1
|
Jiang YZ, Hu LY, Chen MS, Wang XJ, Tan CN, Xue PP, Yu T, He XY, Xiang LX, Xiao YN, Li XL, Ran Q, Li ZJ, Chen L. GATA binding protein 2 mediated ankyrin repeat domain containing 26 high expression in myeloid-derived cell lines. World J Stem Cells 2024; 16:538-550. [PMID: 38817334 PMCID: PMC11135246 DOI: 10.4252/wjsc.v16.i5.538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Thrombocytopenia 2, an autosomal dominant inherited disease characterized by moderate thrombocytopenia, predisposition to myeloid malignancies and normal platelet size and function, can be caused by 5'-untranslated region (UTR) point mutations in ankyrin repeat domain containing 26 (ANKRD26). Runt related transcription factor 1 (RUNX1) and friend leukemia integration 1 (FLI1) have been identified as negative regulators of ANKRD26. However, the positive regulators of ANKRD26 are still unknown. AIM To prove the positive regulatory effect of GATA binding protein 2 (GATA2) on ANKRD26 transcription. METHODS Human induced pluripotent stem cells derived from bone marrow (hiPSC-BM) and urothelium (hiPSC-U) were used to examine the ANKRD26 expression pattern in the early stage of differentiation. Then, transcriptome sequencing of these iPSCs and three public transcription factor (TF) databases (Cistrome DB, animal TFDB and ENCODE) were used to identify potential TF candidates for ANKRD26. Furthermore, overexpression and dual-luciferase reporter experiments were used to verify the regulatory effect of the candidate TFs on ANKRD26. Moreover, using the GENT2 platform, we analyzed the relationship between ANKRD26 expression and overall survival in cancer patients. RESULTS In hiPSC-BMs and hiPSC-Us, we found that the transcription levels of ANKRD26 varied in the absence of RUNX1 and FLI1. We sequenced hiPSC-BM and hiPSC-U and identified 68 candidate TFs for ANKRD26. Together with three public TF databases, we found that GATA2 was the only candidate gene that could positively regulate ANKRD26. Using dual-luciferase reporter experiments, we showed that GATA2 directly binds to the 5'-UTR of ANKRD26 and promotes its transcription. There are two identified binding sites of GATA2 that are located 2 kb upstream of the TSS of ANKRD26. In addition, we discovered that high ANKRD26 expression is always related to a more favorable prognosis in breast and lung cancer patients. CONCLUSION We first discovered that the transcription factor GATA2 plays a positive role in ANKRD26 transcription and identified its precise binding sites at the promoter region, and we revealed the importance of ANKRD26 in many tissue-derived cancers.
Collapse
Affiliation(s)
- Yang-Zhou Jiang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Lan-Yue Hu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Mao-Shan Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Xiao-Jie Wang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Cheng-Ning Tan
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Pei-Pei Xue
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Teng Yu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Xiao-Yan He
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Li-Xin Xiang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Yan-Ni Xiao
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Xiao-Liang Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Qian Ran
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Zhong-Jun Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Li Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China.
| |
Collapse
|
2
|
Kast DJ, Jansen S. Purification of modified mammalian actin isoforms for in vitro reconstitution assays. Eur J Cell Biol 2023; 102:151363. [PMID: 37778219 PMCID: PMC10872616 DOI: 10.1016/j.ejcb.2023.151363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/19/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023] Open
Abstract
In vitro reconstitution assays using purified actin have greatly improved our understanding of cytoskeletal dynamics and their regulation by actin-binding proteins. However, early purification methods consisted of harsh conditions to obtain pure actin and often did not include correct maturation and obligate modification of the isolated actin monomers. Novel insights into the folding requirements and N-terminal processing of actin as well as a better understanding of the interaction of actin with monomer sequestering proteins such as DNaseI, profilin and gelsolin, led to the development of more gentle approaches to obtain pure recombinant actin isoforms with known obligate modifications. This review summarizes the approaches that can be employed to isolate natively folded endogenous and recombinant actin from tissues and cells. We further emphasize the use and limitations of each method and describe how these methods can be implemented to study actin PTMs, disease-related actin mutations and novel actin-like proteins.
Collapse
Affiliation(s)
- David J Kast
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States.
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States.
| |
Collapse
|
3
|
Association of Inherited Copy Number Variation in ADAM3A and ADAM5 Pseudogenes with Oropharynx Cancer Risk and Outcome. Genes (Basel) 2022; 13:genes13122408. [PMID: 36553675 PMCID: PMC9778539 DOI: 10.3390/genes13122408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Inherited copy number variations (CNVs) can provide valuable information for cancer susceptibility and prognosis. However, their association with oropharynx squamous cell carcinoma (OPSCC) is still poorly studied. Using microarrays analysis, we identified three inherited CNVs associated with OPSCC risk, of which one was validated in 152 OPSCC patients and 155 controls and related to pseudogene-microRNA-mRNA interaction. Individuals with three or more copies of ADAM3A and ADAM5 pseudogenes (8p11.22 chromosome region) were under 6.49-fold increased risk of OPSCC. ADAM5 shared a highly homologous sequence with the ADAM9 3'-UTR, predicted to be a binding site for miR-122b-5p. Individuals carrying more than three copies of ADAM3A and ADAM5 presented higher ADAM9 expression levels. Moreover, patients with total deletion or one copy of pseudogenes and with higher expression of miR-122b-5p presented worse prognoses. Our data suggest, for the first time, that ADAM3A and ADAM5 pseudogene-inherited CNV could modulate OPSCC occurrence and prognosis, possibly through the interaction of ADAM5 pseudogene transcript, miR-122b-5p, and ADAM9.
Collapse
|
4
|
Qazi S, Jit BP, Das A, Karthikeyan M, Saxena A, Ray M, Singh AR, Raza K, Jayaram B, Sharma A. BESFA: bioinformatics based evolutionary, structural & functional analysis of prostrate, Placenta, Ovary, Testis, and Embryo (POTE) paralogs. Heliyon 2022; 8:e10476. [PMID: 36132183 PMCID: PMC9483601 DOI: 10.1016/j.heliyon.2022.e10476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
The POTE family comprises 14 paralogues and is primarily expressed in Prostrate, Placenta, Ovary, Testis, Embryo (POTE), and cancerous cells. The prospective function of the POTE protein family under physiological conditions is less understood. We systematically analyzed their cellular localization and molecular docking analysis to elucidate POTE proteins' structure, function, and Adaptive Divergence. Our results suggest that group three POTE paralogs (POTEE, POTEF, POTEI, POTEJ, and POTEKP (a pseudogene)) exhibits significant variation among other members could be because of their Adaptive Divergence. Furthermore, our molecular docking studies on POTE protein revealed the highest binding affinity with NCI-approved anticancer compounds. Additionally, POTEE, POTEF, POTEI, and POTEJ were subject to an explicit molecular dynamic simulation for 50ns. MM-GBSA and other essential electrostatics were calculated that showcased that only POTEE and POTEF have absolute binding affinities with minimum energy exploitation. Thus, this study’s outcomes are expected to drive cancer research to successful utilization of POTE genes family as a new biomarker, which could pave the way for the discovery of new therapies.
