1
|
Fernandes P, Waldron N, Chatzilygeroudi T, Naji NS, Karantanos T. Acute Erythroid Leukemia: From Molecular Biology to Clinical Outcomes. Int J Mol Sci 2024; 25:6256. [PMID: 38892446 PMCID: PMC11172574 DOI: 10.3390/ijms25116256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Acute Erythroid Leukemia (AEL) is a rare and aggressive subtype of Acute Myeloid Leukemia (AML). In 2022, the World Health Organization (WHO) defined AEL as a biopsy with ≥30% proerythroblasts and erythroid precursors that account for ≥80% of cellularity. The International Consensus Classification refers to this neoplasm as "AML with mutated TP53". Classification entails ≥20% blasts in blood or bone marrow biopsy and a somatic TP53 mutation (VAF > 10%). This type of leukemia is typically associated with biallelic TP53 mutations and a complex karyotype, specifically 5q and 7q deletions. Transgenic mouse models have implicated several molecules in the pathogenesis of AEL, including transcriptional master regulator GATA1 (involved in erythroid differentiation), master oncogenes, and CDX4. Recent studies have also characterized AEL by epigenetic regulator mutations and transcriptome subgroups. AEL patients have overall poor clinical outcomes, mostly related to their poor response to the standard therapies, which include hypomethylating agents and intensive chemotherapy. Allogeneic bone marrow transplantation (AlloBMT) is the only potentially curative approach but requires deep remission, which is very challenging for these patients. Age, AlloBMT, and a history of antecedent myeloid neoplasms further affect the outcomes of these patients. In this review, we will summarize the diagnostic criteria of AEL, review the current insights into the biology of AEL, and describe the treatment options and outcomes of patients with this disease.
Collapse
Affiliation(s)
- Priyanka Fernandes
- Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (P.F.); (N.W.)
| | - Natalie Waldron
- Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (P.F.); (N.W.)
| | - Theodora Chatzilygeroudi
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (T.C.); (N.S.N.)
| | - Nour Sabiha Naji
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (T.C.); (N.S.N.)
| | - Theodoros Karantanos
- Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (P.F.); (N.W.)
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (T.C.); (N.S.N.)
| |
Collapse
|
2
|
Khan I, Amin MA, Eklund EA, Gartel AL. Regulation of HOX gene expression in AML. Blood Cancer J 2024; 14:42. [PMID: 38453907 PMCID: PMC10920644 DOI: 10.1038/s41408-024-01004-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024] Open
Abstract
As key developmental regulators, HOX cluster genes have varied and context-specific roles in normal and malignant hematopoiesis. A complex interaction of transcription factors, epigenetic regulators, long non-coding RNAs and chromatin structural changes orchestrate HOX expression in leukemia cells. In this review we summarize molecular mechanisms underlying HOX regulation in clinical subsets of AML, with a focus on NPM1 mutated (NPM1mut) AML comprising a third of all AML patients. While the leukemia initiating function of the NPM1 mutation is clearly dependent on HOX activity, the favorable treatment responses in these patients with upregulation of HOX cluster genes is a poorly understood paradoxical observation. Recent data confirm FOXM1 as a suppressor of HOX activity and a well-known binding partner of NPM suggesting that FOXM1 inactivation may mediate the effect of cytoplasmic NPM on HOX upregulation. Conversely the residual nuclear fraction of mutant NPM has also been recently shown to have chromatin modifying effects permissive to HOX expression. Recent identification of the menin-MLL interaction as a critical vulnerability of HOX-dependent AML has fueled the development of menin inhibitors that are clinically active in NPM1 and MLL rearranged AML despite inconsistent suppression of the HOX locus. Insights into context-specific regulation of HOX in AML may provide a solid foundation for targeting this common vulnerability across several major AML subtypes.
Collapse
Affiliation(s)
- Irum Khan
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- Department of Medicine at the Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Mohammed A Amin
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Elizabeth A Eklund
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- Department of Medicine at the Feinberg School of Medicine, Northwestern University, Chicago, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Andrei L Gartel
- Department of Medicine, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
3
|
Chen Y, Bao Z, Yao F, Liu Y, Zhao B, Wu X. ChIP-Seq analysis reveals PRKACB as a target gene of HOXC13 involved in rabbit hair follicle development. Gene 2024; 893:147946. [PMID: 38381512 DOI: 10.1016/j.gene.2023.147946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 02/22/2024]
Abstract
Dermal papilla cells (DPCs) are key regulators of hair follicle (HF) development and growth, which not only regulate HF growth and cycling but play a role in the pathogenesis of hair loss. The transcription factor Homeobox C13 (HOXC13) can modulate the growth and development of HFs. Nevertheless, the specific genes and pathways regulated by HOXC13 in DPCs have yet to be determined. Thus, to gain a better understanding of genomic binding sites involved in HOXC13-regulated HF development, chromatin immunoprecipitation followed by high throughput sequencing (ChIP-Seq) was performed on rabbit DPCs with pcDNA3.1-3 × Flag-HOXC13 overexpression. A complete set of 9670 enrichment peaks was acquired by applying HOXC13-Flag ChIP. Subsequently, the peak sequence was annotated to the rabbit genome, revealing that 6.1 % of the peaks were identified within in the promoter region. Thereafter, five annotated genes were verified using RT-qPCR. The peak-associated genes were mainly enriched in signaling pathways related to HF development, such as MAPK and PI3K-Akt. Furthermore, by using a dual-luciferase reporter assay, we found that HOXC13 can target the protein kinase cAMP‑dependent catalytic β (PRKACB) promoter region (-1596 ∼ -1107 bp) and inhibit its transcription, which was consistent with data obtained from ChIP-seq analysis. Overexpression of PRKACB gene significantly modulated the expression of BCL2, WNT2, LEF1, and SFRP2 genes related to HF development as determined by RT-qPCR (P < 0.01, P < 0.05). The CCK-8 and flow cytometry assays showed that PRKACB significantly inhibited the proliferation of DPCs and promoted apoptosis (P < 0.01). In conclusion, our research revealed that PRKACB has the potential to serve as a novel target gene of HOXC13, contributing to the regulation of the proliferation and apoptosis of DPCs. The process of identifying global target genes can contribute to the understanding of the intricate pathways that HOXC13 regulates in the growth of HFs.
Collapse
Affiliation(s)
- Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Fan Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yan Liu
- Animal Husbandry and Veterinary Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
4
|
Yao X, Zhou H, Duan C, Wu X, Li B, Liu H, Zhang Y. Comprehensive characteristics of pathological subtypes in testicular germ cell tumor: Gene expression, mutation and alternative splicing. Front Immunol 2023; 13:1096494. [PMID: 36713456 PMCID: PMC9883017 DOI: 10.3389/fimmu.2022.1096494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Background Testicular germ cell tumor (TGCT) is the most common tumor in young men, but molecular signatures, especially the alternative splicing (AS) between its subtypes have not yet been explored. Methods To investigate the differences between TGCT subtypes, we comprehensively analyzed the data of gene expression, alternative splicing (AS), and somatic mutation in TGCT patients from the TCGA database. The gene ontology (GO) enrichment analyses were used to explore the function of differentially expressed genes and spliced genes respectively, and Spearman correlation analysis was performed to explore the correlation between differential genes and AS events. In addition, the possible patterns in which AS regulates gene expression were elaborated by the ensemble database transcript atlas. And, we identified important transcription factors that regulate gene expression and AS and functionally validated them in TGCT cell lines. Results We found significant differences between expression and AS in embryonal carcinoma and seminoma, while mixed cell tumors were in between. GO enrichment analyses revealed that both differentially expressed and spliced genes were enriched in transcriptional regulatory pathways, and obvious correlation between expression and AS events was determined. By analyzing the transcript map and the sites where splicing occurs, we have demonstrated that AS regulates gene expression in a variety of ways. We further identified two pivot AS-related molecules (SOX2 and HDAC9) involved in AS regulation, which were validated in embryonal carcinoma and seminoma cell lines. Differences in somatic mutations between subtypes are also of concern, with our results suggesting that mutations in some genes (B3GNT8, CAPN7, FAT4, GRK1, TACC2, and TRAM1L1) occur only in embryonal carcinoma, while mutations in KIT, KARS, and NRAS are observed only in seminoma. Conclusions In conclusion, our analysis revealed the differences in gene expression, AS and somatic mutation among TGCT subtypes, providing a molecular basis for clinical diagnosis and precise therapy of TGCT patients.
Collapse
Affiliation(s)
- Xiangyang Yao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Liu
- Stanford Bio-X, Stanford University, Stanford, CA, United States
| | - Yangjun Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China,Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China,*Correspondence: Yangjun Zhang,
| |
Collapse
|
5
|
Huang BJ, Smith JL, Farrar JE, Wang YC, Umeda M, Ries RE, Leonti AR, Crowgey E, Furlan SN, Tarlock K, Armendariz M, Liu Y, Shaw TI, Wei L, Gerbing RB, Cooper TM, Gamis AS, Aplenc R, Kolb EA, Rubnitz J, Ma J, Klco JM, Ma X, Alonzo TA, Triche T, Meshinchi S. Integrated stem cell signature and cytomolecular risk determination in pediatric acute myeloid leukemia. Nat Commun 2022; 13:5487. [PMID: 36123353 PMCID: PMC9485122 DOI: 10.1038/s41467-022-33244-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Relapsed or refractory pediatric acute myeloid leukemia (AML) is associated with poor outcomes and relapse risk prediction approaches have not changed significantly in decades. To build a robust transcriptional risk prediction model for pediatric AML, we perform RNA-sequencing on 1503 primary diagnostic samples. While a 17 gene leukemia stem cell signature (LSC17) is predictive in our aggregated pediatric study population, LSC17 is no longer predictive within established cytogenetic and molecular (cytomolecular) risk groups. Therefore, we identify distinct LSC signatures on the basis of AML cytomolecular subtypes (LSC47) that were more predictive than LSC17. Based on these findings, we build a robust relapse prediction model within a training cohort and then validate it within independent cohorts. Here, we show that LSC47 increases the predictive power of conventional risk stratification and that applying biomarkers in a manner that is informed by cytomolecular profiling outperforms a uniform biomarker approach. Relapsed pediatric acute myeloid leukemia is associated with poor prognosis. Here, the authors use RNA-seq data from 1503 primary samples to create a combined transcriptional and cytomolecular signature to improve relapse risk prediction.
