1
|
El Husseini N, Carter JA, Lee VT. Urinary tract infections and catheter-associated urinary tract infections caused by Pseudomonas aeruginosa. Microbiol Mol Biol Rev 2024; 88:e0006622. [PMID: 39431861 DOI: 10.1128/mmbr.00066-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
SUMMARYUrinary tract infection (UTI) is one of the most common infections in otherwise healthy individuals. UTI is also common in healthcare settings where patients often require urinary catheters to alleviate urinary retention. The placement of a urinary catheter often leads to catheter-associated urinary tract infection (CAUTI) caused by a broad range of opportunistic pathogens, commonly referred to as ESKAPE (Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, and Enterobacter) pathogens. Our understanding of CAUTI is complicated by the differences in pathogens, in initial microbial load, changes that occur due to the duration of catheterization, and the relationship between infection (colonization) and disease symptoms. To advance our understanding of CAUTI, we reviewed UTI and CAUTI caused by Pseudomonas aeruginosa which is unique in that it is not commonly found associated with human microbiomes. For this reason, the ability of P. aeruginosa to cause UTI and CAUTI requires the introduction of the bacteria to the bladder from catheterization. Once in the host, the virulence factors used by P. aeruginosa in these infections remain an area of ongoing research. In this review, we will discuss studies that focus on P. aeruginosa UTI and CAUTI to better understand the infection dynamics and outcome in clinical settings, virulence factors associated with P. aeruginosa isolated from the urinary tract, and animal studies to test which bacterial factors are required for this infection. Understanding how P. aeruginosa can cause UTI and CAUTI can provide an understanding of how these infections initiate and progress and may provide possible strategies to limit these infections.
Collapse
Affiliation(s)
- Nour El Husseini
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland, USA
| | - Jared A Carter
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland, USA
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland, USA
| |
Collapse
|
2
|
Chatterjee R, Setty SRG, Chakravortty D. SNAREs: a double-edged sword for intravacuolar bacterial pathogens within host cells. Trends Microbiol 2024; 32:477-493. [PMID: 38040624 DOI: 10.1016/j.tim.2023.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
In the tug-of-war between host and pathogen, both evolve to combat each other's defence arsenals. Intracellular phagosomal bacteria have developed strategies to modify the vacuolar niche to suit their requirements best. Conversely, the host tries to target the pathogen-containing vacuoles towards the degradative pathways. The host cells use a robust system through intracellular trafficking to maintain homeostasis inside the cellular milieu. In parallel, intracellular bacterial pathogens have coevolved with the host to harbour strategies to manipulate cellular pathways, organelles, and cargoes, facilitating the conversion of the phagosome into a modified pathogen-containing vacuole (PCV). Key molecular regulators of intracellular traffic, such as changes in the organelle (phospholipid) composition, recruitment of small GTPases and associated effectors, soluble N-ethylmaleimide-sensitive factor-activating protein receptors (SNAREs), etc., are hijacked to evade lysosomal degradation. Legionella, Salmonella, Coxiella, Chlamydia, Mycobacterium, and Brucella are examples of pathogens which diverge from the endocytic pathway by using effector-mediated mechanisms to overcome the challenges and establish their intracellular niches. These pathogens extensively utilise and modulate the end processes of secretory pathways, particularly SNAREs, in repurposing the PCV into specialised compartments resembling the host organelles within the secretory network; at the same time, they avoid being degraded by the host's cellular mechanisms. Here, we discuss the recent research advances on the host-pathogen interaction/crosstalk that involves host SNAREs, conserved cellular processes, and the ongoing host-pathogen defence mechanisms in the molecular arms race against each other. The current knowledge of SNAREs, and intravacuolar bacterial pathogen interactions, enables us to understand host cellular innate immune pathways, maintenance of homeostasis, and potential therapeutic strategies to combat ever-growing antimicrobial resistance.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka, India.
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka, India; Adjunct Faculty, Indian Institute of Science Research and Education, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
3
|
Roy R, Mahmud F, Zayas J, Kuzel TM, Reiser J, Shafikhani SH. Reduced Bioactive Microbial Products (Pathogen-Associated Molecular Patterns) Contribute to Dysregulated Immune Responses and Impaired Healing in Infected Wounds in Mice with Diabetes. J Invest Dermatol 2024; 144:387-397.e11. [PMID: 37619833 PMCID: PMC10840742 DOI: 10.1016/j.jid.2023.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Diabetic chronic ulcers are plagued with persistent nonresolving inflammation. However, diabetic wound environment early after injury suffers from inadequate inflammatory responses due to reductions in proinflammatory cytokines levels. Diabetic neutrophils have known impairments in bactericidal functions. We hypothesized that reduced bacterial killing by diabetic neutrophils, due to their bactericidal functional impairments, results in reduced bioactive bacterial products, known as pathogen-associated molecular patterns, which in turn contribute to reduced signaling through toll-like receptors, leading to inadequate production of proinflammatory cytokines in infected diabetic wound early after injury. We tested our hypothesis in db/db type 2 obese diabetic mouse wound infection model with Pseudomonas aeruginosa. Our data indicate that despite substantially higher levels of infection, toll-like receptor 4-mediated signaling is reduced in diabetic wounds early after injury owing to reduced bioactive levels of lipopolysaccharide. We further demonstrate that topical treatment with lipopolysaccharide enhances toll-like receptor 4 signaling, increases proinflammatory cytokine production, restores leukocyte trafficking, reduces infection burden, and stimulates healing in diabetic wounds. We posit that lipopolysaccharide may be a viable therapeutic option for the treatment of diabetic foot ulcers if it is applied topically after the surgical debridement process, which is intended to reset chronic ulcers into acute fresh wounds.
Collapse
Affiliation(s)
- Ruchi Roy
- Division of Hematology, Oncology and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Foyez Mahmud
- Division of Hematology, Oncology and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Janet Zayas
- Division of Hematology, Oncology and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA; Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Timothy M Kuzel
- Division of Hematology, Oncology and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA; Cancer Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Jochen Reiser
- Division of Hematology, Oncology and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Sasha H Shafikhani
- Division of Hematology, Oncology and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA; Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA; Cancer Center, Rush University Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
4
|
Wood SJ, Goldufsky JW, Seu MY, Dorafshar AH, Shafikhani SH. Pseudomonas aeruginosa Cytotoxins: Mechanisms of Cytotoxicity and Impact on Inflammatory Responses. Cells 2023; 12:cells12010195. [PMID: 36611990 PMCID: PMC9818787 DOI: 10.3390/cells12010195] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is one of the most virulent opportunistic Gram-negative bacterial pathogens in humans. It causes many acute and chronic infections with morbidity and mortality rates as high as 40%. P. aeruginosa owes its pathogenic versatility to a large arsenal of cell-associated and secreted virulence factors which enable this pathogen to colonize various niches within hosts and protect it from host innate immune defenses. Induction of cytotoxicity in target host cells is a major virulence strategy for P. aeruginosa during the course of infection. P. aeruginosa has invested heavily in this strategy, as manifested by a plethora of cytotoxins that can induce various forms of cell death in target host cells. In this review, we provide an in-depth review of P. aeruginosa cytotoxins based on their mechanisms of cytotoxicity and the possible consequences of their cytotoxicity on host immune responses.
Collapse
Affiliation(s)
- Stephen J. Wood
- Department of Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Josef W. Goldufsky
- Department of Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Michelle Y. Seu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Amir H. Dorafshar
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
5
|
14-3-3 Activated Bacterial Exotoxins AexT and ExoT Share Actin and the SH2 Domains of CRK Proteins as Targets for ADP-Ribosylation. Pathogens 2022; 11:pathogens11121497. [PMID: 36558830 PMCID: PMC9787417 DOI: 10.3390/pathogens11121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Bacterial exotoxins with ADP-ribosyltransferase activity can be divided into distinct clades based on their domain organization. Exotoxins from several clades are known to modify actin at Arg177; but of the 14-3-3 dependent exotoxins only Aeromonas salmonicida exoenzyme T (AexT) has been reported to ADP-ribosylate actin. Given the extensive similarity among the 14-3-3 dependent exotoxins, we initiated a structural and biochemical comparison of these proteins. Structural modeling of AexT indicated a target binding site that shared homology with Pseudomonas aeruginosa Exoenzyme T (ExoT) but not with Exoenzyme S (ExoS). Biochemical analyses confirmed that the catalytic activities of both exotoxins were stimulated by agmatine, indicating that they ADP-ribosylate arginine residues in their targets. Side-by-side comparison of target protein modification showed that AexT had activity toward the SH2 domain of the Crk-like protein (CRKL), a known target for ExoT. We found that both AexT and ExoT ADP-ribosylated actin and in both cases, the modification compromised actin polymerization. Our results indicate that AexT and ExoT are functional homologs that affect cytoskeletal integrity via actin and signaling pathways to the cytoskeleton.
Collapse
|
6
|
Crystallization, X-ray diffraction analysis and structure of ICMP from Pseudomonas aeruginosa. Biochem Biophys Res Commun 2022; 616:129-133. [DOI: 10.1016/j.bbrc.2022.05.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/15/2022]
|
7
|
Presence of CrkI-containing microvesicles in squamous cell carcinomas could have ramifications on tumor biology and cancer therapeutics. Sci Rep 2022; 12:4803. [PMID: 35314778 PMCID: PMC8938485 DOI: 10.1038/s41598-022-08905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Recently, we described a phenomenon whereby apoptotic cells generate and release CrkI-containing microvesicles, which stimulate proliferation in surrounding cells upon contact to compensate for their own demise. We termed these microvesicles “ACPSVs” for Apoptotic Compensatory Proliferation Signaling microvesicles. As immune cells and a majority of current cancer therapeutics destroy tumor cells primarily by apoptosis, we conducted a small pilot study to assess the possibility that ACPSVs may also be generated in squamous cell carcinomas. We first evaluated a primary and a metastatic squamous cell carcinoma cancer cell lines for their ability to produce ACPSVs under normal and apoptotic conditions. We next conducted a pilot study to assess the occurrence of ACPSVs in solid tumors extracted from 20 cancer patients with squamous cell carcinomas. Both cancer cell lines produced copious amounts of ACPSVs under apoptotic conditions. Interestingly, the metastatic squamous cell carcinoma cancer cell line also produced high levels of ACPSVs under healthy condition, suggesting that the ability to generate ACPSVs may be hijacked by these cells. Importantly, ACPSVs were also abundant in the solid tumors of all squamous cell carcinoma cancer patients. Detection of ACPSVs in cancer has potentially important ramifications in tumor biology and cancer therapeutics which warrants further investigation.