Collapse
Affiliation(s)
- Sahar Qazi
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi 110029, India
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi 110029, India
| | - Abhishek Das
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi 110029, India
| | - Muthukumarasamy Karthikeyan
- National Chemical Laboratory, Council of Scientific and Industrial Research (NCL-CSIR), Pune, Maharashtra, India
| | - Amit Saxena
- Centre for Development of Advanced Computing, Pune, Maharashtra, India
| | - M.D. Ray
- Dr. B.R.A Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi 110029, India
| | - Angel Rajan Singh
- Dr. B.R.A Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi 110029, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - B. Jayaram
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology, Delhi, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi 110029, India
- Corresponding author.
| |
Collapse
|
5
|
Vyas H, Alcheikh A, Lowe G, Stevenson WS, Morgan NV, Rabbolini DJ. Prevalence and natural history of variants in the ANKRD26 gene: a short review and update of reported cases. Platelets 2022; 33:1107-1112. [PMID: 35587581 PMCID: PMC9555274 DOI: 10.1080/09537104.2022.2071853] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
ANKRD26 is a highly conserved gene located on chromosome 10p12.1 which has shown to play a role in normal megakaryocyte differentiation. ANKRD26-related thrombocytopenia, or thrombocytopenia 2, is an inherited thrombocytopenia with mild bleeding diathesis resulting from point mutations the 5ʹUTR of the ANKRD26 gene. Point mutations in the 5ʹUTR region have been shown to prevent transcription factor-mediated downregulation of ANKRD26 in normal megakaryocyte differentiation. Patients with ANKRD26-related thrombocytopenia have a predisposition to developing hematological malignancies, with acute myeloid leukemia and myelodysplastic syndrome most commonly described in the literature. We review the clinical features and biological mechanisms of ANKRD26-related thrombocytopenia and summarize known cases in the literature.
Collapse
Affiliation(s)
- Hrushikesh Vyas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ahmad Alcheikh
- Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, Australia
| | - Gillian Lowe
- Comprehensive Care Haemophilia Centre, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - William S Stevenson
- Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, Australia.,Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - David J Rabbolini
- Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
6
|
Qazi S, Raza K. In silico approach to understand epigenetics of POTEE in ovarian cancer. J Integr Bioinform 2021; 18:jib-2021-0028. [PMID: 34788504 PMCID: PMC8709732 DOI: 10.1515/jib-2021-0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer is the third leading cause of cancer-related deaths in India. Epigenetics mechanisms seemingly plays an important role in ovarian cancer. This paper highlights the crucial epigenetic changes that occur in POTEE that get hypomethylated in ovarian cancer. We utilized the POTEE paralog mRNA sequence to identify major motifs and also performed its enrichment analysis. We identified 6 motifs of varying lengths, out of which only three motifs, including CTTCCAGCAGATGTGGATCA, GGAACTGCC, and CGCCACATGCAGGC were most likely to be present in the nucleotide sequence of POTEE. By enrichment and occurrences identification analyses, we rectified the best match motif as CTTCCAGCAGATGT. Since there is no experimentally verified structure of POTEE paralog, thus, we predicted the POTEE structure using an automated workflow for template-based modeling using the power of a deep neural network. Additionally, to validate our predicted model we used AlphaFold predicted POTEE structure and observed that the residual stretch starting from 237-958 had a very high confidence per residue. Furthermore, POTEE predicted model stability was evaluated using replica exchange molecular dynamic simulation for 50 ns. Our network-based epigenetic analysis discerns only 10 highly significant, direct, and physical associators of POTEE. Our finding aims to provide new insights about the POTEE paralog.
Collapse
Affiliation(s)
- Sahar Qazi
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
7
|
Kasahara Y, Osuka S, Takasaki N, Bayasula, Koya Y, Nakanishi N, Murase T, Nakamura T, Goto M, Iwase A, Kajiyama H. Primate-specific POTE-actin gene could play a role in human folliculogenesis by controlling the proliferation of granulosa cells. Cell Death Discov 2021; 7:186. [PMID: 34285194 PMCID: PMC8292509 DOI: 10.1038/s41420-021-00566-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Patients with primary ovarian insufficiency (POI) often have a high prevalence of autoimmune disorders. To identify antigenic molecules associated with ovarian autoimmunity, we performed immunoprecipitation (IP) screening using serum from patients with POI and the established human granulosa cell line (HGrC1). POTE ankyrin domain family member E (POTEE) and POTE ankyrin domain family member F (POTEF), proteins specific to primates, were identified as candidate antigens. Using immunohistochemistry (IHC) with human ovarian tissue, POTEE or POTEF was weakly seen in the granulosa cells (GCs) of primordial follicles and primary follicles, and strongly in large antral follicles and luteal cells. Interestingly, no signals were detected in growing GCs in secondary, preantral, and small antral follicles. Thus, to explore the function of POTEE and POTEF in human folliculogenesis, we established HGrC1 cell lines with drug-inducible expression of POTEF. Expression of POTEF significantly suppressed cell proliferation in HGrC1 cells. Furthermore, chaperonin containing TCP-1 complex (CCT) components, which affect folding proteins required for cell proliferation, was bound to the actin domain of POTEF protein. Although CCT is normally localized only around the Golgi apparatus, TCP-1α, a component of CCT, co-migrated closer to the cell membrane when POTEF expression was induced. These data suggest that the interaction between POTEF and CCT components impairs the usual function of CCT during cell growth. In addition, over-accumulation of POTEF in HGrC1 cells leads to autophagic failure. It was recently reported that knockout of an autophagic gene in mice leads to a phenotype similar to human POI. These results suggested that a proper amount of POTEF is required for the maintenance of GCs in follicle pools, whereas POTEF overaccumulation might be involved in follicle atresia and the development of POI. We also showed the possibility that POTEF could be an antigen involved in ovarian autoimmunity.
Collapse
Affiliation(s)
- Yukiyo Kasahara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan. .,Department of Maternal and Perinatal Medicine, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Nobuyoshi Takasaki
- Bell Research Center for Reproductive Health and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Bayasula
- Bell Research Center for Reproductive Health and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yoshihiro Koya
- Bell Research Center for Reproductive Health and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Natsuki Nakanishi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomohiko Murase
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomoko Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Maki Goto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
8
|
Phytochemicals from Ayurvedic plants as potential medicaments for ovarian cancer: an in silico analysis. J Mol Model 2021; 27:114. [PMID: 33765217 DOI: 10.1007/s00894-021-04736-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
Ovarian cancer is one of the highly prominent gynecological malignancies after breast cancer. Although myriad literature is available, there is no specific biomarker available for the personalized treatment strategy. The unavailability of effective drug therapy for ovarian cancer calls for an urgent push in its development from the multidisciplinary scientific community. Indian Ayurvedic medicine pharmacology is widely appreciated and accepted for its immense healthcare benefits. Bioinformatics and cheminformatics approaches can be effectively used to screen phytochemicals present in the Indian Ayurvedic plants against ovarian cancer target receptors. Recent studies discern that POTE, a cancer-testis antigen (CTA) family, plays a crucial role in the proliferation and progression of cancers including ovarian cancer. Specifically, POTEE paralog has been observed to be hypermethylated in ovarian cancer. This study undertakes an in silico analysis of Indian Ayurvedic plants for their anticancer efficacy against ovarian cancer proliferation target receptor POTEE. Structures of 100 phytochemicals from 11 Ayurvedic plants were screened with ADME criteria, and qualified phytochemicals were subjected to molecular docking and interaction analysis. Only 6 phytochemicals having a high affinity to the target receptor (POTEE) were then subjected to an all-atom replica exchange molecular dynamics simulation for 50 ns. Binding affinities of 6 phytochemicals cedeodarin, deodarin, hematoxylin, matairesinol, quercetin, and taxifolin with POTEE were -8.1, -7.7, -7.7, -7.9, -8.0, and - 7.7 kcal/mol, respectively, and their RMSD were recorded as zero. This study concludes that phytochemicals present in Indian Ayurvedic plants namely Cedrus deodara and Asparagus racemosus possess inhibitory effects against ovarian cancer proliferation receptor POTEE.
