1
|
Eismann L, Fijalkowski I, Galmozzi CV, Koubek J, Tippmann F, Van Damme P, Kramer G. Selective ribosome profiling reveals a role for SecB in the co-translational inner membrane protein biogenesis. Cell Rep 2022; 41:111776. [PMID: 36476862 DOI: 10.1016/j.celrep.2022.111776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/04/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
The chaperone SecB has been implicated in de novo protein folding and translocation across the membrane, but it remains unclear which nascent polypeptides SecB binds, when during translation SecB acts, how SecB function is coordinated with other chaperones and targeting factors, and how polypeptide engagement contributes to protein biogenesis. Using selective ribosome profiling, we show that SecB binds many nascent cytoplasmic and translocated proteins generally late during translation and controlled by the chaperone trigger factor. Revealing an uncharted role in co-translational translocation, inner membrane proteins (IMPs) are the most prominent nascent SecB interactors. Unlike other substrates, IMPs are bound early during translation, following the membrane targeting by the signal recognition particle. SecB remains bound until translation is terminated, and contributes to membrane insertion. Our study establishes a role of SecB in the co-translational maturation of proteins from all cellular compartments and functionally implicates cytosolic chaperones in membrane protein biogenesis.
Collapse
Affiliation(s)
- Lena Eismann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Igor Fijalkowski
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Carla Verónica Galmozzi
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/ Universidad de Sevilla, 41013 Seville, Spain
| | - Jiří Koubek
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Frank Tippmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| |
Collapse
|
2
|
Zhu Z, Wang S, Shan SO. Ribosome profiling reveals multiple roles of SecA in cotranslational protein export. Nat Commun 2022; 13:3393. [PMID: 35697696 PMCID: PMC9192764 DOI: 10.1038/s41467-022-31061-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Abstract
SecA, an ATPase known to posttranslationally translocate secretory proteins across the bacterial plasma membrane, also binds ribosomes, but the role of SecA’s ribosome interaction has been unclear. Here, we used a combination of ribosome profiling methods to investigate the cotranslational actions of SecA. Our data reveal the widespread accumulation of large periplasmic loops of inner membrane proteins in the cytoplasm during their cotranslational translocation, which are specifically recognized and resolved by SecA in coordination with the proton motive force (PMF). Furthermore, SecA associates with 25% of secretory proteins with highly hydrophobic signal sequences at an early stage of translation and mediates their cotranslational transport. In contrast, the chaperone trigger factor (TF) delays SecA engagement on secretory proteins with weakly hydrophobic signal sequences, thus enforcing a posttranslational mode of their translocation. Our results elucidate the principles of SecA-driven cotranslational protein translocation and reveal a hierarchical network of protein export pathways in bacteria. Using a combination of ribosome profiling methods, Zhu et al. investigate the principles governing the cotranslational interaction of SecA with nascent proteins and reveal a hierarchical organization of protein export pathways in bacteria.
Collapse
Affiliation(s)
- Zikun Zhu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shuai Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.,Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
3
|
Matavacas J, von Wachenfeldt C. Update on the Protein Homeostasis Network in Bacillus subtilis. Front Microbiol 2022; 13:865141. [PMID: 35350626 PMCID: PMC8957991 DOI: 10.3389/fmicb.2022.865141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Protein homeostasis is fundamental to cell function and survival. It relies on an interconnected network of processes involving protein synthesis, folding, post-translational modification and degradation as well as regulators of these processes. Here we provide an update on the roles, regulation and subcellular localization of the protein homeostasis machinery in the Gram-positive model organism Bacillus subtilis. We discuss emerging ideas and current research gaps in the field that, if tackled, increase our understanding of how Gram-positive bacteria, including several human pathogens, maintain protein homeostasis and cope with stressful conditions that challenge their survival.
Collapse
|
4
|
Zhao L, Castanié-Cornet MP, Kumar S, Genevaux P, Hayer-Hartl M, Hartl FU. Bacterial RF3 senses chaperone function in co-translational folding. Mol Cell 2021; 81:2914-2928.e7. [PMID: 34107307 DOI: 10.1016/j.molcel.2021.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/05/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Molecular chaperones assist with protein folding by interacting with nascent polypeptide chains (NCs) during translation. Whether the ribosome can sense chaperone defects and, in response, abort translation of misfolding NCs has not yet been explored. Here we used quantitative proteomics to investigate the ribosome-associated chaperone network in E. coli and the consequences of its dysfunction. Trigger factor and the DnaK (Hsp70) system are the major NC-binding chaperones. HtpG (Hsp90), GroEL, and ClpB contribute increasingly when DnaK is deficient. Surprisingly, misfolding because of defects in co-translational chaperone function or amino acid analog incorporation results in recruitment of the non-canonical release factor RF3. RF3 recognizes aberrant NCs and then moves to the peptidyltransferase site to cooperate with RF2 in mediating chain termination, facilitating clearance by degradation. This function of RF3 reduces the accumulation of misfolded proteins and is critical for proteostasis maintenance and cell survival under conditions of limited chaperone availability.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Marie-Pierre Castanié-Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Sneha Kumar
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
5
|
Jiang C, Wynne M, Huber D. How Quality Control Systems AID Sec-Dependent Protein Translocation. Front Mol Biosci 2021; 8:669376. [PMID: 33928127 PMCID: PMC8076867 DOI: 10.3389/fmolb.2021.669376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
The evolutionarily conserved Sec machinery is responsible for transporting proteins across the cytoplasmic membrane. Protein substrates of the Sec machinery must be in an unfolded conformation in order to be translocated across (or inserted into) the cytoplasmic membrane. In bacteria, the requirement for unfolded proteins is strict: substrate proteins that fold (or misfold) prematurely in the cytoplasm prior to translocation become irreversibly trapped in the cytoplasm. Partially folded Sec substrate proteins and stalled ribosomes containing nascent Sec substrates can also inhibit translocation by blocking (i.e., “jamming”) the membrane-embedded Sec machinery. To avoid these issues, bacteria have evolved a complex network of quality control systems to ensure that Sec substrate proteins do not fold in the cytoplasm. This quality control network can be broken into three branches, for which we have defined the acronym “AID”: (i) avoidance of cytoplasmic intermediates through cotranslationally channeling newly synthesized Sec substrates to the Sec machinery; (ii) inhibition of folding Sec substrate proteins that transiently reside in the cytoplasm by molecular chaperones and the requirement for posttranslational modifications; (iii) destruction of products that could potentially inhibit translocation. In addition, several stress response pathways help to restore protein-folding homeostasis when environmental conditions that inhibit translocation overcome the AID quality control systems.
Collapse
Affiliation(s)
- Chen Jiang
- School of Biosciences and the Institute for Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Max Wynne
- School of Biosciences and the Institute for Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Damon Huber
- School of Biosciences and the Institute for Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
The Disordered C-Terminus of the Chaperone DnaK Increases the Competitive Fitness of Pseudomonas putida and Facilitates the Toxicity of GraT. Microorganisms 2021; 9:microorganisms9020375. [PMID: 33668424 PMCID: PMC7918210 DOI: 10.3390/microorganisms9020375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/23/2022] Open
Abstract
Chaperone proteins are crucial for proper protein folding and quality control, especially when cells encounter stress caused by non-optimal temperatures. DnaK is one of such essential chaperones in bacteria. Although DnaK has been well characterized, the function of its intrinsically disordered C-terminus has remained enigmatic as the deletion of this region has been shown to either enhance or reduce its protein folding ability. We have shown previously that DnaK interacts with toxin GraT of the GraTA toxin-antitoxin system in Pseudomonas putida. Interestingly, the C-terminal truncation of DnaK was shown to alleviate GraT-caused growth defects. Here, we aim to clarify the importance of DnaK in GraT activity. We show that DnaK increases GraT toxicity, and particularly important is the negatively charged motif in the DnaK C-terminus. Given that GraT has an intrinsically disordered N-terminus, the assistance of DnaK is probably needed for re-modelling the toxin structure. We also demonstrate that the DnaK C-terminal negatively charged motif contributes to the competitive fitness of P. putida at both high and optimal growth temperatures. Thus, our data suggest that the disordered C-terminal end of DnaK enhances the chaperone functionality.
Collapse
|
7
|
De Geyter J, Portaliou AG, Srinivasu B, Krishnamurthy S, Economou A, Karamanou S. Trigger factor is a bona fide secretory pathway chaperone that interacts with SecB and the translocase. EMBO Rep 2020; 21:e49054. [PMID: 32307852 DOI: 10.15252/embr.201949054] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
Abstract
Bacterial secretory preproteins are translocated across the inner membrane post-translationally by the SecYEG-SecA translocase. Mature domain features and signal peptides maintain preproteins in kinetically trapped, largely soluble, folding intermediates. Some aggregation-prone preproteins require chaperones, like trigger factor (TF) and SecB, for solubility and/or targeting. TF antagonizes the contribution of SecB to secretion by an unknown molecular mechanism. We reconstituted this interaction in vitro and studied targeting and secretion of the model preprotein pro-OmpA. TF and SecB display distinct, unsuspected roles in secretion. Tightly associating TF:pro-OmpA targets the translocase at SecA, but TF prevents pro-OmpA secretion. In solution, SecB binds TF:pro-OmpA with high affinity. At the membrane, when bound to the SecA C-tail, SecB increases TF and TF:pro-OmpA affinities for the translocase and allows pro-OmpA to resume translocation. Our data reveal that TF, a main cytoplasmic folding pathway chaperone, is also a bona fide post-translational secretory chaperone that directly interacts with both SecB and the translocase to mediate regulated protein secretion. Thus, TF links the cytoplasmic folding and secretion chaperone networks.