Collapse
|
8
|
Wang Y, Khan HM, Zhou C, Liao X, Tang P, Song P, Gui X, Li H, Chen Z, Liu S, Cen Y, Zhang Z, Li Z. Apoptotic cells derived micro/nano-sized extracellular vesicles in tissue regeneration. NANOTECHNOLOGY REVIEWS 2022. [DOI: 10.1515/ntrev-2022-0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Extracellular vesicles (EVs), products released by cells in multiple biological activities, are currently widely accepted as functional particles and intercellular communicators. From the orthodox perspective, EVs derived from apoptotic cells (apoEVs) are responsible for cell debris clearance, while recent studies have demonstrated that apoEVs participate in tissue regeneration. However, the underlying mechanisms and particular functions in tissue regeneration promotion of apoEVs remain ambiguous. Some molecules, such as caspases, active during apoptosis also function in tissue regeneration triggered by apoptosis,. ApoEVs are generated in the process of apoptosis, carrying cell contents to manifest biological effects, and possessing biomarkers to target phagocytes. The regenerative effect of apoEVs might be due to their abilities to facilitate cell proliferation and regulate inflammation. Such regenerative effect has been observed in various tissues, including skin, bone, cardiovascular system, and kidney. Engineered apoEVs are produced to amplify the biological benefits of apoEVs, rendering them optional for drug delivery. Meanwhile, challenges exist in thorough mechanistic exploration and standardization of production. In this review, we discussed the link between apoptosis and regeneration, current comprehension of the origination and investigation strategies of apoEVs, and mechanisms in tissue regeneration by apoEVs and their applications. Challenges and prospects are also discussed here.
Collapse
Affiliation(s)
- Yixi Wang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Haider Mohammed Khan
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University , Chengdu Sichuan, 610041 , China
| | - Changchun Zhou
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Xiaoxia Liao
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Pei Tang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Ping Song
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Xingyu Gui
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Hairui Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Zhixing Chen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research, Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University , Xi’an , Shaanxi, 710032 , China
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Zhenyu Zhang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University , 610041 , Chengdu , China
| |
Collapse
|
9
|
CrkII/Abl phosphorylation cascade is critical for NLRC4 inflammasome activity and is blocked by Pseudomonas aeruginosa ExoT. Nat Commun 2022; 13:1295. [PMID: 35277504 PMCID: PMC8917168 DOI: 10.1038/s41467-022-28967-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
Type 3 Secretion System (T3SS) is a highly conserved virulence structure that plays an essential role in the pathogenesis of many Gram-negative pathogenic bacteria, including Pseudomonas aeruginosa. Exotoxin T (ExoT) is the only T3SS effector protein that is expressed in all T3SS-expressing P. aeruginosa strains. Here we show that T3SS recognition leads to a rapid phosphorylation cascade involving Abl / PKCδ / NLRC4, which results in NLRC4 inflammasome activation, culminating in inflammatory responses that limit P. aeruginosa infection in wounds. We further show that ExoT functions as the main anti-inflammatory agent for P. aeruginosa in that it blocks the phosphorylation cascade through Abl / PKCδ / NLRC4 by targeting CrkII, which we further demonstrate to be important for Abl transactivation and NLRC4 inflammasome activation in response to T3SS and P. aeruginosa infection. Pseudomonas aeruginosa secretes the toxin ExoT, which is important for pathogenesis. Here, the authors show that ExoT inhibits NLRC4-dependent inflammatory responses during wound infection.
Collapse
|
10
|
IL-10 Dysregulation Underlies Chemokine Insufficiency, Delayed Macrophage Response, and Impaired Healing in Diabetic Wounds. J Invest Dermatol 2022; 142:692-704.e14. [PMID: 34517005 PMCID: PMC8860852 DOI: 10.1016/j.jid.2021.08.428] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
Persistent inflammation is a major contributor to healing impairment in diabetic chronic wounds. Paradoxically, diabetic wound environment during the acute phase of healing is completely different because it exhibits a reduced macrophage response owing to inadequate expression of CCL2 proinflammatory cytokine. What causes a reduction in CCL2 expression in diabetic wounds early after injury remains unknown. In this study, we report that in contrast to prolonged exposure to high glucose, which makes monocytes proinflammatory, short-term exposure to high glucose causes a rapid monocyte reprogramming, manifested by increased expression and secretion of IL-10, which in an autocrine/paracrine fashion reduces glucose uptake and transforms monocytes into an anti-inflammatory phenotype by dampening signaling through toll-like receptors. We show that IL-10 expression is significantly increased in diabetic wounds during the acute phase of healing, causing significant reductions in toll-like receptor signaling and proinflammatory cytokine production, delaying macrophage and leukocyte responses, and underlying healing impairment in diabetic wounds. Importantly, blocking IL-10 signaling during the acute phase of healing improves toll-like receptor signaling, increases proinflammatory cytokine production, enhances macrophage and leukocyte responses, and stimulates healing in diabetic wounds. We posit that anti-IL-10 strategies have therapeutic potential if added topically after surgical debridement, which resets chronic wounds into acute fresh wounds.
Collapse
|
11
|
Apoptotic cell-derived micro/nanosized extracellular vesicles in tissue regeneration. NANOTECHNOLOGY REVIEWS 2022. [DOI: 10.1515/ntrev-2022-0052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Extracellular vesicles (EVs), products released by cells in multiple biological activities, are currently widely accepted as functional particles and intercellular communicators. From the orthodox perspective, EVs derived from apoptotic cells (apoEVs) are responsible for cell debris clearance, while recent studies have demonstrated that apoEVs participate in tissue regeneration. However, the underlying mechanisms and particular functions in tissue regeneration promotion of apoEVs remain ambiguous. Some molecules active during apoptosis also function in tissue regeneration triggered by apoptosis, such as caspases. ApoEVs are generated in the process of apoptosis, carrying cell contents to manifest biological effects and possess biomarkers to target phagocytes. The regenerative effect of apoEVs might be due to their abilities to facilitate cell proliferation and regulate inflammation. Such regenerative effect has been observed in various tissues, including skin, bone, cardiovascular system, and kidneys. Engineered apoEVs are produced to amplify the biological benefits of apoEVs, rendering them optional for drug delivery. Meanwhile, challenges exist in thorough mechanistic exploration and standardization of production. In this review, we discussed the link between apoptosis and regeneration, current comprehension of the origination and investigation strategies of apoEVs, and mechanisms in tissue regeneration of apoEVs and their applications. Challenges and prospects are also addressed here.
Collapse
|
12
|
Roy R, Zayas J, Singh SK, Delgado K, Wood SJ, Mohamed MF, Frausto DM, Estupinian R, Giurini EF, Kuzel TM, Zloza A, Reiser J, Shafikhani SH. Overriding impaired FPR chemotaxis signaling in diabetic neutrophil stimulates infection control in murine diabetic wound. eLife 2022; 11:72071. [PMID: 35112667 PMCID: PMC8846594 DOI: 10.7554/elife.72071] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 02/01/2022] [Indexed: 11/19/2022] Open
Abstract
Infection is a major co-morbidity that contributes to impaired healing in diabetic wounds. Although impairments in diabetic neutrophils have been blamed for this co-morbidity, what causes these impairments and whether they can be overcome, remain largely unclear. Diabetic neutrophils, isolated from diabetic individuals, exhibit chemotaxis impairment but this peculiar functional impairment has been largely ignored because it appears to contradict the clinical findings which blame excessive neutrophil influx as a major impediment to healing in chronic diabetic ulcers. Here, we report that exposure to glucose in diabetic range results in impaired chemotaxis signaling through the formyl peptide receptor (FPR) in neutrophils, culminating in reduced chemotaxis and delayed neutrophil trafficking in the wound of Leprdb (db/db) type two diabetic mice, rendering diabetic wound vulnerable to infection. We further show that at least some auxiliary receptors remain functional under diabetic conditions and their engagement by the pro-inflammatory cytokine CCL3, overrides the requirement for FPR signaling and substantially improves infection control by jumpstarting the neutrophil trafficking toward infection, and stimulates healing in diabetic wound. We posit that CCL3 may have therapeutic potential for the treatment of diabetic foot ulcers if it is applied topically after the surgical debridement process which is intended to reset chronic ulcers into acute fresh wounds.
Collapse
Affiliation(s)
- Ruchi Roy
- Department of Medicine, Rush University Medical Center, Chicago, United States
| | - Janet Zayas
- Department of Medicine, Rush University Medical Center, Chicago, United States
| | - Sunil K Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, United States
| | - Kaylee Delgado
- Department of Medicine, Rush University Medical Center, Chicago, United States
| | - Stephen J Wood
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, United States
| | - Mohamed F Mohamed
- Department of Medicine, Rush University Medical Center, Chicago, United States
| | - Dulce M Frausto
- Department of Medicine, Rush University Medical Center, Chicago, United States
| | - Ricardo Estupinian
- Department of Medicine, Rush University Medical Center, Chicago, United States
| | - Eileena F Giurini
- Department of Medicine, Rush University Medical Center, Chicago, United States
| | - Timothy M Kuzel
- Department of Medicine, Rush University Medical Center, Chicago, United States
| | - Andrew Zloza
- Department of Medicine, Rush University Medical Center, Chicago, United States
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, United States
| | - Sasha H Shafikhani
- Department of Medicine, Rush University Medical Center, Chicago, United States
| |
Collapse
|
13
|
Mahmud F, Roy R, Mohamed MF, Aboonabi A, Moric M, Ghoreishi K, Bayat M, Kuzel TM, Reiser J, Shafikhani SH. Therapeutic evaluation of immunomodulators in reducing surgical wound infection. FASEB J 2022; 36:e22090. [PMID: 34907595 PMCID: PMC9058973 DOI: 10.1096/fj.202101019r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/10/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Despite many advances in infection control practices, including prophylactic antibiotics, surgical site infections (SSIs) remain a significant cause of morbidity, prolonged hospitalization, and death worldwide. Our innate immune system possesses a multitude of powerful antimicrobial strategies which make it highly effective in combating bacterial, fungal, and viral infections. However, pathogens use various stealth mechanisms to avoid the innate immune system, which in turn buy them time to colonize wounds and damage tissues at surgical sites. We hypothesized that immunomodulators that can jumpstart and activate innate immune responses at surgical sites, would likely reduce infection at surgical sites. We used three immunomodulators; fMLP (formyl-Methionine-Lysine-Proline), CCL3 (MIP-1α), and LPS (Lipopolysaccharide), based on their documented ability to elicit strong inflammatory responses; in a surgical wound infection model with Pseudomonas aeruginosa to evaluate our hypothesis. Our data indicate that one-time topical treatment with these immunomodulators at low doses significantly increased proinflammatory responses in infected and uninfected surgical wounds and were as effective, (or even better), than a potent prophylactic antibiotic (Tobramycin) in reducing P. aeruginosa infection in wounds. Our data further show that immunomodulators did not have adverse effects on tissue repair and wound healing processes. Rather, they enhanced healing in both infected and uninfected wounds. Collectively, our data demonstrate that harnessing the power of the innate immune system by immunomodulators can significantly boost infection control and potentially stimulate healing. We propose that topical treatment with these immunomodulators at the time of surgery may have therapeutic potential in combating SSI, alone or in combination with prophylactic antibiotics.