Collapse
|
9
|
|
10
|
Malek N, Michrowska A, Mazurkiewicz E, Mrówczyńska E, Mackiewicz P, Mazur AJ. The origin of the expressed retrotransposed gene ACTBL2 and its influence on human melanoma cells' motility and focal adhesion formation. Sci Rep 2021; 11:3329. [PMID: 33558623 PMCID: PMC7870945 DOI: 10.1038/s41598-021-82074-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
We have recently found that β-actin-like protein 2 (actbl2) forms complexes with gelsolin in human melanoma cells and can polymerize. Phylogenetic and bioinformatic analyses showed that actbl2 has a common origin with two non-muscle actins, which share a separate history from the muscle actins. The actin groups' divergence started at the beginning of vertebrate evolution, and actbl2 actins are characterized by the largest number of non-conserved amino acid substitutions of all actins. We also discovered that ACTBL2 is expressed at a very low level in several melanoma cell lines, but a small subset of cells exhibited a high ACTBL2 expression. We found that clones with knocked-out ACTBL2 (CR-ACTBL2) or overexpressing actbl2 (OE-ACTBL2) differ from control cells in the invasion, focal adhesion formation, and actin polymerization ratio, as well as in the formation of lamellipodia and stress fibers. Thus, we postulate that actbl2 is the seventh actin isoform and is essential for cell motility.
Collapse
Affiliation(s)
- Natalia Malek
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Aleksandra Michrowska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Ewa Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Ewa Mrówczyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
11
|
Xu Q, Chen J, Peng M, Duan S, Hu Y, Guo D, Geng J, Zhou J. POTEE promotes colorectal carcinoma progression via activating the Rac1/Cdc42 pathway. Exp Cell Res 2020; 390:111933. [PMID: 32142855 DOI: 10.1016/j.yexcr.2020.111933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/22/2020] [Accepted: 02/27/2020] [Indexed: 12/21/2022]
Abstract
Current studies have shown that POTE ankyrin domain family members have high expressions as tumor antigens in malignant tumors, such as prostate cancer, ovarian cancer, breast cancer and the like. POTEE is a member of the POTE anchor protein family E. However, its role in colorectal carcinoma (CRC) has not been studied. In this study, the function of POTEE in CRC was examined for the first time and its correlation with CRC cell biological behaviors was analyzed. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry revealed that POTEE was remarkably overexpressed in CRC and associated with an aggressive phenotype. We also found that POTEE was localized in the cytoplasm. In addition, downregulation of POTEE expression can notably inhibit the proliferation, migration, and invasion of CRC cell in vitro, and repressed tumor growth and metastasis in vivo. In contrast, overexpression of POTEE could promote the aggressive behaviors of CRC cells. Mechanistically, POTEE promoted CRC migration, invasion and epithelial-mesenchymal transition (EMT) by increasing the activation of Rac1 and Cdc42. To summarize, these results suggested that POTEE might serve as an oncogene for CRC tumorigenesis and progression, and may become a novel molecular marker for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Qiong Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jianxiong Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Man Peng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shiyu Duan
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yukun Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Dan Guo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jian Geng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jun Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
12
|
Evolutionary Dynamics of the POTE Gene Family in Human and Nonhuman Primates. Genes (Basel) 2020; 11:genes11020213. [PMID: 32085667 PMCID: PMC7073761 DOI: 10.3390/genes11020213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 12/20/2022] Open
Abstract
POTE (prostate, ovary, testis, and placenta expressed) genes belong to a primate-specific gene family expressed in prostate, ovary, and testis as well as in several cancers including breast, prostate, and lung cancers. Due to their tumor-specific expression, POTEs are potential oncogenes, therapeutic targets, and biomarkers for these malignancies. This gene family maps within human and primate segmental duplications with a copy number ranging from two to 14 in different species. Due to the high sequence identity among the gene copies, specific efforts are needed to assemble these loci in order to correctly define the organization and evolution of the gene family. Using single-molecule, real-time (SMRT) sequencing, in silico analyses, and molecular cytogenetics, we characterized the structure, copy number, and chromosomal distribution of the POTE genes, as well as their expression in normal and disease tissues, and provided a comparative analysis of the POTE organization and gene structure in primate genomes. We were able, for the first time, to de novo sequence and assemble a POTE tandem duplication in marmoset that is misassembled and collapsed in the reference genome, thus revealing the presence of a second POTE copy. Taken together, our findings provide comprehensive insights into the evolutionary dynamics of the primate-specific POTE gene family, involving gene duplications, deletions, and long interspersed nuclear element (LINE) transpositions to explain the actual repertoire of these genes in human and primate genomes.
Collapse
|
13
|
Sharma A, Albahrani M, Zhang W, Kufel CN, James SR, Odunsi K, Klinkebiel D, Karpf AR. Epigenetic activation of POTE genes in ovarian cancer. Epigenetics 2019; 14:185-197. [PMID: 30764732 DOI: 10.1080/15592294.2019.1581590] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The POTE gene family consists of 14 homologous genes localized to autosomal pericentromeres, and a sub-set of POTEs are cancer-testis antigen (CTA) genes. POTEs are over-expressed in epithelial ovarian cancer (EOC), including the high-grade serous subtype (HGSC), and expression of individual POTEs correlates with chemoresistance and reduced survival in HGSC. The mechanisms driving POTE overexpression in EOC and other cancers is unknown. Here, we investigated the role of epigenetics in regulating POTE expression, with a focus on DNA hypomethylation. Consistent with their pericentromeric localization, Pan-POTE expression in EOC correlated with expression of the pericentromeric repeat NBL2, which was not the case for non-pericentromeric CTAs. POTE genomic regions contain LINE-1 (L1) sequences, and Pan-POTE expression correlated with both global and POTE-specific L1 hypomethylation in EOC. Analysis of individual POTEs using RNA-seq and DNA methylome data from fallopian tube epithelia (FTE) and HGSC revealed that POTEs C, E, and F have increased expression in HGSC in conjunction with DNA hypomethylation at 5' promoter or enhancer regions. Moreover, POTEs C/E/F showed additional increased expression in recurrent HGSC in conjunction with 5' hypomethylation, using patient-matched samples. Experiments using decitabine treatment and DNMT knockout cell lines verified a functional contribution of DNA methylation to POTE repression, and epigenetic drug combinations targeting histone deacetylases (HDACs) and histone methyltransferases (HMTs) in combination with decitabine further increased POTE expression. In summary, several alterations of the cancer epigenome, including pericentromeric activation, global and locus-specific L1 hypomethylation, and locus-specific 5' CpG hypomethylation, converge to promote POTE expression in ovarian cancer.
Collapse
Affiliation(s)
- Ashok Sharma
- a Eppley Institute , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Mustafa Albahrani
- a Eppley Institute , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Wa Zhang
- a Eppley Institute , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Christina N Kufel
- c Department of Pharmacology and Therapeutics , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| | - Smitha R James
- c Department of Pharmacology and Therapeutics , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| | - Kunle Odunsi
- d Department of Immunology , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA.,e Department of Gynecologic Oncology , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA.,f Center for Immunotherapy , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| | - David Klinkebiel
- b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA.,g Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Adam R Karpf
- a Eppley Institute , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA.,c Department of Pharmacology and Therapeutics , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| |
Collapse
|
14
|
Barger CJ, Zhang W, Sharma A, Chee L, James SR, Kufel CN, Miller A, Meza J, Drapkin R, Odunsi K, Klinkebiel D, Karpf AR. Expression of the POTE gene family in human ovarian cancer. Sci Rep 2018; 8:17136. [PMID: 30459449 PMCID: PMC6244393 DOI: 10.1038/s41598-018-35567-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/07/2018] [Indexed: 12/23/2022] Open
Abstract
The POTE family includes 14 genes in three phylogenetic groups. We determined POTE mRNA expression in normal tissues, epithelial ovarian and high-grade serous ovarian cancer (EOC, HGSC), and pan-cancer, and determined the relationship of POTE expression to ovarian cancer clinicopathology. Groups 1 & 2 POTEs showed testis-specific expression in normal tissues, consistent with assignment as cancer-testis antigens (CTAs), while Group 3 POTEs were expressed in several normal tissues, indicating they are not CTAs. Pan-POTE and individual POTEs showed significantly elevated expression in EOC and HGSC compared to normal controls. Pan-POTE correlated with increased stage, grade, and the HGSC subtype. Select individual POTEs showed increased expression in recurrent HGSC, and POTEE specifically associated with reduced HGSC OS. Consistent with tumors, EOC cell lines had significantly elevated Pan-POTE compared to OSE and FTE cells. Notably, Group 1 & 2 POTEs (POTEs A/B/B2/C/D), Group 3 POTE-actin genes (POTEs E/F/I/J/KP), and other Group 3 POTEs (POTEs G/H/M) show within-group correlated expression, and pan-cancer analyses of tumors and cell lines confirmed this relationship. Based on their restricted expression in normal tissues and increased expression and association with poor prognosis in ovarian cancer, POTEs are potential oncogenes and therapeutic targets in this malignancy.
