1
|
Schäfer A, Marzi A, Furuyama W, Catanzaro NJ, Nguyen C, Haddock E, Feldmann F, Meade-White K, Thomas T, Hubbard ML, Gully KL, Leist SR, Hock P, Bell TA, De la Cruz GE, Midkiff BR, Martinez DR, Shaw GD, Miller DR, Vernon MJ, Graham RL, Cowley DO, Montgomery SA, Schughart K, de Villena FPM, Wilkerson GK, Ferris MT, Feldmann H, Baric RS. Mapping of susceptibility loci for Ebola virus pathogenesis in mice. Cell Rep 2024; 43:114127. [PMID: 38652660 PMCID: PMC11348656 DOI: 10.1016/j.celrep.2024.114127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Ebola virus (EBOV), a major global health concern, causes severe, often fatal EBOV disease (EVD) in humans. Host genetic variation plays a critical role, yet the identity of host susceptibility loci in mammals remains unknown. Using genetic reference populations, we generate an F2 mapping cohort to identify host susceptibility loci that regulate EVD. While disease-resistant mice display minimal pathogenesis, susceptible mice display severe liver pathology consistent with EVD-like disease and transcriptional signatures associated with inflammatory and liver metabolic processes. A significant quantitative trait locus (QTL) for virus RNA load in blood is identified in chromosome (chr)8, and a severe clinical disease and mortality QTL is mapped to chr7, which includes the Trim5 locus. Using knockout mice, we validate the Trim5 locus as one potential driver of liver failure and mortality after infection. The identification of susceptibility loci provides insight into molecular genetic mechanisms regulating EVD progression and severity, potentially informing therapeutics and vaccination strategies.
Collapse
Affiliation(s)
- Alexandra Schäfer
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA.
| | - Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Cameron Nguyen
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Tina Thomas
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Miranda L Hubbard
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gabriela E De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bentley R Midkiff
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Darla R Miller
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael J Vernon
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rachel L Graham
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dale O Cowley
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Animal Models Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephanie A Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Klaus Schughart
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Institute of Virology, University of Muenster, 48149 Muenster, Germany
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gregory K Wilkerson
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Fernandes AP, OhAinle M, Esteves PJ. Patterns of Evolution of TRIM Genes Highlight the Evolutionary Plasticity of Antiviral Effectors in Mammals. Genome Biol Evol 2023; 15:evad209. [PMID: 37988574 PMCID: PMC10709114 DOI: 10.1093/gbe/evad209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
The innate immune system of mammals is formed by a complex web of interacting proteins, which together constitute the first barrier of entry for infectious pathogens. Genes from the E3-ubiquitin ligase tripartite motif (TRIM) family have been shown to play an important role in the innate immune system by restricting the activity of different retrovirus species. For example, TRIM5 and TRIM22 have both been associated with HIV restriction and are regarded as crucial parts of the antiretroviral machinery of mammals. Our analyses of positive selection corroborate the great significance of these genes for some groups of mammals. However, we also show that many species lack TRIM5 and TRIM22 altogether. By analyzing a large number of mammalian genomes, here we provide the first comprehensive view of the evolution of these genes in eutherians, showcasing that the pattern of accumulation of TRIM genes has been dissimilar across mammalian orders. Our data suggest that these differences are caused by the evolutionary plasticity of the immune system of eutherians, which have adapted to use different strategies to combat retrovirus infections. Altogether, our results provide insights into the dissimilar evolution of a representative family of restriction factors, highlighting an example of adaptive and idiosyncratic evolution in the innate immune system.
Collapse
Affiliation(s)
- Alexandre P Fernandes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Molly OhAinle
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Pedro J Esteves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| |
Collapse
|
3
|
Konopiński MK, Fijarczyk AM, Biedrzycka A. Complex patterns shape immune genes diversity during invasion of common raccoon in Europe - Selection in action despite genetic drift. Evol Appl 2023; 16:134-151. [PMID: 36699132 PMCID: PMC9850017 DOI: 10.1111/eva.13517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Rapid adaptation is common in invasive populations and is crucial to their long-term success. The primary target of selection in the invasive species' new range is standing genetic variation. Therefore, genetic drift and natural selection acting on existing variation are key evolutionary processes through which invaders will evolve over a short timescale. In this study, we used the case of the raccoon Procyon lotor invasion in Europe to identify the forces shaping the diversity of immune genes during invasion. The genes involved in the defence against infection should be under intense selection pressure in the invasive range where novel pathogens are expected to occur. To disentangle the selective and demographic processes shaping the adaptive immune diversity of its invasive and expanding populations, we have developed species-specific single-nucleotide polymorphism markers located in the coding regions of targeted immune-related genes. We characterised the genetic diversity of 110 functionally important immune genes in two invasive and one native raccoon genetic clusters, each presenting a different demographic history. Despite the strong effect of demographic processes in the invasive clusters, we detected a subset of genes exhibiting the diversity pattern suggestive of selection. The most likely process shaping the variation in those genes was balancing selection. The selected genes belong to toll-like receptors and cytokine-related genes. Our results suggest that the prevalence of selection depends on the level of diversity, that is - less genetically diverse invasive population from the Czech Republic displayed fewer signs of selection. Our results highlight the role of standing genetic variation in adapting to new environment. Understanding the evolutionary mechanisms behind invasion success would enable predicting how populations may respond to environmental change.
Collapse
Affiliation(s)
| | - Anna M. Fijarczyk
- Laval University Département de BiologieUniversité LavalQuébecQuébecCanada
| | | |
Collapse
|
4
|
Lee CA, Hirsch VM. Mutation in the Disordered Linker Region of Capsid Disrupts Viral Kinetics of a Neuropathogenic SIV in Rhesus Macaques. Microbiol Spectr 2022; 10:e0047822. [PMID: 35297654 PMCID: PMC9045278 DOI: 10.1128/spectrum.00478-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/03/2022] Open
Abstract
TRIM5α polymorphism in rhesus macaques (RM) limits the genetic pool of animals in which we can perform simian immunodeficiency virus (SIV) studies without first screening animals for permissive TRIM5α genotypes. We have previously shown that polymorphisms in the TRIM5α B30.2/SPRY domain impact the level of SIVsmm viremia in RM and that amino acid substitutions (P37S/R98S) in the capsid N-terminal domain (CA-NTD) enables the virus to overcome restriction in RMs with the restrictive homozygous TRIM5αTFP/TFP genotype. Since this genotype also negatively impacted the development of central nervous system (CNS) lesions in animals infected with the parental source of CL757, we sought to generate a TRIM5αTFP/TFP-resistant clone, SIV-804E-CL757-P37S/R98S (CL757-SS), using a similar strategy. Unexpectedly, viral replication of CL757-SS was impaired in RMs with either the permissive TRIM5αTFP/Q or the restrictive TRIM5αTFP/TFP genotype. Analysis of the virus which emerged in the latter animals led to the discovery of a preexisting mutation relative to other SIVs. This P146T substitution in a conserved disordered linker region in the C-terminal domain of capsid (CA-CTD) has been shown to inhibit proper formation of HIV-1 capsid particles. Restoration of this residue to proline in the context of the TRIM5α-SS escape mutations not only restored viral replication, but also enhanced the infectivity of our previously reported neurotropic clone, even in RMs with permissive TRIM5α genotypes. IMPORTANCE SIV infection of rhesus macaques has become a valuable model for the development of AIDS vaccines and antiretroviral therapies. Polymorphisms in the rhesus macaque TRIM5α gene can affect SIV replication, making it necessary to genetically screen macaques for TRIM5α alleles that are permissive for SIV replication. This limits the pool of animals that can be used in a study, thereby making the acquisition of animals needed to fulfill study parameters difficult. We have constructed a viral clone that induces neuroAIDS in rhesus macaques regardless of their TRIM5α genotype, while also highlighting the important role the disordered linker domain plays in viral infectivity.
Collapse
Affiliation(s)
- Cheri A. Lee
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Vanessa M. Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Abstract
Vertebrate immune systems suppress viral infection using both innate restriction factors and adaptive immunity. Viruses mutate to escape these defenses, driving hosts to counterevolve to regain fitness. This cycle recurs repeatedly, resulting in an evolutionary arms race whose outcome depends on the pace and likelihood of adaptation by host and viral genes. Although viruses evolve faster than their vertebrate hosts, their proteins are subject to numerous functional constraints that impact the probability of adaptation. These constraints are globally defined by evolutionary landscapes, which describe the fitness and adaptive potential of all possible mutations. We review deep mutational scanning experiments mapping the evolutionary landscapes of both host and viral proteins engaged in arms races. For restriction factors and some broadly neutralizing antibodies, landscapes favor the host, which may help to level the evolutionary playing field against rapidly evolving viruses. We discuss the biophysical underpinnings of these landscapes and their therapeutic implications.
Collapse
Affiliation(s)
- Jeannette L Tenthorey
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; , ,
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; , , .,Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; , , .,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
6
|
Recurrent expansions of B30.2-associated immune receptor families in fish. Immunogenetics 2021; 74:129-147. [PMID: 34850255 DOI: 10.1007/s00251-021-01235-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
B30.2 domains, also known as PRY/SPRY, are key components of specific subsets of two large families of proteins involved in innate immunity: the tripartite motif proteins (TRIMs) and the Nod-like receptors (NLRs). TRIM proteins are important, often inducible factors of antiviral innate immunity, targeting multiple steps of viral cycles through a variety of mechanisms. NLRs prime and regulate systemic innate defenses, especially against bacteria, and control inflammation. Large TRIM and NLR subsets characterized by the presence of a B30.2 domain have been reported from a few fish species including zebrafish and seem to be strongly prone to gene duplication/expansion. Here, we performed a large-scale survey of these receptors across about 150 fish genomes, focusing on ray-finned fishes. We assessed the number and genomic distribution of domains and domain combinations associated with TRIMs, NLRs, and other genes containing B30.2 domains and looked for gene expansion patterns across fish groups. We then used a model to test the impact of taxonomy, genome size, and environmental variables on the copy numbers of these genes. Our findings reveal novel domain structures, clade-specific gains and losses. They also assist with the timing of the gene expansions, reveal patterns associated with the MHC, and lay the groundwork for further studies delving deeper into the forces that drive the copy number variation of immune genes on a species level.
Collapse
|
7
|
Potent Induction of Envelope-Specific Antibody Responses by Virus-Like Particle (VLP) Immunogens Based on HIV-1 Envelopes from Patients with Early Broadly Neutralizing Responses. J Virol 2021; 96:e0134321. [PMID: 34668778 PMCID: PMC8754226 DOI: 10.1128/jvi.01343-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Longitudinal studies in HIV-1-infected individuals have indicated that 2 to 3 years of infection are required to develop broadly neutralizing antibodies. However, we have previously identified individuals with broadly neutralizing activity (bNA) in early HIV-1 infection, indicating that a vaccine may be capable of bNA induction after short periods of antigen exposure. Here, we describe 5 HIV-1 envelope sequences from individuals who have developed bNA within the first 100 days of infection (early neutralizers) and selected two of them to design immunogens based on HIV-1-Gag virus-like particles (VLPs). These VLPs were homogeneous and incorporated the corresponding envelopes (7 to 9 μg of gp120 in 1010 VLPs). Both envelopes (Envs) bound to well-characterized broadly neutralizing antibodies (bNAbs), including trimer-specific antibodies (PGT145, VRC01, and 35022). For immunogenicity testing, we immunized rabbits with the Env-VLPs or with the corresponding stabilized soluble envelope trimers. A short immunization protocol (105 days) was used to recapitulate the early nAb induction observed after HIV-1 infection in these two individuals. All VLP and trimeric envelope immunogens induced a comparably strong anti-gp120 response despite having immunized rabbits with 30 times less gp120 in the case of the Env-VLPs. In addition, animals immunized with VLP-formulated Envs induced antibodies that cross-recognized the corresponding soluble stabilized trimer and vice versa, even though no neutralizing activity was observed. Nevertheless, our data may provide a new platform of immunogens, based on HIV-1 envelopes from patients with early broadly neutralizing responses, with the potential to generate protective immune responses using vaccination protocols similar to those used in classical preventive vaccines. IMPORTANCE It is generally accepted that an effective HIV-1 vaccine should be able to induce broad-spectrum neutralizing antibodies. Since most of these antibodies require long periods of somatic maturation in vivo, several groups are developing immunogens, based on the HIV envelope protein, that require complex and lengthy immunization protocols that would be difficult to implement in the general population. Here, we show that rabbits immunized with new envelopes (VLP formulated) from two individuals who demonstrated broadly neutralizing activity very early after infection induced specific HIV-1 antibodies after a short immunization protocol. This evidence provides the basis for generating protective immune responses with classic vaccination protocols with vaccine prototypes based on HIV envelope sequences from individuals who have developed early broadly neutralizing responses.