Collapse
Affiliation(s)
- Benjamin J Huang
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA. .,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| | - Jenny L Smith
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jason E Farrar
- University of Arkansas for Medical Sciences & Arkansas Children's Research Institute, Little Rock, AR, USA
| | | | - Masayuki Umeda
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rhonda E Ries
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Erin Crowgey
- Nemours Center for Cancer and Blood Disorders and Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| | - Scott N Furlan
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Katherine Tarlock
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Marcos Armendariz
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Timothy I Shaw
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lisa Wei
- Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | | | - Todd M Cooper
- Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Alan S Gamis
- Children's Mercy Hospitals and Clinics, Kansas City, MO, USA
| | - Richard Aplenc
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders and Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| | - Jeffrey Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Todd A Alonzo
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Soheil Meshinchi
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
El-Meligui YM, Hassan NM, Kassem AB, Gouda NA, Mohanad M, Hamouda MA, Salahuddin A. Impact of HOXB4 and PRDM16 Gene Expressions on Prognosis and Treatment Response in Acute Myeloid Leukemia Patients. Pharmgenomics Pers Med 2022; 15:663-674. [PMID: 35782688 PMCID: PMC9241994 DOI: 10.2147/pgpm.s368640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/14/2022] [Indexed: 12/08/2022] Open
Abstract
Introduction Acute myeloid leukemia (AML) is the most common type of leukemia among adults and is characterized by various genetic abnormalities. HOXB4 and PRDM16 are promising markers of AML. Our objective is to assess the potential roles of HOXB4 and PRDM16 as prognostic and predictive markers in newly diagnosed AML patients and determine the correlation between their expressions and other prognostic markers as FLT3-ITD, NPM1 exon 12 mutations, response to treatment, and patient’s survival. Methods This study included 83 de novo AML adult patients. All patients were subjected to clinical, morphological, cytochemical, and molecular analysis to detect HOXB4 and PRDM16 gene expressions and FLT3-ITD, NPM1 exon 12 mutations. Results The results showed that a low expression of HOXB4 was found in 31.3% of AML patients, whereas a high expression of PRDM16 was evident in 33.8% of AML patients. FLT3-ITD mutations were detected in 6 patients (7.2%), while NPM1 exon 12 mutations were detected in 7 patients (19.4%) out of 36 patients with intermediate genetic risk. Out of the 50 patients who achieved complete remission (CR), relapse occurred in 16% of the cases. Low expression of HOXB4 and high expression of PRDM16 were associated with CR of 32% and 28%, respectively, and a short overall survival (OS) and disease-free survival (DFS). Conclusion Further larger study should be conducted to verify that high PRDM16 and low HOXB4 gene expressions could be used as a poor prognostic predictor for AML. The correlation between PRDM16 and HOXB4 gene expressions and FLT3-ITD and NPM1 exon 12 mutations might have a role on CR, relapse, OS, and, however, this should be clarified in analysis with a larger number of samples.
Collapse
Affiliation(s)
- Yomna M El-Meligui
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Naglaa M Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Amira B Kassem
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
- Correspondence: Amira B Kassem, Email
| | - Nora A Gouda
- Cancer Epidemiology and Biostatistics Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Marwa Mohanad
- Biochemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Manal A Hamouda
- Clinical Pharmacy Department, Faculty of Pharmacy, Menoufia University, Shibin El Kom, Egypt
| | - Ahmad Salahuddin
- Biochemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
7
|
Role of the HOXA cluster in HSC emergence and blood cancer. Biochem Soc Trans 2021; 49:1817-1827. [PMID: 34374409 DOI: 10.1042/bst20210234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022]
Abstract
Hematopoiesis, the process of blood formation, is controlled by a complex developmental program that involves intrinsic and extrinsic regulators. Blood formation is critical to normal embryonic development and during embryogenesis distinct waves of hematopoiesis have been defined that represent the emergence of hematopoietic stem or progenitor cells. The Class I family of homeobox (HOX) genes are also critical for normal embryonic development, whereby mutations are associated with malformations and deformity. Recently, members of the HOXA cluster (comprising 11 genes and non-coding RNA elements) have been associated with the emergence and maintenance of long-term repopulating HSCs. Previous studies identified a gradient of HOXA expression from high in HSCs to low in circulating peripheral cells, indicating their importance in maintaining blood cell numbers and differentiation state. Indeed, dysregulation of HOXA genes either directly or by genetic lesions of upstream regulators correlates with a malignant phenotype. This review discusses the role of the HOXA cluster in both HSC emergence and blood cancer formation highlighting the need for further research to identify specific roles of these master regulators in normal and malignant hematopoiesis.
Collapse
|
8
|
Abstract
Malignancies of the erythroid lineage are rare but aggressive diseases. Notably, the first insights into their biology emerged over half a century ago from avian and murine tumor viruses-induced erythroleukemia models providing the rationale for several transgenic mouse models that unraveled the transforming potential of signaling effectors and transcription factors in the erythroid lineage. More recently, genetic roadmaps have fueled efforts to establish models that are based on the epigenomic lesions observed in patients with erythroid malignancies. These models, together with often unexpected erythroid phenotypes in genetically modified mice, provided further insights into the molecular mechanisms of disease initiation and maintenance. Here, we review how the increasing knowledge of human erythroleukemia genetics combined with those from various mouse models indicate that the pathogenesis of the disease is based on the interplay between signaling mutations, impaired TP53 function, and altered chromatin organization. These alterations lead to aberrant activity of erythroid transcriptional master regulators like GATA1, indicating that erythroleukemia will most likely require combinatorial targeting for efficient therapeutic interventions.
Collapse
|
9
|
The ParaHox gene Cdx4 induces acute erythroid leukemia in mice. Blood Adv 2020; 3:3729-3739. [PMID: 31770439 DOI: 10.1182/bloodadvances.2019000761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/04/2019] [Indexed: 11/20/2022] Open
Abstract
Acute erythroid leukemia (AEL) is a rare and aggressive form of acute leukemia, the biology of which remains poorly understood. Here we demonstrate that the ParaHox gene CDX4 is expressed in patients with acute erythroid leukemia, and that aberrant expression of Cdx4 induced homogenously a transplantable acute erythroid leukemia in mice. Gene expression analyses demonstrated upregulation of genes involved in stemness and leukemogenesis, with parallel downregulation of target genes of Gata1 and Gata2 responsible for erythroid differentiation. Cdx4 induced a proteomic profile that overlapped with a cluster of proteins previously defined to represent the most primitive human erythroid progenitors. Whole-exome sequencing of diseased mice identified recurrent mutations significantly enriched for transcription factors involved in erythroid lineage specification, as well as TP53 target genes partly identical to the ones reported in patients with AEL. In summary, our data indicate that Cdx4 is able to induce stemness and inhibit terminal erythroid differentiation, leading to the development of AEL in association with co-occurring mutations.
Collapse
|
10
|
Darvishi M, Mashati P, Khosravi A. The clinical significance of CDX2 in leukemia: A new perspective for leukemia research. Leuk Res 2018; 72:45-51. [PMID: 30096576 DOI: 10.1016/j.leukres.2018.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Abstract
CDX2 gene encodes a transcription factor involved in primary embryogenesis and hematopoietic development; however, the expression of CDX2 in adults is restricted to intestine and is not observed in blood tissues. The ectopic expression of CDX2 has been frequently observed in acute myeloid and lymphoid leukemia which in most cases is concomitant with poor prognosis. Induction of CDX2 in mice leads to hematologic complications, showing the leukemogenic origin of this gene. CDX2 plays significant role in the most critical pathways as the regulator of important transcription factors targeting cell proliferation, multi-drug resistance and survival. On the whole, the results indicate that CDX2 has the potential to be suggested as the diagnostic marker in hematologic malignancies. This review discusses the role of aberrant expression of CDX2 in the prognosis and the response to treatment in patients with different leukemia in clinical reports in the recent decades. The improvement in this regard could be of high importance in diagnosis and treatment methods.
Collapse
Affiliation(s)
- Mina Darvishi
- Department of Hematology and Blood Bank, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pargol Mashati
- Department of Hematology and Blood Bank, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Khosravi
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran; Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW HOXA9 is a homeodomain transcription factor that plays an essential role in normal hematopoiesis and acute leukemia, in which its overexpression is strongly correlated with poor prognosis. The present review highlights recent advances in the understanding of genetic alterations leading to deregulation of HOXA9 and the downstream mechanisms of HOXA9-mediated transformation. RECENT FINDINGS A variety of genetic alterations including MLL translocations, NUP98-fusions, NPM1 mutations, CDX deregulation, and MOZ-fusions lead to high-level HOXA9 expression in acute leukemias. The mechanisms resulting in HOXA9 overexpression are beginning to be defined and represent attractive therapeutic targets. Small molecules targeting MLL-fusion protein complex members, such as DOT1L and menin, have shown promising results in animal models, and a DOT1L inhibitor is currently being tested in clinical trials. Essential HOXA9 cofactors and collaborators are also being identified, including transcription factors PU.1 and C/EBPα, which are required for HOXA9-driven leukemia. HOXA9 targets including IGF1, CDX4, INK4A/INK4B/ARF, mir-21, and mir-196b and many others provide another avenue for potential drug development. SUMMARY HOXA9 deregulation underlies a large subset of aggressive acute leukemias. Understanding the mechanisms regulating the expression and activity of HOXA9, along with its critical downstream targets, shows promise for the development of more selective and effective leukemia therapies.