Collapse
Affiliation(s)
- Foyez Mahmud
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA,Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Ruchi Roy
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA,Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Mohamed F. Mohamed
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA,Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Anahita Aboonabi
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA,Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Mario Moric
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | | | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran,Price Institute of Surgical Research, University of Louisville and Noveratech LLC. of Louisville, Louisville, KY, USA
| | - Timothy M. Kuzel
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA,Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA,Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA,Cancer Center, Rush University Medical Center, Chicago, IL, USA,To whom correspondence should be addressed:
| |
Collapse
|
14
|
Hajra D, Nair AV, Chakravortty D. An elegant nano-injection machinery for sabotaging the host: Role of Type III secretion system in virulence of different human and animal pathogenic bacteria. Phys Life Rev 2021; 38:25-54. [PMID: 34090822 DOI: 10.1016/j.plrev.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 01/22/2023]
Abstract
Various Gram-negative bacteria possess a specialized membrane-bound protein secretion system known as the Type III secretion system (T3SS), which transports the bacterial effector proteins into the host cytosol thereby helping in bacterial pathogenesis. The T3SS has a special needle-like translocon that can sense the contact with the host cell membrane and translocate effectors. The export apparatus of T3SS recognizes these effector proteins bound to chaperones and translocates them into the host cell. Once in the host cell cytoplasm, these effector proteins result in modulation of the host system and promote bacterial localization and infection. Using molecular biology, bioinformatics, genetic techniques, electron microscopic studies, and mathematical modeling, the structure and function of the T3SS and the corresponding effector proteins in various bacteria have been studied. The strategies used by different human pathogenic bacteria to modulate the host system and thereby enhance their virulence mechanism using T3SS have also been well studied. Here we review the history, evolution, and general structure of the T3SS, highlighting the details of its comparison with the flagellar export machinery. Also, this article provides mechanistic details about the common role of T3SS in subversion and manipulation of host cellular processes. Additionally, this review describes specific T3SS apparatus and the role of their specific effectors in bacterial pathogenesis by considering several human and animal pathogenic bacteria.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
15
|
Hamilton J, Mohamed M, Witt B, Wimmer M, Shafikhani S. Therapeutic assessment of N-formyl-methionyl-leucyl-phenylalanine (fMLP) in reducing periprosthetic joint infection. Eur Cell Mater 2021; 42:122-138. [PMID: 34435345 PMCID: PMC8459619 DOI: 10.22203/ecm.v042a09] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Despite many preventive measures, including prophylactic antibiotics, periprosthetic joint infection (PJI) remains a devastating complication following arthroplasty, leading to pain, suffering, morbidity and substantial economic burden. Humans have a powerful innate immune system that can effectively control infections, if alerted quickly. Unfortunately, pathogens use many mechanisms to dampen innate immune responses. The study hypothesis was that immunomodulators that can jumpstart and direct innate immune responses (particularly neutrophils) at the surgical site of implant placement would boost immune responses and reduce PJI, even in the absence of antibiotics. To test this hypothesis, N-formyl-methionyl-leucyl-phenylalanine (fMLP) (a potent chemoattractant for phagocytic leukocytes including neutrophils) was used in a mouse model of PJI with Staphylococcus aureus (S. aureus). Mice receiving intramedullary femoral implants were divided into three groups: i) implant alone; ii) implant + S. aureus; iii) implant + fMLP + S. aureus. fMLP treatment reduced S. aureus infection levels by ~ 2-Log orders at day 3. Moreover, fMLP therapy reduced infection-induced peri-implant periosteal reaction, focal cortical loss and areas of inflammatory infiltrate in mice distal femora at day 10. Finally, fMLP treatment reduced pain behaviour and increased weight-bearing at the implant leg in infected mice at day 10. Data indicated that fMLP therapy is a promising novel approach for reducing PJI, if administered locally at surgical sites. Future work will be toward further enhancement and optimisation of an fMLP-based therapeutic approach through combination with antibiotics and/or implant coating with fMLP.
Collapse
Affiliation(s)
- J.L. Hamilton
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612-3806, USA,Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612-3806, USA
| | - M.F. Mohamed
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612-3806, USA
| | - B.R. Witt
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612-3806, USA
| | - M.A. Wimmer
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612-3806, USA,Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612-3806, USA
| | - S.H. Shafikhani
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612-3806, USA,Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612-3806, USA,Cancer Center, Rush University Medical Center, Chicago, IL 60612-3806, USA,Address for correspondence: Sasha H. Shafikhani, Department of Medicine, Division of Hematology, Oncology and Cell Therapy, Department of Microbial Pathogens and Immunity, Cancer Center, Rush University Medical Center, 1735 W. Harrison Street, Chicago, IL 60612-3806, USA. Telephone number: +1 3129421368
| |
Collapse
|
16
|
Mohamed MF, Wood SJ, Roy R, Reiser J, Kuzel TM, Shafikhani SH. Pseudomonas aeruginosa ExoT induces G1 cell cycle arrest in melanoma cells. Cell Microbiol 2021; 23:e13339. [PMID: 33821556 PMCID: PMC8277761 DOI: 10.1111/cmi.13339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
Recently, we demonstrated that Pseudomonas aeruginosa Exotoxin T (ExoT) employs two distinct mechanisms to induce potent apoptotic cytotoxicity in a variety of cancer cell lines. We further demonstrated that it can significantly reduce tumour growth in an animal model for melanoma. During these studies, we observed that melanoma cells that were transfected with ExoT failed to undergo mitosis, regardless of whether they eventually succumbed to ExoT-induced apoptosis or survived in ExoT's presence. In this report, we sought to investigate ExoT's antiproliferative activity in melanoma. We delivered ExoT into B16 melanoma cells by bacteria (to show necessity) and by transfection (to show sufficiency). Our data indicate that ExoT exerts a potent antiproliferative function in melanoma cells. We show that ExoT causes cell cycle arrest in G1 interphase in melanoma cells by dampening the G1/S checkpoint proteins. Our data demonstrate that both domains of ExoT; (the ADP-ribosyltransferase (ADPRT) domain and the GTPase activating protein (GAP) domain); contribute to ExoT-induced G1 cell cycle arrest in melanoma. Finally, we show that the ADPRT-induced G1 cell cycle arrest in melanoma cells likely involves the Crk adaptor protein. Our data reveal a novel virulence function for ExoT and further highlight the therapeutic potential of ExoT against cancer.
Collapse
Affiliation(s)
- Mohamed F. Mohamed
- Department of Medicine/ Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University, Egypt
| | - Stephen J. Wood
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Ruchi Roy
- Department of Medicine/ Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Jochen Reiser
- Department of Medicine/ Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Timothy M. Kuzel
- Department of Medicine/ Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Sasha H. Shafikhani
- Department of Medicine/ Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
- Cancer Center, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
17
|
A Primed Subpopulation of Bacteria Enables Rapid Expression of the Type 3 Secretion System in Pseudomonas aeruginosa. mBio 2021; 12:e0083121. [PMID: 34154400 PMCID: PMC8262847 DOI: 10.1128/mbio.00831-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 3 secretion systems (T3SS) are complex nanomachines that span the cell envelope and play a central role in the biology of Gram-negative pathogens and symbionts. In Pseudomonas aeruginosa, T3SS expression is strongly associated with human disease severity and with mortality in murine acute pneumonia models. Uniform exposure of isogenic cells to T3SS-activating signal results in heterogeneous expression of this critical virulence trait. To understand the function of such diversity, we measured the production of the T3SS master regulator ExsA and the expression of T3SS genes using fluorescent reporters. We found that heterogeneous expression of ExsA in the absence of activating signal generates a "primed" subpopulation of cells that can rapidly induce T3SS gene expression in response to signal. T3SS expression is accompanied by a reproductive trade-off as measured by increased division time of T3SS-expressing cells. Although T3SS-primed cells are a minority of the population, they compose the majority of T3SS-expressing cells for several hours following activation. The primed state therefore allows P. aeruginosa to maximize reproductive fitness while maintaining the capacity to quickly express the T3SS. As T3SS effectors can serve as shared public goods for nonproducing cells, this division of labor benefits the population as a whole. IMPORTANCE The expression of specific virulence traits is strongly associated with Pseudomonas aeruginosa's success in establishing acute infections but is thought to carry a cost for bacteria. Producing multiprotein secretion systems or motility organelles is metabolically expensive and can target a cell for recognition by innate immune system receptors that recognize structural components of the type 3 secretion system (T3SS) or flagellum. These acute virulence factors are also negatively selected when P. aeruginosa establishes chronic infections in the lung. We demonstrate a regulatory mechanism by which only a minority subpopulation of genetically identical P. aeruginosa cells is "primed" to respond to signals that turn on T3SS expression. This phenotypic heterogeneity allows the population to maximize the benefit of rapid T3SS effector production while maintaining a rapidly growing and nonexpressing reservoir of cells that perpetuates this genotype within the population.
Collapse
|
18
|
Riquelme SA, Wong Fok Lung T, Prince A. Pulmonary Pathogens Adapt to Immune Signaling Metabolites in the Airway. Front Immunol 2020; 11:385. [PMID: 32231665 PMCID: PMC7082326 DOI: 10.3389/fimmu.2020.00385] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
A limited number of pulmonary pathogens are able to evade normal mucosal defenses to establish acute infection and then adapt to cause chronic pneumonias. Pathogens, such as Pseudomonas aeruginosa or Staphylococcus aureus, are typically associated with infection in patients with underlying pulmonary disease or damage, such as cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). To establish infection, bacteria express a well-defined set of so-called virulence factors that facilitate colonization and activate an immune response, gene products that have been identified in murine models. Less well-understood are the adaptive changes that occur over time in vivo, enabling the organisms to evade innate and adaptive immune clearance mechanisms. These colonizers proliferate, generating a population sufficient to provide selection for mutants, such as small colony variants and mucoid variants, that are optimized for long term infection. Such host-adapted strains have evolved in response to selective pressure such as antibiotics and the recruitment of phagocytes at sites of infection and their release of signaling metabolites (e.g., succinate). These metabolites can potentially function as substrates for bacterial growth and but also generate oxidant stress. Whole genome sequencing and quantified expression of selected genes have helped to explain how P. aeruginosa and S. aureus adapt to the presence of these metabolites over the course of in vivo infection. The serial isolation of clonally related strains from patients with cystic fibrosis has provided the opportunity to identify bacterial metabolic pathways that are altered under this immune pressure, such as the anti-oxidant glyoxylate and pentose phosphate pathways, routes contributing to the generation of biofilms. These metabolic pathways and biofilm itself enable the organisms to dissipate oxidant stress, while providing protection from phagocytosis. Stimulation of host immune signaling metabolites by these pathogens drives bacterial adaptation and promotes their persistence in the airways. The inherent metabolic flexibility of P. aeruginosa and S. aureus is a major factor in their success as pulmonary pathogens.
