1
|
Alaei SR, King AJ, Banani K, Reddy A, Ortiz J, Knight AL, Haldeman J, Su TH, Park H, Coats SR, Jain S. Lipid a remodeling modulates outer membrane vesicle biogenesis by Porphyromonas gingivalis. J Bacteriol 2025; 207:e0033624. [PMID: 39660885 PMCID: PMC11784228 DOI: 10.1128/jb.00336-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Outer membrane vesicles (OMVs) are small membrane enclosed sacs released from bacteria which serve as carriers of biomolecules that shape interactions with the surrounding environment. The periodontal pathogen, Porphyromonas gingivalis, is a prolific OMV producer. Here, we investigated how the structure of lipid A, a core outer membrane molecule, influences P. gingivalis OMV production, OMV-dependent TLR4 activation, and biofilm formation. We examined mutant strains of P. gingivalis 33277 deficient for enzymes that alter lipid A phosphorylation and acylation status. The lipid A C4'-phosphatase (lpxF)-deficient strain and strains bearing inactivating point mutations in the LpxF active site displayed markedly reduced OMV production relative to WT. In contrast, strains deficient for either the lipid A C1-phosphatase (lpxE) or the lipid A deacylase (PGN_1123; lpxZ) genes did not display alterations in OMV abundance compared to WT. These data indicate that lipid A C4'-phosphate removal is required for typical OMV formation. In addition, OMVs produced by ΔlpxF and ΔlpxZ strains, possessing only penta-acylated lipid A, stimulated robust TLR4 activation, whereas OMVs obtained from WT and ΔlpxE strains, containing predominantly tetra-acylated lipid A, did not. Hence, lipid A remodeling modulates the capacity of OMVs to engage host TLR4-dependent immunity. Finally, we demonstrate an inverse relationship between OMV abundance and biofilm density, with the ∆lpxF mutants forming denser biofilms than either WT, ΔlpxE, or ΔlpxZ strains. Therefore, OMVs may also contribute to pathogenesis by regulating biofilm formation and dispersal.IMPORTANCEPorphyromonas gingivalis is a bacterium strongly associated with periodontitis. P. gingivalis exports lipids, proteins, and other biomolecules that contribute to the bacterium's ability to persist in inflammatory conditions encountered during disease. These biomolecules are exported through several mechanisms, including via outer membrane vesicles (OMVs). Despite their ubiquity, the mechanisms that drive outer membrane vesicle production vary among bacteria and are not fully understood. In this study, we report that C4' dephosphorylation of lipid A, a major outer membrane molecule, is required for robust outer membrane vesicle production and biological function in P. gingivalis. This finding adds to the growing body of evidence that lipid A structure is an important factor in outer membrane vesicle biogenesis in diverse bacterial species.
Collapse
Affiliation(s)
- Sarah R. Alaei
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Alisa J. King
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Karim Banani
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Angel Reddy
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Joshua Ortiz
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Alexa L. Knight
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Jessica Haldeman
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Thet Hnin Su
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Hana Park
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Stephen R. Coats
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Sumita Jain
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Huang D, Chen L, Wang Y, Wang Z, Wang J, Wang X. Characterization of a secondary hydroxy-acyltransferase for lipid A in Vibrio parahaemolyticus. Microbiol Res 2024; 283:127712. [PMID: 38593580 DOI: 10.1016/j.micres.2024.127712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Lipid A plays a crucial role in Vibrio parahaemolyticus. Previously we have reported the diversity of secondary acylation of lipid A in V. parahaemolyticus and four V. parahaemolyticus genes VP_RS08405, VP_RS01045, VP_RS12170, and VP_RS00880 exhibiting homology to the secondary acyltransferases in Escherichia coli. In this study, the gene VP_RS12170 was identified as a specific lipid A secondary hydroxy-acyltransferase responsible for transferring a 3-hydroxymyristate to the 2'-position of lipid A. Four E. coli mutant strains WHL00, WHM00, WH300, and WH001 were constructed, and they would synthesize lipid A with different structures due to the absence of genes encoding lipid A secondary acyltransferases or Kdo transferase. Then V. parahaemolyticus VP_RS12170 was overexpressed in W3110, WHL00, WHM00, WH300, and WH001, and lipid A was isolated from these strains and analyzed by using thin-layer chromatography and high-performance liquid chromatography-tandem mass spectrometry. The detailed structural changes of lipid A in these mutant strains with and without VP_RS12170 overexpression were compared and conclude that VP_RS12170 can specifically transfer a 3-hydroxymyristate to the 2'-position of lipid A. This study also demonstrated that the function of VP_RS12170 is Kdo-dependent and its favorite substrate is Kdo-lipid IVA. These findings give us better understanding the biosynthetic pathway and the structural diversity of V. parahaemolyticus lipid A.
