1
|
Huang XL, Harmer JR, Schenk G, Southam G. Inorganic Fe-O and Fe-S oxidoreductases: paradigms for prebiotic chemistry and the evolution of enzymatic activity in biology. Front Chem 2024; 12:1349020. [PMID: 38389729 PMCID: PMC10881703 DOI: 10.3389/fchem.2024.1349020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Oxidoreductases play crucial roles in electron transfer during biological redox reactions. These reactions are not exclusive to protein-based biocatalysts; nano-size (<100 nm), fine-grained inorganic colloids, such as iron oxides and sulfides, also participate. These nanocolloids exhibit intrinsic redox activity and possess direct electron transfer capacities comparable to their biological counterparts. The unique metal ion architecture of these nanocolloids, including electron configurations, coordination environment, electron conductivity, and the ability to promote spontaneous electron hopping, contributes to their transfer capabilities. Nano-size inorganic colloids are believed to be among the earliest 'oxidoreductases' to have 'evolved' on early Earth, playing critical roles in biological systems. Representing a distinct type of biocatalysts alongside metalloproteins, these nanoparticles offer an early alternative to protein-based oxidoreductase activity. While the roles of inorganic nano-sized catalysts in current Earth ecosystems are intuitively significant, they remain poorly understood and underestimated. Their contribution to chemical reactions and biogeochemical cycles likely helped shape and maintain the balance of our planet's ecosystems. However, their potential applications in biomedical, agricultural, and environmental protection sectors have not been fully explored or exploited. This review examines the structure, properties, and mechanisms of such catalysts from a material's evolutionary standpoint, aiming to raise awareness of their potential to provide innovative solutions to some of Earth's sustainability challenges.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- NYS Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook, NY, United States
| | - Jeffrey R Harmer
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Gerhard Schenk
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Gordon Southam
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Gull M, Feng T, Smith B, Calcul L, Pasek MA. Prebiotic Syntheses of Organophosphorus Compounds from Reduced Source of Phosphorus in Non-Aqueous Solvents. Life (Basel) 2023; 13:2134. [PMID: 38004274 PMCID: PMC10672063 DOI: 10.3390/life13112134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Reduced-oxidation-state phosphorus (reduced P, hereafter) compounds were likely available on the early Earth via meteorites or through various geologic processes. Due to their reactivity and high solubility, these compounds could have played a significant role in the origin of various organophosphorus compounds of biochemical significance. In the present work, we study the reactions between reduced P compounds and their oxidation products, with the three nucleosides (uridine, adenosine, and cytidine), with organic alcohols (glycerol and ethanolamine), and with the tertiary ammonium organic compound, choline chloride. These reactions were studied in the non-aqueous solvent formamide and in a semi-aqueous solvent comprised of urea: ammonium formate: water (UAFW, hereafter) at temperatures of 55-68 °C. The inorganic P compounds generated through Fenton chemistry readily dissolve in the non-aqueous and semi-aqueous solvents and react with organics to form organophosphites and organophosphates, including those which are identified as phosphate diesters. This dual approach (1) use of non-aqueous and semi-aqueous solvents and (2) use of a reactive inorganic P source to promote phosphorylation and phosphonylation reactions of organics readily promoted anhydrous chemistry and condensation reactions, without requiring any additive, catalyst, or other promoting agent under mild heating conditions. We also present a comparative study of the release of P from various prebiotically relevant phosphate minerals and phosphite salts (e.g., vivianite, apatite, and phosphites of iron and calcium) into formamide and UAFW. These results have direct implications for the origin of biological P compounds from non-aqueous solvents of prebiotic provenance.
Collapse
Affiliation(s)
- Maheen Gull
- School of Geosciences, University of South Florida, 4202 E. Fowler Ave. NES 204, Tampa, FL 33584, USA; (T.F.); (M.A.P.)
| | - Tian Feng
- School of Geosciences, University of South Florida, 4202 E. Fowler Ave. NES 204, Tampa, FL 33584, USA; (T.F.); (M.A.P.)
| | - Benjamin Smith
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave. CHE 205, Tampa, FL 33620, USA; (L.C.); (B.S.)
| | - Laurent Calcul
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave. CHE 205, Tampa, FL 33620, USA; (L.C.); (B.S.)
| | - Matthew A. Pasek
- School of Geosciences, University of South Florida, 4202 E. Fowler Ave. NES 204, Tampa, FL 33584, USA; (T.F.); (M.A.P.)
| |
Collapse
|
3
|
Organophosphorus Compound Formation Through the Oxidation of Reduced Oxidation State Phosphorus Compounds on the Hadean Earth. J Mol Evol 2023; 91:60-75. [PMID: 36576533 DOI: 10.1007/s00239-022-10086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Reduced oxidation state phosphorus compounds may have been brought to the early Earth via meteorites or could have formed through geologic processes. These compounds could have played a role in the origin of biological phosphorus (P, hereafter) compounds. Reduced oxidation state P compounds are generally more soluble in water and are more reactive than orthophosphate and its associated minerals. However, to date no facile routes to generate C-O-P type compounds using reduced oxidation state P compounds have been reported under prebiotic conditions. In this study, we investigate the reactions between reduced oxidation state P compounds-and their oxidized products generated via Fenton reactions-with the nucleosides uridine and adenosine. The inorganic P compounds generated via Fenton chemistry readily react with nucleosides to produce organophosphites and organophosphates, including phosphate diesters via one-pot syntheses. The reactions were facilitated by NH4+ ions and urea as a condensation agent. We also present the results of the plausible stability of the organic compounds such as adenosine in an environment containing an abundance of H2O2. Such results have direct implications on finding organic compounds in Martian environments and other rocky planets (including early Earth) that were richer in H2O2 than O2. Finally, we also suggest a route for the sink of these inorganic P compounds, as a part of a plausible natural P cycle and show the possible formation of secondary phosphate minerals such as struvite and brushite on the early Earth.
Collapse
|
4
|
Baú JPT, Carneiro CEA, da Costa ACS, Valezi DF, di Mauro E, Pilau E, Zaia DAM. The Effect of Goethites on the Polymerization of Glycine and Alanine Under Prebiotic Chemistry Conditions. ORIGINS LIFE EVOL B 2022; 51:299-320. [PMID: 35064872 DOI: 10.1007/s11084-021-09618-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022]
Abstract
After pre concentration of monomers, polymerization is the second most important step for molecular evolution. The formation of peptides is an important issue for prebiotic chemistry and consequently for the origin of life. In this work, goethite was synthesized by two different routes, named goethite-I and goethite-II. Although both samples are goethite, Far-FT-IR spectroscopy and EPR spectroscopy showed differences between them, and these differences had an effect on the polymerization of glycine and alanine. For the amino acid polymerization, three protocols were used, that resembled prebiotic Earth conditions: a) amino acid plus goethite were mixed and heated at 90 °C for 10 days in solid state, b) a wet impregnation of the amino acid in the goethite, with subsequent heating at 90 °C for 10 days in solid state, and c) 10 wet/dry cycles each one for 24 h at 90 °C. Experiments with glycine plus goethite-II, using protocols B and C, produced only Gly-Gly. In addition, for the C protocol the amount of Gly-Gly synthesized was 3 times higher than the amount of Ala-Ala. Goethite-I presented a decrease in the EPR signal, when it was submitted to the protocols with and without amino acids. It is probable the decrease in the intensity of the EPR signal was due to a decrease in the imperfections of the mineral. For all protocols the mixture of alanine plus goethite-I or goethite-II produced c(Ala-Ala). However, for wet/dry cycles, protocol C presented higher yields (p < 0.05). In addition, Ala-Ala was produced using protocols A and C. The c(Ala-Ala) formation fitted a zero-order kinetic equation model. The surface areas of goethite-I and goethite-II were 35 m2 g-1 and 37 m2 g-1, respectively. Thermal analysis indicated that the mineral changes the thermal behavior of the amino acids. The main reactions for the thermal decomposition of glycine were deamination and dehydration and for alanine was deamination.
Collapse
Affiliation(s)
- João Paulo T Baú
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brasil
| | - Cristine E A Carneiro
- Centro das Ciências Exatas E Tecnologia, Universidade Federal Do Oeste da Bahia, 47810-059, Barreiras, BA, Brasil
| | | | - Daniel F Valezi
- Departamento de Física-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brasil
| | - Eduardo di Mauro
- Departamento de Física-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brasil
| | - Eduardo Pilau
- Departamento de Química-CCE, Universidade Estadual de Maringá, 87020-900, Maringá, PR, Brasil
| | - Dimas A M Zaia
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brasil.
| |
Collapse
|
5
|
Wang W, Zhang H, Jiang J, He Y, He J, Liu J, Yu K, Liu Q, Qiao L. Thin interfacial film spontaneously produces hydrogen peroxide: mechanism and application for perfluorooctanoic acid degradation. NEW J CHEM 2022. [DOI: 10.1039/d1nj04791d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have unambiguously demonstrated spontaneous formation of hydrogen peroxide (H2O2) in thin film formats by evaporating almost all the water and its effective for perfluorooctanoic acid (PFOA) degradation without catalysts.
Collapse
Affiliation(s)
- Wenxin Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Hong Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Jie Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Yuwei He
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Jing He
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Junyu Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Kai Yu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Qianhui Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Lina Qiao
- Marine College, Shandong University (Weihai), Weihai, Shandong 264209, China
| |
Collapse
|
6
|
Huang XL. What are the inorganic nanozymes? Artificial or inorganic enzymes! NEW J CHEM 2022. [DOI: 10.1039/d2nj02088b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The research on inorganic nanozymes remains very active since the first paper on the “intrinsic peroxidase-like properties of ferromagnetic nanoparticles” was published in Nature Nanotechnology in 2007. However, there is...