Collapse
Affiliation(s)
- Jozefien De Geyter
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| | - Athina G Portaliou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| | - Bindu Srinivasu
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| | - Srinath Krishnamurthy
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| | - Anastassios Economou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| | - Spyridoula Karamanou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Cranford-Smith T, Huber D. The way is the goal: how SecA transports proteins across the cytoplasmic membrane in bacteria. FEMS Microbiol Lett 2019; 365:4969678. [PMID: 29790985 PMCID: PMC5963308 DOI: 10.1093/femsle/fny093] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023] Open
Abstract
In bacteria, translocation of most soluble secreted proteins (and outer membrane proteins in Gram-negative bacteria) across the cytoplasmic membrane by the Sec machinery is mediated by the essential ATPase SecA. At its core, this machinery consists of SecA and the integral membrane proteins SecYEG, which form a protein conducting channel in the membrane. Proteins are recognised by the Sec machinery by virtue of an internally encoded targeting signal, which usually takes the form of an N-terminal signal sequence. In addition, substrate proteins must be maintained in an unfolded conformation in the cytoplasm, prior to translocation, in order to be competent for translocation through SecYEG. Recognition of substrate proteins occurs via SecA—either through direct recognition by SecA or through secondary recognition by a molecular chaperone that delivers proteins to SecA. Substrate proteins are then screened for the presence of a functional signal sequence by SecYEG. Proteins with functional signal sequences are translocated across the membrane in an ATP-dependent fashion. The current research investigating each of these steps is reviewed here.
Collapse
Affiliation(s)
- Tamar Cranford-Smith
- Institute for Microbiology and Infection School of Biosciences University of Birmingham Edgbaston Birmingham B15 2TT, UK
| | - Damon Huber
- Institute for Microbiology and Infection School of Biosciences University of Birmingham Edgbaston Birmingham B15 2TT, UK
| |
Collapse
|
9
|
Maillot NJ, Honoré FA, Byrne D, Méjean V, Genest O. Cold adaptation in the environmental bacterium Shewanella oneidensis is controlled by a J-domain co-chaperone protein network. Commun Biol 2019; 2:323. [PMID: 31482142 PMCID: PMC6715715 DOI: 10.1038/s42003-019-0567-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022] Open
Abstract
DnaK (Hsp70) is a major ATP-dependent chaperone that functions with two co-chaperones, a J-domain protein (JDP) and a nucleotide exchange factor to maintain proteostasis in most organisms. Here, we show that the environmental bacterium Shewanella oneidensis possesses a previously uncharacterized short JDP, AtcJ, dedicated to cold adaptation and composed of a functional J-domain and a C-terminal extension of 21 amino acids. We showed that atcJ is the first gene of an operon encoding also AtcA, AtcB and AtcC, three proteins of unknown functions. Interestingly, we found that the absence of AtcJ, AtcB or AtcC leads to a dramatically reduced growth at low temperature. In addition, we demonstrated that AtcJ interacts via its C-terminal extension with AtcC, and that AtcC binds to AtcB. Therefore, we identified a previously uncharacterized protein network that involves the DnaK system with a dedicated JDP to allow bacteria to survive to cold environment.
Collapse
Affiliation(s)
- Nathanael Jean Maillot
- Aix Marseille Univ, CNRS, BIP UMR 7281, IMM, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Flora Ambre Honoré
- Aix Marseille Univ, CNRS, BIP UMR 7281, IMM, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Deborah Byrne
- Protein Expression Facility, CNRS, IMM, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Vincent Méjean
- Aix Marseille Univ, CNRS, BIP UMR 7281, IMM, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Olivier Genest
- Aix Marseille Univ, CNRS, BIP UMR 7281, IMM, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| |
Collapse
|
10
|
Sharma N, Aggarwal S, Kumar S, Sharma R, Choudhury K, Singh N, Jayaswal P, Goel R, Wajid S, Yadav AK, Atmakuri K. Comparative analysis of homologous aminopeptidase PepN from pathogenic and non-pathogenic mycobacteria reveals divergent traits. PLoS One 2019; 14:e0215123. [PMID: 30969995 PMCID: PMC6457555 DOI: 10.1371/journal.pone.0215123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/28/2019] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) secretes proteases and peptidases to subjugate its host. Out of its sixty plus proteases, atleast three are reported to reach host macrophages. In this study, we show that Mtb also delivers a lysyl alanine aminopeptidase, PepN (Rv2467) into host macrophage cytosol. Our comparative in silico analysis shows PepNMtb highly conserved across all pathogenic mycobacteria. Non-pathogenic mycobacteria including M. smegmatis (Msm) also encode pepN. PepN protein levels in both Mtb (pathogenic) and Msm (non-pathogenic) remain uniform across all in vitro growth phases. Despite such tight maintenance of PepNs' steady state levels, upon supplementation, Mtb alone allows accumulation of any excessive PepN. In contrast, Msm does not. It not only proteolyzes, but also secretes out the excessive PepN, be it native or foreign. Interestingly, while PepNMtb is required for modulating virulence in vivo, PepNMsm is essential for Msm growth in vitro. Despite such essentiality difference, both PepNMtb and PepNMsm harbor almost identical N-terminal M1-type peptidase domains that significantly align in their amino acid sequences and overlap in their secondary structures. Their C-terminal ERAP1_C-like domains however align much more moderately. Our in vitro macrophage-based infection experiments with MtbΔpepN-expressing pepNMsm reveals PepNMsm also retaining the ability to reach host cytosol. Lastly, but notably, we determined the PepNMtb and PepNMsm interactomes and found them to barely coincide. While PepNMtb chiefly interacts with Mtb's secreted proteins, PepNMsm primarily coimmunoprecipitates with Msm's housekeeping proteins. Thus, despite high sequence homology and several common properties, our comparative analytical study reveals host-centric traits of pathogenic and bacterial-centric traits of non-pathogenic PepNs.
Collapse
Affiliation(s)
- Nishant Sharma
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana, INDIA
| | - Suruchi Aggarwal
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana, INDIA
| | - Saravanan Kumar
- Proteomics Facility, Thermo Fisher Scientific Pvt. Ltd., Bengaluru, Karnataka, INDIA
| | - Rahul Sharma
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana, INDIA
| | - Konika Choudhury
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana, INDIA
| | - Niti Singh
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana, INDIA
- INDIAManipal University, Manipal, Karnataka, INDIA
| | - Praapti Jayaswal
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana, INDIA
| | - Renu Goel
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana, INDIA
| | - Saima Wajid
- Dept. of Biotechnology, Jamia Hamdard, New Delhi
| | - Amit Kumar Yadav
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana, INDIA
| | - Krishnamohan Atmakuri
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana, INDIA
| |
Collapse
|
11
|
Structural insights into chaperone addiction of toxin-antitoxin systems. Nat Commun 2019; 10:782. [PMID: 30770830 PMCID: PMC6377645 DOI: 10.1038/s41467-019-08747-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
SecB chaperones assist protein export by binding both unfolded proteins and the SecA motor. Certain SecB homologs can also control toxin-antitoxin (TA) systems known to modulate bacterial growth in response to stress. In such TA-chaperone (TAC) systems, SecB assists the folding and prevents degradation of the antitoxin, thus facilitating toxin inhibition. Chaperone dependency is conferred by a C-terminal extension in the antitoxin known as chaperone addiction (ChAD) sequence, which makes the antitoxin aggregation-prone and prevents toxin inhibition. Using TAC of Mycobacterium tuberculosis, we present the structure of a SecB-like chaperone bound to its ChAD peptide. We find differences in the binding interfaces when compared to SecB–SecA or SecB-preprotein complexes, and show that the antitoxin can reach a functional form while bound to the chaperone. This work reveals how chaperones can use discrete surface binding regions to accommodate different clients or partners and thereby expand their substrate repertoire and functions. SecB homologs can be associated with stress-responsive type II toxin–antitoxin (TA) systems and form tripartite toxin-antitoxin-chaperone systems (TAC). Here the authors provide structural insights into TACs by presenting the crystal structure of the M. tuberculosis TA-associated SecB chaperone in complex with the C-terminal ChAD (chaperone addiction) extension of the antitoxin HigA1.
Collapse
|
12
|
Seyed Hosseini Fin NA, Barshan-Tashnizi M, Sajjadi SM, Asgari S, Mohajerani N, Mirzahoseini H. The effects of overexpression of cytoplasmic chaperones on secretory production of hirudin-PA in E. coli. Protein Expr Purif 2019; 157:42-49. [PMID: 30708036 DOI: 10.1016/j.pep.2019.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/18/2022]
Abstract
The secretory production of heterologous proteins in E. coli has revolutionized biotechnology. Efficient periplasmic production of foreign proteins in E. coli often requires a signal peptide to direct proteins to the periplasm. However, the presence of attached signal peptide does not guarantee periplasmic expression of target proteins. Overproduction of auxiliary proteins, such as chaperones can be a useful approach to enhance protein export. In the current study, three chaperone plasmid sets, including GroEL-GroES (GroELS), Dnak-Dnaj-GrpE (DnaKJE), and trigger factor (TF), were coexpressed in E. coli BL21 (DE3) in a pairwise manner with two pET22-b vectors carrying the recombinant hirudin-PA (Hir) gene and different signal sequences alkaline phosphatase (PhoA) and l-asparaginase II (l-ASP). Overexpression of cytoplasmic combinations of molecular chaperones containing GroELS and DnaKJE with PhoAHir increased the secretory production of PhoAHir by 2.6fold (p < 0.05) and 3.5fold (p < 0.01) compared with their controls, respectively. By contrast, secretory production of PhoAHir significantly reduced in the presence of overexpressed TF (p = 0.02). Further, periplasmic expression of l-ASP was significantly increased only in the presence of DnaKJE (p = 0.04). These findings suggest that using molecular chaperones can be helpful for improving periplasmic expression of Hir. However, tagged signal peptides may affect the physicochemical properties and secondary and tertiary structures of mature Hir, which may alter their interactions with chaperones. Hence, using overexpressed chaperones has various effects on secretory production of PhoAHir and l-ASPHir.
