. We demonstrate that lasR mutants induce exaggerated host inflammatory responses in respiratory epithelial cells, with increased accumulation of proinflammatory cytokines and neutrophil recruitment due to the loss of bacterial protease- dependent cytokine degradation. In subacute pulmonary infections, lasR mutant-infected mice show greater neutrophilic inflammation and immunopathology compared with wild-type infections. Finally, we observed that CF patients infected with lasR mutants have increased plasma interleukin-8 (IL-8), a marker of inflammation. These findings suggest that bacterial adaptive changes may worsen pulmonary inflammation and directly contribute to the pathogenesis and progression of chronic lung disease in CF patients.
Collapse
Affiliation(s)
- Shantelle L. LaFayette
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Daniel Houle
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Trevor Beaudoin
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Gabriella Wojewodka
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Danuta Radzioch
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Lucas R. Hoffman
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Jane L. Burns
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Ajai A. Dandekar
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Nicole E. Smalley
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | - James E. Zlosnik
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - David P. Speert
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Joanie Bernier
- McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Elias Matouk
- McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Simon Rousseau
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Dao Nguyen
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
- McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
46
|
Gallium Compounds Exhibit Potential as New Therapeutic Agents against Mycobacterium abscessus. Antimicrob Agents Chemother 2015; 59:4826-34. [PMID: 26033732 DOI: 10.1128/aac.00331-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/27/2015] [Indexed: 12/14/2022] Open
Abstract
The rapidly growing nontuberculous mycobacterial species Mycobacterium abscessus has recently emerged as an important pathogen in patients with cystic fibrosis (CF). Treatment options are limited because of the organism's innate resistance to standard antituberculous antibiotics, as well as other currently available antibiotics. New antibiotic approaches to the treatment of M. abscessus are urgently needed. The goal of the present study was to assess the growth-inhibitory activity of different Ga compounds against an American Type Culture Collection (ATCC) strain and clinical isolates of M. abscessus obtained from CF and other patients. In our results, using Ga(NO3)3 and all of the other Ga compounds tested inhibited the growth of ATCC 19977 and clinical isolates of M. abscessus. Inhibition was mediated by disrupting iron uptake, as the addition of exogenous iron (Fe) restored basal growth. There were modest differences in inhibition among the isolates for the same Ga chelates, and for most Ga chelates there was only a slight difference in potency from Ga(NO3)3. In contrast, Ga-protoporphyrin completely and significantly inhibited the ATCC strain and clinical isolates of M. abscessus at much lower concentrations than Ga(NO3)3. In in vitro broth culture, Ga-protoporphyrin was more potent than Ga(NO3)3. When M. abscessus growth inside the human macrophage THP-1 cell line was assessed, Ga-protoporphyrin was >20 times more active than Ga(NO3)3. The present work suggests that Ga exhibits potent growth-inhibitory capacity against the ATCC strain, as well as against antibiotic-resistant clinical isolates of M. abscessus, including the highly antibiotic-resistant strain MC2638. Ga-based therapy offers the potential for further development as a novel therapy against M. abscessus.
Collapse
|
47
|
Complete Genome Sequence of Pseudomonas aeruginosa Mucoid Strain FRD1, Isolated from a Cystic Fibrosis Patient. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00153-15. [PMID: 25792066 PMCID: PMC4395061 DOI: 10.1128/genomea.00153-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We announce here the complete genome sequence of the Pseudomonas aeruginosa mucoid strain FRD1, isolated from the sputum of a cystic fibrosis patient. The complete genome of P. aeruginosa FRD1 is 6,712,339 bp. This genome will allow comparative genomics to be used to identify genes associated with virulence, especially those involved in chronic pulmonary infections.
Collapse
|
48
|
Bacterial Adaptation during Chronic Respiratory Infections. Pathogens 2015; 4:66-89. [PMID: 25738646 PMCID: PMC4384073 DOI: 10.3390/pathogens4010066] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/15/2015] [Accepted: 02/25/2015] [Indexed: 01/22/2023] Open
Abstract
Chronic lung infections are associated with increased morbidity and mortality for individuals with underlying respiratory conditions such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). The process of chronic colonisation allows pathogens to adapt over time to cope with changing selection pressures, co-infecting species and antimicrobial therapies. These adaptations can occur due to environmental pressures in the lung such as inflammatory responses, hypoxia, nutrient deficiency, osmolarity, low pH and antibiotic therapies. Phenotypic adaptations in bacterial pathogens from acute to chronic infection include, but are not limited to, antibiotic resistance, exopolysaccharide production (mucoidy), loss in motility, formation of small colony variants, increased mutation rate, quorum sensing and altered production of virulence factors associated with chronic infection. The evolution of Pseudomonas aeruginosa during chronic lung infection has been widely studied. More recently, the adaptations that other chronically colonising respiratory pathogens, including Staphylococcus aureus, Burkholderia cepacia complex and Haemophilus influenzae undergo during chronic infection have also been investigated. This review aims to examine the adaptations utilised by different bacterial pathogens to aid in their evolution from acute to chronic pathogens of the immunocompromised lung including CF and COPD.