Collapse
|
7
|
He H, Wu X, Xian H, Zhu J, Yang Y, Lv Y, Li Y, Konhauser KO. An abiotic source of Archean hydrogen peroxide and oxygen that pre-dates oxygenic photosynthesis. Nat Commun 2021; 12:6611. [PMID: 34785682 PMCID: PMC8595356 DOI: 10.1038/s41467-021-26916-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
The evolution of oxygenic photosynthesis is a pivotal event in Earth's history because the O2 released fundamentally changed the planet's redox state and facilitated the emergence of multicellular life. An intriguing hypothesis proposes that hydrogen peroxide (H2O2) once acted as the electron donor prior to the evolution of oxygenic photosynthesis, but its abundance during the Archean would have been limited. Here, we report a previously unrecognized abiotic pathway for Archean H2O2 production that involves the abrasion of quartz surfaces and the subsequent generation of surface-bound radicals that can efficiently oxidize H2O to H2O2 and O2. We propose that in turbulent subaqueous environments, such as rivers, estuaries and deltas, this process could have provided a sufficient H2O2 source that led to the generation of biogenic O2, creating an evolutionary impetus for the origin of oxygenic photosynthesis.
Collapse
Affiliation(s)
- Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China.
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Xiao Wu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Haiyang Xian
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China
| | - Jianxi Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yiping Yang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ying Lv
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yiliang Li
- Department of Earth Sciences, The University of Hong Kong, 999077, Hong Kong, China.
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada.
| |
Collapse
|
8
|
Zaia DAM, de Carvalho PCG, Samulewski RB, de Carvalho Pereira R, Zaia CTBV. Unexpected Thiocyanate Adsorption onto Ferrihydrite Under Prebiotic Chemistry Conditions. ORIGINS LIFE EVOL B 2020; 50:57-76. [PMID: 32266585 DOI: 10.1007/s11084-020-09594-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/10/2020] [Indexed: 02/02/2023]
Abstract
The most crucial role played by minerals was in the preconcentration of biomolecules or precursors of biomolecules in prebiotic seas. If this step had not occurred, molecular evolution would not have occurred. Thiocyanate is an important molecule in the formation of biomolecules as well as a catalyst for prebiotic reactions. The adsorption of thiocyanate onto ferrihydrite was carried out under pH and ion composition conditions in seawater that resembled those of prebiotic Earth. The seawater used in this work had high Mg2+, Ca2+ and SO42- concentrations. The most important result of this work was that ferrihydrite adsorbed thiocyanateata pH value (7.2 ± 0.2) that usually does not adsorb thiocyanate. The high adsorptivity of Mg2+, Ca2+ and SO42-onto ferrihydrite showed that seawater ions can act as carriers of thiocyanate to the ferrihydrite surface, creating a huge outer-sphere complex. Kinetic adsorption and isotherm experiments showed the best fit for the pseudo-second-order model and an activation energy of 23.8 kJ mol-1forthe Langmuir-Freundlich model, respectively. Thermodynamic data showed positive ΔG values, which apparently contradict the adsorption isotherm data and kinetic data that was obtained. The adsorption of thiocyanate onto ferrihydrite could be explained by coupling with the exergonic SO42- adsorption onto ferrihydrite. The FTIR spectra showed no difference between the C≡N stretching peaks of adsorbed thiocyanate and free thiocyanate, corroborating the formation of an outer-sphere complex. All the results demonstrated the importance of the artificial seawater composition for the adsorption of thiocyanate and for understanding prebiotic chemistry.
Collapse
Affiliation(s)
- Dimas A M Zaia
- Departamento de Química, Laboratório de Química Prebiótica-LQP, Universidade Estadual de Londrina, Londrina, PR, CEP 86 057-970, Brazil.
| | - Paulo C G de Carvalho
- Departamento de Química, Laboratório de Química Prebiótica-LQP, Universidade Estadual de Londrina, Londrina, PR, CEP 86 057-970, Brazil
| | - Rafael B Samulewski
- Departamento de Química, Laboratório de Química Prebiótica-LQP, Universidade Estadual de Londrina, Londrina, PR, CEP 86 057-970, Brazil
| | - Rodrigo de Carvalho Pereira
- Departamento de Química, Laboratório de Química Prebiótica-LQP, Universidade Estadual de Londrina, Londrina, PR, CEP 86 057-970, Brazil
| | - Cássia Thaïs B V Zaia
- Departamento de Ciências Fisiológicas, Laboratório de Fisiologia Neuroendocrina--LaFiNen, Universidade Estadual de Londrina, Londrina, PR, CEP 86 057-970, Brazil
| |
Collapse
|
9
|
Light-driven anaerobic microbial oxidation of manganese. Nature 2019; 576:311-314. [PMID: 31802001 DOI: 10.1038/s41586-019-1804-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/08/2019] [Indexed: 11/09/2022]
Abstract
Oxygenic photosynthesis supplies organic carbon to the modern biosphere, but it is uncertain when this metabolism originated. It has previously been proposed1,2 that photosynthetic reaction centres capable of splitting water arose by about 3 billion years ago on the basis of the inferred presence of manganese oxides in Archaean sedimentary rocks. However, this assumes that manganese oxides can be produced only in the presence of molecular oxygen3, reactive oxygen species4,5 or by high-potential photosynthetic reaction centres6,7. Here we show that communities of anoxygenic photosynthetic microorganisms biomineralize manganese oxides in the absence of molecular oxygen and high-potential photosynthetic reaction centres. Microbial oxidation of Mn(II) under strictly anaerobic conditions during the Archaean eon would have produced geochemical signals identical to those used to date the evolution of oxygenic photosynthesis before the Great Oxidation Event1,2. This light-dependent process may also produce manganese oxides in the photic zones of modern anoxic water bodies and sediments.
Collapse
|
10
|
Zivanovic J, Kouroussis E, Kohl JB, Adhikari B, Bursac B, Schott-Roux S, Petrovic D, Miljkovic JL, Thomas-Lopez D, Jung Y, Miler M, Mitchell S, Milosevic V, Gomes JE, Benhar M, Gonzalez-Zorn B, Ivanovic-Burmazovic I, Torregrossa R, Mitchell JR, Whiteman M, Schwarz G, Snyder SH, Paul BD, Carroll KS, Filipovic MR. Selective Persulfide Detection Reveals Evolutionarily Conserved Antiaging Effects of S-Sulfhydration. Cell Metab 2019; 30:1152-1170.e13. [PMID: 31735592 PMCID: PMC7185476 DOI: 10.1016/j.cmet.2019.10.007] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 07/08/2019] [Accepted: 10/18/2019] [Indexed: 11/26/2022]
Abstract
Life on Earth emerged in a hydrogen sulfide (H2S)-rich environment eons ago and with it protein persulfidation mediated by H2S evolved as a signaling mechanism. Protein persulfidation (S-sulfhydration) is a post-translational modification of reactive cysteine residues, which modulate protein structure and/or function. Persulfides are difficult to label and study due to their reactivity and similarity with cysteine. Here, we report a facile strategy for chemoselective persulfide bioconjugation using dimedone-based probes, to achieve highly selective, rapid, and robust persulfide labeling in biological samples with broad utility. Using this method, we show persulfidation is an evolutionarily conserved modification and waves of persulfidation are employed by cells to resolve sulfenylation and prevent irreversible cysteine overoxidation preserving protein function. We report an age-associated decline in persulfidation that is conserved across evolutionary boundaries. Accordingly, dietary or pharmacological interventions to increase persulfidation associate with increased longevity and improved capacity to cope with stress stimuli.
Collapse
Affiliation(s)
- Jasmina Zivanovic
- CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France; Université de Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France
| | - Emilia Kouroussis
- CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France; Université de Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France
| | - Joshua B Kohl
- Department of Biochemistry, Center for Molecular Medicine, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Bikash Adhikari
- CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France; Université de Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France
| | - Biljana Bursac
- CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France; Université de Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France
| | - Sonia Schott-Roux
- CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France; Université de Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France
| | - Dunja Petrovic
- CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France; Université de Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France
| | - Jan Lj Miljkovic
- CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France; Université de Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France
| | - Daniel Thomas-Lopez
- Departamento de Sanidad Animal, Facultad de Veterinaria and VISAVET, Universidad Complutense de Madrid, Madrid, Spain
| | - Youngeun Jung
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Marko Miler
- Department of Cytology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sarah Mitchell
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Verica Milosevic
- Department of Cytology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jose Eduardo Gomes
- CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France; Université de Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France
| | - Moran Benhar
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Bruno Gonzalez-Zorn
- Departamento de Sanidad Animal, Facultad de Veterinaria and VISAVET, Universidad Complutense de Madrid, Madrid, Spain
| | - Ivana Ivanovic-Burmazovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - James R Mitchell
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Matthew Whiteman
- University of Exeter Medical School, St. Luke's Campus, Exeter, UK
| | - Guenter Schwarz
- Department of Biochemistry, Center for Molecular Medicine, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Solomon H Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bindu D Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kate S Carroll
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Milos R Filipovic
- CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France; Université de Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France.
| |
Collapse
|
11
|
Zhou R, Zhou R, Wang P, Luan B, Zhang X, Fang Z, Xian Y, Lu X, Ostrikov KK, Bazaka K. Microplasma Bubbles: Reactive Vehicles for Biofilm Dispersal. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20660-20669. [PMID: 31067024 DOI: 10.1021/acsami.9b03961] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Interactions between effects generated by cold atmospheric-pressure plasmas and water have been widely investigated for water purification, chemical and nanomaterial synthesis, and, more recently, medicine and biotechnology. Reactive oxygen and nitrogen species (RONS) play critical roles in transferring the reactivity from gas plasmas to solutions to induce specific biochemical responses in living targets, e.g., pathogen inactivation and biofilm removal. While this approach works well in a single-organism system at a laboratory scale, integration of plasma-enabled biofilm removal into complex real-life systems, e.g., large aquaculture tanks, is far from trivial. This is because it is difficult to deliver sufficient concentrations of the right kind of species to biofilm-covered surfaces while carefully maintaining a suitable physiochemical environment that is healthy for its inhabitants, e.g., fish. In this work, we show that underwater microplasma bubbles (generated by a microplasma-bubble reactor that forms a dielectric barrier discharge at the gas-liquid interface with the applied voltage of 4.0 kV) act as transport vehicles to efficiently deliver reactive plasma species to the target biofilm sites on artificial and living surfaces while keeping healthy water conditions in a multispecies system. The as-generated air microplasma bubbles and plasma-activated water (PAW) both can effectively reduce the existing pathogenic biofilm load by ∼83 and 60%, respectively, after 15 min of discharge at 40 W and prevent any new biofilm from forming. The generation of underwater microplasma bubbles in a custom-made fish tank for less than a minute per day (20 s per time, twice daily) can introduce sufficient quantities of RONS into PAW to reduce the biofilm-infected area by ∼80-90% and improve the health status of Cichlasoma synspilum × Cichlasoma citrinellum blood parrot cichlid fish. Species generated include hydrogen peroxide, ozone, nitrite, nitrate, and nitric oxide. Using mimicked chemical solutions, we show that the plasma-induced nitric oxide acts as a critical bioactive species that triggers the release of cells from the biofilm and their inactivation.
