1
|
Li Z, Liu Z, Lin M, Pan H, Liu Y, Liu Y, Xie Y, Zhang J, Guan S, Li Y, Zhu M, Fang Y, Shen Z, Deng H. Acetylation-induced degradation of ECHS1 enhances BCAA accumulation and proliferation in KRAS-mutant colorectal cancer. J Exp Clin Cancer Res 2025; 44:164. [PMID: 40437561 PMCID: PMC12117712 DOI: 10.1186/s13046-025-03399-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/22/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Branched-chain amino acid (BCAA) metabolism is dysregulated in colorectal cancer (CRC), with elevated plasma BCAA levels significantly associated with an increased risk of developing the disease. However, whether BCAAs directly promote CRC progression and their underlying mechanisms remain unclear. METHODS In this study, we investigated the metabolic alterations in KRAS-mutant CRC. We examined the effects of restricting BCAA supply on the proliferation and metastasis of KRAS-mutant CRC cells both in vitro and in vivo. RESULTS We found that in KRAS-mutant CRC, BCAAs and their metabolic products accumulate markedly. Restricting the BCAA supply specifically inhibits the proliferation of KRAS-mutant CRC cells but does not affect metastasis. In these cancer cells, enoyl-CoA hydratase-1 (ECHS1), a key enzyme in BCAA metabolism, is downregulated. Furthermore, BCAAs enhance the acetylation of lysine 204 on ECHS1, impairing its ability to bind enoyl-CoA and reducing its catalytic activity. This modification triggers the ubiquitination of ECHS1 and its subsequent degradation, diminishing BCAA catabolism and leading to its cellular accumulation. This accumulation activates the mTORC1 signaling pathway, which induces the transcriptional activation of downstream target proteins and promotes the malignant progression of CRC. CONCLUSIONS Limiting BCAA intake not only suppresses tumor growth in KRAS-mutant CRC but also enhances the efficacy of the KRAS G12D inhibitor MRTX1133 and the monoclonal antibody bevacizumab. Our findings reveal a previously unknown regulatory mechanism of ECHS1 in CRC and offer new potential therapeutic targets.
Collapse
Affiliation(s)
- Zhenkang Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Zhengyu Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Mingdao Lin
- Department of Anorectal Surgery, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, Haikou, Hainan Province, 570311, China
| | - Huayang Pan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yuechen Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yang Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yuwen Xie
- Department of Radiation Oncology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, Haikou, Hainan Province, 570311, China
| | - Jinchao Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Shenyuan Guan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yongsheng Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Mulan Zhu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| | - Yuan Fang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| | - Zhiyong Shen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| | - Haijun Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| |
Collapse
|
2
|
Yang R, Xu Y, Zhu F, Ma X, Fan T, Wang HL. Gut microbiome, a potential modulator of neuroepigenome. J Nutr Biochem 2025:109961. [PMID: 40412567 DOI: 10.1016/j.jnutbio.2025.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 04/01/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025]
Abstract
Gut microbiome has a considerable impact on the central nervous system via the "gut-brain axis". Neuroepigenome emerges as the interface between environment and genes, potentially help conveying the signals derived from the microbiome to the brain tissue. While only a limited number of studies have implicated epigenetic roles in the gut-brain axis, this review explores how gut microbiome might impact various brain-based epigenetic mechanisms, including DNA methylation, histone modification, ncRNA and RNA methylation, notably in the context of the specific neural complications. Among the epigenetic mechanisms, histone acetylation was most well-studied with respect to its relationships with gut microbiome, exerting a dynamic influence on gene expression in the brain. Furthermore, the pathways connecting gut bacteria to neuroepigenome were summarized, highlighting the roles of metabolites such as butyrate, propionate, acetate, lactate, and folate. Of particular interest, the roles of butyrate are emphasized due to their outstanding inhibitory activity towards histone deacetylases (HDACs), among other mechanisms. It is worth noting that some indirect gut-brain pathways may also be associated with the interplay between microbiome and neuroepigenome, while IL-6 has been found to effectively transmit microbe-derived signals to histone methylation in brains. Finally, we recapitulate the future perspectives critical to understanding this gut-brain crosstalk, such as clarifying the cause-and-effect relationship, bacterial cross-feeding within the gut, and the mechanisms underlying the site-specific histone modification in the brain. Together, this review attempts to consolidate our current knowledge about the "microbiome-neuroepigenome interplay" and propose a conceptual pathway to decipher the gut-brain axis in various neurological conditions.
Collapse
Affiliation(s)
- Ruili Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yi Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Feng Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaojing Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tingting Fan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
3
|
Xu M, Wang W, Lu S, Xiong M, Zhao T, Yu Y, Song C, Yang J, Zhang N, Cao L, Sun G, Chen S, Wang P. The advances in acetylation modification in senescence and aging-related diseases. Front Physiol 2025; 16:1553646. [PMID: 40421455 PMCID: PMC12104306 DOI: 10.3389/fphys.2025.1553646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/28/2025] [Indexed: 05/28/2025] Open
Abstract
Aging is a process in which organisms or cells undergo a decline in their functions. Epigenetic modification changes have been recognized as a senescence hallmark in both natural aging and stimulation-induced senescence. An acetylation modification is a dynamic process, which plays a crucial role in the senescence process through DNA stability, metabolism, and signaling pathways. We summarized the role and regulatory pathways of acetylation modifications in senescence. Various cell fate-determining proteins regulate multiple cellular processes through acetylation modifications. These processes interact and coordinate with each other, forming an integrated regulatory network framework that collectively drives cellular senescence via multiple systemic mechanisms. Based on these findings, we proposed the "acetylation-network regulation-cellular senescence" model, to elaborate how acetylation contributes to senescence. We believe this insight could provide new directions and intervention strategies for senescence and aging-related diseases.
Collapse
Affiliation(s)
- Maiqi Xu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wenbin Wang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Saien Lu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Mengyao Xiong
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Tong Zhao
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yao Yu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jinjing Yang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Liu Cao
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Sichong Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Pengbo Wang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
4
|
Karim R, Teng W, Behram CD, Lin H. SIRT2-mediated ACSS2 K271 deacetylation suppresses lipogenesis under nutrient stress. eLife 2025; 13:RP97019. [PMID: 40331334 PMCID: PMC12058118 DOI: 10.7554/elife.97019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
De novo lipogenesis is associated with the development of human diseases such as cancer, diabetes, and obesity. At the core of lipogenesis lies acetyl coenzyme A (CoA), a metabolite that plays a crucial role in fatty acid synthesis. One of the pathways contributing to the production of cytosolic acetyl-CoA is mediated by acetyl-CoA synthetase 2 (ACSS2). Here, we reveal that when cells encounter nutrient stress, particularly a deficiency in amino acids, Sirtuin 2 (SIRT2) catalyzes the deacetylation of ACSS2 at the lysine residue K271. This results in K271 ubiquitination and subsequently proteasomal degradation of ACSS2. Substitution of K271 leads to decreased ubiquitination of ACSS2, increased ACSS2 protein level, and thus increased lipogenesis. Our study uncovers a mechanism that cells employ to efficiently manage lipogenesis during periods of nutrient stress.
Collapse
Affiliation(s)
- Rezwana Karim
- Department of Chemistry and Chemical Biology, Cornell UniversityIthacaUnited States
| | - Wendi Teng
- Department of Chemistry and Chemical Biology, Cornell UniversityIthacaUnited States
| | - Cameron D Behram
- Department of Chemistry and Chemical Biology, Cornell UniversityIthacaUnited States
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell UniversityIthacaUnited States
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology; Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
- Howard Hughes Medical Institute; Department of Medicine and Department of Chemistry, The University of ChicagoChicagoUnited States
| |
Collapse
|
5
|
Peng B, Wang Y, Zhang H. Mitonuclear Communication in Stem Cell Function. Cell Prolif 2025; 58:e13796. [PMID: 39726221 PMCID: PMC12099226 DOI: 10.1111/cpr.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Mitochondria perform multiple functions within the cell, including the production of ATP and a great deal of metabolic intermediates, while also contributing to the cellular stress response. The majority of mitochondrial proteins are encoded by nuclear genomes, highlighting the importance of mitonuclear communication for sustaining mitochondrial homeostasis and functional. As a crucial part of the intracellular signalling network, mitochondria can impact stem cell fate determinations. Considering the essential function of stem cells in tissue maintenance, regeneration and aging, it is important to understand how mitochondria influence stem cell fate. This review explores the significant roles of mitonuclear communication and mitochondrial proteostasis, highlighting their influence on stem cells. We also examine how mitonuclear interactions contribute to cellular homeostasis, stem cell therapies, and the potential for extending lifespan.
Collapse
Affiliation(s)
- Baozhou Peng
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- The Department of Histology and Embryology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yaning Wang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- The Department of Histology and Embryology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Hongbo Zhang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- The Department of Histology and Embryology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
6
|
Xu G, Schell J, Quan S, Gao Y, Wei SJ, Pan M, Han X, Li G, Zhou D, Jiang H, Dong FF, Munkácsy E, Horikoshi N, Gius D. Mitochondrial ACSS1-K635 acetylation knock-in mice exhibit altered liver lipid metabolism on a ketogenic diet. Free Radic Biol Med 2025; 232:260-268. [PMID: 40074187 DOI: 10.1016/j.freeradbiomed.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/14/2025]
Abstract
Acetyl-CoA Synthetase Short Chain Family Member-1 (ACSS1) catalyzes the ligation of acetate and coenzyme A to generate acetyl-CoA in the mitochondria to produce ATP through the tricarboxylic acid (TCA) cycle. We recently generated an ACSS1-acetylation (Ac) mimic knock-in mouse, where lysine 635 was mutated to glutamine (K635Q), which structurally and biochemically mimics an acetylated lysine. ACSS1 enzymatic activity is regulated, at least in part, through the acetylation of lysine 635 in mice (lysine 642 in humans), a Sirtuin 3 deacetylation target. We challenged our Acss1K635Q knock-in mice with a three-week ketogenic diet. While both wild-type and Acss1K635Q knock-in mice were in ketosis with similar blood glucose levels, the Acss1K635Q mice exhibited elevated blood acetate and liver acetyl-CoA. In addition, and importantly, compared to wild-type mice, the liver in the Acss1K635Q mice displayed a much more predominant liver steatosis morphology and accumulation of lipid drops, as measured by H&E and Oil Red O staining. RNAseq analysis identified that genes related to mitochondrial respiratory chain complexes and oxidative stress were significantly overexpressed in the Acss1K635Q mice on a KD. Finally, lipidomics analysis revealed very different lipid profiles for these groups, including a dramatic increase in triacylglycerides (TAGs), phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and cardiolipins in the Acss1K635Q liver.
Collapse
Affiliation(s)
- Guogang Xu
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA
| | - Joseph Schell
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA
| | - Songhua Quan
- Department of Radiation Oncology, Robert Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yucheng Gao
- Department of Radiation Oncology, Robert Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sung-Jen Wei
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA
| | - Guiming Li
- Center for Innovative Drug Discovery, Department of Biochemistry and Structural Biology, UT Health San Antonio, TX, USA
| | - Daohong Zhou
- Center for Innovative Drug Discovery, Department of Biochemistry and Structural Biology, UT Health San Antonio, TX, USA
| | - Haiyan Jiang
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA
| | - Felix F Dong
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA
| | - Erin Munkácsy
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA
| | - David Gius
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA.
| |
Collapse
|
7
|
Li L, Zeng Y, Cheng G, Yang H. Acetylation and deacetylation dynamics in stress response to cancer and infections. Semin Immunol 2025; 78:101957. [PMID: 40288003 DOI: 10.1016/j.smim.2025.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
In response to stress stimuli, cells have evolved various mechanisms to integrate internal and external signals to achieve dynamic homeostasis. Lysine acetyltransferase (KATs) and deacetyltransferase (KDACs) are the key modulators of epigenetic modifications, enabling cells to modulate cellular responses through the acetylation and deacetylation of both histone and nonhistone proteins. Understanding the signaling pathways involved in cellular stress response, along with the roles of KATs and KDACs may pave the way for the development of novel therapeutic strategies. This review discusses the molecular mechanisms of acetylation and deacetylation in stress responses related to tumorigenesis, viral and bacterial infections. In tumorigenesis section, we focused on the tumor cells' intrinsic and external molecules and signaling pathways regulated by acetylation and deacetylation modification. In viral and bacterial infections, we summarized the update research on acetylation and deacetylation modification in viral and bacterial infections, which systematical introduction on this topic is not too much. Additionally, we provide an overview of current therapeutic interventions and clinical trials involving KAT and KDAC inhibitors in the treatment of cancer, as well as viral and bacterial infection-related diseases.