Collapse
|
8
|
Structural determinants of virion assembly and release in the C-terminus of the M-PMV capsid protein. J Virol 2021; 95:e0061521. [PMID: 34287037 DOI: 10.1128/jvi.00615-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transition from an immature to a fully infectious mature retrovirus particle is associated with molecular switches that trigger dramatic conformational changes in the structure of the Gag proteins. A dominant maturation switch that stabilizes the immature capsid lattice is located downstream of the capsid (CA) protein in many retroviral Gags. The HIV-1 Gag contains a stretch of five amino acid residues termed the 'clasp motif', important for the organization of the hexameric subunits that provide stability to the overall immature HIV-1 shell. Sequence alignment of the CA C-terminal domains (CTDs) of the HIV-1 and Mason-Pfizer Monkey Virus (M-PMV) highlighted a spacer-like domain in M-PMV that may provide comparable function. The importance of the sequences spanning the CA-NC cleavage has been demonstrated by mutagenesis, but the specific requirements for the clasp motif in several steps of M-PMV particle assembly and maturation have not been determined in detail. In the present study we report an examination of the role of the clasp motif in the M-PMV life cycle. We generated a series of M-PMV Gag mutants and assayed for assembly of the recombinant protein in vitro, and for the assembly, maturation, release, genomic RNA packaging, and infectivity of the mutant virus in vivo. The mutants revealed major defects in virion assembly and release in 293T and HeLa cells, and even larger defects in infectivity. Our data identifies the clasp motif as a fundamental contributor to CA-CTD interactions necessary for efficient viral infection. Importance The C-terminal domain of the capsid protein of many retroviruses has been shown to be critical for virion assembly and maturation, but the functions of this region of M-PMV are uncertain. We show that a short 'clasp' motif in the capsid domain of the M-PMV Gag protein plays a key role in M-PMV virion assembly, genome packaging, and infectivity.
Collapse
|
9
|
Influence of Different Glycoproteins and of the Virion Core on SERINC5 Antiviral Activity. Viruses 2021; 13:v13071279. [PMID: 34209034 PMCID: PMC8310182 DOI: 10.3390/v13071279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 11/25/2022] Open
Abstract
Host plasma membrane protein SERINC5 is incorporated into budding retrovirus particles where it blocks subsequent entry into susceptible target cells. Three structurally unrelated proteins encoded by diverse retroviruses, human immunodeficiency virus type 1 (HIV-1) Nef, equine infectious anemia virus (EIAV) S2, and ecotropic murine leukemia virus (MLV) GlycoGag, disrupt SERINC5 antiviral activity by redirecting SERINC5 from the site of virion assembly on the plasma membrane to an internal RAB7+ endosomal compartment. Pseudotyping retroviruses with particular glycoproteins, e.g., vesicular stomatitis virus glycoprotein (VSV G), renders the infectivity of particles resistant to inhibition by virion-associated SERINC5. To better understand viral determinants for SERINC5-sensitivity, the effect of SERINC5 was assessed using HIV-1, MLV, and Mason-Pfizer monkey virus (M-PMV) virion cores, pseudotyped with glycoproteins from Arenavirus, Coronavirus, Filovirus, Rhabdovirus, Paramyxovirus, and Orthomyxovirus genera. SERINC5 restricted virions pseudotyped with glycoproteins from several retroviruses, an orthomyxovirus, a rhabdovirus, a paramyxovirus, and an arenavirus. Infectivity of particles pseudotyped with HIV-1, amphotropic-MLV (A-MLV), or influenza A virus (IAV) glycoproteins, was decreased by SERINC5, whether the core was provided by HIV-1, MLV, or M-PMV. In contrast, particles pseudotyped with glycoproteins from M-PMV, parainfluenza virus 5 (PIV5), or rabies virus (RABV) were sensitive to SERINC5, but only with particular retroviral cores. Resistance to SERINC5 did not correlate with reduced SERINC5 incorporation into particles, route of viral entry, or absolute infectivity of the pseudotyped virions. These findings indicate that some non-retroviruses may be sensitive to SERINC5 and that, in addition to the viral glycoprotein, the retroviral core influences sensitivity to SERINC5.
Collapse
|
10
|
Coelacanth SERINC2 Inhibits HIV-1 Infectivity and Is Counteracted by Envelope Glycoprotein from Foamy Virus. J Virol 2021; 95:e0022921. [PMID: 33883219 PMCID: PMC8316019 DOI: 10.1128/jvi.00229-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
SERINC5 restricts nef-defective HIV-1 by affecting early steps of the virus life cycle. Distantly related retroviruses with a wide host range encode virulent factors in response to challenge by SERINC5. However, the evolutionary origins of this antiretroviral activity, its prevalence among the paralogs, and its ability to target retroviruses remain understudied. In agreement with previous studies, we found that four human SERINC paralogs inhibit nef-defective HIV-1, with SERINC2 being an exception. Here, we demonstrate that this lack of activity in human SERINC2 is associated with its post-whole-genome duplication (post-WGD) divergence, as evidenced by the ability of pre-WGD orthologs from Saccharomyces cerevisiae and flies and a post-WGD-proximate SERINC2 from coelacanths to inhibit the virus. Intriguingly, Nef is unable to counter coelacanth SERINC2, indicating that such activity was directed toward other retroviruses found in coelacanths (like foamy viruses). However, foamy virus-derived vectors are intrinsically resistant to the action of SERINC2, and we show that the foamy virus envelope confers this resistance by affecting its steady-state levels. Our study highlights an ancient origin of antiretroviral activity in SERINCs and a hitherto-unknown interaction with a foamy virus. IMPORTANCESERINC5 constitutes a critical barrier to the propagation of retroviruses, as highlighted by parallel emergence of anti-SERINC5 activities among distant retroviral lineages. Therefore, understanding the origin and evolution of these host factors will provide key information about virus-host relationships that can be exploited for future drug development. Here, we show that SERINC5-mediated nef-defective HIV-1 infection inhibition is evolutionarily conserved. SERINC2 from coelacanth restricts HIV-1, and it was functionally adapted to target foamy viruses. Our findings provide insights into the evolutionary origin of antiretroviral activity in the SERINC gene family and uncover the role of SERINCs in shaping the long-term conflicts between retroviruses and their hosts.
Collapse
|
11
|
Sil S, Thangaraj A, Chivero ET, Niu F, Kannan M, Liao K, Silverstein PS, Periyasamy P, Buch S. HIV-1 and drug abuse comorbidity: Lessons learned from the animal models of NeuroHIV. Neurosci Lett 2021; 754:135863. [PMID: 33794296 DOI: 10.1016/j.neulet.2021.135863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Various research studies that have investigated the association between HIV infection and addiction underpin the role of various drugs of abuse in impairing immunological and non-immunological pathways of the host system, ultimately leading to augmentation of HIV infection and disease progression. These studies have included both in vitro and in vivo animal models wherein investigators have assessed the effects of various drugs on several disease parameters to decipher the impact of drugs on both HIV infection and progression of HIV-associated neurocognitive disorders (HAND). However, given the inherent limitations in the existing animal models of HAND, these investigations only recapitulated specific aspects of the disease but not the complex human syndrome. Despite the inability of HIV to infect rodents over the last 30 years, multiple strategies have been employed to develop several rodent models of HAND. While none of these models can accurately mimic the overall pathophysiology of HAND, they serve the purpose of modeling some unique aspects of HAND. This review provides an overview of various animal models used in the field and a careful evaluation of methodological strengths and limitations inherent in both the model systems and study designs to understand better how the various animal models complement one another.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter S Silverstein
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
12
|
Selective Disruption of SERINC5 Antagonism by Nef Impairs SIV Replication in Primary CD4 + T Cells. J Virol 2021; 95:JVI.01911-20. [PMID: 33504599 PMCID: PMC8103682 DOI: 10.1128/jvi.01911-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Nef proteins of HIV-1 and SIV enhance viral infectivity by preventing the incorporation of the multipass transmembrane protein serine incorporator 5 (SERINC5), and to a lesser extent SERINC3, into virions. In addition to counteracting SERINCs, SIV Nef also downmodulates several transmembrane proteins from the surface of virus-infected cells, including simian tetherin, CD4 and MHC class I (MHC I) molecules. From a systematic analysis of alanine substitutions throughout the SIVmac239 Nef protein, we identified residues that are required to counteract SERINC5. This information was used to engineer an infectious molecular clone of SIV (SIVmac239nef AV), which differs by two amino acids in the N-terminal domain of Nef that make the virus sensitive to SERINC5 while retaining other activities of Nef. SIVmac239nef AV downmodulates CD3, CD4, MHC I and simian tetherin, but cannot counteract SERINC5. In primary rhesus macaque CD4+ T cells, SIVmac239nef AV exhibits impaired infectivity and replication compared to wild-type SIVmac239. These results demonstrate that SERINC5 antagonism can be separated from other Nef functions and reveal the impact of SERINC5 on lentiviral replication.Importance: SERINC5, a multipass transmembrane protein, is incorporated into retroviral particles during assembly. This leads to a reduction of particle infectivity by inhibiting virus fusion with the target cell membrane. The Nef proteins of HIV-1 and SIV enhance viral infectivity by preventing the incorporation of SERINC5 into virions. However, the relevance of this restriction factor in viral replication has not been elucidated. Here we report a systematic mapping of Nef residues required for SERINC5 antagonism. Counter screens for three other functions of Nef helped identify two residues in the N-terminal domain of Nef, which when mutated make Nef selectively susceptible to SERINC5. Since Nef is multi-functional, genetic separation of SERINC5 antagonism from its other functions affords comparison of the replication of isogenic viruses that are or are not sensitive to SERINC5. Such a strategy revealed the impact of SERINC5 on SIV replication in primary rhesus macaque CD4+ T-cells.