Collapse
|
12
|
Shields BJ, Jackson JT, Metcalf D, Shi W, Huang Q, Garnham AL, Glaser SP, Beck D, Pimanda JE, Bogue CW, Smyth GK, Alexander WS, McCormack MP. Acute myeloid leukemia requires Hhex to enable PRC2-mediated epigenetic repression of Cdkn2a. Genes Dev 2016; 30:78-91. [PMID: 26728554 PMCID: PMC4701980 DOI: 10.1101/gad.268425.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Here, Shields et al. demonstrate that the hematopoietically expressed homeobox gene Hhex is overexpressed in acute myeloid leukemia (AML) and is essential for the initiation and propagation of MLL-ENL-induced AML but dispensable for normal myelopoiesis, indicating a specific requirement for Hhex for leukemic growth. The findings in this study describe for the first time a nonclustered homeobox transcription factor that is essential for AML initiation and maintenance and provide mechanistic insight into these processes. Unlike clustered HOX genes, the role of nonclustered homeobox gene family members in hematopoiesis and leukemogenesis has not been extensively studied. Here we found that the hematopoietically expressed homeobox gene Hhex is overexpressed in acute myeloid leukemia (AML) and is essential for the initiation and propagation of MLL-ENL-induced AML but dispensable for normal myelopoiesis, indicating a specific requirement for Hhex for leukemic growth. Loss of Hhex leads to expression of the Cdkn2a-encoded tumor suppressors p16INK4a and p19ARF, which are required for growth arrest and myeloid differentiation following Hhex deletion. Mechanistically, we show that Hhex binds to the Cdkn2a locus and directly interacts with the Polycomb-repressive complex 2 (PRC2) to enable H3K27me3-mediated epigenetic repression. Thus, Hhex is a potential therapeutic target that is specifically required for AML stem cells to repress tumor suppressor pathways and enable continued self-renewal.
Collapse
Affiliation(s)
- Benjamin J Shields
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Jacob T Jackson
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Donald Metcalf
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Wei Shi
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia; Computing and Information Systems, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Qiutong Huang
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Alexandra L Garnham
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | - Stefan P Glaser
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Dominik Beck
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - John E Pimanda
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Clifford W Bogue
- Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Gordon K Smyth
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia; Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Warren S Alexander
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Matthew P McCormack
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
13
|
Sanchez-Ferras O, Bernas G, Farnos O, Touré AM, Souchkova O, Pilon N. A direct role for murine Cdx proteins in the trunk neural crest gene regulatory network. Development 2016; 143:1363-74. [PMID: 26952979 DOI: 10.1242/dev.132159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/18/2016] [Indexed: 12/28/2022]
Abstract
Numerous studies in chordates and arthropods currently indicate that Cdx proteins have a major ancestral role in the organization of post-head tissues. In urochordate embryos, Cdx loss-of-function has been shown to impair axial elongation, neural tube (NT) closure and pigment cell development. Intriguingly, in contrast to axial elongation and NT closure, a Cdx role in neural crest (NC)-derived melanocyte/pigment cell development has not been reported in any other chordate species. To address this, we generated a new conditional pan-Cdx functional knockdown mouse model that circumvents Cdx functional redundancy as well as the early embryonic lethality of Cdx mutants. Through directed inhibition in the neuroectoderm, we provide in vivo evidence that murine Cdx proteins impact melanocyte and enteric nervous system development by, at least in part, directly controlling the expression of the key early regulators of NC ontogenesis Pax3,Msx1 and Foxd3 Our work thus reveals a novel role for Cdx proteins at the top of the trunk NC gene regulatory network in the mouse, which appears to have been inherited from their ancestral ortholog.
Collapse
Affiliation(s)
- Oraly Sanchez-Ferras
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Guillaume Bernas
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Omar Farnos
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Aboubacrine M Touré
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Ouliana Souchkova
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| |
Collapse
|
14
|
|
15
|
Jiang Y, Zhang Y, Li F, Du X, Zhang J. CDX2 inhibits pancreatic adenocarcinoma cell proliferation via promoting tumor suppressor miR-615-5p. Tumour Biol 2016; 37:1041-9. [PMID: 26269116 DOI: 10.1007/s13277-015-3900-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/05/2015] [Indexed: 12/16/2022] Open
Abstract
CDX2 has recently been identified as a prognostic marker for pancreatic adenocarcinoma. However, the role and mechanism of CDX2 in progression of pancreatic adenocarcinoma are still elusive. In this study, we observed that CDX2 expression was much lower in mouse pancreatic adenocarcinoma tissues and pancreatic cancer cells. A network integrated by ChIPBase platform hinted that miR-615-5p, a most newly discovered tumor suppressor, was probably bound by CDX2 in the promoter region. Chromatin immunoprecipitation (ChIP)-qPCR assay showed that CDX2 exhibited a high capacity of binding to miR-615-5p promoter region compared to the negative control. Real-time PCR and western blotting analyses revealed that CDX2 overexpression caused inflation of miR-615-5p and depression of insulin-like growth factor 2 (IGF2), a direct target of miR-615-5p. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and EdU approaches showed that CDX2 overexpression markedly suppressed pancreatic adenocarcinoma cell proliferation. CDX2 small interfering RNA (siRNA) transfection showed an opposite effect on gene expression and cell proliferation to that of CDX2 overexpression. Collectively, CDX2 inhibited pancreatic adenocarcinoma cell proliferation via promoting tumor suppressor miR-615-5p. Our findings suggested a potential molecular target for pancreatic adenocarcinoma therapy.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Gastroenterology, The Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yan Zhang
- Department of Gastroenterology, The Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Fuqing Li
- Department of Gastroenterology, The Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaolin Du
- Department of Gastroenterology, The Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jinping Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Eastern Road, Erqi District, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
16
|
Jang SH, Lee S, Chung HY. Characterization of Leukemia-Inducing Genes Using a Proto-Oncogene/Homeobox Gene Retroviral Human cDNA Library in a Mouse In Vivo Model. PLoS One 2015; 10:e0143240. [PMID: 26606454 PMCID: PMC4659616 DOI: 10.1371/journal.pone.0143240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/01/2015] [Indexed: 11/18/2022] Open
Abstract
The purpose of this research is to develop a method to screen a large number of potential driver mutations of acute myeloid leukemia (AML) using a retroviral cDNA library and murine bone marrow transduction-transplantation system. As a proof-of-concept, murine bone marrow (BM) cells were transduced with a retroviral cDNA library encoding well-characterized oncogenes and homeobox genes, and the virus-transduced cells were transplanted into lethally irradiated mice. The proto-oncogenes responsible for leukemia initiation were identified by PCR amplification of cDNA inserts from genomic DNA isolated from leukemic cells. In an initial screen of ten leukemic mice, the MYC proto-oncogene was detected in all the leukemic mice. Of ten leukemic mice, 3 (30%) had MYC as the only transgene, and seven mice (70%) had additional proto-oncogene inserts. We repeated the same experiment after removing MYC-related genes from the library to characterize additional leukemia-inducing gene combinations. Our second screen using the MYC-deleted proto-oncogene library confirmed MEIS1and the HOX family as cooperating oncogenes in leukemia pathogenesis. The model system we introduced in this study will be valuable in functionally screening novel combinations of genes for leukemogenic potential in vivo, and the system will help in the discovery of new targets for leukemia therapy.
Collapse
Affiliation(s)
- Su Hwa Jang
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sohyun Lee
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hee Yong Chung
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
17
|
Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets. Oncogene 2015; 35:1090-8. [PMID: 26028034 DOI: 10.1038/onc.2015.174] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/24/2015] [Accepted: 04/14/2015] [Indexed: 02/08/2023]
Abstract
HOXA9 is a homeodomain-containing transcription factor that has an important role in hematopoietic stem cell expansion and is commonly deregulated in acute leukemias. A variety of upstream genetic alterations in acute myeloid leukemia lead to overexpression of HOXA9, which is a strong predictor of poor prognosis. In many cases, HOXA9 has been shown to be necessary for maintaining leukemic transformation; however, the molecular mechanisms through which it promotes leukemogenesis remain elusive. Recent work has established that HOXA9 regulates downstream gene expression through binding at promoter distal enhancers along with a subset of cell-specific cofactor and collaborator proteins. Increasing efforts are being made to identify both the critical cofactors and target genes required for maintaining transformation in HOXA9-overexpressing leukemias. With continued advances in understanding HOXA9-mediated transformation, there is a wealth of opportunity for developing novel therapeutics that would be applicable for greater than 50% of AML with overexpression of HOXA9.
