1
|
Xie Z, Jin YS, Klaenhammer TR, Miller MJ. The insertion of the inverted repeat of an insertion sequence (IS) element from Lacticaseibacillus rhamnosus changes the host range and stability of pGK12, a shuttle vector for lactic acid bacteria. Appl Environ Microbiol 2025; 91:e0190824. [PMID: 40084891 PMCID: PMC12016507 DOI: 10.1128/aem.01908-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/18/2025] [Indexed: 03/16/2025] Open
Abstract
Insertion sequences (ISs) are key components of most bacterial genomes and play a crucial role in bacterial mutagenesis. In this study, we observed the insertion of an IS element, ISLrh, from the Lacticaseibacillus rhamnosus M1 genome into plasmid pGK12, resulting in the generation of a new plasmid, pTRK829. This insertion enabled pTRK829 to replicate in hosts previously incompatible with pGK12, including L. rhamnosus M1, L. rhamnosus GG (LGG), Lacticaseibacillus casei ATCC 393, and Lacticaseibacillus paracasei ATCC 25598. However, the ISLrh-inserted plasmid, pTRK829, was unstable and underwent a spontaneous deletion, resulting in a smaller and more stable variant, pTRK830, which retained ISLrh. Characterization of pTRK829 and pTRK830 across several host strains showed that ISLrh insertion led to a dramatic alteration in host range and impacted plasmid stability and copy number. Sequence and functional analysis of pTRK830 revealed that the terminal inverted repeats (IRs) of the inserted ISLrh and its insertion location were essential for plasmid replication in LGG. Finally, pTRK830 was successfully used as an expression vector for heterologous β-glucuronidase expression in LGG, L. casei ATCC 393, and L. paracasei ATCC 25598. In conclusion, this study demonstrated that the insertion of the IRs from ISLrh at a specific location can directly change the host range and stability of pGK12. Furthermore, we also demonstrated the potential of pTRK830 as a new cloning and expression vector for genetically intractable lactobacilli. IMPORTANCE This study highlights the significant impact of insertion sequence (IS) elements on plasmid replication in lactobacilli. The spontaneous integration of an IS element from the Laticaseibacillus rhamnosus genome into plasmid pGK12 not only expands its host range in previously incompatible strains but also changes plasmid stability and copy number. This expansion of the plasmid's host range is crucial for developing versatile genetic tools across diverse lactobacilli species. Additionally, the stable plasmid variant of pGK12 with the IS element insertion offers a valuable tool for cloning and gene expression in lactobacilli. These findings enhance our understanding of plasmid-IS element interactions and may provide insight into a new method to expand the host range of existing plasmids.
Collapse
Affiliation(s)
- Zifan Xie
- Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Yong-Su Jin
- Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Todd R. Klaenhammer
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael J. Miller
- Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Tadesse BT, Zhao S, Gu L, Jers C, Mijakovic I, Solem C. Genome analysis reveals a biased distribution of virulence and antibiotic resistance genes in the genus Enterococcus and an abundance of safe species. Appl Environ Microbiol 2025:e0041525. [PMID: 40202320 DOI: 10.1128/aem.00415-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
Enterococci are lactic acid bacteria (LAB) that, as their name implies, often are found in the gastrointestinal tract of animals. Like many other gut-dwelling LAB, for example, various lactobacilli, they are frequently found in other niches as well, including plants and fermented foods from all over the world. In fermented foods, they contribute to flavor and other organoleptic properties, help extend shelf life, and some even possess probiotic properties. There are many positive attributes of enterococci; however, they have been overshadowed by the occurrence of antibiotic-resistant and virulent strains, often reported for the two species, Enterococcus faecalis and Enterococcus faecium. More than 40,000 whole-genome sequences covering 64 Enterococcus type species are currently available in the National Center for Biotechnology Information repository. Closer inspection of these sequences revealed that most represent the two gut-dwelling species E. faecalis and E. faecium. The remaining 62 species, many of which have been isolated from plants, are thus quite underrepresented. Of the latter species, we found that most carried no potential virulence and antibiotic resistance genes, an observation that is aligned with these species predominately occupying other niches. Thus, the culprits found in the Enterococcus genus mainly belong to E. faecalis, and a biased characterization has resulted in the opinion that enterococci do not belong in food. Since enterococci possess many industrially desirable traits and frequently are found in other niches besides the gut of animals, we suggest that their use as food fermentation microorganisms is reconsidered.IMPORTANCEWe have retrieved a large number of Enterococcus genome sequences from the National Center for Biotechnology Information repository and have scrutinized these for the presence of virulence and antibiotic resistance genes. Our results show that such genes are prevalently found in the two species Enterococcus faecalis and Enterococcus faecium. Most other species do not harbor any virulence and antibiotic resistance genes and display great potential for use as food fermentation microorganisms or as probiotics. The study contributes to the current debate on enterococci and goes against the mainstream perception of enterococci as potentially dangerous microorganisms that should not be associated with food and health.
Collapse
Affiliation(s)
- Belay Tilahun Tadesse
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Kongens Lyngby, Denmark
| | - Shuangqing Zhao
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Liuyan Gu
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Carsten Jers
- Novo Nordisk Foundation Center for Biosustainability, Kongens Lyngby, Denmark
| | - Ivan Mijakovic
- Novo Nordisk Foundation Center for Biosustainability, Kongens Lyngby, Denmark
- Systems and Synthetic Biology Division, Chalmers University of Technology, Gothenburg, Sweden
| | - Christian Solem
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Sheikh K, Arasteh J, Tajabadi Ebrahimi M, Hesampour A. Membrane Vesicles from Lactobacillus Acidophilus Reduce Intestinal Inflammation and Increase 5-HT in the Substantia Nigra of Rats with Parkinson's Disease. Arch Med Res 2025; 56:103143. [PMID: 39705862 DOI: 10.1016/j.arcmed.2024.103143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/30/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND This study aimed to investigate the role of membrane vesicles (MVs) from the probiotic Lactobacillus acidophilus in reducing intestinal inflammation and increasing 5-hydroxytryptamine (5-HT) and tyrosine hydroxylase (TH) in the substantia nigra in the 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease (PD). METHODS Twenty healthy male Wistar rats were randomly assigned to four groups (n = 5 per group), including a) control, b) 6-OHDA, c) 6-OHDA+MV, and d) sham groups. PD was induced by bilateral injection of 6-OHDA. Rats in the 6-OHDA+MV group received MV equivalent to 1 × 107 colony-forming units (CFU)/mL 3 d/wk by oral gavage for 4 wk. At the end of 4 wk, all rats were sacrificed; the brain and small intestine were removed for cellular and molecular analysis. RESULTS The induction of PD by 6-OHDA induced a remarkable decrease in beam-walking (p <0.0001). In addition, the expression of protein and genes (receptor) of 5-HT (r-5-HT1A) decreased, and that of protein and gene (receptor; GABBR1) of GABA increased in the PD group (p <0.05 compared with the healthy control group), while MV gavage of 6-OHDA-injected rats controlled these factors in the substantia nigra. In the intestinal tissue, the expression of TLR-4 and α-synuclein gene was significantly increased in the 6-OHDA group compared to the control group (p <0.0001). CONCLUSION MVs might act as potential beneficial tools to reduce intestinal inflammation, control neurological damage associated with PD, and increase 5-HT neurotransmitters. It seems that MVs from L. acidophilus may have therapeutic potential in Parkinson's neurological disorder by controlling the gut-brain axis.
Collapse
Affiliation(s)
- Khadijeh Sheikh
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Javad Arasteh
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | | | - Ardeshir Hesampour
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Kasalo N, Domazet-Lošo T, Domazet-Lošo M. Bacterial Amino Acid Auxotrophies Enable Energetically Costlier Proteomes. Int J Mol Sci 2025; 26:2285. [PMID: 40076905 PMCID: PMC11900164 DOI: 10.3390/ijms26052285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
The outsourcing of amino acid (AA) production to the environment is relatively common across the tree of life. We recently showed that the massive loss of AA synthesis capabilities in animals is governed by selective pressure linked to the energy costs of AA production. Paradoxically, these AA auxotrophies facilitated the evolution of costlier proteomes in animals by enabling the increased use of energetically expensive AAs. Experiments in bacteria have shown that AA auxotrophies can provide a fitness advantage in competition with prototrophic strains. However, it remains unclear whether energy-related selection also drives the evolution of bacterial AA auxotrophies and whether this affects the usage of expensive AAs in bacterial proteomes. To investigate these questions, we computationally determined AA auxotrophy odds across 980 bacterial genomes representing diverse taxa and calculated the energy costs of all their proteins. Here, we show that auxotrophic AAs are generally more expensive to synthesize than prototrophic AAs in bacteria. Moreover, we found that the cost of auxotrophic AAs significantly correlates with the cost of their respective proteomes. Interestingly, out of all considered taxa, Mollicutes and Borreliaceae-chronic pathogens highly successful in immune evasion-have the most AA auxotrophies and code for the most expensive proteomes. These findings indicate that AA auxotrophies in bacteria, similar to those in animals, are shaped by selective pressures related to energy management. Our study reveals that bacterial AA auxotrophies act as costly outsourced functions, enabling bacteria to explore protein sequence space more freely. It remains to be investigated whether this relaxed use of expensive AAs also enabled auxotrophic bacteria to evolve proteins with improved or novel functionality.
Collapse
Affiliation(s)
- Niko Kasalo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia;
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| | - Mirjana Domazet-Lošo
- Department of Applied Computing, Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia
| |
Collapse
|
5
|
Kiruthika K, Suganthi A, Johnson Thangaraj Edward YS, Anandham R, Renukadevi P, Murugan M, Bimal Kumar Sahoo, Mohammad Ikram, Kavitha PG, Jayakanthan M. Role of Lactic Acid Bacteria in Insecticide Residue Degradation. Probiotics Antimicrob Proteins 2025; 17:81-102. [PMID: 38819541 DOI: 10.1007/s12602-024-10298-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Lactic acid bacteria are gaining global attention, especially due to their role as a probiotic. They are increasingly being used as a flavoring agent and food preservative. Besides their role in food processing, lactic acid bacteria also have a significant role in degrading insecticide residues in the environment. This review paper highlights the importance of lactic acid bacteria in degrading insecticide residues of various types, such as organochlorines, organophosphorus, synthetic pyrethroids, neonicotinoids, and diamides. The paper discusses the mechanisms employed by lactic acid bacteria to degrade these insecticides, as well as their potential applications in bioremediation. The key enzymes produced by lactic acid bacteria, such as phosphatase and esterase, play a vital role in breaking down insecticide molecules. Furthermore, the paper discusses the challenges and future directions in this field. However, more research is needed to optimize the utilization of lactic acid bacteria in insecticide residue degradation and to develop practical strategies for their implementation in real-world scenarios.
Collapse
Affiliation(s)
- K Kiruthika
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - A Suganthi
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | | | - R Anandham
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P Renukadevi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - M Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Bimal Kumar Sahoo
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Mohammad Ikram
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P G Kavitha
- Department of Nematology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - M Jayakanthan
- Department of Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
6
|
Zareie Z, Moayedi A, Tabar-Heydar K, Khomeiri M, Maghsoudlou Y, Garavand F. Enhancing the microbial dynamics, volatile profile, and ripening efficiency of white brined cheese using Lactiplantibacillus plantarum L33 as a probiotic co-culture. Food Res Int 2025; 203:115912. [PMID: 40022416 DOI: 10.1016/j.foodres.2025.115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/23/2025] [Accepted: 02/01/2025] [Indexed: 03/03/2025]
Abstract
Lactiplantibacillus plantarum L33 was used as a co-culture in the production of white brined cheese. The study compared control samples (without co-culture) and those including the co-culture at 1, 15 and 30 days of ripening, assessing various factors such as pH, moisture content, protein and fat levels, proteolysis intensity, organic acids, aromatic compounds, bacterial dynamics, hardness, and sensory evaluations. The results indicated that the cheese samples containing Lpb. plantarum L33 exhibited a higher moisture content (15 %) and lower hardness (11 %) compared to the control sample, while fat and protein levels remained consistent across both samples. Moreover, the co-culture sample had higher levels of lactic acid, acetic acid, and aromatic compounds such as acetone and diacetyl. Analysis of bacterial dynamics revealed that the presence of co-culture and storage time significantly enhanced the relative abundance of bacteria in the samples containing the co-culture, with the highest relative abundance found for Streptococcus salivarius subsp. thermophilus (107.27), followed by Lpb. plantarum L33 (25.51), Lactococcus lactis subsp. lactis (7.46), and Lactococcus lactis subsp. cremoris (0.74). The co-culture sample also received favorable sensory scores for overall acceptance. The findings suggest that a strain with moderate proteolytic activity can effectively reduce the ripening time of cheese by enhancing proteolysis intensity, thereby accelerating the production of aromatic compounds.