Collapse
Affiliation(s)
- Danyang Huang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lingyan Chen
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhe Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianli Wang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Schütz SD, Brackmann M, Liechti N, Moser M, Wittwer M, Bruggmann R. Functional characterization of Francisella tularensis subspecies holarctica genotypes during tick cell and macrophage infections using a proteogenomic approach. Front Cell Infect Microbiol 2024; 14:1355113. [PMID: 38500499 PMCID: PMC10944910 DOI: 10.3389/fcimb.2024.1355113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Tularemia is a vector-borne disease caused by the Gram-negative bacterium Francisella tularensis. Known hosts and vectors in Europe are hare and ticks. F. tularensis is transmitted from ticks and animals, but also from the hydrotelluric environment and the consumption of contaminated water or food. A changing climate expands the range in which ticks can live and consequently might contribute to increasing case numbers of tularemia. Two subspecies of F. tularensis are human pathogenic. Francisella tularensis tularensis (Ftt) is endemic in North America, while Francisella tularensis holarctica (Fth) is the only subspecies causing tularemia in Europe. Ft is classified as a category A bioterrorism agent due to its low infectious dose, multiple modes of transmission, high infectivity and potential for airborne transmission and has become a global public health concern. In line with the European survey and previous phylogenetic studies, Switzerland shows the co-distribution of B.6 and B.12 strains with different geographical distribution and prevalence within the country. To establish itself in different host environments of ticks and mammals, F. tularensis presumably undergoes substantial changes on the transcriptomics and proteomic level. Here we investigate the transcriptomic and proteomic differences of five strains of Fth upon infection of rabbit macrophages and tick cells.
Collapse
Affiliation(s)
- Sara Doina Schütz
- Interfaculty Bioinformatics Unit, University of Bern and Swiss Institute of Bioinformatics, Bern, Switzerland
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Nicole Liechti
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Michel Moser
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Matthias Wittwer
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern and Swiss Institute of Bioinformatics, Bern, Switzerland
| |
Collapse
|
4
|
Maurin M, Pondérand L, Hennebique A, Pelloux I, Boisset S, Caspar Y. Tularemia treatment: experimental and clinical data. Front Microbiol 2024; 14:1348323. [PMID: 38298538 PMCID: PMC10827922 DOI: 10.3389/fmicb.2023.1348323] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/31/2023] [Indexed: 02/02/2024] Open
Abstract
Tularemia is a zoonosis caused by the Gram negative, facultative intracellular bacterium Francisella tularensis. This disease has multiple clinical presentations according to the route of infection, the virulence of the infecting bacterial strain, and the underlying medical condition of infected persons. Systemic infections (e.g., pneumonic and typhoidal form) and complications are rare but may be life threatening. Most people suffer from local infection (e.g., skin ulcer, conjunctivitis, or pharyngitis) with regional lymphadenopathy, which evolve to suppuration in about 30% of patients and a chronic course of infection. Current treatment recommendations have been established to manage acute infections in the context of a biological threat and do not consider the great variability of clinical situations. This review summarizes literature data on antibiotic efficacy against F. tularensis in vitro, in animal models, and in humans. Empirical treatment with beta-lactams, most macrolides, or anti-tuberculosis agents is usually ineffective. The aminoglycosides gentamicin and streptomycin remain the gold standard for severe infections, and the fluoroquinolones and doxycycline for infections of mild severity, although current data indicate the former are usually more effective. However, the antibiotic treatments reported in the literature are highly variable in their composition and duration depending on the clinical manifestations, the age and health status of the patient, the presence of complications, and the evolution of the disease. Many patients received several antibiotics in combination or successively. Whatever the antibiotic treatment administered, variable but high rates of treatment failures and relapses are still observed, especially in patients treated more then 2-3 weeks after disease onset. In these patients, surgical treatment is often necessary for cure, including drainage or removal of suppurative lymph nodes or other infectious foci. It is currently difficult to establish therapeutic recommendations, particularly due to lack of comparative randomized studies. However, we have attempted to summarize current knowledge through proposals for improving tularemia treatment which will have to be discussed by a group of experts. A major factor in improving the prognosis of patients with tularemia is the early administration of appropriate treatment, which requires better medical knowledge and diagnostic strategy of this disease.