Collapse
Affiliation(s)
| | - Mohammad Barshan-Tashnizi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Seyed Mehdi Sajjadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeme Asgari
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Nazanin Mohajerani
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hasan Mirzahoseini
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
13
|
Adu KT, Wilson R, Nichols DS, Baker AL, Bowman JP, Britz ML. Proteomic analysis of Lactobacillus casei GCRL163 cell-free extracts reveals a SecB homolog and other biomarkers of prolonged heat stress. PLoS One 2018; 13:e0206317. [PMID: 30359441 PMCID: PMC6201924 DOI: 10.1371/journal.pone.0206317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
Prolonged heat stress is one of the harsh conditions Lactobacillus casei strains encounter as non-starter lactic acid bacteria in dairy product manufacture. To understand the physiological and molecular mechanisms through which Lb. casei GCRL163 adapts to persistent elevated temperature, label-free quantitative proteomics of cell-free extracts was used to characterize the global responses of the strain cultured anaerobically in bioreactors at 30 to 45°C, pH 6.5, together with GC-MS for fatty acid methyl ester analysis at different growth phases. At higher growth temperatures, repression of energy-consuming metabolic pathways, such as fatty acid, nucleotide and amino acid biosynthesis, was observed, while PTS- and ABC-type transporter systems associated with uptake of nitrogen and carbon sources were up-regulated. Alkaline shock protein Asp23_2 was only detected at 45°C, expressed at high abundance, and presumptive α-L-fucosidase only at 40 and 45°C, with highly increased abundance (log2-fold change of 7) at 45°C. We identified a novel SecB homolog as a protein export chaperone putatively involved in posttranslational translocation systems, which was down-regulated as growth temperature increased and where the modelled 3D-structure shared architectural similarities with the Escherichia coli SecB protein. Membrane lipid analyses revealed temporal changes in fatty acid composition, cyclization of oleic acid to cyclopropane and novel cyclopentenyl moieties, and reduced synthesis of vaccenic acid, at higher temperatures. An 18kDa α-crystallin domain, Hsp20 family heat shock protein was more highly up-regulated in response to heat stress compared to other molecular chaperones, suggesting this protein could be a useful biomarker of prolonged heat stress in Lb. casei GCRL163.
Collapse
Affiliation(s)
- Kayode T. Adu
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - David S. Nichols
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - Anthony L. Baker
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - John P. Bowman
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Margaret L. Britz
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
14
|
Fan D, Cao S, Zhou Q, Zhang Y, Yue L, Han C, Yang B, Wang Y, Ma Z, Zhu L, Liu C. Exploring the roles of substrate-binding surface of the chaperone site in the chaperone activity of trigger factor. FASEB J 2018; 32:fj201701576. [PMID: 29906241 DOI: 10.1096/fj.201701576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Trigger factor (TF) is a key component of the prokaryotic chaperone network, which is involved in many basic cellular processes, such as protein folding, protein trafficking, and ribosome assembly. The major chaperone site of TF has a cradle-like structure in which protein substrate may fold without interference from other proteins. Here, we investigated in vivo and in vitro the roles of hydrophobic and charged patches on the edge and interior of cradle during TF-assisted protein folding. Our results showed that most of the surface of the cradle was involved in TF-assisted protein folding, which was larger than found in early studies. Although the inner surface of cradle was mostly hydrophobic, both hydrophobic and electrostatic patches were indispensable for TF to facilitate correct protein folding. However, hydrophobic patches were more important for the antiaggregation activity of TF. Furthermore, it was found that the patches on the surface of cradle were involved in TF-assisted protein folding in a spatial and temporal order. These results suggest that the folding-favorable interface between the cradle and substrate was dynamic during TF-assisted protein folding, which enabled TF to be involved in the folding of substrate in an aggressive manner rather than acting as a classic holdase.-Fan, D., Cao, S., Zhou, Q., Zhang, Y., Yue, L., Han, C., Yang, B., Wang, Y., Ma, Z., Zhu, L., Liu, C. Exploring the roles of substrate-binding surface of chaperone site in the chaperone activity of trigger factor.
Collapse
Affiliation(s)
- Dongjie Fan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shunan Cao
- Key Laboratory for Polar Science, State Ocean Administration, Polar Research Institute of China, Shanghai, China
| | - Qiming Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- ChosenMed Technology Company Limited, Jinghai Industrial Park, Economic and Technological Development Area, Beijing, China
| | - You Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lei Yue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chang Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Bo Yang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhuo Ma
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lingxiang Zhu
- National Research Institute for Family Planning (NRIFP), Beijing, China
| | - Chuanpeng Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
15
|
Saio T, Kawagoe S, Ishimori K, Kalodimos CG. Oligomerization of a molecular chaperone modulates its activity. eLife 2018; 7:35731. [PMID: 29714686 PMCID: PMC5988418 DOI: 10.7554/elife.35731] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/30/2018] [Indexed: 11/13/2022] Open
Abstract
Molecular chaperones alter the folding properties of cellular proteins via mechanisms that are not well understood. Here, we show that Trigger Factor (TF), an ATP-independent chaperone, exerts strikingly contrasting effects on the folding of non-native proteins as it transitions between a monomeric and a dimeric state. We used NMR spectroscopy to determine the atomic resolution structure of the 100 kDa dimeric TF. The structural data show that some of the substrate-binding sites are buried in the dimeric interface, explaining the lower affinity for protein substrates of the dimeric compared to the monomeric TF. Surprisingly, the dimeric TF associates faster with proteins and it exhibits stronger anti-aggregation and holdase activity than the monomeric TF. The structural data show that the dimer assembles in a way that substrate-binding sites in the two subunits form a large contiguous surface inside a cavity, thus accounting for the observed accelerated association with unfolded proteins. Our results demonstrate how the activity of a chaperone can be modulated to provide distinct functional outcomes in the cell.
Collapse
Affiliation(s)
- Tomohide Saio
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Soichiro Kawagoe
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Charalampos G Kalodimos
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States
| |
Collapse
|
16
|
Tsirigotaki A, Chatzi KE, Koukaki M, De Geyter J, Portaliou AG, Orfanoudaki G, Sardis MF, Trelle MB, Jørgensen TJD, Karamanou S, Economou A. Long-Lived Folding Intermediates Predominate the Targeting-Competent Secretome. Structure 2018; 26:695-707.e5. [PMID: 29606594 DOI: 10.1016/j.str.2018.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/02/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
Abstract
Secretory preproteins carry signal peptides fused amino-terminally to mature domains. They are post-translationally targeted to cross the plasma membrane in non-folded states with the help of translocases, and fold only at their final destinations. The mechanism of this process of postponed folding is unknown, but is generally attributed to signal peptides and chaperones. We herein demonstrate that, during targeting, most mature domains maintain loosely packed folding intermediates. These largely soluble states are signal peptide independent and essential for translocase recognition. These intermediates are promoted by mature domain features: residue composition, elevated disorder, and reduced hydrophobicity. Consequently, a mature domain folds slower than its cytoplasmic structural homolog. Some mature domains could not evolve stable, loose intermediates, and hence depend on signal peptides for slow folding to the detriment of solubility. These unique features of secretory proteins impact our understanding of protein trafficking, folding, and aggregation, and thus place them in a distinct class.
Collapse
Affiliation(s)
- Alexandra Tsirigotaki
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Katerina E Chatzi
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Marina Koukaki
- Institute of Molecular Biology and Biotechnology, FoRTH, University of Crete, 70013 Heraklion, Crete, Greece
| | - Jozefien De Geyter
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Athina G Portaliou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Georgia Orfanoudaki
- Institute of Molecular Biology and Biotechnology, FoRTH, University of Crete, 70013 Heraklion, Crete, Greece
| | - Marios Frantzeskos Sardis
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Morten Beck Trelle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| |
Collapse
|
17
|
Peschke M, Le Goff M, Koningstein GM, Karyolaimos A, de Gier JW, van Ulsen P, Luirink J. SRP, FtsY, DnaK and YidC Are Required for the Biogenesis of the E. coli Tail-Anchored Membrane Proteins DjlC and Flk. J Mol Biol 2017; 430:389-403. [PMID: 29246766 DOI: 10.1016/j.jmb.2017.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 11/19/2022]
Abstract
Tail-anchored membrane proteins (TAMPs) are relatively simple membrane proteins characterized by a single transmembrane domain (TMD) at their C-terminus. Consequently, the hydrophobic TMD, which acts as a subcellular targeting signal, emerges from the ribosome only after termination of translation precluding canonical co-translational targeting and membrane insertion. In contrast to the well-studied eukaryotic TAMPs, surprisingly little is known about the cellular components that facilitate the biogenesis of bacterial TAMPs. In this study, we identify DjlC and Flk as bona fide Escherichia coli TAMPs and show that their TMDs are necessary and sufficient for authentic membrane targeting of the fluorescent reporter mNeonGreen. Using strains conditional for the expression of known E. coli membrane targeting and insertion factors, we demonstrate that the signal recognition particle (SRP), its receptor FtsY, the chaperone DnaK and insertase YidC are each required for efficient membrane localization of both TAMPs. A close association between the TMD of DjlC and Flk with both the Ffh subunit of SRP and YidC was confirmed by site-directed in vivo photo-crosslinking. In addition, our data suggest that the hydrophobicity of the TMD correlates with the dependency on SRP for efficient targeting.
Collapse
Affiliation(s)
- Markus Peschke
- The Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Mélanie Le Goff
- The Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Gregory M Koningstein
- The Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Alexandros Karyolaimos
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden
| | - Jan-Willem de Gier
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden
| | - Peter van Ulsen
- The Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Joen Luirink
- The Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Directed evolution of SecB chaperones toward toxin-antitoxin systems. Proc Natl Acad Sci U S A 2017; 114:12584-12589. [PMID: 29114057 DOI: 10.1073/pnas.1710456114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
SecB chaperones assist protein export in bacteria. However, certain SecB family members have diverged to become specialized toward the control of toxin-antitoxin (TA) systems known to promote bacterial adaptation to stress and persistence. In such tripartite TA-chaperone (TAC) systems, the chaperone was shown to assist folding and to prevent degradation of its cognate antitoxin, thus facilitating inhibition of the toxin. Here, we used both the export chaperone SecB of Escherichia coli and the tripartite TAC system of Mycobacterium tuberculosis as a model to investigate how generic chaperones can specialize toward the control of TA systems. Through directed evolution of SecB, we have identified and characterized mutations that specifically improve the ability of SecB to control our model TA system without affecting its function in protein export. Such a remarkable plasticity of SecB chaperone function suggests that its substrate binding surface can be readily remodeled to accommodate specific clients.