Collapse
|
49
|
Tran CS, Rangel SM, Almblad H, Kierbel A, Givskov M, Tolker-Nielsen T, Hauser AR, Engel JN. The Pseudomonas aeruginosa type III translocon is required for biofilm formation at the epithelial barrier. PLoS Pathog 2014; 10:e1004479. [PMID: 25375398 PMCID: PMC4223071 DOI: 10.1371/journal.ppat.1004479] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/18/2014] [Indexed: 12/24/2022] Open
Abstract
Clinical infections by Pseudomonas aeruginosa, a deadly Gram-negative, opportunistic pathogen of immunocompromised hosts, often involve the formation of antibiotic-resistant biofilms. Although biofilm formation has been extensively studied in vitro on glass or plastic surfaces, much less is known about biofilm formation at the epithelial barrier. We have previously shown that when added to the apical surface of polarized epithelial cells, P. aeruginosa rapidly forms cell-associated aggregates within 60 minutes of infection. By confocal microscopy we now show that cell-associated aggregates exhibit key characteristics of biofilms, including the presence of extracellular matrix and increased resistance to antibiotics compared to planktonic bacteria. Using isogenic mutants in the type III secretion system, we found that the translocon, but not the effectors themselves, were required for cell-associated aggregation on the surface of polarized epithelial cells and at early time points in a murine model of acute pneumonia. In contrast, the translocon was not required for aggregation on abiotic surfaces, suggesting a novel function for the type III secretion system during cell-associated aggregation. Supernatants from epithelial cells infected with wild-type bacteria or from cells treated with the pore-forming toxin streptolysin O could rescue aggregate formation in a type III secretion mutant, indicating that cell-associated aggregation requires one or more host cell factors. Our results suggest a previously unappreciated function for the type III translocon in the formation of P. aeruginosa biofilms at the epithelial barrier and demonstrate that biofilms may form at early time points of infection. Clinical infections by Pseudomonas aeruginosa, a deadly Gram-negative, opportunistic pathogen of immunocompromised patients, involve the formation of antibiotic-resistant biofilms. Although P. aeruginosa biofilm formation has been extensively studied on glass or plastic surfaces, less is known about biofilm formation at the epithelial barrier. This study shows that, on epithelial cells, P. aeruginosa forms aggregates that exhibit key characteristics of biofilms. Furthermore, we demonstrate that aggregation on epithelial cells and at early time points in mouse pneumonia requires pore formation mediated by the type III secretion system. Our results indicate that biofilm-like aggregation is induced by a host cell factor that is released after pore formation, suggesting an unexpected role for an acute virulence factor in biofilm formation.
Collapse
Affiliation(s)
- Cindy S Tran
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Stephanie M Rangel
- Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois, United States of America
| | - Henrik Almblad
- Costern Biofilm Center, Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Michael Givskov
- Costern Biofilm Center, Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Tim Tolker-Nielsen
- Costern Biofilm Center, Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alan R Hauser
- Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois, United States of America
| | - Joanne N Engel
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America; Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
50
|
De Simone M, Spagnuolo L, Lorè NI, Rossi G, Cigana C, De Fino I, Iraqi FA, Bragonzi A. Host genetic background influences the response to the opportunistic Pseudomonas aeruginosa infection altering cell-mediated immunity and bacterial replication. PLoS One 2014; 9:e106873. [PMID: 25268734 PMCID: PMC4182038 DOI: 10.1371/journal.pone.0106873] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/02/2014] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa is a common cause of healthcare-associated infections including pneumonia, bloodstream, urinary tract, and surgical site infections. The clinical outcome of P. aeruginosa infections may be extremely variable among individuals at risk and patients affected by cystic fibrosis. However, risk factors for P. aeruginosa infection remain largely unknown. To identify and track the host factors influencing P. aeruginosa lung infections, inbred immunocompetent mouse strains were screened in a pneumonia model system. A/J, BALB/cJ, BALB/cAnNCrl, BALB/cByJ, C3H/HeOuJ, C57BL/6J, C57BL/6NCrl, DBA/2J, and 129S2/SvPasCRL mice were infected with P. aeruginosa clinical strain and monitored for body weight and mortality up to seven days. The most deviant survival phenotypes were observed for A/J, 129S2/SvPasCRL and DBA/2J showing high susceptibility while BALB/cAnNCrl and C3H/HeOuJ showing more resistance to P. aeruginosa infection. Next, one of the most susceptible and resistant mouse strains were characterized for their deviant clinical and immunological phenotype by scoring bacterial count, cell-mediated immunity, cytokines and chemokines profile and lung pathology in an early time course. Susceptible A/J mice showed significantly higher bacterial burden, higher cytokines and chemokines levels but lower leukocyte recruitment, particularly neutrophils, when compared to C3H/HeOuJ resistant mice. Pathologic scores showed lower inflammatory severity, reduced intraluminal and interstitial inflammation extent, bronchial and parenchymal involvement and diminished alveolar damage in the lungs of A/J when compared to C3H/HeOuJ. Our findings indicate that during an early phase of infection a prompt inflammatory response in the airways set the conditions for a non-permissive environment to P. aeruginosa replication and lock the spread to other organs. Host gene(s) may have a role in the reduction of cell-mediated immunity playing a critical role in the control of P. aeruginosa infection. These results now provide a basis for mapping genomic regions underlying host susceptibility to P. aeruginosa infection.
Collapse
Affiliation(s)
- Maura De Simone
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Lorenza Spagnuolo
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Nicola Ivan Lorè
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Cristina Cigana
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Ida De Fino
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alessandra Bragonzi
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|