Collapse
|
13
|
A Potent anti-Simian Immunodeficiency Virus Neutralizing Antibody Induction Associated with a Germline Immunoglobulin Gene Polymorphism in Rhesus Macaques. J Virol 2021; 95:JVI.02455-20. [PMID: 33441342 PMCID: PMC8092685 DOI: 10.1128/jvi.02455-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus infection induces B cells with a wide variety of B cell receptor (BCR) repertoires. Patterns of induced BCR repertoires are different in individuals, while the underlying mechanism causing this difference remains largely unclear. In particular, the impact of germ line BCR immunoglobulin (Ig) gene polymorphism on B cell/antibody induction has not fully been determined. In the present study, we found a potent antibody induction associated with a germ line BCR Ig gene polymorphism. B404-class antibodies, which were previously reported as potent anti-simian immunodeficiency virus (SIV) neutralizing antibodies using the germ line VH3.33 gene-derived Ig heavy chain, were induced in five of 10 rhesus macaques after SIVsmH635FC infection. Investigation of VH3.33 genes in B404-class antibody inducers (n = 5) and non-inducers (n = 5) revealed association of B404-class antibody induction with a germ line VH3.33 polymorphism. Analysis of reconstructed antibodies indicated that the VH3.33 residue 38 is the determinant for B404-class antibody induction. B404-class antibodies were induced in all the macaques possessing the B404-associated VH3.33 allele, even under undetectable viremia. Our results show that a single nucleotide polymorphism in germ line VH genes could be a determinant for induction of potent antibodies against virus infection, implying that germ line VH-gene polymorphisms can be a factor restricting effective antibody induction or responsiveness to vaccination.IMPORTANCE Vaccines against a wide variety of infectious diseases have been developed mostly to induce antibodies targeting pathogens. However, small but significant percentage of people fail to mount potent antibody responses after vaccination, while the underlying mechanism of host failure in antibody induction remains largely unclear. In particular, the impact of germ line B cell receptor (BCR)/antibody immunoglobulin (Ig) gene polymorphism on B cell/antibody induction has not fully been determined. In the present study, we found a potent anti-simian immunodeficiency virus neutralizing antibody induction associated with a germ line BCR/antibody Ig gene polymorphism in rhesus macaques. Our results demonstrate that a single nucleotide polymorphism in germ line Ig genes could be a determinant for induction of potent antibodies against virus infection, implying that germ line BCR/antibody Ig gene polymorphisms can be a factor restricting effective antibody induction or responsiveness to vaccination.
Collapse
|
14
|
Tenthorey JL, Young C, Sodeinde A, Emerman M, Malik HS. Mutational resilience of antiviral restriction favors primate TRIM5α in host-virus evolutionary arms races. eLife 2020; 9:59988. [PMID: 32930662 PMCID: PMC7492085 DOI: 10.7554/elife.59988] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Host antiviral proteins engage in evolutionary arms races with viruses, in which both sides rapidly evolve at interaction interfaces to gain or evade immune defense. For example, primate TRIM5α uses its rapidly evolving 'v1' loop to bind retroviral capsids, and single mutations in this loop can dramatically improve retroviral restriction. However, it is unknown whether such gains of viral restriction are rare, or if they incur loss of pre-existing function against other viruses. Using deep mutational scanning, we comprehensively measured how single mutations in the TRIM5α v1 loop affect restriction of divergent retroviruses. Unexpectedly, we found that the majority of mutations increase weak antiviral function. Moreover, most random mutations do not disrupt potent viral restriction, even when it is newly acquired via a single adaptive substitution. Our results indicate that TRIM5α's adaptive landscape is remarkably broad and mutationally resilient, maximizing its chances of success in evolutionary arms races with retroviruses.
Collapse
Affiliation(s)
- Jeannette L Tenthorey
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Candice Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Afeez Sodeinde
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
15
|
Sii-Felice K, Castillo Padilla J, Relouzat F, Cheuzeville J, Tantawet S, Maouche L, Le Grand R, Leboulch P, Payen E. Enhanced Transduction of Macaca fascicularis Hematopoietic Cells with Chimeric Lentiviral Vectors. Hum Gene Ther 2019; 30:1306-1323. [DOI: 10.1089/hum.2018.179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Karine Sii-Felice
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Javier Castillo Padilla
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Francis Relouzat
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Joëlle Cheuzeville
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- bluebird bio France, Fontenay aux Roses, France
| | - Siriporn Tantawet
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Leïla Maouche
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- INSERM, Paris, France
| | - Roger Le Grand
- Immunology of Viral Infections and Autoimmune Diseases, UMR 1184, IDMIT Department, Institute of Biology François Jacob, INSERM, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Philippe Leboulch
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- Ramathibodi Hospital and Mahidol University, Bangkok, Thailand
- Harvard Medical School and Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston Massachusetts
| | - Emmanuel Payen
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- INSERM, Paris, France
| |
Collapse
|
16
|
Chapman JR, Hill T, Unckless RL. Balancing Selection Drives the Maintenance of Genetic Variation in Drosophila Antimicrobial Peptides. Genome Biol Evol 2019; 11:2691-2701. [PMID: 31504505 PMCID: PMC6764478 DOI: 10.1093/gbe/evz191] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
Genes involved in immune defense against pathogens provide some of the most well-known examples of both directional and balancing selection. Antimicrobial peptides (AMPs) are innate immune effector genes, playing a key role in pathogen clearance in many species, including Drosophila. Conflicting lines of evidence have suggested that AMPs may be under directional, balancing, or purifying selection. Here, we use both a linear model and control-gene-based approach to show that balancing selection is an important force shaping AMP diversity in Drosophila. In Drosophila melanogaster, this is most clearly observed in ancestral African populations. Furthermore, the signature of balancing selection is even more striking once background selection has been accounted for. Balancing selection also acts on AMPs in Drosophila mauritiana, an isolated island endemic separated from D. melanogaster by about 4 Myr of evolution. This suggests that balancing selection may be broadly acting to maintain adaptive diversity in Drosophila AMPs, as has been found in other taxa.
Collapse
Affiliation(s)
| | - Tom Hill
- Department of Molecular Biosciences, University of Kansas
| | | |
Collapse
|
17
|
Colomer-Lluch M, Ruiz A, Moris A, Prado JG. Restriction Factors: From Intrinsic Viral Restriction to Shaping Cellular Immunity Against HIV-1. Front Immunol 2018; 9:2876. [PMID: 30574147 PMCID: PMC6291751 DOI: 10.3389/fimmu.2018.02876] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023] Open
Abstract
Antiviral restriction factors are host cellular proteins that constitute a first line of defense blocking viral replication and propagation. In addition to interfering at critical steps of the viral replication cycle, some restriction factors also act as innate sensors triggering innate responses against infections. Accumulating evidence suggests an additional role for restriction factors in promoting antiviral cellular immunity to combat viruses. Here, we review the recent progress in our understanding on how restriction factors, particularly APOBEC3G, SAMHD1, Tetherin, and TRIM5α have the cell-autonomous potential to induce cellular resistance against HIV-1 while promoting antiviral innate and adaptive immune responses. Also, we provide an overview of how these restriction factors may connect with protein degradation pathways to modulate anti-HIV-1 cellular immune responses, and we summarize the potential of restriction factors-based therapeutics. This review brings a global perspective on the influence of restrictions factors in intrinsic, innate, and also adaptive antiviral immunity opening up novel research avenues for therapeutic strategies in the fields of drug discovery, gene therapy, and vaccines to control viral infections.
Collapse
Affiliation(s)
- Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Alba Ruiz
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Arnaud Moris
- Sorbonne Université, INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Julia G Prado
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| |
Collapse
|
18
|
Janaka SK, Tavakoli-Tameh A, Neidermyer WJ, Serra-Moreno R, Hoxie JA, Desrosiers RC, Johnson RP, Lifson JD, Wolinsky SM, Evans DT. Polymorphisms in Rhesus Macaque Tetherin Are Associated with Differences in Acute Viremia in Simian Immunodeficiency Virus Δ nef-Infected Animals. J Virol 2018; 92:e00542-18. [PMID: 30135127 PMCID: PMC6206476 DOI: 10.1128/jvi.00542-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/19/2018] [Indexed: 12/19/2022] Open
Abstract
Tetherin (BST-2 or CD317) is an interferon-inducible transmembrane protein that inhibits virus release from infected cells. To determine the extent of sequence variation and the impact of polymorphisms in rhesus macaque tetherin on simian immunodeficiency virus (SIV) infection, tetherin alleles were sequenced from 146 rhesus macaques, including 68 animals infected with wild-type SIVmac239 and 47 animals infected with SIVmac239Δnef Since Nef is the viral gene product of SIV that counteracts restriction by tetherin, these groups afford a comparison of the effects of tetherin polymorphisms on SIV strains that are, and are not, resistant to tetherin. We identified 15 alleles of rhesus macaque tetherin with dimorphic residues at 9 positions. The relationship between these alleles and plasma viral loads was compared during acute infection, prior to the onset of adaptive immunity. Acute viremia did not differ significantly among the wild-type SIV-infected animals; however, differences in acute viral loads were associated with polymorphisms in tetherin among the animals infected with SIVΔnef In particular, polymorphisms at positions 43 and 111 (P43 and H111) were associated with lower acute-phase viral loads for SIVΔnef infection. These observations reveal extensive polymorphism in rhesus macaque tetherin, maintained perhaps as a consequence of variability in the selective pressure of diverse viral pathogens, and identify tetherin alleles that may have an inherently greater capacity to restrict SIV replication in the absence of Nef.IMPORTANCE As a consequence of ongoing evolutionary conflict with viral pathogens, tetherin has accumulated numerous species-specific differences that represent important barriers to the transmission of viruses between species. This study reveals extensive polymorphism in rhesus macaque tetherin and identifies specific alleles that are associated with lower viral loads during the first few weeks after infection with nef-deleted SIV. These observations suggest that the variable selective pressure of viral pathogens, in addition to driving the diversification of tetherin among species, also operates within certain species to maintain sequence variation in tetherin.
Collapse
Affiliation(s)
- Sanath Kumar Janaka
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Wisconsin, USA
| | - Aidin Tavakoli-Tameh
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Wisconsin, USA
| | - William J Neidermyer
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ruth Serra-Moreno
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - James A Hoxie
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronald C Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami, Florida, USA
| | | | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Steven M Wolinsky
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - David T Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| |
Collapse
|
19
|
Píchalová R, Füzik T, Vokatá B, Rumlová M, Llano M, Dostálková A, Křížová I, Ruml T, Ulbrich P. Conserved cysteines in Mason-Pfizer monkey virus capsid protein are essential for infectious mature particle formation. Virology 2018; 521:108-117. [PMID: 29906704 DOI: 10.1016/j.virol.2018.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
Retrovirus assembly is driven mostly by Gag polyprotein oligomerization, which is mediated by inter and intra protein-protein interactions among its capsid (CA) domains. Mason-Pfizer monkey virus (M-PMV) CA contains three cysteines (C82, C193 and C213), where the latter two are highly conserved among most retroviruses. To determine the importance of these cysteines, we introduced mutations of these residues in both bacterial and proviral vectors and studied their impact on the M-PMV life cycle. These studies revealed that the presence of both conserved cysteines of M-PMV CA is necessary for both proper assembly and virus infectivity. Our findings suggest a crucial role of these cysteines in the formation of infectious mature particles.