Collapse
|
19
|
Findik BT, Randall LL. Determination of the intracellular concentration of the export chaperone SecB in Escherichia coli. PLoS One 2017; 12:e0183231. [PMID: 28850586 PMCID: PMC5574556 DOI: 10.1371/journal.pone.0183231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/01/2017] [Indexed: 11/18/2022] Open
Abstract
SecB, a small tetrameric chaperone in Escherichia coli, plays a crucial role during protein export via the general secretory pathway by binding precursor polypeptides in a nonnative conformation and passing them to SecA, the ATPase of the translocon. The dissociation constants for the interactions are known; however to relate studies in vitro to export in a living cell requires knowledge of the concentrations of the proteins in the cell. Presently in the literature there is no report of a rigorous determination of the intracellular concentration of SecB. The values available vary over 60 fold and the details of the techniques used are not given. Here we use quantitative immunoblotting to determine the level of SecB expressed from the chromosome in E.coli grown in two commonly used media. In rich medium SecB was present at 1.6 ± 0.2 μM and in minimal medium at 2.5 ± 0.6 μM. These values allow studies of SecB carried out in vitro to be applied to the situation in the cell as SecB interacts with its binding partners to move precursor polypeptides through the export pathway.
Collapse
Affiliation(s)
- Bahar T. Findik
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Linda L. Randall
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
20
|
Kaithwas V, Bhardwaj K, Gupta D, Bhargava S. System analysis of salt and osmotic stress induced proteins in Nostoc muscorum and Bradyrhizobium japonicum. J Genet Eng Biotechnol 2017; 15:231-237. [PMID: 30647659 PMCID: PMC6296593 DOI: 10.1016/j.jgeb.2016.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/26/2016] [Accepted: 12/19/2016] [Indexed: 11/30/2022]
Abstract
In this study the proteome response of the two diazotrophic organism's viz. Nostoc muscorum and Bradyrhizobium japonicum exposed to salt (NaCl) and osmotic (sucrose) stresses was compared. Out of the total over expressed proteins; we have selected only three over expressed proteins viz. GroEL chaperonin, nitrogenase Mo-Fe protein and argininosuccinate synthase for further analysis, and then we analyzed the amino acid frequencies of all the three over expressed proteins. That led to the conclusion that amino acids e.g. alanine, glycine and valine that were energetically cheaper to produce were showing higher frequencies. This study would help in tracing the phylogenetic relationship between protein families.
Collapse
Affiliation(s)
- Vipin Kaithwas
- Division of Microbiology, Department of Botany, Government Motilal Science College, Bhopal, MP 462008, India
| | - Krati Bhardwaj
- Division of Microbiology, Department of Botany, Government Motilal Science College, Bhopal, MP 462008, India
| | - Durgesh Gupta
- Bioinformatics Centre, Barkatullah University, Bhopal, MP 462026, India
| | - Santosh Bhargava
- Division of Microbiology, Department of Botany, Government Motilal Science College, Bhopal, MP 462008, India
| |
Collapse
|
21
|
Huang C, Kalodimos CG. Structures of Large Protein Complexes Determined by Nuclear Magnetic Resonance Spectroscopy. Annu Rev Biophys 2017; 46:317-336. [DOI: 10.1146/annurev-biophys-070816-033701] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chengdong Huang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Charalampos G. Kalodimos
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
22
|
Avellaneda MJ, Koers EJ, Naqvi MM, Tans SJ. The chaperone toolbox at the single-molecule level: From clamping to confining. Protein Sci 2017; 26:1291-1302. [PMID: 28342267 DOI: 10.1002/pro.3161] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 11/09/2022]
Abstract
Protein folding is well known to be supervised by a dedicated class of proteins called chaperones. However, the core mode of action of these molecular machines has remained elusive due to several reasons including the promiscuous nature of the interactions between chaperones and their many clients, as well as the dynamics and heterogeneity of chaperone conformations and the folding process itself. While troublesome for traditional bulk techniques, these properties make an excellent case for the use of single-molecule approaches. In this review, we will discuss how force spectroscopy, fluorescence microscopy, FCS, and FRET methods are starting to zoom in on this intriguing and diverse molecular toolbox that is of direct importance for protein quality control in cells, as well as numerous degenerative conditions that depend on it.
Collapse
Affiliation(s)
| | - Eline J Koers
- AMOLF institute, Science Park 104, 1098XG Amsterdam, The Netherlands
| | - Mohsin M Naqvi
- AMOLF institute, Science Park 104, 1098XG Amsterdam, The Netherlands
| | - Sander J Tans
- AMOLF institute, Science Park 104, 1098XG Amsterdam, The Netherlands
| |
Collapse
|
23
|
SecA Cotranslationally Interacts with Nascent Substrate Proteins In Vivo. J Bacteriol 2016; 199:JB.00622-16. [PMID: 27795329 PMCID: PMC5198489 DOI: 10.1128/jb.00622-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/03/2016] [Indexed: 12/22/2022] Open
Abstract
SecA is an essential component of the Sec machinery in bacteria, which is responsible for transporting proteins across the cytoplasmic membrane. Recent work from our laboratory indicates that SecA binds to ribosomes. Here, we used two different approaches to demonstrate that SecA also interacts with nascent polypeptides in vivo and that these polypeptides are Sec substrates. First, we photo-cross-linked SecA to ribosomes in vivo and identified mRNAs that copurify with SecA. Microarray analysis of the copurifying mRNAs indicated a strong enrichment for proteins containing Sec-targeting sequences. Second, we used a 2-dimensional (2-D) gel approach to analyze radioactively labeled nascent polypeptides that copurify with SecA, including maltose binding protein, a well-characterized SecA substrate. The interaction of SecA with nascent chains was not strongly affected in cells lacking SecB or trigger factor, both of which also interact with nascent Sec substrates. Indeed, the ability of SecB to interact with nascent chains was disrupted in strains in which the interaction between SecA and the ribosome was defective. Analysis of the interaction of SecA with purified ribosomes containing arrested nascent chains in vitro indicates that SecA can begin to interact with a variety of nascent chains when they reach a length of ∼110 amino acids, which is considerably shorter than the length required for interaction with SecB. Our results suggest that SecA cotranslationally recognizes nascent Sec substrates and that this recognition could be required for the efficient delivery of these proteins to the membrane-embedded Sec machinery. IMPORTANCE SecA is an ATPase that provides the energy for the translocation of proteins across the cytoplasmic membrane by the Sec machinery in bacteria. The translocation of most of these proteins is uncoupled from protein synthesis and is frequently described as “posttranslational.” Here, we show that SecA interacts with nascent Sec substrates. This interaction is not dependent on SecB or trigger factor, which also interact with nascent Sec substrates. Moreover, the interaction of SecB with nascent polypeptides is dependent on the interaction of SecA with the ribosome, suggesting that interaction of the nascent chain with SecA precedes interaction with SecB. Our results suggest that SecA could recognize substrate proteins cotranslationally in order to efficiently target them for uncoupled protein translocation.
Collapse
|
24
|
|
25
|
Abstract
Bacterial toxin–antitoxin (TA) systems, in which a labile antitoxin binds and inhibits the toxin, can promote adaptation and persistence by modulating bacterial growth in response to stress. Some atypical TA systems, known as tripartite toxin–antitoxin–chaperone (TAC) modules, include a molecular chaperone that facilitates folding and protects the antitoxin from degradation. Here we use a TAC module from Mycobacterium tuberculosis as a model to investigate the molecular mechanisms by which classical TAs can become ‘chaperone-addicted'. The chaperone specifically binds the antitoxin at a short carboxy-terminal sequence (chaperone addiction sequence, ChAD) that is not present in chaperone-independent antitoxins. In the absence of chaperone, the ChAD sequence destabilizes the antitoxin, thus preventing toxin inhibition. Chaperone–ChAD pairs can be transferred to classical TA systems or to unrelated proteins and render them chaperone-dependent. This mechanism might be used to optimize the expression and folding of heterologous proteins in bacterial hosts for biotechnological or medical purposes. Some bacterial toxin-antitoxin systems consist of a labile antitoxin that inhibits a toxin, and a chaperone that stabilizes the antitoxin. Here, Bordes et al. identify a sequence within the antitoxin to which the chaperone binds and which can be transferred to other proteins to make them chaperone-dependent.
Collapse
|
26
|
Fan D, Liu L, Zhu L, Peng F, Zhou Q, Liu C. Global Analysis of the Impact of Deleting Trigger Factor on the Transcriptome Profile of Escherichia coli. J Cell Biochem 2016; 118:141-153. [PMID: 27279076 DOI: 10.1002/jcb.25620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/07/2016] [Indexed: 11/12/2022]
Abstract
Trigger factor (TF) is a key component of prokaryotic chaperone network, which is involved various basic cellular processes such as nascent peptide folding, protein trafficking, ribosome assembly. To better understanding the physiological roles of TF, global transcriptome profiles of a variety of TF deletion mutant strains of Escherichia coli were determined. We found that deletion of the tig gene, encoding TF, led to a dramatic alteration of transcriptome profile, not only affecting the gene expression of members of the chaperone network, but also changing the levels of quite a few RNAs related to metabolism and other cellular processes. Further studies showed that this alteration was only partially recovered by knockin of TF domain-deletion mutants into the endogenous tig locus, indicating that structural integrity is crucial for the biological function of TF. Finally, by combining the transcriptome and phenotype results, a physiological mechanism underlying the impact of TF deletion on the transcriptome profile was proposed. J. Cell. Biochem. 118: 141-153, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dongjie Fan
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Harbin, 150080, China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lushan Liu
- Department of Emergency, Beijing Bo'ai Hospital, 10 Jiaomen North Road, Fengtai District, Beijing 100068, China.,China Rehabilitation Research Center, Capital Medical University, Beijing 100068, China
| | - Lingxiang Zhu
- National Research Institute for Family Planning (NRIFP), Beijing 100081, China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, China.,Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan 430072, China
| | - Qiming Zhou
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Harbin, 150080, China.,Beijing CapitalBio MedLab, 88 D2, Branch Six Street, Economic and Technological Development Zone, Beijing 101111, China
| | - Chuanpeng Liu
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Harbin, 150080, China
| |
Collapse
|
27
|
Structural basis for the antifolding activity of a molecular chaperone. Nature 2016; 537:202-206. [PMID: 27501151 PMCID: PMC5161705 DOI: 10.1038/nature18965] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/24/2016] [Indexed: 01/23/2023]
Abstract
Molecular chaperones act on non-native proteins in the cell to prevent their aggregation, premature folding or misfolding. Different chaperones often exert distinct effects, such as acceleration or delay of folding, on client proteins via mechanisms that are poorly understood. Here we report the solution structure of SecB, a chaperone that exhibits strong antifolding activity, in complex with alkaline phosphatase and maltose-binding protein captured in their unfolded states. SecB uses long hydrophobic grooves that run around its disk-like shape to recognize and bind to multiple hydrophobic segments across the length of non-native proteins. The multivalent binding mode results in proteins wrapping around SecB. This unique complex architecture alters the kinetics of protein binding to SecB and confers strong antifolding activity on the chaperone. The data show how the different architectures of chaperones result in distinct binding modes with non-native proteins that ultimately define the activity of the chaperone.