Collapse
Affiliation(s)
| | | | | | - Bingyu Luan
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Institute of Electromagnetics and Acoustics, Department of Electronic Science, College of Electronic Science and Technology , Xiamen University , Xiamen 361005 , China
| | - Xianhui Zhang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Institute of Electromagnetics and Acoustics, Department of Electronic Science, College of Electronic Science and Technology , Xiamen University , Xiamen 361005 , China
| | - Zhi Fang
- College of Electrical Engineering and Control Science , Nanjing Tech University , Nanjing 210009 , China
| | - Yubin Xian
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Xinpei Lu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | | | | |
Collapse
|
12
|
Ward LM, Stamenković V, Hand K, Fischer WW. Follow the Oxygen: Comparative Histories of Planetary Oxygenation and Opportunities for Aerobic Life. ASTROBIOLOGY 2019; 19:811-824. [PMID: 31188035 DOI: 10.1089/ast.2017.1779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aerobic respiration-the reduction of molecular oxygen (O2) coupled to the oxidation of reduced compounds such as organic carbon, ferrous iron, reduced sulfur compounds, or molecular hydrogen while conserving energy to drive cellular processes-is the most widespread and bioenergetically favorable metabolism on Earth today. Aerobic respiration is essential for the development of complex multicellular life; thus the presence of abundant O2 is an important metric for planetary habitability. O2 on Earth is supplied by oxygenic photosynthesis, but it is becoming more widely understood that abiotic processes may supply meaningful amounts of O2 on other worlds. The modern atmosphere and rock record of Mars suggest a history of relatively high O2 as a result of photochemical processes, potentially overlapping with the range of O2 concentrations used by biology. Europa may have accumulated high O2 concentrations in its subsurface ocean due to the radiolysis of water ice at its surface. Recent modeling efforts suggest that coexisting water and O2 may be common on exoplanets, with confirmation from measurements of exoplanet atmospheres potentially coming soon. In all these cases, O2 accumulates through abiotic processes-independent of water-oxidizing photosynthesis. We hypothesize that abiogenic O2 may enhance the habitability of some planetary environments, allowing highly energetic aerobic respiration and potentially even the development of complex multicellular life which depends on it, without the need to first evolve oxygenic photosynthesis. This hypothesis is testable with further exploration and life-detection efforts on O2-rich worlds such as Mars and Europa, and comparison to O2-poor worlds such as Enceladus. This hypothesis further suggests a new dimension to planetary habitability: "Follow the Oxygen," in which environments with opportunities for energy-rich metabolisms such as aerobic respiration are preferentially targeted for investigation and life detection.
Collapse
Affiliation(s)
- Lewis M Ward
- 1 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
| | - Vlada Stamenković
- 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Kevin Hand
- 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Woodward W Fischer
- 1 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
| |
Collapse
|
13
|
Ball R, Brindley J. The Power Without the Glory: Multiple Roles of Hydrogen Peroxide in Mediating the Origin of Life. ASTROBIOLOGY 2019; 19:675-684. [PMID: 30707597 DOI: 10.1089/ast.2018.1886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The hydrogen peroxide (HP) crucible hypothesis proposed here holds that life began in a localized environment on Earth that was perfused with a flow of hydrogen peroxide from a sustained external source, which powered and mediated molecular evolution and the protocellular RNA world. In this article, we consolidate and review recent evidence, both circumstantial and tested in simulation in our work and in the laboratory in others' work, for its multiple roles in the evolution of the first living systems: (1) it provides a periodic power source as the thiosulfate-hydrogen peroxide (THP) redox oscillator, (2) it may act as an agent of molecular change and evolution and mediator of homochirality, and (3) the THP oscillator, subject to Brownian input perturbations, produces a weighted distribution of output thermal fluctuations that favor polymerization and chemical diversification over chemical degradation and simplification. The hypothesis can help to clarify the hero and villain roles of hydrogen peroxide in cell function, and on the singularity of life: of necessity, life evolved early an armory of catalases, the continuing, and all-pervasive presence of which prevents hydrogen peroxide from accumulating anywhere in sufficient quantities to host a second origin. The HP crucible hypothesis is radical, but based on well-known chemistry and physics, it is eminently testable in the laboratory, and many of our simulations provide recipes for such experiments.
Collapse
Affiliation(s)
- Rowena Ball
- 1 Mathematical Sciences Institute and Research School of Chemistry, Australian National University, Canberra, Australia
| | - John Brindley
- 2 School of Mathematics, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
14
|
Selective prebiotic conversion of pyrimidine and purine anhydronucleosides into Watson-Crick base-pairing arabino-furanosyl nucleosides in water. Nat Commun 2018; 9:4073. [PMID: 30287815 PMCID: PMC6172253 DOI: 10.1038/s41467-018-06374-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/31/2018] [Indexed: 01/11/2023] Open
Abstract
Prebiotic nucleotide synthesis is crucial to understanding the origins of life on Earth. There are numerous candidates for life's first nucleic acid, however, currently no prebiotic method to selectively and concurrently synthesise the canonical Watson-Crick base-pairing pyrimidine (C, U) and purine (A, G) nucleosides exists for any genetic polymer. Here, we demonstrate the divergent prebiotic synthesis of arabinonucleic acid (ANA) nucleosides. The complete set of canonical nucleosides is delivered from one reaction sequence, with regiospecific glycosidation and complete furanosyl selectivity. We observe photochemical 8-mercaptopurine reduction is efficient for the canonical purines (A, G), but not the non-canonical purine inosine (I). Our results demonstrate that synthesis of ANA may have been facile under conditions that comply with plausible geochemical environments on early Earth and, given that ANA is capable of encoding RNA/DNA compatible information and evolving to yield catalytic ANA-zymes, ANA may have played a critical role during the origins of life.
Collapse
|
15
|
Juntunen HL, Leinen LJ, Pitts BK, O'Hanlon SM, Theiling BP, Barge LM, Videau P, Gaylor MO. Investigating the Kinetics of Montmorillonite Clay-Catalyzed Conversion of Anthracene to 9,10-Anthraquinone in the Context of Prebiotic Chemistry. ORIGINS LIFE EVOL B 2018; 48:321-330. [PMID: 30203410 DOI: 10.1007/s11084-018-9562-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/28/2018] [Indexed: 11/25/2022]
Abstract
Carbonaceous meteorites contributed polycyclic aromatic hydrocarbons (PAHs) to the organic inventory of the primordial Earth where they may have reacted on catalytic clay mineral surfaces to produce quinones capable of functioning as redox species in emergent biomolecular systems. To address the feasibility of this hypothesis, we assessed the kinetics of anthracene (1) conversion to 9,10-anthraquinone (2) in the presence of montmorillonite clay (MONT) over the temperature range 25 to 250 °C. Apparent rates of conversion were concentration independent and displayed a sigmoidal relationship with temperature, and conversion efficiencies ranged from 0.027 to 0.066%. Conversion was not detectable in the absence of MONT or a sufficiently high oxidation potential (in this case, molecular oxygen (O2)). These results suggest a scenario in which meteoritic 1 and MONT interactions could yield biologically important quinones in prebiotic planetary environments.
Collapse
Affiliation(s)
- Hope L Juntunen
- Department of Biology, Dakota State University, Madison, SD, 57042, USA
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Lucas J Leinen
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Briann K Pitts
- Department of Biology, Dakota State University, Madison, SD, 57042, USA
| | - Samantha M O'Hanlon
- School of Psychological Science, Oregon State University, Corvallis, OR, 97331, USA
| | | | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Patrick Videau
- Department of Biology, Dakota State University, Madison, SD, 57042, USA.
- Department of Biology, Southern Oregon University, Ashland, OR, 97520, USA.
| | - Michael O Gaylor
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA.
| |
Collapse
|
16
|
Walker SI, Bains W, Cronin L, DasSarma S, Danielache S, Domagal-Goldman S, Kacar B, Kiang NY, Lenardic A, Reinhard CT, Moore W, Schwieterman EW, Shkolnik EL, Smith HB. Exoplanet Biosignatures: Future Directions. ASTROBIOLOGY 2018; 18:779-824. [PMID: 29938538 PMCID: PMC6016573 DOI: 10.1089/ast.2017.1738] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 03/13/2018] [Indexed: 05/08/2023]
Abstract
We introduce a Bayesian method for guiding future directions for detection of life on exoplanets. We describe empirical and theoretical work necessary to place constraints on the relevant likelihoods, including those emerging from better understanding stellar environment, planetary climate and geophysics, geochemical cycling, the universalities of physics and chemistry, the contingencies of evolutionary history, the properties of life as an emergent complex system, and the mechanisms driving the emergence of life. We provide examples for how the Bayesian formalism could guide future search strategies, including determining observations to prioritize or deciding between targeted searches or larger lower resolution surveys to generate ensemble statistics and address how a Bayesian methodology could constrain the prior probability of life with or without a positive detection. Key Words: Exoplanets-Biosignatures-Life detection-Bayesian analysis. Astrobiology 18, 779-824.