Collapse
Affiliation(s)
- Růžena Píchalová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Tibor Füzik
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Barbora Vokatá
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Manuel Llano
- Department of Biological Sciences, University of Texas at El Paso, 500 West University El Paso, TX 79902, USA.
| | - Alžběta Dostálková
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Pavel Ulbrich
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
20
|
Mutations in the Basic Region of the Mason-Pfizer Monkey Virus Nucleocapsid Protein Affect Reverse Transcription, Genomic RNA Packaging, and the Virus Assembly Site. J Virol 2018; 92:JVI.00106-18. [PMID: 29491167 DOI: 10.1128/jvi.00106-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/20/2018] [Indexed: 12/19/2022] Open
Abstract
In addition to specific RNA-binding zinc finger domains, the retroviral Gag polyprotein contains clusters of basic amino acid residues that are thought to support Gag-viral genomic RNA (gRNA) interactions. One of these clusters is the basic K16NK18EK20 region, located upstream of the first zinc finger of the Mason-Pfizer monkey virus (M-PMV) nucleocapsid (NC) protein. To investigate the role of this basic region in the M-PMV life cycle, we used a combination of in vivo and in vitro methods to study a series of mutants in which the overall charge of this region was more positive (RNRER), more negative (AEAEA), or neutral (AAAAA). The mutations markedly affected gRNA incorporation and the onset of reverse transcription. The introduction of a more negative charge (AEAEA) significantly reduced the incorporation of M-PMV gRNA into nascent particles. Moreover, the assembly of immature particles of the AEAEA Gag mutant was relocated from the perinuclear region to the plasma membrane. In contrast, an enhancement of the basicity of this region of M-PMV NC (RNRER) caused a substantially more efficient incorporation of gRNA, subsequently resulting in an increase in M-PMV RNRER infectivity. Nevertheless, despite the larger amount of gRNA packaged by the RNRER mutant, the onset of reverse transcription was delayed in comparison to that of the wild type. Our data clearly show the requirement for certain positively charged amino acid residues upstream of the first zinc finger for proper gRNA incorporation, assembly of immature particles, and proceeding of reverse transcription.IMPORTANCE We identified a short sequence within the Gag polyprotein that, together with the zinc finger domains and the previously identified RKK motif, contributes to the packaging of genomic RNA (gRNA) of Mason-Pfizer monkey virus (M-PMV). Importantly, in addition to gRNA incorporation, this basic region (KNKEK) at the N terminus of the nucleocapsid protein is crucial for the onset of reverse transcription. Mutations that change the positive charge of the region to a negative one significantly reduced specific gRNA packaging. The assembly of immature particles of this mutant was reoriented from the perinuclear region to the plasma membrane. On the contrary, an enhancement of the basic character of this region increased both the efficiency of gRNA packaging and the infectivity of the virus. However, the onset of reverse transcription was delayed even in this mutant. In summary, the basic region in M-PMV Gag plays a key role in the packaging of genomic RNA and, consequently, in assembly and reverse transcription.
Collapse
|
21
|
He H, Xue J, Wang W, Liu L, Ye C, Cong Z, Kimata JT, Qin C, Zhou P. Efficient Transduction of Human and Rhesus Macaque Primary T Cells by a Modified Human Immunodeficiency Virus Type 1-Based Lentiviral Vector. Hum Gene Ther 2016; 28:271-285. [PMID: 28042947 DOI: 10.1089/hum.2016.135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors efficiently transduce genes to human, but not rhesus, primary T cells and hematopoietic stem cells (HSCs). The poor transduction of HIV-1 vectors to rhesus cells is mainly due to species-specific restriction factors such as rhesus TRIM5α. Previously, several strategies to modify HIV-1 vectors were developed to overcome rhesus TRIM5α restriction. While the modified HIV-1 vectors efficiently transduce rhesus HSCs, they remain suboptimal for rhesus primary T cells. Recently, HIV-1 variants that encode combinations of LNEIE mutations in capsid (CA) protein and SIVmac239 Vif were found to replicate efficiently in rhesus primary T cells. Thus, the present study tested whether HIV-1 vectors packaged by a packaging construct containing these CA substitutions could efficiently transduce both human and rhesus primary CD4 T cells. To accomplish this, LNEIE mutations were made in the packaging construct CEMΔ8.9, and recombinant HIV-1 vectors packaged by Δ8.9 WT or Δ8.9 LNEIE were generated. Transduction rates, CA stability, and vector integration in CEMss-CCR5 and CEMss-CCR5-rhTRIM5α/green fluorescent protein cells, as well as transduction rates in human and rhesus primary CD4 T cells by Δ8.9 WT or Δ8.9 LNEIE-packaged HIV-1 vectors, were compared. Finally, the influence of rhesus TRIM5α variations in transduction rates to primary CD4 T cells from a cohort of 37 Chinese rhesus macaques was studied. While it maintains efficient transduction for human T-cell line and primary CD4 T cells, Δ8.9 LNEIE-packaged HIV-1 vector overcomes rhesus TRIM5α-mediated CA degradation, resulting in significantly higher transduction efficiency of rhesus primary CD4 T cells than Δ8.9 WT-packaged HIV-1 vector. Rhesus TRIM5α variations strongly influence transduction efficiency of rhesus primary CD4 T cells by both Δ8.9 WT or Δ8.9 LNEIE-packaged HIV-1 vectors. Thus, it is concluded that Δ8.9 LNEIE-packaged HIV-1 vector overcomes rhesus TRIM5α restriction and efficiently transduces both human and rhesus primary T cells.
Collapse
Affiliation(s)
- Huan He
- 1 The Unit of Anti-Viral Immunity and Genetic Therapy, the Key Laboratory of Molecular Virology and Immunology, the Institut Pasteur of Shanghai , Chinese Academy of Sciences, Shanghai, China
| | - Jing Xue
- 2 Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science , Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Weiming Wang
- 1 The Unit of Anti-Viral Immunity and Genetic Therapy, the Key Laboratory of Molecular Virology and Immunology, the Institut Pasteur of Shanghai , Chinese Academy of Sciences, Shanghai, China
| | - Lihong Liu
- 1 The Unit of Anti-Viral Immunity and Genetic Therapy, the Key Laboratory of Molecular Virology and Immunology, the Institut Pasteur of Shanghai , Chinese Academy of Sciences, Shanghai, China
| | - Chaobaihui Ye
- 1 The Unit of Anti-Viral Immunity and Genetic Therapy, the Key Laboratory of Molecular Virology and Immunology, the Institut Pasteur of Shanghai , Chinese Academy of Sciences, Shanghai, China
| | - Zhe Cong
- 2 Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science , Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jason T Kimata
- 3 Department of Molecular Virology and Microbiology, Baylor College of Medicine , Houston, Texas
| | - Chuan Qin
- 2 Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science , Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Paul Zhou
- 1 The Unit of Anti-Viral Immunity and Genetic Therapy, the Key Laboratory of Molecular Virology and Immunology, the Institut Pasteur of Shanghai , Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
22
|
Stabell AC, Hawkins J, Li M, Gao X, David M, Press WH, Sawyer SL. Non-human Primate Schlafen11 Inhibits Production of Both Host and Viral Proteins. PLoS Pathog 2016; 12:e1006066. [PMID: 28027315 PMCID: PMC5189954 DOI: 10.1371/journal.ppat.1006066] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/15/2016] [Indexed: 11/18/2022] Open
Abstract
Schlafen11 (encoded by the SLFN11 gene) has been shown to inhibit the accumulation of HIV-1 proteins. We show that the SLFN11 gene is under positive selection in simian primates and is species-specific in its activity against HIV-1. The activity of human Schlafen11 is relatively weak compared to that of some other primate versions of this protein, with the versions encoded by chimpanzee, orangutan, gibbon, and marmoset being particularly potent inhibitors of HIV-1 protein production. Interestingly, we find that Schlafen11 is functional in the absence of infection and reduces protein production from certain non-viral (GFP) and even host (Vinculin and GAPDH) transcripts. This suggests that Schlafen11 may just generally block protein production from non-codon optimized transcripts. Because Schlafen11 is an interferon-stimulated gene with a broad ability to inhibit protein production from many host and viral transcripts, its role may be to create a general antiviral state in the cell. Interestingly, the strong inhibitors such as marmoset Schlafen11 consistently block protein production better than weak primate Schlafen11 proteins, regardless of the virus or host target being analyzed. Further, we show that the residues to which species-specific differences in Schlafen11 potency map are distinct from residues that have been targeted by positive selection. We speculate that the positive selection of SLFN11 could have been driven by a number of different factors, including interaction with one or more viral antagonists that have yet to be identified. Schlafen11 was recently identified as a human antiviral protein with activity against HIV-1. Here we show that some nonhuman primate versions of Schlafen11 are much stronger at blocking the accumulation of viral proteins than is human Schlafen11. These relatively larger phenotypes of nonhuman primate Schlafen11 allowed us to explore further into the mechanism of this protein. We present data showing that Schlafen11 may not be a classic restriction factor, but rather an interferon-stimulated gene with broad ability to inhibit protein production from many host and viral transcripts, creating a general antiviral state in the cell.
Collapse
Affiliation(s)
- Alex C. Stabell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - John Hawkins
- Institute for Computational Engineering and Sciences, University of Texas at Austin, TX, United States of America
| | - Manqing Li
- Division of Biological Sciences, UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA, United States of America
| | - Xia Gao
- Division of Biological Sciences, UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA, United States of America
| | - Michael David
- Division of Biological Sciences, UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA, United States of America
| | - William H. Press
- Institute for Computational Engineering and Sciences, University of Texas at Austin, TX, United States of America
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| | - Sara L. Sawyer
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States of America
- * E-mail:
| |
Collapse
|
23
|
Transcriptional Silencing of Moloney Murine Leukemia Virus in Human Embryonic Carcinoma Cells. J Virol 2016; 91:JVI.02075-16. [PMID: 27795446 DOI: 10.1128/jvi.02075-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 11/20/2022] Open
Abstract
Embryonic carcinoma (EC) cells are malignant counterparts of embryonic stem (ES) cells and serve as useful models for investigating cellular differentiation and human embryogenesis. Though the susceptibility of murine EC cells to retroviral infection has been extensively analyzed, few studies of retrovirus infection of human EC cells have been performed. We tested the susceptibility of human EC cells to transduction by retroviral vectors derived from three different retroviral genera. We show that human EC cells efficiently express reporter genes delivered by vectors based on human immunodeficiency virus type 1 (HIV-1) and Mason-Pfizer monkey virus (M-PMV) but not Moloney murine leukemia virus (MLV). In human EC cells, MLV integration occurs normally, but no viral gene expression is observed. The block to MLV expression of MLV genomes is relieved upon cellular differentiation. The lack of gene expression is correlated with transcriptional silencing of the MLV promoter through the deposition of repressive histone marks as well as DNA methylation. Moreover, depletion of SETDB1, a histone methyltransferase, resulted in a loss of transcriptional silencing and upregulation of MLV gene expression. Finally, we provide evidence showing that the lack of MLV gene expression may be attributed in part to the lack of MLV enhancer function in human EC cells. IMPORTANCE Human embryonic carcinoma (EC) cells are shown to restrict the expression of murine leukemia virus genomes but not retroviral genomes of the lentiviral or betaretroviral families. The block occurs at the level of transcription and is accompanied by the deposition of repressive histone marks and methylation of the integrated proviral DNA. The host machinery required for silencing in human EC cells is distinct from that in murine EC cell lines: the histone methyltransferase SETDB1 is required, but the widely utilized corepressor TRIM28/Kap1 is not. A transcriptional enhancer element from the Mason-Pfizer monkey virus can override the silencing and promote transcription of chimeric proviral DNAs. The findings reveal novel features of human EC gene regulation not present in their murine counterparts.
Collapse
|
24
|
TRIM5α Resistance Escape Mutations in the Capsid Are Transferable between Simian Immunodeficiency Virus Strains. J Virol 2016; 90:11087-11095. [PMID: 27681142 DOI: 10.1128/jvi.01620-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/25/2016] [Indexed: 11/20/2022] Open
Abstract
TRIM5α polymorphism limits and complicates the use of simian immunodeficiency virus (SIV) for evaluation of human immunodeficiency virus (HIV) vaccine strategies in rhesus macaques. We previously reported that the TRIM5α-sensitive SIV from sooty mangabeys (SIVsm) clone SIVsmE543-3 acquired amino acid substitutions in the capsid that overcame TRIM5α restriction when it was passaged in rhesus macaques expressing restrictive TRIM5α alleles. Here we generated TRIM5α-resistant clones of the related SIVsmE660 strain without animal passage by introducing the same amino acid capsid substitutions. We evaluated one of the variants in rhesus macaques expressing permissive and restrictive TRIM5α alleles. The SIVsmE660 variant infected and replicated in macaques with restrictive TRIM5α genotypes as efficiently as in macaques with permissive TRIM5α genotypes. These results demonstrated that mutations in the SIV capsid can confer SIV resistance to TRIM5α restriction without animal passage, suggesting an applicable method to generate more diverse SIV strains for HIV vaccine studies. IMPORTANCE Many strains of SIV from sooty mangabey monkeys are susceptible to resistance by common rhesus macaque TRIM5α alleles and result in reduced virus acquisition and replication in macaques that express these restrictive alleles. We previously observed that spontaneous variations in the capsid gene were associated with improved replication in macaques, and the introduction of two amino acid changes in the capsid transfers this improved replication to the parent clone. In the present study, we introduced these mutations into a related but distinct strain of SIV that is commonly used for challenge studies for vaccine trials. These mutations also improved the replication of this strain in macaques with the restrictive TRIM5α genotype and thus will eliminate the confounding effects of TRIM5α in vaccine studies.