Collapse
|
28
|
Fan D, Liu C, Liu L, Zhu L, Peng F, Zhou Q. Large-scale gene expression profiling reveals physiological response to deletion of chaperone dnaKJ in Escherichia coli. Microbiol Res 2016; 186-187:27-36. [PMID: 27242140 DOI: 10.1016/j.micres.2016.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/28/2016] [Accepted: 03/03/2016] [Indexed: 11/18/2022]
Abstract
Chaperone DnaK and its co-chaperone DnaJ plays various essential roles such as in assisting in the folding of nascent peptides, preventing protein aggregation and maintaining cellular protein homeostasis. Global transcriptional changes in vivo associated with deletion of dnaKJ were monitored using DNA microarray to elucidate the role of DnaKJ at the transcriptional level. Microarray profiling and bioinformatics analysis revealed that a few chaperone and protease genes, stress-related genes and genes involved in the tricarboxylic acid cycle and oxidative phosphorylation were up-regulated, whereas various transporter genes, pentose phosphate pathway and transcriptional regulation related genes were down-regulated. This study is the first to systematically analyze the alterations at the transcriptional level in vivo in deletion of dnaKJ. Fatty acid methyl esters analysis indicated that the amount of unsaturated fatty acid sharply increased and subcellular location prediction analysis showed a marked decrease in transcription of inner-membrane protein genes, which might have triggered the development of aberrant cell shape and susceptibility for some antibiotics in the ΔdnaKJ strain.
Collapse
Affiliation(s)
- Dongjie Fan
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Chuanpeng Liu
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Harbin 150080, China.
| | - Lushan Liu
- Department of Emergency, Beijing Bo'ai Hospital, 10 Jiaomen North Road, Fengtai District, Beijing, 100068, China; China Rehabilitation Research Center, Capital Medical University, Beijing 100068, China
| | - Lingxiang Zhu
- National Research Institute for Family Planning (NRIFP), Beijing 100081, China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan430072, China; Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan 430072, China
| | - Qiming Zhou
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Harbin 150080, China.
| |
Collapse
|
29
|
Snoussi S, El May A, Coquet L, Chan P, Jouenne T, Dé E, Landoulsi A. Unraveling the effects of static magnetic field stress on cytosolic proteins of Salmonella by using a proteomic approach. Can J Microbiol 2015; 62:338-48. [PMID: 26928316 DOI: 10.1139/cjm-2015-0532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigated the adaptation of Salmonella enterica subsp. enterica serovar Hadar to static magnetic field (SMF) exposure (200 mT, 9 h). The proteomic analysis provides an overview of potentially important cytosolic proteins that Salmonella needs to regulate to survive and adapt to magnetic stress. Via 2-dimensional electrophoresis and liquid chromatography tandem mass spectrometry, we compared cytosolic proteomes before and after exposure to magnetic field. A total of 35 proteins displaying more than a 2-fold change were differentially expressed in exposed cells, among which 25 were upregulated and 10 were downregulated. These proteins can be classified mainly into 6 categories: (i) proteins involved in metabolic pathways of carbohydrates, (ii) chaperones and proteins produced in response to oxidative stress, (iii) proteins involved in energy homeostasis, (iv) elongation factors (EF-Tu and EF-Ts), (v) proteins involved in motility, and (vi) proteins involved in molecules transport. Many of the presented observations could be explained, while some represent still-unknown mechanisms. In addition, this study reveals 5 hypothetical proteins. It seems that the stress response to SMF (200 mT) is essentially set up to avoid oxidative damages, with the overexpression of proteins directly involved in oxidative stress response and metabolic switches to counteract oxidative stress. Interestingly, several proteins induced under SMF exposure are found to overlap with those induced by other stresses, such as heat shock and starvation.
Collapse
Affiliation(s)
- Sarra Snoussi
- a Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisie.,b UMR 6270 CNRS, Faculté des sciences, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Alya El May
- a Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisie
| | - Laurent Coquet
- b UMR 6270 CNRS, Faculté des sciences, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Philippe Chan
- b UMR 6270 CNRS, Faculté des sciences, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Thierry Jouenne
- b UMR 6270 CNRS, Faculté des sciences, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Emmanuelle Dé
- b UMR 6270 CNRS, Faculté des sciences, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Ahmed Landoulsi
- a Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisie
| |
Collapse
|
30
|
Méndez JA, Mateos J, Beceiro A, Lopez M, Tomás M, Poza M, Bou G. Quantitative proteomic analysis of host--pathogen interactions: a study of Acinetobacter baumannii responses to host airways. BMC Genomics 2015; 16:422. [PMID: 26025090 PMCID: PMC4449591 DOI: 10.1186/s12864-015-1608-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/01/2015] [Indexed: 01/23/2023] Open
Abstract
Background Acinetobacter baumannii is a major health problem. The most common infection caused by A. baumannii is hospital acquired pneumonia, and the associated mortality rate is approximately 50 %. Neither in vivo nor ex vivo expression profiling has been performed at the proteomic or transcriptomic level for pneumonia caused by A. baumannii. In this study, we characterized the proteome of A. baumannii under conditions that simulate those found in the airways, to gain some insight into how A. baumannii adapts to the host and to improve knowledge about the pathogenesis and virulence of this bacterium. A clinical strain of A. baumannii was grown under different conditions: in the presence of bronchoalveolar lavage fluid from infected rats, of RAW 264.7 cells to simulate conditions in the respiratory tract and in control conditions. We used iTRAQ labelling and LC-MALDI-TOF/TOF to investigate how A. baumannii responds on exposure to macrophages/BALF. Results 179 proteins showed differential expression. In both models, proteins involved in the following processes were over-expressed: (i) pathogenesis and virulence (OmpA, YjjK); (ii) cell wall/membrane/envelope biogenesis (MurC); (iii) energy production and conversion (acetyl-CoA hydrolase); and (iv) translation (50S ribosomal protein L9). Proteins involved in the following were under-expressed: (i) lipid metabolism (short-chain dehydrogenase); (ii) amino acid metabolism and transport (aspartate aminotransferase); (iii) unknown function (DNA-binding protein); and (iv) inorganic ion transport and metabolism (hydroperoxidase). Conclusions We observed alterations in cell wall synthesis and identified 2 upregulated virulence-associated proteins with >15 peptides/protein in both ex vivo models (OmpA and YjjK), suggesting that these proteins are fundamental for pathogenesis and virulence in the airways. This study is the first comprehensive overview of the ex vivo proteome of A. baumannii and is an important step towards identification of diagnostic biomarkers, novel drug targets and potential vaccine candidates in the fight against pneumonia caused by A. baumannii. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1608-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jose Antonio Méndez
- Microbiology Division, INIBIC-Complejo Hospitalario Universitario de la Coruña, A Coruña, Spain.
| | - Jesús Mateos
- Grupo de Proteomica-PBR2-ProteoRed/ISCIII-Servicio de Reumatologia, A Coruña, Spain.
| | - Alejandro Beceiro
- Microbiology Division, INIBIC-Complejo Hospitalario Universitario de la Coruña, A Coruña, Spain.
| | - María Lopez
- Microbiology Division, INIBIC-Complejo Hospitalario Universitario de la Coruña, A Coruña, Spain.
| | - María Tomás
- Microbiology Division, INIBIC-Complejo Hospitalario Universitario de la Coruña, A Coruña, Spain.
| | - Margarita Poza
- Microbiology Division, INIBIC-Complejo Hospitalario Universitario de la Coruña, A Coruña, Spain.
| | - Germán Bou
- Microbiology Division, INIBIC-Complejo Hospitalario Universitario de la Coruña, A Coruña, Spain.
| |
Collapse
|
31
|
Yan S, Wu G. Large-scale evolutionary analyses on SecB subunits of bacterial sec system. PLoS One 2015; 10:e0120417. [PMID: 25775430 PMCID: PMC4361572 DOI: 10.1371/journal.pone.0120417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/21/2015] [Indexed: 01/10/2023] Open
Abstract
Protein secretion systems are extremely important in bacteria because they are involved in many fundamental cellular processes. Of the various secretion systems, the Sec system is composed of seven different subunits in bacteria, and subunit SecB brings secreted preproteins to subunit SecA, which with SecYEG and SecDF forms a complex for the translocation of secreted preproteins through the inner membrane. Because of the wide existence of Sec system across bacteria, eukaryota, and archaea, each subunit of the Sec system has a complicated evolutionary relationship. Until very recently, 5,162 SecB sequences have been documented in UniProtKB, however no phylogenetic study has been conducted on a large sampling of SecBs from bacterial Sec secretion system, and no statistical study has been conducted on such size of SecBs in order to exhaustively investigate their variances of pairwise p-distance along taxonomic lineage from kingdom to phylum, to class, to order, to family, to genus and to organism. To fill in these knowledge gaps, 3,813 bacterial SecB sequences with full taxonomic lineage from kingdom to organism covering 4 phyla, 11 classes, 41 orders, 82 families, 269 genera, and 3,744 organisms were studied. Phylogenetic analysis revealed how the SecBs evolved without compromising their function with examples of 3-D structure comparison of two SecBs from Proteobacteria, and possible factors that affected the SecB evolution were considered. The average pairwise p-distances showed that the variance varied greatly in each taxonomic group. Finally, the variance was further partitioned into inter- and intra-clan variances, which could correspond to vertical and horizontal gene transfers, with relevance for Achromobacter, Brevundimonas, Ochrobactrum, and Pseudoxanthomonas.