Collapse
Affiliation(s)
- Sebastián A Riquelme
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| | - Tania Wong Fok Lung
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| | - Alice Prince
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
19
|
Shaw E, Wuest WM. Virulence attenuating combination therapy: a potential multi-target synergy approach to treat Pseudomonas aeruginosa infections in cystic fibrosis patients. RSC Med Chem 2020; 11:358-369. [PMID: 33479641 PMCID: PMC7580779 DOI: 10.1039/c9md00566h] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/06/2020] [Indexed: 12/15/2022] Open
Abstract
The World Health Organization considers the discovery of new treatments for P. aeruginosa a top priority. Virulence attenuating combination therapy (VACT) is a pragmatic strategy to improve bacterial clearance, repurpose outmoded antibiotics, improve drug efficacy at lower doses, and reduce the evolution of resistance. In vitro and in vivo studies have shown that adding a quorum sensing inhibitor or an extracellular polymeric substance repressor to classical antibiotics synergistically improves antipseudomonal activity. This review highlights why VACT could specifically benefit cystic fibrosis patients harboring chronic P. aeruginosa infections, outlines the current landscape of synergistic combinations between virulence-targeting small-molecules and anti-pseudomonal drugs, and suggests future directions for VACT research.
Collapse
Affiliation(s)
- Elana Shaw
- Department of Chemistry , Emory University , 1515 Dickey Drive , Atlanta , Georgia 30322 , USA .
| | - William M Wuest
- Department of Chemistry , Emory University , 1515 Dickey Drive , Atlanta , Georgia 30322 , USA .
- Emory Antibiotic Resistance Center , Emory University School of Medicine , 201 Dowman Drive , Atlanta , Georgia 30322 , USA
| |
Collapse
|
20
|
Kaminski A, Gupta KH, Goldufsky JW, Lee HW, Gupta V, Shafikhani SH. Pseudomonas aeruginosa ExoS Induces Intrinsic Apoptosis in Target Host Cells in a Manner That is Dependent on its GAP Domain Activity. Sci Rep 2018; 8:14047. [PMID: 30232373 PMCID: PMC6145893 DOI: 10.1038/s41598-018-32491-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/03/2018] [Indexed: 11/08/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes serious infections in immunocompromised individuals and cystic fibrosis patients. ExoS and ExoT are two homologous bifunctional Type III Secretion System (T3SS) virulence factors that induce apoptosis in target host cells. They possess a GTPase Activating Protein (GAP) domain at their N-termini, which share ~76% homology, and an ADP-ribosyltransferase (ADPRT) domain at their C-termini, which target non-overlapping substrates. Both the GAP and the ADPRT domains contribute to ExoT's cytotoxicity in target epithelial cells, whereas, ExoS-induced apoptosis is reported to be primarily due to its ADPRT domain. In this report, we demonstrate that ExoS/GAP domain is both necessary and sufficient to induce mitochondrial apoptosis. Our data demonstrate that intoxication with ExoS/GAP domain leads to enrichment of Bax and Bim into the mitochondrial outer-membrane, disruption of mitochondrial membrane and release of and cytochrome c into the cytosol, which activates initiator caspase-9 and effector caspase-3, that executes cellular death. We posit that the contribution of the GAP domain in ExoS-induced apoptosis was overlooked in prior studies due to its slower kinetics of cytotoxicity as compared to ADPRT. Our data clarify the field and reveal a novel virulence function for ExoS/GAP as an inducer of apoptosis.
Collapse
Affiliation(s)
- Amber Kaminski
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Kajal H Gupta
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Josef W Goldufsky
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Ha Won Lee
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Vineet Gupta
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Sasha H Shafikhani
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA.
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA.
- Cancer Center, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
21
|
Gupta KH, Goldufsky JW, Wood SJ, Tardi NJ, Moorthy GS, Gilbert DZ, Zayas JP, Hahm E, Altintas MM, Reiser J, Shafikhani SH. Apoptosis and Compensatory Proliferation Signaling Are Coupled by CrkI-Containing Microvesicles. Dev Cell 2017. [PMID: 28633020 DOI: 10.1016/j.devcel.2017.05.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Apoptosis has been implicated in compensatory proliferation signaling (CPS), whereby dying cells induce proliferation in neighboring cells as a means to restore homeostasis. The nature of signaling between apoptotic cells and their neighboring cells remains largely unknown. Here we show that a fraction of apoptotic cells produce and release CrkI-containing microvesicles (distinct from exosomes and apoptotic bodies), which induce proliferation in neighboring cells upon contact. We provide visual evidence of CPS by videomicroscopy. We show that purified vesicles in vitro and in vivo are sufficient to stimulate proliferation in other cells. Our data demonstrate that CrkI inactivation by ExoT bacterial toxin or by mutagenesis blocks vesicle formation in apoptotic cells and inhibits CPS, thus uncoupling apoptosis from CPS. We further show that c-Jun amino-terminal kinase (JNK) plays a pivotal role in mediating vesicle-induced CPS in recipient cells. CPS could have important ramifications in diseases that involve apoptotic cell death.
Collapse
Affiliation(s)
- Kajal H Gupta
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Josef W Goldufsky
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Stephen J Wood
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Nicholas J Tardi
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gayathri S Moorthy
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Douglas Z Gilbert
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Janet P Zayas
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Eunsil Hahm
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H Shafikhani
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA; Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA; Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
22
|
Lin CK, Kazmierczak BI. Inflammation: A Double-Edged Sword in the Response to Pseudomonas aeruginosa Infection. J Innate Immun 2017; 9:250-261. [PMID: 28222444 DOI: 10.1159/000455857] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/05/2017] [Indexed: 12/22/2022] Open
Abstract
The Gram-negative opportunistic pathogen Pseudomonas aeruginosa exploits failures of barrier defense and innate immunity to cause acute infections at a range of anatomic sites. We review the defense mechanisms that normally protect against P. aeruginosa pulmonary infection, as well as the bacterial products and activities that trigger their activation. Innate immune recognition of P. aeruginosa is critical for pathogen clearance; nonetheless, inflammation is also associated with pathogen persistence and poor host outcomes. We describe P. aeruginosa adaptations that improve this pathogen's fitness in the inflamed airway, and briefly discuss strategies to manipulate inflammation to benefit the host. Such adjunct therapies may become increasingly important in the treatment of acute and chronic infections caused by this multi-drug-resistant pathogen.
Collapse
|
23
|
Roy Chowdhury P, Scott M, Worden P, Huntington P, Hudson B, Karagiannis T, Charles IG, Djordjevic SP. Genomic islands 1 and 2 play key roles in the evolution of extensively drug-resistant ST235 isolates of Pseudomonas aeruginosa. Open Biol 2016; 6:rsob.150175. [PMID: 26962050 PMCID: PMC4821235 DOI: 10.1098/rsob.150175] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas aeruginosa are noscomially acquired, opportunistic pathogens that pose a major threat to the health of burns patients and the immunocompromised. We sequenced the genomes of P. aeruginosa isolates RNS_PA1, RNS_PA46 and RNS_PAE05, which displayed resistance to almost all frontline antibiotics, including gentamicin, piperacillin, timentin, meropenem, ceftazidime and colistin. We provide evidence that the isolates are representatives of P. aeruginosa sequence type (ST) 235 and carry Tn6162 and Tn6163 in genomic islands 1 (GI1) and 2 (GI2), respectively. GI1 disrupts the endA gene at precisely the same chromosomal location as in P. aeruginosa strain VR-143/97, of unknown ST, creating an identical CA direct repeat. The class 1 integron associated with Tn6163 in GI2 carries a blaGES-5–aacA4–gcuE15–aphA15 cassette array conferring resistance to carbapenems and aminoglycosides. GI2 is flanked by a 12 nt direct repeat motif, abuts a tRNA-gly gene, and encodes proteins with putative roles in integration, conjugative transfer as well as integrative conjugative element-specific proteins. This suggests that GI2 may have evolved from a novel integrative conjugative element. Our data provide further support to the hypothesis that genomic islands play an important role in de novo evolution of multiple antibiotic resistance phenotypes in P. aeruginosa.
Collapse
Affiliation(s)
- Piklu Roy Chowdhury
- The ithree institute, Faculty of Science, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia Department of Primary Industries, Elizabeth Macarthur Agriculture Institute, PMB 4008, Camden, New South Wales 2567, Australia
| | - Martin Scott
- The ithree institute, Faculty of Science, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Paul Worden
- The ithree institute, Faculty of Science, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Peter Huntington
- Pathology North, The Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| | - Bernard Hudson
- Pathology North, The Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| | - Thomas Karagiannis
- SEALS Department of Microbiology, Level 4, Campus Centre Prince of Wales Hospital, Baker Street, Randwick, New South Wales 2031, Australia
| | - Ian G Charles
- The ithree institute, Faculty of Science, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Steven P Djordjevic
- The ithree institute, Faculty of Science, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| |
Collapse
|
24
|
Kroin JS, Li J, Goldufsky JW, Gupta KH, Moghtaderi M, Buvanendran A, Shafikhani SH. Perioperative high inspired oxygen fraction therapy reduces surgical site infection with Pseudomonas aeruginosa in rats. J Med Microbiol 2016; 65:738-744. [PMID: 27302326 DOI: 10.1099/jmm.0.000295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Surgical site infection (SSI) remains one of the most important causes of healthcare-associated infections, accounting for ~17 % of all hospital-acquired infections. Although short-term perioperative treatment with high fraction of inspired oxygen (FiO2) has shown clinical benefits in reducing SSI in colorectal resection surgeries, the true clinical benefits of FiO2 therapy in reducing SSI remain unclear because randomized controlled trials on this topic have yielded disparate results and inconsistent conclusions. To date, no animal study has been conducted to determine the efficacy of short-term perioperative treatments with high (FiO2>60 %) versus low (FiO2<40 %) oxygen in reducing SSI. In this report, we designed a rat model for muscle surgery to compare the effectiveness of short-term perioperative treatments with high (FiO2=80 %) versus a standard low (FiO2=30 %) oxygen in reducing SSI with Pseudomonas aeruginosa - one of the most prevalent Gram-negative pathogens, responsible for nosocomial SSIs. Our data demonstrate that 5 h perioperative treatment with 80 % FiO2 is significantly more effective in reducing SSI with P. aeruginosa compared to 30 % FiO2 treatment. We further show that whilst 80 % FiO2 treatment does not affect neutrophil infiltration into P. aeruginosa-infected muscles, neutrophils in the 80 % FiO2-treated and infected animal group are significantly more activated than neutrophils in the 30 % FiO2-treated and infected animal group, suggesting that high oxygen perioperative treatment reduces SSI with P. aeruginosa by enhancing neutrophil activation in infected wounds.