Collapse
|
25
|
Histones Are Rapidly Loaded onto Unintegrated Retroviral DNAs Soon after Nuclear Entry. Cell Host Microbe 2016; 20:798-809. [PMID: 27866901 DOI: 10.1016/j.chom.2016.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/25/2016] [Accepted: 10/11/2016] [Indexed: 12/30/2022]
Abstract
Chromosomal structure of nuclear DNA is usually maintained by insertion of nucleosomes into preexisting chromatin, both on newly synthesized DNA at replication forks and at sites of DNA damage. But during retrovirus infection, a histone-free DNA copy of the viral genome is synthesized that must be loaded with nucleosomes de novo. Here, we show that core histones are rapidly loaded onto unintegrated Moloney murine leukemia virus DNAs. Loading of nucleosomes requires nuclear entry, but does not require viral DNA integration. The histones associated with unintegrated DNAs become marked by covalent modifications, with a delay relative to the time of core histone loading. Expression from unintegrated DNA can be enhanced by modulation of the histone-modifying machinery. The data show that histone loading onto unintegrated DNAs occurs very rapidly after nuclear entry and does not require prior establishment of an integrated provirus.
Collapse
|
26
|
McCarthy KR, Johnson WE, Kirmaier A. Phylogeny and History of the Lost SIV from Crab-Eating Macaques: SIVmfa. PLoS One 2016; 11:e0159281. [PMID: 27415779 PMCID: PMC4944941 DOI: 10.1371/journal.pone.0159281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/02/2016] [Indexed: 11/25/2022] Open
Abstract
In the 20th century, thirteen distinct human immunodeficiency viruses emerged following independent cross-species transmission events involving simian immunodeficiency viruses (SIV) from African primates. In the late 1900s, pathogenic SIV strains also emerged in the United Sates among captive Asian macaque species following their unintentional infection with SIV from African sooty mangabeys (SIVsmm). Since their discovery in the 1980s, SIVs from rhesus macaques (SIVmac) and pig-tailed macaques (SIVmne) have become invaluable models for studying HIV pathogenesis, vaccine design and the emergence of viruses. SIV isolates from captive crab-eating macaques (SIVmfa) were initially described but lost prior to any detailed molecular and genetic characterization. In order to infer the origins of the lost SIVmfa lineage, we located archived material and colony records, recovered its genomic sequence by PCR, and assessed its phylogenetic relationship to other SIV strains. We conclude that SIVmfa is the product of two cross-species transmission events. The first was the established transmission of SIVsmm to rhesus macaques, which occurred at the California National Primate Research Center in the late 1960s and the virus later emerged as SIVmac. In a second event, SIVmac was transmitted to crab-eating macaques, likely at the Laboratory for Experimental Medicine and Surgery in Primates in the early 1970s, and it was later spread to the New England Primate Research Center colony in 1973 and eventually isolated in 1986. Our analysis suggests that SIVmac had already emerged by the early 1970s and had begun to diverge into distinct lineages. Furthermore, our findings suggest that pathogenic SIV strains may have been more widely distributed than previously appreciated, raising the possibility that additional isolates may await discovery.
Collapse
Affiliation(s)
- Kevin R. McCarthy
- Program in Virology, Harvard Medical School, Boston, MA, United States of America
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | - Welkin E. Johnson
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | - Andrea Kirmaier
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
- * E-mail:
| |
Collapse
|
27
|
Nucleic Acid Binding by Mason-Pfizer Monkey Virus CA Promotes Virus Assembly and Genome Packaging. J Virol 2016; 90:4593-4603. [PMID: 26912613 DOI: 10.1128/jvi.03197-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/15/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The Gag polyprotein of retroviruses drives immature virus assembly by forming hexameric protein lattices. The assembly is primarily mediated by protein-protein interactions between capsid (CA) domains and by interactions between nucleocapsid (NC) domains and RNA. Specific interactions between NC and the viral RNA are required for genome packaging. Previously reported cryoelectron microscopy analysis of immature Mason-Pfizer monkey virus (M-PMV) particles suggested that a basic region (residues RKK) in CA may serve as an additional binding site for nucleic acids. Here, we have introduced mutations into the RKK region in both bacterial and proviral M-PMV vectors and have assessed their impact on M-PMV assembly, structure, RNA binding, budding/release, nuclear trafficking, and infectivity using in vitro and in vivo systems. Our data indicate that the RKK region binds and structures nucleic acid that serves to promote virus particle assembly in the cytoplasm. Moreover, the RKK region appears to be important for recruitment of viral genomic RNA into Gag particles, and this function could be linked to changes in nuclear trafficking. Together these observations suggest that in M-PMV, direct interactions between CA and nucleic acid play important functions in the late stages of the viral life cycle. IMPORTANCE Assembly of retrovirus particles is driven by the Gag polyprotein, which can self-assemble to form virus particles and interact with RNA to recruit the viral genome into the particles. Generally, the capsid domains of Gag contribute to essential protein-protein interactions during assembly, while the nucleocapsid domain interacts with RNA. The interactions between the nucleocapsid domain and RNA are important both for identifying the genome and for self-assembly of Gag molecules. Here, we show that a region of basic residues in the capsid protein of the betaretrovirus Mason-Pfizer monkey virus (M-PMV) contributes to interaction of Gag with nucleic acid. This interaction appears to provide a critical scaffolding function that promotes assembly of virus particles in the cytoplasm. It is also crucial for packaging the viral genome and thus for infectivity. These data indicate that, surprisingly, interactions between the capsid domain and RNA play an important role in the assembly of M-PMV.
Collapse
|
28
|
Croze M, Živković D, Stephan W, Hutter S. Balancing selection on immunity genes: review of the current literature and new analysis in Drosophila melanogaster. ZOOLOGY 2016; 119:322-9. [PMID: 27106015 DOI: 10.1016/j.zool.2016.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/11/2016] [Accepted: 03/16/2016] [Indexed: 12/18/2022]
Abstract
Balancing selection has been widely assumed to be an important evolutionary force, yet even today little is known about its abundance and its impact on the patterns of genetic diversity. Several studies have shown examples of balancing selection in humans, plants or parasites, and many genes under balancing selection are involved in immunity. It has been proposed that host-parasite coevolution is one of the main forces driving immune genes to evolve under balancing selection. In this paper, we review the literature on balancing selection on immunity genes in several organisms, including Drosophila. Furthermore, we performed a genome scan for balancing selection in an African population of Drosophila melanogaster using coalescent simulations of a demographic model with and without selection. We find very few genes under balancing selection and only one novel candidate gene related to immunity. Finally, we discuss the possible causes of the low number of genes under balancing selection.
Collapse
Affiliation(s)
- Myriam Croze
- Department of Biology II, Ludwig Maximilian University Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany.
| | - Daniel Živković
- Department of Biology II, Ludwig Maximilian University Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | - Wolfgang Stephan
- Department of Biology II, Ludwig Maximilian University Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | - Stephan Hutter
- Department of Biology II, Ludwig Maximilian University Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
29
|
Zhang HL, Liu FL, Jin YB, Deng Q, Liu BL, Zhuo M, Liu XH, Zheng YT, Ling F. The effects of TRIM5α polymorphism on HIV-2ROD and SIVmac239 replication in PBMCs from Chinese rhesus macaques and Vietnamese-origin cynomolgus macaques. Virology 2015; 487:222-9. [PMID: 26550946 DOI: 10.1016/j.virol.2015.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/16/2015] [Accepted: 10/17/2015] [Indexed: 10/22/2022]
Abstract
Because of the difficulty of obtaining Indian-origin rhesus macaques, Chinese-origin rhesus macaques (CR) and Vietnamese-origin cynomolgus macaques (CM) are now used frequently in HIV/AIDS research. Nonetheless, the effects of TRIM5α polymorphism on viral replication in both CR and CM are unclear. To address these questions, we recruited 70 unrelated CR and 40 unrelated CM and studied the effect of TRIM5α polymorphism on HIV-2ROD and SIVmac239 replication in PBMCs. We found that 3 polymorphisms, located in the B30.2 domain of CR TRIM5α formed a haplotype and affected HIV-2ROD replication. In addition, we found that the variant Y178H, located in the Coiled-coil domain of CM TRIM5α, affected TRIM5α-mediated HIV-2ROD restriction. Finally, two polymorphisms, located in the Coiled-coil domain, altered anti-SIVmac239 activity in CR. We concluded that, CM TRIM5α polymorphism could alter HIV-2ROD infection; however, a different domain of CR TRIM5α was responsible for restricting different virus replication.
Collapse
Affiliation(s)
- Hui-Ling Zhang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Feng-Liang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, PR China
| | - Ya-Bin Jin
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Qing Deng
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Bei-Lei Liu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Min Zhuo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Xiao-Hui Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100094, PR China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, PR China.
| | - Fei Ling
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
30
|
Abstract
HIV type 1 (HIV-1) has a very narrow host range that is limited to humans and chimpanzees. HIV-1 cannot replicate well in Old World monkey cells such as rhesus and cynomolgus monkeys. Tripartite motif (TRIM)5α is a key molecule that confers potent resistance against HIV-1 infection and is composed of really interesting new gene, B-box2, coiled-coil and PRYSPRY domains. Interaction between TRIM5α PRYSPRY domains and HIV-1 capsid core triggers the anti-HIV-1 activity of TRIM5α. Analysis of natural HIV variants and extensive mutational experiments has revealed the presence of critical amino acid residues in both the PRYSPRY domain and HIV capsid for potent HIV suppression by TRIM5α. Genetic manipulation of the human TRIM5 gene could establish human cells totally resistant to HIV-1, which may lead to a cure for HIV-1 infection in the future.
Collapse
|
31
|
Chung HK, Pise-Masison CA, Muthiah A, Radonovich MF, Lee EM, Lee JK, Pal R. Transcription profiling of CD4⁺ T cells in rhesus macaques that infected with simian-human immunodeficiency virus and re-challenged with SIVmac251. J Med Primatol 2015; 44:263-74. [PMID: 26332118 DOI: 10.1111/jmp.12185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Insights into the host factors that contribute to an effective antiviral immune response may be obtained by examining global gene expression in simian-human immunodeficiency virus (SHIV)-infected non-human primates that exhibit different virological outcomes. METHODS Six chronically SHIV-infected macaques were rectally challenged with SIVmac251. Viral RNA and proviral DNA load in blood were measured. Gene expression profiles in CD4+ T cells were examined and compared between animals with different levels of infection following challenge. RESULTS AND CONCLUSIONS Viral RNA was markedly controlled in four challenged animals, whereas two animals had persistent high viremia. Analysis of the gene expression profiles at early infection revealed gene expression signatures between protectors and non-protectors and identified potential protective biomarkers. Pathway analyses revealed that IFN pathway genes are down-regulated in protectors compared to unprotectors. This study suggests that high levels of expression of type 1 IFN-related genes may paradoxically promote virus replication.