Collapse
Affiliation(s)
- Shaomin Yan
- State Key Laboratory of Non-food Biomass Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Industrialization Engineering Institute, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
| | - Guang Wu
- State Key Laboratory of Non-food Biomass Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Industrialization Engineering Institute, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
- * E-mail:
| |
Collapse
|
32
|
Sala A, Bordes P, Genevaux P. Multitasking SecB chaperones in bacteria. Front Microbiol 2014; 5:666. [PMID: 25538690 PMCID: PMC4257090 DOI: 10.3389/fmicb.2014.00666] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/17/2014] [Indexed: 12/17/2022] Open
Abstract
Protein export in bacteria is facilitated by the canonical SecB chaperone, which binds to unfolded precursor proteins, maintains them in a translocation competent state and specifically cooperates with the translocase motor SecA to ensure their proper targeting to the Sec translocon at the cytoplasmic membrane. Besides its key contribution to the Sec pathway, SecB chaperone tasking is critical for the secretion of the Sec-independent heme-binding protein HasA and actively contributes to the cellular network of chaperones that control general proteostasis in Escherichia coli, as judged by the significant interplay found between SecB and the trigger factor, DnaK and GroEL chaperones. Although SecB is mainly a proteobacterial chaperone associated with the presence of an outer membrane and outer membrane proteins, secB-like genes are also found in Gram-positive bacteria as well as in certain phages and plasmids, thus suggesting alternative functions. In addition, a SecB-like protein is also present in the major human pathogen Mycobacterium tuberculosis where it specifically controls a stress-responsive toxin–antitoxin system. This review focuses on such very diverse chaperone functions of SecB, both in E. coli and in other unrelated bacteria.
Collapse
Affiliation(s)
- Ambre Sala
- Laboratoire de Microbiologie et Génétique Moléculaire, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Patricia Bordes
- Laboratoire de Microbiologie et Génétique Moléculaire, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaire, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
33
|
Saio T, Guan X, Rossi P, Economou A, Kalodimos CG. Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 2014; 344:1250494. [PMID: 24812405 DOI: 10.1126/science.1250494] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular chaperones prevent aggregation and misfolding of proteins, but scarcity of structural data has impeded an understanding of the recognition and antiaggregation mechanisms. We report the solution structure, dynamics, and energetics of three trigger factor (TF) chaperone molecules in complex with alkaline phosphatase (PhoA) captured in the unfolded state. Our data show that TF uses multiple sites to bind to several regions of the PhoA substrate protein primarily through hydrophobic contacts. Nuclear magnetic resonance (NMR) relaxation experiments show that TF interacts with PhoA in a highly dynamic fashion, but as the number and length of the PhoA regions engaged by TF increase, a more stable complex gradually emerges. Multivalent binding keeps the substrate protein in an extended, unfolded conformation. The results show how molecular chaperones recognize unfolded polypeptides and, by acting as unfoldases and holdases, prevent the aggregation and premature (mis)folding of unfolded proteins.
Collapse
Affiliation(s)
- Tomohide Saio
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
34
|
Landstorfer R, Simon S, Schober S, Keim D, Scherer S, Neuhaus K. Comparison of strand-specific transcriptomes of enterohemorrhagic Escherichia coli O157:H7 EDL933 (EHEC) under eleven different environmental conditions including radish sprouts and cattle feces. BMC Genomics 2014; 15:353. [PMID: 24885796 PMCID: PMC4048457 DOI: 10.1186/1471-2164-15-353] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 03/31/2014] [Indexed: 12/26/2022] Open
Abstract
Background Multiple infection sources for enterohemorrhagic Escherichia coli O157:H7 (EHEC) are known, including animal products, fruit and vegetables. The ecology of this pathogen outside its human host is largely unknown and one third of its annotated genes are still hypothetical. To identify genetic determinants expressed under a variety of environmental factors, we applied strand-specific RNA-sequencing, comparing the SOLiD and Illumina systems. Results Transcriptomes of EHEC were sequenced under 11 different biotic and abiotic conditions: LB medium at pH4, pH7, pH9, or at 15°C; LB with nitrite or trimethoprim-sulfamethoxazole; LB-agar surface, M9 minimal medium, spinach leaf juice, surface of living radish sprouts, and cattle feces. Of 5379 annotated genes in strain EDL933 (genome and plasmid), a surprising minority of only 144 had null sequencing reads under all conditions. We therefore developed a statistical method to distinguish weakly transcribed genes from background transcription. We find that 96% of all genes and 91.5% of the hypothetical genes exhibit a significant transcriptional signal under at least one condition. Comparing SOLiD and Illumina systems, we find a high correlation between both approaches for fold-changes of the induced or repressed genes. The pathogenicity island LEE showed highest transcriptional activity in LB medium, minimal medium, and after treatment with antibiotics. Unique sets of genes, including many hypothetical genes, are highly up-regulated on radish sprouts, cattle feces, or in the presence of antibiotics. Furthermore, we observed induction of the shiga-toxin carrying phages by antibiotics and confirmed active biofilm related genes on radish sprouts, in cattle feces, and on agar plates. Conclusions Since only a minority of genes (2.7%) were not active under any condition tested (null reads), we suggest that the assumption of significant genome over-annotations is wrong. Environmental transcriptomics uncovered hitherto unknown gene functions and unique regulatory patterns in EHEC. For instance, the environmental function of azoR had been elusive, but this gene is highly active on radish sprouts. Thus, NGS-transcriptomics is an appropriate technique to propose new roles of hypothetical genes and to guide future research. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-353) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Klaus Neuhaus
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany.
| |
Collapse
|
35
|
Chatzi KE, Sardis MF, Economou A, Karamanou S. SecA-mediated targeting and translocation of secretory proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1466-74. [PMID: 24583121 DOI: 10.1016/j.bbamcr.2014.02.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/12/2014] [Accepted: 02/15/2014] [Indexed: 11/26/2022]
Abstract
More than 30 years of research have revealed that the dynamic nanomotor SecA is a central player in bacterial protein secretion. SecA associates with the SecYEG channel and transports polypeptides post-translationally to the trans side of the cytoplasmic membrane. It comprises a helicase-like ATPase core coupled to two domains that provide specificity for preprotein translocation. Apart from SecYEG, SecA associates with multiple ligands like ribosomes, nucleotides, lipids, chaperones and preproteins. It exerts its essential contribution in two phases. First, SecA, alone or in concert with chaperones, helps mediate the targeting of the secretory proteins from the ribosome to the membrane. Next, at the membrane it converts chemical energy to mechanical work and translocates preproteins through the SecYEG channel. SecA is a highly dynamic enzyme, it exploits disorder-order kinetics, swiveling and dissociation of domains and dimer to monomer transformations that are tightly coupled with its catalytic function. Preprotein signal sequences and mature domains exploit these dynamics to manipulate the nanomotor and thus achieve their export at the expense of metabolic energy. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Katerina E Chatzi
- Institute of Molecular Biology and Biotechnology, FORTH, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece; KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Marios Frantzeskos Sardis
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Anastassios Economou
- Institute of Molecular Biology and Biotechnology, FORTH, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece; Department of Biology, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece; KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Spyridoula Karamanou
- Institute of Molecular Biology and Biotechnology, FORTH, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece; KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| |
Collapse
|
36
|
Ternan NG, Jain S, Graham RLJ, McMullan G. Semiquantitative analysis of clinical heat stress in Clostridium difficile strain 630 using a GeLC/MS workflow with emPAI quantitation. PLoS One 2014; 9:e88960. [PMID: 24586458 PMCID: PMC3933415 DOI: 10.1371/journal.pone.0088960] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 01/16/2014] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile is considered to be the most frequent cause of infectious bacterial diarrhoea in hospitals worldwide yet its adaptive ability remains relatively uncharacterised. Here, we used GeLC/MS and the exponentially modified protein abundance index (emPAI) calculation to determine proteomic changes in response to a clinically relevant heat stress. Reproducibility between both biological and technical replicates was good, and a 37°C proteome of 224 proteins was complemented by a 41°C proteome of 202 proteins at a 1% false discovery rate. Overall, 236 C. difficile proteins were identified and functionally categorised, of which 178 were available for comparative purposes. A total of 65 proteins (37%) were modulated by 1.5-fold or more at 41°C compared to 37°C and we noted changes in the majority of proteins associated with amino acid metabolism, including upregulation of the reductive branch of the leucine fermentation pathway. Motility was reduced at 41°C as evidenced by a 2.7 fold decrease in the flagellar filament protein, FliC, and a global increase in proteins associated with detoxification and adaptation to atypical conditions was observed, concomitant with decreases in proteins mediating transcriptional elongation and the initiation of protein synthesis. Trigger factor was down regulated by almost 5-fold. We propose that under heat stress, titration of the GroESL and dnaJK/grpE chaperones by misfolded proteins will, in the absence of trigger factor, prevent nascent chains from emerging efficiently from the ribosome causing translational stalling and also an increase in secretion. The current work has thus allowed development of a heat stress model for the key cellular processes of protein folding and export.