Collapse
|
18
|
|
19
|
Regulation of CDX4 gene transcription by HoxA9, HoxA10, the Mll-Ell oncogene and Shp2 during leukemogenesis. Oncogenesis 2014; 3:e135. [PMID: 25531430 PMCID: PMC4275563 DOI: 10.1038/oncsis.2014.49] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/08/2014] [Accepted: 11/18/2014] [Indexed: 12/17/2022] Open
Abstract
Cdx and Hox proteins are homeodomain transcription factors that regulate hematopoiesis. Transcription of the HOX and CDX genes decreases during normal myelopoiesis, but is aberrantly sustained in leukemias with translocation or partial tandem duplication of the MLL1 gene. Cdx4 activates transcription of the HOXA9 and HOXA10 genes, and HoxA10 activates CDX4 transcription. The events that break this feedback loop, permitting a decreased Cdx4 expression during normal myelopoiesis, were previously undefined. In the current study, we find that HoxA9 represses CDX4 transcription in differentiating myeloid cells, antagonizing activation by HoxA10. We determine that tyrosine phosphorylation of HoxA10 impairs transcriptional activation of CDX4, but tyrosine phosphorylation of HoxA9 facilitates repression of this gene. As HoxA9 and HoxA10 are phosphorylated during myelopoiesis, this provides a mechanism for differentiation stage-specific Cdx4 expression. HoxA9 and HoxA10 are increased in cells expressing Mll-Ell, a leukemia-associated MLL1 fusion protein. We find that Mll-Ell induces a HoxA10-dependent increase in Cdx4 expression in myeloid progenitor cells. However, Cdx4 decreases in a HoxA9-dependent manner on exposure of Mll-Ell-expressing cells to differentiating cytokines. Leukemia-associated, constitutively active mutants of Shp2 block cytokine-induced tyrosine phosphorylation of HoxA9 and HoxA10. In comparison with myeloid progenitor cells that are expressing Mll-Ell alone, we find increased CDX4 transcription and Cdx4 expression in cells co-expressing Mll-Ell plus constitutively active Shp2. Increased Cdx4 expression is sustained on exposure of these cells to differentiating cytokines. Our results identify a mechanism for increased and sustained CDX4 transcription in leukemias co-overexpressing HoxA9 and HoxA10 in combination with constitutive activation of Shp2. This is clinically relevant, because MLL1 translocations and constitutive Shp2 activation co-exist in human myeloid leukemias.
Collapse
|
20
|
Kong KA, Lee JY, Oh JH, Lee Y, Kim MH. Akt1 mediates the posterior Hoxc gene expression through epigenetic modifications in mouse embryonic fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:793-9. [PMID: 24955524 DOI: 10.1016/j.bbagrm.2014.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 05/09/2014] [Accepted: 06/11/2014] [Indexed: 12/20/2022]
Abstract
The evolutionarily conserved Hox genes are organized in clusters and expressed colinearly to specify body patterning during embryonic development. Previously, Akt1 has been identified as a putative Hox gene regulator through in silico analysis. Substantial upregulation of consecutive 5' Hoxc genes has been observed when Akt1 is absent in mouse embryonic fibroblast (MEF) cells. In this study, we provide evidence that Akt1 regulates the 5' Hoxc gene expression by epigenetic modifications. Enrichment of histone H3K9 acetylation and a low level of the H3K27me3 mark were detected at the posterior 5' Hoxc loci when Akt1 is absent. A histone deacetylase (HDAC) inhibitor de-repressed 5' Hoxc gene expression when Akt1 is present, and a DNA demethylating reagent synergistically upregulated HDAC-induced 5' Hoxc gene expression. A knockdown study revealed that Hdac6 is mediated in the Hoxc12 repression through direct binding to the transcription start site (TSS) in the presence of Akt1. Co-immunoprecipitation analysis revealed that endogenous Akt1 directly interacted with Hdac6. Furthermore, exogenous Akt1 was enriched at the promoter region of the posterior Hoxc genes such as Hoxc11 and Hoxc12, not the Akt1-independent Hoxc5 and Hoxd10 loci. The regulation of the H3K27me3 mark by Ezh2 and Kdm6b at the 5' Hoxc gene promoter turned out to be Akt1 dependent. Taken together, these results suggest that Akt1 mediates the posterior 5' Hoxc gene expression through epigenetic modification such as histone methylation and acetylation, and partly through a direct binding to the promoter region of the 5' Hoxc genes and/or Hdac6 in mouse embryonic fibroblast cells.
Collapse
Affiliation(s)
- Kyoung-Ah Kong
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Yeon Lee
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Hoon Oh
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youra Lee
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
21
|
A Cdx4-Sall4 regulatory module controls the transition from mesoderm formation to embryonic hematopoiesis. Stem Cell Reports 2013; 1:425-36. [PMID: 24286030 PMCID: PMC3841246 DOI: 10.1016/j.stemcr.2013.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 12/26/2022] Open
Abstract
Deletion of caudal/cdx genes alters hox gene expression and causes defects in posterior tissues and hematopoiesis. Yet, the defects in hox gene expression only partially explain these phenotypes. To gain deeper insight into Cdx4 function, we performed chromatin immunoprecipitation sequencing (ChIP-seq) combined with gene-expression profiling in zebrafish, and identified the transcription factor spalt-like 4 (sall4) as a Cdx4 target. ChIP-seq revealed that Sall4 bound to its own gene locus and the cdx4 locus. Expression profiling showed that Cdx4 and Sall4 coregulate genes that initiate hematopoiesis, such as hox, scl, and lmo2. Combined cdx4/sall4 gene knockdown impaired erythropoiesis, and overexpression of the Cdx4 and Sall4 target genes scl and lmo2 together rescued the erythroid program. These findings suggest that auto- and cross-regulation of Cdx4 and Sall4 establish a stable molecular circuit in the mesoderm that facilitates the activation of the blood-specific program as development proceeds. Cdx4 and Sall4 bind to each other’s genomic loci Cdx4 and Sall4 coregulate genes responsible for the mesoderm-to-blood transition Scl and Lmo2 overexpression rescues blood defects in cdx4/sall4 double morphants
Collapse
|
22
|
Gubelmann C, Waszak SM, Isakova A, Holcombe W, Hens K, Iagovitina A, Feuz JD, Raghav SK, Simicevic J, Deplancke B. A yeast one-hybrid and microfluidics-based pipeline to map mammalian gene regulatory networks. Mol Syst Biol 2013; 9:682. [PMID: 23917988 PMCID: PMC3779800 DOI: 10.1038/msb.2013.38] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/28/2013] [Indexed: 02/06/2023] Open
Abstract
The comprehensive mapping of gene promoters and enhancers has significantly improved our understanding of how the mammalian regulatory genome is organized. An important challenge is to elucidate how these regulatory elements contribute to gene expression by identifying their trans-regulatory inputs. Here, we present the generation of a mouse-specific transcription factor (TF) open-reading frame clone library and its implementation in yeast one-hybrid assays to enable large-scale protein-DNA interaction detection with mouse regulatory elements. Once specific interactions are identified, we then use a microfluidics-based method to validate and precisely map them within the respective DNA sequences. Using well-described regulatory elements as well as orphan enhancers, we show that this cross-platform pipeline characterizes known and uncovers many novel TF-DNA interactions. In addition, we provide evidence that several of these novel interactions are relevant in vivo and aid in elucidating the regulatory architecture of enhancers.
Collapse
Affiliation(s)
- Carine Gubelmann
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sands WA, Copland M, Wheadon H. Targeting self-renewal pathways in myeloid malignancies. Cell Commun Signal 2013; 11:33. [PMID: 23675967 PMCID: PMC3665484 DOI: 10.1186/1478-811x-11-33] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/22/2013] [Indexed: 12/23/2022] Open
Abstract
A fundamental property of hematopoietic stem cells (HSCs) is the ability to self-renew. This is a complex process involving multiple signal transduction cascades which control the fine balance between self-renewal and differentiation through transcriptional networks. Key activators/regulators of self-renewal include chemokines, cytokines and morphogens which are expressed in the bone marrow niche, either in a paracrine or autocrine fashion, and modulate stem cell behaviour. Increasing evidence suggests that the downstream signaling pathways induced by these ligands converge at multiple levels providing a degree of redundancy in steady state hematopoiesis. Here we will focus on how these pathways cross-talk to regulate HSC self-renewal highlighting potential therapeutic windows which could be targeted to prevent leukemic stem cell self-renewal in myeloid malignancies.
Collapse
Affiliation(s)
- William A Sands
- Paul O’Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, Gartnavel General Hospital, 1053 Great Western Road, Glasgow G12 0ZD, UK
| | - Mhairi Copland
- Paul O’Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, Gartnavel General Hospital, 1053 Great Western Road, Glasgow G12 0ZD, UK
| | - Helen Wheadon
- Paul O’Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, Gartnavel General Hospital, 1053 Great Western Road, Glasgow G12 0ZD, UK
| |
Collapse
|
24
|
Abstract
The homeobox (HOX) genes are a highly conserved family of homeodomain-containing transcription factors that specify cell identity in early development and, subsequently, in a number of adult processes including hematopoiesis. The dysregulation of HOX genes is associated with a number of malignancies including acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL), where they have been shown to support the immortalization of leukemic cells both as chimeric partners in fusion genes and when overexpressed in their wild-type form. This review covers our current understanding of the role of HOX genes in normal hematopoiesis, AML and ALL, with particular emphasis on the similarities and differences of HOX function in these contexts, their hematopoietic downstream gene targets and implications for therapy.
Collapse
|
25
|
Akt1 as a putative regulator of Hox genes. Gene 2012; 513:287-91. [PMID: 23154063 DOI: 10.1016/j.gene.2012.10.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/22/2012] [Accepted: 10/20/2012] [Indexed: 02/06/2023]
Abstract
In mammals, precise spatiotemporal expressions of Hox genes control the main body axis during embryogenesis. However, the mechanism by which Hox genes are regulated is poorly understood. To discover the putative regulator of Hox genes, in silico analyses were performed using GEO profiles, and Akt1 emerged as a candidate regulator of Hox genes in E13.5 MEFs. The results of the RT-PCR showed that 5' Hoxc genes, including ncRNA were upregulated in Akt1 null MEF. Combined bisulfite restriction analysis (COBRA) and bisulfite sequencing showed that the CpG island of a 5' Hoxc gene was hypomethylated in Akt1 null cells. These results indicate that Hox expression could be controlled by the function of Akt1 through epigenetic modification such as DNA methylation.