Collapse
Affiliation(s)
- Jeffrey S Kroin
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jinyuan Li
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Josef W Goldufsky
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kajal H Gupta
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Masoomeh Moghtaderi
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Asokumar Buvanendran
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H Shafikhani
- Rush University Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA.,Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA.,Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
25
|
Popa C, Coll NS, Valls M, Sessa G. Yeast as a Heterologous Model System to Uncover Type III Effector Function. PLoS Pathog 2016; 12:e1005360. [PMID: 26914889 PMCID: PMC4767418 DOI: 10.1371/journal.ppat.1005360] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Type III effectors (T3E) are key virulence proteins that are injected by bacterial pathogens inside the cells of their host to subvert cellular processes and contribute to disease. The budding yeast Saccharomyces cerevisiae represents an important heterologous system for the functional characterisation of T3E proteins in a eukaryotic environment. Importantly, yeast contains eukaryotic processes with low redundancy and are devoid of immunity mechanisms that counteract T3Es and mask their function. Expression in yeast of effectors from both plant and animal pathogens that perturb conserved cellular processes often resulted in robust phenotypes that were exploited to elucidate effector functions, biochemical properties, and host targets. The genetic tractability of yeast and its amenability for high-throughput functional studies contributed to the success of this system that, in recent years, has been used to study over 100 effectors. Here, we provide a critical view on this body of work and describe advantages and limitations inherent to the use of yeast in T3E research. “Favourite” targets of T3Es in yeast are cytoskeleton components and small GTPases of the Rho family. We describe how mitogen-activated protein kinase (MAPK) signalling, vesicle trafficking, membrane structures, and programmed cell death are also often altered by T3Es in yeast and how this reflects their function in the natural host. We describe how effector structure–function studies and analysis of candidate targeted processes or pathways can be carried out in yeast. We critically analyse technologies that have been used in yeast to assign biochemical functions to T3Es, including transcriptomics and proteomics, as well as suppressor, gain-of-function, or synthetic lethality screens. We also describe how yeast can be used to select for molecules that block T3E function in search of new antibacterial drugs with medical applications. Finally, we provide our opinion on the limitations of S. cerevisiae as a model system and its most promising future applications.
Collapse
Affiliation(s)
- Crina Popa
- Genetics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Núria S. Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Marc Valls
- Genetics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
- * E-mail: (GS); (MV)
| | - Guido Sessa
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (GS); (MV)
| |
Collapse
|
26
|
Wood SJ, Goldufsky JW, Bello D, Masood S, Shafikhani SH. Pseudomonas aeruginosa ExoT Induces Mitochondrial Apoptosis in Target Host Cells in a Manner That Depends on Its GTPase-activating Protein (GAP) Domain Activity. J Biol Chem 2015; 290:29063-73. [PMID: 26451042 DOI: 10.1074/jbc.m115.689950] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is the most common cause of hospital-acquired pneumonia and a killer of immunocompromised patients. We and others have demonstrated that the type III secretion system (T3SS) effector protein ExoT plays a pivotal role in facilitating P. aeruginosa pathogenesis. ExoT possesses an N-terminal GTPase-activating protein (GAP) domain and a C-terminal ADP-ribosyltransferase (ADPRT) domain. Because it targets multiple non-overlapping cellular targets, ExoT performs several distinct virulence functions for P. aeruginosa, including induction of apoptosis in a variety of target host cells. Both the ADPRT and the GAP domain activities contribute to ExoT-induced apoptosis. The ADPRT domain of ExoT induces atypical anoikis by transforming an innocuous cellular protein, Crk, into a cytotoxin, which interferes with integrin survival signaling. However, the mechanism underlying the GAP-induced apoptosis remains unknown. In this study, we demonstrate that the GAP domain activity is both necessary and sufficient to induce mitochondrial (intrinsic) apoptosis. We show that intoxication with GAP domain results in: (i) JNK1/2 activation; (ii) substantial increases in the mitochondrial levels of activated pro-apoptotic proteins Bax and Bid, and to a lesser extent Bim; (iii) loss of mitochondrial membrane potential and cytochrome c release; and (iv) activation of initiator caspase-9 and executioner caspase-3. Further, GAP-induced apoptosis is partially mediated by JNK1/2, but it is completely dependent on caspase-9 activity. Together, the ADPRT and the GAP domains make ExoT into a highly versatile and potent cytotoxin, capable of inducing multiple forms of apoptosis in target host cells.
Collapse
Affiliation(s)
| | | | | | - Sara Masood
- From the Department of Immunology/Microbiology
| | - Sasha H Shafikhani
- From the Department of Immunology/Microbiology, Department of Internal Medicine, and Cancer Center, Rush University Medical Center, Chicago, Illinois 60612
| |
Collapse
|
27
|
Targeting c-kit receptor in neuroblastomas and colorectal cancers using stem cell factor (SCF)-based recombinant bacterial toxins. Appl Microbiol Biotechnol 2015; 100:263-77. [DOI: 10.1007/s00253-015-6978-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/20/2015] [Accepted: 09/01/2015] [Indexed: 11/27/2022]
|
28
|
Shrestha M, Xiao Y, Robinson H, Schubot FD. Structural Analysis of the Regulatory Domain of ExsA, a Key Transcriptional Regulator of the Type Three Secretion System in Pseudomonas aeruginosa. PLoS One 2015; 10:e0136533. [PMID: 26317977 PMCID: PMC4552939 DOI: 10.1371/journal.pone.0136533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/04/2015] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa employs a type three secretion system to facilitate infections in mammalian hosts. The operons encoding genes of structural components of the secretion machinery and associated virulence factors are all under the control of the AraC-type transcriptional activator protein, ExsA. ExsA belongs to a unique subfamily of AraC-proteins that is regulated through protein-protein contacts rather than small molecule ligands. Prior to infection, ExsA is inhibited through a direct interaction with the anti-activator ExsD. To activate ExsA upon host cell contact this interaction is disrupted by the anti-antiactivator protein ExsC. Here we report the crystal structure of the regulatory domain of ExsA, which is known to mediate ExsA dimerization as well as ExsD binding. The crystal structure suggests two models for the ExsA dimer. Both models confirmed the previously shown involvement of helix α-3 in ExsA dimerization but one also suggest a role for helix α-2. These structural data are supported by the observation that a mutation in α-2 greatly diminished the ability of ExsA to activate transcription in vitro. Additional in vitro transcription studies revealed that a conserved pocket, used by AraC and the related ToxT protein for the binding of small molecule regulators, although present in ExsA is not involved in binding of ExsD.
Collapse
Affiliation(s)
- Manisha Shrestha
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Washington Street, Blacksburg, VA 24060, United States of America
| | - Yi Xiao
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Washington Street, Blacksburg, VA 24060, United States of America
| | - Howard Robinson
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973–5000, United States of America
| | - Florian D. Schubot
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Washington Street, Blacksburg, VA 24060, United States of America
- * E-mail:
| |
Collapse
|
29
|
Kroin JS, Buvanendran A, Li J, Moric M, Im HJ, Tuman KJ, Shafikhani SH. Short-term glycemic control is effective in reducing surgical site infection in diabetic rats. Anesth Analg 2015; 120:1289-96. [PMID: 25695673 DOI: 10.1213/ane.0000000000000650] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Patients and animals with diabetes exhibit enhanced vulnerability to bacterial surgical infections. Despite multiple retrospective studies demonstrating the benefits associated with glycemic control in reducing bacterial infection after cardiac surgery, there are fewer guidelines on the use of glycemic control for noncardiac surgeries. In the current study, we investigated whether long-term (begun 2 weeks before surgery) or immediate (just before surgery) glycemic controls, continued postoperatively, can reduce surgical site infection in type 1 diabetic-induced rats. METHODS Rats were injected with streptozotocin to induce type 1 diabetes. Four groups of animals underwent surgery and thigh muscle Staphylococcus aureus bacteria challenge (1 × 10 colony forming units) at the time of surgery. Group 1 diabetic rats received insulin treatment just before surgery and continued until the end of study (short-term glycemic control group). Group 2 diabetic rats received insulin treatment 2 weeks before surgery and continued until the end of study (long-term glycemic control). Group 3 diabetic rats received no insulin treatment (no glycemic control group). Group 4 nondiabetic rats served as a healthy control group. Rats were euthanized at 3 or 6 days after surgery. Blood glucose and muscle bacterial burden were measured at 3 or 6 days after surgery. RESULTS Glycemic control was achieved in both long- and short-term insulin-treated diabetic rats. Compared with untreated diabetic rats, the bacterial burden in muscle was significantly lower in both groups of glycemic controlled diabetic rats at 3 (all P < 0.003) and 6 (all P < 0.0001) days after surgery. CONCLUSIONS A short-term glycemic control regimen, initiated just before surgery and bacterial exposure, was as effective in reducing surgical site infection as a long-term glycemic control in type 1 diabetic rats. These data suggest that immediately implementing glycemic control in type 1 diabetic surgical patients before undergoing noncardiac surgery may decrease the risk of infection.
Collapse
Affiliation(s)
- Jeffrey S Kroin
- From the *Department of Anesthesiology, Rush University Medical Center, Chicago, Illinois; †Department of Biochemistry, Rush University Medical Center, Chicago, Illinois; and ‡Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
30
|
Goldufsky J, Wood SJ, Jayaraman V, Majdobeh O, Chen L, Qin S, Zhang C, DiPietro LA, Shafikhani SH. Pseudomonas aeruginosa uses T3SS to inhibit diabetic wound healing. Wound Repair Regen 2015; 23:557-64. [PMID: 25912785 DOI: 10.1111/wrr.12310] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 04/22/2015] [Indexed: 12/16/2022]
Abstract
Diabetic foot ulcers are responsible for more hospitalizations than any other complication of diabetes. Bacterial infection is recognized as an important factor associated with impaired healing in diabetic ulcers. Pseudomonas aeruginosa is the most frequently detected Gram-negative pathogen in diabetic ulcers. P. aeruginosa infection has been shown to impair healing in diabetic wounds in a manner that correlates with its ability to form biofilm. While the majority of infections in diabetic ulcers are biofilm associated, 33% of infections are nonbiofilm in nature. P. aeruginosa is the most prevalent Gram-negative pathogen in all diabetic wound types, which suggests that the deleterious impact of P. aeruginosa on healing in diabetic wounds goes beyond its ability to form biofilm and likely involves other factors. The Type III Secretion System (T3SS) virulence structure is required for the pathogenesis of all P. aeruginosa clinical isolates, suggesting that it may also play a role in the inhibition of wound repair in diabetic skin ulcers. We evaluated the role of T3SS in mediating P. aeruginosa-induced tissue damage in the wounds of diabetic mice. Our data demonstrate that P. aeruginosa establishes a robust and persistent infection in diabetic wounds independent of its ability to form biofilm and causes severe wound damage in a manner that primarily depends on its T3SS.