Collapse
Affiliation(s)
- Carter J Barger
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Wa Zhang
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Ashok Sharma
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Linda Chee
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Smitha R James
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Christina N Kufel
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Austin Miller
- Department of Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jane Meza
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, 68198-4375, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kunle Odunsi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - David Klinkebiel
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Adam R Karpf
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA.
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
15
|
Identification of MΦ specific POTEE expression: Its role in mTORC2 activation via protein-protein interaction in TAMs. Cell Immunol 2018; 335:30-40. [PMID: 30420269 DOI: 10.1016/j.cellimm.2018.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 01/28/2023]
Abstract
POTE is known as cancer antigen, expressed in many cancers, along with very few normal tissues like prostate, ovary, testes and embryo. Till date, POTEE identified as majorly expressed POTE paralog. Functionally, POTEF regulates TLR signaling which play important role in innate immunity provided clue about expression of POTE in immune cells. We have chosen three Thp1monocytes, Jurkat T1 and MΦ cells as a model. Here, first time we report expression of POTEE in immune cells specifically only in MΦ but not in monocytes or T-cells. In addition, expression level remains unaltered in MΦ subtypes M1 and M2 and MΦ subjected to various stresses, except MΦs treated with Hyp-CM where MΦs acquires properties of TAMs. In TAMs, POTEE was involved differential protein-protein interaction with mTOR, RICTOR, and Rad51 indicating its biological role in cell invasion through mTORC2 activation. siRNA mediated knockdown of POTEE suggests its importance in cell survival of MΦs as well as TAMs.
Collapse
|
16
|
Proteomic differences in amyloid plaques in rapidly progressive and sporadic Alzheimer's disease. Acta Neuropathol 2017; 133:933-954. [PMID: 28258398 DOI: 10.1007/s00401-017-1691-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/22/2017] [Accepted: 02/26/2017] [Indexed: 12/16/2022]
Abstract
Rapidly progressive Alzheimer's disease (rpAD) is a particularly aggressive form of Alzheimer's disease, with a median survival time of 7-10 months after diagnosis. Why these patients have such a rapid progression of Alzheimer's disease is currently unknown. To further understand pathological differences between rpAD and typical sporadic Alzheimer's disease (sAD) we used localized proteomics to analyze the protein differences in amyloid plaques in rpAD and sAD. Label-free quantitative LC-MS/MS was performed on amyloid plaques microdissected from rpAD and sAD patients (n = 22 for each patient group) and protein expression differences were quantified. On average, 913 ± 30 (mean ± SEM) proteins were quantified in plaques from each patient and 279 of these proteins were consistently found in plaques from every patient. We found significant differences in protein composition between rpAD and sAD plaques. We found that rpAD plaques contained significantly higher levels of neuronal proteins (p = 0.0017) and significantly lower levels of astrocytic proteins (p = 1.08 × 10-6). Unexpectedly, cumulative protein differences in rpAD plaques did not suggest accelerated typical sAD. Plaques from patients with rpAD were particularly abundant in synaptic proteins, especially those involved in synaptic vesicle release, highlighting the potential importance of synaptic dysfunction in the accelerated development of plaque pathology in rpAD. Combined, our data provide new direct evidence that amyloid plaques do not all have the same protein composition and that the proteomic differences in plaques could provide important insight into the factors that contribute to plaque development. The cumulative protein differences in rpAD plaques suggest rpAD may be a novel subtype of Alzheimer's disease.
Collapse
|
17
|
It Is Imperative to Establish a Pellucid Definition of Chimeric RNA and to Clear Up a Lot of Confusion in the Relevant Research. Int J Mol Sci 2017; 18:ijms18040714. [PMID: 28350330 PMCID: PMC5412300 DOI: 10.3390/ijms18040714] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 12/27/2022] Open
Abstract
There have been tens of thousands of RNAs deposited in different databases that contain sequences of two genes and are coined chimeric RNAs, or chimeras. However, "chimeric RNA" has never been lucidly defined, partly because "gene" itself is still ill-defined and because the means of production for many RNAs is unclear. Since the number of putative chimeras is soaring, it is imperative to establish a pellucid definition for it, in order to differentiate chimeras from regular RNAs. Otherwise, not only will chimeric RNA studies be misled but also characterization of fusion genes and unannotated genes will be hindered. We propose that only those RNAs that are formed by joining two RNA transcripts together without a fusion gene as a genomic basis should be regarded as authentic chimeras, whereas those RNAs transcribed as, and cis-spliced from, single transcripts should not be deemed as chimeras. Many RNAs containing sequences of two neighboring genes may be transcribed via a readthrough mechanism, and thus are actually RNAs of unannotated genes or RNA variants of known genes, but not chimeras. In today's chimeric RNA research, there are still several key flaws, technical constraints and understudied tasks, which are also described in this perspective essay.
Collapse
|
18
|
Increased alpha-defensin expression is associated with risk of coronary heart disease: a feasible predictive inflammatory biomarker of coronary heart disease in hyperlipidemia patients. Lipids Health Dis 2016; 15:117. [PMID: 27430968 PMCID: PMC4949746 DOI: 10.1186/s12944-016-0285-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/30/2016] [Indexed: 02/05/2023] Open
Abstract
Background Atherosclerosis is a multifactorial disorder of the heart vessels that develops over decades, coupling inflammatory mechanisms and elevated total cholesterol levels under the influence of genetic and environmental factors. Without effective intervention, atherosclerosis consequently causes coronary heart disease (CHD), which leads to increased risk of sudden death. Polymorphonuclear neutrophils play a pivotal role in inflammation and atherogenesis. Human neutrophil peptides (HNPs) or alpha (α)-defensins are cysteine-rich cation polypeptides that are produced and released from activated polymorphonuclear neutrophil granules during septic inflammation and acute coronary vascular disorders. HNPs cause endothelial cell dysfunction during early atherogenesis. In this cross-sectional study, control, hyperlipidemia and CHD groups were representative as atherosclerosis development and CHD complications. We aimed to assess the correlation between α-defensin expression and the development of CHD, and whether it was a useful predictive indicator for CHD risk. Methods First, DNA microarray analysis was performed on peripheral blood mononuclear cells (PBMCs) from Thai control, hyperlipidemia and CHD male patients (n = 7). Gene expression profiling revealed eight up-regulated genes common between hyperlipidemia and CHD patients, but not controls. We sought to verify and compare α-defensin expression among the groups using: 1) real-time quantitative RT-PCR (qRT-PCR) to determine α-defensin mRNA expression (n = 10), and 2) enzyme-linked immunosorbent assay to determine plasma HNP 1–3 levels (n = 17). Statistically significant differences and correlations between groups were determined by the Mann–Whitney U test or the Kruskal–Wallis test, and the Rho-Spearman correlation, respectively. Results We found that α-defensin mRNA expression increased (mean 2-fold change) in the hyperlipidemia (p = 0.043) and CHD patients (p = 0.05) compared with the controls. CHD development moderately correlated with α-defensin mRNA expression (r = 0.429, p = 0.023) and with plasma HNP 1–3 levels (r = 0.486, p = 0.000). Conclusions Increased α-defensin expression is a potential inflammatory marker that may predict the risk of CHD development in Thai hyperlipidemia patients.