Collapse
Affiliation(s)
- Lili Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China; Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Yanqiong Zeng
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Genhong Cheng
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Heng Yang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
| |
Collapse
|
8
|
Jia Y, Ye M, Bukulmez O, Norman RJ, Liu W, Chen M. Melatonin Rescues Hyperacetylation of Liver and Impaired Enzymatic Activities of Mitochondrial in IVF Offspring. Reprod Sci 2025:10.1007/s43032-025-01846-2. [PMID: 40246783 DOI: 10.1007/s43032-025-01846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/07/2025] [Indexed: 04/19/2025]
Abstract
Increased risks of obesity and abnormal glucose metabolism were observed in IVF offspring. However, the underlying molecular mechanism was still unclear. As an important post-translational modification (PTM), lysine acetylation changed with the changes in the metabolic environment and usually occurred on metabolic enzymes to regulate metabolic pathways and enzyme activities and participated in the regulation of downstream metabolites. In our previous study, we proved that supplementation of melatonin in the culture medium improved obesity and metabolic dysfunction in IVF mice. In this study, we further demonstrated that elevated levels of protein acetylation in hepatic cells might be associated with impaired glucose metabolism in IVF offspring, and melatonin could significantly reduce the acetylation level and improve the adverse phenotype of IVF mice. More importantly, we discovered that the supplementation of melatonin in the culture medium during in vitro fertilization significantly enhanced the activity of enzymes, especially citrate synthase (CS) and isocitrate dehydrogenase (IDH) which were involved in tricarboxylic acid recycling and played critical roles in glucose metabolism of liver. Thus, our findings elucidated a new perspective on the mechanisms of metabolic reprogramming of IVF mice.
Collapse
Affiliation(s)
- Yanping Jia
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China
| | - Mingming Ye
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China
| | - Orhan Bukulmez
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert J Norman
- Robinson Research Institute, School of Paediatrics and Reproductive Health, the University of Adelaide, Adelaide, SA, Australia
| | - Wenqiang Liu
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China.
| | - Miaoxin Chen
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China.
| |
Collapse
|
9
|
Lundqvist T, Stenlid R, Halldin M. Hormonal Crossroads in Inborn Errors of the Metabolism Impact of Puberty and Dietary Interventions on Metabolic Health. Metabolites 2025; 15:235. [PMID: 40278364 PMCID: PMC12029320 DOI: 10.3390/metabo15040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: Inborn errors of metabolism (IEMs) represent a diverse group of genetic disorders characterized by enzymatic defects that disrupt metabolic pathways, leading to toxic metabolite accumulation, deficits, or impaired macromolecule synthesis. While strict dietary interventions are critical for managing many of these conditions, hormonal and metabolic changes during puberty introduce new challenges. Advancements in early diagnosis and treatment have significantly extended the lifespan of individuals with IEMs. However, this increased longevity is associated with heightened risks of new medical problems, including obesity, insulin resistance, and type 2 diabetes mellitus (T2DM), as these complications share mechanistic features with those seen in obesity and T2DM. Methods: This mini-review examines current knowledge of the intricate interplay between pubertal hormones and metabolic pathways in IEM patients. Results: We address critical questions, such as if puberty intensifies the risk of metabolic derangements in these individuals and if there is a metabolic intersection where these disorders converge, leading to shared complications. We highlight the impact of puberty-induced hormonal fluctuations, such as growth hormone (GH) surges and sex steroid activity, on disorders like phenylketonuria, urea cycle defects, and fatty acid oxidation disorders. Moreover, we explore the role of dietary interventions in mitigating or exacerbating these effects, emphasizing the importance of balancing nutritional needs during growth spurts. Conclusions: A multidisciplinary approach integrating endocrinology, nutrition, and emerging therapies is advocated to optimize metabolic health during puberty. Addressing these challenges is critical for improving long-term outcomes for individuals with IEMs, particularly during this pivotal developmental phase.
Collapse
Affiliation(s)
- Thomas Lundqvist
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 76 Stockholm, Sweden
- Unit for Pediatric Endocrinology and Metabolic Disorders, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Rasmus Stenlid
- Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Maria Halldin
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 76 Stockholm, Sweden
- Unit for Pediatric Endocrinology and Metabolic Disorders, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
10
|
Zheng L, Du Y, Steinchen W, Girbig M, Abendroth F, Jalomo-Khayrova E, Bedrunka P, Bekeredjian-Ding I, Mais CN, Hochberg GKA, Freitag J, Bange G. Regulation of acetyl-CoA biosynthesis via an intertwined acetyl-CoA synthetase/acetyltransferase complex. Nat Commun 2025; 16:2557. [PMID: 40089509 PMCID: PMC11910552 DOI: 10.1038/s41467-025-57842-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
Acetyl-CoA synthetase (Acs) generates acetyl-coenzyme A (Ac-CoA) but its excessive activity can deplete ATP and lead to a growth arrest. To prevent this, Acs is regulated through Ac-CoA-dependent feedback inhibition executed by Ac-CoA-dependent acetyltransferases such as AcuA in Bacillus subtilis. AcuA acetylates the catalytic lysine of AcsA turning the synthetase inactive. Here, we report that AcuA and AcsA form a tightly intertwined complex - the C-terminal domain binds to acetyltransferase domain of AcuA, while the C-terminus of AcuA occupies the CoA-binding site in the N-terminal domain of AcsA. Formation of the complex reduces AcsA activity in addition to the well-established acetylation of the catalytic lysine 549 in AcsA which we show can disrupt the complex. Thus, different modes of regulation accomplished through AcuA adjust AcsA activity to the concentrations of the different substrates of the reaction. In summary, our study provides detailed mechanistic insights into the regulatory framework underlying acetyl-CoA biosynthesis from acetate.
Collapse
Affiliation(s)
- Liujuan Zheng
- Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- University of Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Departments of Chemistry and Biology, Marburg, Germany.
| | - Yifei Du
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Wieland Steinchen
- University of Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Departments of Chemistry and Biology, Marburg, Germany
| | - Mathias Girbig
- Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Frank Abendroth
- University of Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Departments of Chemistry and Biology, Marburg, Germany
| | - Ekaterina Jalomo-Khayrova
- University of Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Departments of Chemistry and Biology, Marburg, Germany
| | - Patricia Bedrunka
- University of Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Departments of Chemistry and Biology, Marburg, Germany
| | | | - Christopher-Nils Mais
- University of Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Departments of Chemistry and Biology, Marburg, Germany
| | - Georg K A Hochberg
- Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
- University of Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Departments of Chemistry and Biology, Marburg, Germany
| | - Johannes Freitag
- University of Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Departments of Chemistry and Biology, Marburg, Germany
| | - Gert Bange
- Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- University of Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Departments of Chemistry and Biology, Marburg, Germany.
| |
Collapse
|
11
|
Li J, Pan J, Wang L, Ji G, Dang Y. Colorectal Cancer: Pathogenesis and Targeted Therapy. MedComm (Beijing) 2025; 6:e70127. [PMID: 40060193 PMCID: PMC11885891 DOI: 10.1002/mco2.70127] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 04/29/2025] Open
Abstract
Colorectal cancer (CRC) ranks among the most prevalent malignant neoplasms globally. A growing body of evidence underscores the pivotal roles of genetic alterations and dysregulated epigenetic modifications in the pathogenesis of CRC. In recent years, the reprogramming of tumor cell metabolism has been increasingly acknowledged as a hallmark of cancer. Substantial evidence suggests a crosstalk between tumor cell metabolic reprogramming and epigenetic modifications, highlighting a complex interplay between metabolism and the epigenetic genome that warrants further investigation. Biomarkers associated with the pathogenesis and metabolic characteristics of CRC hold significant clinical implications. Nevertheless, elucidating the genetic, epigenetic, and metabolic landscapes of CRC continues to pose considerable challenges. Here, we attempt to summarize the key genes driving the onset and progression of CRC and the related epigenetic regulators, clarify the roles of gene expression and signaling pathways in tumor metabolism regulation, and explore the potential crosstalk between epigenetic events and tumor metabolic reprogramming, providing a comprehensive mechanistic explanation for the malignant progression of CRC. Finally, by integrating reliable targets from genetics, epigenetics, and metabolic processes that hold promise for translation into clinical practice, we aim to offer more strategies to overcome the bottlenecks in CRC treatment.
Collapse
Affiliation(s)
- Jingyuan Li
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiashu Pan
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Lisheng Wang
- Department of BiochemistryMicrobiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaOntarioCanada
- China‐Canada Centre of Research for Digestive DiseasesUniversity of OttawaOttawaOntarioCanada
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
12
|
Fiorentino F, Fabbrizi E, Mai A, Rotili D. Activation and inhibition of sirtuins: From bench to bedside. Med Res Rev 2025; 45:484-560. [PMID: 39215785 PMCID: PMC11796339 DOI: 10.1002/med.22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
The sirtuin family comprises seven NAD+-dependent enzymes which catalyze protein lysine deacylation and mono ADP-ribosylation. Sirtuins act as central regulators of genomic stability and gene expression and control key processes, including energetic metabolism, cell cycle, differentiation, apoptosis, and aging. As a result, all sirtuins play critical roles in cellular homeostasis and organism wellness, and their dysregulation has been linked to metabolic, cardiovascular, and neurological diseases. Furthermore, sirtuins have shown dichotomous roles in cancer, acting as context-dependent tumor suppressors or promoters. Given their central role in different cellular processes, sirtuins have attracted increasing research interest aimed at developing both activators and inhibitors. Indeed, sirtuin modulation may have therapeutic effects in many age-related diseases, including diabetes, cardiovascular and neurodegenerative disorders, and cancer. Moreover, isoform selective modulators may increase our knowledge of sirtuin biology and aid to develop better therapies. Through this review, we provide critical insights into sirtuin pharmacology and illustrate their enzymatic activities and biological functions. Furthermore, we outline the most relevant sirtuin modulators in terms of their modes of action, structure-activity relationships, pharmacological effects, and clinical applications.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| | - Emanuele Fabbrizi
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| | - Antonello Mai
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
- Pasteur Institute, Cenci‐Bolognetti FoundationSapienza University of RomeRomeItaly
| | - Dante Rotili
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| |
Collapse
|
13
|
El-Kurjieh A, Al-Arab R, Hachem QA, Ibrahim JN, Kobeissy PH. ACSS2 and metabolic diseases: from lipid metabolism to therapeutic target. Lipids Health Dis 2025; 24:74. [PMID: 40001058 PMCID: PMC11853604 DOI: 10.1186/s12944-025-02491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Elevated incidence of metabolic disorders has been reported worldwide in the recent decade, highlighting the need for developing efficient therapies. These diseases result from a complex interplay of various factors that contribute to disease progression, complications, and resistance to current treatment options. Acetyl-CoA Synthetase Short Chain Family Member 2 (ACSS2) is a nucleo-cytosolic enzyme with both lipogenic and metabolic regulatory roles. Studies on ACSS2 have shown that it is involved in pathways commonly dysregulated in metabolic disorders, leading to fat deposition and disrupted cellular signaling. Although multiple studies have suggested a role of ACSS2 in the metabolic rewiring during tumorigenesis, few studies have examined its involvement in the pathophysiology of metabolic diseases. Recent evidence indicates that ACSS2 may contribute to the pathogenesis of various metabolic disorders making its examination of great interest and potentially aiding in the development of new therapeutic strategies. The objective of this review is to summarize the current understanding of ACSS2's role in metabolic disorders and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Alaa El-Kurjieh
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Reem Al-Arab
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Qamar Abou Hachem
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - José-Noel Ibrahim
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon.