Collapse
Affiliation(s)
- Sara I. Walker
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona
- ASU-Santa Fe Institute Center for Biosocial Complex Systems, Arizona State University, Tempe, Arizona
- Blue Marble Space Institute of Science, Seattle, Washington
| | - William Bains
- EAPS (Earth, Atmospheric and Planetary Science), MIT, Cambridge, Massachusetts
- Rufus Scientific Ltd., Royston, United Kingdom
| | - Leroy Cronin
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sebastian Danielache
- Department of Materials and Life Science, Faculty of Science and Technology, Sophia University, Tokyo, Japan
- Earth Life Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Shawn Domagal-Goldman
- NASA Goddard Space Flight Center, Greenbelt, Maryland
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, University of Washington, Seattle, Washington
| | - Betul Kacar
- Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- NASA Astrobiology Institute, Reliving the Past Team, University of Montana, Missoula, Montana
- Department of Molecular and Cell Biology, University of Arizona, Tucson, Arizona
- Department of Astronomy and Steward Observatory, University of Arizona, Tucson, Arizona
| | - Nancy Y. Kiang
- NASA Goddard Institute for Space Studies, New York, New York
| | - Adrian Lenardic
- Department of Earth Science, Rice University, Houston, Texas
| | - Christopher T. Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
- NASA Astrobiology Institute, Alternative Earths Team, University of California, Riverside, California
| | - William Moore
- Department of Atmospheric and Planetary Sciences, Hampton University, Hampton, Virginia
- National Institute of Aerospace, Hampton, Virginia
| | - Edward W. Schwieterman
- Blue Marble Space Institute of Science, Seattle, Washington
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, University of Washington, Seattle, Washington
- NASA Astrobiology Institute, Alternative Earths Team, University of California, Riverside, California
- Department of Earth Sciences, University of California, Riverside, California
- NASA Postdoctoral Program, Universities Space Research Association, Columbia, Maryland
| | - Evgenya L. Shkolnik
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | - Harrison B. Smith
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| |
Collapse
|
17
|
Huang XL. Hydrolysis of Phosphate Esters Catalyzed by Inorganic Iron Oxide Nanoparticles Acting as Biocatalysts. ASTROBIOLOGY 2018; 18:294-310. [PMID: 29489387 DOI: 10.1089/ast.2016.1628] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phosphorus ester hydrolysis is one of the key chemical processes in biological systems, including signaling, free-energy transaction, protein synthesis, and maintaining the integrity of genetic material. Hydrolysis of this otherwise kinetically stable phosphoester and/or phosphoanhydride bond is induced by enzymes such as purple acid phosphatase. Here, I report that, as in previously reported aged inorganic iron ion solutions, the iron oxide nanoparticles in the solution, which are trapped in a dialysis membrane tube filled with the various iron oxides, significantly promote the hydrolysis of the various phosphate esters, including the inorganic polyphosphates, with enzyme-like kinetics. This observation, along with those of recent studies of iron oxide, vanadium pentoxide, and molybdenum trioxide nanoparticles that behave as mimics of peroxidase, bromoperoxidase, and sulfite oxidase, respectively, indicates that the oxo-metal bond in the oxide nanoparticles is critical for the function of these corresponding natural metalloproteins. These inorganic biocatalysts challenge the traditional concept of replicator-first scenarios and support the metabolism-first hypothesis. As biocatalysts, these inorganic nanoparticles with enzyme-like activity may work in natural terrestrial environments and likely were at work in early Earth environments as well. They may have played an important role in the C, H, O, S, and P metabolic pathway with regard to the emergence and early evolution of life. Key Words: Enzyme-Hydrolysis-Iron oxide-Nanoparticles-Origin of life-Phosphate ester. Astrobiology 18, 294-310.
Collapse
|
18
|
Taverne YJ, Merkus D, Bogers AJ, Halliwell B, Duncker DJ, Lyons TW. Reactive Oxygen Species: Radical Factors in the Evolution of Animal Life: A molecular timescale from Earth's earliest history to the rise of complex life. Bioessays 2018; 40. [PMID: 29411901 DOI: 10.1002/bies.201700158] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/12/2017] [Indexed: 12/27/2022]
Abstract
Introduction of O2 to Earth's early biosphere stimulated remarkable evolutionary adaptations, and a wide range of electron acceptors allowed diverse, energy-yielding metabolic pathways. Enzymatic reduction of O2 yielded a several-fold increase in energy production, enabling evolution of multi-cellular animal life. However, utilization of O2 also presented major challenges as O2 and many of its derived reactive oxygen species (ROS) are highly toxic, possibly impeding multicellular evolution after the Great Oxidation Event. Remarkably, ROS, and especially hydrogen peroxide, seem to play a major part in early diversification and further development of cellular respiration and other oxygenic pathways, thus becoming an intricate part of evolution of complex life. Hence, although harnessing of chemical and thermo-dynamic properties of O2 for aerobic metabolism is generally considered to be an evolutionary milestone, the ability to use ROS for cell signaling and regulation may have been the first true breakthrough in development of complex life.
Collapse
Affiliation(s)
- Yannick J Taverne
- Department of Cardiothoracic Surgery Cardiovascular Research Institute COEUR Erasmus MC University Medical Centre Rotterdam, P.O. box 2040 - Room BD-559 3000 CA Rotterdam, Rotterdam, The Netherlands.,Division of Experimental Cardiology Department of Cardiology Cardiovascular Research Institute COEUR Erasmus MC University Medical Centre Rotterdam, P.O. box 2040, Room 2369, 3000 CA Rotterdam, Rotterdam, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology Department of Cardiology Cardiovascular Research Institute COEUR Erasmus MC University Medical Centre Rotterdam, P.O. box 2040, Room 2369, 3000 CA Rotterdam, Rotterdam, The Netherlands
| | - Ad J Bogers
- Department of Cardiothoracic Surgery Cardiovascular Research Institute COEUR Erasmus MC University Medical Centre Rotterdam, P.O. box 2040 - Room BD-559 3000 CA Rotterdam, Rotterdam, The Netherlands
| | - Barry Halliwell
- Department of Biochemistry Yong Loo Lin School of Medicine National University of Singapore, MD 7, 8 Medical Drive Singapore 117597 Singapore, Singapore
| | - Dirk J Duncker
- Division of Experimental Cardiology Department of Cardiology Cardiovascular Research Institute COEUR Erasmus MC University Medical Centre Rotterdam, P.O. box 2040, Room 2369, 3000 CA Rotterdam, Rotterdam, The Netherlands
| | - Timothy W Lyons
- Department of Earth Sciences University of California, University of California, Riverside, 900 University Ave. Riverside, 92521 California, California, USA
| |
Collapse
|
19
|
Linked cycles of oxidative decarboxylation of glyoxylate as protometabolic analogs of the citric acid cycle. Nat Commun 2018; 9:91. [PMID: 29311556 PMCID: PMC5758577 DOI: 10.1038/s41467-017-02591-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/08/2017] [Indexed: 11/09/2022] Open
Abstract
The development of metabolic approaches towards understanding the origins of life, which have focused mainly on the citric acid (TCA) cycle, have languished—primarily due to a lack of experimentally demonstrable and sustainable cycle(s) of reactions. We show here the existence of a protometabolic analog of the TCA involving two linked cycles, which convert glyoxylate into CO2 and produce aspartic acid in the presence of ammonia. The reactions proceed from either pyruvate, oxaloacetate or malonate in the presence of glyoxylate as the carbon source and hydrogen peroxide as the oxidant under neutral aqueous conditions and at mild temperatures. The reaction pathway demonstrates turnover under controlled conditions. These results indicate that simpler versions of metabolic cycles could have emerged under potential prebiotic conditions, laying the foundation for the appearance of more sophisticated metabolic pathways once control by (polymeric) catalysts became available. The citric acid cycle (TCA) is a fundamental metabolic pathway to release stored energy in living organisms. Here, the authors report two linked cycles of reactions that each oxidize glyoxylate into CO2 and generate intermediates shared with the modern TCA cycle, shedding light into a plausible TCA protometabolism.
Collapse
|
20
|
Li LY, Seifert NA, Xie F, Heger M, Xu Y, Jäger W. A spectroscopic and ab initio study of the hydrogen peroxide–formic acid complex: hindering the internal motion of H2O2. Phys Chem Chem Phys 2018; 20:21345-21351. [DOI: 10.1039/c8cp03342k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hydrogen peroxide imprints its chirality onto the H2O2–formic acid complex, which results in an asymmetric tunnelling potential.
Collapse
Affiliation(s)
- Leo Yuxiu Li
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | | | - Fan Xie
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Matthias Heger
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Yunjie Xu
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Wolfgang Jäger
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
21
|
Abstract
Oxygenic photosynthesis is Earth's dominant metabolism, having evolved to harvest the largest expected energy source at the surface of most terrestrial habitable zone planets. Using CO2 and H2O-molecules that are expected to be abundant and widespread on habitable terrestrial planets-oxygenic photosynthesis is plausible as a significant planetary process with a global impact. Photosynthetic O2 has long been considered particularly robust as a sign of life on a habitable exoplanet, due to the lack of known "false positives"-geological or photochemical processes that could also produce large quantities of stable O2. O2 has other advantages as a biosignature, including its high abundance and uniform distribution throughout the atmospheric column and its distinct, strong absorption in the visible and near-infrared. However, recent modeling work has shown that false positives for abundant oxygen or ozone could be produced by abiotic mechanisms, including photochemistry and atmospheric escape. Environmental factors for abiotic O2 have been identified and will improve our ability to choose optimal targets and measurements to guard against false positives. Most of these false-positive mechanisms are dependent on properties of the host star and are often strongest for planets orbiting M dwarfs. In particular, selecting planets found within the conservative habitable zone and those orbiting host stars more massive than 0.4 M⊙ (M3V and earlier) may help avoid planets with abundant abiotic O2 generated by water loss. Searching for O4 or CO in the planetary spectrum, or the lack of H2O or CH4, could help discriminate between abiotic and biological sources of O2 or O3. In advance of the next generation of telescopes, thorough evaluation of potential biosignatures-including likely environmental context and factors that could produce false positives-ultimately works to increase our confidence in life detection. Key Words: Biosignatures-Exoplanets-Oxygen-Photosynthesis-Planetary spectra. Astrobiology 17, 1022-1052.