Collapse
|
19
|
Peng Z, Yuan C, Zellmer L, Liu S, Xu N, Liao DJ. Hypothesis: Artifacts, Including Spurious Chimeric RNAs with a Short Homologous Sequence, Caused by Consecutive Reverse Transcriptions and Endogenous Random Primers. J Cancer 2015; 6:555-67. [PMID: 26000048 PMCID: PMC4439942 DOI: 10.7150/jca.11997] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/02/2015] [Indexed: 12/21/2022] Open
Abstract
Recent RNA-sequencing technology and associated bioinformatics have led to identification of tens of thousands of putative human chimeric RNAs, i.e. RNAs containing sequences from two different genes, most of which are derived from neighboring genes on the same chromosome. In this essay, we redefine "two neighboring genes" as those producing individual transcripts, and point out two known mechanisms for chimeric RNA formation, i.e. transcription from a fusion gene or trans-splicing of two RNAs. By our definition, most putative RNA chimeras derived from canonically-defined neighboring genes may either be technical artifacts or be cis-splicing products of 5'- or 3'-extended RNA of either partner that is redefined herein as an unannotated gene, whereas trans-splicing events are rare in human cells. Therefore, most authentic chimeric RNAs result from fusion genes, about 1,000 of which have been identified hitherto. We propose a hypothesis of "consecutive reverse transcriptions (RTs)", i.e. another RT reaction following the previous one, for how most spurious chimeric RNAs, especially those containing a short homologous sequence, may be generated during RT, especially in RNA-sequencing wherein RNAs are fragmented. We also point out that RNA samples contain numerous RNA and DNA shreds that can serve as endogenous random primers for RT and ensuing polymerase chain reactions (PCR), creating artifacts in RT-PCR.
Collapse
Affiliation(s)
- Zhiyu Peng
- 1. Beijing Genomics Institute at Shenzhen, Building No.11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, P. R. China
| | - Chengfu Yuan
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lucas Zellmer
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Siqi Liu
- 3. CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Ningzhi Xu
- 4. Laboratory of Cell and Molecular Biology, Cancer Institute, Chinese Academy of Medical Science, Beijing 100021, P. R. China
| | - D Joshua Liao
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
20
|
Wang Q, Li X, Ren S, Cheng N, Zhao M, Zhang Y, Li J, Cai W, Zhao C, Cao W, Zhou C. Serum levels of the cancer-testis antigen POTEE and its clinical significance in non-small-cell lung cancer. PLoS One 2015; 10:e0122792. [PMID: 25860145 PMCID: PMC4393100 DOI: 10.1371/journal.pone.0122792] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/15/2015] [Indexed: 02/01/2023] Open
Abstract
Background POTEE (POTE ankyrin domain family, member E) is a newly identified cancer-testis antigen that has been found to be expressed in a wide variety of human cancers including cancers of the colon, prostate, lung, breast, ovary, and pancreas. Aim To measure the serum levels of POTEE in patients with non-small-cell lung cancer (NSCLC) and to explore the clinical significance of POTEE in NSCLC. Patients and Methods 104 NSCLC patients, 66 benign lung disease patients and 80 healthy volunteers were enrolled in this study from May 2013 to February 2014. Serum POTEE levels were measured using enzyme-linked immunosorbent assay (ELISA). Numerical variables were recorded as means ± standard deviation (SD) and analyzed by independent t tests. Categorical variables were calculated as rates and were analyzed using a χ2 test or Fisher’s exact test. Survival curves were estimated and compared using the Kaplan-Meier method and log-rank tests. Results Serum POTEE levels were significantly higher in NSCLC patients than in benign lung disease patients and healthy controls (mean ± SD [pg/ml], 324.38± 13.84 vs. 156.93 ± 17.38 and 139.09 ± 15.80, P<0.001) and were significantly correlated with TNM stage. Survival analysis revealed that patients with low serum POTEE had longer progression-free survival (PFS) than those with high serum POTEE (P=0.021). Cox multivariate analysis indicated that POTEE was an independent prognostic factor of progression-free survival (P =0.009, hazard ratio, 2.440). Conclusions Serum POTEE level in NSCLC patients is associated with TNM stage and is a potential prognostic factor.
Collapse
Affiliation(s)
- Qi Wang
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, People’s Republic of China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, People’s Republic of China
| | - Shengxiang Ren
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, People’s Republic of China
| | - Ningning Cheng
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, People’s Republic of China
| | - Mingchuan Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, People’s Republic of China
| | - Yishi Zhang
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, People’s Republic of China
| | - Jiayu Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, People’s Republic of China
| | - Weijing Cai
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, People’s Republic of China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, People’s Republic of China
| | - Wa Cao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, People’s Republic of China
| | - Caicun Zhou
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, People’s Republic of China
- * E-mail:
| |
Collapse
|
21
|
Zhou SM, Cheng L, Guo SJ, Wang Y, Czajkowsky DM, Gao H, Hu XF, Tao SC. Lectin RCA-I specifically binds to metastasis-associated cell surface glycans in triple-negative breast cancer. Breast Cancer Res 2015; 17:36. [PMID: 25848723 PMCID: PMC4384317 DOI: 10.1186/s13058-015-0544-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 03/02/2015] [Indexed: 01/09/2023] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) patients often face a high risk of early relapse characterized by extensive metastasis. Previous works have shown that aberrant cell surface glycosylation is associated with cancer metastasis, suggesting that altered glycosylations might serve as diagnostic signatures of metastatic potential. To address this question, we took TNBC as an example and analyzed six TNBC cell lines, derived from a common progenitor, that differ in metastatic potential. Methods We used a microarray with 91 lectins to screen for altered lectin bindings to the six TNBC cell lines. Candidate lectins were then verified by lectin-based flow cytometry and immunofluorescent staining assays using both TNBC/non-TNBC cancer cells. Patient-derived tissue microarrays were then employed to analyze whether the staining of Ricinus communis agglutinin I (RCA-I), correlated with TNBC severity. We also carried out real-time cell motility assays in the presence of RCA-I. Finally, liquid chromatography-mass spectrometry/tandem spectrometry (LC-MS/MS) was employed to identify the membrane glycoproteins recognized by RCA-I. Results Using the lectin microarray, we found that the bindings of RCA-I to TNBC cells are proportional to their metastatic capacity. Tissue microarray experiments showed that the intensity of RCA-I staining is positively correlated with the TNM grades. The real-time cell motility assays clearly demonstrated RCA-I inhibition of adhesion, migration, and invasion of TNBC cells of high metastatic capacity. Additionally, a membrane glycoprotein, POTE ankyrin domain family member F (POTEF), with different galactosylation extents in high/low metastatic TNBC cells was identified by LC-MS/MS as a binder of RCA-I. Conclusions We discovered RCA-I, which bound to TNBC cells to a degree that is proportional to their metastatic capacities, and found that this binding inhibits the cell invasion, migration, and adhesion, and identified a membrane protein, POTEF, which may play a key role in mediating these effects. These results thus indicate that RCA-I-specific cell surface glycoproteins may play a critical role in TNBC metastasis and that the extent of RCA-I cell binding could be used in diagnosis to predict the likelihood of developing metastases in TNBC patients. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0544-9) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Greger L, Su J, Rung J, Ferreira PG, Geuvadis consortium, Lappalainen T, Dermitzakis ET, Brazma A. Tandem RNA chimeras contribute to transcriptome diversity in human population and are associated with intronic genetic variants. PLoS One 2014; 9:e104567. [PMID: 25133550 PMCID: PMC4136775 DOI: 10.1371/journal.pone.0104567] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/14/2014] [Indexed: 01/18/2023] Open
Abstract
Chimeric RNAs originating from two or more different genes are known to exist not only in cancer, but also in normal tissues, where they can play a role in human evolution. However, the exact mechanism of their formation is unknown. Here, we use RNA sequencing data from 462 healthy individuals representing 5 human populations to systematically identify and in depth characterize 81 RNA tandem chimeric transcripts, 13 of which are novel. We observe that 6 out of these 81 chimeras have been regarded as cancer-specific. Moreover, we show that a prevalence of long introns at the fusion breakpoint is associated with the chimeric transcripts formation. We also find that tandem RNA chimeras have lower abundances as compared to their partner genes. Finally, by combining our results with genomic data from the same individuals we uncover intronic genetic variants associated with the chimeric RNA formation. Taken together our findings provide an important insight into the chimeric transcripts formation and open new avenues of research into the role of intronic genetic variants in post-transcriptional processing events.