Collapse
|
26
|
Abstract
Members of the caudal gene family (in mice and humans: Cdx1, Cdx2, and Cdx4) have been studied during early development as regulators of axial elongation and anteroposterior patterning. In the adult, Cdx1 and Cdx2, but not Cdx4, have been intensively explored for their function in intestinal tissue homeostasis and the pathogenesis of gastrointestinal cancers. Involvement in embryonic hematopoiesis was first demonstrated in zebrafish, where cdx genes render posterior lateral plate mesoderm competent to respond to genes specifying hematopoietic fate, and compound mutations in cdx genes thus result in a bloodless phenotype. Parallel studies performed in zebrafish embryos and murine embryonic stem cells (ESCs) delineate conserved pathways between fish and mammals, corroborating a BMP/Wnt-Cdx-Hox axis during blood development that can be employed to augment derivation of blood progenitors from pluripotent stem cells in vitro. The molecular regulation of Cdx genes appears complex, as more recent data suggest involvement of non-Hox-related mechanisms and the existence of auto- and cross-regulatory loops governed by morphogens. Here, we will review the role of Cdx genes during hematopoietic development by comparing effects in zebrafish and mice and discuss their participation in malignant blood diseases.
Collapse
Affiliation(s)
- Claudia Lengerke
- University of Tübingen Medical Center-Hematology & Oncology, Tübingen, Germany.
| | | |
Collapse
|
27
|
Bei L, Shah C, Wang H, Huang W, Roy R, Eklund EA. β-Catenin activates the HOXA10 and CDX4 genes in myeloid progenitor cells. J Biol Chem 2012; 287:39589-601. [PMID: 23038246 DOI: 10.1074/jbc.m112.402172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
HoxA10 is a homeodomain transcription factor that is involved in maintenance of the myeloid progenitor population and implicated in myeloid leukemogenesis. Previously, we found that FGF2 and CDX4 are direct target genes of HoxA10 and that HOXA10 is a Cdx4 target gene. We also found that increased production of fibroblast growth factor 2 (Fgf2) by HoxA10-overexpressing myeloid progenitor cells results in activation of β-catenin in an autocrine manner. In this study, we identify novel cis elements in the CDX4 and HOXA10 genes that are activated by β-catenin in myeloid progenitor cells. We determine that β-catenin interacts with these cis elements, identifying both CDX4 and HOXA10 as β-catenin target genes in this context. We demonstrate that HoxA10-induced CDX4 transcription is influenced by Fgf2-dependent β-catenin activation. Similarly, Cdx4-induced HOXA10 transcription is influenced by β-catenin in an Fgf2-dependent manner. Increased expression of a set of Hox proteins, including HoxA10, is associated with poor prognosis in acute myeloid leukemia. Cdx4 contributes to leukemogenesis in Hox-overexpressing acute myeloid leukemia, and increased β-catenin activity is also associated with poor prognosis. The current studies identify a molecular mechanisms through which increased expression of HoxA10 increases Cdx4 expression by direct CDX4 activation and by Fgf2-induced β-catenin activity. This results in Cdx4-induced HoxA10-expression, creating a positive feedback mechanism.
Collapse
Affiliation(s)
- Ling Bei
- Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
HOX proteins are widely involved in hematopoietic development. These transcription factors combine a conserved DNA-binding homeobox with a divergent N-terminus that mediates interaction with variable cofactors. The resulting combinatorial diversity is thought to be responsible for mammalian HOX specificity. Contrasting this proposed mechanism for normal HOX function, here we demonstrate that, in the context of hematopoietic immortalization and leukemogenesis, individual HOX properties are governed almost exclusively by the homeodomain. Swap experiments between HOXA1 and HOXA9, 2 members of nonrelated paralog groups, revealed that gene expression patterns of HOX transformed cells in vitro are determined by the nature of the homeodomain. Similar results were seen in vivo during HOX-mediated leukemogenesis. An exchange of the homeodomains was sufficient to convert the slow, low-penetrance phenotype of HOXA1-induced leukemia to the aggressive fast-acting disease elicited by HOXA9 and vice versa. Mutation and deletion studies identified several subregions within the DNA binding domain responsible for paralog specificity. Previously defined binding sites for PBX cofactors within the exchangeable, nonhomeobox segment were dispensable for in vitro oncogenic HOX activity but affected in vivo disease development. The transcriptional activator domain shared by HOXA1 and HOXA9 at the very N-terminus proved essential for all transformation.
Collapse
|
29
|
Kawahara M, Pandolfi A, Bartholdy B, Barreyro L, Will B, Roth M, Okoye-Okafor UC, Todorova TI, Figueroa ME, Melnick A, Mitsiades CS, Steidl U. H2.0-like homeobox regulates early hematopoiesis and promotes acute myeloid leukemia. Cancer Cell 2012; 22:194-208. [PMID: 22897850 PMCID: PMC3422691 DOI: 10.1016/j.ccr.2012.06.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 02/29/2012] [Accepted: 06/22/2012] [Indexed: 11/30/2022]
Abstract
Homeobox domain-containing transcription factors are important regulators of hematopoiesis. Here, we report that increased levels of nonclustered H2.0-like homeobox (HLX) lead to loss of functional hematopoietic stem cells and formation of aberrant progenitors with unlimited serial clonogenicity and blocked differentiation. Inhibition of HLX reduces proliferation and clonogenicity of leukemia cells, overcomes the differentiation block, and leads to prolonged survival. HLX regulates a transcriptional program, including PAK1 and BTG1, that controls cellular differentiation and proliferation. HLX is overexpressed in 87% of patients with acute myeloid leukemia (AML) and independently correlates with inferior overall survival (n = 601, p = 2.3 × 10(-6)). Our study identifies HLX as a key regulator in immature hematopoietic and leukemia cells and as a prognostic marker and therapeutic target in AML.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Cell Biology and Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
During the past decade it was recognized that homeobox gene families such as the clustered Hox genes play pivotal roles both in normal and malignant hematopoiesis. More recently, similar roles have also become apparent for members of the ParaHox gene cluster, evolutionarily closely related to the Hox gene cluster. This is in particular found for the caudal-type homeobox genes (Cdx) genes, known to act as upstream regulators of Hox genes. The CDX gene family member CDX2 belongs to the most frequent aberrantly expressed proto-oncogenes in human acute leukemias and is highly leukemogenic in experimental models. Correlative studies indicate that CDX2 functions as master regulator of perturbed HOX gene expression in human acute myeloid leukemia, locating this ParaHox gene at a central position for initiating and maintaining HOX gene dysregulation as a driving leukemogenic force. There are still few data about potential upstream regulators initiating aberrant CDX2 expression in human leukemias or about critical downstream targets of CDX2 in leukemic cells. Characterizing this network will hopefully open the way to therapeutic approaches that target deregulated ParaHox genes in human leukemia.
Collapse
|
31
|
Abstract
The clustered homeobox proteins play crucial roles in development, hematopoiesis, and leukemia, yet the targets they regulate and their mechanisms of action are poorly understood. Here, we identified the binding sites for Hoxa9 and the Hox cofactor Meis1 on a genome-wide level and profiled their associated epigenetic modifications and transcriptional targets. Hoxa9 and the Hox cofactor Meis1 cobind at hundreds of highly evolutionarily conserved sites, most of which are distant from transcription start sites. These sites show high levels of histone H3K4 monomethylation and CBP/P300 binding characteristic of enhancers. Furthermore, a subset of these sites shows enhancer activity in transient transfection assays. Many Hoxa9 and Meis1 binding sites are also bound by PU.1 and other lineage-restricted transcription factors previously implicated in establishment of myeloid enhancers. Conditional Hoxa9 activation is associated with CBP/P300 recruitment, histone acetylation, and transcriptional activation of a network of proto-oncogenes, including Erg, Flt3, Lmo2, Myb, and Sox4. Collectively, this work suggests that Hoxa9 regulates transcription by interacting with enhancers of genes important for hematopoiesis and leukemia.
Collapse
|
32
|
Forrester AM, Grabher C, McBride ER, Boyd ER, Vigerstad MH, Edgar A, Kai FB, Da'as SI, Payne E, Look AT, Berman JN. NUP98-HOXA9-transgenic zebrafish develop a myeloproliferative neoplasm and provide new insight into mechanisms of myeloid leukaemogenesis. Br J Haematol 2011; 155:167-81. [PMID: 21810091 DOI: 10.1111/j.1365-2141.2011.08810.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NUP98-HOXA9 [t(7;11) (p15;p15)] is associated with inferior prognosis in de novo and treatment-related acute myeloid leukaemia (AML) and contributes to blast crisis in chronic myeloid leukaemia (CML). We have engineered an inducible transgenic zebrafish harbouring human NUP98-HOXA9 under the zebrafish spi1(pu.1) promoter. NUP98-HOXA9 perturbed zebrafish embryonic haematopoiesis, with upregulated spi1 expression at the expense of gata1a. Markers associated with more differentiated myeloid cells, lcp1, lyz, and mpx were also elevated, but to a lesser extent than spi1, suggesting differentiation of early myeloid progenitors may be impaired by NUP98-HOXA9. Following irradiation, NUP98-HOXA9-expressing embryos showed increased numbers of cells in G2-M transition compared to controls and absence of a normal apoptotic response, which may result from an upregulation of bcl2. These data suggest NUP98-HOXA9-induced oncogenesis may result from a combination of defects in haematopoiesis and an aberrant response to DNA damage. Importantly, 23% of adult NUP98-HOXA9-transgenic fish developed a myeloproliferative neoplasm (MPN) at 19-23 months of age. In summary, we have identified an embryonic haematopoietic phenotype in a transgenic zebrafish line that subsequently develops MPN. This tool provides a unique opportunity for high-throughput in vivo chemical modifier screens to identify novel therapeutic agents in high risk AML.