Collapse
Affiliation(s)
- Zahra Zareie
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, 4913815739 Gorgan, Iran
| | - Ali Moayedi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, 4913815739 Gorgan, Iran.
| | - Kourosh Tabar-Heydar
- Faculty of Clean Technologies, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Blvd., Tehran-Karaj Highway, 1496813151 Tehran, Iran
| | - Morteza Khomeiri
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, 4913815739 Gorgan, Iran
| | - Yahya Maghsoudlou
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, 4913815739 Gorgan, Iran
| | - Farhad Garavand
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland; Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland.
| |
Collapse
|
7
|
Zou Q, Dong H, Cronan JE. The Enteric Bacterium Enterococcus faecalis Elongates and Incorporates Exogenous Short and Medium Chain Fatty Acids Into Membrane Lipids. Mol Microbiol 2024; 122:757-771. [PMID: 39380216 PMCID: PMC11586512 DOI: 10.1111/mmi.15322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Enterococcus faecalis incorporates and elongates exogeneous short- and medium-chain fatty acids to chains sufficiently long to enter membrane phospholipid synthesis. The acids are activated by the E. faecalis fatty acid kinase (FakAB) system and converted to acyl-ACP species that can enter the fatty acid synthesis cycle to become elongated. Following elongation the acyl chains are incorporated into phospholipid by the PlsY and PlsC acyltranferases. This process has little effect on de novo fatty acid synthesis in the case of short-chain acids, but a greater effect with medium-chain acids. Incorporation of exogenous short-chain fatty acids in E. faecalis was greatly increased by overexpression of either AcpA, the acyl carrier protein of fatty acid synthesis, or the phosphate acyl transferase PlsX. The PlsX of Lactococcus lactis was markedly superior to the E. faecalis PlsX in incorporation of short-chain but not long-chain acids. These manipulations also allowed unsaturated fatty acids of lengths too short for direct transfer to the phospholipid synthesis pathway to be elongated and support growth of E. faecalis unsaturated fatty acid auxotrophic strains. Short- and medium-chain fatty acids can be abundant in the human gastrointestinal tract and their elongation by E. faecalis would conserve energy and carbon by relieving the requirement for total de novo synthesis of phospholipid acyl chains.
Collapse
Affiliation(s)
- Qi Zou
- Department of MicrobiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Huijuan Dong
- Department of MicrobiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - John E. Cronan
- Department of MicrobiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Department of BiochemistryUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
8
|
Qamar H, He R, Li Y, Song M, Deng D, Cui Y, Yu M, Ma X. Metabolome and Metagenome Integration Unveiled Synthesis Pathways of Novel Antioxidant Peptides in Fermented Lignocellulosic Biomass of Palm Kernel Meal. Antioxidants (Basel) 2024; 13:1253. [PMID: 39456506 PMCID: PMC11505245 DOI: 10.3390/antiox13101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Approximately one-third of the entire world's food resources are deemed to be wasted. Palm kernel meal (PKM), a product that is extensively generated by the palm oil industry, exhibits a unique nutrient-rich composition. However, its recycling is seldom prioritized due to numerous factors. To evaluate the impact of enzymatic pretreatment and Lactobacillus plantarum and Lactobacillus reuteri fermentation upon the antioxidant activity of PKM, we implemented integrated metagenomics and metabolomics approaches. The substantially enhanced (p < 0.05) property of free radicals scavenging, as well as total flavonoids and polyphenols, demonstrated that the biotreated PKM exhibited superior antioxidant capacity. Non-targeted metabolomics disclosed that the Lactobacillus fermentation resulted in substantial (p < 0.05) biosynthesis of 25 unique antioxidant biopeptides, along with the increased (p < 0.05) enrichment ratio of the isoflavonoids and secondary metabolites biosynthesis pathways. The 16sRNA sequencing and correlation analysis revealed that Limosilactobacillus reuteri, Pediococcus acidilactici, Lacticaseibacillus paracasei, Pediococcus pentosaceus, Lactiplantibacillus plantarum, Limosilactobacillus fermentum, and polysaccharide lyases had significantly dominated (p < 0.05) proportions in PMEL, and these bacterial species were strongly (p < 0.05) positively interrelated with antioxidants peptides. Fermented PKM improves nutritional value by enhancing beneficial probiotics, enzymes, and antioxidants and minimizing anti-nutritional factors, rendering it an invaluable feed ingredient and gut health promoter for animals, multifunctional food elements, or as an ingredient in sustainable plant-based diets for human utilization, and functioning as a culture substrate in the food sector.
Collapse
Affiliation(s)
- Hammad Qamar
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
| | - Rong He
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
| | - Yuanfei Li
- Institute of Biological Technology, Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang 330032, China;
| | - Min Song
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
| | - Dun Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
| | - Yiyan Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
| | - Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural, Maoming 525000, China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural, Maoming 525000, China
| |
Collapse
|
9
|
Kwoji ID, Aiyegoro OA, Okpeku M, Adeleke MA. Elucidating the Mechanisms of Cell-to-Cell Crosstalk in Probiotics Co-culture: A Proteomics Study of Limosilactobacillus reuteri ZJ625 and Ligilactobacillus salivarius ZJ614. Probiotics Antimicrob Proteins 2024; 16:1817-1835. [PMID: 37581751 PMCID: PMC11445297 DOI: 10.1007/s12602-023-10133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Limosilactobacillus reuteri ZJ625 and Ligilactobacillus salivarius ZJ614 are potential probiotic bacteria with improved benefits when administered to the host as a multi-strain preparation. To elucidate the mechanisms of cell-to-cell crosstalk between these two strains, we studied their intracellular and extracellular proteomes in co-culture by liquid-chromatography mass-spectrometry (LC-MS) using Dionex Nano-RSLC and fusion mass spectrometer. The experiment consisted of five biological replicates, and samples were collected during the mid-exponential growth phase. The quantitative proteomic profiles revealed several differentially expressed proteins (DEPs), which are down- or up-regulated between and within groups for both the intracellular and extracellular proteomes. These DEPs include proteins synthesising autoinducer-2, a sensor compound for cell-to-cell bacterial crosstalk during quorum sensing in mixed culture. Other important DEPs identified include enolase, phosphoglycerate kinase, and l-lactate dehydrogenase, which play roles in carbohydrate metabolism. Proteins associated with transcription, ATP production and transport across the membrane, DNA repair, and those with the potential to bind to the host epithelium were also identified. The post-translational modifications associated with the proteins include oxidation, deamidation, and ammonia loss. Importantly, this study revealed a significant expression of S-ribosylhomocysteine lyase (luxS) involved in synthesising autoinducer-2 that plays important roles in quorum sensing, aiding bacterial cell-to-cell crosstalk in co-cultures. The proteome of L. salivarius ZJ614 was most affected when co-cultured with L. reuteri ZJ625. In contrast, omitting some medium components from the defined medium exerted more effects on L. reuteri ZJ625 than L. salivarius ZJ614.
Collapse
Affiliation(s)
- Iliya Dauda Kwoji
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Olayinka Ayobami Aiyegoro
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, Northwest, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.
| |
Collapse
|
10
|
Grafakou A, Mosterd C, de Waal PP, van Rijswijck IMH, van Peij NNME, Mahony J, van Sinderen D. Functional and practical insights into three lactococcal antiphage systems. Appl Environ Microbiol 2024; 90:e0112024. [PMID: 39136492 PMCID: PMC11409693 DOI: 10.1128/aem.01120-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/21/2024] [Indexed: 09/19/2024] Open
Abstract
The persistent challenge of phages in dairy fermentations requires the development of starter cultures with enhanced phage resistance. Recently, three plasmid-encoded lactococcal antiphage systems, named Rhea, Aristaios, and Kamadhenu, were discovered. These systems were found to confer high levels of resistance against various Skunavirus members. In the present study, their effectiveness against phage infection was confirmed in milk-based medium, thus validating their potential to ensure reliable dairy fermentations. We furthermore demonstrated that Rhea and Kamadhenu do not directly hinder phage genome replication, transcription, or associated translation. Conversely, Aristaios was found to interfere with phage transcription. Two of the antiphage systems are encoded on pMRC01-like conjugative plasmids, and the Kamadhenu-encoding plasmid was successfully transferred by conjugation to three lactococcal strains, each of which acquired substantially enhanced phage resistance against Skunavirus members. Such advances in our knowledge of the lactococcal phage resistome and the possibility of mobilizing these protective functions to bolster phage protection in sensitive strains provide practical solutions to the ongoing phage problem in industrial food fermentations.IMPORTANCEIn the current study, we characterized and evaluated the mechanistic diversity of three recently described, plasmid-encoded lactococcal antiphage systems. These systems were found to confer high resistance against many members of the most prevalent and problematic lactococcal phage genus, rendering them of particular interest to the dairy industry, where persistent phage challenge requires the development of starter cultures with enhanced phage resistance characteristics. Our acquired knowledge highlights that enhanced understanding of lactococcal phage resistance systems and their encoding plasmids can provide rational and effective solutions to the enduring issue of phage infections in dairy fermentation facilities.
Collapse
Affiliation(s)
- Andriana Grafakou
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Cas Mosterd
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul P. de Waal
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Delft, the Netherlands
| | | | - Noël N. M. E. van Peij
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Delft, the Netherlands
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Grafakou A, Mosterd C, Beck MH, Kelleher P, McDonnell B, de Waal PP, van Rijswijck IMH, van Peij NNME, Cambillau C, Mahony J, van Sinderen D. Discovery of antiphage systems in the lactococcal plasmidome. Nucleic Acids Res 2024; 52:9760-9776. [PMID: 39119896 PMCID: PMC11381338 DOI: 10.1093/nar/gkae671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Until the late 2000s, lactococci substantially contributed to the discovery of various plasmid-borne phage defence systems, rendering these bacteria an excellent antiphage discovery resource. Recently, there has been a resurgence of interest in identifying novel antiphage systems in lactic acid bacteria owing to recent reports of so-called 'defence islands' in diverse bacterial genera. Here, 321 plasmid sequences from 53 lactococcal strains were scrutinized for the presence of antiphage systems. Systematic evaluation of 198 candidates facilitated the discovery of seven not previously described antiphage systems, as well as five systems, of which homologues had been described in other bacteria. All described systems confer resistance against the most prevalent lactococcal phages, and act post phage DNA injection, while all except one behave like abortive infection systems. Structure and domain predictions provided insights into their mechanism of action and allow grouping of several genetically distinct systems. Although rare within our plasmid collection, homologues of the seven novel systems appear to be widespread among bacteria. This study highlights plasmids as a rich repository of as yet undiscovered antiphage systems.
Collapse
Affiliation(s)
- Andriana Grafakou
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Cas Mosterd
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Matthias H Beck
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Philip Kelleher
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Brian McDonnell
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Paul P de Waal
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Delft 2613 AX, The Netherlands
| | - Irma M H van Rijswijck
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Delft 2613 AX, The Netherlands
| | - Noël N M E van Peij
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Delft 2613 AX, The Netherlands
| | - Christian Cambillau
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IMM), Aix-Marseille Université - CNRS, UMR 7255 Marseille, France
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
12
|
Bisht V, Ghosh T, Kumar P, Sharma R, Chamoli S, Patodia H, Mohanty AK, Navani NK. Mitigation of acrylamide in fried food systems using a combination of zein-pectin hydrocolloid complex and a food-grade l-asparaginase. Int J Biol Macromol 2024; 276:133745. [PMID: 38986991 DOI: 10.1016/j.ijbiomac.2024.133745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Acrylamide, a Maillard reaction product, formed in fried food poses a serious concern to food safety due to its neurotoxic and carcinogenic nature. A "Green Approach" using L-Asparaginase enzyme from GRAS-status bacteria synergized with hydrocolloid protective coating could be effective in inhibiting acrylamide formation. To fill this void, the present study reports a new variant of type-II L-asparaginase (AsnLb) from Levilactobacillus brevis NKN55, a food-grade bacterium isolated using a unique metabolite profiling approach. The recombinant AsnLb enzyme was characterized to study acrylamide inhibition ability and showed excellent specificity towards L-asparagine (157.2 U/mg) with Km, Vmax of 0.833 mM, 4.12 mM/min respectively. Pretreatment of potato slices with AsnLb (60 IU/mL) followed by zein-pectin nanocomplex led to >70% reduction of acrylamide formation suggesting synergistic effect of this dual component system. The developed strategy can be employed as a sustainable treatment method by food industries for alleviating acrylamide formation and associated health hazard in fried foods.