Collapse
Affiliation(s)
- Liliana Greger
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
- * E-mail:
| | - Jing Su
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| | - Johan Rung
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| | - Pedro G. Ferreira
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iG3), University of Geneva, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Geneva, Switzerland
| | | | - Tuuli Lappalainen
- New York Genome Center, New York, New York, United States of America
| | - Emmanouil T. Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iG3), University of Geneva, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Alvis Brazma
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| |
Collapse
|
23
|
Cole C, Krampis K, Karagiannis K, Almeida JS, Faison WJ, Motwani M, Wan Q, Golikov A, Pan Y, Simonyan V, Mazumder R. Non-synonymous variations in cancer and their effects on the human proteome: workflow for NGS data biocuration and proteome-wide analysis of TCGA data. BMC Bioinformatics 2014; 15:28. [PMID: 24467687 PMCID: PMC3916084 DOI: 10.1186/1471-2105-15-28] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/22/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) technologies have resulted in petabytes of scattered data, decentralized in archives, databases and sometimes in isolated hard-disks which are inaccessible for browsing and analysis. It is expected that curated secondary databases will help organize some of this Big Data thereby allowing users better navigate, search and compute on it. RESULTS To address the above challenge, we have implemented a NGS biocuration workflow and are analyzing short read sequences and associated metadata from cancer patients to better understand the human variome. Curation of variation and other related information from control (normal tissue) and case (tumor) samples will provide comprehensive background information that can be used in genomic medicine research and application studies. Our approach includes a CloudBioLinux Virtual Machine which is used upstream of an integrated High-performance Integrated Virtual Environment (HIVE) that encapsulates Curated Short Read archive (CSR) and a proteome-wide variation effect analysis tool (SNVDis). As a proof-of-concept, we have curated and analyzed control and case breast cancer datasets from the NCI cancer genomics program - The Cancer Genome Atlas (TCGA). Our efforts include reviewing and recording in CSR available clinical information on patients, mapping of the reads to the reference followed by identification of non-synonymous Single Nucleotide Variations (nsSNVs) and integrating the data with tools that allow analysis of effect nsSNVs on the human proteome. Furthermore, we have also developed a novel phylogenetic analysis algorithm that uses SNV positions and can be used to classify the patient population. The workflow described here lays the foundation for analysis of short read sequence data to identify rare and novel SNVs that are not present in dbSNP and therefore provides a more comprehensive understanding of the human variome. Variation results for single genes as well as the entire study are available from the CSR website (http://hive.biochemistry.gwu.edu/dna.cgi?cmd=csr). CONCLUSIONS Availability of thousands of sequenced samples from patients provides a rich repository of sequence information that can be utilized to identify individual level SNVs and their effect on the human proteome beyond what the dbSNP database provides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Raja Mazumder
- Department of Biochemistry and Molecular Medicine, George Washington University Medical Center, Washington, DC 20037, USA.
| |
Collapse
|
24
|
Dynamic actin gene family evolution in primates. BIOMED RESEARCH INTERNATIONAL 2013; 2013:630803. [PMID: 23841080 PMCID: PMC3690210 DOI: 10.1155/2013/630803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 01/07/2023]
Abstract
Actin is one of the most highly conserved proteins and plays crucial roles in many vital cellular functions. In most eukaryotes, it is encoded by a multigene family. Although the actin gene family has been studied a lot, few investigators focus on the comparison of actin gene family in relative species. Here, the purpose of our study is to systematically investigate characteristics and evolutionary pattern of actin gene family in primates. We identified 233 actin genes in human, chimpanzee, gorilla, orangutan, gibbon, rhesus monkey, and marmoset genomes. Phylogenetic analysis showed that actin genes in the seven species could be divided into two major types of clades: orthologous group versus complex group. Codon usages and gene expression patterns of actin gene copies were highly consistent among the groups because of basic functions needed by the organisms, but much diverged within species due to functional diversification. Besides, many great potential pseudogenes were found with incomplete open reading frames due to frameshifts or early stop codons. These results implied that actin gene family in primates went through “birth and death” model of evolution process. Under this model, actin genes experienced strong negative selection and increased the functional complexity by reproducing themselves.
Collapse
|
25
|
Bera TK, Walker DA, Sherins RJ, Pastan I. POTE protein, a cancer-testis antigen, is highly expressed in spermatids in human testis and is associated with apoptotic cells. Biochem Biophys Res Commun 2012; 417:1271-4. [PMID: 22234308 DOI: 10.1016/j.bbrc.2011.12.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 12/25/2011] [Indexed: 10/14/2022]
Abstract
The POTE gene family encodes very closely related proteins that are highly expressed in testis and in many cancers. Recent studies indicate that the POTE proteins have a pro-apoptotic function. To examine if POTE is associated with cells that are undergoing apoptosis in testis, we determined the cellular location of POTE and of Cleaved Caspase-3 in testicular tissues from 26 azoospermic men. We found intense expression of POTE in round spermatids that are undergoing apoptosis, which are positive for Cleaved Caspase-3. This study suggests POTE may have a role in apoptosis in the human testis.
Collapse
Affiliation(s)
- Tapan K Bera
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
26
|
Oliver KR, Greene WK. Mobile DNA and the TE-Thrust hypothesis: supporting evidence from the primates. Mob DNA 2011; 2:8. [PMID: 21627776 PMCID: PMC3123540 DOI: 10.1186/1759-8753-2-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 05/31/2011] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs) are increasingly being recognized as powerful facilitators of evolution. We propose the TE-Thrust hypothesis to encompass TE-facilitated processes by which genomes self-engineer coding, regulatory, karyotypic or other genetic changes. Although TEs are occasionally harmful to some individuals, genomic dynamism caused by TEs can be very beneficial to lineages. This can result in differential survival and differential fecundity of lineages. Lineages with an abundant and suitable repertoire of TEs have enhanced evolutionary potential and, if all else is equal, tend to be fecund, resulting in species-rich adaptive radiations, and/or they tend to undergo major evolutionary transitions. Many other mechanisms of genomic change are also important in evolution, and whether the evolutionary potential of TE-Thrust is realized is heavily dependent on environmental and ecological factors. The large contribution of TEs to evolutionary innovation is particularly well documented in the primate lineage. In this paper, we review numerous cases of beneficial TE-caused modifications to the genomes of higher primates, which strongly support our TE-Thrust hypothesis.