| | - Philippe Hussein Kobeissy
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon.
| |
Collapse
|
14
|
Hardman-Kavanaugh RE, Storey AJ, Stuecker TN, Hood SE, Barrett-Wilt GA, Krishnamurthi VR, Wang Y, Byrum SD, Mackintosh SG, Edmondson RD, Wahls WP, Tackett AJ, Lewis JA. Dynamic global acetylation remodeling during the yeast heat shock response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632339. [PMID: 39935887 PMCID: PMC11812598 DOI: 10.1101/2025.01.10.632339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
All organisms experience stress and must rapidly respond to changing conditions. Thus, cells have evolved sophisticated rapid-response mechanisms such as post-translational protein modification to rapidly and reversibly modulate protein activity. One such post-translational modification is reversible lysine acetylation, where proteomic studies have identified thousands of acetylated proteins across diverse organisms. While the sheer size of the 'acetylome' is striking, the function of acetylation for the vast majority of proteins remains largely obscure. Here, we show that global acetylation plays a previously unappreciated role in the heat shock response of Saccharomyces cerevisiae. We find that dysregulated acetylation renders cells heat sensitive, and moreover, that the acetylome is globally remodeled during heat shock over time. Using quantitative acetyl-proteomics, we identified ~400 high-confidence acetyl marks across ~200 proteins that significantly change in acetylation when cells are shifted to elevated temperature. Proteins with significant changes in lysine acetylation during heat shock strongly overlap with genes induced or repressed by stress. Thus, we hypothesize that protein acetylation augments the heat shock response by activating induced proteins and inactivating repressed proteins. Intriguingly, we find nearly 40 proteins with at least two acetyl marks that significantly change in the opposite directions. These proteins are strongly enriched for chaperones and ribosomal proteins, suggesting that these two key processes are coordinately regulated by protein acetylation during heat shock. Moreover, we hypothesize that the same type of activating and inactivating marks that exist on histones may be a general feature of proteins regulated by acetylation. Overall, this work has identified a new layer of post-translational regulation that likely augments the classic heat shock response.
Collapse
Affiliation(s)
- Rebecca E. Hardman-Kavanaugh
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States of America
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States of America
| | - Aaron J. Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States of America
| | - Tara N. Stuecker
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States of America
| | - Stephanie E. Hood
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States of America
| | | | | | - Yong Wang
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States of America
- Department of Physics, University of Arkansas, Fayetteville 72701, AR, United States of America
- Materials Science and Engineering Program, University of Arkansas, Fayetteville 72701, AR, United States of America
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States of America
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States of America
| | - Rick D. Edmondson
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States of America
| | - Wayne P. Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States of America
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States of America
| | - Jeffrey A. Lewis
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States of America
| |
Collapse
|
15
|
You N, Liu G, Yu M, Chen W, Fei X, Sun T, Han M, Qin Z, Wei Z, Wang D. Reconceptualizing Endothelial-to-mesenchymal transition in atherosclerosis: Signaling pathways and prospective targeting strategies. J Adv Res 2025:S2090-1232(24)00627-1. [PMID: 39756576 DOI: 10.1016/j.jare.2024.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND The modification of endothelial cells (ECs) biological function under pathogenic conditions leads to the expression of mesenchymal stromal cells (MSCs) markers, defined as endothelial-to-mesenchymal transition (EndMT). Invisible in onset and slow in progression, atherosclerosis (AS) is a potential contributor to various atherosclerotic cardiovascular diseases (ASCVD). By triggering AS, EndMT, the "initiator" of AS, induces the progression of ASCVD such as coronary atherosclerotic heart disease (CHD) and ischemic cerebrovascular disease (ICD), with serious clinical complications such as myocardial infarction (MI) and stroke. In-depth research of the pathomechanisms of EndMT and identification of potential targeted therapeutic strategies hold considerable research value for the prevention and treatment of ASCVD-associated with delayed EndMT. Although previous studies have progressively unraveled the complexity of EndMT and its pathogenicity triggered by alterations in vascular microenvironmental factors, systematic descriptions of the most recent pathogenic roles of EndMT in the progression of AS, targeted therapeutic strategies, and their future research directions are scarce. AIM OF REVIEW We aim to provide new researchers with comprehensive knowledge of EndMT in AS. We exhaustively review the latest research advancements in the field and provide a theoretical basis for investigating EndMT, a biological process with sophisticated mechanisms. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarized that altered hemodynamics with microenvironmental crosstalk consisting of inflammatory responses or glycolysis, oxidative stress, lactate or acetyl-CoA (Ac-CoA), fatty acid oxidation (FAO), intracellular iron overload, and transcription factors, including ELK1 and STAT3, modulate the EndMT and affect AS progression. In addition, we provide new paradigms for the development of promising therapeutic agents against these disease-causing processes and indicate promising directions and challenges that need to be addressed to elucidate the EndMT process.
Collapse
Affiliation(s)
- Nanlin You
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Guohao Liu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengchen Yu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenbo Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoyao Fei
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tao Sun
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengtao Han
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhen Qin
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhaosheng Wei
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Donghai Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong 253032, China.
| |
Collapse
|
16
|
Nshanian M, Gruber JJ, Geller BS, Chleilat F, Lancaster SM, White SM, Alexandrova L, Camarillo JM, Kelleher NL, Zhao Y, Snyder MP. Short-chain fatty acid metabolites propionate and butyrate are unique epigenetic regulatory elements linking diet, metabolism and gene expression. Nat Metab 2025; 7:196-211. [PMID: 39789354 PMCID: PMC11774759 DOI: 10.1038/s42255-024-01191-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025]
Abstract
The short-chain fatty acids (SCFAs) propionate and butyrate have beneficial health effects, are produced in large amounts by microbial metabolism and have been identified as unique acyl lysine histone marks. To better understand the function of these modifications, we used chromatin immunoprecipitation followed by sequencing to map the genome-wide location of four short-chain acyl histone marks, H3K18pr, H3K18bu, H4K12pr and H4K12bu, in treated and untreated colorectal cancer (CRC) and normal cells as well as in mouse intestines in vivo. We correlate these marks with open chromatin regions and gene expression to access the function of the target regions. Our data demonstrate that propionate and butyrate bind and act as promoters of genes involved in growth, differentiation and ion transport. We propose a mechanism involving direct modification of specific genomic regions by SCFAs resulting in increased chromatin accessibility and, in the case of butyrate, opposing effects on the proliferation of normal versus CRC cells.
Collapse
Affiliation(s)
- Michael Nshanian
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Joshua J Gruber
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Benjamin S Geller
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Faye Chleilat
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Samuel M Lancaster
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Shannon M White
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Ludmila Alexandrova
- Vincent Coates Foundation Mass Spectrometry Laboratory, Stanford University, Stanford, CA, USA
| | - Jeannie M Camarillo
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Neil L Kelleher
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Yingming Zhao
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA.
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
17
|
van Haren MHI, Helmers NS, Verploegen L, Beckers VAC, Spruijt E. Shape transformations in peptide-DNA coacervates driven by enzyme-catalyzed deacetylation. SOFT MATTER 2024; 20:9493-9502. [PMID: 39575590 PMCID: PMC11582960 DOI: 10.1039/d4sm01091d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Biomolecular condensates formed by liquid-liquid phase separation (LLPS) are important organizers of biochemistry in living cells. Condensate formation can be dynamically regulated, for example, by protein binding or enzymatic processes. However, how enzymatic reactions can influence condensate shape and control shape transformations is less well understood. Here, we design a model condensate that can be formed by the enzymatic deacetylation of a small peptide by sirtuin-3 in the presence of DNA. Interestingly, upon nucleation condensates initially form gel-like aggregates that gradually transform into spherical droplets, displaying fusion and wetting. This process is governed by sirtuin-3 concentration, as more enzyme results in a faster aggregate-to-liquid transformation of the condensates. The counterintuitive transformation of gel-like to liquid-like condensates with increasing interaction strength between the peptide and DNA is recapitulated by forming condensates with different peptides and nucleic acids at increasing salt concentrations. Close to the critical point where coacervates dissolve, gel-like aggregates are formed with short double stranded DNA, but not with single stranded DNA or weakly binding peptides, even though the coacervate salt resistance is similar. At lower salt concentrations the interaction strength increases, and spherical, liquid-like condensates are formed. We attribute this behavior to bending of the DNA by oppositely charged peptides, which becomes stronger as the system moves further into the two-phase region. Overall, this work shows that enzymes can induce shape transformations of condensates and that condensate material properties do not necessarily reveal their stability.
Collapse
Affiliation(s)
- Merlijn H I van Haren
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6523 AJ Nijmegen, The Netherlands.
| | - Nienke S Helmers
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6523 AJ Nijmegen, The Netherlands.
| | - Luuk Verploegen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6523 AJ Nijmegen, The Netherlands.
| | - Viveca A C Beckers
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6523 AJ Nijmegen, The Netherlands.
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6523 AJ Nijmegen, The Netherlands.
| |
Collapse
|
18
|
Nshanian M, Gruber JJ, Geller BS, Chleilat F, Lancaster S, White SM, Alexandrova L, Camarillo JM, Kelleher NL, Zhao Y, Snyder MP. Short-chain fatty acid metabolites propionate and butyrate are unique epigenetic regulatory elements linking diet, metabolism and gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575111. [PMID: 38293216 PMCID: PMC10827076 DOI: 10.1101/2024.01.11.575111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The short-chain fatty acids (SCFA) propionate and butyrate have beneficial health effects, are produced in large amounts by microbial metabolism and have been identified as unique acyl lysine histone marks. In order to better understand the function of these modifications we used ChIP-seq to map the genome-wide location of four short-chain acyl histone marks H3K18pr, H3K18bu, H4K12pr and H4K12bu in treated and untreated colorectal cancer (CRC) and normal cells, as well as in mouse intestines in vivo . We correlate these marks with open chromatin regions along with gene expression to access the function of the target regions. Our data demonstrate that propionate and butyrate bind and act as promoters of genes involved in growth, differentiation as well as ion transport. We propose a mechanism involving direct modification of specific genomic regions, by SCFA resulting in increased chromatin accessibility, and in case of butyrate, opposing effects on the proliferation of normal versus CRC cells.