Collapse
Affiliation(s)
- Vishakha Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India.
| | - Tamoghna Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Piyush Kumar
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
| | - Rekha Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shivangi Chamoli
- Department of Life sciences, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Harsh Patodia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ashok Kumar Mohanty
- ICAR-Central Institute for Research on Cattle (ICAR-CIRC), Meerut Cantt, Uttar Pradesh, India.
| | - Naveen Kumar Navani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India.
| |
Collapse
|
13
|
Gardan R, Honvo-Houeto E, Mézange C, Maillot NJ, Balvay A, Rabot S, Bermúdez-Humarán LG, Langella P, Monnet V, Juillard V. Use of Rgg quorum-sensing machinery to create an innovative recombinant protein expression system in Streptococcus thermophilus. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001487. [PMID: 39302176 PMCID: PMC11414475 DOI: 10.1099/mic.0.001487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/01/2024] [Indexed: 09/22/2024]
Abstract
Streptococcus thermophilus holds promise as a chassis for producing and secreting heterologous proteins. Used for thousands of years to ferment milk, this species has generally recognized as safe (GRAS) status in the USA and qualified presumption of safety (QPS) status in Europe. In addition, it can be easily genetically modified thanks to its natural competence, and it secretes very few endogenous proteins, which means less downstream processing is needed to purify target proteins, reducing costs. Extracellular degradation of heterologous proteins can be eliminated by introducing mutations that inactivate the genes encoding the bacterium's three major surface proteases. Here, we constructed an inducible expression system that utilizes a peptide pheromone (SHP1358) and a transcriptional regulator (Rgg1358) involved in quorum-sensing regulation. We explored the functionality of a complete version of the system, in which the inducer is produced by the bacterium itself, by synthesizing a luciferase reporter protein. This complete version was assessed with bacteria grown in a chemically defined medium but also in vivo, in the faeces of germ-free mice. We also tested an incomplete version, in which the inducer had to be added to the culture medium, by synthesizing luciferase and a secreted form of elafin, a human protein with therapeutic properties. Our results show that, in our system, protein production can be modulated by employing different concentrations of the SHP1358 inducer or other SHPs with closed amino acid sequences. We also constructed a genetic background in which all system leakiness was eliminated. In conclusion, with this new inducible expression system, we have added to the set of tools currently used to produce secreted proteins in S. thermophilus, whose myriad applications include the delivery of therapeutic peptides or proteins.
Collapse
Affiliation(s)
- Rozenn Gardan
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Edith Honvo-Houeto
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Christine Mézange
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Aurélie Balvay
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sylvie Rabot
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Philippe Langella
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Véronique Monnet
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Vincent Juillard
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
14
|
da Silva Santos D, Freitas NSA, de Morais MA, Mendonça AA. Liquorilactobacillus: A Context of the Evolutionary History and Metabolic Adaptation of a Bacterial Genus from Fermentation Liquid Environments. J Mol Evol 2024:10.1007/s00239-024-10189-6. [PMID: 39017924 DOI: 10.1007/s00239-024-10189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
In the present work, we carried out a comparative genomic analysis to trace the evolutionary trajectory of the bacterial species that make up the Liquorilactobacillus genus, from the identification of genes and speciation/adaptation mechanisms in their unique characteristics to the identification of the pattern grouping these species. We present phylogenetic relationships between Liquorilactobacillus and related taxa such as Bacillus, basal lactobacilli and Ligilactobacillus, highlighting evolutionary divergences and lifestyle transitions across different taxa. The species of this genus share a core genome of 1023 genes, distributed in all COGs, which made it possible to characterize it as Liquorilactobacillus sensu lato: few amino acid auxotrophy, low genes number for resistance to antibiotics and general and specific cellular reprogramming mechanisms for environmental responses. These species were divided into four clades, with diversity being enhanced mainly by the diversity of genes involved in sugar metabolism. Clade 1 presented lower (< 70%) average amino acid identity with the other clades, with exclusive or absent genes, and greater distance in the genome compared to clades 2, 3 and 4. The data pointed to an ancestor of clades 2, 3 and 4 as being the origin of the genus Ligilactobacillus, while the species of clade 1 being closer to the ancestral Bacillus. All these traits indicated that the species of clade 1 could be soon separated in a distinct genus.
Collapse
Affiliation(s)
- Dayane da Silva Santos
- Department of Genetics, Federal University of Pernambuco, Av. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | | | - Marcos Antonio de Morais
- Department of Genetics, Federal University of Pernambuco, Av. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil.
| | - Allyson Andrade Mendonça
- Department of Genetics, Federal University of Pernambuco, Av. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
15
|
Kowalska G, Rosicka-Kaczmarek J, Miśkiewicz K, Nowak A, Motyl I, Oracz J, Brzozowska A, Grzegorczyk A, Świniarska Z. Influence of Novel Microcapsulates of Bee Products on Gut Microbiota Modulation and Their Prebiotic and Pro-Adhesive Properties. Molecules 2024; 29:2751. [PMID: 38930817 PMCID: PMC11206356 DOI: 10.3390/molecules29122751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
With the aim to obtain controlled-release systems and to preserve the antioxidant, immunomodulatory, and prebiotic activity of the bioactive compounds, microencapsulation of both honeydew honey and royal jelly into biopolymeric microparticles based on rye bran heteropolysaccharides (HPS) was successfully performed. Honeydew honey and royal jelly microcapsules were prepared by spray-drying method and were characterized in terms of morphology and biological properties. Due to the resistance of the obtained encapsulates to the acidic pH in the stomach and digestive enzymes, the microcapsules showed prebiotic properties positively influencing both the growth, retardation of the dying phase, and the pro-adhesive properties of probiotic bacteria, i.e., Bifidobacterium spp. and lactic acid bacteria. Moreover, as a result of fermentation of the microcapsules of bee products in the lumen of the large intestine, an increased synthesis of short-chain fatty acids, i.e., butyric acid, was found on average by 39.2% in relation to the SCFA concentrations obtained as a result of fermentation of native bee products, thus opening new perspectives for the exploitation of honeydew honey and royal jelly loaded microcapsules for nutraceutical applications.
Collapse
Affiliation(s)
- Gabriela Kowalska
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22 Street, 90-537 Lodz, Poland; (K.M.); (J.O.); (A.B.); (A.G.); (Z.Ś.)
| | - Justyna Rosicka-Kaczmarek
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22 Street, 90-537 Lodz, Poland; (K.M.); (J.O.); (A.B.); (A.G.); (Z.Ś.)
| | - Karolina Miśkiewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22 Street, 90-537 Lodz, Poland; (K.M.); (J.O.); (A.B.); (A.G.); (Z.Ś.)
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173 Street, 90-530 Lodz, Poland; (A.N.); (I.M.)
| | - Ilona Motyl
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173 Street, 90-530 Lodz, Poland; (A.N.); (I.M.)
| | - Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22 Street, 90-537 Lodz, Poland; (K.M.); (J.O.); (A.B.); (A.G.); (Z.Ś.)
| | - Anna Brzozowska
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22 Street, 90-537 Lodz, Poland; (K.M.); (J.O.); (A.B.); (A.G.); (Z.Ś.)
| | - Aleksandra Grzegorczyk
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22 Street, 90-537 Lodz, Poland; (K.M.); (J.O.); (A.B.); (A.G.); (Z.Ś.)
| | - Zuzanna Świniarska
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22 Street, 90-537 Lodz, Poland; (K.M.); (J.O.); (A.B.); (A.G.); (Z.Ś.)
| |
Collapse
|
16
|
Derunets AS, Selimzyanova AI, Rykov SV, Kuznetsov AE, Berezina OV. Strategies to enhance stress tolerance in lactic acid bacteria across diverse stress conditions. World J Microbiol Biotechnol 2024; 40:126. [PMID: 38446232 DOI: 10.1007/s11274-024-03905-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/21/2024] [Indexed: 03/07/2024]
Abstract
Lactic acid bacteria (LAB) hold significant importance in diverse fields, including food technology, industrial biotechnology, and medicine. As basic components of starter cultures, probiotics, immunomodulators, and live vaccines, LAB cells resist a variety of stressors, including temperature fluctuations, osmotic and pH shocks, exposure to oxidants and ultraviolet radiation, substrate deprivation, mechanical damage, and more. To stay alive in these adversities, LAB employ a wide range of stress response strategies supported by various mechanisms, for example rearrangement of metabolism, expression of specialized biomolecules (e.g., chaperones and antioxidants), exopolysaccharide synthesis, and complex repair and regulatory systems. LAB can coordinate responses to various stressors using global regulators. In this review, we summarize current knowledge about stress response strategies used by LAB and consider mechanisms of response to specific stressful factors, supported by illustrative examples. In addition, we discuss technical approaches to increase the stress resistance of LAB, including pre-adaptation, genetic modification of strains, and adjustment of cultivation conditions. A critical analysis of the recent findings in this field augments comprehension of stress tolerance mechanisms in LAB, paving the way for prospective research directions with implications in fundamental and practical areas.
Collapse
Affiliation(s)
- A S Derunets
- National Research Center Kurchatov Institute, Moscow, Russia.
| | | | - S V Rykov
- National Research Center Kurchatov Institute, Moscow, Russia
| | - A E Kuznetsov
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - O V Berezina
- National Research Center Kurchatov Institute, Moscow, Russia
| |
Collapse
|
17
|
Cruz F, Capela J, Ferreira EC, Rocha M, Dias O. BioISO: An Objective-Oriented Application for Assisting the Curation of Genome-Scale Metabolic Models. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:215-226. [PMID: 38170658 DOI: 10.1109/tcbb.2023.3339972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
As the reconstruction of Genome-Scale Metabolic Models (GEMs) becomes standard practice in systems biology, the number of organisms having at least one metabolic model is peaking at an unprecedented scale. The automation of laborious tasks, such as gap-finding and gap-filling, allowed the development of GEMs for poorly described organisms. However, the quality of these models can be compromised by the automation of several steps, which may lead to erroneous phenotype simulations. Biological networks constraint-based In Silico Optimisation (BioISO) is a computational tool aimed at accelerating the reconstruction of GEMs. This tool facilitates manual curation steps by reducing the large search spaces often met when debugging in silico biological models. BioISO uses a recursive relation-like algorithm and Flux Balance Analysis (FBA) to evaluate and guide debugging of in silico phenotype simulations. The potential of BioISO to guide the debugging of model reconstructions was showcased and compared with the results of two other state-of-the-art gap-filling tools (Meneco and fastGapFill). In this assessment, BioISO is better suited to reducing the search space for errors and gaps in metabolic networks by identifying smaller ratios of dead-end metabolites. Furthermore, BioISO was used as Meneco's gap-finding algorithm to reduce the number of proposed solutions for filling the gaps.
Collapse
|
18
|
Ghatani K, Prasad Sha S, Thapa S, Chakraborty P, Sarkar S. Bifidobacterial Genome Editing for Potential Probiotic Development. GENOME EDITING IN BACTERIA (PART 1) 2024:62-87. [DOI: 10.2174/9789815165678124010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Genome editing is a promising tool in the era of modern biotechnology that
can alter the DNA of many organisms. It is now extensively used in various industries
to obtain the well-desired and enhanced characteristics to improve the yield and
nutritional quality of products. The positive health attributes of Bifidobacteria, such as
prevention of diarrhoea, reduction of ulcerative colitis, prevention of necrotizing
enterocolitis, etc., have shown promising reports in many clinical trials. The potential
use of Bifidobacteria as starter or adjunct cultures has become popular. Currently,
Bifidobacterium bifidum, B. adolescentis, B. breve, B. infantis, B. longum, and B. lactis
find a significant role in the development of probiotic fermented dairy products.
However, Bifidobacteria, one of the first colonizers of the human GI tract and an
indicator of the health status of an individual, has opened new avenues for research
and, thereby, its application. Besides this, the GRAS/QPS (Generally Regarded as
Safe/Qualified Presumption of Safety) status of Bifidobacteria makes it safe for use.
They belong to the subgroup (which are the fermentative types that are primarily found
in the natural cavities of humans and animals) of Actinomycetes. B. lactis has been used
industrially in fermented foods, such as yogurt, cheese, beverages, sausages, infant
formulas, and cereals. In the present book chapter, the authors tried to explore the
origin, health attributes, and various genetic engineering tools for genome editing of
Bifidobacteria for the development of starter culture for dairy and non-dairy industrial
applications as well as probiotics.