Collapse
Affiliation(s)
- Victoria S Meadows
- 1 Department of Astronomy and Astrobiology Program, University of Washington , Seattle, Washington
- 2 NASA Astrobiology Institute-Virtual Planetary Laboratory , USA
| |
Collapse
|
22
|
Carneiro CEA, Stabile AC, Gomes FP, da Costa ACS, Zaia CTBV, Zaia DAM. Interaction, at Ambient Temperature and 80 °C, between Minerals and Artificial Seawaters Resembling the Present Ocean Composition and that of 4.0 Billion Years Ago. ORIGINS LIFE EVOL B 2017; 47:323-343. [PMID: 27783188 DOI: 10.1007/s11084-016-9524-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 10/14/2016] [Indexed: 11/30/2022]
Abstract
Probably one of the most important roles played by minerals in the origin of life on Earth was to pre-concentrate biomolecules from the prebiotic seas. There are other ways to pre concentrate biomolecules such as wetting/drying cycles and freezing/sublimation. However, adsorption is most important. If the pre-concentration did not occur-because of degradation of the minerals-other roles played by them such as protection against degradation, formation of polymers, or even as primitive cell walls would be seriously compromised. We studied the interaction of two artificial seawaters with kaolinite, bentonite, montmorillonite, goethite, ferrihydrite and quartz. One seawater has a major cation and anion composition similar to that of the oceans of the Earth 4.0 billion years ago (ASW 4.0 Ga). In the other, the major cations and anions are an average of the compositions of the seawaters of today (ASWT). When ASWT, which is rich in Na+ and Cl-, interacted with bentonite and montmorrilonite structural collapse occurred on the 001 plane. However, ASW 4.0 Ga, which is rich in Mg2+ and SO42-, did not induce this behavior. When ASW 4.0 Ga was reacted with the minerals for 24 h at room temperature and 80 °C, the release of Si and Al to the fluid was below 1 % of the amount in the minerals-meaning that dissolution of the minerals did not occur. In general, minerals adsorbed Mg2+ and K+ from the ASW 4.0 Ga and these cations could be used for the formation of polymers. Also, when the minerals were mixed with ASW 4.0 Ga at 80 °C and ASWT at room temperature or 80 °C it caused the precipitation of CaSO4∙2H2O and halite, respectively. Finally, further experiments (adsorption, formation of polymers, protection of molecules against degradation, primitive cell wall formation) performed under the conditions described in this paper will probably be more representative of what happened on the prebiotic Earth.
Collapse
Affiliation(s)
- Cristine E A Carneiro
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil
| | - Antonio C Stabile
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil
| | - Frederico P Gomes
- Departamento de Agronomia-CCA, Universidade Estadual de Maringa, Maringá, PR, 87020-900, Brazil
| | - Antonio C S da Costa
- Departamento de Agronomia-CCA, Universidade Estadual de Maringa, Maringá, PR, 87020-900, Brazil
| | - Cássia T B V Zaia
- Departamento de Ciências Fisiológicas-CCB, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil
| | - Dimas A M Zaia
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil.
| |
Collapse
|
23
|
Vernez D, Sauvain JJ, Laulagnet A, Otaño AP, Hopf NB, Batsungnoen K, Suárez G. Airborne nano-TiO 2 particles: An innate or environmentally-induced toxicity? J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Shih PM, Hemp J, Ward LM, Matzke NJ, Fischer WW. Crown group Oxyphotobacteria postdate the rise of oxygen. GEOBIOLOGY 2017; 15:19-29. [PMID: 27392323 DOI: 10.1111/gbi.12200] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/30/2016] [Indexed: 05/24/2023]
Abstract
The rise of oxygen ca. 2.3 billion years ago (Ga) is the most distinct environmental transition in Earth history. This event was enabled by the evolution of oxygenic photosynthesis in the ancestors of Cyanobacteria. However, long-standing questions concern the evolutionary timing of this metabolism, with conflicting answers spanning more than one billion years. Recently, knowledge of the Cyanobacteria phylum has expanded with the discovery of non-photosynthetic members, including a closely related sister group termed Melainabacteria, with the known oxygenic phototrophs restricted to a clade recently designated Oxyphotobacteria. By integrating genomic data from the Melainabacteria, cross-calibrated Bayesian relaxed molecular clock analyses show that crown group Oxyphotobacteria evolved ca. 2.0 billion years ago (Ga), well after the rise of atmospheric dioxygen. We further estimate the divergence between Oxyphotobacteria and Melainabacteria ca. 2.5-2.6 Ga, which-if oxygenic photosynthesis is an evolutionary synapomorphy of the Oxyphotobacteria-marks an upper limit for the origin of oxygenic photosynthesis. Together, these results are consistent with the hypothesis that oxygenic photosynthesis evolved relatively close in time to the rise of oxygen.
Collapse
Affiliation(s)
- P M Shih
- Joint BioEnergy Institute, Emeryville, CA, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - J Hemp
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - L M Ward
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - N J Matzke
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN, USA
| | - W W Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
25
|
Estillore AD, Trueblood JV, Grassian VH. Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chem Sci 2016; 7:6604-6616. [PMID: 28567251 PMCID: PMC5450524 DOI: 10.1039/c6sc02353c] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/17/2016] [Indexed: 12/20/2022] Open
Abstract
Once airborne, biologically-derived aerosol particles are prone to reaction with various atmospheric oxidants such as OH, NO3, and O3.
Advances in analytical techniques and instrumentation have now established methods for detecting, quantifying, and identifying the chemical and microbial constituents of particulate matter in the atmosphere. For example, recent cryo-TEM studies of sea spray have identified whole bacteria and viruses ejected from ocean seawater into air. A focal point of this perspective is directed towards the reactivity of aerosol particles of biological origin with oxidants (OH, NO3, and O3) present in the atmosphere. Complementary information on the reactivity of aerosol particles is obtained from field investigations and laboratory studies. Laboratory studies of different types of biologically-derived particles offer important information related to their impacts on the local and global environment. These studies can also unravel a range of different chemistries and reactivity afforded by the complexity and diversity of the chemical make-up of these particles. Laboratory experiments as the ones reviewed herein can elucidate the chemistry of biological aerosols.
Collapse
Affiliation(s)
- Armando D Estillore
- Department of Chemistry & Biochemistry , University of California San Diego , La Jolla , California 92093 , USA . ; ; Tel: +1-858-534-2499
| | - Jonathan V Trueblood
- Department of Chemistry & Biochemistry , University of California San Diego , La Jolla , California 92093 , USA . ; ; Tel: +1-858-534-2499
| | - Vicki H Grassian
- Department of Chemistry & Biochemistry , University of California San Diego , La Jolla , California 92093 , USA . ; ; Tel: +1-858-534-2499.,Scripps Institution of Oceanography and Department of Nanoengineering , University of California San Diego , La Jolla , California 92093 , USA
| |
Collapse
|
26
|
Nowicka B, Kruk J. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution. Microbiol Res 2016; 186-187:99-118. [PMID: 27242148 DOI: 10.1016/j.micres.2016.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/12/2016] [Accepted: 04/01/2016] [Indexed: 11/29/2022]
Abstract
Photosynthesis is a complex metabolic process enabling photosynthetic organisms to use solar energy for the reduction of carbon dioxide into biomass. This ancient pathway has revolutionized life on Earth. The most important event was the development of oxygenic photosynthesis. It had a tremendous impact on the Earth's geochemistry and the evolution of living beings, as the rise of atmospheric molecular oxygen enabled the development of a highly efficient aerobic metabolism, which later led to the evolution of complex multicellular organisms. The mechanism of photosynthesis has been the subject of intensive research and a great body of data has been accumulated. However, the evolution of this process is not fully understood, and the development of photosynthesis in prokaryota in particular remains an unresolved question. This review is devoted to the occurrence and main features of phototrophy and photosynthesis in prokaryotes. Hypotheses concerning the origin and spread of photosynthetic traits in bacteria are also discussed.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
27
|
Farias APSF, Carneiro CEA, de Batista Fonseca IC, Zaia CTBV, Zaia DAM. The adsorption of amino acids and cations onto goethite: a prebiotic chemistry experiment. Amino Acids 2016; 48:1401-12. [PMID: 26984319 DOI: 10.1007/s00726-016-2191-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 02/02/2016] [Indexed: 11/26/2022]
Abstract
Few prebiotic chemistry experiments have assessed the adsorption of biomolecules by iron oxide-hydroxides. The present work investigated the effects of cations in artificial seawaters on the adsorption of Gly, α-Ala and β-Ala onto goethite, and vice versa. Goethite served to concentrate K and Mg cations from solution; these effects could have played important roles in peptide nucleoside formation. Goethite showed low adsorption of Gly and α-Ala. On the other hand, β-Ala (a non-protein amino acid) was highly adsorbed by goethite. Because Gly and α-Ala are the most common amino acids in living beings, and iron oxide-hydroxides are widespread on Earth, additional iron oxides should be studied. Increased ionic strength in artificial seawaters decreased the adsorption of amino acids by goethite. Because Na was highly abundant in the artificial seawater, it showed the highest effect on amino acid adsorption. β-Ala increased the adsorption of K and Ca by goethite, this effect could have been important for peptide synthesis.
Collapse
Affiliation(s)
- Ana Paula S F Farias
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil
| | - Cristine E A Carneiro
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil
| | | | - Cássia T B V Zaia
- Departamento de Ciências Fisiológicas-CCB, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil
| | - Dimas A M Zaia
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil.
| |
Collapse
|
28
|
Ward LM, Kirschvink JL, Fischer WW. Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis. ORIGINS LIFE EVOL B 2016; 46:51-65. [PMID: 26286084 DOI: 10.1007/s11084-015-9460-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/06/2015] [Indexed: 01/12/2023]
Abstract
Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesis-autotrophic growth by splitting water with sunlight-by Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth's geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it.