Collapse
|
19
|
Li X, Li Y, Hao Q, Jin J, Wang Y. Metabolic mechanisms orchestrated by Sirtuin family to modulate inflammatory responses. Front Immunol 2024; 15:1448535. [PMID: 39372420 PMCID: PMC11449768 DOI: 10.3389/fimmu.2024.1448535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Maintaining metabolic homeostasis is crucial for cellular and organismal health throughout their lifespans. The intricate link between metabolism and inflammation through immunometabolism is pivotal in maintaining overall health and disease progression. The multifactorial nature of metabolic and inflammatory processes makes study of the relationship between them challenging. Homologs of Saccharomyces cerevisiae silent information regulator 2 protein, known as Sirtuins (SIRTs), have been demonstrated to promote longevity in various organisms. As nicotinamide adenine dinucleotide-dependent deacetylases, members of the Sirtuin family (SIRT1-7) regulate energy metabolism and inflammation. In this review, we provide an extensive analysis of SIRTs involved in regulating key metabolic pathways, including glucose, lipid, and amino acid metabolism. Furthermore, we systematically describe how the SIRTs influence inflammatory responses by modulating metabolic pathways, as well as inflammatory cells, mediators, and pathways. Current research findings on the preferential roles of different SIRTs in metabolic disorders and inflammation underscore the potential of SIRTs as viable pharmacological and therapeutic targets. Future research should focus on the development of promising compounds that target SIRTs, with the aim of enhancing their anti-inflammatory activity by influencing metabolic pathways within inflammatory cells.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| | - Yunjia Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| | - Quan Hao
- China Spallation Neutron Source, Dongguan, Guangdong, China
| | - Jing Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
20
|
Gómez-Fernández D, Romero-González A, Suárez-Rivero JM, Cilleros-Holgado P, Álvarez-Córdoba M, Piñero-Pérez R, Romero-Domínguez JM, Reche-López D, López-Cabrera A, Ibáñez-Mico S, Castro de Oliveira M, Rodríguez-Sacristán A, González-Granero S, García-Verdugo JM, Sánchez-Alcázar JA. A Multi-Target Pharmacological Correction of a Lipoyltransferase LIPT1 Gene Mutation in Patient-Derived Cellular Models. Antioxidants (Basel) 2024; 13:1023. [PMID: 39199267 PMCID: PMC11351668 DOI: 10.3390/antiox13081023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Mutations in the lipoyltransferase 1 (LIPT1) gene are rare inborn errors of metabolism leading to a fatal condition characterized by lipoylation defects of the 2-ketoacid dehydrogenase complexes causing early-onset seizures, psychomotor retardation, abnormal muscle tone, severe lactic acidosis, and increased urine lactate, ketoglutarate, and 2-oxoacid levels. In this article, we characterized the disease pathophysiology using fibroblasts and induced neurons derived from a patient bearing a compound heterozygous mutation in LIPT1. A Western blot analysis revealed a reduced expression of LIPT1 and absent expression of lipoylated pyruvate dehydrogenase E2 (PDH E2) and alpha-ketoglutarate dehydrogenase E2 (α-KGDH E2) subunits. Accordingly, activities of PDH and α-KGDH were markedly reduced, associated with cell bioenergetics failure, iron accumulation, and lipid peroxidation. In addition, using a pharmacological screening, we identified a cocktail of antioxidants and mitochondrial boosting agents consisting of pantothenate, nicotinamide, vitamin E, thiamine, biotin, and α-lipoic acid, which is capable of rescuing LIPT1 pathophysiology, increasing the LIPT1 expression and lipoylation of mitochondrial proteins, improving cell bioenergetics, and eliminating iron overload and lipid peroxidation. Furthermore, our data suggest that the beneficial effect of the treatment is mainly mediated by SIRT3 activation. In conclusion, we have identified a promising therapeutic approach for correcting LIPT1 mutations.
Collapse
Affiliation(s)
- David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Juan M. Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - José Manuel Romero-Domínguez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Alejandra López-Cabrera
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Salvador Ibáñez-Mico
- Hospital Clínico Universitario Virgen de la Arrixaca, Servicio de Neuropediatría, 30120 Murcia, Spain;
| | - Marta Castro de Oliveira
- Neuropediatria, Neurolinkia, C. Jardín de la Isla, 8, Local 4 y 5, 41014 Sevilla, Spain;
- FEA Pediatría, Centro Universitario Hospitalar de Faro, R. Leão Penedo, 8000-386 Faro, Portugal
- Neuropediatria, Servicio de Pediatría, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain;
| | - Andrés Rodríguez-Sacristán
- Neuropediatria, Servicio de Pediatría, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain;
- Departamento de Farmacología, Radiología y Pediatría de la Facultad de Medicina de la Universidad de Sevilla, 41009 Sevilla, Spain
| | - Susana González-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46980 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46980 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| |
Collapse
|
21
|
Patyal P, Ameer FS, Verma A, Zhang X, Azhar G, Shrivastava J, Sharma S, Zhang R, Wei JY. The Role of Sirtuin-1 Isoforms in Regulating Mitochondrial Function. Curr Issues Mol Biol 2024; 46:8835-8851. [PMID: 39194739 DOI: 10.3390/cimb46080522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
The sirtuin-1 (SIRT1) gene contains multiple exons that usually undergo alternative splicing. The exclusion of one or more exons causes domain loss in the alternatively spliced isoforms and may change their functions. However, it is not completely established to what extent the loss of a non-catalytic domain could affect its regulatory function. Using muscle cells and SIRT1-knockout cells, we examined the function of the constitutively spliced isoform (SIRT1-v1) versus the alternatively spliced isoforms SIRT1-v2 and SIRT1-v3 that had lost part of the N-terminal region. Our data indicate that partial loss of the N-terminal domains in SIRT1-v2 and SIRT1-v3 attenuated their function. The full-length SIRT1-v1 significantly increased the oxidative phosphorylation and ATP production rate. Furthermore, SIRT1-v1 specifically upregulated the mitochondrial respiratory complex I without affecting the activity of complexes II, III, and IV. Additionally, domain loss affected the regulation of site-specific lysine acetylation in the histone H4 protein, the gene expression of respiratory complex I subunits, and the metabolic balance of oxidative phosphorylation versus glycolysis. Since alternatively spliced isoforms tend to increase with advancing age, the impact of SIRT1 isoforms on mitochondrial respiratory complexes warrants further investigation.
Collapse
Affiliation(s)
- Pankaj Patyal
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Fathima S Ameer
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ambika Verma
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xiaomin Zhang
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gohar Azhar
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jyotsna Shrivastava
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Shakshi Sharma
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Rachel Zhang
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jeanne Y Wei
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
22
|
Trinh D, Al Halabi L, Brar H, Kametani M, Nash JE. The role of SIRT3 in homeostasis and cellular health. Front Cell Neurosci 2024; 18:1434459. [PMID: 39157755 PMCID: PMC11327144 DOI: 10.3389/fncel.2024.1434459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024] Open
Abstract
Mitochondria are responsible for maintaining cellular energy levels, and play a major role in regulating homeostasis, which ensures physiological function from the molecular to whole animal. Sirtuin 3 (SIRT3) is the major protein deacetylase of mitochondria. SIRT3 serves as a nutrient sensor; under conditions of mild metabolic stress, SIRT3 activity is increased. Within the mitochondria, SIRT3 regulates every complex of the electron transport chain, the tricarboxylic acid (TCA) and urea cycles, as well as the mitochondria membrane potential, and other free radical scavengers. This article reviews the role of SIRT3 in regulating homeostasis, and thus physiological function. We discuss the role of SIRT3 in regulating reactive oxygen species (ROS), ATP, immunological function and mitochondria dynamics.
Collapse
Affiliation(s)
- Dennison Trinh
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Lina Al Halabi
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Harsimar Brar
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Marie Kametani
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Joanne E. Nash
- Department of Biological Sciences, University of Toronto Scarborough Graduate Department of Cells Systems Biology, University of Toronto Cross-Appointment with Department of Psychology, University of Toronto Scarborough Scientist – KITE, Toronto, ON, Canada
| |
Collapse
|
23
|
Shorthill SK, Jones TLM, Woulfe KC, Cherrington BD, Bruns DR. The influence of estrogen on myocardial post-translational modifications and cardiac function in women. Can J Physiol Pharmacol 2024; 102:452-464. [PMID: 38266237 DOI: 10.1139/cjpp-2023-0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The lifetime risk of heart failure (HF) is comparable in men and women; nevertheless, disparities exist in our understanding of how HF differs between sexes. Several differences in cardiac physiology exist between men and women including the propensity to develop specific HF phenotypes. Men are more likely to be diagnosed with HF failure with reduced ejection fraction, while women have a greater propensity to develop HF with preserved ejection fraction. The mechanisms responsible for these differences remain unclear. Post-translational modifications (PTMs) of myofilament proteins likely contribute to these sex-specific propensities. The role of PTMs in heart disease is an expanding field with immense potential therapeutic targets. However, numerous PTMs remain underexplored, particularly in the context of the female heart. Estrogen, a key gonadal hormone, cardioprotective in pre-menopausal women and its loss with menopause likely contributes to disease in aging women. However, how estrogen regulates PTMs to contribute to HF development is not fully clear. This review outlines key sex differences in HF along with characterizing the contributions of novel myocardial PTMs in cardiac physiology and their regulation by estrogen. Collectively, we highlight the necessity for further investigation into women's heart health and the distinctive mechanisms distinguishing women from men.
Collapse
Affiliation(s)
| | - Timothy L M Jones
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kathleen C Woulfe
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian D Cherrington
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Danielle R Bruns
- Division of Kinesiology and Health, University of Wyoming, Laramie, WY, USA
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
24
|
Qin C, Graf LG, Striska K, Janetzky M, Geist N, Specht R, Schulze S, Palm GJ, Girbardt B, Dörre B, Berndt L, Kemnitz S, Doerr M, Bornscheuer UT, Delcea M, Lammers M. Acetyl-CoA synthetase activity is enzymatically regulated by lysine acetylation using acetyl-CoA or acetyl-phosphate as donor molecule. Nat Commun 2024; 15:6002. [PMID: 39019872 PMCID: PMC11255334 DOI: 10.1038/s41467-024-49952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
The AMP-forming acetyl-CoA synthetase is regulated by lysine acetylation both in bacteria and eukaryotes. However, the underlying mechanism is poorly understood. The Bacillus subtilis acetyltransferase AcuA and the AMP-forming acetyl-CoA synthetase AcsA form an AcuA•AcsA complex, dissociating upon lysine acetylation of AcsA by AcuA. Crystal structures of AcsA from Chloroflexota bacterium in the apo form and in complex with acetyl-adenosine-5'-monophosphate (acetyl-AMP) support the flexible C-terminal domain adopting different conformations. AlphaFold2 predictions suggest binding of AcuA stabilizes AcsA in an undescribed conformation. We show the AcuA•AcsA complex dissociates upon acetyl-coenzyme A (acetyl-CoA) dependent acetylation of AcsA by AcuA. We discover an intrinsic phosphotransacetylase activity enabling AcuA•AcsA generating acetyl-CoA from acetyl-phosphate (AcP) and coenzyme A (CoA) used by AcuA to acetylate and inactivate AcsA. Here, we provide mechanistic insights into the regulation of AMP-forming acetyl-CoA synthetases by lysine acetylation and discover an intrinsic phosphotransacetylase allowing modulation of its activity based on AcP and CoA levels.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Leonie G Graf
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Kilian Striska
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Markus Janetzky
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Norman Geist
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Robin Specht
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Sabrina Schulze
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Gottfried J Palm
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Britta Girbardt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Babett Dörre
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Leona Berndt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Stefan Kemnitz
- Department for High Performance Computing, University Computing Center, University of Greifswald, 17489, Greifswald, Germany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Michael Lammers
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany.
| |
Collapse
|
25
|
Aventaggiato M, Arcangeli T, Vernucci E, Barreca F, Sansone L, Pellegrini L, Pontemezzo E, Valente S, Fioravanti R, Russo MA, Mai A, Tafani M. Pharmacological Activation of SIRT3 Modulates the Response of Cancer Cells to Acidic pH. Pharmaceuticals (Basel) 2024; 17:810. [PMID: 38931477 DOI: 10.3390/ph17060810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer cells modulate their metabolism, creating an acidic microenvironment that, in turn, can favor tumor progression and chemotherapy resistance. Tumor cells adopt strategies to survive a drop in extracellular pH (pHe). In the present manuscript, we investigated the contribution of mitochondrial sirtuin 3 (SIRT3) to the adaptation and survival of cancer cells to a low pHe. SIRT3-overexpressing and silenced breast cancer cells MDA-MB-231 and human embryonic kidney HEK293 cells were grown in buffered and unbuffered media at pH 7.4 and 6.8 for different times. mRNA expression of SIRT3 and CAVB, was measured by RT-PCR. Protein expression of SIRT3, CAVB and autophagy proteins was estimated by western blot. SIRT3-CAVB interaction was determined by immunoprecipitation and proximity ligation assays (PLA). Induction of autophagy was studied by western blot and TEM. SIRT3 overexpression increases the survival of both cell lines. Moreover, we demonstrated that SIRT3 controls intracellular pH (pHi) through the regulation of mitochondrial carbonic anhydrase VB (CAVB). Interestingly, we obtained similar results by using MC2791, a new SIRT3 activator. Our results point to the possibility of modulating SIRT3 to decrease the response and resistance of tumor cells to the acidic microenvironment and ameliorate the effectiveness of anticancer therapy.