Collapse
Affiliation(s)
- Kriti Ghatani
- Department of Food Technology, University of North Bengal, Raja Rammohunpur, Darjeeling,
West Bengal, 734013, India
| | - Shankar Prasad Sha
- Department of Botany, Food Microbiology Lab, Kurseong College, University of North Bengal,
Dow Hill Road, Kurseong, Darjeeling 7342003, West Bengal, India
| | - Subarna Thapa
- Department of Food Technology, University of North Bengal, Raja Rammohunpur, Darjeeling,
West Bengal, 734013, India
| | - Priya Chakraborty
- Department of Food Technology, University of North Bengal, Raja Rammohunpur, Darjeeling,
West Bengal, 734013, India
| | - Sagnik Sarkar
- Department of Food Technology, University of North Bengal, Raja Rammohunpur, Darjeeling,
West Bengal, 734013, India
| |
Collapse
|
19
|
Rajendran S, Silcock P, Bremer P. Volatile Organic Compounds (VOCs) Produced by Levilactobacillus brevis WLP672 Fermentation in Defined Media Supplemented with Different Amino Acids. Molecules 2024; 29:753. [PMID: 38398505 PMCID: PMC10892824 DOI: 10.3390/molecules29040753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Fermentation by lactic acid bacteria (LAB) is a promising approach to meet the increasing demand for meat or dairy plant-based analogues with realistic flavours. However, a detailed understanding of the impact of the substrate, fermentation conditions, and bacterial strains on the volatile organic compounds (VOCs) produced during fermentation is lacking. As a first step, the current study used a defined medium (DM) supplemented with the amino acids L-leucine (Leu), L-isoleucine (Ile), L-phenylalanine (Phe), L-threonine (Thr), L-methionine (Met), or L-glutamic acid (Glu) separately or combined to determine their impact on the VOCs produced by Levilactobacillus brevis WLP672 (LB672). VOCs were measured using headspace solid-phase microextraction (HS-SPME) gas chromatography-mass spectrometry (GC-MS). VOCs associated with the specific amino acids added included: benzaldehyde, phenylethyl alcohol, and benzyl alcohol with added Phe; methanethiol, methional, and dimethyl disulphide with added Met; 3-methyl butanol with added Leu; and 2-methyl butanol with added Ile. This research demonstrated that fermentation by LB672 of a DM supplemented with different amino acids separately or combined resulted in the formation of a range of dairy- and meat-related VOCs and provides information on how plant-based fermentations could be manipulated to generate desirable flavours.
Collapse
Affiliation(s)
- Sarathadevi Rajendran
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
- Department of Agricultural Chemistry, Faculty of Agriculture, University of Jaffna, Kilinochchi 44000, Sri Lanka
| | - Patrick Silcock
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Phil Bremer
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
20
|
Wu Y, Zhang X, Liu X, Li Y, Han D, Pi Y, Whitmore MA, Lu X, Zhang G, Zheng J, Wang J. Strain specificity of lactobacilli with promoted colonization by galactooligosaccharides administration in protecting intestinal barriers during Salmonella infection. J Adv Res 2024; 56:1-14. [PMID: 36894120 PMCID: PMC10834803 DOI: 10.1016/j.jare.2023.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
INTRODUCTION Galactooligosaccharides (GOS) are lactogenic prebiotics that exert health benefits by stimulating the growth of different Lactobacillus strains in the gastrointestinal (GI) tract. OBJECTIVES This study aimed to investigate the mechanism of action of different GOS-enriched lactobacilli in intestinal health. METHODS Piglets and mice were supplemented with GOS to identify specific enrichment of Lactobacillus. The protective effects of individual GOS-enriched lactobacilli were investigated in Salmonella-infected mice. Macrophage depletion and transcriptome analysis were further performed to assess the involvement of macrophages and the underlying mechanisms of individual lactobacilli. An in vitro cell co-culture system was also used to evaluate the anti-adhesive and anti-invasive activities of lactobacilli against Salmonella in epithelial cells. RESULTS GOS markedly increased the relative abundance of three lactobacilli including L. delbrueckii, L. johnsonii, and L. reuteri in both piglets and mice. Supplementation with GOS further alleviated Salmonella infection in mice. L. delbrueckii (ATCC®BAA 365™), but not L. johnsonii or L. reuteri, enhanced propionate production in the intestinal tract and ameliorated Salmonella-induced intestinal inflammation and barrier dysfunction by suppressing the JAK2-STAT3 signaling and M1 macrophage polarization. L. johnsonii (BNCC 186110), on the other hand, inhibited Salmonella adhesion and invasion of epithelial cells through competitive exclusion. However, L. reuteri (BNCC 186135) failed to protect mice against Salmonella infection. CONCLUSION GOS-enriched lactobacilli show a differential role in protecting against Salmonella-induced intestinal barrier dysfunction and inflammation. Our results provide novel insights into the mechanism of action of GOS and individual Lactobacillus strains in the control and prevention of intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yu Pi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Melanie A Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
21
|
Tang H, Zhong Z, Hou J, You L, Zhao Z, Kwok LY, Bilige M. Metagenomic analysis revealed the potential of lactic acid bacteria in improving natural saline-alkali land. Int Microbiol 2024; 27:311-324. [PMID: 37386210 DOI: 10.1007/s10123-023-00388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023]
Abstract
Management and improving saline-alkali land is necessary for sustainable agricultural development. We conducted a field experiment to investigate the effects of spraying lactic acid bacteria (LAB) on the cucumber and tomato plant soils. Three treatments were designed, including spraying of water, viable or sterilized LAB preparations to the soils of cucumber and tomato plants every 20 days. Spraying sterilized or viable LAB could reduce the soil pH, with a more obvious effect by using viable LAB, particularly after multiple applications. Metagenomic sequencing revealed that the soil microbiota in LAB-treated groups had higher alpha-diversity and more nitrogen-fixing bacteria compared with the water-treated groups. Both viable and sterilized LAB, but not water application, increased the complexity of the soil microbiota interactive network. The LAB-treated subgroups were enriched in some KEGG pathways compared with water or sterilized LAB subgroups, such as environmental information processing-related pathways in cucumber plant; and metabolism-related pathways in tomato plant, respectively. Redundancy analysis revealed association between some soil physico-chemical parameters (namely soil pH and total nitrogen) and bacterial biomarkers (namely Rhodocyclaceae, Pseudomonadaceae, Gemmatimonadaceae, and Nitrosomonadales). Our study demonstrated that LAB is a suitable strategy for decreasing soil pH and improving the microbial communities in saline-alkali land.
Collapse
Affiliation(s)
- Hai Tang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
- Key Laboratory of Dairy Products Processing, Scientific Observation and Experiment Station of Utilization of Agricultural Microbial Resources in Northeast Region, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
- Key Laboratory of Dairy Products Processing, Scientific Observation and Experiment Station of Utilization of Agricultural Microbial Resources in Northeast Region, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Jingqing Hou
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
- Key Laboratory of Dairy Products Processing, Scientific Observation and Experiment Station of Utilization of Agricultural Microbial Resources in Northeast Region, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Lijun You
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
- Key Laboratory of Dairy Products Processing, Scientific Observation and Experiment Station of Utilization of Agricultural Microbial Resources in Northeast Region, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Zhixin Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
- Key Laboratory of Dairy Products Processing, Scientific Observation and Experiment Station of Utilization of Agricultural Microbial Resources in Northeast Region, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
- Key Laboratory of Dairy Products Processing, Scientific Observation and Experiment Station of Utilization of Agricultural Microbial Resources in Northeast Region, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Menghe Bilige
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.
- Key Laboratory of Dairy Products Processing, Scientific Observation and Experiment Station of Utilization of Agricultural Microbial Resources in Northeast Region, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.
| |
Collapse
|
22
|
Christensen LF, Laforce IN, Wolkers-Rooijackers JCM, Mortensen MS, Smid EJ, Hansen EB. Lactococcus cell envelope proteases enable lactococcal growth in minimal growth media supplemented with high molecular weight proteins of plant and animal origin. FEMS Microbiol Lett 2024; 371:fnae019. [PMID: 38479791 DOI: 10.1093/femsle/fnae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/19/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Lactic acid bacteria (LAB) have evolved into fastidious microorganisms that require amino acids from environmental sources. Some LAB have cell envelope proteases (CEPs) that drive the proteolysis of high molecular weight proteins like casein in milk. CEP activity is typically studied using casein as the predominant substrate, even though CEPs can hydrolyze other protein sources. Plant protein hydrolysis by LAB has rarely been connected to the activity of specific CEPs. This study aims to show the activity of individual CEPs using LAB growth in a minimal growth medium supplemented with high molecular weight casein or potato proteins. Using Lactococcus cremoris MG1363 as isogenic background to express CEPs, we demonstrate that CEP activity is directly related to growth in the protein-supplemented minimal growth media. Proteolysis is analyzed based on the amino acid release, allowing a comparison of CEP activities and analysis of amino acid utilization by L. cremoris MG1363. This approach provides a basis to analyze CEP activity on plant-based protein substrates as casein alternatives and to compare activity of CEP homologs.
Collapse
Affiliation(s)
- Lise Friis Christensen
- National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| | - Ida Nynne Laforce
- National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| | | | - Martin Steen Mortensen
- National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| | - Eddy J Smid
- Food Microbiology, Wageningen University & Research, PO Box 17, 6700AA Wageningen, The Netherlands
| | - Egon Bech Hansen
- National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
23
|
Stevens ET, Van Beeck W, Blackburn B, Tejedor-Sanz S, Rasmussen ARM, Carter ME, Mevers E, Ajo-Franklin CM, Marco ML. Lactiplantibacillus plantarum uses ecologically relevant, exogenous quinones for extracellular electron transfer. mBio 2023; 14:e0223423. [PMID: 37982640 PMCID: PMC10746273 DOI: 10.1128/mbio.02234-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE While quinones are essential for respiratory microorganisms, their importance for microbes that rely on fermentation metabolism is not understood. This gap in knowledge hinders our understanding of anaerobic microbial habitats, such in mammalian digestive tracts and fermented foods. We show that Lactiplantibacillus plantarum, a model fermentative lactic acid bacteria species abundant in human, animal, and insect microbiomes and fermented foods, uses multiple exogenous, environmental quinones as electron shuttles for a hybrid metabolism involving EET. Interestingly, quinones both stimulate this metabolism as well as cause oxidative stress when extracellular electron acceptors are absent. We also found that quinone-producing, lactic acid bacteria species commonly enriched together with L. plantarum in food fermentations accelerate L. plantarum growth and medium acidification through a mainly quinone- and EET-dependent mechanism. Thus, our work provides evidence of quinone cross-feeding as a key ecological feature of anaerobic microbial habitats.
Collapse
Affiliation(s)
- Eric T. Stevens
- Department of Food Science and Technology, University of California‐Davis, Davis, California, USA
| | - Wannes Van Beeck
- Department of Food Science and Technology, University of California‐Davis, Davis, California, USA
| | - Benjamin Blackburn
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Sara Tejedor-Sanz
- Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Alycia R. M. Rasmussen
- Department of Food Science and Technology, University of California‐Davis, Davis, California, USA
| | - Mackenzie E. Carter
- Department of Food Science and Technology, University of California‐Davis, Davis, California, USA
| | - Emily Mevers
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Caroline M. Ajo-Franklin
- Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Biosciences, Rice University, Houston, USA
| | - Maria L. Marco
- Department of Food Science and Technology, University of California‐Davis, Davis, California, USA
| |
Collapse
|
24
|
Liu K, Yang P, Zhang X, Zhang D, Wu L, Zhang L, Zhang H, Li G, Li R, Rong L. Metabolic cross-feeding enhances branched-chain aldehydes production in a synthetic community of fermented sausages. Int J Food Microbiol 2023; 407:110373. [PMID: 37696140 DOI: 10.1016/j.ijfoodmicro.2023.110373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/30/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Microbial interactions play an important role in regulating the metabolic function of fermented food communities, especially the production of key flavor compounds. However, little is known about specific molecular mechanisms that regulate the production of key flavor compounds through microbial interactions. Here, we designed a synthetic consortium containing Debaryomyces hansenii D1, Staphylococcus xylosus S1, and Pediococcus pentosaceus PP1 to explore the mechanism of the microbial interactions underlying the branched-chain aldehydes production. In this consortium, firstly, D. hansenii secreted amino acids that promoted the growth of P. pentosaceus and S. xylosus. Specifically, D. hansenii D1 secreted alanine, aspartate, glutamate, glutamine, glycine, phenylalanine, serine, and threonine, which were the primary nutrients for bacterial growth. P. pentosaceus PP1 utilized all these eight amino acids through cross-feeding, whereas S. xylosus S1 did not utilize aspartate and serine. Furthermore, D. hansenii D1 promoted the production of branched-chain aldehydes from S. xylosus and P. pentosaceus through cross-feeding of α-keto acids (intermediate metabolites). Thus, the accumulation of 2-methyl-butanal was promoted in all co-culture. Overall, this work revealed the mechanism by which D. hansenii and bacteria cross-feed to produce branched-chain aldehydes in fermented sausages.