Collapse
Affiliation(s)
- Lewis M Ward
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, 91125, USA.
| | - Joseph L Kirschvink
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, 91125, USA
| | - Woodward W Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, 91125, USA
| |
Collapse
|
29
|
Lu Z, Beckstead AA, Kohler B, Matsika S. Excited State Relaxation of Neutral and Basic 8-Oxoguanine. J Phys Chem B 2015; 119:8293-301. [DOI: 10.1021/acs.jpcb.5b03565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Lu
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122-6081, United States
| | - Ashley A. Beckstead
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Bern Kohler
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Spiridoula Matsika
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122-6081, United States
| |
Collapse
|
30
|
Pecoits E, Smith ML, Catling DC, Philippot P, Kappler A, Konhauser KO. Atmospheric hydrogen peroxide and Eoarchean iron formations. GEOBIOLOGY 2015; 13:1-14. [PMID: 25324177 DOI: 10.1111/gbi.12116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
It is widely accepted that photosynthetic bacteria played a crucial role in Fe(II) oxidation and the precipitation of iron formations (IF) during the Late Archean-Early Paleoproterozoic (2.7-2.4 Ga). It is less clear whether microbes similarly caused the deposition of the oldest IF at ca. 3.8 Ga, which would imply photosynthesis having already evolved by that time. Abiological alternatives, such as the direct oxidation of dissolved Fe(II) by ultraviolet radiation may have occurred, but its importance has been discounted in environments where the injection of high concentrations of dissolved iron directly into the photic zone led to chemical precipitation reactions that overwhelmed photooxidation rates. However, an outstanding possibility remains with respect to photochemical reactions occurring in the atmosphere that might generate hydrogen peroxide (H2 O2 ), a recognized strong oxidant for ferrous iron. Here, we modeled the amount of H2 O2 that could be produced in an Eoarchean atmosphere using updated solar fluxes and plausible CO2 , O2 , and CH4 mixing ratios. Irrespective of the atmospheric simulations, the upper limit of H2 O2 rainout was calculated to be <10(6) molecules cm(-2) s(-1) . Using conservative Fe(III) sedimentation rates predicted for submarine hydrothermal settings in the Eoarchean, we demonstrate that the flux of H2 O2 was insufficient by several orders of magnitude to account for IF deposition (requiring ~10(11) H2 O2 molecules cm(-2) s(-1) ). This finding further constrains the plausible Fe(II) oxidation mechanisms in Eoarchean seawater, leaving, in our opinion, anoxygenic phototrophic Fe(II)-oxidizing micro-organisms the most likely mechanism responsible for Earth's oldest IF.
Collapse
Affiliation(s)
- E Pecoits
- Equipe Géobiosphère, Institut de Physique du Globe-Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France; Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Hagemann M, Fernie AR, Espie GS, Kern R, Eisenhut M, Reumann S, Bauwe H, Weber APM. Evolution of the biochemistry of the photorespiratory C2 cycle. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:639-647. [PMID: 23198988 DOI: 10.1111/j.1438-8677.2012.00677.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/23/2012] [Indexed: 05/23/2023]
Abstract
Oxygenic photosynthesis would not be possible without photorespiration in the present day O2 -rich atmosphere. It is now generally accepted that cyanobacteria-like prokaryotes first evolved oxygenic photosynthesis, which was later conveyed via endosymbiosis into a eukaryotic host, which then gave rise to the different groups of algae and streptophytes. For photosynthetic CO2 fixation, all these organisms use RubisCO, which catalyses both the carboxylation and the oxygenation of ribulose 1,5-bisphosphate. One of the reaction products of the oxygenase reaction, 2-phosphoglycolate (2PG), represents the starting point of the photorespiratory C2 cycle, which is considered largely responsible for recapturing organic carbon via conversion to the Calvin-Benson cycle (CBC) intermediate 3-phosphoglycerate, thereby detoxifying critical intermediates. Here we discuss possible scenarios for the evolution of this process toward the well-defined 2PG metabolism in extant plants. While the origin of the C2 cycle core enzymes can be clearly dated back towards the different endosymbiotic events, the evolutionary scenario that allowed the compartmentalised high flux photorespiratory cycle is uncertain, but probably occurred early during the algal radiation. The change in atmospheric CO2 /O2 ratios promoting the acquisition of different modes for inorganic carbon concentration mechanisms, as well as the evolutionary specialisation of peroxisomes, clearly had a dramatic impact on further aspects of land plant photorespiration.
Collapse
Affiliation(s)
- M Hagemann
- Institute of Biosciences, Plant Physiology, University of Rostock, Rostock, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The emergence of oxygen-producing (oxygenic) photosynthesis fundamentally transformed our planet; however, the processes that led to the evolution of biological water splitting have remained largely unknown. To illuminate this history, we examined the behavior of the ancient Mn cycle using newly obtained scientific drill cores through an early Paleoproterozoic succession (2.415 Ga) preserved in South Africa. These strata contain substantial Mn enrichments (up to ∼17 wt %) well before those associated with the rise of oxygen such as the ∼2.2 Ga Kalahari Mn deposit. Using microscale X-ray spectroscopic techniques coupled to optical and electron microscopy and carbon isotope ratios, we demonstrate that the Mn is hosted exclusively in carbonate mineral phases derived from reduction of Mn oxides during diagenesis of primary sediments. Additional observations of independent proxies for O2--multiple S isotopes (measured by isotope-ratio mass spectrometry and secondary ion mass spectrometry) and redox-sensitive detrital grains--reveal that the original Mn-oxide phases were not produced by reactions with O2, which points to a different high-potential oxidant. These results show that the oxidative branch of the Mn cycle predates the rise of oxygen, and provide strong support for the hypothesis that the water-oxidizing complex of photosystem II evolved from a former transitional photosystem capable of single-electron oxidation reactions of Mn.
Collapse
|
33
|
Mostofa KMG, Liu CQ, Sakugawa H, Vione D, Minakata D, Wu F. Photoinduced and Microbial Generation of Hydrogen Peroxide and Organic Peroxides in Natural Waters. PHOTOBIOGEOCHEMISTRY OF ORGANIC MATTER 2013. [DOI: 10.1007/978-3-642-32223-5_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
34
|
|
35
|
Nguyen KV, Burrows CJ. Whence flavins? Redox-active ribonucleotides link metabolism and genome repair to the RNA world. Acc Chem Res 2012; 45:2151-9. [PMID: 23054469 DOI: 10.1021/ar300222j] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Present-day organisms are under constant environmental stress that damages bases in DNA, leading to mutations. Without DNA repair processes to correct these errors, such damage would be catastrophic. Organisms in all kingdoms have repair processes ranging from direct reversal to base excision and nucleotide excision repair, and the recently characterized giant viruses also include these mechanisms. At what point in the evolution of genomes did active repair mechanisms become critical? In particular, how did early RNA genomes protect themselves from UV photodamage that would have hampered nonenzymatic replication and led to a mutation rate too high to pass on accurate sequence information from one generation to the next? Photolyase is a widespread and phylogenetically ancient enzyme that utilizes longer wavelength light to cleave thymine dimers in DNA produced via photodamage. The protein serves as a binding scaffold but does not contribute to the catalytic chemistry; the action of the dinucleotide cofactor FADH(2) breaks the chemical bonds. This small bit of RNA, hailed as a "fossil of the RNA World," contains the flavin heterocycle, whose redox activity has been harnessed for myriad functions of life from metabolism to DNA repair. In present-day biochemistry, flavin biosynthesis begins with guanosine and proceeds through seven steps catalyzed by protein-based enzymes. This leads to the question of how flavins originally evolved. Did the RNA world include ancestral RNA bases with greater redox activity than G, A, C, and U that were capable of photorepair of uracil dimers? Could those ancestral bases have chemically evolved to the current flavin structure? Or did flavins already exist from prebiotic chemical synthesis? And were they then co-opted as catalysts for repair sometime after metabolism was established? In this Account, we analyze simple derivatives of guanosine and other bases that show two prerequisites for flavin-like photolyase activity: a significantly lowered one-electron reduction potential and a red-shifted adsorption spectrum that facilitates excited-state electron transfer in a spectral window that does not produce cyclobutane pyrimidine dimers. Curiously, the best candidate for a primordial flavin is a base damage product, 8-oxo-7,8-dihydroguanine (8-oxoGua or "OG"). Other redox-active ribonucleotides include 5-hydroxycytidine and 5-hydroxyuridine, which display some of the characteristics of flavins, but might also behave like NADH.
Collapse
Affiliation(s)
- Khiem Van Nguyen
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
36
|
Slesak I, Slesak H, Kruk J. Oxygen and hydrogen peroxide in the early evolution of life on earth: in silico comparative analysis of biochemical pathways. ASTROBIOLOGY 2012; 12:775-84. [PMID: 22970865 PMCID: PMC3440028 DOI: 10.1089/ast.2011.0704] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In the Universe, oxygen is the third most widespread element, while on Earth it is the most abundant one. Moreover, oxygen is a major constituent of all biopolymers fundamental to living organisms. Besides O(2), reactive oxygen species (ROS), among them hydrogen peroxide (H(2)O(2)), are also important reactants in the present aerobic metabolism. According to a widely accepted hypothesis, aerobic metabolism and many other reactions/pathways involving O(2) appeared after the evolution of oxygenic photosynthesis. In this study, the hypothesis was formulated that the Last Universal Common Ancestor (LUCA) was at least able to tolerate O(2) and detoxify ROS in a primordial environment. A comparative analysis was carried out of a number of the O(2)-and H(2)O(2)-involving metabolic reactions that occur in strict anaerobes, facultative anaerobes, and aerobes. The results indicate that the most likely LUCA possessed O(2)-and H(2)O(2)-involving pathways, mainly reactions to remove ROS, and had, at least in part, the components of aerobic respiration. Based on this, the presence of a low, but significant, quantity of H(2)O(2) and O(2) should be taken into account in theoretical models of the early Archean atmosphere and oceans and the evolution of life. It is suggested that the early metabolism involving O(2)/H(2)O(2) was a key adaptation of LUCA to already existing weakly oxic zones in Earth's primordial environment.