Collapse
Affiliation(s)
- Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Tania Arcangeli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Enza Vernucci
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Federica Barreca
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Luigi Sansone
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy
- Laboratory of Cellular and Molecular Pathology, IRCCS San Raffaele Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Laura Pellegrini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Elena Pontemezzo
- European Hospital, New Fertility Group, Center for Reproductive Medicine, Via Portuense 700, 00149 Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Matteo Antonio Russo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy
- Laboratory of Cellular and Molecular Pathology, IRCCS San Raffaele Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
26
|
Yu L, Li Y, Song S, Zhang Y, Wang Y, Wang H, Yang Z, Wang Y. The dual role of sirtuins in cancer: biological functions and implications. Front Oncol 2024; 14:1384928. [PMID: 38947884 PMCID: PMC11211395 DOI: 10.3389/fonc.2024.1384928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Sirtuins are pivotal in orchestrating numerous cellular pathways, critically influencing cell metabolism, DNA repair, aging processes, and oxidative stress. In recent years, the involvement of sirtuins in tumor biology has garnered substantial attention, with a growing body of evidence underscoring their regulatory roles in various aberrant cellular processes within tumor environments. This article delves into the sirtuin family and its biological functions, shedding light on their dual roles-either as promoters or inhibitors-in various cancers including oral, breast, hepatocellular, lung, and gastric cancers. It further explores potential anti-tumor agents targeting sirtuins, unraveling the complex interplay between sirtuins, miRNAs, and chemotherapeutic drugs. The dual roles of sirtuins in cancer biology reflect the complexity of targeting these enzymes but also highlight the immense therapeutic potential. These advancements hold significant promise for enhancing clinical outcomes, marking a pivotal step forward in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Lu Yu
- Department of Respiratory, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanjiao Li
- Department of Pharmacy, Qionglai Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yalin Zhang
- School of Medicine, University of Electronic Science and Technology of China, Center of Critical Care Medicine, Sichuan Academy of Medical Sciences, Chengdu, China
- Center of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiping Wang
- Center of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science, Nanning, China
| | - Zhengteng Yang
- Department of Medicine, The First Affiliated Hospital of Guangxi University of Traditional Medicine, Nanning, China
| | - Yi Wang
- Center of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science, Nanning, China
| |
Collapse
|
27
|
Gibril BAA, Xiong X, Chai X, Xu Q, Gong J, Xu J. Unlocking the Nexus of Sirtuins: A Comprehensive Review of Their Role in Skeletal Muscle Metabolism, Development, and Disorders. Int J Biol Sci 2024; 20:3219-3235. [PMID: 38904020 PMCID: PMC11186354 DOI: 10.7150/ijbs.96885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
The sirtuins constitute a group of histone deacetylases reliant on NAD+ for their activity that have gained recognition for their critical roles as regulators of numerous biological processes. These enzymes have various functions in skeletal muscle biology, including development, metabolism, and the body's response to disease. This comprehensive review seeks to clarify sirtuins' complex role in skeletal muscle metabolism, including glucose uptake, fatty acid oxidation, mitochondrial dynamics, autophagy regulation, and exercise adaptations. It also examines their critical roles in developing skeletal muscle, including myogenesis, the determination of muscle fiber type, regeneration, and hypertrophic responses. Moreover, it sheds light on the therapeutic potential of sirtuins by examining their impact on a range of skeletal muscle disorders. By integrating findings from various studies, this review outlines the context of sirtuin-mediated regulation in skeletal muscle, highlighting their importance and possible consequences for health and disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiguo Xu
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China
| |
Collapse
|
28
|
Xu G, Quan S, Schell J, Gao Y, Varmazyad M, Sreenivas P, Cruz D, Jiang H, Pan M, Han X, Palavicini JP, Zhao P, Sun X, Marchant ED, Rasmussen BB, Li G, Katsumura S, Morita M, Munkácsy E, Horikoshi N, Chocron ES, Gius D. Mitochondrial ACSS1-K635 acetylation knock-in mice exhibit altered metabolism, cell senescence, and nonalcoholic fatty liver disease. SCIENCE ADVANCES 2024; 10:eadj5942. [PMID: 38758779 PMCID: PMC11100568 DOI: 10.1126/sciadv.adj5942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Acetyl-CoA synthetase short-chain family member 1 (ACSS1) uses acetate to generate mitochondrial acetyl-CoA and is regulated by deacetylation by sirtuin 3. We generated an ACSS1-acetylation (Ac) mimic mouse, where lysine-635 was mutated to glutamine (K635Q). Male Acss1K635Q/K635Q mice were smaller with higher metabolic rate and blood acetate and decreased liver/serum ATP and lactate levels. After a 48-hour fast, Acss1K635Q/K635Q mice presented hypothermia and liver aberrations, including enlargement, discoloration, lipid droplet accumulation, and microsteatosis, consistent with nonalcoholic fatty liver disease (NAFLD). RNA sequencing analysis suggested dysregulation of fatty acid metabolism, cellular senescence, and hepatic steatosis networks, consistent with NAFLD. Fasted Acss1K635Q/K635Q mouse livers showed increased fatty acid synthase (FASN) and stearoyl-CoA desaturase 1 (SCD1), both associated with NAFLD, and increased carbohydrate response element-binding protein binding to Fasn and Scd1 enhancer regions. Last, liver lipidomics showed elevated ceramide, lysophosphatidylethanolamine, and lysophosphatidylcholine, all associated with NAFLD. Thus, we propose that ACSS1-K635-Ac dysregulation leads to aberrant lipid metabolism, cellular senescence, and NAFLD.
Collapse
Affiliation(s)
- Guogang Xu
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Songhua Quan
- Department of Radiation Oncology, Robert Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joseph Schell
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Yucheng Gao
- Department of Radiation Oncology, Robert Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mahboubeh Varmazyad
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Prethish Sreenivas
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Diego Cruz
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Haiyan Jiang
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Juan Pablo Palavicini
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Division of Diabetes, UT Health San Antonio, San Antonio, TX, USA
| | - Peng Zhao
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Xiaoli Sun
- Department of Pharmacology, Mays Cancer Center, Transplant Center, UT Health San Antonio, San Antonio, TX, USA
| | - Erik D. Marchant
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Blake B. Rasmussen
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Guannan Li
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Sakie Katsumura
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Masahiro Morita
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka 565-0871, Japan
| | - Erin Munkácsy
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - E. Sandra Chocron
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - David Gius
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
29
|
Rae CD, Baur JA, Borges K, Dienel G, Díaz-García CM, Douglass SR, Drew K, Duarte JMN, Duran J, Kann O, Kristian T, Lee-Liu D, Lindquist BE, McNay EC, Robinson MB, Rothman DL, Rowlands BD, Ryan TA, Scafidi J, Scafidi S, Shuttleworth CW, Swanson RA, Uruk G, Vardjan N, Zorec R, McKenna MC. Brain energy metabolism: A roadmap for future research. J Neurochem 2024; 168:910-954. [PMID: 38183680 PMCID: PMC11102343 DOI: 10.1111/jnc.16032] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.
Collapse
Affiliation(s)
- Caroline D. Rae
- School of Psychology, The University of New South Wales, NSW 2052 & Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Gerald Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Kelly Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - João M. N. Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, & Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, Baltimore, Maryland, USA
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dasfne Lee-Liu
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Región Metropolitana, Chile
| | - Britta E. Lindquist
- Department of Neurology, Division of Neurocritical Care, Gladstone Institute of Neurological Disease, University of California at San Francisco, San Francisco, California, USA
| | - Ewan C. McNay
- Behavioral Neuroscience, University at Albany, Albany, New York, USA
| | - Michael B. Robinson
- Departments of Pediatrics and System Pharmacology & Translational Therapeutics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas L. Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Benjamin D. Rowlands
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| | - Joseph Scafidi
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susanna Scafidi
- Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine Albuquerque, Albuquerque, New Mexico, USA
| | - Raymond A. Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gökhan Uruk
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mary C. McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Paluch KV, Platz KR, Rudisel EJ, Erdmann RR, Laurin TR, Dittenhafer-Reed KE. The role of lysine acetylation in the function of mitochondrial ribosomal protein L12. Proteins 2024; 92:583-592. [PMID: 38146092 DOI: 10.1002/prot.26654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
Mitochondria play a central role in energy production and cellular metabolism. Mitochondria contain their own small genome (mitochondrial DNA, mtDNA) that carries the genetic instructions for proteins required for ATP synthesis. The mitochondrial proteome, including the mitochondrial transcriptional machinery, is subject to post-translational modifications (PTMs), including acetylation and phosphorylation. We set out to determine whether PTMs of proteins associated with mtDNA may provide a potential mechanism for the regulation of mitochondrial gene expression. Here, we focus on mitochondrial ribosomal protein L12 (MRPL12), which is thought to stabilize mitochondrial RNA polymerase (POLRMT) and promote transcription. Numerous acetylation sites of MRPL12 were identified by mass spectrometry. We employed amino acid mimics of the acetylated (lysine to glutamine mutants) and deacetylated (lysine to arginine mutants) versions of MRPL12 to interrogate the role of lysine acetylation in transcription initiation in vitro and mitochondrial gene expression in HeLa cells. MRPL12 acetyl and deacetyl protein mimics were purified and assessed for their ability to impact mtDNA promoter binding of POLRMT. We analyzed mtDNA content and mitochondrial transcript levels in HeLa cells upon overexpression of acetyl and deacetyl mimics of MRPL12. Our results suggest that MRPL12 single-site acetyl mimics do not change the mtDNA promoter binding ability of POLRMT or mtDNA content in HeLa cells. Individual acetyl mimics may have modest effects on mitochondrial transcript levels. We found that the mitochondrial deacetylase, Sirtuin 3, is capable of deacetylating MRPL12 in vitro, suggesting a potential role for dynamic acetylation controlling MRPL12 function in a role outside of the regulation of gene expression.
Collapse
Affiliation(s)
- Katelynn V Paluch
- Department of Chemistry and Biochemistry, Hope College, Holland, Michigan, USA
| | - Karlie R Platz
- Department of Chemistry and Biochemistry, Hope College, Holland, Michigan, USA
| | - Emma J Rudisel
- Department of Chemistry and Biochemistry, Hope College, Holland, Michigan, USA
| | - Ryan R Erdmann
- Department of Chemistry and Biochemistry, Hope College, Holland, Michigan, USA
| | - Taylor R Laurin
- Department of Chemistry and Biochemistry, Hope College, Holland, Michigan, USA
| | | |
Collapse
|
31
|
Achanta LB, Thomas DS, Housley GD, Rae CD. AMP-activated protein kinase activators have compound and concentration-specific effects on brain metabolism. J Neurochem 2024; 168:677-692. [PMID: 36977628 DOI: 10.1111/jnc.15815] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
AMP-activated protein kinase (AMPK) is a key sensor of energy balance playing important roles in the balancing of anabolic and catabolic activities. The high energy demands of the brain and its limited capacity to store energy indicate that AMPK may play a significant role in brain metabolism. Here, we activated AMPK in guinea pig cortical tissue slices, both directly with A769662 and PF 06409577 and indirectly with AICAR and metformin. We studied the resultant metabolism of [1-13C]glucose and [1,2-13C]acetate using NMR spectroscopy. We found distinct activator concentration-dependent effects on metabolism, which ranged from decreased metabolic pool sizes at EC50 activator concentrations with no expected stimulation in glycolytic flux to increased aerobic glycolysis and decreased pyruvate metabolism with certain activators. Further, activation with direct versus indirect activators produced distinct metabolic outcomes at both low (EC50) and higher (EC50 × 10) concentrations. Specific direct activation of β1-containing AMPK isoforms with PF 06409577 resulted in increased Krebs cycle activity, restoring pyruvate metabolism while A769662 increased lactate and alanine production, as well as labelling of citrate and glutamine. These results reveal a complex metabolic response to AMPK activators in brain beyond increased aerobic glycolysis and indicate that further research is warranted into their concentration- and mechanism-dependent impact.