Collapse
Affiliation(s)
| | - Cynthia A Pise-Masison
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Annamalai Muthiah
- Department of Biostatistics and Bioinformatics, Moffitte Cancer Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Michael F Radonovich
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Eun Mi Lee
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| | - Jae K Lee
- Department of Biostatistics and Bioinformatics, Moffitte Cancer Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Ranajit Pal
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| |
Collapse
|
32
|
Azevedo L, Serrano C, Amorim A, Cooper DN. Trans-species polymorphism in humans and the great apes is generally maintained by balancing selection that modulates the host immune response. Hum Genomics 2015; 9:21. [PMID: 26337052 PMCID: PMC4559023 DOI: 10.1186/s40246-015-0043-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/20/2015] [Indexed: 12/20/2022] Open
Abstract
Known examples of ancient identical-by-descent genetic variants being shared between evolutionarily related species, known as trans-species polymorphisms (TSPs), result from counterbalancing selective forces acting on target genes to confer resistance against infectious agents. To date, putative TSPs between humans and other primate species have been identified for the highly polymorphic major histocompatibility complex (MHC), the histo-blood ABO group, two antiviral genes (ZC3HAV1 and TRIM5), an autoimmunity-related gene LAD1 and several non-coding genomic segments with a putative regulatory role. Although the number of well-characterized TSPs under long-term balancing selection is still very small, these examples are connected by a common thread, namely that they involve genes with key roles in the immune system and, in heterozygosity, appear to confer genetic resistance to pathogens. Here, we review known cases of shared polymorphism that appear to be under long-term balancing selection in humans and the great apes. Although the specific selective agent(s) responsible are still unknown, these TSPs may nevertheless be seen as constituting important adaptive events that have occurred during the evolution of the primate immune system.
Collapse
Affiliation(s)
- Luisa Azevedo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| | - Catarina Serrano
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| | - Antonio Amorim
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
33
|
McCarthy KR, Kirmaier A, Autissier P, Johnson WE. Evolutionary and Functional Analysis of Old World Primate TRIM5 Reveals the Ancient Emergence of Primate Lentiviruses and Convergent Evolution Targeting a Conserved Capsid Interface. PLoS Pathog 2015; 11:e1005085. [PMID: 26291613 PMCID: PMC4546234 DOI: 10.1371/journal.ppat.1005085] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/15/2015] [Indexed: 12/29/2022] Open
Abstract
The widespread distribution of lentiviruses among African primates, and the lack of severe pathogenesis in many of these natural reservoirs, are taken as evidence for long-term co-evolution between the simian immunodeficiency viruses (SIVs) and their primate hosts. Evidence for positive selection acting on antiviral restriction factors is consistent with virus-host interactions spanning millions of years of primate evolution. However, many restriction mechanisms are not virus-specific, and selection cannot be unambiguously attributed to any one type of virus. We hypothesized that the restriction factor TRIM5, because of its unique specificity for retrovirus capsids, should accumulate adaptive changes in a virus-specific fashion, and therefore, that phylogenetic reconstruction of TRIM5 evolution in African primates should reveal selection by lentiviruses closely related to modern SIVs. We analyzed complete TRIM5 coding sequences of 22 Old World primates and identified a tightly-spaced cluster of branch-specific adaptions appearing in the Cercopithecinae lineage after divergence from the Colobinae around 16 million years ago. Functional assays of both extant TRIM5 orthologs and reconstructed ancestral TRIM5 proteins revealed that this cluster of adaptations in TRIM5 specifically resulted in the ability to restrict Cercopithecine lentiviruses, but had no effect (positive or negative) on restriction of other retroviruses, including lentiviruses of non-Cercopithecine primates. The correlation between lineage-specific adaptations and ability to restrict viruses endemic to the same hosts supports the hypothesis that lentiviruses closely related to modern SIVs were present in Africa and infecting the ancestors of Cercopithecine primates as far back as 16 million years ago, and provides insight into the evolution of TRIM5 specificity. Old World primates in Africa are reservoir hosts for more than 40 species of simian immunodeficiency viruses (SIVs), including the sources of the human immunodeficiency viruses, HIV-1 and HIV-2. To investigate the prehistoric origins of these lentiviruses, we looked for patterns of evolution in the antiviral host gene TRIM5 that would reflect selection by lentiviruses during evolution of African primates. We identified a pattern of adaptive changes unique to the TRIM5 proteins of a subset of African monkeys that suggests that the ancestors of these viruses emerged between 11–16 million years ago, and by reconstructing and comparing the function of ancestral TRIM5 proteins with extant TRIM5 proteins, we confirmed that these adaptations confer specificity for their modern descendants, the SIVs.
Collapse
Affiliation(s)
- Kevin R. McCarthy
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Andrea Kirmaier
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Patrick Autissier
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Welkin E. Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
34
|
Scull MA, Shi C, de Jong YP, Gerold G, Ries M, von Schaewen M, Donovan BM, Labitt RN, Horwitz JA, Gaska JM, Hrebikova G, Xiao JW, Flatley B, Fung C, Chiriboga L, Walker CM, Evans DT, Rice CM, Ploss A. Hepatitis C virus infects rhesus macaque hepatocytes and simianized mice. Hepatology 2015; 62:57-67. [PMID: 25820364 PMCID: PMC4482775 DOI: 10.1002/hep.27773] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/01/2015] [Indexed: 12/31/2022]
Abstract
UNLABELLED At least 170 million people are chronically infected with hepatitis C virus (HCV). Owing to the narrow host range of HCV and restricted use of chimpanzees, there is currently no suitable animal model for HCV pathogenesis studies or the development of a HCV vaccine. To identify cellular determinants of interspecies transmission and establish a novel immunocompetent model system, we examined the ability of HCV to infect hepatocytes from a small nonhuman primate, the rhesus macaque (Macaca mulatta). We show that the rhesus orthologs of critical HCV entry factors support viral glycoprotein-dependent virion uptake. Primary hepatocytes from rhesus macaques are also permissive for HCV-RNA replication and particle production, which is enhanced when antiviral signaling is suppressed. We demonstrate that this may be owing to the diminished capacity of HCV to antagonize mitochondrial antiviral-signaling protein-dependent innate cellular defenses. To test the ability of HCV to establish persistent replication in vivo, we engrafted primary rhesus macaque hepatocytes into immunocompromised xenorecipients. Inoculation of resulting simian liver chimeric mice with either HCV genotype 1a or 2a resulted in HCV serum viremia for up to 10 weeks. CONCLUSION Together, these data indicate that rhesus macaques may be a viable model for HCV and implicate host immunity as a potential species-specific barrier to HCV infection. We conclude that suppression of host immunity or further viral adaptation may allow robust HCV infection in rhesus macaques and creation of a new animal model for studies of HCV pathogenesis, lentivirus coinfection, and vaccine development.
Collapse
Affiliation(s)
- Margaret A. Scull
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA
| | - Chao Shi
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA
| | - Ype P. de Jong
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA,Division of Gastroenterology and Hepatology, Center for the Study of Hepatitis C, Weill Cornell Medical College, New York, New York 10065, USA
| | - Gisa Gerold
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA
| | - Moritz Ries
- AIDS Vaccine Research Laboratory, Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53711, USA
| | - Markus von Schaewen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Bridget M. Donovan
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA
| | - Rachael N. Labitt
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA
| | - Joshua A. Horwitz
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA
| | - Jenna M. Gaska
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Gabriela Hrebikova
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jing W. Xiao
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA
| | - Brenna Flatley
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA
| | - Canny Fung
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA
| | - Luis Chiriboga
- Department of Pathology, New York University Medical Center, New York, New York, USA
| | | | - David T. Evans
- AIDS Vaccine Research Laboratory, Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53711, USA
| | - Charles M. Rice
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA
| | - Alexander Ploss
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA,Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA,Correspondence to: Alexander Ploss, Ph.D., Department of Molecular Biology, Princeton University, Washington Road, LTL 110, Princeton, NJ 08544, Phone: (609) 258-7128, Fax: (609) 258-1701,
| |
Collapse
|
35
|
Trans-Species Polymorphism in Immune Genes: General Pattern or MHC-Restricted Phenomenon? J Immunol Res 2015; 2015:838035. [PMID: 26090501 PMCID: PMC4458282 DOI: 10.1155/2015/838035] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/04/2015] [Indexed: 11/24/2022] Open
Abstract
Immunity exhibits extraordinarily high levels of variation. Evolution of the immune system in response to host-pathogen interactions in particular ecological contexts appears to be frequently associated with diversifying selection increasing the genetic variability. Many studies have documented that immunologically relevant polymorphism observed today may be tens of millions years old and may predate the emergence of present species. This pattern can be explained by the concept of trans-species polymorphism (TSP) predicting the maintenance and sharing of favourable functionally important alleles of immune-related genes between species due to ongoing balancing selection. Despite the generality of this concept explaining the long-lasting adaptive variation inherited from ancestors, current research in TSP has vastly focused only on major histocompatibility complex (MHC). In this review we summarise the evidence available on TSP in human and animal immune genes to reveal that TSP is not a MHC-specific evolutionary pattern. Further research should clearly pay more attention to the investigation of TSP in innate immune genes and especially pattern recognition receptors which are promising candidates for this type of evolution. More effort should also be made to distinguish TSP from convergent evolution and adaptive introgression. Identification of balanced TSP variants may represent an accurate approach in evolutionary medicine to recognise disease-resistance alleles.
Collapse
|
36
|
Guo B, DeFaveri J, Sotelo G, Nair A, Merilä J. Population genomic evidence for adaptive differentiation in Baltic Sea three-spined sticklebacks. BMC Biol 2015; 13:19. [PMID: 25857931 PMCID: PMC4410466 DOI: 10.1186/s12915-015-0130-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/12/2015] [Indexed: 11/30/2022] Open
Abstract
Background The degree of genetic differentiation among populations experiencing high levels of gene flow is expected to be low for neutral genomic sites, but substantial divergence can occur in sites subject to directional selection. Studies of highly mobile marine fish populations provide an opportunity to investigate this kind of heterogeneous genomic differentiation, but most studies to this effect have focused on a relatively low number of genetic markers and/or few populations. Hence, the patterns and extent of genomic divergence in high-gene-flow marine fish populations remain poorly understood. Results We here investigated genome-wide patterns of genetic variability and differentiation in ten marine populations of three-spined stickleback (Gasterosteus aculeatus) distributed across a steep salinity and temperature gradient in the Baltic Sea, by utilizing >30,000 single nucleotide polymorphisms obtained with a pooled RAD-seq approach. We found that genetic diversity and differentiation varied widely across the genome, and identified numerous fairly narrow genomic regions exhibiting signatures of both divergent and balancing selection. Evidence was uncovered for substantial genetic differentiation associated with both salinity and temperature gradients, and many candidate genes associated with local adaptation in the Baltic Sea were identified. Conclusions The patterns of genetic diversity and differentiation, as well as candidate genes associated with adaptation, in Baltic Sea sticklebacks were similar to those observed in earlier comparisons between marine and freshwater populations, suggesting that similar processes may be driving adaptation to brackish and freshwater environments. Taken together, our results provide strong evidence for heterogenic genomic divergence driven by local adaptation in the face of gene flow along an environmental gradient in the post-glacially formed Baltic Sea. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0130-8) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Abstract
UNLABELLED Mason-Pfizer monkey virus (M-PMV) is a prototypical betaretrovirus responsible for simian AIDS (SAIDS) in rhesus macaques. It has been shown previously that mouse cells are resistant to infection by HIV-1 and other primate lentiviruses. However, the susceptibility of mouse cells to primate retroviruses such as M-PMV remains unexplored. In the present study, using single-round green fluorescent protein (GFP) reporter viruses, we showed that various mouse cell lines are unable to support the early stages of M-PMV replication. The block to infection occurs postentry and is independent of the viral envelope. Using quantitative real-time PCR, we showed that the block to infection occurs after reverse transcription but before formation of circular DNA or proviral DNA. Finally, we showed that the M-PMV block in mouse cells is not attributable to the previously characterized mouse restriction factor Fv1. Overall, these findings suggest that mouse cells exhibit a previously uncharacterized block to M-PMV infection. IMPORTANCE Here we document a novel postentry restriction to M-PMV infection in mouse cells. The block occurs after reverse transcription but before the formation of circular or proviral DNA and is independent of the previous characterized mouse restriction factor Fv1.