Collapse
Affiliation(s)
- Josef Goldufsky
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois
| | - Stephen J Wood
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois
| | - Vijayakumar Jayaraman
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois
| | - Omar Majdobeh
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Shanshan Qin
- Department of Pharmacology, Rush University Medical Center, Chicago, Illinois
| | - Chunxiang Zhang
- Department of Pharmacology, Rush University Medical Center, Chicago, Illinois
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Sasha H Shafikhani
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois.,Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois.,Cancer Center, Rush University Medical Center Chicago, Illinois
| |
Collapse
|
31
|
Wood S, Goldufsky J, Shafikhani SH. Pseudomonas aeruginosa ExoT Induces Atypical Anoikis Apoptosis in Target Host Cells by Transforming Crk Adaptor Protein into a Cytotoxin. PLoS Pathog 2015; 11:e1004934. [PMID: 26020630 PMCID: PMC4447348 DOI: 10.1371/journal.ppat.1004934] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/04/2015] [Indexed: 11/19/2022] Open
Abstract
Previously, we demonstrated that Pseudomonas aeruginosa ExoT induces potent apoptosis in host epithelial cells in a manner that primarily depends on its ADP-ribosyltransferase domain (ADPRT) activity. However, the mechanism underlying ExoT/ADPRT-induced apoptosis remains undetermined. We now report that ExoT/ADPRT disrupts focal adhesion sites, activates p38β and JNK, and interferes with integrin-mediated survival signaling; causing atypical anoikis. We show that ExoT/ADPRT-induced anoikis is mediated by the Crk adaptor protein. We found that Crk-/- knockout cells are significantly more resistant to ExoT-induced apoptosis, while Crk-/- cells complemented with Crk are rendered sensitive to ExoT-induced apoptosis. Moreover, a dominant negative (DN) mutant form of Crk phenocopies ExoT-induced apoptosis both kinetically and mechanistically. Crk is generally believed to be a component of focal adhesion (FA) and its role in cellular survival remains controversial in that it has been found to be either pro-survival or pro-apoptosis. Our data demonstrate that although Crk is recruited to FA sites, its function is likely not required for FA assembly or for survival per se. However, when modified by ExoT or by mutagenesis, it can be transformed into a cytotoxin that induces anoikis by disrupting FA sites and interfering with integrin survival signaling. To our knowledge, this is the first example whereby a bacterial toxin exerts its cytotoxicity by subverting the function of an innocuous host cellular protein and turning it against the host cell.
Collapse
Affiliation(s)
- Stephen Wood
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Josef Goldufsky
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Sasha H. Shafikhani
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
- Cancer Center, Rush University Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
32
|
Goldufsky J, Wood S, Hajihossainlou B, Rehman T, Majdobeh O, Kaufman HL, Ruby CE, Shafikhani SH. Pseudomonas aeruginosa exotoxin T induces potent cytotoxicity against a variety of murine and human cancer cell lines. J Med Microbiol 2015; 64:164-73. [PMID: 25627204 DOI: 10.1099/jmm.0.000003-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In patients with malignancy, the major barrier to achieving complete response is emergence of resistance to current chemotherapeutic agents. One of the major mechanisms by which tumour cells become resistant to therapies is by altering cellular drug targets through mutations and/or deletions. Resistance by this mechanism is achieved more easily if the drug has limited cellular targets and/or processes. We hypothesized that as Pseudomonas aeruginosa exotoxin T (ExoT) targets six proteins that are required for cancer cell survival and proliferation, it is highly unlikely for cancer cells to develop resistance to this toxin. We assessed ExoT's cytotoxicity against multiple invasive and highly resistant tumour cell lines in order to evaluate its potential as a chemotherapeutic agent. Our data demonstrated that ExoT induced potent cytotoxicity in all tumour cell lines that we examined. Collectively, our data highlighted the potential of ExoT as a possible chemotherapeutic candidate for the treatment of cancer.
Collapse
Affiliation(s)
- Joe Goldufsky
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, USA
| | - Stephen Wood
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, USA
| | - Behnam Hajihossainlou
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, USA
| | - Tooba Rehman
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, USA
| | - Omar Majdobeh
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, USA
| | | | - Carl E Ruby
- Department of Surgery, Rush University Medical Center, Chicago, IL, USA Sarepta Therapeutics, Corvallis, OR, USA
| | - Sasha H Shafikhani
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, USA Rush University Cancer Center, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
33
|
Goldufsky J, Wood S, Hajihossainlou B, Rehman T, Majdobeh O, Kaufman HL, Ruby CE, Shafikhani SH. Pseudomonas aeruginosa exotoxin T induces potent cytotoxicity against a variety of murine and human cancer cell lines. J Med Microbiol 2015. [DOI: 10.1099/jmm.0.000003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Joe Goldufsky
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, USA
| | - Stephen Wood
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, USA
| | - Behnam Hajihossainlou
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, USA
| | - Tooba Rehman
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, USA
| | - Omar Majdobeh
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, USA
| | | | - Carl E. Ruby
- Sarepta Therapeutics, Corvallis, OR, USA
- Department of Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Sasha H. Shafikhani
- Rush University Cancer Center, Rush University Medical Center, Chicago, IL, USA
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
34
|
Evolutionary genomics of epidemic and nonepidemic strains of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2013; 110:21065-70. [PMID: 24324153 DOI: 10.1073/pnas.1307862110] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen of humans and is a major cause of morbidity and mortality in patients with cystic fibrosis (CF). Prolonged infection of the respiratory tract can lead to adaptation of the pathogen to the CF lung environment. To examine the general patterns of adaptation associated with chronic infection, we obtained genome sequences from a collection of P. aeruginosa isolated from airways of patients with CF. Our analyses support a nonclonal epidemic population structure, with a background of unique, recombining genotypes, and the rare occurrence of successful epidemic clones. We present unique genome sequence evidence for the intercontinental spread of an epidemic strain shared between CF clinics in the United Kingdom and North America. Analyses of core and accessory genomes identified candidate genes and important functional pathways associated with adaptive evolution. Many genes of interest were involved in biological functions with obvious roles in this pathosystem, such as biofilm formation, antibiotic metabolism, pathogenesis, transport, reduction/oxidation, and secretion. Key factors driving the adaptive evolution of this pathogen within the host appear to be the presence of oxidative stressors and antibiotics. Regions of the accessory genome unique to the epidemic strain were enriched for genes in transporter families that efflux heavy metals and antibiotics. The epidemic strain was significantly more resistant than nonepidemic strains to three different antibiotics. Multiple lines of evidence suggest that selection imposed by the CF lung environment has a major influence on genomic evolution and the genetic characteristics of P. aeruginosa isolates causing contemporary infection.
Collapse
|
35
|
Beaufort N, Corvazier E, Mlanaoindrou S, de Bentzmann S, Pidard D. Disruption of the endothelial barrier by proteases from the bacterial pathogen Pseudomonas aeruginosa: implication of matrilysis and receptor cleavage. PLoS One 2013; 8:e75708. [PMID: 24069438 PMCID: PMC3777978 DOI: 10.1371/journal.pone.0075708] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 08/19/2013] [Indexed: 12/19/2022] Open
Abstract
Within the vasculature, uncontrolled pericellular proteolysis can lead to disruption of cell-to-cell and cell-to-matrix interactions and subsequent detachment-induced cell apoptosis, or anoikis, contributing to inflammatory vascular diseases, with the endothelium as the major target. Most studies so far have focused on endogenous proteinases. However, during bloodstream infections, bacterial proteinases may also trigger endothelial anoikis. We thus investigated the potential apoptotic activity of the proteinases secreted by the haematotropic opportunistic pathogen, Pseudomonas aeruginosa, and particularly its predominant metalloproteinase, LasB. For this, we used the secretome of the LasB-expressing pseudomonal strain, PAO1, and compared it with that from the isogenic, LasB-deficient strain (PAO1∆lasB), as well as with purified LasB. Secretomes were tested for apoptotic activity on cultured human endothelial cells derived from the umbilical vein or from the cerebral microvasculature. We found that the PAO1 secretome readily induced endothelial cell anoikis, as did secretomes of LasB-positive clinical pseudomonal isolates, while the PAO1∆lasB secretome had only a limited impact on endothelial adherence and viability. Notably, purified LasB reproduced most of the effects of the LasB-containing secretomes, and these were drastically reduced in the presence of the LasB-selective inhibitor, phosphoramidon. A precocious and extensive LasB-dependent degradation of several proteins associated with the endothelial extracellular matrix, fibronectin and von Willebrand factor, was observed by immunofluorescence and/or immunoblotting analysis of cell cultures. Moreover, the PAO1 secretome, but not that from PAO1∆lasB, specifically induced rapid endoproteolysis of two major interendothelial junction components, VE-cadherin and occludin, as well as of the anti-anoikis, integrin-associated urokinase receptor, uPAR. Taken as a prototype for exogenous haemorrhagic proteinases, pseudomonal LasB thus appears to induce endothelial anoikis not only via matrilysis, as observed for many pro-apoptotic proteinases, but also via cleavage of some essential cell-to-cell and cell-to-matrix adhesion receptors implicated in the maintenance of the endothelial barrier.
Collapse
Affiliation(s)
- Nathalie Beaufort
- Inserm, U698, Paris, France
- Université Denis Diderot, UMR-S698, Paris, France
| | - Elisabeth Corvazier
- Inserm, U698, Paris, France
- Université Denis Diderot, UMR-S698, Paris, France
| | - Saouda Mlanaoindrou
- Inserm, U698, Paris, France
- Université Denis Diderot, UMR-S698, Paris, France
| | - Sophie de Bentzmann
- CNRS, UMR 7255-LISM, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Dominique Pidard
- Inserm, U698, Paris, France
- Université Denis Diderot, UMR-S698, Paris, France
- * E-mail:
| |
Collapse
|
36
|
Roy S, Bonfield T, Tartakoff AM. Non-apoptotic toxicity of Pseudomonas aeruginosa toward murine cells. PLoS One 2013; 8:e54245. [PMID: 23358229 PMCID: PMC3554662 DOI: 10.1371/journal.pone.0054245] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/10/2012] [Indexed: 11/18/2022] Open
Abstract
Although P. aeruginosa is especially dangerous in cystic fibrosis (CF), there is no consensus as to how it kills representative cell types that are of key importance in the lung. This study concerns the acute toxicity of the sequenced strain, PAO1, toward a murine macrophage cell line (RAW 264.7). Toxicity requires brief contact with the target cell, but is then delayed for more than 12 h. None of the classical toxic effectors of this organism is required and cell death occurs without phagocytosis or acute perturbation of the actin cytoskeleton. Apoptosis is not required for toxicity toward either RAW 264.7 cells or for alveolar macrophages. Transcriptional profiling shows that encounter between PAO1 and RAW 264.7 cells elicits an early inflammatory response, followed by growth arrest. As an independent strategy to understand the mechanism of toxicity, we selected variant RAW 264.7 cells that resist PAO1. Upon exposure to P. aeruginosa, they are hyper-responsive with regard to classical inflammatory cytokine production and show transient downregulation of transcripts that are required for cell growth. They do not show obvious morphologic changes. Although they do not increase interferon transcripts, when exposed to PAO1 they dramatically upregulate a subset of the responses that are characteristic of exposure to g-interferon, including several guanylate-binding proteins. The present observations provide a novel foundation for learning how to equip cells with resistance to a complex challenge.