Collapse
Affiliation(s)
- Keith R Oliver
- School of Biological Sciences and Biotechnology, Faculty of Science and Engineering, Murdoch University, Perth W. A. 6150, Australia
| | - Wayne K Greene
- School of Veterinary and Biomedical Sciences, Faculty of Health Sciences, Murdoch University, Perth W. A. 6150, Australia
| |
Collapse
|
27
|
Liu X, Tang H, Zhang Z, Li W, Wang Z, Zheng Y, Wu M, Li G. POTEH hypomethylation, a new epigenetic biomarker for glioma prognosis. Brain Res 2011; 1391:125-31. [PMID: 21439273 DOI: 10.1016/j.brainres.2011.03.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/12/2011] [Accepted: 03/16/2011] [Indexed: 10/18/2022]
Abstract
POTE ankyrin domain family, member H (POTEH) belongs to POTE family, which expresses in many cancers. In this study, methylation status of POTEH promoter and its correlation with clinicopathological parameters were evaluated in glioma tissues and cells. Bisulfite sequencing PCR was carried out to investigate the promoter methylation status of POTEH in tumor of 96 glioma patients and glioma cells U251, SF767, and SF126. The effect of promoter hypomethylation on protein expression was evaluated by immunohistochemistry. POTEH was hypomethylated in 81.3% gliomas and none in normal brain tissues, and correlated significantly with its protein expression. But there was no remarkable relationship between sex, age, advanced tumor grade and POTEH hypomethylation. With the grade progressing, POTEH protein expression was enhanced. The correlation between POTEH hypomethylation, protein expression and overall survival was statistically significant. In POTEH hypomethylation group, patients with POTEH high expression had shorter overall survival than those with low expression. Hypomethylation of POTEH promoter in gliomas accounted for POTEH protein overexpression and poor outcome in a subset of patients. Detection of these epigenetic changes in tumors may provide information regarding prognosis.
Collapse
Affiliation(s)
- Xiaoping Liu
- Cancer Research Institute, Central South University, 110(#) Xiangya Road, Changsha, Hunan Province, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Rogers RL, Bedford T, Lyons AM, Hartl DL. Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster. Proc Natl Acad Sci U S A 2010; 107:10943-8. [PMID: 20534482 PMCID: PMC2890713 DOI: 10.1073/pnas.1006503107] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chimeric genes, which form through the genomic fusion of two protein-coding genes, are a significant source of evolutionary novelty in Drosophila melanogaster. However, the propensity of chimeric genes to produce adaptive phenotypic changes is not fully understood. Here, we describe the chimeric gene Quetzalcoatl (Qtzl; CG31864), which formed in the recent past and swept to fixation in D. melanogaster. Qtzl arose through a duplication on chromosome 2L that united a portion of the mitochondrially targeted peptide CG12264 with a segment of the polycomb gene escl. The 3' segment of the gene, which is derived from escl, is inherited out of frame, producing a unique peptide sequence. Nucleotide diversity is drastically reduced and site frequency spectra are significantly skewed surrounding the duplicated region, a finding consistent with a selective sweep on the duplicate region containing Qtzl. Qtzl has an expression profile that largely resembles that of escl, with expression in early pupae, adult females, and male testes. However, expression patterns appear to have been decoupled from both parental genes during later embryonic development and in head tissues of adult males, indicating that Qtzl has developed a distinct regulatory profile through the rearrangement of different 5' and 3' regulatory domains. Furthermore, misexpression of Qtzl suppresses defects in the formation of the neuromuscular junction in larvae, demonstrating that Qtzl can produce phenotypic effects in cells. Together, these results show that chimeric genes can produce structural and regulatory changes in a single mutational step and may be a major factor in adaptive evolution.
Collapse
Affiliation(s)
- Rebekah L. Rogers
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; and
| | - Trevor Bedford
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ana M. Lyons
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; and
| | - Daniel L. Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; and
| |
Collapse
|
29
|
Liu XF, Bera TK, Liu LJ, Pastan I. A primate-specific POTE-actin fusion protein plays a role in apoptosis. Apoptosis 2010; 14:1237-44. [PMID: 19669888 DOI: 10.1007/s10495-009-0392-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The primate-specific gene family, POTE, is expressed in many cancers but only in a limited number of normal tissues (testis, ovary, prostate). The 13 POTE paralogs are dispersed among 8 human chromosomes. They evolved by gene duplication and remodeling from an ancestral gene, Ankrd26, recently implicated in controlling body size and obesity. In addition, several POTE paralogs are fused to an actin retrogene producing POTE-actin fusion proteins. The biological function of the POTE genes is unknown, but their high expression in primary spermatocytes, some of which are undergoing apoptosis, suggests a role in inducing programmed cell death. We have chosen Hela cells as a model to study POTE function in human cancer, and have identified POTE-2alpha-actin as the major transcript and the protein it encodes in Hela cells. Transfection experiments show that both POTE-2alpha-actin and POTE-2gammaC are localized to actin filaments close to the inner plasma membrane. Transient expression of POTE-2alpha-actin or POTE-2gammaC induces apoptosis in Hela cells. Using wild-type and mutant mouse embryo cells, we find apoptosis induced by over-expression of POTE-2gammaC is decreased in Bak ( -/- ) or Bak ( -/- ) Bax ( -/- ) cells indicating POTE is acting through a mitochondrial pathway. Endogenous POTE-actin protein levels but not RNA levels increased in a time dependent manner by stimulation of death receptors with their cognate ligands. Our data indicates that the POTE gene family encodes a new family of proapoptotic proteins.
Collapse
Affiliation(s)
- Xiu Fen Liu
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| | | | | | | |
Collapse
|
30
|
The evolutionary history of protein domains viewed by species phylogeny. PLoS One 2009; 4:e8378. [PMID: 20041107 PMCID: PMC2794708 DOI: 10.1371/journal.pone.0008378] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 11/16/2009] [Indexed: 11/20/2022] Open
Abstract
Background Protein structural domains are evolutionary units whose relationships can be detected over long evolutionary distances. The evolutionary history of protein domains, including the origin of protein domains, the identification of domain loss, transfer, duplication and combination with other domains to form new proteins, and the formation of the entire protein domain repertoire, are of great interest. Methodology/Principal Findings A methodology is presented for providing a parsimonious domain history based on gain, loss, vertical and horizontal transfer derived from the complete genomic domain assignments of 1015 organisms across the tree of life. When mapped to species trees the evolutionary history of domains and domain combinations is revealed, and the general evolutionary trend of domain and combination is analyzed. Conclusions/Significance We show that this approach provides a powerful tool to study how new proteins and functions emerged and to study such processes as horizontal gene transfer among more distant species.
Collapse
|
31
|
Wang Y, Leung FCC. Discovery of a long inverted repeat in human POTE genes. Genomics 2009; 94:278-83. [PMID: 19463943 DOI: 10.1016/j.ygeno.2009.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/08/2009] [Accepted: 05/13/2009] [Indexed: 01/18/2023]
Abstract
POTE gene family is tightly related to prostate, ovary, testis and placenta cancers. We recently identified an intronic long inverted repeat (LIR) in some members of the POTE gene family. Due to the capacity of inducing gene amplification, the POTE intronic LIRs may be involved in over-expression of the POTE genes. Our study aimed to understand the origin of the LIR in primates. We collected the LIR and its flanking sequences within rhesus monkey, chimpanzee and human genomes. The rhesus monkey genome only has half-sized LIRs (lack one repeat copy), whereas the human and chimpanzee genomes contain both full-sized and half-sized LIRs. Phylogenetic tree indicates that the LIR is formed after divergence of rhesus monkey and the common ancestor of human and chimpanzee. The POTE genes containing a full-sized LIR were amplified in the human genome.