Collapse
|
38
|
Obr M, Hadravová R, DoleŽal M, KříŽová I, Papoušková V, Zídek L, Hrabal R, Ruml T, Rumlová M. Stabilization of the β-hairpin in Mason-Pfizer monkey virus capsid protein- a critical step for infectivity. Retrovirology 2014; 11:94. [PMID: 25365920 PMCID: PMC4219007 DOI: 10.1186/s12977-014-0094-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/17/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Formation of a mature core is a crucial event for infectivity of retroviruses such as Mason-Pfizer monkey virus (M-PMV). The process is triggered by proteolytic cleavage of the polyprotein precursor Gag, which releases matrix, capsid (CA), and nucleocapsid proteins. Once released, CA assembles to form a mature core - a hexameric lattice protein shell that protects retroviral genomic RNA. Subtle conformational changes within CA induce the transition from the immature lattice to the mature lattice. Upon release from the precursor, the initially unstructured N-terminus of CA is refolded to form a β-hairpin stabilized by a salt bridge between the N-terminal proline and conserved aspartate. Although the crucial role of the β-hairpin in the mature core assembly has been confirmed, its precise structural function remains poorly understood. RESULTS Based on a previous NMR analysis of the N-terminal part of M-PMV CA, which suggested the role of additional interactions besides the proline-aspartate salt bridge in stabilization of the β-hairpin, we introduced a series of mutations into the CA sequence. The effect of the mutations on virus assembly and infectivity was analyzed. In addition, the structural consequences of selected mutations were determined by NMR spectroscopy. We identified a network of interactions critical for proper formation of the M-PMV core. This network involves residue R14, located in the N-terminal β-hairpin; residue W52 in the loop connecting helices 2 and 3; and residues Q113, Q115, and Y116 in helix 5. CONCLUSION Combining functional and structural analyses, we identified a network of supportive interactions that stabilize the β-hairpin in mature M-PMV CA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Michaela Rumlová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v,v,i,, IOCB & Gilead Research Center, Flemingovo nám, 2, Prague, 166 10, Czech Republic.
| |
Collapse
|
39
|
Role of Mason-Pfizer monkey virus CA-NC spacer peptide-like domain in assembly of immature particles. J Virol 2014; 88:14148-60. [PMID: 25275119 DOI: 10.1128/jvi.02286-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The hexameric lattice of an immature retroviral particle consists of Gag polyprotein, which is the precursor of all viral structural proteins. Lentiviral and alpharetroviral Gag proteins contain a peptide sequence called the spacer peptide (SP), which is localized between the capsid (CA) and nucleocapsid (NC) domains. SP plays a critical role in intermolecular interactions during the assembly of immature particles of several retroviruses. Published models of supramolecular structures of immature particles suggest that in lentiviruses and alpharetroviruses, SP adopts a rod-like six-helix bundle organization. In contrast, Mason-Pfizer monkey virus (M-PMV), a betaretrovirus that assembles in the cytoplasm, does not contain a distinct SP sequence, and the CA-NC connecting region is not organized into a clear rod-like structure. Nevertheless, the CA-NC junction comprises a sequence critical for assembly of immature M-PMV particles. In the present work, we characterized this region, called the SP-like domain, in detail. We provide biochemical data confirming the critical role of the M-PMV SP-like domain in immature particle assembly, release, processing, and infectivity. Circular dichroism spectroscopy revealed that, in contrast to the SP regions of other retroviruses, a short SP-like domain-derived peptide (SPLP) does not form a purely helical structure in aqueous or helix-promoting solution. Using 8-Å cryo-electron microscopy density maps of immature M-PMV particles, we prepared computational models of the SP-like domain and indicate the structural features required for M-PMV immature particle assembly. IMPORTANCE Retroviruses such as HIV-1 are of great medical importance. Using Mason-Pfizer monkey virus (M-PMV) as a model retrovirus, we provide biochemical and structural data confirming the general relevance of a short segment of the structural polyprotein Gag for retrovirus assembly and infectivity. Although this segment is critical for assembly of immature particles of lentiviruses, alpharetroviruses, and betaretroviruses, the organization of this domain is strikingly different. A previously published electron microscopic structure of an immature M-PMV particle allowed us to model this important region into the electron density map. The data presented here help explain the different packing of the Gag segments of various retroviruses, such as HIV, Rous sarcoma virus (RSV), and M-PMV. Such knowledge contributes to understanding the importance of this region and its structural flexibility among retroviral species. The region might play a key role in Gag-Gag interactions, leading to different morphological pathways of immature particle assembly.
Collapse
|
40
|
Nomaguchi M, Nakayama EE, Yokoyama M, Doi N, Igarashi T, Shioda T, Sato H, Adachi A. Distinct combinations of amino acid substitutions in N-terminal domain of Gag-capsid afford HIV-1 resistance to rhesus TRIM5α. Microbes Infect 2014; 16:936-44. [PMID: 25195168 DOI: 10.1016/j.micinf.2014.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 11/28/2022]
Abstract
TRIM5α is a potent anti-retroviral factor that interacts with viral capsid (CA) in a species-specific manner. Recently, we and others reported generation of two distinct HIV-1 CAs that effectively overcome rhesus TRIM5α-imposed species barrier. In this study, to directly compare the effect of different mutations in the two HIV-1 CAs on evasion from macaque TRIM5-restriction, we newly generated macaque-tropic HIV-1 (HIV-1mt) proviral clones carrying the distinct CAs in the same genomic backbone, and examined their replication abilities in macaque TRIM5-overexpressing human cells and in rhesus cells. Comparative analysis of amino acid sequences and homology modeling-based structures revealed that, while both CAs gained some mutated amino acids with similar physicochemical properties, their overall appearances of N-terminal domains were different. Experimentally, the two CAs exhibited incomplete TRIM5α-resistance relative to SIVmac239 CA and different degrees of susceptibility to various TRIM5 proteins. Finally, two HIV-1mt clones carrying a different combination of the CA mutations were found to grow to a comparable extent in established and primary rhesus cells. Our data show that there could be some distinct CA patterns to confer significant TRIM5-resistance on HIV-1.
Collapse
Affiliation(s)
- Masako Nomaguchi
- Department of Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Tokushima, Japan
| | - Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masaru Yokoyama
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Naoya Doi
- Department of Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Tokushima, Japan; Japanese Foundation for AIDS Prevention, Chiyoda-ku, Tokyo, Japan
| | - Tatsuhiko Igarashi
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, Kyoto, Kyoto, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hironori Sato
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Akio Adachi
- Department of Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Tokushima, Japan.
| |
Collapse
|
41
|
Abstract
Because of their strong similarities to humans across physiologic, developmental, behavioral, immunologic, and genetic levels, nonhuman primates are essential models for a wide spectrum of biomedical research. But unlike other animal models, nonhuman primates possess substantial outbred genetic variation, reducing statistical power and potentially confounding interpretation of results in research studies. Although unknown genetic variation is a hindrance in studies that allocate animals randomly, taking genetic variation into account in study design affords an opportunity to transform the way that nonhuman primates are used in biomedical research. New understandings of how the function of individual genes in rhesus macaques mimics that seen in humans are greatly advancing the rhesus macaques utility as research models, but epistatic interaction, epigenetic regulatory mechanisms, and the intricacies of gene networks limit model development. We are now entering a new era of nonhuman primate research, brought on by the proliferation and rapid expansion of genomic data. Already the cost of a rhesus macaque genome is dwarfed by its purchase and husbandry costs, and complete genomic datasets will inevitably encompass each rhesus macaque used in biomedical research. Advancing this outcome is paramount. It represents an opportunity to transform the way animals are assigned and used in biomedical research and to develop new models of human disease. The genetic and genomic revolution brings with it a paradigm shift for nonhuman primates and new mandates on how nonhuman primates are used in biomedical research.
Collapse
|
42
|
Kelly JN, Woods MW, Xhiku S, Barr SD. Ancient and Recent Adaptive Evolution in the AntiviralTRIM22Gene: Identification of a Single-Nucleotide Polymorphism That Impacts TRIM22 Function. Hum Mutat 2014; 35:1072-81. [DOI: 10.1002/humu.22595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/13/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Jenna N. Kelly
- Department of Microbiology and Immunology; Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University; London Ontario Canada
| | - Matthew W. Woods
- Department of Microbiology and Immunology; Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University; London Ontario Canada
| | - Sintia Xhiku
- Department of Microbiology and Immunology; Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University; London Ontario Canada
| | - Stephen D. Barr
- Department of Microbiology and Immunology; Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University; London Ontario Canada
| |
Collapse
|
43
|
Abstract
Myxovirus resistance 2 (Mx2/MxB) has recently been uncovered as an effector of the anti-HIV-1 activity of type I interferons (IFNs) that inhibits HIV-1 at an early stage postinfection, after reverse transcription but prior to proviral integration into host DNA. The mechanistic details of Mx2 antiviral activity are not yet understood, but a few substitutions in the HIV-1 capsid have been shown to confer resistance to Mx2. Through a combination of in vitro evolution and unbiased mutagenesis, we further map the determinants of sensitivity to Mx2 and reveal that multiple capsid (CA) surfaces define sensitivity to Mx2. Intriguingly, we reveal an unanticipated sensitivity determinant within the C-terminal domain of capsid. We also report that Mx2s derived from multiple primate species share the capacity to potently inhibit HIV-1, whereas selected nonprimate orthologs have no such activity. Like TRIM5α, another CA targeting antiretroviral protein, primate Mx2s exhibit species-dependent variation in antiviral specificity against at least one extant virus and multiple HIV-1 capsid mutants. Using a combination of chimeric Mx2 proteins and evolution-guided approaches, we reveal that a single residue close to the N terminus that has evolved under positive selection can determine antiviral specificity. Thus, the variable N-terminal region can define the spectrum of viruses inhibited by Mx2. Importance: Type I interferons (IFNs) inhibit the replication of most mammalian viruses. IFN stimulation upregulates hundreds of different IFN-stimulated genes (ISGs), but it is often unclear which ISGs are responsible for inhibition of a given virus. Recently, Mx2 was identified as an ISG that contributes to the inhibition of HIV-1 replication by type I IFN. Thus, Mx2 might inhibit HIV-1 replication in patients, and this inhibitory action might have therapeutic potential. The mechanistic details of how Mx2 inhibits HIV-1 are currently unclear, but the HIV-1 capsid protein is the likely viral target. Here, we determine the regions of capsid that specify sensitivity to Mx2. We demonstrate that Mx2 from multiple primates can inhibit HIV-1, whereas Mx2 from other mammals (dogs and sheep) cannot. We also show that primate variants of Mx2 differ in the spectrum of lentiviruses they inhibit and that a single residue in Mx2 can determine this antiviral specificity.
Collapse
|
44
|
Rumlová M, Křížová I, Hadravová R, Doležal M, Strohalmová K, Keprová A, Pichová I, Ruml T. Breast cancer-associated protein--a novel binding partner of Mason-Pfizer monkey virus protease. J Gen Virol 2014; 95:1383-1389. [PMID: 24659101 DOI: 10.1099/vir.0.064345-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We identified breast cancer-associated protein (BCA3) as a novel binding partner of Mason-Pfizer monkey virus (MPMV) protease (PR). The interaction was confirmed by co-immunoprecipitation and immunocolocalization of MPMV PR and BCA3. Full-length but not C-terminally truncated BCA3 was incorporated into MPMV virions. We ruled out the potential role of the G-patch domain, a glycine-rich domain located at the C terminus of MPMV PR, in BCA3 interaction and virion incorporation. Expression of BCA3 did not affect MPMV particle release and proteolytic processing; however, it slightly increased MPMV infectivity.