Collapse
Affiliation(s)
- Max Maurin
- Centre National de Référence Francisella tularensis, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Translational Innovation in Medicine and Complexity (TIMC), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Léa Pondérand
- Centre National de Référence Francisella tularensis, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Commissariat à l’énergie atomique (CEA), CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Aurélie Hennebique
- Centre National de Référence Francisella tularensis, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Translational Innovation in Medicine and Complexity (TIMC), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Isabelle Pelloux
- Centre National de Référence Francisella tularensis, CHU Grenoble Alpes, Grenoble, France
| | - Sandrine Boisset
- Centre National de Référence Francisella tularensis, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Commissariat à l’énergie atomique (CEA), CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Yvan Caspar
- Centre National de Référence Francisella tularensis, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Commissariat à l’énergie atomique (CEA), CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| |
Collapse
|
5
|
Degabriel M, Valeva S, Boisset S, Henry T. Pathogenicity and virulence of Francisella tularensis. Virulence 2023; 14:2274638. [PMID: 37941380 PMCID: PMC10653695 DOI: 10.1080/21505594.2023.2274638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Tularaemia is a zoonotic disease caused by the Gram-negative bacterium, Francisella tularensis. Depending on its entry route into the organism, F. tularensis causes different diseases, ranging from life-threatening pneumonia to less severe ulceroglandular tularaemia. Various strains with different geographical distributions exhibit different levels of virulence. F. tularensis is an intracellular bacterium that replicates primarily in the cytosol of the phagocytes. The main virulence attribute of F. tularensis is the type 6 secretion system (T6SS) and its effectors that promote escape from the phagosome. In addition, F. tularensis has evolved a peculiar envelope that allows it to escape detection by the immune system. In this review, we cover tularaemia, different Francisella strains, and their pathogenicity. We particularly emphasize the intracellular life cycle, associated virulence factors, and metabolic adaptations. Finally, we present how F. tularensis largely escapes immune detection to be one of the most infectious and lethal bacterial pathogens.
Collapse
Affiliation(s)
- Manon Degabriel
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| | - Stanimira Valeva
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| | - Sandrine Boisset
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
- Univ. Grenoble Alpes, CHU Grenoble Alpes, CNRS, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| |
Collapse
|
6
|
Pětrošová H, Mikhael A, Culos S, Giraud-Gatineau A, Gomez AM, Sherman ME, Ernst RK, Cameron CE, Picardeau M, Goodlett DR. Lipid A structural diversity among members of the genus Leptospira. Front Microbiol 2023; 14:1181034. [PMID: 37303810 PMCID: PMC10248169 DOI: 10.3389/fmicb.2023.1181034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Lipid A is the hydrophobic component of bacterial lipopolysaccharide and an activator of the host immune system. Bacteria modify their lipid A structure to adapt to the surrounding environment and, in some cases, to evade recognition by host immune cells. In this study, lipid A structural diversity within the Leptospira genus was explored. The individual Leptospira species have dramatically different pathogenic potential that ranges from non-infectious to life-threatening disease (leptospirosis). Ten distinct lipid A profiles, denoted L1-L10, were discovered across 31 Leptospira reference species, laying a foundation for lipid A-based molecular typing. Tandem MS analysis revealed structural features of Leptospira membrane lipids that might alter recognition of its lipid A by the host innate immune receptors. Results of this study will aid development of strategies to improve diagnosis and surveillance of leptospirosis, as well as guide functional studies on Leptospira lipid A activity.