Collapse
Affiliation(s)
- Lavanya B Achanta
- Neuroscience Research Australia, Barker St, Randwick, New South Wales, 2031, Australia
- Translational Neuroscience Facility, School of Biomedical Sciences, UNSW, Sydney, New South Wales, 2052, Australia
| | - Donald S Thomas
- Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales, 2052, Australia
| | - Gary D Housley
- Translational Neuroscience Facility, School of Biomedical Sciences, UNSW, Sydney, New South Wales, 2052, Australia
| | - Caroline D Rae
- Neuroscience Research Australia, Barker St, Randwick, New South Wales, 2031, Australia
- School of Psychology, UNSW, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
32
|
Balboni N, Babini G, Poeta E, Protti M, Mercolini L, Magnifico MC, Barile SN, Massenzio F, Pignataro A, Giorgi FM, Lasorsa FM, Monti B. Transcriptional and metabolic effects of aspartate-glutamate carrier isoform 1 (AGC1) downregulation in mouse oligodendrocyte precursor cells (OPCs). Cell Mol Biol Lett 2024; 29:44. [PMID: 38553684 PMCID: PMC10979587 DOI: 10.1186/s11658-024-00563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Aspartate-glutamate carrier isoform 1 (AGC1) is a carrier responsible for the export of mitochondrial aspartate in exchange for cytosolic glutamate and is part of the malate-aspartate shuttle, essential for the balance of reducing equivalents in the cells. In the brain, mutations in SLC25A12 gene, encoding for AGC1, cause an ultra-rare genetic disease, reported as a neurodevelopmental encephalopathy, whose symptoms include global hypomyelination, arrested psychomotor development, hypotonia and seizures. Among the biological components most affected by AGC1 deficiency are oligodendrocytes, glial cells responsible for myelination processes, and their precursors [oligodendrocyte progenitor cells (OPCs)]. The AGC1 silencing in an in vitro model of OPCs was documented to cause defects of proliferation and differentiation, mediated by alterations of histone acetylation/deacetylation. Disrupting AGC1 activity could possibly reduce the availability of acetyl groups, leading to perturbation of many biological pathways, such as histone modifications and fatty acids formation for myelin production. Here, we explore the transcriptome of mouse OPCs partially silenced for AGC1, reporting results of canonical analyses (differential expression) and pathway enrichment analyses, which highlight a disruption in fatty acids synthesis from both a regulatory and enzymatic stand. We further investigate the cellular effects of AGC1 deficiency through the identification of most affected transcriptional networks and altered alternative splicing. Transcriptional data were integrated with differential metabolite abundance analysis, showing downregulation of several amino acids, including glutamine and aspartate. Taken together, our results provide a molecular foundation for the effects of AGC1 deficiency in OPCs, highlighting the molecular mechanisms affected and providing a list of actionable targets to mitigate the effects of this pathology.
Collapse
Affiliation(s)
- Nicola Balboni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giorgia Babini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Michele Protti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maria Chiara Magnifico
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Simona Nicole Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Antonella Pignataro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | | | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| |
Collapse
|
33
|
Nshanian M, Geller BS, Gruber JJ, Chleilat F, Camarillo JM, Kelleher NL, Zhao Y, Snyder MP. Short-chain fatty acids propionate and butyrate control growth and differentiation linked to cellular metabolism. RESEARCH SQUARE 2024:rs.3.rs-3935562. [PMID: 38410440 PMCID: PMC10896393 DOI: 10.21203/rs.3.rs-3935562/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The short-chain fatty acids (SCFA) propionate and butyrate are produced in large amounts by microbial metabolism and have been identified as unique acyl lysine histone marks. In order to better understand the function of these modifications we used ChIP-seq to map the genome-wide location of four short-chain acyl histone marks H3K18pr/bu and H4K12pr/bu in treated and untreated colorectal cancer (CRC) and normal cells, as well as in mouse intestines in vivo. We correlate these marks with open chromatin regions along with gene expression to access the function of the target regions. Our data demonstrate that propionate and butyrate act as promoters of growth, differentiation as well as ion transport. We propose a mechanism involving direct modification of specific genomic regions, resulting in increased chromatin accessibility, and in case of butyrate, opposing effects on the proliferation of normal versus CRC cells.
Collapse
Affiliation(s)
- Michael Nshanian
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA
| | - Benjamin S Geller
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA
| | - Joshua J Gruber
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA
| | - Faye Chleilat
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA
| | - Jeannie Marie Camarillo
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL
| | - Neil L Kelleher
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Evanston, IL
| | - Yingming Zhao
- Ben May Department of Cancer Research Committee on Cancer Biology, University of Chicago; Chicago, IL
| | - Michael P Snyder
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
34
|
Choudhury C, Gill MK, McAleese CE, Butcher NJ, Ngo ST, Steyn FJ, Minchin RF. The Arylamine N-Acetyltransferases as Therapeutic Targets in Metabolic Diseases Associated with Mitochondrial Dysfunction. Pharmacol Rev 2024; 76:300-320. [PMID: 38351074 DOI: 10.1124/pharmrev.123.000835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 02/16/2024] Open
Abstract
In humans, there are two arylamine N-acetyltransferase genes that encode functional enzymes (NAT1 and NAT2) as well as one pseudogene, all of which are located together on chromosome 8. Although they were first identified by their role in the acetylation of drugs and other xenobiotics, recent studies have shown strong associations for both enzymes in a variety of diseases, including cancer, cardiovascular disease, and diabetes. There is growing evidence that this association may be causal. Consistently, NAT1 and NAT2 are shown to be required for healthy mitochondria. This review discusses the current literature on the role of both NAT1 and NAT2 in mitochondrial bioenergetics. It will attempt to relate our understanding of the evolution of the two genes with biologic function and then present evidence that several major metabolic diseases are influenced by NAT1 and NAT2. Finally, it will discuss current and future approaches to inhibit or enhance NAT1 and NAT2 activity/expression using small-molecule drugs. SIGNIFICANCE STATEMENT: The arylamine N-acetyltransferases (NATs) NAT1 and NAT2 share common features in their associations with mitochondrial bioenergetics. This review discusses mitochondrial function as it relates to health and disease, and the importance of NAT in mitochondrial function and dysfunction. It also compares NAT1 and NAT2 to highlight their functional similarities and differences. Both NAT1 and NAT2 are potential drug targets for diseases where mitochondrial dysfunction is a hallmark of onset and progression.
Collapse
Affiliation(s)
- Chandra Choudhury
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Melinder K Gill
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Courtney E McAleese
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Neville J Butcher
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Shyuan T Ngo
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Frederik J Steyn
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| |
Collapse
|
35
|
Lambona C, Zwergel C, Valente S, Mai A. SIRT3 Activation a Promise in Drug Development? New Insights into SIRT3 Biology and Its Implications on the Drug Discovery Process. J Med Chem 2024; 67:1662-1689. [PMID: 38261767 PMCID: PMC10859967 DOI: 10.1021/acs.jmedchem.3c01979] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Sirtuins catalyze deacetylation of lysine residues with a NAD+-dependent mechanism. In mammals, the sirtuin family is composed of seven members, divided into four subclasses that differ in substrate specificity, subcellular localization, regulation, as well as interactions with other proteins, both within and outside the epigenetic field. Recently, much interest has been growing in SIRT3, which is mainly involved in regulating mitochondrial metabolism. Moreover, SIRT3 seems to be protective in diseases such as age-related, neurodegenerative, liver, kidney, heart, and metabolic ones, as well as in cancer. In most cases, activating SIRT3 could be a promising strategy to tackle these health problems. Here, we summarize the main biological functions, substrates, and interactors of SIRT3, as well as several molecules reported in the literature that are able to modulate SIRT3 activity. Among the activators, some derive from natural products, others from library screening, and others from the classical medicinal chemistry approach.
Collapse
Affiliation(s)
- Chiara Lambona
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sergio Valente
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Pasteur
Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
36
|
Lee H, Yoon H. Mitochondrial sirtuins: Energy dynamics and cancer metabolism. Mol Cells 2024; 47:100029. [PMID: 38331199 PMCID: PMC10960136 DOI: 10.1016/j.mocell.2024.100029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Mitochondria are pivotal for energy regulation and are linked to cancer. Mitochondrial sirtuins, (Sirtuin) SIRT3, SIRT4, and SIRT5, play crucial roles in cancer metabolism. This review explores their impact on cellular processes, with a focus on the NAD+ interplay and the modulation of their enzymatic activities. The varied roles of SIRT3, SIRT4, and SIRT5 in metabolic adaptation and cancer are outlined, emphasizing their tumor suppressor or oncogenic nature. We propose new insights into sirtuin biology, and cancer therapeutics, suggesting an integrated proteomics and metabolomics approach for a comprehensive understanding of mitochondrial sirtuins in cancer.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Haejin Yoon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
37
|
Poole B, Oshins R, Huo Z, Aranyos A, West J, Duarte S, Clark VC, Beduschi T, Zarrinpar A, Brantly M, Khodayari N. Sirtuin3 promotes the degradation of hepatic Z alpha-1 antitrypsin through lipophagy. Hepatol Commun 2024; 8:e0370. [PMID: 38285890 PMCID: PMC10830086 DOI: 10.1097/hc9.0000000000000370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/01/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Alpha-1 antitrypsin deficiency (AATD) is a genetic disease caused by misfolding and accumulation of mutant alpha-1 antitrypsin (ZAAT) in the endoplasmic reticulum of hepatocytes. Hepatic ZAAT aggregates acquire a toxic gain-of-function that impacts the endoplasmic reticulum which is theorized to cause liver disease in individuals with AATD who present asymptomatic until late-stage cirrhosis. Currently, there is no treatment for AATD-mediated liver disease except liver transplantation. In our study of mitochondrial RNA, we identified that Sirtuin3 (SIRT3) plays a role in the hepatic phenotype of AATD. METHODS Utilizing RNA and protein analysis in an in vitro AATD model, we investigated the role of SIRT3 in the pathophysiology of AATD-mediated liver disease while also characterizing our novel, transgenic AATD mouse model. RESULTS We show lower expression of SIRT3 in ZAAT-expressing hepatocytes. In contrast, the overexpression of SIRT3 increases hepatic ZAAT degradation. ZAAT degradation mediated by SIRT3 appeared independent of proteasomal degradation and regular autophagy pathways. We observed that ZAAT-expressing hepatocytes have aberrant accumulation of lipid droplets, with ZAAT polymers localizing on the lipid droplet surface in a direct interaction with Perilipin2, which coats intracellular lipid droplets. SIRT3 overexpression also induced the degradation of lipid droplets in ZAAT-expressing hepatocytes. We observed that SIRT3 overexpression induces lipophagy by enhancing the interaction of Perilipin2 with HSC70. ZAAT polymers then degrade as a consequence of the mobilization of lipids through this process. CONCLUSIONS In this context, SIRT3 activation may eliminate the hepatic toxic gain-of-function associated with the polymerization of ZAAT, providing a rationale for a potential novel therapeutic approach to the treatment of AATD-mediated liver disease.