Collapse
Affiliation(s)
- Kaihao Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Peng Yang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xudong Zhang
- Comprehensive Technology Service Center of Jinzhou Customs, Jinzhou, Liaoning 121013, China
| | - Di Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Liu Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Lan Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Huan Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ruren Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Liangyan Rong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
25
|
Ngo C, Suwimonteerabutr J, Apiwatsiri P, Saenkankam I, Prapasarakul N, Morrell JM, Tummaruk P. Boar Seminal Microbiota in Relation to Sperm Quality under Tropical Environments. Animals (Basel) 2023; 13:3837. [PMID: 38136874 PMCID: PMC10740666 DOI: 10.3390/ani13243837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The present study was carried out to determine the seminal microbiota of boars and their correlation with sperm quality. A total of 17 ejaculates were collected from 17 Duroc boars and were classified according to sperm quality into two groups: low-quality (n = 8) and high-quality (n = 9). Each ejaculate was subjected to (i) semen evaluation, (ii) bacterial culture and MALDI-TOF identification, and (iii) 16S rRNA gene sequencing and bioinformatic analyses. No difference in the total bacterial count, alpha diversity, and beta diversity between the high-quality group and the low-quality group was detected (p > 0.05). While Globicatella sanguinis was negatively correlated with sperm quality (p < 0.05), Delftia acidovorans was positively correlated with sperm quality (p < 0.05). Lactobacillales (25.2%; LB) and Enterobacterales (10.3%; EB) were the most dominant bacteria and negatively correlated: EB = 507.3 - 0.5 × LB, R2 = 0.24, p < 0.001. Moreover, the abundance of Escherichia-shigella was negatively correlated with LB (r = -0.754, p < 0.001) and positively correlated with Proteus (r = 0.533, p < 0.05). Alysiella was positively correlated with Lactobacillus (r = 0.485, p < 0.05), Prevotella (r = 0.622, p < 0.01), and Staphylococcus (r = 0.489, p < 0.05). In conclusion, seminal microbiota is significantly associated with boar semen qualities. The distributions of the most dominant bacterial genera, the differences in the abundance of small subset microbes, and their correlation appear to have far more impact than the overall seminal bacterial content (e.g., total bacterial count, alpha diversity, and beta diversity) on sperm quality.
Collapse
Affiliation(s)
- CongBang Ngo
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.N.); (J.S.)
| | - Junpen Suwimonteerabutr
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.N.); (J.S.)
- Center of Excellent in Swine Reproduction, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prasert Apiwatsiri
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (P.A.); (I.S.); (N.P.)
| | - Imporn Saenkankam
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (P.A.); (I.S.); (N.P.)
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (P.A.); (I.S.); (N.P.)
- Center of Excellence in Diagnosis and Monitoring for Animal Pathogens, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jane M. Morrell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden;
| | - Padet Tummaruk
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.N.); (J.S.)
- Center of Excellent in Swine Reproduction, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
26
|
Itani K, Marcussen C, Rocha SDC, Kathiresan P, Mydland LT, Press CM, Xie Z, Tauson AH, Øverland M. Effect of Cyberlindnera jadinii yeast on growth performance, nutrient digestibility, and gut health of broiler chickens from 1 to 34 d of age. Poult Sci 2023; 102:103127. [PMID: 37837676 PMCID: PMC10585334 DOI: 10.1016/j.psj.2023.103127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/16/2023] Open
Abstract
The effect of dietary graded levels of Cyberlindnera jadinii yeast (C. jadinii) on growth performance, nutrient digestibility, and gut health of broilers was evaluated from 1 to 34 d of age. A total of 360 male broiler chicks were randomly allocated to 1 of 4 dietary treatments (6 replicate pens each) consisting of a wheat-soybean meal-based pelleted diet (Control or CJ0), and 3 diets in which 10% (CJ10), 20% (CJ20), and 30% (CJ30) of the crude protein were supplied by C. jadinii, by gradually replacing protein-rich ingredients. Body weight and feed intake were measured at d 1, 11, 22, and 32. Pellet temperature, durability, and hardness increased linearly (P < 0.05) with C. jadinii inclusion, with highest (P < 0.05) values for CJ30. Up until d 22, feed conversion ratio (FCR) was similar between treatments (P = 0.169). Overall, increasing C. jadinii inclusion linearly increased (P = 0.047) feed intake but had no effect on weight gain or mortality. FCR increased (P < 0.05) linearly with increasing C. jadinii inclusion but only birds fed CJ30 had a significantly poorer FCR compared to the Control. Ileal digestibility was not affected by C. jadinii inclusion, however, there was a significant linear decrease in crude protein and phosphorus, and a tendency for a decrease in fat digestibility. Apparent metabolizable energy (AME) decreased (P < 0.001) quadratically with increasing C. jadinii and was significantly lower in CJ30 compared to the Control. Ileal concentrations of volatile fatty acids (VFAs) were not affected by C. jadinii inclusion, but butyric acid and total VFAs were linearly and quadratically increased and were significantly higher in cecal digesta of birds fed CJ20 and CJ30. Increasing C. jadinii inclusion was associated with an increase (P < 0.05) in the relative abundance of lactobacillus in the ileum and cecum. In conclusion, C. jadinii yeast can supply up to 20% of the total dietary protein without negatively affecting performance, digestibility, or gut health of broilers. The potential confounding role of feed processing and C. jadinii cell wall components on broiler performance is discussed.
Collapse
Affiliation(s)
- Khaled Itani
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - Caroline Marcussen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gronnegärdsvej 3, 1870 Frederiksberg C, Denmark; Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlagevej 16, 1870 Frederiksberg C, Denmark
| | - Sérgio D C Rocha
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - Purushothaman Kathiresan
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - Liv Torunn Mydland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - Charles McLean Press
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - Zhuqing Xie
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26,1958 Frederiksberg C, Denmark
| | - Anne-Helene Tauson
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gronnegärdsvej 3, 1870 Frederiksberg C, Denmark
| | - Margareth Øverland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway.
| |
Collapse
|
27
|
Yang S, Bai M, Kwok LY, Zhong Z, Sun Z. The intricate symbiotic relationship between lactic acid bacterial starters in the milk fermentation ecosystem. Crit Rev Food Sci Nutr 2023; 65:728-745. [PMID: 37983125 DOI: 10.1080/10408398.2023.2280706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Fermentation is one of the most effective methods of food preservation. Since ancient times, food has been fermented using lactic acid bacteria (LAB). Fermented milk is a very intricate fermentation ecosystem, and the microbial metabolism of fermented milk largely determines its metabolic properties. The two most frequently used dairy starter strains are Streptococcus thermophilus (S. thermophilus) and Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus). To enhance both the culture growth rate and the flavor and quality of the fermented milk, it has long been customary to combine S. thermophilus and L. bulgaricus in milk fermentation due to their mutually beneficial and symbiotic relationship. On the one hand, the symbiotic relationship is reflected by the nutrient co-dependence of the two microbes at the metabolic level. On the other hand, more complex interaction mechanisms, such as quorum sensing between cells, are involved. This review summarizes the application of LAB in fermented dairy products and discusses the symbiotic mechanisms and interactions of milk LAB starter strains from the perspective of nutrient supply and intra- and interspecific quorum sensing. This review provides updated information and knowledge on microbial interactions in a fermented milk ecosystem.
Collapse
Affiliation(s)
- Shujuan Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Mei Bai
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| |
Collapse
|
28
|
Grizon A, Theil S, Callon C, Gerber P, Helinck S, Dugat-Bony E, Bonnarme P, Chassard C. Genetic and technological diversity of Streptococcus thermophilus isolated from the Saint-Nectaire PDO cheese-producing area. Front Microbiol 2023; 14:1245510. [PMID: 38487210 PMCID: PMC10939066 DOI: 10.3389/fmicb.2023.1245510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/03/2023] [Indexed: 03/17/2024] Open
Abstract
Streptococcus thermophilus is of major importance for cheese manufacturing to ensure rapid acidification; however, studies indicate that intensive use of commercial strains leads to the loss of typical characteristics of the products. To strengthen the link between the product and its geographical area and improve the sensory qualities of cheeses, cheese-producing protected designations of origin (PDO) are increasingly interested in the development of specific autochthonous starter cultures. The present study is therefore investigating the genetic and functional diversity of S. thermophilus strains isolated from a local cheese-producing PDO area. Putative S. thermophilus isolates were isolated and identified from milk collected in the Saint-Nectaire cheese-producing PDO area and from commercial starters. Whole genomes of isolates were sequenced, and a comparative analysis based on their pan-genome was carried out. Important functional properties were studied, including acidifying and proteolytic activities. Twenty-two isolates representative of the diversity of the geographical area and four commercial strains were selected for comparison. The resulting phylogenetic trees do not correspond to the geographical distribution of isolates. The clustering based on the pan-genome analysis indicates that isolates are divided into five distinct groups. A Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation of the accessory genes indicates that the accessory gene contents of isolates are involved in different functional categories. High variability in acidifying activities and less diversity in proteolytic activities were also observed. These results indicate that high genetic and functional variabilities of the species S. thermophilus may arise from a small (1,800 km2) geographical area and may be exploited to meet demand for use as autochthonous starters.
Collapse
Affiliation(s)
- Anna Grizon
- UMR545 Fromage, INRAE, VetAgro Sup, Université Clermont Auvergne, Aurillac, France
| | - Sebastien Theil
- UMR545 Fromage, INRAE, VetAgro Sup, Université Clermont Auvergne, Aurillac, France
| | - Cecile Callon
- UMR545 Fromage, INRAE, VetAgro Sup, Université Clermont Auvergne, Aurillac, France
| | | | - Sandra Helinck
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Eric Dugat-Bony
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Pascal Bonnarme
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Christophe Chassard
- UMR545 Fromage, INRAE, VetAgro Sup, Université Clermont Auvergne, Aurillac, France
| |
Collapse
|
29
|
You L, Lv R, Jin H, Ma T, Zhao Z, Kwok LY, Sun Z. A large-scale comparative genomics study reveals niche-driven and within-sample intra-species functional diversification in Lacticaseibacillus rhamnosus. Food Res Int 2023; 173:113446. [PMID: 37803772 DOI: 10.1016/j.foodres.2023.113446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 10/08/2023]
Abstract
Lacticaseibacillus rhamnosus (L. rhamnosus) is widely recognized as a probiotic species, and it exists in a variety of environments including host gut and dairy products. This work aimed at conducting a large-scale comparative genomics analysis of 384 L. rhamnosus genomes (257 whole-sequence or metagenomic-assembled genomes from gut-associated isolates [122 and 135 retrieved from the UHGG and NCBI databases, respectively] and 127 genomes from dairy isolates [34 from the NCBI database; 93 isolated from a cheese sample and sequenced here]). Our results showed that L. rhamnosus had a large and open pan-genome (15,253 pan-genes identified from all 384 genomes; 15,028 pan-genes if the 93 cheese-originated isolates were excluded). The core-gene phylogenetic tree constructed from the 384 L. rhamnosus genomes comprised five phylogenetic branches, with a random distribution of dairy and gut-associated isolates/genomes across the tree. No significant difference was identified in the overall profile of metabolism-related genes between dairy and gut-associated genomes; however, notably, the gut-associated strains/isolates contained more genes coding for specific metabolic pathways and carbohydrate-active enzymes, e.g., lacto-N-biosidase (EC 3.2.1.140; GT20) and lacto-N-biose phosphorylase/galacto-N-biose phosphorylase (EC 2.4.1.211; GH112). Further, we found that there was obvious intra-species diversification of the 93 cheese-originated L. rhamnosus isolates, forming three clades (Clades A, B, and C) in the reconstructed core-gene phylogenetic tree. There were numerous single nucleotide variations (over 10,000) across the three clades. Moreover, significant differences were observed in the content of metabolism-related genes across clades (p < 0.05, Adonis test), characterized by the enrichment in glycoside hydrolases in Clade C and the possession of unique metabolic pathways in each clade. These results implicated genomics/functional diversification of L. rhamnosus in a single food matrix and niche-driven adaptive evolution of isolates from dairy and host gut-associated origins. Our study shed insights into the selection of candidate strains for food industry applications.
Collapse
Affiliation(s)
- Lijun You
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Ruirui Lv
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Hao Jin
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Teng Ma
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhixin Zhao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Lai-Yu Kwok
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
30
|
Gumustop I, Ortakci F. Comparative genomics of Loigolactobacillus coryniformis with an emphasis on L. coryniformis strain FOL-19 isolated from cheese. Comput Struct Biotechnol J 2023; 21:5111-5124. [PMID: 37920811 PMCID: PMC10618118 DOI: 10.1016/j.csbj.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Loigolactobacillus coryniformis is a member of lactic acid bacteria isolated from various ecological niches. We isolated a novel L. coryniformis strain FOL-19 from artisanal Tulum cheese and performed the whole-genome sequencing for FOL-19. Then, genomic characterization of FOL-19 against ten available whole genome sequences of the same species isolated from kimchi, silage, fermented meat, air of cowshed, dairy, and pheasant chyme was performed to uncover the genetic diversity and biotechnological potential of overall species. The average genome size of 2.93 ± 0.1 Mb, GC content of 42.96% ± 0.002, number of CDS of 2905 ± 165, number of tRNA of 56 ± 10, and number of CRISPR elements of 6.55 ± 1.83 was found. Both Type I and II Cas clusters were observed in L. coryniformis. No bacteriocin biosynthesis gene clusters were found. All strains harbored at least one plasmid except KCTC 3167. All strains were predicted to carry multiple IS elements. The most common origin of the IS elements was belong to Lactiplantibacillus plantarum. Comparative genomic analysis of L. coryniformis revealed hypervariability at the strain level and the presence of CRISPR/Cas suggests that L. coryniformis holds a promising potential for being a reservoir for new CRISPR-based tools. All L. coryniformis strains except PH-1 were predicted to harbor pdu and cbi-cob-hem gene clusters encoding industrially relevant traits of reuterin and cobalamin biosynthesis, respectively. These findings put a step forward for the genomic characterization of L. coryniformis strains for biotechnological applications via genome-guided strain selection to identify industrially relevant traits.