Collapse
Affiliation(s)
- Helena Pětrošová
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- University of Victoria Genome British Columbia Proteomics Center, University of Victoria, Victoria, BC, Canada
| | - Abanoub Mikhael
- University of Victoria Genome British Columbia Proteomics Center, University of Victoria, Victoria, BC, Canada
| | - Sophie Culos
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | | | - Alloysius M. Gomez
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Matthew E. Sherman
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, United States
| | - Mathieu Picardeau
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Biology of Spirochetes Unit, Paris, France
| | - David R. Goodlett
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- University of Victoria Genome British Columbia Proteomics Center, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
7
|
Valeva SV, Degabriel M, Michal F, Gay G, Rohde JR, Randow F, Lagrange B, Henry T. Comparative study of GBP recruitment on two cytosol-dwelling pathogens, Francisella novicida and Shigella flexneri highlights differences in GBP repertoire and in GBP1 motif requirements. Pathog Dis 2023; 81:ftad005. [PMID: 37012222 DOI: 10.1093/femspd/ftad005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Guanylate-Binding Proteins are interferon-inducible GTPases that play a key role in cell autonomous responses against intracellular pathogens. Despite sharing high sequence similarity, subtle differences among GBPs translate into functional divergences that are still largely not understood. A key GBP feature is the formation of supramolecular GBP complexes on the bacterial surface. Such complexes are observed when GBP1 binds lipopolysaccharide (LPS) from Shigella and Salmonella and further recruits GBP2-4. Here, we compared GBP recruitment on two cytosol-dwelling pathogens, Francisella novicida and S. flexneri. Francisella novicida was coated by GBP1 and GBP2 and to a lower extent by GBP4 in human macrophages. Contrary to S. flexneri, F. novicida was not targeted by GBP3, a feature independent of T6SS effectors. Multiple GBP1 features were required to promote targeting to F. novicida while GBP1 targeting to S. flexneri was much more permissive to GBP1 mutagenesis suggesting that GBP1 has multiple domains that cooperate to recognize F. novicida atypical LPS. Altogether our results indicate that the repertoire of GBPs recruited onto specific bacteria is dictated by GBP-specific features and by specific bacterial factors that remain to be identified.
Collapse
Affiliation(s)
- Stanimira V Valeva
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Manon Degabriel
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Fanny Michal
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Gabrielle Gay
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, F-69007, Lyon, France
| | - John R Rohde
- Department of Microbiology and Immunology, Dalhousie University, Halifax, B3H 4R2, NS, Canada
| | - Felix Randow
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, CB2 0QH, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, CB2 0QH, Cambridge, United Kingdom
| | - Brice Lagrange
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, F-69007, Lyon, France
| |
Collapse
|
8
|
Mlynek KD, Bozue JA. Why vary what's working? Phase variation and biofilm formation in Francisella tularensis. Front Microbiol 2022; 13:1076694. [PMID: 36560950 PMCID: PMC9763628 DOI: 10.3389/fmicb.2022.1076694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
The notoriety of high-consequence human pathogens has increased in recent years and, rightfully, research efforts have focused on understanding host-pathogen interactions. Francisella tularensis has been detected in an impressively broad range of vertebrate hosts as well as numerous arthropod vectors and single-celled organisms. Two clinically important subspecies, F. tularensis subsp. tularensis (Type A) and F. tularensis subsp. holarctica (Type B), are responsible for the majority of tularemia cases in humans. The success of this bacterium in mammalian hosts can be at least partly attributed to a unique LPS molecule that allows the bacterium to avoid detection by the host immune system. Curiously, phase variation of the O-antigen incorporated into LPS has been documented in these subspecies of F. tularensis, and these variants often display some level of attenuation in infection models. While the role of phase variation in F. tularensis biology is unclear, it has been suggested that this phenomenon can aid in environmental survival and persistence. Biofilms have been established as the predominant lifestyle of many bacteria in the environment, though, it was previously thought that Type A and B isolates of F. tularensis typically form poor biofilms. Recent studies question this ideology as it was shown that alteration of the O-antigen allows robust biofilm formation in both Type A and B isolates. This review aims to explore the link between phase variation of the O-antigen, biofilm formation, and environmental persistence with an emphasis on clinically relevant subspecies and how understanding these poorly studied mechanisms could lead to new medical countermeasures to combat tularemia.