Collapse
Affiliation(s)
- Ireneusz Slesak
- Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland.
| | | | | |
Collapse
|
37
|
Osmium evidence for synchronicity between a rise in atmospheric oxygen and Palaeoproterozoic deglaciation. Nat Commun 2011; 2:502. [DOI: 10.1038/ncomms1507] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/13/2011] [Indexed: 11/09/2022] Open
|
38
|
Nguyen KV, Burrows CJ. A prebiotic role for 8-oxoguanosine as a flavin mimic in pyrimidine dimer photorepair. J Am Chem Soc 2011; 133:14586-9. [PMID: 21877686 DOI: 10.1021/ja2072252] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Redox-active enzyme cofactors derived from ribonucleotides have been called "fossils of the RNA world," suggesting that early catalysts employed modified nucleobases to facilitate redox chemistry in primitive metabolism. Here, we show that the common oxidative damage product 8-oxo-7,8-dihydroguanine (OG), when incorporated into a DNA or RNA strand in proximity to a cyclobutane pyrimidine dimer, can mimic the function of a flavin in photorepair. The OG nucleotide acts catalytically in a mechanism consistent with that of photolyase in which the photoexcited state of the purine donates an electron to a pyrimidine dimer to initiate bond cleavage; subsequent back electron transfer regenerates OG. This unusual example of one form of DNA damage, oxidation, functioning to repair another, photodimerization, may provide insight into the origins of prebiotic redox processes.
Collapse
Affiliation(s)
- Khiem Van Nguyen
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA
| | | |
Collapse
|
39
|
Kim HJ, Ricardo A, Illangkoon HI, Kim MJ, Carrigan MA, Frye F, Benner SA. Synthesis of Carbohydrates in Mineral-Guided Prebiotic Cycles. J Am Chem Soc 2011; 133:9457-68. [PMID: 21553892 DOI: 10.1021/ja201769f] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hyo-Joong Kim
- Foundation for Applied Molecular Evolution, Westheimer Institute for Science and Technology, P.O. Box 13174, Gainesville, Florida 32604, United States
| | - Alonso Ricardo
- Ra Pharmaceuticals, One Kendall Square, Suite B14301, Cambridge, Massachusetts 02139, United States
| | - Heshan I. Illangkoon
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Myong Jung Kim
- Foundation for Applied Molecular Evolution, Westheimer Institute for Science and Technology, P.O. Box 13174, Gainesville, Florida 32604, United States
| | - Matthew A. Carrigan
- Foundation for Applied Molecular Evolution, Westheimer Institute for Science and Technology, P.O. Box 13174, Gainesville, Florida 32604, United States
| | - Fabianne Frye
- Department of Cell Biology, Harvard Medical School, 225 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution, Westheimer Institute for Science and Technology, P.O. Box 13174, Gainesville, Florida 32604, United States
| |
Collapse
|
40
|
Schwerdtfeger CA, DePrince AE, Mazziotti DA. Testing the parametric two-electron reduced-density-matrix method with improved functionals: Application to the conversion of hydrogen peroxide to oxywater. J Chem Phys 2011; 134:174102. [DOI: 10.1063/1.3585568] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Haqq-Misra J, Kasting JF, Lee S. Availability of O(2) and H(2)O(2) on pre-photosynthetic Earth. ASTROBIOLOGY 2011; 11:293-302. [PMID: 21545266 PMCID: PMC3097080 DOI: 10.1089/ast.2010.0572] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Old arguments that free O(2) must have been available at Earth's surface prior to the origin of photosynthesis have been revived by a new study that shows that aerobic respiration can occur at dissolved oxygen concentrations much lower than had previously been thought, perhaps as low as 0.05 nM, which corresponds to a partial pressure for O(2) of about 4 × 10(-8) bar. We used numerical models to study whether such O(2) concentrations might have been provided by atmospheric photochemistry. Results show that disproportionation of H(2)O(2) near the surface might have yielded enough O(2) to satisfy this constraint. Alternatively, poleward transport of O(2) from the equatorial stratosphere into the polar night region, followed by downward transport in the polar vortex, may have brought O(2) directly to the surface. Thus, our calculations indicate that this "early respiration" hypothesis might be physically reasonable.
Collapse
Affiliation(s)
- Jacob Haqq-Misra
- Department of Meteorology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
42
|
Abstract
As a consequence of life's coexistence with the reactive diradical O(2), cells have adapted biochemical defense mechanisms for protection from oxidative damage. Nevertheless, it is estimated that each cell's genomic DNA undergoes thousands of oxidative hits per day, and even more under conditions of stress. Unrepaired oxidative damage to DNA leads to mutations that underlie cancer, aging and neurological disease. Recent studies have helped unravel the oxidation chemistry of the DNA bases, and the myriad biochemical responses of DNA processing enzymes that battle against mutation. On the positive side, oxidative damage to nucleobases may accelerate the evolution of genomes and could have played a role in the ancestry of redox-active nucleoside cofactors as well as the adaptation of early life to changes in the environment.
Collapse
|
43
|
Stolper DA, Revsbech NP, Canfield DE. Aerobic growth at nanomolar oxygen concentrations. Proc Natl Acad Sci U S A 2010; 107:18755-60. [PMID: 20974919 PMCID: PMC2973883 DOI: 10.1073/pnas.1013435107] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular oxygen (O(2)) is the second most abundant gas in the Earth's atmosphere, but in many natural environments, its concentration is reduced to low or even undetectable levels. Although low-oxygen-adapted organisms define the ecology of low-oxygen environments, their capabilities are not fully known. These capabilities also provide a framework for reconstructing a critical period in the history of life, because low, but not negligible, atmospheric oxygen levels could have persisted before the "Great Oxidation" of the Earth's surface about 2.3 to 2.4 billion years ago. Here, we show that Escherichia coli K-12, chosen for its well-understood biochemistry, rapid growth rate, and low-oxygen-affinity terminal oxidase, grows at oxygen levels of ≤ 3 nM, two to three orders of magnitude lower than previously observed for aerobes. Our study expands both the environmental range and temporal history of aerobic organisms.
Collapse
Affiliation(s)
- Daniel A. Stolper
- Nordic Center for Earth Evolution (NordCEE) and Institute of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; and
| | - Niels Peter Revsbech
- Department of Biological Sciences, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Donald E. Canfield
- Nordic Center for Earth Evolution (NordCEE) and Institute of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; and
| |
Collapse
|
44
|
Haas JR. The potential feasibility of chlorinic photosynthesis on exoplanets. ASTROBIOLOGY 2010; 10:953-963. [PMID: 21118026 DOI: 10.1089/ast.2009.0364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The modern search for life-bearing exoplanets emphasizes the potential detection of O(2) and O(3) absorption spectra in exoplanetary atmospheres as ideal signatures of biology. However, oxygenic photosynthesis may not arise ubiquitously in exoplanetary biospheres. Alternative evolutionary paths may yield planetary atmospheres tinted with the waste products of other dominant metabolisms, including potentially exotic biochemistries. This paper defines chlorinic photosynthesis (CPS) as biologically mediated photolytic oxidation of aqueous Cl(-) to form halocarbon or dihalogen products, coupled with CO(2) assimilation. This hypothetical metabolism appears to be feasible energetically, physically, and geochemically, and could potentially develop under conditions that approximate the terrestrial Archean. It is hypothesized that an exoplanetary biosphere in which chlorinic photosynthesis dominates primary production would tend to evolve a strongly oxidizing, halogen-enriched atmosphere over geologic time. It is recommended that astronomical observations of exoplanetary outgoing thermal emission spectra consider signs of halogenated chemical species as likely indicators of the presence of a chlorinic biosphere. Planets that favor the evolution of CPS would probably receive equivalent or greater surface UV flux than is produced by the Sun, which would promote stronger abiotic UV photolysis of aqueous halides than occurred during Earth's Archean era and impose stronger evolutionary selection pressures on endemic life to accommodate and utilize halogenated compounds. Ocean-bearing planets of stars with metallicities equivalent to, or greater than, the Sun should especially favor the evolution of chlorinic biospheres because of the higher relative seawater abundances of Cl, Br, and I such planets would tend to host. Directed searches for chlorinic biospheres should probably focus on G0-G2, F, and A spectral class stars that have bulk metallicities of +0.0 Dex or greater.
Collapse
Affiliation(s)
- Johnson R Haas
- Department of Geosciences, Western Michigan University, Kalamazoo, Michigan 49008, USA.
| |
Collapse
|
45
|
Papineau D. Global biogeochemical changes at both ends of the proterozoic: insights from phosphorites. ASTROBIOLOGY 2010; 10:165-181. [PMID: 20105035 DOI: 10.1089/ast.2009.0360] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The distribution of major phosphate deposits in the Precambrian sedimentary rock record is restricted to periods that witnessed global biogeochemical changes, but the cause of this distribution is unclear. The oldest known phosphogenic event occurred around 2.0 Ga and was followed, after more than 1.3 billion years, by an even larger phosphogenic event in the Neoproterozoic. Phosphorites (phosphate-rich sedimentary rocks that contain more than 15% P(2)O(5)) preserve a unique record of seawater chemistry, biological activity, and oceanographic changes. In an attempt to emphasize the potentially crucial significance of phosphorites in the evolution of Proterozoic biogeochemical cycles, this contribution provides a review of some important Paleoproterozoic phosphate deposits and of models proposed for their origin. A new model is then presented for the spatial and temporal modes of occurrence of phosphorites along with possible connections to global changes at both ends of the Proterozoic. Central to the new model is that periods of atmospheric oxygenation may have been caused by globally elevated rates of primary productivity stimulated by high fluxes of phosphorus delivery to seawater as a result of increased chemical weathering of continental crust over geological timescales. The striking similarities in biogeochemical evolution between the Paleo- and Neoproterozoic are discussed in light of the two oldest major phosphogenic events and their possible relation to the stepwise rise of atmospheric oxygen that ultimately resulted in significant leaps in biological evolution.