Collapse
Affiliation(s)
- Nigel G. Ternan
- Northern Ireland Centre for Food and Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
- * E-mail:
| | - Shailesh Jain
- Northern Ireland Centre for Food and Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| | - Robert L. J. Graham
- School of Medicine, University of Manchester, Manchester, Greater Manchester, United Kingdom
| | - Geoff McMullan
- Northern Ireland Centre for Food and Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| |
Collapse
|
37
|
Castanié-Cornet MP, Bruel N, Genevaux P. Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1442-56. [PMID: 24269840 DOI: 10.1016/j.bbamcr.2013.11.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/10/2013] [Accepted: 11/13/2013] [Indexed: 12/22/2022]
Abstract
Nascent polypeptides emerging from the ribosome are assisted by a pool of molecular chaperones and targeting factors, which enable them to efficiently partition as cytosolic, integral membrane or exported proteins. Extensive genetic and biochemical analyses have significantly expanded our knowledge of chaperone tasking throughout this process. In bacteria, it is known that the folding of newly-synthesized cytosolic proteins is mainly orchestrated by three highly conserved molecular chaperones, namely Trigger Factor (TF), DnaK (HSP70) and GroEL (HSP60). Yet, it has been reported that these major chaperones are strongly involved in protein translocation pathways as well. This review describes such essential molecular chaperone functions, with emphasis on both the biogenesis of inner membrane proteins and the post-translational targeting of presecretory proteins to the Sec and the twin-arginine translocation (Tat) pathways. Critical interplay between TF, DnaK, GroEL and other molecular chaperones and targeting factors, including SecB, SecA, the signal recognition particle (SRP) and the redox enzyme maturation proteins (REMPs) is also discussed. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Marie-Pierre Castanié-Cornet
- Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France
| | - Nicolas Bruel
- Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
38
|
Sala A, Calderon V, Bordes P, Genevaux P. TAC from Mycobacterium tuberculosis: a paradigm for stress-responsive toxin-antitoxin systems controlled by SecB-like chaperones. Cell Stress Chaperones 2013; 18:129-35. [PMID: 23264229 PMCID: PMC3581621 DOI: 10.1007/s12192-012-0396-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 01/27/2023] Open
Abstract
Bacterial type II toxin-antitoxins (TAs) are two-component systems that modulate growth in response to specific stress conditions, thus promoting adaptation and persistence. The major human pathogen Mycobacterium tuberculosis potentially encodes 75 TAs and it has been proposed that persistence induced by active toxins might be relevant for its pathogenesis. In this work, we focus on the newly discovered toxin-antitoxin-chaperone (TAC) system of M. tuberculosis, an atypical stress-responsive TA system tightly controlled by a molecular chaperone that shows similarity to the canonical SecB chaperone involved in Sec-dependent protein export in Gram-negative bacteria. We performed a large-scale genome screening to reconstruct the evolutionary history of TAC systems and found that TAC is not restricted to mycobacteria and seems to have disseminated in diverse taxonomic groups by horizontal gene transfer. Our results suggest that TAC chaperones are evolutionary related to the solitary chaperone SecB and have diverged to become specialized toward their cognate antitoxins.
Collapse
Affiliation(s)
- Ambre Sala
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique and Université Paul Sabatier, 31000 Toulouse, France
| | - Virginie Calderon
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique and Université Paul Sabatier, 31000 Toulouse, France
| | - Patricia Bordes
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique and Université Paul Sabatier, 31000 Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique and Université Paul Sabatier, 31000 Toulouse, France
- Laboratoire de Microbiologie et Génétique Moléculaires, IBCG, CNRS, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse cedex 09, France
| |
Collapse
|
39
|
Tiwari S, Kumar V, Jayaraj GG, Maiti S, Mapa K. Unique structural modulation of a non-native substrate by cochaperone DnaJ. Biochemistry 2013; 52:1011-8. [PMID: 23331070 DOI: 10.1021/bi301543g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of bacterial DnaJ protein as a cochaperone of DnaK is strongly appreciated. Although DnaJ unaccompanied by DnaK can bind unfolded as well as native substrate proteins, its role as an individual chaperone remains elusive. In this study, we demonstrate that DnaJ binds a model non-native substrate with a low nanomolar dissociation constant and, more importantly, modulates the structure of its non-native state. The structural modulation achieved by DnaJ is different compared to that achieved by the DnaK-DnaJ complex. The nature of structural modulation exerted by DnaJ is suggestive of a unique unfolding activity on the non-native substrate by the chaperone. Furthermore, we demonstrate that the zinc binding motif along with the C-terminal substrate binding domain of DnaJ is necessary and sufficient for binding and the subsequent binding-induced structural alterations of the non-native substrate. We hypothesize that this hitherto unknown structural alteration of non-native states by DnaJ might be important for its chaperoning activity by removing kinetic traps of the folding intermediates.
Collapse
Affiliation(s)
- Satyam Tiwari
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Delhi 110020, India
| | | | | | | | | |
Collapse
|
40
|
Bruel N, Castanié-Cornet MP, Cirinesi AM, Koningstein G, Georgopoulos C, Luirink J, Genevaux P. Hsp33 controls elongation factor-Tu stability and allows Escherichia coli growth in the absence of the major DnaK and trigger factor chaperones. J Biol Chem 2012; 287:44435-46. [PMID: 23148222 DOI: 10.1074/jbc.m112.418525] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Intracellular de novo protein folding is assisted by cellular networks of molecular chaperones. In Escherichia coli, cooperation between the chaperones trigger factor (TF) and DnaK is central to this process. Accordingly, the simultaneous deletion of both chaperone-encoding genes leads to severe growth and protein folding defects. Herein, we took advantage of such defective phenotypes to further elucidate the interactions of chaperone networks in vivo. We show that disruption of the TF/DnaK chaperone pathway is efficiently rescued by overexpression of the redox-regulated chaperone Hsp33. Consistent with this observation, the deletion of hslO, the Hsp33 structural gene, is no longer tolerated in the absence of the TF/DnaK pathway. However, in contrast with other chaperones like GroEL or SecB, suppression by Hsp33 was not attributed to its potential overlapping general chaperone function(s). Instead, we show that overexpressed Hsp33 specifically binds to elongation factor-Tu (EF-Tu) and targets it for degradation by the protease Lon. This synergistic action of Hsp33 and Lon was responsible for the rescue of bacterial growth in the absence of TF and DnaK, by presumably restoring the coupling between translation and the downstream folding capacity of the cell. In support of this hypothesis, we show that overexpression of the stress-responsive toxin HipA, which inhibits EF-Tu, also rescues bacterial growth and protein folding in the absence of TF and DnaK. The relevance for such a convergence of networks of chaperones and proteases acting directly on EF-Tu to modulate the intracellular rate of protein synthesis in response to protein aggregation is discussed.
Collapse
Affiliation(s)
- Nicolas Bruel
- Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), Centre National de la Recherche Scientifique (CNRS) and Université Paul Sabatier, 31062 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Aschtgen MS, Zoued A, Lloubès R, Journet L, Cascales E. The C-tail anchored TssL subunit, an essential protein of the enteroaggregative Escherichia coli Sci-1 Type VI secretion system, is inserted by YidC. Microbiologyopen 2012; 1:71-82. [PMID: 22950014 PMCID: PMC3426401 DOI: 10.1002/mbo3.9] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 01/09/2023] Open
Abstract
Type VI secretion systems (T6SS) are macromolecular complexes present in Gram-negative bacteria. T6SS are structurally similar to the bacteriophage cell-puncturing device and have been shown to mediate bacteria–host or bacteria–bacteria interactions. T6SS assemble from 13 to 20 proteins. In enteroaggregative Escherichia coli (EAEC), one of the subassemblies is composed of four proteins that form a trans-envelope complex: the TssJ outer membrane lipoprotein, the peptidoglycan-anchored inner membrane TagL protein, and two putative inner membrane proteins, TssL and TssM. In this study, we characterized the TssL protein of the EAEC Sci-1 T6SS in terms of localization, topology, and function. TssL is a critical component of the T6SS, anchored to the inner membrane through a single transmembrane segment located at the extreme C-terminus of the protein. We further show that this transmembrane segment is essential for the function of the protein and its proper insertion in the inner membrane is dependent upon YidC and modulated by the Hsp70 homologue DnaK.
Collapse
Affiliation(s)
- Marie-Stéphanie Aschtgen
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université CNRS - UMR 7255, 31 chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
42
|
Abstract
Diverse families of molecular chaperones cooperate to effect protein homeostasis, but the extent and dynamics of direct interactions among chaperone systems within cells remain little studied. Here we used fluorescence resonance energy transfer to systematically map the network of pairwise interactions among the major Escherichia coli chaperones. We demonstrate that in most cases functional cooperation between chaperones within and across families involves physical complex formation, which pre-exists even in the absence of folding substrates. The observed connectivity of the overall chaperone network confirms its partitioning into sub-networks that are responsible for de novo protein folding and maturation and for refolding/disaggregation of misfolded proteins, respectively, and are linked by the Hsp70 system. We further followed heat-induced changes in the cellular chaperone network, revealing two distinct pathways that process heat-denatured substrates. Our data suggest that protein folding within cells relies on highly ordered and direct channelling of substrates between chaperone systems and provide a comprehensive view of the underlying interactions and of their dynamics.
Collapse
Affiliation(s)
- Mohit Kumar
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | |
Collapse
|
43
|
DnaK functions as a central hub in the E. coli chaperone network. Cell Rep 2012; 1:251-64. [PMID: 22832197 DOI: 10.1016/j.celrep.2011.12.007] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/04/2011] [Accepted: 12/23/2011] [Indexed: 12/24/2022] Open
Abstract
Cellular chaperone networks prevent potentially toxic protein aggregation and ensure proteome integrity. Here, we used Escherichia coli as a model to understand the organization of these networks, focusing on the cooperation of the DnaK system with the upstream chaperone Trigger factor (TF) and the downstream GroEL. Quantitative proteomics revealed that DnaK interacts with at least ~700 mostly cytosolic proteins, including ~180 relatively aggregation-prone proteins that utilize DnaK extensively during and after initial folding. Upon deletion of TF, DnaK interacts increasingly with ribosomal and other small, basic proteins, while its association with large multidomain proteins is reduced. DnaK also functions prominently in stabilizing proteins for subsequent folding by GroEL. These proteins accumulate on DnaK upon GroEL depletion and are then degraded, thus defining DnaK as a central organizer of the chaperone network. Combined loss of DnaK and TF causes proteostasis collapse with disruption of GroEL function, defective ribosomal biogenesis, and extensive aggregation of large proteins.