Collapse
Affiliation(s)
- Ismail Gumustop
- BioEngineering Department, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Fatih Ortakci
- Food Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
31
|
Shan K, Yao Y, Wang J, Zhou T, Zeng X, Zhang M, Ke W, He H, Li C. Effect of probiotic Bacillus cereus DM423 on the flavor formation of fermented sausage. Food Res Int 2023; 172:113210. [PMID: 37689956 DOI: 10.1016/j.foodres.2023.113210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 09/11/2023]
Abstract
Insufficient protein and fat hydrolysis capacity of lactic acid bacteria (LAB) limit the flavor formation of fermented sausage. Bacillus is known for its substantial expression of proteases and lipases. However, its application in meat fermentation remains underexplored. In this study, a strain of probiotic Bacillus cereus (B. cereus DM423) was employed as a co-starter to improve the quality of Lactiplantibacillus plantarum (L. plantarum HH-LP56) fermented sausage. The addition of DM423 did not interfere with regular fermentation, but it significantly improved the flavor, as measured by electronic tongue and electronic nose. Further analyses using SDS-PAGE and thin-layer chromatography observed enhanced hydrolysis of protein and fat in sausages in which DM423 was involved in fermentation. GC-IMS identified DM423 mediated upregulation of various flavor compounds, including esters, ketones, furans, and branched-chain fatty acids. In addition, genomic de novo sequencing revealed that DM423 carried an abundance of genes associated with proteolysis, lipolysis, and the production of flavor substances, whereas HH-LP56 lacked these genes. Overall, this study finds that B. cereus DM423 can promote flavor formation in fermented sausages. It may illuminate a promising direction for the development of sausage co-starters from a wider microbial pool.
Collapse
Affiliation(s)
- Kai Shan
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Yuanyue Yao
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Jingyi Wang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Tianming Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Xianming Zeng
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Weixin Ke
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Hui He
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|
32
|
Hettiarachchi A, Cnockaert M, Joossens M, Laureys D, De Clippeleer J, Vereecken NJ, Michez D, Smagghe G, de Graaf DC, Vandamme P. Convivina is a specialised core gut symbiont of the invasive hornet Vespa velutina. INSECT MOLECULAR BIOLOGY 2023; 32:510-527. [PMID: 37204105 DOI: 10.1111/imb.12847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/28/2023] [Indexed: 05/20/2023]
Abstract
We provide a culturomics analysis of the cultivable bacterial communities of the crop, midgut and hindgut compartments, as well as the ovaries, of the invasive insect Vespa velutina, along with a cultivation-independent analysis of samples of the same nest through 16S rRNA amplicon sequencing. The Vespa velutina bacterial symbiont community was dominated by the genera Convivina, Fructobacillus, Lactiplantibacillus, Lactococcus, Sphingomonas and Spiroplasma. Lactococcus lactis and Lactiplantibacillus plantarum represented generalist core lactic acid bacteria (LAB) symbionts, while Convivina species and Fructobacillus fructosus represented highly specialised core LAB symbionts with strongly reduced genome sizes. Sphingomonas and Spiroplasma were the only non-LAB core symbionts but were not isolated. Convivina bacteria were particularly enriched in the hornet crop and included Convivina intestini, a species adapted towards amino acid metabolism, and Convivina praedatoris sp. nov. which was adapted towards carbohydrate metabolism.
Collapse
Affiliation(s)
- Amanda Hettiarachchi
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Marie Joossens
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - David Laureys
- Innovation Centre for Brewing & Fermentation, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jessika De Clippeleer
- Innovation Centre for Brewing & Fermentation, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Dirk C de Graaf
- Laboratory of Molecular Entomology and Bee Pathology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
33
|
Kothamasi D, Vermeylen S, Deepika S. Are ecological processes that select beneficial traits in agricultural microbes nature's intellectual property rights? Nat Biotechnol 2023; 41:1381-1384. [PMID: 37828283 DOI: 10.1038/s41587-023-01966-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Affiliation(s)
- David Kothamasi
- Strathclyde Centre for Environmental Law and Governance, University of Strathclyde, Glasgow, UK.
- Laboratory of Soil Biology and Microbial Ecology, Department of Environmental Studies, University of Delhi, Delhi, India.
| | - Saskia Vermeylen
- Strathclyde Centre for Environmental Law and Governance, University of Strathclyde, Glasgow, UK
| | - Sharma Deepika
- Laboratory of Soil Biology and Microbial Ecology, Department of Environmental Studies, University of Delhi, Delhi, India
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| |
Collapse
|
34
|
Rajput A, Chauhan SM, Mohite OS, Hyun JC, Ardalani O, Jahn LJ, Sommer MO, Palsson BO. Pangenome analysis reveals the genetic basis for taxonomic classification of the Lactobacillaceae family. Food Microbiol 2023; 115:104334. [PMID: 37567624 DOI: 10.1016/j.fm.2023.104334] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 08/13/2023]
Abstract
Lactobacillaceae represent a large family of important microbes that are foundational to the food industry. Many genome sequences of Lactobacillaceae strains are now available, enabling us to conduct a comprehensive pangenome analysis of this family. We collected 3591 high-quality genomes from public sources and found that: 1) they contained enough genomes for 26 species to perform a pangenomic analysis, 2) the normalized Heap's coefficient λ (a measure of pangenome openness) was found to have an average value of 0.27 (ranging from 0.07 to 0.37), 3) the pangenome openness was correlated with the abundance and genomic location of transposons and mobilomes, 4) the pangenome for each species was divided into core, accessory, and rare genomes, that highlight the species-specific properties (such as motility and restriction-modification systems), 5) the pangenome of Lactiplantibacillus plantarum (which contained the highest number of genomes found amongst the 26 species studied) contained nine distinct phylogroups, and 6) genome mining revealed a richness of detected biosynthetic gene clusters, with functions ranging from antimicrobial and probiotic to food preservation, but ∼93% were of unknown function. This study provides the first in-depth comparative pangenomics analysis of the Lactobacillaceae family.
Collapse
Affiliation(s)
- Akanksha Rajput
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Siddharth M Chauhan
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Omkar S Mohite
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| | - Jason C Hyun
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, USA
| | - Omid Ardalani
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| | - Leonie J Jahn
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| | - Morten Oa Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark.
| |
Collapse
|
35
|
Saizen A, Stipkovits L, Muto Y, Serventi L. Fermentation of Peanut Slurry with Lactococcus lactis Species, Leuconostoc and Propionibacterium freudenreichii subsp. globosum Enhanced Protein Digestibility. Foods 2023; 12:3447. [PMID: 37761158 PMCID: PMC10528453 DOI: 10.3390/foods12183447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Peanuts contain nutritionally relevant levels of protein, yet are poorly digestible. Fermentation is a promising technique to boost legume protein quality, but its effect on the protein quality of raw peanuts has not been investigated. This study aimed to assess the impact of fermentation on the in vitro protein digestibility and free amino acid profile of cooked peanut slurry (peanut to water ratio 1:1). Cultures used were Propionibacterium freudenreichii subsp. globosum and a commercial fresh cheese culture that contained Lactococcus lactis subsp. cremoris, lactis, lactis biovar diacetylactis, and Leuconostoc, fermenting at 38 °C for 48 h. Samples fermented with the combination of cultures showed higher protein digestibility, as well as softer texture. Significant increases were observed only in the sample fermented with the fresh cheese culture. While the fresh cheese culture improved the free amino acid profile after fermentation, the combination of the cultures decreased all free amino acid concentrations except for glutamine, alanine, and proline. The observed increases in in vitro protein digestibility and the free amino acid profile may be attributed to the proteolytic activities of the cultures.
Collapse
Affiliation(s)
| | | | | | - Luca Serventi
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
36
|
Christensen LF, Høie MH, Bang-Berthelsen CH, Marcatili P, Hansen EB. Comparative Structure Analysis of the Multi-Domain, Cell Envelope Proteases of Lactic Acid Bacteria. Microorganisms 2023; 11:2256. [PMID: 37764099 PMCID: PMC10535647 DOI: 10.3390/microorganisms11092256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Lactic acid bacteria (LAB) have an extracellular proteolytic system that includes a multi-domain, cell envelope protease (CEP) with a subtilisin homologous protease domain. These CEPs have different proteolytic activities despite having similar protein sequences. Structural characterization has previously been limited to CEP homologs of dairy- and human-derived LAB strains, excluding CEPs of plant-derived LAB strains. CEP structures are a challenge to determine experimentally due to their large size and attachment to the cell envelope. This study aims to clarify the prevalence and structural diversity of CEPs by using the structure prediction software AlphaFold 2. Domain boundaries are clarified based on a comparative analysis of 21 three-dimensional structures, revealing novel domain architectures of CEP homologs that are not necessarily restricted to specific LAB species or ecological niches. The C-terminal flanking region of the protease domain is divided into fibronectin type-III-like domains with various structural traits. The analysis also emphasizes the existence of two distinct domains for cell envelope attachment that are preceded by an intrinsically disordered cell wall spanning domain. The domain variants and their combinations provide CEPs with different stability, proteolytic activity, and potentially adhesive properties, making CEPs targets for steering proteolytic activity with relevance for both food development and human health.
Collapse
Affiliation(s)
- Lise Friis Christensen
- National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Kongens Lyngby, Denmark
| | - Magnus Haraldson Høie
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kongens Lyngby, Denmark
| | | | - Paolo Marcatili
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kongens Lyngby, Denmark
| | - Egon Bech Hansen
- National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
37
|
Kobayashi Y, Chiou TY, Konishi M. Artificial intelligence-assisted analysis reveals amino acid effects and interactions on Limosilactobacillus fermentum growth. Biosci Biotechnol Biochem 2023; 87:1068-1076. [PMID: 37355776 DOI: 10.1093/bbb/zbad083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
To understand the growth of lactic acid bacteria (LAB), Limosilactobacillus fermentum, in response to medium compositions, a deep neural network (DNN) was designed using amino acids (AAs) as explanatory variables and LAB growth as the objective variable. Sixty-four different patterns of free AAs were set using an orthogonal array. The best DNN model had high accuracy with low mean square errors and predicted that Asp would affect LAB growth. Bayesian optimization (BO) using this model recommended an optimal growth media comprising maximum amounts of Asn, Asp, Lys, Thr, and Tyr and minimum amounts of Gln, Pro, and Ser. Furthermore, this proposed media was empirically validated to promote LAB growth. The absence of Gln, Ser, and Pro indicates that the different growth trends among the DNN-BO-optimized media were likely caused by the interactions among the AAs and the other components.
Collapse
Affiliation(s)
- Yoshimi Kobayashi
- Cold Regions, Environmental and Energy Engineering Course, Graduate School of Engineering, Kitami Institute of Technology, Kitami, Hokkaido, Japan
- Bio-Production Division, Hokkaido Sugar Co. Ltd., Kitami, Hokkaido, Japan
| | - Tai-Ying Chiou
- Biotechnology and Food Chemistry Course Program, School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami, Hokkaido, Japan
| | - Masaaki Konishi
- Biotechnology and Food Chemistry Course Program, School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami, Hokkaido, Japan
| |
Collapse
|
38
|
Zhao R, Chen Z, Liang J, Dou J, Guo F, Xu Z, Wang T. Advances in Genetic Tools and Their Application in Streptococcus thermophilus. Foods 2023; 12:3119. [PMID: 37628118 PMCID: PMC10453384 DOI: 10.3390/foods12163119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Streptococcus thermophilus is a traditional starter. Nowadays, key aspects of S. thermophilus physiology have been revealed concerning the phenotypic traits relevant for industrial applications, including sugar metabolism, protein hydrolysis, and the production of important metabolites that affect the sensory properties of fermented foods as well as the original cooperation with Lactobacillus delbrueckii subsp. bulgaricus. Moreover, significant advances have been made in the synthetic biology toolbox of S. thermophilus based on technological advances in the genome and its sequencing and synthesis. In this review, we discuss the recently developed toolbox for S. thermophilus, including gene expression toolsets (promoters, terminators, plasmids, etc.) and genome editing tools. It can be used for both functionalized foods and therapeutic molecules for consumers. The availability of new molecular tools, including the genome editing toolbox, has facilitated the engineering of physiological studies of S. thermophilus and the generation of strains with improved technical and functional characteristics.