Collapse
Affiliation(s)
- Brittney Poole
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Regina Oshins
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health, University of Florida, Gainesville, Florida, USA
| | - Alek Aranyos
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Jesse West
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Sergio Duarte
- Department of Surgery, Division of Transplantation and Hepatobiliary Surgery, University of Florida, Gainesville, Florida, USA
| | - Virginia C. Clark
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, Florida, USA
| | - Thiago Beduschi
- Department of Surgery, Division of Transplantation and Hepatobiliary Surgery, University of Florida, Gainesville, Florida, USA
| | - Ali Zarrinpar
- Department of Surgery, Division of Transplantation and Hepatobiliary Surgery, University of Florida, Gainesville, Florida, USA
| | - Mark Brantly
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Nazli Khodayari
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
38
|
Liu Y, Wei H, Li J. A review on SIRT3 and its natural small molecule activators as a potential Preventive and therapeutic target. Eur J Pharmacol 2024; 963:176155. [PMID: 37914065 DOI: 10.1016/j.ejphar.2023.176155] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Sirtuins (SIRTs) were originally characterized by yeast Sir2 as a lifespan regulator that is conserved in all three structural domains of bacteria, archaea and eukaryotes and belong to histone deacetylases consisting of seven members (SIRT1-SIRT7). Surprisingly, SIRTs have been shown to play important regulatory roles in almost all cellular functions, including mitochondrial biogenesis, oxidative stress, inflammation, cell growth, energy metabolism, neural function, and stress resistance. Among the SIRT members, sirtuin 3 (SIRT3) is one of the most important deacetylases that regulates the mitochondrial acetylation and plays a role in pathological processes, such as metabolism, DNA repair, oxidative stress, apoptosis and ferroptosis. Therefore, SIRT3 is considered as a potential target for the treatment of a variety of pathological diseases, including metabolic diseases, neurodegenerative diseases, age-related diseases and others. Furthermore, the isolation, screening, and development of SIRT3 signaling agonists, especially from natural products, have become a widely investigated objective. This paper describes the structure of SIRT3 protein, discusses the pathological process of SIRT3-mediated acetylation modification, and reviews the role of SIRT3 in diseases, SIRT3 activators and its related disease studies.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China.
| |
Collapse
|
39
|
Baker ZN, Forny P, Pagliarini DJ. Mitochondrial proteome research: the road ahead. Nat Rev Mol Cell Biol 2024; 25:65-82. [PMID: 37773518 PMCID: PMC11378943 DOI: 10.1038/s41580-023-00650-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 10/01/2023]
Abstract
Mitochondria are multifaceted organelles with key roles in anabolic and catabolic metabolism, bioenergetics, cellular signalling and nutrient sensing, and programmed cell death processes. Their diverse functions are enabled by a sophisticated set of protein components encoded by the nuclear and mitochondrial genomes. The extent and complexity of the mitochondrial proteome remained unclear for decades. This began to change 20 years ago when, driven by the emergence of mass spectrometry-based proteomics, the first draft mitochondrial proteomes were established. In the ensuing decades, further technological and computational advances helped to refine these 'maps', with current estimates of the core mammalian mitochondrial proteome ranging from 1,000 to 1,500 proteins. The creation of these compendia provided a systemic view of an organelle previously studied primarily in a reductionist fashion and has accelerated both basic scientific discovery and the diagnosis and treatment of human disease. Yet numerous challenges remain in understanding mitochondrial biology and translating this knowledge into the medical context. In this Roadmap, we propose a path forward for refining the mitochondrial protein map to enhance its discovery and therapeutic potential. We discuss how emerging technologies can assist the detection of new mitochondrial proteins, reveal their patterns of expression across diverse tissues and cell types, and provide key information on proteoforms. We highlight the power of an enhanced map for systematically defining the functions of its members. Finally, we examine the utility of an expanded, functionally annotated mitochondrial proteome in a translational setting for aiding both diagnosis of mitochondrial disease and targeting of mitochondria for treatment.
Collapse
Affiliation(s)
- Zakery N Baker
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick Forny
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - David J Pagliarini
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
40
|
Xiao H, Xie Y, Xi K, Xie J, Liu M, Zhang Y, Cheng Z, Wang W, Guo B, Wu S. Targeting Mitochondrial Sirtuins in Age-Related Neurodegenerative Diseases and Fibrosis. Aging Dis 2023; 14:1583-1605. [PMID: 37196115 PMCID: PMC10529758 DOI: 10.14336/ad.2023.0203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/03/2023] [Indexed: 05/19/2023] Open
Abstract
Aging is a natural and complex biological process that is associated with widespread functional declines in numerous physiological processes, terminally affecting multiple organs and tissues. Fibrosis and neurodegenerative diseases (NDs) often occur with aging, imposing large burdens on public health worldwide, and there are currently no effective treatment strategies for these diseases. Mitochondrial sirtuins (SIRT3-5), which are members of the sirtuin family of NAD+-dependent deacylases and ADP-ribosyltransferases, are capable of regulating mitochondrial function by modifying mitochondrial proteins that participate in the regulation of cell survival under various physiological and pathological conditions. A growing body of evidence has revealed that SIRT3-5 exert protective effects against fibrosis in multiple organs and tissues, including the heart, liver, and kidney. SIRT3-5 are also involved in multiple age-related NDs, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. Furthermore, SIRT3-5 have been noted as promising targets for antifibrotic therapies and the treatment of NDs. This review systematically highlights recent advances in knowledge regarding the role of SIRT3-5 in fibrosis and NDs and discusses SIRT3-5 as therapeutic targets for NDs and fibrosis.
Collapse
Affiliation(s)
- Haoxiang Xiao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Jinyi Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Mingyue Liu
- Medical School, Yan’an University, Yan’an, China
| | - Yangming Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Zishuo Cheng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| |
Collapse
|
41
|
Song H, Thompson LP. Effects of Gestational Hypoxia on PGC1α and Mitochondrial Acetylation in Fetal Guinea Pig Hearts. Reprod Sci 2023; 30:2996-3009. [PMID: 37138147 PMCID: PMC10556133 DOI: 10.1007/s43032-023-01245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023]
Abstract
Chronic intrauterine hypoxia is a significant pregnancy complication impacting fetal heart growth, metabolism, and mitochondrial function, contributing to cardiovascular programming of the offspring. PGC1α (peroxisome proliferator-activated receptor γ co-activator 1α) is the master regulator of mitochondrial biogenesis. We investigated the effects of hypoxia on PGC1α expression following exposure at different gestational ages. Time-mated pregnant guinea pigs were exposed to normoxia (NMX, 21% O2) or hypoxia (HPX, 10.5% O2) at either 25-day (early-onset) or 50-day (late-onset) gestation, and all fetuses were extracted at term (term = ~65-day gestation). Expression of nuclear PGC1α, sirtuin 1 (SIRT1), AMP-activated protein kinase (AMPK), and mitochondrial sirtuin 3 (SIRT3) was measured, along with SIRT3 activity and mitochondrial acetylation of heart ventricles of male and female fetuses. Early-onset hypoxia increased (P<0.05) fetal cardiac nuclear PGC1α and had no effect on mitochondrial acetylation of either growth-restricted males or females. Late-onset hypoxia had either no effect or decreased (P<0.05) PCC1α expression in males and females, respectively, but increased (P<0.05) mitochondrial acetylation in both sexes. Hypoxia had variable effects on expression of SIRT1, AMPK, SIRT3, and SIRT3 activity depending on the sex. The capacity of the fetal heart to respond to hypoxia differs depending on the gestational age of exposure and sex of the fetus. Further, the effects of late-onset hypoxia on fetal heart function impose a greater risk to male than female fetuses, which has implications toward cardiovascular programming effects of the offspring.
Collapse
Affiliation(s)
- Hong Song
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Loren P Thompson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA.
| |
Collapse
|
42
|
Tang HS, Gates CR, Schultz MC. Biochemical evidence that the whole compartment activity behavior of GAPDH differs between the cytoplasm and nucleus. PLoS One 2023; 18:e0290892. [PMID: 37651389 PMCID: PMC10470895 DOI: 10.1371/journal.pone.0290892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
Some metabolic enzymes normally occur in the nucleus and cytoplasm. These compartments differ in molecular composition. Since post-translational modification and interaction with allosteric effectors can tune enzyme activity, it follows that the behavior of an enzyme as a catalyst may differ between the cytoplasm and nucleus. We explored this possibility for the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Homogenates of pristine nuclei and cytoplasms isolated from Xenopus laevis oocytes were used for whole compartment activity profiling in a near-physiological buffer. Titrations of NAD+ revealed similar whole compartment activity profiles for GAPDH in nuclear and cytoplasmic homogenates. Surprisingly however GAPDH in these compartments did not have the same behavior in assays of the dependence of initial velocity (v0) on G3P concentration. First, the peak v0 for nuclear GAPDH was up to 2.5-fold higher than the peak for cytoplasmic GAPDH. Second, while Michaelis Menten-like behavior was observed in all assays of cytoplasm, the v0 versus [G3P] plots for nuclear GAPDH typically exhibited a non-Michaelis Menten (sigmoidal) profile. Apparent Km and Vmax (G3P) values for nuclear GAPDH activity were highly variable, even between replicates of the same sample. Possible sources of this variability include in vitro processing of a metabolite that allosterically regulates GAPDH, turnover of a post-translational modification of the enzyme, and fluctuation of the state of interaction of GAPDH with other proteins. Collectively these findings are consistent with the hypothesis that the environment of the nucleus is distinct from the environment of the cytoplasm with regard to GAPDH activity and its modulation. This finding warrants further comparison of the regulation of nuclear and cytoplasmic GAPDH, as well as whole compartment activity profiling of other enzymes of metabolism with cytosolic and nuclear pools.
Collapse
Affiliation(s)
- Helen S. Tang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Chelsea R. Gates
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael C. Schultz
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
43
|
Sun Y, Zhang Y, Zhao T, Luan Y, Wang Y, Yang C, Shen B, Huang X, Li G, Zhao S, Zhao G, Wang Q. Acetylation coordinates the crosstalk between carbon metabolism and ammonium assimilation in Salmonella enterica. EMBO J 2023; 42:e112333. [PMID: 37183585 PMCID: PMC10308350 DOI: 10.15252/embj.2022112333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/21/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023] Open
Abstract
Enteric bacteria use up to 15% of their cellular energy for ammonium assimilation via glutamine synthetase (GS)/glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH) in response to varying ammonium availability. However, the sensory mechanisms for effective and appropriate coordination between carbon metabolism and ammonium assimilation have not been fully elucidated. Here, we report that in Salmonella enterica, carbon metabolism coordinates the activities of GS/GDH via functionally reversible protein lysine acetylation. Glucose promotes Pat acetyltransferase-mediated acetylation and activation of adenylylated GS. Simultaneously, glucose induces GDH acetylation to inactivate the enzyme by impeding its catalytic centre, which is reversed upon GDH deacetylation by deacetylase CobB. Molecular dynamics (MD) simulations indicate that adenylylation is required for acetylation-dependent activation of GS. We show that acetylation and deacetylation occur within minutes of "glucose shock" to promptly adapt to ammonium/carbon variation and finely balance glutamine/glutamate synthesis. Finally, in a mouse infection model, reduced S. enterica growth caused by the expression of adenylylation-mimetic GS is rescued by acetylation-mimicking mutations. Thus, glucose-driven acetylation integrates signals from ammonium assimilation and carbon metabolism to fine-tune bacterial growth control.
Collapse
Affiliation(s)
- Yunwei Sun
- Department of Gastroenterology of Ruijin Hospital, Shanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuebin Zhang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Tingting Zhao
- Department of Gastroenterology of Ruijin Hospital, Shanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi Luan
- Department of Pharmacology, Vascular Biology and Therapeutic ProgramYale University School of MedicineNew HavenCTUSA
| | - Ying Wang
- Department of Gastroenterology of Ruijin Hospital, Shanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chen Yang
- CAS‐Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Bo Shen
- Department of Gastroenterology of Ruijin Hospital, Shanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xi Huang
- Department of Gastroenterology of Ruijin Hospital, Shanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Shimin Zhao
- State Key Lab of Genetic Engineering & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Microbiology and Microbial Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Collaborative Innovation Center for Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Guo‐ping Zhao
- CAS‐Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
- State Key Lab of Genetic Engineering & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Microbiology and Microbial Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Shanghai‐MOST Key Laboratory of Disease and Health GenomicsChinese National Human Genome Center at ShanghaiShanghaiChina
- Department of Microbiology and Li KaShing Institute of Health SciencesThe Chinese University of Hong Kong, Prince of Wales HospitalShatin, New Territories, Hong Kong SARChina
| | - Qijun Wang
- Department of Gastroenterology of Ruijin Hospital, Shanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Pharmacology, Vascular Biology and Therapeutic ProgramYale University School of MedicineNew HavenCTUSA
| |
Collapse
|
44
|
Packer M. SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. Nat Rev Cardiol 2023; 20:443-462. [PMID: 36609604 DOI: 10.1038/s41569-022-00824-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/09/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce heart failure events by direct action on the failing heart that is independent of changes in renal tubular function. In the failing heart, nutrient transport into cardiomyocytes is increased, but nutrient utilization is impaired, leading to deficient ATP production and the cytosolic accumulation of deleterious glucose and lipid by-products. These by-products trigger downregulation of cytoprotective nutrient-deprivation pathways, thereby promoting cellular stress and undermining cellular survival. SGLT2 inhibitors restore cellular homeostasis through three complementary mechanisms: they might bind directly to nutrient-deprivation and nutrient-surplus sensors to promote their cytoprotective actions; they can increase the synthesis of ATP by promoting mitochondrial health (mediated by increasing autophagic flux) and potentially by alleviating the cytosolic deficiency in ferrous iron; and they might directly inhibit glucose transporter type 1, thereby diminishing the cytosolic accumulation of toxic metabolic by-products and promoting the oxidation of long-chain fatty acids. The increase in autophagic flux mediated by SGLT2 inhibitors also promotes the clearance of harmful glucose and lipid by-products and the disposal of dysfunctional mitochondria, allowing for mitochondrial renewal through mitochondrial biogenesis. This Review describes the orchestrated interplay between nutrient transport and metabolism and nutrient-deprivation and nutrient-surplus signalling, to explain how SGLT2 inhibitors reverse the profound nutrient, metabolic and cellular abnormalities observed in heart failure, thereby restoring the myocardium to a healthy molecular and cellular phenotype.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX, USA.