Collapse
Affiliation(s)
- Dominic Papineau
- Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd. NW, Washington, DC 20015, USA.
| |
Collapse
|
46
|
Reddy SM, Evans DAD. Palaeoproterozoic supercontinents and global evolution: correlations from core to atmosphere. ACTA ACUST UNITED AC 2009. [DOI: 10.1144/sp323.1] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractThe Palaeoproterozoic era was a time of profound change in Earth evolution and represented perhaps the first supercontinent cycle, from the amalgamation and dispersal of a possible Neoarchaean supercontinent to the formation of the 1.9–1.8 Ga supercontinent Nuna. This supercontinent cycle, although currently lacking in palaeogeographic detail, can in principle provide a contextual framework to investigate the relationships between deep-Earth and surface processes. In this article, we graphically summarize secular evolution from the Earth's core to its atmosphere, from the Neoarchaean to the Mesoproterozoic eras (specifically 3.0–1.2 Ga), to reveal intriguing temporal relationships across the various ‘spheres’ of the Earth system. At the broadest level our compilation confirms an important deep-Earth event at c. 2.7 Ga that is manifested in an abrupt increase in geodynamo palaeointensity, a peak in the global record of large igneous provinces, and a broad maximum in several mantle-depletion proxies. Temporal coincidence with juvenile continental crust production and orogenic gold, massive-sulphide and porphyry copper deposits, indicate enhanced mantle convection linked to a series of mantle plumes and/or slab avalanches. The subsequent stabilization of cratonic lithosphere, the possible development of Earth's first supercontinent and the emergence of the continents led to a changing surface environment in which voluminous banded iron-formations could accumulate on the continental margins and photosynthetic life could flourish. This in turn led to irreversible atmospheric oxidation at 2.4–2.3 Ga, extreme events in global carbon cycling, and the possible dissipation of a former methane greenhouse atmosphere that resulted in extensive Palaeoproterozoic ice ages. Following the great oxidation event, shallow marine sulphate levels rose, sediment-hosted and iron-oxide-rich metal deposits became abundant, and the transition to sulphide-stratified oceans provided the environment for early eukaryotic evolution. Recent advances in the geochronology of the global stratigraphic record have made these inferences possible. Frontiers for future research include more refined modelling of Earth's thermal and geodynamic evolution, palaeomagnetic studies of geodynamo intensity and continental motions, further geochronology and tectonic syntheses at regional levels, development of new isotopic systems to constrain geochemical cycles, and continued innovation in the search for records of early life in relation to changing palaeoenvironments.
Collapse
Affiliation(s)
- S. M. Reddy
- The Institute for Geoscience Research, Department of Applied Geology, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845, Australia
| | - D. A. D. Evans
- Department of Geology and Geophysics, Yale University, New Haven, CT 06520-8109, USA
| |
Collapse
|
47
|
Atmospheric pressure as a natural climate regulator for a terrestrial planet with a biosphere. Proc Natl Acad Sci U S A 2009; 106:9576-9. [PMID: 19487662 DOI: 10.1073/pnas.0809436106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lovelock and Whitfield suggested in 1982 that, as the luminosity of the Sun increases over its life cycle, biologically enhanced silicate weathering is able to reduce the concentration of atmospheric carbon dioxide (CO(2)) so that the Earth's surface temperature is maintained within an inhabitable range. As this process continues, however, between 100 and 900 million years (Ma) from now the CO(2) concentration will reach levels too low for C(3) and C(4) photosynthesis, signaling the end of the solar-powered biosphere. Here, we show that atmospheric pressure is another factor that adjusts the global temperature by broadening infrared absorption lines of greenhouse gases. A simple model including the reduction of atmospheric pressure suggests that the life span of the biosphere can be extended at least 2.3 Ga into the future, more than doubling previous estimates. This has important implications for seeking extraterrestrial life in the Universe. Space observations in the infrared region could test the hypothesis that atmospheric pressure regulates the surface temperature on extrasolar planets.
Collapse
|
48
|
Palaeoproterozoic ice houses and the evolution of oxygen-mediating enzymes: the case for a late origin of photosystem II. Philos Trans R Soc Lond B Biol Sci 2008; 363:2755-65. [PMID: 18487128 PMCID: PMC2606766 DOI: 10.1098/rstb.2008.0024] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two major geological problems regarding the origin of oxygenic photosynthesis are (i) identifying a source of oxygen pre-dating the biological oxygen production and capable of driving the evolution of oxygen tolerance, and (ii) determining when oxygenic photosynthesis evolved. One solution to the first problem is the accumulation of photochemically produced H(2)O(2) at the surface of the glaciers and its subsequent incorporation into ice. Melting at the glacier base would release H(2)O(2), which interacts with seawater to produce O(2) in an environment shielded from the lethal levels of ultraviolet radiation needed to produce H(2)O(2). Answers to the second problem are controversial and range from 3.8 to 2.2 Gyr ago. A sceptical view, based on the metals that have the redox potentials close to oxygen, argues for the late end of the range. The preponderance of geological evidence suggests little or no oxygen in the Late Archaean atmosphere (less than 1 ppm). The main piece of evidence for an earlier evolution of oxygenic photosynthesis comes from lipid biomarkers. Recent work, however, has shown that 2-methylhopanes, once thought to be unique biomarkers for cyanobacteria, are also produced anaerobically in significant quantities by at least two strains of anoxygenic phototrophs. Sterane biomarkers provide the strongest evidence for a date 2.7 Gyr ago or above, and could also be explained by the common evolutionary pattern of replacing anaerobic enzymes with oxygen-dependent ones. Although no anaerobic sterol synthesis pathway has been identified in the modern biosphere, enzymes that perform the necessary chemistry do exist. This analysis suggests that oxygenic photosynthesis could have evolved close in geological time to the Makganyene Snowball Earth Event and argues for a causal link between the two.
Collapse
|
49
|
Bernhard JM, Bowser SS. Peroxisome proliferation in Foraminifera inhabiting the chemocline: an adaptation to reactive oxygen species exposure? J Eukaryot Microbiol 2008; 55:135-44. [PMID: 18460150 DOI: 10.1111/j.1550-7408.2008.00318.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Certain foraminiferal species are abundant within the chemocline of marine sediments. Ultrastructurally, most of these species possess numerous peroxisomes complexed with the endoplasmic reticulum (ER); mitochondria are often interspersed among these complexes. In the Santa Barbara Basin, pore-water bathing Foraminifera and co-occurring sulfur-oxidizing microbial mats had micromolar levels of hydrogen peroxide (H(2)O(2)), a reactive oxygen species that can be detrimental to biological membranes. Experimental results indicate that adenosine triphosphate concentrations are significantly higher in Foraminifera incubated in 16 microM H(2)O(2) than in specimens incubated in the absence of H(2)O(2). New ultrastructural and experimental observations, together with published results, lead us to propose that foraminiferans can utilize oxygen derived from the breakdown of environmentally and metabolically produced H(2)O(2). Such a capability could explain foraminiferal adaptation to certain chemically inhospitable environments; it would also force us to reassess the role of protists in biogeochemistry, especially with respect to hydrogen and iron. The ecology of these protists also appears to be tightly linked to the sulfur cycle. Finally, given that some Foraminifera bearing peroxisome-ER complexes belong to evolutionarily basal groups, an early acquisition of the capability to use environmental H(2)O(2) could have facilitated diversification of foraminiferans during the Neoproterozoic.
Collapse
Affiliation(s)
- Joan M Bernhard
- Geology and Geophysics Department, MS 52, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | | |
Collapse
|
50
|
Glansdorff N, Xu Y, Labedan B. The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct 2008; 3:29. [PMID: 18613974 PMCID: PMC2478661 DOI: 10.1186/1745-6150-3-29] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 07/09/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since the reclassification of all life forms in three Domains (Archaea, Bacteria, Eukarya), the identity of their alleged forerunner (Last Universal Common Ancestor or LUCA) has been the subject of extensive controversies: progenote or already complex organism, prokaryote or protoeukaryote, thermophile or mesophile, product of a protracted progression from simple replicators to complex cells or born in the cradle of "catalytically closed" entities? We present a critical survey of the topic and suggest a scenario. RESULTS LUCA does not appear to have been a simple, primitive, hyperthermophilic prokaryote but rather a complex community of protoeukaryotes with a RNA genome, adapted to a broad range of moderate temperatures, genetically redundant, morphologically and metabolically diverse. LUCA's genetic redundancy predicts loss of paralogous gene copies in divergent lineages to be a significant source of phylogenetic anomalies, i.e. instances where a protein tree departs from the SSU-rRNA genealogy; consequently, horizontal gene transfer may not have the rampant character assumed by many. Examining membrane lipids suggest LUCA had sn1,2 ester fatty acid lipids from which Archaea emerged from the outset as thermophilic by "thermoreduction," with a new type of membrane, composed of sn2,3 ether isoprenoid lipids; this occurred without major enzymatic reconversion. Bacteria emerged by reductive evolution from LUCA and some lineages further acquired extreme thermophily by convergent evolution. This scenario is compatible with the hypothesis that the RNA to DNA transition resulted from different viral invasions as proposed by Forterre. Beyond the controversy opposing "replication first" to metabolism first", the predictive arguments of theories on "catalytic closure" or "compositional heredity" heavily weigh in favour of LUCA's ancestors having emerged as complex, self-replicating entities from which a genetic code arose under natural selection. CONCLUSION Life was born complex and the LUCA displayed that heritage. It had the "body "of a mesophilic eukaryote well before maturing by endosymbiosis into an organism adapted to an atmosphere rich in oxygen. Abundant indications suggest reductive evolution of this complex and heterogeneous entity towards the "prokaryotic" Domains Archaea and Bacteria. The word "prokaryote" should be abandoned because epistemologically unsound. REVIEWERS This article was reviewed by Anthony Poole, Patrick Forterre, and Nicolas Galtier.
Collapse
Affiliation(s)
- Nicolas Glansdorff
- JM Wiame Research Institute for Microbiology and Vrije Universiteit Brussel, 1 ave E. Gryzon, B-1070 Brussels, Belgium.
| | | | | |
Collapse
|