Collapse
Affiliation(s)
- Ruiting Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; (R.Z.); (Z.C.); (J.L.); (J.D.); (F.G.); (T.W.)
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Zouquan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; (R.Z.); (Z.C.); (J.L.); (J.D.); (F.G.); (T.W.)
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Jie Liang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; (R.Z.); (Z.C.); (J.L.); (J.D.); (F.G.); (T.W.)
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Jiaxin Dou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; (R.Z.); (Z.C.); (J.L.); (J.D.); (F.G.); (T.W.)
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Fangyu Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; (R.Z.); (Z.C.); (J.L.); (J.D.); (F.G.); (T.W.)
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; (R.Z.); (Z.C.); (J.L.); (J.D.); (F.G.); (T.W.)
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; (R.Z.); (Z.C.); (J.L.); (J.D.); (F.G.); (T.W.)
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| |
Collapse
|
39
|
Torres NJ, Rizzo DN, Reinberg MA, Jobson ME, Totzke BC, Jackson JK, Yu W, Shaw LN. The identification of two M20B family peptidases required for full virulence in Staphylococcus aureus. Front Cell Infect Microbiol 2023; 13:1176769. [PMID: 37538308 PMCID: PMC10394242 DOI: 10.3389/fcimb.2023.1176769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/13/2023] [Indexed: 08/05/2023] Open
Abstract
We have previously demonstrated that deletion of an intracellular leucine aminopeptidase results in attenuated virulence of S. aureus. Herein we explore the role of 10 other aminopeptidases in S. aureus pathogenesis. Using a human blood survival assay we identified mutations in two enzymes from the M20B family (PepT1 and PepT2) as having markedly decreased survival compared to the parent. We further reveal that pepT1, pepT2 and pepT1/2 mutant strains are impaired in their ability to resist phagocytosis by, and engender survival within, human macrophages. Using a co-infection model of murine sepsis, we demonstrate impairment of dissemination and survival for both single mutants that is even more pronounced in the double mutant. We show that these enzymes are localized to the cytosol and membrane but are not necessary for peptide-based nutrition, a hallmark of cell-associated aminopeptidases. Furthermore, none of the survival defects appear to be the result of altered virulence factor production. An exploration of their regulation reveals that both are controlled by known regulators of the S. aureus virulence process, including Agr, Rot and/or SarA, and that this cascade may be mediated by FarR. Structural modeling of PepT1 reveals it bears all the hallmarks of a tripeptidase, whilst PepT2 differs significantly in its catalytic pocket, suggesting a broader substrate preference. In sum, we have identified two M20B aminopeptidases that are integral to S. aureus pathogenesis. The future identification of protein and/or peptide targets for these proteases will be critical to understanding their important virulence impacting functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lindsey N. Shaw
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, United States
| |
Collapse
|
40
|
Davray D, Kulkarni R. In-silico functional analysis of hypothetical proteins from Lactiplantibacillus plantarum plasmids reveals enrichment of cell envelope proteins. Plasmid 2023; 127:102693. [PMID: 37257733 DOI: 10.1016/j.plasmid.2023.102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Lactiplantibacillus plantarum is one of the important species of lactic acid bacterium (LAB) found in diverse environments, with many strains exhibiting probiotic properties. In our previous study, 41.6% of protein families (PFs) encoded by 395 plasmids from several L. plantarum strains were found to be hypothetical proteins with no predicted function. This study aimed at predicting the functions of these 647 hypothetical proteins using 21 different bioinformatics methods. As a result, 160 PFs could be newly annotated. A lower proportion of plasmid-specific functions was annotated as compared to the functions shared between plasmids and chromosomes. Also, hypothetical proteins were less conserved than the annotated proteins across L.plantarum plasmids. Based on the subcellular localization, cell envelope proteins represented the biggest category in the newly annotated proteins. Transporters (112 PFs) which was a part of cell envelop proteins represented the largest functional group. Additionally, 40 and 25 other PFs were predicted to contain signal peptides and transmembrane helices, respectively. We speculate that such hypothetical proteins might be involved in the transport of various chemicals and environmental interactions in L. plantarum. In the future, functional characterization of these proteins through wet-lab experimental approach can provide novel insights into their contribution to the physiology, probiotic properties, and industrial utility of these bacteria.
Collapse
Affiliation(s)
- Dimple Davray
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Ram Kulkarni
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India.
| |
Collapse
|
41
|
Page CA, Pérez-Díaz IM, Pan M, Barrangou R. Genome-Wide Comparative Analysis of Lactiplantibacillus pentosus Isolates Autochthonous to Cucumber Fermentation Reveals Subclades of Divergent Ancestry. Foods 2023; 12:2455. [PMID: 37444193 DOI: 10.3390/foods12132455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Lactiplantibacillus pentosus, commonly isolated from commercial cucumber fermentation, is a promising candidate for starter culture formulation due to its ability to achieve complete sugar utilization to an end pH of 3.3. In this study, we conducted a comparative genomic analysis encompassing 24 L. pentosus and 3 Lactiplantibacillus plantarum isolates autochthonous to commercial cucumber fermentation and 47 lactobacillales reference genomes to determine species specificity and provide insights into niche adaptation. Results showed that metrics such as average nucleotide identity score, emulated Rep-PCR-(GTG)5, computed multi-locus sequence typing (MLST), and multiple open reading frame (ORF)-based phylogenetic trees can robustly and consistently distinguish the two closely related species. Phylogenetic trees based on the alignment of 587 common ORFs separated the L. pentosus autochthonous cucumber isolates from olive fermentation isolates into clade A and B, respectively. The L. pentosus autochthonous clade partitions into subclades A.I, A.II, and A.III, suggesting substantial intraspecies diversity in the cucumber fermentation habitat. The hypervariable sequences within CRISPR arrays revealed recent evolutionary history, which aligns with the L. pentosus subclades identified in the phylogenetic trees constructed. While L. plantarum autochthonous to cucumber fermentation only encode for Type II-A CRISPR arrays, autochthonous L. pentosus clade B codes for Type I-E and L. pentosus clade A hosts both types of arrays. L. pentosus 7.8.2, for which phylogeny could not be defined using the varied methods employed, was found to uniquely encode for four distinct Type I-E CRISPR arrays and a Type II-A array. Prophage sequences in varied isolates evidence the presence of adaptive immunity in the candidate starter cultures isolated from vegetable fermentation as observed in dairy counterparts. This study provides insight into the genomic features of industrial Lactiplantibacillus species, the level of species differentiation in a vegetable fermentation habitat, and diversity profile of relevance in the selection of functional starter cultures.
Collapse
Affiliation(s)
- Clinton A Page
- United States Department of Agriculture, Agricultural Research Service, SEA Food Science and Market Quality and Handling Research Unit, 322 Schaub Hall, Box 7624, Raleigh, NC 27695-7624, USA
| | - Ilenys M Pérez-Díaz
- United States Department of Agriculture, Agricultural Research Service, SEA Food Science and Market Quality and Handling Research Unit, 322 Schaub Hall, Box 7624, Raleigh, NC 27695-7624, USA
| | - Meichen Pan
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 322 Schaub Hall, Box 7624, Raleigh, NC 27695-7624, USA
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 322 Schaub Hall, Box 7624, Raleigh, NC 27695-7624, USA
| |
Collapse
|
42
|
Ichinose R, Yamasaki-Yashiki S, Katakura Y. Analysis of the effects of specific growth rate of Lactococcus lactis MG1363 on aerobic metabolism and its application to high-density culture. J Biosci Bioeng 2023:S1389-1723(23)00138-X. [PMID: 37301698 DOI: 10.1016/j.jbiosc.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Lactic acid bacteria (LAB) are known to produce a large amount of lactate when cultured under non-aerated conditions, which inhibits their growth at high concentrations. Our previous studies have shown that LAB can be cultured without lactate production under aerated conditions at a low specific growth rate. In this study, we investigated the effects of specific growth rate on cell yield and the specific production rates of metabolites in aerated fed-batch cultures of Lactococcus lactis MG1363. The results showed that lactate and acetoin production could be suppressed at specific growth rates below 0.2 h-1, whereas acetate production was the highest at a specific growth rate of 0.2 h-1. When LAB was cultured at a specific growth rate of 0.25 h-1 with the addition of 5 mg/L heme to assist ATP production by respiration, lactate and acetate production was suppressed, and cell concentration reached 19 g-dry-cell/L (5.6 × 10ˆ10 cfu/mL) with a high cell yield of 0.42 ± 0.02 g-dry-cell/g-glucose.
Collapse
Affiliation(s)
- Ryo Ichinose
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
| | - Shino Yamasaki-Yashiki
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
| | - Yoshio Katakura
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
43
|
Kwoji ID, Aiyegoro OA, Okpeku M, Adeleke MA. 'Multi-omics' data integration: applications in probiotics studies. NPJ Sci Food 2023; 7:25. [PMID: 37277356 DOI: 10.1038/s41538-023-00199-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
The concept of probiotics is witnessing increasing attention due to its benefits in influencing the host microbiome and the modulation of host immunity through the strengthening of the gut barrier and stimulation of antibodies. These benefits, combined with the need for improved nutraceuticals, have resulted in the extensive characterization of probiotics leading to an outburst of data generated using several 'omics' technologies. The recent development in system biology approaches to microbial science is paving the way for integrating data generated from different omics techniques for understanding the flow of molecular information from one 'omics' level to the other with clear information on regulatory features and phenotypes. The limitations and tendencies of a 'single omics' application to ignore the influence of other molecular processes justify the need for 'multi-omics' application in probiotics selections and understanding its action on the host. Different omics techniques, including genomics, transcriptomics, proteomics, metabolomics and lipidomics, used for studying probiotics and their influence on the host and the microbiome are discussed in this review. Furthermore, the rationale for 'multi-omics' and multi-omics data integration platforms supporting probiotics and microbiome analyses was also elucidated. This review showed that multi-omics application is useful in selecting probiotics and understanding their functions on the host microbiome. Hence, recommend a multi-omics approach for holistically understanding probiotics and the microbiome.
Collapse
Affiliation(s)
- Iliya Dauda Kwoji
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, 4090, Durban, South Africa
| | - Olayinka Ayobami Aiyegoro
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, Northwest, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, 4090, Durban, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, 4090, Durban, South Africa.
| |
Collapse
|
44
|
Kumar L, Dwivedi M, Jain N, Shete P, Solanki S, Gupta R, Jain A. The Female Reproductive Tract Microbiota: Friends and Foe. Life (Basel) 2023; 13:1313. [PMID: 37374096 DOI: 10.3390/life13061313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
We do not seem to be the only owner of our body; it houses a large population of microorganisms. Through countless years of coevolution, microbes and hosts have developed complex relationships. In the past few years, the impact of microbial communities on their host has received significant attention. Advanced molecular sequencing techniques have revealed a remarkable diversity of the organ-specific microbiota populations, including in the reproductive tract. Currently, the goal of researchers has shifted to generate and perceive the molecular data of those hidden travelers of our body and harness them for the betterment of human health. Recently, microbial communities of the lower and upper reproductive tract and their correlation with the implication in reproductive health and disease have been extensively studied. Many intrinsic and extrinsic factors influences the female reproductive tract microbiota (FRTM) that directly affects the reproductive health. It is now believed that FRTM dominated by Lactobacilli may play an essential role in obstetric health beyond the woman's intimate comfort and well-being. Women with altered microbiota may face numerous health-related issues. Altered microbiota can be manipulated and restored to their original shape to re-establish normal reproductive health. The aim of the present review is to summarize the FRTM functional aspects that influence reproductive health.