Collapse
Affiliation(s)
- A Michael Forrester
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Modulation of Tcf3 repressor complex composition regulates cdx4 expression in zebrafish. EMBO J 2011; 30:2894-907. [PMID: 21666599 DOI: 10.1038/emboj.2011.184] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 05/18/2011] [Indexed: 01/31/2023] Open
Abstract
The caudal homeobox (cdx) gene family is critical for specification of caudal body formation and erythropoiesis. In zebrafish, cdx4 expression is controlled by the Wnt pathway, but the molecular mechanism of this regulation is not fully understood. Here, we provide evidence that Tcf3 suppresses cdx4 expression through direct binding to multiple sites in the cdx4 gene regulatory region. Tcf3 requires corepressor molecules such as Groucho (Gro)/TLE and HDAC1 for activity. Using zebrafish embryos and cultured mammalian cells, we show that the transcription factor E4f1 derepresses cdx4 by dissociating corepressor proteins from Tcf3 without inhibiting its binding to cis-regulatory sites in the DNA. Further, the E3 ubiquitin ligase Lnx2b, acting as a scaffold protein irrespective of its enzymatic activity, counteracts the effects of E4f1. We propose that the modulation of Tcf3 repressor function by E4f1 assures precise and robust regulation of cdx4 expression in the caudal domain of the embryo.
Collapse
|
34
|
Bei L, Huang W, Wang H, Shah C, Horvath E, Eklund E. HoxA10 activates CDX4 transcription and Cdx4 activates HOXA10 transcription in myeloid cells. J Biol Chem 2011; 286:19047-64. [PMID: 21471217 PMCID: PMC3099719 DOI: 10.1074/jbc.m110.213983] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 04/04/2011] [Indexed: 12/19/2022] Open
Abstract
HoxA10 is a homeodomain transcription factor that influences a number of developmental processes, including hematopoiesis. During definitive hematopoiesis, expression of HoxA10 is maximal in committed myeloid progenitor cells and decreases as differentiation proceeds. Aberrantly increased expression of HoxA10 was found in bone marrow cells in a poor prognosis subset of human acute myeloid leukemia (AML). Consistent with this, AML developed in mice transplanted with HoxA10-overexpressing bone marrow. However, relatively few target genes have been identified that explain the role of HoxA10 in leukemogenesis. In the current study, we identified CDX4 as a HoxA10 target gene. Cdx4 is a homeodomain transcription factor that was also implicated in myeloid leukemogenesis. Although relatively few Cdx4 target genes have been identified, Cdx4 was known to influence HOX gene transcription. We identified a HoxA10-binding cis element in the CDX4 promoter that activated transcription. We also identified a Cdx4-binding cis element that activated the HOXA10 promoter. Therefore, increased Cdx4 expression in HoxA10-overexpressing cells augmented transcription of the endogenous HOXA10 gene. Increased endogenous HoxA10 in these cells induced additional CDX4 transcription. We found that Cdx4 influenced transcription of HoxA10 target genes in a HoxA10-dependent manner. Similarly, HoxA10 influenced transcription of HOX genes in a Cdx4-dependent manner. We previously found that HoxA10-overexpressing myeloid progenitors were hypersensitive to a variety of cytokines. In the current studies, we found that Cdx4 knockdown decreased cytokine hypersensitivity of HoxA10-overexpressing cells. Therefore, these studies identified a positive feedback relationship between HoxA10 and Cdx4, which potentially amplified the contribution of either transcription factor to the pathogenesis of AML.
Collapse
Affiliation(s)
- Ling Bei
- From the Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
- the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Weiqi Huang
- From the Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
- the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Hao Wang
- From the Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
| | - Chirag Shah
- From the Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
| | - Elizabeth Horvath
- From the Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
- the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Elizabeth Eklund
- From the Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
- the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| |
Collapse
|
35
|
Gandillet A, Park S, Lassailly F, Griessinger E, Vargaftig J, Filby A, Lister TA, Bonnet D. Heterogeneous sensitivity of human acute myeloid leukemia to β-catenin down-modulation. Leukemia 2011; 25:770-780. [PMID: 21339756 PMCID: PMC4289854 DOI: 10.1038/leu.2011.17] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 12/15/2010] [Accepted: 01/10/2011] [Indexed: 01/23/2023]
Abstract
Dysregulation of the Wnt/β-catenin pathway has been observed in various malignancies, including acute myeloid leukemia (AML), where the overexpression of β-catenin is an independent adverse prognostic factor. β-catenin was found upregulated in the vast majority of AML samples and more frequently localized in the nucleus of leukemic stem cells compared with normal bone marrow CD34(+) cells. The knockdown of β-catenin, using a short hairpin RNA (shRNA) lentiviral approach, accelerates all-trans retinoic acid-induced differentiation and impairs the proliferation of HL60 leukemic cell line. Using in vivo quantitative tracking of these cells, we observed a reduced engraftment potential after xenotransplantation when β-catenin was silenced. However, when studying primary AML cells, despite effective downregulation of β-catenin we did not observe any impairment of their in vitro long-term maintenance on MS-5 stroma nor of their engraftment potential in vivo. Altogether, these results show that despite a frequent β-catenin upregulation in AML, leukemia-initiating cells might not be 'addicted' to this pathway and thus targeted therapy against β-catenin might not be successful in all patients.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Apoptosis
- Blotting, Western
- Cell Cycle
- Cell Differentiation
- Cell Proliferation
- Down-Regulation
- Female
- Flow Cytometry
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Middle Aged
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Transplantation, Heterologous
- Tumor Cells, Cultured
- beta Catenin/antagonists & inhibitors
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Arnaud Gandillet
- Cancer Research UK Haematopoietic Stem Cell Group, London Research Institute, Cancer Research UK, London, UK
| | - Sophie Park
- Cancer Research UK Haematopoietic Stem Cell Group, London Research Institute, Cancer Research UK, London, UK
| | - François Lassailly
- Cancer Research UK Haematopoietic Stem Cell Group, London Research Institute, Cancer Research UK, London, UK
| | - Emmanuel Griessinger
- Cancer Research UK Haematopoietic Stem Cell Group, London Research Institute, Cancer Research UK, London, UK
| | - Jacques Vargaftig
- Cancer Research UK Haematopoietic Stem Cell Group, London Research Institute, Cancer Research UK, London, UK
| | - Andrew Filby
- Flow Cytometry Core Facility, London Research Institute, Cancer Research UK, London, UK
| | - T. Andrew Lister
- Department of Medical Oncology, St. Bartholomew’s hospital, Queen Mary University of London, London, UK
| | - Dominique Bonnet
- Cancer Research UK Haematopoietic Stem Cell Group, London Research Institute, Cancer Research UK, London, UK
| |
Collapse
|
36
|
Peters A, Burridge PW, Pryzhkova MV, Levine MA, Park TS, Roxbury C, Yuan X, Péault B, Zambidis ET. Challenges and strategies for generating therapeutic patient-specific hemangioblasts and hematopoietic stem cells from human pluripotent stem cells. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2011; 54:965-90. [PMID: 20563986 DOI: 10.1387/ijdb.093043ap] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent characterization of hemangioblasts differentiated from human embryonic stem cells (hESC) has further confirmed evidence from murine, zebrafish and avian experimental systems that hematopoietic and endothelial lineages arise from a common progenitor. Such progenitors may provide a valuable resource for delineating the initial developmental steps of human hemato-endotheliogenesis, which is a process normally difficult to study due to the very limited accessibility of early human embryonic/fetal tissues. Moreover, efficient hemangioblast and hematopoietic stem cell (HSC) generation from patient-specific pluripotent stem cells has enormous potential for regenerative medicine, since it could lead to strategies for treating a multitude of hematologic and vascular disorders. However, significant scientific challenges remain in achieving these goals, and the generation of transplantable hemangioblasts and HSC derived from hESC currently remains elusive. Our previous work has suggested that the failure to derive engraftable HSC from hESC is due to the fact that current methodologies for differentiating hESC produce hematopoietic progenitors developmentally similar to those found in the human yolk sac, and are therefore too immature to provide adult-type hematopoietic reconstitution. Herein, we outline the nature of this challenge and propose targeted strategies for generating engraftable human pluripotent stem cell-derived HSC from primitive hemangioblasts using a developmental approach. We also focus on methods by which reprogrammed somatic cells could be used to derive autologous pluripotent stem cells, which in turn could provide unlimited sources of patient-specific hemangioblasts and HSC.
Collapse
Affiliation(s)
- Ann Peters
- Institute for Cell Engineering, Stem Cell Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Requirement for Dot1l in murine postnatal hematopoiesis and leukemogenesis by MLL translocation. Blood 2011; 117:4759-68. [PMID: 21398221 DOI: 10.1182/blood-2010-12-327668] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Disruptor of telomeric silencing 1-like (Dot1l) is a histone 3 lysine 79 methyltransferase. Studies of constitutive Dot1l knockout mice show that Dot1l is essential for embryonic development and prenatal hematopoiesis. DOT1L also interacts with translocation partners of Mixed Lineage Leukemia (MLL) gene, which is commonly translocated in human leukemia. However, the requirement of Dot1l in postnatal hematopoiesis and leukemogenesis of MLL translocation proteins has not been conclusively shown. With a conditional Dot1l knockout mouse model, we examined the consequences of Dot1l loss in postnatal hematopoiesis and MLL translocation leukemia. Deletion of Dot1l led to pancytopenia and failure of hematopoietic homeostasis, and Dot1l-deficient cells minimally reconstituted recipient bone marrow in competitive transplantation experiments. In addition, MLL-AF9 cells required Dot1l for oncogenic transformation, whereas cells with other leukemic oncogenes, such as Hoxa9/Meis1 and E2A-HLF, did not. These findings illustrate a crucial role of Dot1l in normal hematopoiesis and leukemogenesis of specific oncogenes.