Collapse
Affiliation(s)
- Yong Wang
- School of Biological Sciences and Genome Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | |
Collapse
|
32
|
Schmieder S, Darré-Toulemonde F, Arguel MJ, Delerue-Audegond A, Christen R, Nahon JL. Primate-specific spliced PMCHL RNAs are non-protein coding in human and macaque tissues. BMC Evol Biol 2008; 8:330. [PMID: 19068116 PMCID: PMC2621205 DOI: 10.1186/1471-2148-8-330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 12/09/2008] [Indexed: 11/24/2022] Open
Abstract
Background Brain-expressed genes that were created in primate lineage represent obvious candidates to investigate molecular mechanisms that contributed to neural reorganization and emergence of new behavioural functions in Homo sapiens. PMCHL1 arose from retroposition of a pro-melanin-concentrating hormone (PMCH) antisense mRNA on the ancestral human chromosome 5p14 when platyrrhines and catarrhines diverged. Mutations before divergence of hylobatidae led to creation of new exons and finally PMCHL1 duplicated in an ancestor of hominids to generate PMCHL2 at the human chromosome 5q13. A complex pattern of spliced and unspliced PMCHL RNAs were found in human brain and testis. Results Several novel spliced PMCHL transcripts have been characterized in human testis and fetal brain, identifying an additional exon and novel splice sites. Sequencing of PMCHL genes in several non-human primates allowed to carry out phylogenetic analyses revealing that the initial retroposition event took place within an intron of the brain cadherin (CDH12) gene, soon after platyrrhine/catarrhine divergence, i.e. 30–35 Mya, and was concomitant with the insertion of an AluSg element. Sequence analysis of the spliced PMCHL transcripts identified only short ORFs of less than 300 bp, with low (VMCH-p8 and protein variants) or no evolutionary conservation. Western blot analyses of human and macaque tissues expressing PMCHL RNA failed to reveal any protein corresponding to VMCH-p8 and protein variants encoded by spliced transcripts. Conclusion Our present results improve our knowledge of the gene structure and the evolutionary history of the primate-specific chimeric PMCHL genes. These genes produce multiple spliced transcripts, bearing short, non-conserved and apparently non-translated ORFs that may function as mRNA-like non-coding RNAs.
Collapse
Affiliation(s)
- Sandra Schmieder
- Université de Nice-Sophia Antipolis, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.
| | | | | | | | | | | |
Collapse
|
33
|
Bera T, Lee B. Mining of Genome Sequence Databases to Identify New Targets for Prostate and Breast Cancer Therapy. Genomics 2008. [DOI: 10.3109/9781420067064-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Abstract
Retrotransposons, mainly LINEs, SINEs, and endogenous retroviruses, make up roughly 40% of the mammalian genome and have played an important role in genome evolution. Their prevalence in genomes reflects a delicate balance between their further expansion and the restraint imposed by the host. In any human genome only a small number of LINE1s (L1s) are active, moving their own and SINE sequences into new genomic locations and occasionally causing disease. Recent insights and new technologies promise answers to fundamental questions about the biology of transposable elements.
Collapse
Affiliation(s)
- John L Goodier
- Department of Genetics, University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
35
|
Bera TK, Saint Fleur A, Ha D, Yamada M, Lee Y, Lee B, Hahn Y, Kaufman DS, Pera M, Pastan I. Selective POTE paralogs on chromosome 2 are expressed in human embryonic stem cells. Stem Cells Dev 2008; 17:325-32. [PMID: 18447647 DOI: 10.1089/scd.2007.0079] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
POTE is a primate-specific gene family that encodes cancer testis antigens that contain three domains, although the proteins vary greatly in size. The amino-terminal domain is novel and has three cysteine-rich domains of 37 amino acids. The second and third domains are rich in ankyrin repeats and spectrin-like helices respectively. In humans, 13 highly homologous paralogs are dispersed among eight chromosomes. Some members of the POTE gene family have an actin insertion at the carboxyl end of the protein. The expression of the POTE gene in normal adult tissues is restricted, but several POTE paralogs are frequently expressed in many cancers including breast, prostate, and lung cancers. We show here that POTE is expressed in several human embryonic stem (ES) cell lines. We found that UC06, WA01 and ES03 cell lines express mainly a POTE-2gamma transcript but ES02 and ES04 cell lines predominantly express POTE-2alpha. The WA09 cell line expressed both POTE-2gamma and POTE-2alpha. There is no detectable POTE gene expression in fetal tissues (ages 16-36 weeks). The POTE paralogs that are expressed in ES cells may have a specific function during lineage-specific differentiation of ES cells.
Collapse
Affiliation(s)
- Tapan K Bera
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
A model for obesity and gigantism due to disruption of the Ankrd26 gene. Proc Natl Acad Sci U S A 2007; 105:270-5. [PMID: 18162531 DOI: 10.1073/pnas.0710978105] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Obesity is a major health hazard that is caused by a combination of genetic and behavioral factors. Several models of obesity have been described in mice that have defects in the production of peptide hormones, in the function of cell membrane receptors, or in a transcription factor required for neuronal cell development. We have been investigating the function of a family of genes (POTE and ANKRD26) that encode proteins that are associated with the inner aspect of the cell membrane and that contain both ankyrin repeats and spectrin helices, motifs known to interact with signaling proteins in the cell. To assess the function of ANKRD26, we prepared a mutant mouse with partial inactivation of the Ankrd26 gene. We find that the homozygous mutant mice develop extreme obesity, insulin resistance, and an increase in body size. The obesity is associated with hyperphagia with no reduction in energy expenditure and activity. The Ankrd26 protein is expressed in the arcuate and ventromedial nuclei within the hypothalamus and in the ependyma and the circumventricular organs that act as an interface between the peripheral circulation and the brain. In the enlarged hearts of the mutant mice, the levels of both phospho-Akt and mTOR were elevated. These results show that alterations in an unidentified gene can lead to obesity and identify a molecular target for the treatment of obesity.
Collapse
|
37
|
Ise T, Das S, Nagata S, Maeda H, Lee Y, Onda M, Anver MR, Bera TK, Pastan I. Expression of POTE protein in human testis detected by novel monoclonal antibodies. Biochem Biophys Res Commun 2007; 365:603-8. [PMID: 17996727 DOI: 10.1016/j.bbrc.2007.10.195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 10/27/2007] [Indexed: 10/22/2022]
Abstract
The POTE gene family is composed of 13 highly homologous paralogs preferentially expressed in prostate, ovary, testis, and placenta. We produced 10 monoclonal antibodies (MAbs) against three representative POTE paralogs: POTE-21, POTE-2gammaC, and POTE-22. One reacted with all three paralogs, six MAbs reacted with POTE-2gammaC and POTE-22, and three MAbs were specific to POTE-21. Epitopes of all 10 MAbs were located in the cysteine-rich repeats (CRRs) motifs located at the N-terminus of each POTE paralog. Testing the reactivity of each MAb with 12 different CRRs revealed slight differences among the antigenic determinants, which accounts for differences in cross-reactivity. Using MAbs HP8 and PG5 we were able to detect a POTE-actin fusion protein in human testis by immunoprecipitation followed by Western blotting. By immunohistochemistry we demonstrated that the POTE protein is expressed in primary spermatocytes, implying a role in spermatogenesis.
Collapse
Affiliation(s)
- Tomoko Ise
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Das S, Ise T, Nagata S, Maeda H, Bera TK, Pastan I. Palmitoylation of POTE family proteins for plasma membrane targeting. Biochem Biophys Res Commun 2007; 363:751-6. [PMID: 17904529 PMCID: PMC2170890 DOI: 10.1016/j.bbrc.2007.09.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 09/07/2007] [Indexed: 11/24/2022]
Abstract
The POTE gene family is composed of 13 paralogs and likely evolved by duplications and remodeling of the human genome. One common property of POTE proteins is their localization on the inner aspect of the plasma membrane. To determine the structural elements required for membrane localization, we expressed mutants of different POTEs in 293T cells as EGFP fusion proteins. We also tested their palmitoylation by a biotin-switch assay. Our data indicate that the membrane localizations of different POTEs are mediated by similar 3-4 short cysteine rich repeats (CRRs) near the amino-terminuses and that palmitoylation on paired cysteine residues in each CRR motif is responsible for the localization. Multiple palmitoylation in the small CRRs can result in the strong association of whole POTEs with plasma membrane.
Collapse
Affiliation(s)
| | | | | | | | | | - Ira Pastan
- *Corresponding author: Laboratory of Molecular Biology, National Cancer Institute, 37, Convent Drive, Room 5106, Bethesda, MD 20892-4264, USA, Tel: 301-496-4797; Fax: 301-402-1344; e-mail:
| |
Collapse
|