- Imperial College London, London, UK.
| |
Collapse
|
45
|
Ahmed SI, Carbone S. Energy restriction or improvements in diet quality: identifying the best pathway for a longer and healthier life. Minerva Cardiol Angiol 2023:S2724-5683.23.06298-1. [PMID: 37310156 PMCID: PMC10716369 DOI: 10.23736/s2724-5683.23.06298-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Obesity is a major risk factor for chronic non-communicable diseases (NCDs) and it has increased to epidemic proportions. Unhealthy diet represents a modifiable risk factor for both obesity and NCDs, however, there is no universal dietary intervention to improve obesity-related NCDs and particularly to reduce the risk for major adverse cardiovascular events. Energy restriction (ER) and diet quality changes, with and without ER, have been widely investigated in preclinical and clinical studies, however, the potential underlying mechanisms driving the benefits of those dietary interventions remain largely unclear. ER affects multiple metabolic, physiological, genetic, and cellular adaptation pathways associated with prolonged lifespan, particularly in preclinical models, while these benefits remain to be established in humans. Moreover, the sustainability of ER and its implementation across the different diseases remains challenging. On the other hand, diet quality with improvements, with or without ER, has been associated with more favorable long-term metabolic and cardiovascular outcomes. This narrative review will describe the role of ER and/or diet quality improvements on the risk for NCDs. It will also discuss the potential mechanisms of action underlying the potential beneficial effects of those dietary approaches.
Collapse
Affiliation(s)
- Syed I Ahmed
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Salvatore Carbone
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, USA -
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
46
|
Razick DI, Akhtar M, Wen J, Alam M, Dean N, Karabala M, Ansari U, Ansari Z, Tabaie E, Siddiqui S. The Role of Sirtuin 1 (SIRT1) in Neurodegeneration. Cureus 2023; 15:e40463. [PMID: 37456463 PMCID: PMC10349546 DOI: 10.7759/cureus.40463] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Sirtuins (SIRT) are a class of histone deacetylases that regulate important metabolic pathways and play a role in several disease processes. Of the seven mammalian homologs currently identified, sirtuin 1 (SIRT1) is the best understood and most studied. It has been associated with several neurodegenerative diseases and cancers. As such, it has been further investigated as a therapeutic target in the treatment of disorders such as Parkinson's disease (PD), Huntington's disease (HD), and Alzheimer's disease (AD). SIRT1 deacetylates histones such as H1 lysine 26, H3 lysine 9, H3 lysine 56, and H4 lysine 16 to regulate chromatin remodeling and gene transcription. The homolog has also been observed to express contradictory responses to tumor suppression and tumor promotion. Studies have shown that SIRT1 may have anti-inflammatory properties by inhibiting the effects of NF-κB, as well as stimulating upregulation of autophagy. The SIRT1 activators resveratrol and cilostazol have been shown to improve Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) scores in AD patients. In this review, we aim to explore the various roles of SIRT1 with regard to neuroprotection and neurodegeneration.
Collapse
Affiliation(s)
- Daniel I Razick
- Surgery, California Northstate University College of Medicine, Elk Grove, USA
| | - Muzammil Akhtar
- Surgery, California Northstate University College of Medicine, Elk Grove, USA
| | - Jimmy Wen
- Physical Medicine and Rehabilitation, California Northstate University College of Medicine, Elk Grove, USA
| | - Meraj Alam
- Internal Medicine, California Northstate University College of Medicine, Elk Grove, USA
| | - Nabeal Dean
- Internal Medicine, California Northstate University College of Medicine, Elk Grove, USA
| | - Muhammad Karabala
- Internal Medicine, California Northstate University College of Medicine, Elk Grove, USA
| | - Ubaid Ansari
- Internal Medicine, California Northstate University College of Medicine, Elk Grove, USA
| | - Zaid Ansari
- Internal Medicine, University of California Berkeley, Berkeley, USA
| | - Ethan Tabaie
- Neurosurgery, California Northstate University College of Medicine, Elk Grove, USA
| | - Shakeel Siddiqui
- Anesthesiology, OrthoMed Staffing Anesthesiology Group, Dallas, USA
| |
Collapse
|
47
|
Park JW, Tyl MD, Cristea IM. Orchestration of Mitochondrial Function and Remodeling by Post-Translational Modifications Provide Insight into Mechanisms of Viral Infection. Biomolecules 2023; 13:biom13050869. [PMID: 37238738 DOI: 10.3390/biom13050869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The regulation of mitochondria structure and function is at the core of numerous viral infections. Acting in support of the host or of virus replication, mitochondria regulation facilitates control of energy metabolism, apoptosis, and immune signaling. Accumulating studies have pointed to post-translational modification (PTM) of mitochondrial proteins as a critical component of such regulatory mechanisms. Mitochondrial PTMs have been implicated in the pathology of several diseases and emerging evidence is starting to highlight essential roles in the context of viral infections. Here, we provide an overview of the growing arsenal of PTMs decorating mitochondrial proteins and their possible contribution to the infection-induced modulation of bioenergetics, apoptosis, and immune responses. We further consider links between PTM changes and mitochondrial structure remodeling, as well as the enzymatic and non-enzymatic mechanisms underlying mitochondrial PTM regulation. Finally, we highlight some of the methods, including mass spectrometry-based analyses, available for the identification, prioritization, and mechanistic interrogation of PTMs.
Collapse
Affiliation(s)
- Ji Woo Park
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Matthew D Tyl
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| |
Collapse
|
48
|
Gao J, Shen W. Sirtuin-3-Mediated Cellular Metabolism Links Cardiovascular Remodeling with Hypertension. BIOLOGY 2023; 12:biology12050686. [PMID: 37237500 DOI: 10.3390/biology12050686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
Hypertension can cause structural and functional abnormalities in the cardiovascular system, which can be attributed to both hemodynamic and nonhemodynamic factors. These alterations are linked with metabolic changes and are induced by pathological stressors. Sirtuins are enzymes that act as stress sensors and regulate metabolic adaptation by deacetylating proteins. Among them, mitochondrial SIRT3 performs a crucial role in maintaining metabolic homeostasis. Evidence from experimental and clinical studies has shown that hypertension-induced decreases in SIRT3 activity can lead to cellular metabolism reprogramming and, subsequently, increased susceptibility to endothelial dysfunction, myocardial hypertrophy, myocardial fibrosis, and heart failure. This review presents recent research advances in SIRT3-mediated metabolic adaptation in hypertensive cardiovascular remodeling.
Collapse
Affiliation(s)
- Jing Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weili Shen
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
49
|
Qin X, Cai P, Liu C, Chen K, Jiang X, Chen W, Li J, Jiao X, Guo E, Yu Y, Sun L, Tian H. Cardioprotective effect of ultrasound-targeted destruction of Sirt3-loaded cationic microbubbles in a large animal model of pathological cardiac hypertrophy. Acta Biomater 2023; 164:604-625. [PMID: 37080445 DOI: 10.1016/j.actbio.2023.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Pathological cardiac hypertrophy occurs in response to numerous increased afterload stimuli and precedes irreversible heart failure (HF). Therefore, therapies that ameliorate pathological cardiac hypertrophy are urgently required. Sirtuin 3 (Sirt3) is a main member of histone deacetylase class III and is a crucial anti-oxidative stress agent. Therapeutically enhancing the Sirt3 transfection efficiency in the heart would broaden the potential clinical application of Sirt3. Ultrasound-targeted microbubble destruction (UTMD) is a prospective, noninvasive, repeatable, and targeted gene delivery technique. In the present study, we explored the potential and safety of UTMD as a delivery tool for Sirt3 in hypertrophic heart tissues using adult male Bama miniature pigs. Pigs were subjected to ear vein delivery of human Sirt3 together with UTMD of cationic microbubbles (CMBs). Fluorescence imaging, western blotting, and quantitative real-time PCR revealed that the targeted destruction of ultrasonic CMBs in cardiac tissues greatly boosted Sirt3 delivery. Overexpression of Sirt3 ameliorated oxidative stress and partially improved the diastolic function and prevented the apoptosis and profibrotic response. Lastly, our data revealed that Sirt3 may regulate the potential transcription of catalase and MnSOD through Foxo3a. Combining the advantages of ultrasound CMBs with preclinical hypertrophy large animal models for gene delivery, we established a classical hypertrophy model as well as a strategy for the targeted delivery of genes to hypertrophic heart tissues. Since oxidative stress, fibrosis and apoptosis are indispensable in the evolution of cardiac hypertrophy and heart failure, our findings suggest that Sirt3 is a promising therapeutic option for these diseases. STATEMENT OF SIGNIFICANCE: : Pathological cardiac hypertrophy is a central prepathology of heart failure and is seen to eventually precede it. Feasible targets that may prevent or reverse disease progression are scarce and urgently needed. In this study, we developed surface-filled lipid octafluoropropane gas core cationic microbubbles that could target the release of human Sirt3 reactivating the endogenous Sirt3 in hypertrophic hearts and protect against oxidative stress in a pig model of cardiac hypertrophy induced by aortic banding. Sirt3-CMBs may enhance cardiac diastolic function and ameliorate fibrosis and apoptosis. Our work provides a classical cationic lipid-based, UTMD-mediated Sirt3 delivery system for the treatment of Sirt3 in patients with established cardiac hypertrophy, as well as a promising therapeutic target to combat pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Xionghai Qin
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Peian Cai
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Chang Liu
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Kegong Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xingpei Jiang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Wei Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Jiarou Li
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xuan Jiao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Erliang Guo
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yixiu Yu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Lu Sun
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hai Tian
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
50
|
Yin JY, Lu XT, Hou ML, Cao T, Tian Z. Sirtuin1-p53: a potential axis for cancer therapy. Biochem Pharmacol 2023; 212:115543. [PMID: 37037265 DOI: 10.1016/j.bcp.2023.115543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
Sirtuin1 (SIRT1) is a conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase that plays key roles in a range of cellular events, including the maintenance of genome stability, gene regulation, cell proliferation, and apoptosis. P53 is one of the most studied tumor suppressors and the first identified non-histone target of SIRT1. SIRT1 deacetylates p53 in a NAD+-dependent manner and inhibits its transcriptional activity, thus exerting action on a series of pathways related to tissue homeostasis and various pathological states. The SIRT1-p53 axis is thought to play a central role in tumorigenesis. Although SIRT1 was initially identified as a tumor promoter, evidence now indicates that SIRT1 may also act as a tumor suppressor. This seemingly contradictory evidence indicates that the functionality of SIRT1 may be dictated by different cell types and intracellular localization patterns. In this review, we summarize recent evidence relating to the interactions between SIRT1 and p53 and discuss the relative roles of these two molecules with regards to cancer-associated cellular events. We also provide an overview of current knowledge of SIRT1-p53 signaling in tumorigenesis. Given the vital role of the SIRT1-p53 pathway, targeting this axis may provide promising strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Jia-Yi Yin
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xin-Tong Lu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Meng-Ling Hou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Ting Cao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|