Collapse
|
38
|
Wheadon H, Ramsey JM, Dobbin E, Dickson GJ, Corrigan PM, Freeburn RW, Thompson A. Differential Hox expression in murine embryonic stem cell models of normal and malignant hematopoiesis. Stem Cells Dev 2011; 20:1465-76. [PMID: 21083428 DOI: 10.1089/scd.2010.0226] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Hox family are master transcriptional regulators of developmental processes, including hematopoiesis. The Hox regulators, caudal homeobox factors (Cdx1-4), and Meis1, along with several individual Hox proteins, are implicated in stem cell expansion during embryonic development, with gene dosage playing a significant role in the overall function of the integrated Hox network. To investigate the role of this network in normal and aberrant, early hematopoiesis, we employed an in vitro embryonic stem cell differentiation system, which recapitulates mouse developmental hematopoiesis. Expression profiles of Hox, Pbx1, and Meis1 genes were quantified at distinct stages during the hematopoietic differentiation process and compared with the effects of expressing the leukemic oncogene Tel/PDGFRβ. During normal differentiation the Hoxa cluster, Pbx1 and Meis1 predominated, with a marked reduction in the majority of Hox genes (27/39) and Meis1 occurring during hematopoietic commitment. Only the posterior Hoxa cluster genes (a9, a10, a11, and a13) maintained or increased expression at the hematopoietic colony stage. Cdx4, Meis1, and a subset of Hox genes, including a7 and a9, were differentially expressed after short-term oncogenic (Tel/PDGFRβ) induction. Whereas Hoxa4-10, b1, b2, b4, and b9 were upregulated during oncogenic driven myelomonocytic differentiation. Heterodimers between Hoxa7/Hoxa9, Meis1, and Pbx have previously been implicated in regulating target genes involved in hematopoietic stem cell (HSC) expansion and leukemic progression. These results provide direct evidence that transcriptional flux through the Hox network occurs at very early stages during hematopoietic differentiation and validates embryonic stem cell models for gaining insights into the genetic regulation of normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Helen Wheadon
- Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Cancer is a complex disease in which cells have circumvented normal restraints on tissue growth and have acquired complex abnormalities in their genomes, posing a considerable challenge to identifying the pathways and mechanisms that drive fundamental aspects of the malignant phenotype. Genetic analyses of the normal development of the nematode Caenorhabditis elegans have revealed evolutionarily conserved mechanisms through which individual cells establish their fates, and how they make and execute the decision to survive or undergo programmed cell death. The pathways identified through these studies have mammalian counterparts that are co-opted by malignant cells. Effective cancer drugs now target some of these pathways, and more are likely to be discovered.
Collapse
Affiliation(s)
- Malia B Potts
- Departments of Pediatrics and Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 75390-9148, USA
| | | |
Collapse
|
40
|
Savory JGA, Mansfield M, St Louis C, Lohnes D. Cdx4 is a Cdx2 target gene. Mech Dev 2010; 128:41-8. [PMID: 20933081 DOI: 10.1016/j.mod.2010.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/31/2010] [Accepted: 09/29/2010] [Indexed: 11/29/2022]
Abstract
The products of the Cdx genes, Cdx1, Cdx2 and Cdx4, play multiple roles in early vertebrate development, and have been proposed to serve to relay signaling information from Wnt, RA and FGF pathways to orchestrate events related to anterior-posterior vertebral patterning and axial elongation. In addition, Cdx1 and Cdx2 have been reported to both autoregulate and to be subject to cross regulation by other family members. We have now found that Cdx4 expression is significantly down regulated in Cdx2(-/-) mutants suggesting previously unrecognized cross-regulatory interactions. Moreover, we have previously shown that Cdx4 is a direct target of the canonical Wnt signaling pathway, and that Cdx1 physically interacts with LEF/TCF members in an autoregulatory loop. We therefore investigated the means by which Cdx2 impacted on Cdx4 expression and assessed potential interaction between Cdx2 and canonical Wnt signaling on the Cdx4 promoter. We found that the Cdx4 promoter was regulated by Cdx2 in transient transfection assays. Electrophoretic mobility shift assays showed that Cdx2 bound to predicted Cdx response elements in the Cdx4 promoter which, when mutated, significantly reduced activity. Consistent with these data, chromatin immunoprecipitation assays from embryos demonstrated occupancy of the Cdx4 promoter by Cdx2 in vivo. However, we failed to observe an interaction between Cdx2 and components of the canonical Wnt signaling pathway. These findings suggest that, while both canonical Wnt and Cdx2 can regulate the activity of the Cdx4 promoter, they appear to operate through distinct mechanisms.
Collapse
Affiliation(s)
- Joanne G A Savory
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | |
Collapse
|
41
|
Koo S, Huntly BJ, Wang Y, Chen J, Brumme K, Ball B, McKinney-Freeman SL, Yabuuchi A, Scholl C, Bansal D, Zon LI, Fröhling S, Daley GQ, Gilliland DG, Mercher T. Cdx4 is dispensable for murine adult hematopoietic stem cells but promotes MLL-AF9-mediated leukemogenesis. Haematologica 2010; 95:1642-50. [PMID: 20494928 PMCID: PMC2948088 DOI: 10.3324/haematol.2010.023168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Cdx4 is a homeobox gene essential for normal blood formation during embryonic development in the zebrafish, through activation of posterior Hox genes. However, its role in adult mammalian hematopoiesis has not been extensively studied and its requirement in leukemia associated with Hox gene expression alteration is unclear. DESIGN AND METHODS We inactivated Cdx4 in mice through either a germline or conditional knockout approach and analyzed requirement for Cdx4 in both normal adult hematopoiesis and leukemogenesis initiated by the MLL-AF9 fusion oncogene. RESULTS Here, we report that loss of Cdx4 had a minimal effect on adult hematopoiesis. Indeed, although an increase in white blood cell counts was observed, no significant differences in the distribution of mature blood cells, progenitors or stem cells were observed in Cdx4-deficient animals. In addition, long-term repopulating activity in competitive transplantation assays was not significantly altered. In vitro, B-cell progenitor clonogenic potential was reduced in Cdx4-deficient animals but no significant alteration of mature B cells was detected in vivo. Finally, induction of acute myeloid leukemia in mice by MLL-AF9 was significantly delayed in the absence of Cdx4 in a retroviral transduction/bone marrow transplant model. CONCLUSIONS These observations indicate that Cdx4 is dispensable for the establishment and maintenance of normal hematopoiesis in adult mammals. These results, therefore, outline substantial differences in the Cdx-Hox axis between mammals and zebrafish and support the hypothesis that Cdx factors are functionally redundant during mammalian hematopoietic development under homeostatic conditions. In addition, our results suggest that Cdx4 participates in MLL-AF9-mediated leukemogenesis supporting a role for Cdx factors in the pathogenesis of myeloid leukemia.
Collapse
Affiliation(s)
- Sumin Koo
- Division of Hematology, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian J. Huntly
- Division of Hematology, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Hematology, University of Cambridge, Cambridge, UK
| | - Yuan Wang
- Division of Hematology/Oncology, Children’s Hospital Boston, Harvard Stem Cell Institute, Boston, USA
- Institute of Biomedical Research, East China Normal University, Shanghai, China
| | - Jing Chen
- Division of Hematology, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University of Medicine, Atlanta, USA
| | - Kristina Brumme
- Division of Hematology, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian Ball
- Division of Hematology, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Akiko Yabuuchi
- Division of Hematology/Oncology, Children’s Hospital Boston, Harvard Stem Cell Institute, Boston, USA
| | - Claudia Scholl
- Division of Hematology, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Dimple Bansal
- Division of Hematology, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Leonard I. Zon
- Division of Hematology/Oncology, Children’s Hospital Boston, Harvard Stem Cell Institute, Boston, USA
- Division of Hematology/Oncology, Dana Farber Cancer Institute, Boston, USA and
| | - Stefan Fröhling
- Division of Hematology, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - George Q. Daley
- Division of Hematology/Oncology, Children’s Hospital Boston, Harvard Stem Cell Institute, Boston, USA
| | - D. Gary Gilliland
- Division of Hematology, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Mercher
- Division of Hematology, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- INSERM U985, Institut Gustave Roussy, Université Paris XI, France
| |
Collapse
|
42
|
Zhao F, Chen Y, Zeng L, Li R, Zeng R, Wen L, Liu Y, Zhang C. Role of triptolide in cell proliferation, cell cycle arrest, apoptosis and histone methylation in multiple myeloma U266 cells. Eur J Pharmacol 2010; 646:1-11. [PMID: 20547150 DOI: 10.1016/j.ejphar.2010.05.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 04/28/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
Abstract
Multiple myeloma is an incurable hematological malignancy. Different studies demonstrated the occurrence of genetic and epigenetic alterations in multiple myeloma. Histone lysine methylation has emerged as a central epigenetic change in the organization of eukaryotic chromatin with far-reaching implications for the regulation of cell proliferation, cell-type differentiation, gene expression, genome stability, overall development, and genesis of cancer. Triptolide is the principal active ingredient in extracts from the Chinese herb Tripterygium wilfordii Hook.F (TwHF), and numerous studies have elucidated its antitumor property. Our experiments discovered that triptolide inhibited the proliferation of multiple myeloma cell line U266 in a time- and dose-dependent manner, induced G2/M cell cycle arrest and caspase-dependent apoptosis. Triptolide could decrease the expression of histone H3K4, H3K27 and H3K36 trimethylation in parallel with histone methyltransferases SMYD3, EZH2 and NSD1 respectively, which possibly was the anti-myeloma mechanism of triptolide.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Falaschi A, Abdurashidova G, Biamonti G. DNA replication, development and cancer: a homeotic connection? Crit Rev Biochem Mol Biol 2010; 45:14-22. [PMID: 19919294 DOI: 10.3109/10409230903365608] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The homeotic proteins are transcription factors, highly conserved in metazoan organisms, exerting a pivotal role in development and differentiation. They individually display a loose specificity for the DNA sequence they can bind, but operate mainly in multi-molecular associations that assure their target and function specificity. Homeotic proteins are known to play a role in the positive or negative regulation of cell proliferation. Furthermore, many homeotic proteins are actually proto-oncogenes, since different translocations involving their genes cause tumors, particularly in the hematopoietic system. A one-hybrid screen to detect proteins with affinity for the lamin B2 replication origin identified three homeotic proteins, namely HoxA13, HoxC10 and HoxC13. Recent data demonstrate that the HoxC13 oncoprotein specifically associates with replication foci and binds in vitro and in vivo to several human DNA replication origins. Moreover, Hox proteins interact with geminin, a regulator of cell cycle progression, and control the interaction of this protein with the DNA replication licensing factor Ctd1. Thus, the homeotic proteins, by participating directly in the function of DNA replication origins, may provide a direct link between the accurate regulation of DNA replication required by the morphogenetic program and the deregulation of this process typical of cancer.