Collapse
Affiliation(s)
- Lokesh Kumar
- Genus Breeding India Pvt Ltd., Pune 411005, Maharashtra, India
| | - Monika Dwivedi
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra 835215, Jharkhand, India
| | - Natasha Jain
- Department of Biotechnology, Chaudhary Charan Singh University, Meerut 250001, Uttar Pradesh, India
| | - Pranali Shete
- Department of Microbiology, Smt. CHM College, University of Mumbai, Ulhasnagar 421003, Maharashtra, India
| | - Subhash Solanki
- Genus Breeding India Pvt Ltd., Pune 411005, Maharashtra, India
| | - Rahul Gupta
- Genus Breeding India Pvt Ltd., Pune 411005, Maharashtra, India
| | - Ashish Jain
- Department of Microbiology, Smt. CHM College, University of Mumbai, Ulhasnagar 421003, Maharashtra, India
| |
Collapse
|
45
|
Suzuki-Hashido N, Tsuchida S, Azumano A, Goossens B, Saldivar DAR, Stark DJ, Tuuga A, Ushida K, Matsuda I. Isolation of Bacteria from Freeze-Dried Samples and the Functional Characterization of Species-Specific Lactic Acid Bacteria with a Comparison of Wild and Captive Proboscis Monkeys. Microorganisms 2023; 11:1458. [PMID: 37374963 DOI: 10.3390/microorganisms11061458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Previously, we isolated a novel lactic acid bacteria species (Lactobacillus nasalidis) from the fresh forestomach contents of a captive proboscis monkey (Nasalis larvatus) in a Japanese zoo. In this study, we isolated two strains of L. nasalidis from the freeze-dried forestomach contents of a wild proboscis monkey inhabiting a riverine forest in Malaysia. The samples had been stored for more than six years. Phenotypic analysis showed that strains isolated from the wild individual had more diverse sugar utilization and lower salt tolerance than strains previously isolated from the captive counterpart. These phenotypic differences are most likely induced by feeding conditions; wild individuals consume a wide variety of natural food, unlike their zoo-raised counterparts that consume formula feed with sodium sufficiency. Since 16s rRNA sequences of L. nasalidis were detected in the previously created 16S rRNA libraries of wild, provisioned, and captive proboscis monkeys in Malaysia and Japan, L. nasalidis may be an essential bacterium of the foregut microbial community of the proboscis monkey. The currently established method for the isolation of gut bacteria from freeze-dried samples under storage will be applicable to many already-stored precious samples.
Collapse
Affiliation(s)
- Nami Suzuki-Hashido
- College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Aichi, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku 102-0083, Tokyo, Japan
| | - Sayaka Tsuchida
- College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Aichi, Japan
| | | | - Benoit Goossens
- Sabah Wildlife Department, Wisma Muis, Kota Kinabalu 88100, Malaysia
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- Danau Girang Field Centre, c/o Sabah Wildlife Department, Wisma Muis, Kota Kinabalu 88100, Malaysia
| | - Diana A Ramirez Saldivar
- Sabah Wildlife Department, Wisma Muis, Kota Kinabalu 88100, Malaysia
- Danau Girang Field Centre, c/o Sabah Wildlife Department, Wisma Muis, Kota Kinabalu 88100, Malaysia
| | - Danica J Stark
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- Danau Girang Field Centre, c/o Sabah Wildlife Department, Wisma Muis, Kota Kinabalu 88100, Malaysia
| | - Augustine Tuuga
- Sabah Wildlife Department, Wisma Muis, Kota Kinabalu 88100, Malaysia
| | - Kazunari Ushida
- College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Aichi, Japan
| | - Ikki Matsuda
- Wildlife Research Center, Kyoto University, Sakyo-ku 606-8203, Kyoto, Japan
- Academy of Emerging Sciences, Chubu University, Kasugai 487-8501, Aichi, Japan
- Chubu Institute for Advanced Studies, Chubu University, Kasugai 487-8501, Aichi, Japan
- Institute for Tropical Biology and Conservation, University Malaysia Sabah, Kota Kinabalu 88100, Malaysia
| |
Collapse
|
46
|
Vallejo-García LC, Sánchez-Olmos MDC, Gutiérrez-Ríos RM, López Munguía A. Glycosyltransferases Expression Changes in Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 Grown on Different Carbon Sources. Foods 2023; 12:foods12091893. [PMID: 37174431 PMCID: PMC10177778 DOI: 10.3390/foods12091893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Leuconostoc mesenteroides strains are common contributors in fermented foods producing a wide variety of polysaccharides from sucrose through glycosyltransferases (GTFs). These polymers have been proposed as protective barriers against acidity, dehydration, heat, and oxidative stress. Despite its presence in many traditional fermented products and their association with food functional properties, regulation of GTFs expression in Ln. mesenteroides is still poorly understood. The strain Ln. mesenteroides ATCC 8293 contains three glucansucrases genes not found in operons, and three fructansucrases genes arranged in two operons, levLX and levC-scrB, a Glycoside-hydrolase. We described the first differential gene expression analysis of this strain when cultivated in different carbon sources. We observed that while GTFs are expressed in the presence of most sugars, they are down-regulated in xylose. We ruled out the regulatory effect of CcpA over GTFs and did not find regulatory elements with a direct effect on glucansucrases in the condition assayed. Our findings suggest that only operon levLX is repressed in xylose by LexA and that both fructansucrases operons can be regulated by the VicK/VicR system and PerR. It is essential to further explore the effect of environmental conditions in Ln. mesenteroides bacteria to better understand GTFs regulation and polymer function.
Collapse
Affiliation(s)
- Luz Cristina Vallejo-García
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico
| | - María Del Carmen Sánchez-Olmos
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico
| | - Rosa María Gutiérrez-Ríos
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico
| | - Agustín López Munguía
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico
| |
Collapse
|
47
|
Lee MD, Pedroso AA, Lumpkins B, Cho Y, Maurer JJ. Pioneer colonizers: Bacteria that alter the chicken intestinal morphology and development of the microbiota. Front Physiol 2023; 14:1139321. [PMID: 37064908 PMCID: PMC10090334 DOI: 10.3389/fphys.2023.1139321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Microbes commonly administered to chickens facilitate development of a beneficial microbiome that improves gut function, feed conversion and reduces pathogen colonization. Competitive exclusion products, derived from the cecal contents of hens and shown to reduce Salmonella colonization in chicks, possess important pioneer-colonizing bacteria needed for proper intestinal development and animal growth. We hypothesized that inoculation of these pioneer-colonizing bacteria to day of hatch chicks would enhance the development of their intestinal anatomy and microbiome. A competitive exclusion product was administered to broiler chickens, in their drinking water, at day of hatch, and its impact on intestinal morphometrics, intestinal microbiome, and production parameters, was assessed relative to a control, no treatment group. 16S rRNA gene, terminal restriction fragment length polymorphism (T-RFLP) was used to assess ileal community composition. The competitive exclusion product, administered on day of hatch, increased villus height, villus height/width ratio and goblet cell production ∼1.25-fold and expression of enterocyte sugar transporters 1.25 to 1.5-fold in chickens at 3 days of age, compared to the control group. As a next step, chicks were inoculated with a defined formulation, containing Bacteroidia and Clostridia representing pioneer-colonizing bacteria of the two major bacterial phyla present in the competitive exclusion product. The defined formulation, containing both groups of bacteria, were shown, dependent on age, to improve villus height (jejunum: 1.14 to 1.46-fold; ileum: 1.17-fold), goblet cell numbers (ileum 1.32 to 2.51-fold), and feed efficiency (1.18-fold, day 1) while decreasing Lactobacillus ileal abundance by one-third to half in birds at 16 and 42 days of age, respectively; compared to the phosphate buffered saline treatment group. Therefore, specific probiotic formulations containing pioneer colonizing species can provide benefits in intestinal development, feed efficiency and body weight gain.
Collapse
Affiliation(s)
- Margie D. Lee
- Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- *Correspondence: Margie D. Lee,
| | - Adriana A. Pedroso
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Brett Lumpkins
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Youngjae Cho
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - John J. Maurer
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Animal and Poultry Sciences, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
48
|
Peterson CT, Pérez-Santiago J, Iablokov SN, Rodionov DA, Peterson SN. Alteration of Community Metabolism by Prebiotics and Medicinal Herbs. Microorganisms 2023; 11:868. [PMID: 37110291 PMCID: PMC10141170 DOI: 10.3390/microorganisms11040868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
Several studies have examined the impact of prebiotics on gut microbiota and associated changes in host physiology. Here, we used the in vitro cultivation of human fecal samples stimulated with a series of chemically related prebiotics and medicinal herbs commonly used in Ayurvedic medicine, followed by 16S rRNA sequencing. We applied a genome-wide metabolic reconstruction of enumerated communities to compare and contrast the structural and functional impact of prebiotics and medicinal herbs. In doings so, we examined the relationships between discrete variations in sugar composition and sugar linkages associated with each prebiotic to drive changes in microbiota composition. The restructuring of microbial communities with glycan substrates alters community metabolism and its potential impact on host physiology. We analyzed sugar fermentation pathways and products predicted to be formed and prebiotic-induced changes in vitamin and amino acid biosynthesis and degradation. These results highlight the utility of combining a genome-wide metabolic reconstruction methodology with 16S rRNA sequence-based community profiles to provide insights pertaining to community metabolism. This process also provides a rational means for prioritizing in vivo analysis of prebiotics and medicinal herbs in vivo to test hypotheses related to therapeutic potential in specific diseases of interest.
Collapse
Affiliation(s)
- Christine Tara Peterson
- Center of Excellence for Research and Training in Integrative Health, Department of Family Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Josué Pérez-Santiago
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00927, USA
- School of Dental Medicine, Office of Research, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00921, USA
| | | | - Dmitry A. Rodionov
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Scott N. Peterson
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
49
|
Composition and function of viruses in sauce-flavor baijiu fermentation. Int J Food Microbiol 2023; 387:110055. [PMID: 36527793 DOI: 10.1016/j.ijfoodmicro.2022.110055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Viruses are highly abundant in nature, associated with quality and safety of traditional fermented foods. However, the overall viral diversity and function are still poorly understood in food microbiome. Traditional baijiu fermentation is an ideal model system to examine the diversity and function of viruses owing to easy access, stable operation, and domesticated microbial community. Equipped with cutting-edge viral metagenomics, we investigated the viral community in the fermented grain and fermentation environment, as well as their contribution to baijiu fermentation. Viral communities in the fermented grains and fermentation environment are highly similar. The dominant viruses were bacteriophages, mainly including the order Caudovirales and the family Inoviridae. Furtherly, association network analysis showed that viruses and bacteria were significantly negatively correlated (P < 0.01). Viral diversity could significantly influence bacterial and fungal succession (P < 0.05). Moreover, we proved that starter phages could significantly inhibit the growth of Bacillus licheniformis in the logarithmic growth stage (P < 0.05) under culture condition. Based on the functional annotations, viruses and bacteria both showed high distribution of genes related to amino acid and carbohydrate metabolism. In addition, abundant auxiliary carbohydrate-active enzyme (CAZyme) genes were also identified in viruses, indicating that viruses were involved in the decomposition of complex polysaccharides during fermentation. Our results revealed that viruses could crucially affect microbial community and metabolism during traditional fermentation.
Collapse
|
50
|
Liu J, Li X, Xu Y, Wu Y, Wang R, Zhang X, Hou Y, Qu H, Wang L, He M, Kupczok A, He J. Highly efficient reduction of ammonia emissions from livestock waste by the synergy of novel manure acidification and inhibition of ureolytic bacteria. ENVIRONMENT INTERNATIONAL 2023; 172:107768. [PMID: 36709675 DOI: 10.1016/j.envint.2023.107768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/28/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The global livestock system is one of the largest sources of ammonia emissions and there is an urgent need for ammonia mitigation. Here, we designed and constructed a novel strategy to abate ammonia emissions via livestock manure acidification based on a synthetic lactic acid bacteria community (LAB SynCom). The LAB SynCom possessed a wide carbon source spectrum and pH profile, high adaptability to the manure environment, and a high capability of generating lactic acid. The mitigation strategy was optimized based on the test and performance by adjusting the LAB SynCom inoculation ratio and the adding frequency of carbon source, which contributed to a total ammonia reduction efficiency of 95.5 %. Furthermore, 16S rDNA amplicon sequencing analysis revealed that the LAB SynCom treatment reshaped the manure microbial community structure. Importantly, 22 manure ureolytic microbial genera and urea hydrolysis were notably inhibited by the LAB SynCom treatment during the treatment process. These findings provide new insight into manure acidification that the conversion from ammonia to ammonium ions and the inhibition of ureolytic bacteria exerted a synergistic effect on ammonia mitigation. This work systematically developed a novel strategy to mitigate ammonia emissions from livestock waste, which is a crucial step forward from traditional manure acidification to novel and environmental-friendly acidification.
Collapse
Affiliation(s)
- Jun Liu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Bioinformatics Group, Wageningen University & Research, Wageningen 6708PB, The Netherlands
| | - Xia Li
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Yanliang Xu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Yutian Wu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Ruili Wang
- Inner Mongolia Academy of Science and Technology, Hohhot 010010, China
| | - Xiujuan Zhang
- Inner Mongolia Academy of Science and Technology, Hohhot 010010, China
| | - Yaguang Hou
- Inner Mongolia Academy of Science and Technology, Hohhot 010010, China
| | - Haoli Qu
- Ministry of Agriculture, Nanjing Research Institute for Agricultural Mechanization, Nanjing 210014, China
| | - Li Wang
- Sichuan Academy of Forestry, Chengdu 610081, China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Anne Kupczok
- Bioinformatics Group, Wageningen University & Research, Wageningen 6708PB, The Netherlands
| | - Jing He
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China.
| |
Collapse
|