Collapse
Affiliation(s)
- Sanhita Roy
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Tracey Bonfield
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Alan M. Tartakoff
- Pathology Department and Cell Biology Program, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
37
|
Wood S, Pithadia R, Rehman T, Zhang L, Plichta J, Radek KA, Forsyth C, Keshavarzian A, Shafikhani SH. Chronic alcohol exposure renders epithelial cells vulnerable to bacterial infection. PLoS One 2013; 8:e54646. [PMID: 23358457 PMCID: PMC3554638 DOI: 10.1371/journal.pone.0054646] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/13/2012] [Indexed: 12/15/2022] Open
Abstract
Despite two centuries of reports linking alcohol consumption with enhanced susceptibility to bacterial infections and in particular gut-derived bacteria, there have been no studies or model systems to assess the impact of long-term alcohol exposure on the ability of the epithelial barrier to withstand bacterial infection. It is well established that acute alcohol exposure leads to reduction in tight and adherens junctions, which in turn leads to increases in epithelial cellular permeability to bacterial products, leading to endotoxemia and a variety of deleterious effects in both rodents and human. We hypothesized that reduced fortification at junctional structures should also reduce the epithelial barrier’s capacity to maintain its integrity in the face of bacterial challenge thus rendering epithelial cells more vulnerable to infection. In this study, we established a cell-culture based model system for long-term alcohol exposure to assess the impact of chronic alcohol exposure on the ability of Caco-2 intestinal epithelial cells to withstand infection when facing pathogenic bacteria under the intact or wounded conditions. We report that daily treatment with 0.2% ethanol for two months rendered Caco-2 cells far more susceptible to wound damage and cytotoxicity caused by most but not all bacterial pathogens tested in our studies. Consistent with acute alcohol exposure, long-term ethanol exposure also adversely impacted tight junction structures, but in contrast, it did not affect the adherens junction. Finally, alcohol-treated cells partially regained their ability to withstand infection when ethanol treatment was ceased for two weeks, indicating that alcohol’s deleterious effects on cells may be reversible.
Collapse
Affiliation(s)
- Stephen Wood
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Ravi Pithadia
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Tooba Rehman
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Lijuan Zhang
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Jennifer Plichta
- Department of Surgery, Burn and Shock Trauma Institute, Loyola University Chicago, Health Sciences Campus, Maywood, Illinois, United States of America
| | - Katherine A. Radek
- Department of Surgery, Burn and Shock Trauma Institute, Loyola University Chicago, Health Sciences Campus, Maywood, Illinois, United States of America
| | - Christopher Forsyth
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Ali Keshavarzian
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Sasha H. Shafikhani
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
38
|
Mahmood F, Hakimiyan A, Jayaraman V, Wood S, Sivaramakrishnan G, Rehman T, Reuhs BL, Chubinskaya S, Shafikhani SH. A novel human antimicrobial factor targets Pseudomonas aeruginosa through its type III secretion system. J Med Microbiol 2013; 62:531-539. [PMID: 23288430 DOI: 10.1099/jmm.0.051227-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic bacterial pathogen. Despite its metabolic and virulence versatility, it has not been shown to infect articular joints, which are areas that are rarely infected with bacteria in general. We hypothesized that articular joints possess antimicrobial activity that limits bacterial survival in these environments. We report that cartilages secrete a novel antimicrobial factor, henceforth referred to as the cartilage-associated antimicrobial factor (CA-AMF), with potent antimicrobial activity. Importantly, CA-AMF exhibited significantly more antimicrobial activity against P. aeruginosa strains with a functional type III secretion system (T3SS). We propose that CA-AMF represents a new class of human antimicrobial factors in innate immunity, one which has evolved to selectively target pathogenic bacteria among the beneficial and commensal microflora. The T3SS is the first example, to the best of our knowledge, of a pathogen-specific molecular target in this antimicrobial defence system.
Collapse
Affiliation(s)
- Fareeha Mahmood
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Arnavaz Hakimiyan
- Department of Food Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Vijayakumar Jayaraman
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Stephen Wood
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Tooba Rehman
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Bradley L Reuhs
- Department of Food Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Susanna Chubinskaya
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H Shafikhani
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
39
|
Galle M, Carpentier I, Beyaert R. Structure and function of the Type III secretion system of Pseudomonas aeruginosa. Curr Protein Pept Sci 2012; 13:831-42. [PMID: 23305368 PMCID: PMC3706959 DOI: 10.2174/138920312804871210] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 07/19/2012] [Accepted: 07/25/2012] [Indexed: 02/08/2023]
Abstract
Pseudomonas aeruginosa is a dangerous pathogen particularly because it harbors multiple virulence factors. It causes several types of infection, including dermatitis, endocarditis, and infections of the urinary tract, eye, ear, bone, joints and, of particular interest, the respiratory tract. Patients with cystic fibrosis, who are extremely susceptible to Pseudomonas infections, have a bad prognosis and high mortality. An important virulence factor of P. aeruginosa, shared with many other gram-negative bacteria, is the type III secretion system, a hollow molecular needle that transfers effector toxins directly from the bacterium into the host cell cytosol. This complex macromolecular machine works in a highly regulated manner and can manipulate the host cell in many different ways. Here we review the current knowledge of the structure of the P. aeruginosa T3SS, as well as its function and recognition by the immune system. Furthermore, we describe recent progress in the development and use of therapeutic agents targeting the T3SS.
Collapse
Affiliation(s)
- Marlies Galle
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium; the
- Department for Molecular Biomedical Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, B-9052 Ghent, Belgium
| | - Isabelle Carpentier
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium; the
- Department for Molecular Biomedical Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, B-9052 Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium; the
- Department for Molecular Biomedical Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, B-9052 Ghent, Belgium
| |
Collapse
|
40
|
Derivatives of plant phenolic compound affect the type III secretion system of Pseudomonas aeruginosa via a GacS-GacA two-component signal transduction system. Antimicrob Agents Chemother 2011; 56:36-43. [PMID: 21968370 DOI: 10.1128/aac.00732-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic therapy is the most commonly used strategy to control pathogenic infections; however, it has contributed to the generation of antibiotic-resistant bacteria. To circumvent this emerging problem, we are searching for compounds that target bacterial virulence factors rather than their viability. Pseudomonas aeruginosa, an opportunistic human pathogen, possesses a type III secretion system (T3SS) as one of the major virulence factors by which it secretes and translocates T3 effector proteins into human host cells. The fact that this human pathogen also is able to infect several plant species led us to screen a library of phenolic compounds involved in plant defense signaling and their derivatives for novel T3 inhibitors. Promoter activity screening of exoS, which encodes a T3-secreted toxin, identified two T3 inhibitors and two T3 inducers of P. aeruginosa PAO1. These compounds alter exoS transcription by affecting the expression levels of the regulatory small RNAs RsmY and RsmZ. These two small RNAs are known to control the activity of carbon storage regulator RsmA, which is responsible for the regulation of the key T3SS regulator ExsA. As RsmY and RsmZ are the only targets directly regulated by GacA, our results suggest that these phenolic compounds affect the expression of exoS through the GacSA-RsmYZ-RsmA-ExsA regulatory pathway.
Collapse
|
41
|
Huelsenbeck SC, May M, Schmidt G, Genth H. Inhibition of cytokinesis by Clostridium difficile toxin B and cytotoxic necrotizing factors--reinforcing the critical role of RhoA in cytokinesis. ACTA ACUST UNITED AC 2010; 66:967-75. [PMID: 19504561 DOI: 10.1002/cm.20390] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Low molecular weight GTP-binding proteins of the Rho family control the organization of the actin cytoskeleton in eukaryotic cells. RhoA governs the formation of actin stress fibers and is responsible for the formation of the contractile ring in cytokinesis. Cytokinesis completion requires RhoA inactivation resulting in disassembly of the contractile ring. Cytokinesis thus requires switching of RhoA activity. This switch of RhoA activity is blocked by Rho-modifying bacterial protein toxins that either activate or inactivate RhoA by covalent modifications. Exoenzyme C3 from Clostridium limosum (C3-lim) and Clostridium difficile toxin B (TcdB) inactivate RhoA by mono-ADP-ribosylation and mono-glucosylation, respectively. Cytotoxic necrotizing factors (CNF), produced by either Yersinia pseudotuberculosis (CNFY) or uropathogenic strains of E. coli (CNF1), deamidate and thereby activate RhoA. This study provides evidence that RhoA-activating as well as RhoA-inactivating toxins cause inhibition of cytokinesis and cell division. The toxins' effects on cytokinesis were analyzed in Hela cells synchronized using the thymidine double block technique. Treatment of G2-phase cells with either the RhoA-activating CNFY or CNF1 or the RhoA-inactivating C3-lim or TcdB resulted in cytokinesis inhibition, as evidenced by the formation of a 4N population on flow cytometry, the inhibition of contractile ring formation, and the formation of bi-nucleated cells. While TcdB and CNF1 modify a broad-spectrum of Rho proteins, C3-lim and CNFY specifically target RhoA. Since C3-lim and CNFY both caused cytokinesis inhibition, our study re-inforces the critical role of RhoA (not Rac1 or Cdc42) in cytokinesis and cell division.
Collapse
|
42
|
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa uses a complex type III secretion apparatus to inject effector proteins into host cells. The configuration of this secretion machinery, the activities of the proteins that are injected by it and the consequences of this process for infection are now being elucidated. This Review summarizes our current knowledge of P. aeruginosa type III secretion, including the secretion and translocation machinery, the regulation of this machinery, and the associated chaperones and effector proteins. The features of this interesting secretion system have important implications for the pathogenesis of P. aeruginosa infections and for other type III secretion systems.