Collapse
|
44
|
Abstract
Hematopoietic development during embryogenesis involves the interaction of extrinsic signaling pathways coupled to an intrinsic cell fate that is regulated by cell-specific transcription factors. Retinoic acid (RA) has been linked to stem cell self-renewal in adults and also participates in yolk sac blood island formation. Here, we demonstrate that RA decreases gata1 expression and blocks primitive hematopoiesis in zebrafish (Danio rerio) embryos, while increasing expression of the vascular marker, fli1. Treatment with an inhibitor of RA biosynthesis or a retinoic acid receptor antagonist increases gata1(+) erythroid progenitors in the posterior mesoderm of wild-type embryos and anemic cdx4(-/-) mutants, indicating a link between the cdx-hox signaling pathway and RA. Overexpression of scl, a DNA binding protein necessary for hematopoietic development, rescues the block of hematopoiesis induced by RA. We show that these effects of RA and RA pathway inhibitors are conserved during primitive hematopoiesis in murine yolk sac explant cultures and embryonic stem cell assays. Taken together, these data indicate that RA inhibits the commitment of mesodermal cells to hematopoietic fates, functioning downstream of cdx4 and upstream of scl. Our studies establish a new connection between RA and scl during development that may participate in stem cell self-renewal and hematopoietic differentiation.
Collapse
|
45
|
Abstract
Abstract
HOX homeobox genes are important regulators of normal and malignant hematopoiesis. Abdominal-type HOXA genes like HOXA9 are highly leukemogenic. However, little is known about transformation by anterior HOXA genes. Here we performed a comprehensive assessment of the oncogenic potential of every HOXA gene in primary hematopoietic cells. With exception of HOXA2 and HOXA5, all HOXA genes caused a block or delay of hematopoietic differentiation and cooperated with Meis1. No evidence for the alleged tumor-suppressor function of HOXA5 could be found. Whereas all active HOXA genes immortalized mixed granulocytic/monocytic populations, HOXA13 preferentially specified monocytoid development. The anterior HOXA genes HOXA1, HOXA4, and HOXA6 transformed cells, generating permanent cell lines, although they did so less potently than HOXA9. Upon transplantation these lines induced myeloproliferation and acute myeloid leukemia in recipient animals. Kinetic studies with inducible HOX derivatives demonstrated that anterior HOXA genes autonomously contributed to cellular transformation. This function was not mediated by endogenous Hoxa9, which was persistently expressed in cells transformed by anterior HOX genes. In summary our results demonstrate a hitherto unexpected role of anterior HOXA genes in hematopoietic malignancy.
Collapse
|
46
|
Thakar MS, Zhang XB, Beard BC, Sale GE, Santos EB, Peterson L, Kiem HP, Sandmaier BM. Transmission and expansion of HOXB4-induced leukemia in two immunosuppressed dogs: implications for a new canine leukemia model. Exp Hematol 2009; 37:1157-66. [PMID: 19616601 PMCID: PMC2748853 DOI: 10.1016/j.exphem.2009.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/24/2009] [Accepted: 07/13/2009] [Indexed: 11/16/2022]
Abstract
OBJECTIVE There are currently no large animal models to study the biology of leukemia and development of novel antileukemia therapies. We have previously shown that dogs transplanted with homeobox B4 (HOXB4)-transduced autologous CD34(+) cells developed myeloid leukemia associated with HOXB4 overexpression. Here we describe the transmission, engraftment, and expansion of these canine leukemia cells into two genetically unrelated, immunosuppressed dogs. MATERIALS AND METHODS Two dogs immunosuppressed after major histocompatibility complex-haploidentical hematopoietic cell transplantation and exhibiting mixed donor-host chimerism were accidentally infused trace amounts of HOXB4-overexpressing leukemia cells from a third-party dog. RESULTS Six weeks after infusion of HOXB4-overexpressing leukemia cells, these two dogs rapidly developed myeloid leukemia consisting of marrow and organ infiltration, circulating blasts, and, in one dog, chloromatous masses. Despite neither of these dogs sharing any dog leukocyte antigen haplotypes with the sentinel case, the HOXB4-transduced clones engrafted and proliferated without difficulty in the presence of immunosuppression. Chimerism studies in both dogs confirmed that donor and, in one case, host hematopoietic cell engraftment was lost and replaced by third-party HOXB4 cells. CONCLUSIONS The engraftment and expansion of these leukemia cells in dogs will allow studies into the biology of leukemia and development and evaluation of novel antileukemia therapies in a clinically relevant large animal model.
Collapse
Affiliation(s)
- Monica S Thakar
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Popovic R, Riesbeck LE, Velu CS, Chaubey A, Zhang J, Achille NJ, Erfurth FE, Eaton K, Lu J, Grimes HL, Chen J, Rowley JD, Zeleznik-Le NJ. Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 2009; 113:3314-22. [PMID: 19188669 PMCID: PMC2665896 DOI: 10.1182/blood-2008-04-154310] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 01/08/2009] [Indexed: 02/07/2023] Open
Abstract
Chromosomal translocations involving the Mixed Lineage Leukemia (MLL) gene produce chimeric proteins that cause abnormal expression of a subset of HOX genes and leukemia development. Here, we show that MLL normally regulates expression of mir-196b, a hematopoietic microRNA located within the HoxA cluster, in a pattern similar to that of the surrounding 5' Hox genes, Hoxa9 and Hoxa10, during embryonic stem (ES) cell differentiation. Within the hematopoietic lineage, mir-196b is most abundant in short-term hematopoietic stem cells and is down-regulated in more differentiated hematopoietic cells. Leukemogenic MLL fusion proteins cause overexpression of mir-196b, while treatment of MLL-AF9 transformed bone marrow cells with mir-196-specific antagomir abrogates their replating potential in methylcellulose. This demonstrates that mir-196b function is necessary for MLL fusion-mediated immortalization. Furthermore, overexpression of mir-196b was found specifically in patients with MLL associated leukemias as determined from analysis of 55 primary leukemia samples. Overexpression of mir-196b in bone marrow progenitor cells leads to increased proliferative capacity and survival, as well as a partial block in differentiation. Our results suggest a mechanism whereby increased expression of mir-196b by MLL fusion proteins significantly contributes to leukemia development.
Collapse
Affiliation(s)
- Relja Popovic
- Molecular Biology Program, Loyola University Medical Center, Maywood, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hoxa6 potentiates short-term hemopoietic cell proliferation and extended self-renewal. Exp Hematol 2009; 37:322-33.e3. [DOI: 10.1016/j.exphem.2008.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/10/2008] [Accepted: 10/28/2008] [Indexed: 11/23/2022]
|
49
|
Lengerke C, Schmitt S, Bowman TV, Jang IH, Maouche-Chretien L, McKinney-Freeman S, Davidson AJ, Hammerschmidt M, Rentzsch F, Green JBA, Zon LI, Daley GQ. BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway. Cell Stem Cell 2009; 2:72-82. [PMID: 18371423 DOI: 10.1016/j.stem.2007.10.022] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 10/11/2007] [Accepted: 10/31/2007] [Indexed: 01/10/2023]
Abstract
The formation of blood in the embryo is dependent on bone morphogenetic protein (BMP), but how BMP signaling intersects with other regulators of hematopoietic development is unclear. Using embryonic stem (ES) cells, we show that BMP4 first induces ventral-posterior (V-P) mesoderm and subsequently directs mesodermal cells toward blood fate by activating Wnt3a and upregulating Cdx and Hox genes. When BMP signaling is blocked during this latter phase, enforced expression of either Cdx1 or Cdx4 rescues hematopoietic development, thereby placing BMP4 signaling upstream of the Cdx-Hox pathway. Wnt signaling cooperates in BMP-induced hemogenesis, and the Wnt effector LEF1 mediates BMP4 activation of Cdx genes. Our data suggest that BMP signaling plays two distinct and sequential roles during blood formation, initially as an inducer of mesoderm, and later to specify blood via activation of Wnt signaling and the Cdx-Hox pathway.
Collapse
Affiliation(s)
- Claudia Lengerke
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Members of the caudal (cdx) family of homeobox proteins are essential regulators of embryonic blood development in zebrafish. Previously, we reported that the murine homologues (Cdx1, Cdx2, and Cdx4) affect formation and differentiation of embryonic stem cell (ESC)-derived hematopoietic progenitor cells. Consistent with the notion that embryonic pathways can reactivate during adult oncogenesis, recent studies suggest involvement of CDX2 in human acute myeloid leukemia (AML). Here we study CDX2 in healthy and leukemic human lymphoid cells, and show that a majority of leukemic samples display various degrees of aberrant CDX2 expression. Analysis of a cohort of 37 childhood acute lymphoblastic leukemia (ALL) patients treated in our hospital reveals that high CDX2 expression levels at diagnosis correlate with persistence of minimal residual disease (MRD) during the course of treatment. Thus, CDX2 expression levels may serve as a marker for adverse prognosis in pediatric ALL.
Collapse
|