Collapse
Affiliation(s)
- Michaela Rumlová
- Department of Biotechnology, Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., IOCB & Gilead Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Ivana Křížová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., IOCB & Gilead Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Romana Hadravová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., IOCB & Gilead Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Michal Doležal
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., IOCB & Gilead Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Karolína Strohalmová
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., IOCB & Gilead Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Alena Keprová
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., IOCB & Gilead Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., IOCB & Gilead Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
45
|
Chan E, Towers GJ, Qasim W. Gene therapy strategies to exploit TRIM derived restriction factors against HIV-1. Viruses 2014; 6:243-63. [PMID: 24424502 PMCID: PMC3917441 DOI: 10.3390/v6010243] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/20/2013] [Accepted: 01/06/2014] [Indexed: 02/05/2023] Open
Abstract
Restriction factors are a collection of antiviral proteins that form an important aspect of the innate immune system. Their constitutive expression allows immediate response to viral infection, ahead of other innate or adaptive immune responses. We review the molecular mechanism of restriction for four categories of restriction factors; TRIM5, tetherin, APOBEC3G and SAMHD1 and go on to consider how the TRIM5 and TRIMCyp proteins in particular, show promise for exploitation using gene therapy strategies. Such approaches could form an important alternative to current anti-HIV-1 drug regimens, especially if combined with strategies to eradicate HIV reservoirs. Autologous CD4+ T cells or their haematopoietic stem cell precursors engineered to express TRIMCyp restriction factors, and provided in a single therapeutic intervention could then be used to restore functional immunity with a pool of cells protected against HIV. We consider the challenges ahead and consider how early clinical phase testing may best be achieved.
Collapse
Affiliation(s)
- Emma Chan
- Centre for Gene Therapy, Institute of Child Health, University College London, London WC1N 1EH, UK.
| | - Greg J Towers
- Centre for Gene Therapy, Institute of Child Health, University College London, London WC1N 1EH, UK.
| | - Waseem Qasim
- Centre for Gene Therapy, Institute of Child Health, University College London, London WC1N 1EH, UK.
| |
Collapse
|
46
|
Kirmaier A, Krupp A, Johnson WE. Understanding restriction factors and intrinsic immunity: insights and lessons from the primate lentiviruses. Future Virol 2014; 9:483-497. [PMID: 26543491 PMCID: PMC4630824 DOI: 10.2217/fvl.14.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Primate lentiviruses include the HIVs, HIV-1 and HIV-2; the SIVs, which are endemic to more than 40 species of nonhuman primates in Africa; and SIVmac, an AIDS-causing pathogen that emerged in US macaque colonies in the 1970s. Because of the worldwide spread of HIV and AIDS, primate lentiviruses have been intensively investigated for more than 30 years. Research on these viruses has played a leading role in the discovery and characterization of intrinsic immunity, and in particular the identification of several antiviral effectors (also known as restriction factors) including APOBEC3G, TRIM5α, BST-2/tetherin and SAMHD1. Comparative studies of the primate lentiviruses and their hosts have proven critical for understanding both the evolutionary significance and biological relevance of intrinsic immunity, and the role intrinsic immunity plays in governing viral host range and interspecies transmission of viruses in nature.
Collapse
Affiliation(s)
- Andrea Kirmaier
- Biology Department, Boston College, 550 Higgins Hall, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA
| | - Annabel Krupp
- Biology Department, Boston College, 550 Higgins Hall, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität, Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Welkin E Johnson
- Biology Department, Boston College, 550 Higgins Hall, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA
| |
Collapse
|
47
|
Spragg CJ, Emerman M. Antagonism of SAMHD1 is actively maintained in natural infections of simian immunodeficiency virus. Proc Natl Acad Sci U S A 2013; 110:21136-41. [PMID: 24324150 PMCID: PMC3876209 DOI: 10.1073/pnas.1316839110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Restriction factors are effectors of the innate immune response to viral pathogens that inhibit viral replication by operating as molecular barriers to steps of the viral life cycle. The restriction factor SAMHD1 blocks lentiviral reverse transcription in myeloid cells and resting CD4+ T cells. Many lineages of lentiviruses, including HIV-2 and other simian immunodeficiency viruses, encode accessory genes that serve to counteract host SAMHD1 restriction by causing degradation of the antiviral factor. The viral accessory protein Vpr is responsible for SAMHD1 degradation in some lineages of lentiviruses, whereas in others the related protein Vpx assumes this task. However, HIV-1 has no SAMHD1 degradation capability, leading to questions about the selective advantage of this activity. We use an evolutionary approach to examine the importance of SAMHD1 antagonism for viral fitness by studying adaptation to host SAMHD1 in natural simian immunodeficiency virus infections of African Green Monkeys. We identified multiple SAMHD1 haplotypes in African Green Monkeys and find that the vpr gene from different strains of Simian Immunodeficiency Virus has adapted to the polymorphisms of the African Green Monkey population in which it is found. Such evidence of viral adaptation to host restriction indicates that SAMHD1 antagonism is actively maintained in natural infections and that this function must be advantageous to viral fitness, despite its absence in HIV-1.
Collapse
Affiliation(s)
- Chelsea J. Spragg
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195; and
- Division of Human Biology and
| | - Michael Emerman
- Division of Human Biology and
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| |
Collapse
|
48
|
Luijckx P, Duneau D, Andras JP, Ebert D. Cross-species infection trials reveal cryptic parasite varieties and a putative polymorphism shared among host species. Evolution 2013; 68:577-86. [PMID: 24116675 DOI: 10.1111/evo.12289] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/23/2013] [Indexed: 02/04/2023]
Abstract
A parasite's host range can have important consequences for ecological and evolutionary processes but can be difficult to infer. Successful infection depends on the outcome of multiple steps and only some steps of the infection process may be critical in determining a parasites host range. To test this hypothesis, we investigated the host range of the bacterium Pasteuria ramosa, a Daphnia parasite, and determined the parasites success in different stages of the infection process. Multiple genotypes of Daphnia pulex, Daphnia longispina and Daphnia magna were tested with four Pasteuria genotypes using infection trials and an assay that determines the ability of the parasite to attach to the hosts esophagus. We find that attachment is not specific to host species but is specific to host genotype. This may suggest that alleles on the locus controlling attachment are shared among different host species that diverged 100 million year. However, in our trials, Pasteuria was never able to reproduce in nonnative host species, suggesting that Pasteuria infecting different host species are different varieties, each with a narrow host range. Our approach highlights the explanatory power of dissecting the steps of the infection process and resolves potentially conflicting reports on parasite host ranges.
Collapse
Affiliation(s)
- Pepijn Luijckx
- University of Basel, Institute of Zoology, Evolutionsbiologie, Vesalgasse 1, 4051, Basel, Switzerland.
| | | | | | | |
Collapse
|
49
|
Sui Y, Gordon S, Franchini G, Berzofsky JA. Nonhuman primate models for HIV/AIDS vaccine development. ACTA ACUST UNITED AC 2013; 102:12.14.1-12.14.30. [PMID: 24510515 DOI: 10.1002/0471142735.im1214s102] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The development of HIV vaccines has been hampered by the lack of an animal model that can accurately predict vaccine efficacy. Chimpanzees can be infected with HIV-1 but are not practical for research. However, several species of macaques are susceptible to the simian immunodeficiency viruses (SIVs) that cause disease in macaques, which also closely mimic HIV in humans. Thus, macaque-SIV models of HIV infection have become a critical foundation for AIDS vaccine development. Here we examine the multiple variables and considerations that must be taken into account in order to use this nonhuman primate (NHP) model effectively. These include the species and subspecies of macaques, virus strain, dose and route of administration, and macaque genetics, including the major histocompatibility complex molecules that affect immune responses, and other virus restriction factors. We illustrate how these NHP models can be used to carry out studies of immune responses in mucosal and other tissues that could not easily be performed on human volunteers. Furthermore, macaques are an ideal model system to optimize adjuvants, test vaccine platforms, and identify correlates of protection that can advance the HIV vaccine field. We also illustrate techniques used to identify different macaque lymphocyte populations and review some poxvirus vaccine candidates that are in various stages of clinical trials. Understanding how to effectively use this valuable model will greatly increase the likelihood of finding a successful vaccine for HIV.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Shari Gordon
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Genoveffa Franchini
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| |
Collapse
|
50
|
Assisted evolution enables HIV-1 to overcome a high TRIM5α-imposed genetic barrier to rhesus macaque tropism. PLoS Pathog 2013; 9:e1003667. [PMID: 24086139 PMCID: PMC3784476 DOI: 10.1371/journal.ppat.1003667] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/13/2013] [Indexed: 01/07/2023] Open
Abstract
Diversification of antiretroviral factors during host evolution has erected formidable barriers to cross-species retrovirus transmission. This phenomenon likely protects humans from infection by many modern retroviruses, but it has also impaired the development of primate models of HIV-1 infection. Indeed, rhesus macaques are resistant to HIV-1, in part due to restriction imposed by the TRIM5α protein (rhTRIM5α). Initially, we attempted to derive rhTRIM5α-resistant HIV-1 strains using two strategies. First, HIV-1 was passaged in engineered human cells expressing rhTRIM5α. Second, a library of randomly mutagenized capsid protein (CA) sequences was screened for mutations that reduced rhTRIM5α sensitivity. Both approaches identified several individual mutations in CA that reduced rhTRIM5α sensitivity. However, neither approach yielded mutants that were fully resistant, perhaps because the locations of the mutations suggested that TRIM5α recognizes multiple determinants on the capsid surface. Moreover, even though additive effects of various CA mutations on HIV-1 resistance to rhTRIM5α were observed, combinations that gave full resistance were highly detrimental to fitness. Therefore, we employed an ‘assisted evolution’ approach in which individual CA mutations that reduced rhTRIM5α sensitivity without fitness penalties were randomly assorted in a library of viral clones containing synthetic CA sequences. Subsequent passage of the viral library in rhTRIM5α-expressing cells resulted in the selection of individual viral species that were fully fit and resistant to rhTRIM5α. These viruses encoded combinations of five mutations in CA that conferred complete or near complete resistance to the disruptive effects of rhTRIM5α on incoming viral cores, by abolishing recognition of the viral capsid. Importantly, HIV-1 variants encoding these CA substitutions and SIVmac239 Vif replicated efficiently in primary rhesus macaque lymphocytes. These findings demonstrate that rhTRIM5α is difficult to but not impossible to evade, and doing so should facilitate the development of primate models of HIV-1 infection. Retroviruses such as HIV-1 often exhibit limited capacity to infect species other than their natural hosts. This phenomenon is partly due to the existence of antiviral proteins that protect against infection by viruses that have not adapted to a particular species. For example, the resistance of rhesus macaques, the monkey species most commonly used in medical research, to HIV-1 infection is partly attributable to the vulnerability of HIV-1 to TRIM5α. Rhesus macaque TRIM5α (rhTRIM5α) blocks HIV-1 infection by recognition of the viral capsid following its entry into the cell, and it has proven difficult to derive HIV-1 strains that are resistant to rhTRIM5α. However, by devising an ‘assisted evolution’ approach, we identified particular combinations of mutations that render HIV-1 resistant to rhTRIM5α. These mutations enable HIV-1 to evade rhTRIM5α by abolishing recognition of the capsid. Notably, introduction of rhTRIM5α-resistant capsids into an HIV-1 that was also engineered to avoid the rhesus macaque APOBEC3 antiviral proteins, allowed efficient HIV-1 replication in rhesus macaque lymphocytes. These discoveries have the potential to advance the development of rhesus macaque models of HIV-1 infection.
Collapse
|