Collapse
Affiliation(s)
- Alan R Hauser
- Departments of MicrobiologyImmunology and Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| |
Collapse
|
43
|
Kang Y, Lunin VV, Skarina T, Savchenko A, Schurr MJ, Hoang TT. The long-chain fatty acid sensor, PsrA, modulates the expression of rpoS and the type III secretion exsCEBA operon in Pseudomonas aeruginosa. Mol Microbiol 2009; 73:120-36. [PMID: 19508282 PMCID: PMC2759274 DOI: 10.1111/j.1365-2958.2009.06757.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Pseudomonas aeruginosa PsrA autorepressor has dual roles as a repressor of the fadBA5beta-oxidation operon and an activator of the stationary-phase sigma factor rpoS and exsCEBA operon of the type III secretion system (TTSS). Previously, we demonstrated that the repression of the fadBA5 operon by PsrA is relieved by long-chain fatty acids (LCFAs). However, the signal affecting the activation of rpoS and exsC via PsrA is unknown. In this study, microarray and gene fusion data suggested that LCFA (e.g. oleate) affected the expression of rpoS and exsC. DNA binding studies confirmed that PsrA binds to the rpoS and exsC promoter regions. This binding was inhibited by LCFA, indicating that LCFA directly affects the activation of these two genes through PsrA. LCFA decreased rpoS and exsC expression, resulting in increased N-(butyryl)-l-homoserine-lactone quorum sensing signal and decreased ExoS/T production respectively. Based on the crystal structure of PsrA, site-directed mutagenesis of amino acid residues, within the hydrophobic channel thought to accommodate LCFA, created two LCFA-non-responsive PsrA mutants. The binding and activation of rpoS and exsC by these PsrA mutants was no longer inhibited by LCFA. These data support a mechanistic model where LCFAs influence PsrA regulation to control LCFA metabolism and some virulence genes in P. aeruginosa.
Collapse
Affiliation(s)
- Yun Kang
- Department of Microbiology and Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Vladimir V. Lunin
- Chemical and Biosciences Center, National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO, USA
| | - Tatiana Skarina
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | - Alexei Savchenko
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | - Michael J. Schurr
- Department of Microbiology, School of Medicine, University of Colorado Denver, Denver, CO, USA
| | - Tung T. Hoang
- Department of Microbiology and Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
44
|
Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opin Microbiol 2009; 12:61-6. [PMID: 19168385 DOI: 10.1016/j.mib.2008.12.007] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 12/13/2008] [Accepted: 12/17/2008] [Indexed: 12/19/2022]
Abstract
Pseudomonas aeruginosa uses a type III secretion system (T3SS) to directly inject four known effectors into host cells. ExoU is a potent cytotoxin with phospholipase A2 activity that causes rapid necrotic death in many cell types. The biological function of ExoY, an adenylate cyclase, remains incompletely defined. ExoS and ExoT are closely related bifunctional proteins with N-terminal GTPase activating protein (GAP) activity toward Rho family proteins and C-terminal ADP ribosylase (ADPRT) activity toward distinct and non-overlapping set of targets. While almost no strain encodes or secretes all four effectors, the commonly found combinations of ExoU/ExoT or ExoS/ExoT provides redundant and failsafe mechanisms to cause mucosal barrier injury, inhibit many arms of the innate immune response, and prevent wound repair.
Collapse
|
45
|
Huang J, Lesser CF, Lory S. The essential role of the CopN protein in Chlamydia pneumoniae intracellular growth. Nature 2008; 456:112-5. [PMID: 18830244 PMCID: PMC2673727 DOI: 10.1038/nature07355] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Accepted: 08/19/2008] [Indexed: 11/08/2022]
Abstract
Bacterial virulence determinants can be identified, according to the molecular Koch's postulates, if inactivation of a gene associated with a suspected virulence trait results in a loss in pathogenicity. This approach is commonly used with genetically tractable organisms. However, the current lack of tools for targeted gene disruptions in obligate intracellular microbial pathogens seriously hampers the identification of their virulence factors. Here we demonstrate an approach to studying potential virulence factors of genetically intractable organisms, such as Chlamydia. Heterologous expression of Chlamydia pneumoniae CopN in yeast and mammalian cells resulted in a cell cycle arrest, presumably owing to alterations in the microtubule cytoskeleton. A screen of a small molecule library identified two compounds that alleviated CopN-induced growth inhibition in yeast. These compounds interfered with C. pneumoniae replication in mammalian cells, presumably by 'knocking out' CopN function, revealing an essential role of CopN in the support of C. pneumoniae growth during infection. This work demonstrates the role of a specific chlamydial protein in virulence. The chemical biology approach described here can be used to identify virulence factors, and the reverse chemical genetic strategy can result in the identification of lead compounds for the development of novel therapeutics.
Collapse
Affiliation(s)
- Jin Huang
- Department of Microbiology and Molecular Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
46
|
Abstract
The final stages in mammalian cytokinesis are poorly understood. Previously, we reported that the ADP-ribosyltransferase activity of Pseudomonas aeruginosa type III secreted toxin ExoT inhibits late stages of cytokinesis. Given that Crk adaptor proteins are the major substrates of ExoT ADP-ribosyltransferase activity, we tested the involvement of Crk in cytokinesis. We report that the focal adhesion-associated proteins, Crk and paxillin are essential for completion of cytokinesis. When their function is absent, the cytoplasmic bridge fails to resolve and the daughter cells fuse to form a binucleated cell. During cytokinesis, Crk is required for syntaxin-2 recruitment to the midbody, while paxillin is required for both Crk and syntaxin-2 localization to this compartment. Our data demonstrate that the subcellular localization and the activity of RhoA and citron K, which are essential for early stages of cytokinesis, are not dependent on paxillin, Crk or syntaxin-2. These studies reveal a novel role for Crk and paxillin in cytokinesis and suggest that focal adhesion complex, as a unit, may partake in this fundamental cellular process.
Collapse
Affiliation(s)
- Sasha H Shafikhani
- Department of Medicine, University of California, San Francisco, California, USA
| | | | | |
Collapse
|
47
|
Shafikhani SH, Morales C, Engel J. The Pseudomonas aeruginosa type III secreted toxin ExoT is necessary and sufficient to induce apoptosis in epithelial cells. Cell Microbiol 2008; 10:994-1007. [PMID: 18053004 PMCID: PMC10952005 DOI: 10.1111/j.1462-5822.2007.01102.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Type III secreted (T3SS) effectors are important virulence factors in acute infections caused by Pseudomonas aeruginosa. PA103, a well-studied human lung isolate, encodes and secretes two effectors, ExoU and ExoT. ExoU is a potent cytotoxin that causes necrotic cell death. In addition, PA103 can induce cell death in macrophages in an ExoU-independent but T3SS-dependent manner. We now demonstrate that ExoT is both necessary and sufficient to cause apoptosis in HeLa cells and that it activates the mitochondrial/cytochrome c-dependent apoptotic pathway. We further show that ExoT induction of cell death is primarily dependent on its ADP ribosyltransferase domain activity. Our data also indicate that the T3SS apparatus can cause necrotic cell death, which is effectively blocked by ExoT, suggesting that P. aeruginosa may have evolved strategies to prevent T3SS-induced necrosis.
Collapse
Affiliation(s)
- Sasha H. Shafikhani
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
| | - Christina Morales
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
| | - Joanne Engel
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
48
|
|
49
|
Brown SP, Le Chat L, Taddei F. Evolution of virulence: triggering host inflammation allows invading pathogens to exclude competitors. Ecol Lett 2007; 11:44-51. [PMID: 18021245 PMCID: PMC2228394 DOI: 10.1111/j.1461-0248.2007.01125.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Virulence is generally considered to benefit parasites by enhancing resource-transfer from host to pathogen. Here, we offer an alternative framework where virulent immune-provoking behaviours and enhanced immune resistance are joint tactics of invading pathogens to eliminate resident competitors (transferring resources from resident to invading pathogen). The pathogen wins by creating a novel immunological challenge to which it is already adapted. We analyse a general ecological model of 'proactive invasion' where invaders not adapted to a local environment can succeed by changing it to one where they are better adapted than residents. However, the two-trait nature of the 'proactive' strategy (provocation of, and adaptation to environmental change) presents an evolutionary conundrum, as neither trait alone is favoured in a homogenous host population. We show that this conundrum can be resolved by allowing for host heterogeneity. We relate our model to emerging empirical findings on immunological mediation of parasite competition.
Collapse
Affiliation(s)
- Sam P Brown
- Section of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | |
Collapse
|
50
|
Melstrom KA, Kozlowski R, Hassett DJ, Suzuki H, Bates DM, Gamelli RL, Shankar R. Cytotoxicity of Pseudomonas secreted exotoxins requires OxyR expression. J Surg Res 2007; 143:50-7. [PMID: 17950072 PMCID: PMC3163235 DOI: 10.1016/j.jss.2007.02.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 02/20/2007] [Accepted: 02/26/2007] [Indexed: 11/28/2022]
Abstract
BACKGROUND Nosocomial infections often lead to sepsis and multisystem organ failure in critically injured patients, including burn and trauma patients. A better understanding of the bacterial response to the host immune system is essential to develop better antimicrobials against pathogens. Pseudomonas aeruginosa combats host-initiated oxidant stress through expression of the transactivating factor, OxyR. Here we have tested the premise that OxyR regulates Pseudomonal cytotoxicity through secreted exotoxin production. MATERIALS AND METHODS Wild-type P. aeruginosa (PAO1) and a deletion mutant lacking the oxyR gene (Delta oxyR) were grown for 18 h in Luria broth and the supernatant containing the secreted products was removed using centrifugation. Secreted proteins were isolated using ammonium sulfate precipitation. ER-MP20(+) myeloid progenitor cells were harvested from the bone marrow of C57Blk/6J mice. These cells were differentiated into dendritic cells and macrophages. Various concentrations (0-20 microg/100 microL) of the bacterial proteins were added to the medium and cells were allowed to differentiate for 7 days. Cellular viability was then assayed using a proliferation assay. These studies were repeated on two other macrophage cell lines, human U937 and murine P388D1. RESULTS At a protein concentration of 5 microg/100 microL PAO1 supernatant protein, cellular proliferation was significantly reduced to 4.2 +/- 2.8% compared to untreated controls, while the DeltaoxyR supernatant protein remained at 103.3 +/- 4.0% of untreated controls (P < 0.05). Similar significant results were seen in the U937-, P388D1-, and ER-MP20(+)-derived macrophage cells. CONCLUSIONS Taken together, our data indicate that OxyR regulates the secretion of potent cytotoxic factors by P. aeruginosa.
Collapse
Affiliation(s)
- Kurt A. Melstrom
- Departments of Surgery and Burn & Shock Trauma Institute, Loyola University Medical Center, Maywood, Illinois
| | - Ryan Kozlowski
- Departments of Surgery and Burn & Shock Trauma Institute, Loyola University Medical Center, Maywood, Illinois
| | - Daniel J. Hassett
- Departments of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | | | - Richard L. Gamelli
- Departments of Surgery and Burn & Shock Trauma Institute, Loyola University Medical Center, Maywood, Illinois
| | - Ravi Shankar
- Departments of Surgery and Burn & Shock Trauma Institute, Loyola University Medical Center, Maywood, Illinois
| |
Collapse
|