Collapse
|
44
|
Oh E, Becker AH, Sandikci A, Huber D, Chaba R, Gloge F, Nichols RJ, Typas A, Gross CA, Kramer G, Weissman JS, Bukau B. Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 2012; 147:1295-308. [PMID: 22153074 PMCID: PMC3277850 DOI: 10.1016/j.cell.2011.10.044] [Citation(s) in RCA: 348] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 08/10/2011] [Accepted: 10/18/2011] [Indexed: 11/29/2022]
Abstract
As nascent polypeptides exit ribosomes, they are engaged by a series of processing, targeting, and folding factors. Here, we present a selective ribosome profiling strategy that enables global monitoring of when these factors engage polypeptides in the complex cellular environment. Studies of the Escherichia coli chaperone trigger factor (TF) reveal that, though TF can interact with many polypeptides, β-barrel outer-membrane proteins are the most prominent substrates. Loss of TF leads to broad outer-membrane defects and premature, cotranslational protein translocation. Whereas in vitro studies suggested that TF is prebound to ribosomes waiting for polypeptides to emerge from the exit channel, we find that in vivo TF engages ribosomes only after ~100 amino acids are translated. Moreover, excess TF interferes with cotranslational removal of the N-terminal formyl methionine. Our studies support a triaging model in which proper protein biogenesis relies on the fine-tuned, sequential engagement of processing, targeting, and folding factors.
Collapse
Affiliation(s)
- Eugene Oh
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Maillard J, Genevaux P, Holliger C. Redundancy and specificity of multiple trigger factor chaperones in Desulfitobacteria. Microbiology (Reading) 2011; 157:2410-2421. [DOI: 10.1099/mic.0.050880-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ribosome-bound trigger factor (TF) chaperone assists folding of newly synthesized polypeptides and participates in the assembly of macromolecular complexes. In the present study we showed that multiple distinct TF paralogues are present in genomes of Desulfitobacteria, a bacterial genus known for its ability to grow using organohalide respiration. Two full-length TF chaperones and at least one truncated TF (lacking the N-terminal ribosome-binding domain) were identified, the latter being systematically linked to clusters of reductive dehalogenase genes encoding the key enzymes in organohalide respiration. Using a well-characterized heterologous chaperone-deficient Escherichia coli strain lacking both TF and DnaK chaperones, we demonstrated that all three TF chaperones were functional in vivo, as judged by their ability to partially suppress bacterial growth defects and protein aggregation in the absence of both major E. coli chaperones. Next, we found that the N-terminal truncated TF-like protein PceT functions as a dedicated chaperone for the cognate reductive dehalogenase PceA by solubilizing and stabilizing it in the heterologous system. Finally, we showed that PceT specifically interacts with the twin-arginine signal peptide of PceA. Taken together, our data define PceT (and more generally the new RdhT family) as a class of TF-like chaperones involved in the maturation of proteins secreted by the twin-arginine translocation pathway.
Collapse
Affiliation(s)
- Julien Maillard
- Laboratoire de Biotechnologie Environnementale (LBE), Institut d’Ingénierie de l’Environnement (IIE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre National de la Recherche Scientifique (CNRS), Université Paul-Sabatier (UPS), Toulouse, France
| | - Christof Holliger
- Laboratoire de Biotechnologie Environnementale (LBE), Institut d’Ingénierie de l’Environnement (IIE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
46
|
Smock RG, Blackburn ME, Gierasch LM. Conserved, disordered C terminus of DnaK enhances cellular survival upon stress and DnaK in vitro chaperone activity. J Biol Chem 2011; 286:31821-9. [PMID: 21768118 DOI: 10.1074/jbc.m111.265835] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The 70-kDa heat shock proteins (Hsp70s) function as molecular chaperones through the allosteric coupling of their nucleotide- and substrate-binding domains, the structures of which are highly conserved. In contrast, the roles of the poorly structured, variable length C-terminal regions present on Hsp70s remain unclear. In many eukaryotic Hsp70s, the extreme C-terminal EEVD tetrapeptide sequence associates with co-chaperones via binding to tetratricopeptide repeat domains. It is not known whether this is the only function for this region in eukaryotic Hsp70s and what roles this region performs in Hsp70s that do not form complexes with tetratricopeptide repeat domains. We compared C-terminal sequences of 730 Hsp70 family members and identified a novel conservation pattern in a diverse subset of 165 bacterial and organellar Hsp70s. Mutation of conserved C-terminal sequence in DnaK, the predominant Hsp70 in Escherichia coli, results in significant impairment of its protein refolding activity in vitro without affecting interdomain allostery, interaction with co-chaperones DnaJ and GrpE, or the binding of a peptide substrate, defying classical explanations for the chaperoning mechanism of Hsp70. Moreover, mutation of specific conserved sites within the DnaK C terminus reduces the capacity of the cell to withstand stresses on protein folding caused by elevated temperature or the absence of other chaperones. These features of the C-terminal region support a model in which it acts as a disordered tether linked to a conserved, weak substrate-binding motif and that this enhances chaperone function by transiently interacting with folding clients.
Collapse
Affiliation(s)
- Robert G Smock
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
47
|
SecB-like chaperone controls a toxin-antitoxin stress-responsive system in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2011; 108:8438-43. [PMID: 21536872 DOI: 10.1073/pnas.1101189108] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A major step in the biogenesis of newly synthesized precursor proteins in bacteria is their targeting to the Sec translocon at the inner membrane. In gram-negative bacteria, the chaperone SecB binds nonnative forms of precursors and specifically transfers them to the SecA motor component of the translocase, thus facilitating their export. The major human pathogen Mycobacterium tuberculosis is an unusual gram-positive bacterium with a well-defined outer membrane and outer membrane proteins. Assistance to precursor proteins by chaperones in this bacterium remains largely unexplored. Here we show that the product of the previously uncharacterized Rv1957 gene of M. tuberculosis can substitute for SecB functions in Escherichia coli and prevent preprotein aggregation in vitro. Interestingly, in M. tuberculosis, Rv1957 is clustered with a functional stress-responsive higB-higA toxin-antitoxin (TA) locus of unknown function. Further in vivo experiments in E. coli and in Mycobacterium marinum strains that do not possess the TA-chaperone locus show that the severe toxicity of the toxin was entirely inhibited when the antitoxin and the chaperone were jointly expressed. We found that Rv1957 acts directly on the antitoxin by preventing its aggregation and protecting it from degradation. Taken together, our results show that the SecB-like chaperone Rv1957 specifically controls a stress-responsive TA system relevant for M. tuberculosis adaptive response.
Collapse
|
48
|
SecA interacts with ribosomes in order to facilitate posttranslational translocation in bacteria. Mol Cell 2011; 41:343-53. [PMID: 21292166 DOI: 10.1016/j.molcel.2010.12.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 08/06/2010] [Accepted: 12/10/2010] [Indexed: 11/21/2022]
Abstract
In Escherichia coli, translocation of exported proteins across the cytoplasmic membrane is dependent on the motor protein SecA and typically begins only after synthesis of the substrate has already been completed (i.e., posttranslationally). Thus, it has generally been assumed that the translocation machinery also recognizes its protein substrates posttranslationally. Here we report a specific interaction between SecA and the ribosome at a site near the polypeptide exit channel. This interaction is mediated by conserved motifs in SecA and ribosomal protein L23, and partial disruption of this interaction in vivo by introducing mutations into the genes encoding SecA or L23 affects the efficiency of translocation by the posttranslational pathway. Based on these findings, we propose that SecA could interact with its nascent substrates during translation in order to efficiently channel them into the "posttranslational" translocation pathway.
Collapse
|
49
|
Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, Cavicchioli R. Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environ Microbiol 2011; 12:2658-76. [PMID: 20482592 DOI: 10.1111/j.1462-2920.2010.02235.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The cold marine environment constitutes a large proportion of the Earth's biosphere. Sphingopyxis alaskensis was isolated as a numerically abundant bacterium from several cold marine locations, and has been extensively studied as a model marine bacterium. Recently, a metabolic labelling platform was developed to comprehensively identify and quantify proteins from S. alaskensis. The approach incorporated data normalization and statistical validation for the purpose of generating highly confident quantitative proteomics data. Using this approach, we determined quantitative differences between cells grown at 10°C (low temperature) and 30°C (high temperature). Cold adaptation was linked to specific aspects of gene expression: a dedicated protein-folding system using GroESL, DnaK, DnaJ, GrpE, SecB, ClpB and PPIase; polyhydroxyalkanoate-associated storage materials; a link between enzymes in fatty acid metabolism and energy generation; de novo synthesis of polyunsaturated fatty acids in the membrane and cell wall; inorganic phosphate ion transport by a phosphate import PstB homologue; TonB-dependent receptor and bacterioferritin in iron homeostasis; histidine, tryptophan and proline amino acid metabolism; and a large number of proteins without annotated functions. This study provides a new level of understanding on how important marine bacteria can adapt to compete effectively in cold marine environments. This study is also a benchmark for comparative proteomic analyses with other important marine bacteria and other cold-adapted organisms.
Collapse
Affiliation(s)
- Lily Ting
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | | | |
Collapse
|
50
|
Bakkes PJ, Jenewein S, Smits SHJ, Holland IB, Schmitt L. The rate of folding dictates substrate secretion by the Escherichia coli hemolysin type 1 secretion system. J Biol Chem 2010; 285:40573-80. [PMID: 20971850 DOI: 10.1074/jbc.m110.173658] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secretion of the Escherichia coli toxin hemolysin A (HlyA) is catalyzed by the membrane protein complex HlyB-HlyD-TolC and requires a secretion sequence located within the last 60 amino acids of HlyA. The Hly translocator complex exports a variety of passenger proteins when fused N-terminal to this secretion sequence. However, not all fusions are secreted efficiently. Here, we demonstrate that the maltose binding protein (MalE) lacking its natural export signal and fused to the HlyA secretion signal is poorly secreted by the Hly system. We anticipated that folding kinetics might be limiting secretion, and we therefore introduced the "folding" mutation Y283D. Indeed this mutant fusion protein was secreted at a much higher level. This level was further enhanced by the introduction of a second MalE folding mutation (V8G or A276G). Secretion did not require the molecular chaperone SecB. Folding analysis revealed that all mutations reduced the refolding rate of the substrate, whereas the unfolding rate was unaffected. Thus, the efficiency of secretion by the Hly system is dictated by the folding rate of the substrate. Moreover, we demonstrate that fusion proteins defective in export can be engineered for secretion while still retaining function.
Collapse
Affiliation(s)
- Patrick J Bakkes
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | | | | | | | | |
Collapse
|