Collapse
|
9
|
Ji F, Huang D, Tan X, Guo Y, Wang Z, Zhou Q, Wang X. Structure analysis of lipid A species in Vibrio parahaemolyticus by constructing mutants lacking multiple secondary acyltransferases of lipid A. Biotechnol Appl Biochem 2022; 70:716-729. [PMID: 35913040 DOI: 10.1002/bab.2393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/24/2022] [Indexed: 11/10/2022]
Abstract
Four secondary acyltransferases of Vibrio parahaemolyticus lipid A encoded by VP_RS00880, VP_RS08405, VP_RS12170 and VP_RS01045 have been identified. In this study, mutants of V. parahaemolyticus were constructed by deleting two, three or four of these genes. The double mutants showed similar growth pattern with the wild type, but the quadruple mutant VPW011 showed significant growth defect at both 37°C and 21°C. Lipid A samples were extracted from these mutants and analyzed by electrospray ionization-mass spectrometry. The double and triple mutants could synthesize hepta- and octa-acylated lipid A species, while the quadruple mutant VPW011could synthesized hexa- and hepta-acylated lipid A. The results suggest that the four secondary acyltransferases could complement each other in V. parahaemolyticus. More importantly, additional secondary acyltransferases of lipid A might exist in V. parahaemolyticus and their activities might be as strong as the four known secondary acyltransferases. The unusual multiple secondary acyltransferases of lipid A might play roles in pathogenicity and antimicrobic resistance of V. parahaemolyticus. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Danyang Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yong Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
10
|
Valvano MA. Remodelling of the Gram-negative bacterial Kdo 2-lipid A and its functional implications. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35394417 DOI: 10.1099/mic.0.001159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The lipopolysaccharide (LPS) is a characteristic molecule of the outer leaflet of the Gram-negative bacterial outer membrane, which consists of lipid A, core oligosaccharide, and O antigen. The lipid A is embedded in outer membrane and provides an efficient permeability barrier, which is particularly important to reduce the permeability of antibiotics, toxic cationic metals, and antimicrobial peptides. LPS, an important modulator of innate immune responses ranging from localized inflammation to disseminated sepsis, displays a high level of structural and functional heterogeneity, which arise due to regulated differences in the acylation of the lipid A and the incorporation of non-stoichiometric modifications in lipid A and the core oligosaccharide. This review focuses on the current mechanistic understanding of the synthesis and assembly of the lipid A molecule and its most salient non-stoichiometric modifications.
Collapse
Affiliation(s)
- Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| |
Collapse
|
11
|
Guo Y, Mao R, Xie Q, Cheng X, Xu T, Wang X, Du Y, Qi X. Francisella novicida Mutant XWK4 Triggers Robust Inflammasome Activation Favoring Infection. Front Cell Dev Biol 2021; 9:743335. [PMID: 34869331 PMCID: PMC8637620 DOI: 10.3389/fcell.2021.743335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial infection tendentiously triggers inflammasome activation, whereas the roles of inflammasome activation in host defense against diverse infections remain unclear. Here, we identified that an ASC-dependent inflammasome activation played opposite roles in host defense against Francisella novicida wild-type (WT) U112 and mutant strain XWK4. Comparing with U112, XWK4 infection induced robust cytokine production, ASC-dependent inflammasome activation, and pyroptosis. Both AIM2 and NLRP3 were involved and played independent roles in XWK4-induced inflammasome activation. Type II interferon was partially required for XWK4-triggered inflammasome activation, which was different from type I interferon dependency in U112-induced inflammasome activation. Distinct from F. novicida U112 and Acinetobacter baumannii infection, Asc-/- mice were more resistant than WT mice response to XWK4 infection by limiting bacterial burden in vivo. The excessive inflammasome activation triggered by XWK4 infection caused dramatical cell death and pathological damage. Our study offers novel insights into mechanisms of inflammasome activation in host defense and provides potential therapeutic approach against bacterial infections and inflammatory diseases.
Collapse
Affiliation(s)
- Yu Guo
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Rudi Mao
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingqing Xie
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaojie Cheng
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yan Du
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Xiaopeng Qi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
12
|
Bachert BA, Richardson JB, Mlynek KD, Klimko CP, Toothman RG, Fetterer DP, Luquette AE, Chase K, Storrs JL, Rogers AK, Cote CK, Rozak DA, Bozue JA. Development, Phenotypic Characterization and Genomic Analysis of a Francisella tularensis Panel for Tularemia Vaccine Testing. Front Microbiol 2021; 12:725776. [PMID: 34456897 PMCID: PMC8386241 DOI: 10.3389/fmicb.2021.725776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/21/2021] [Indexed: 11/23/2022] Open
Abstract
Francisella tularensis is one of several biothreat agents for which a licensed vaccine is needed to protect against this pathogen. To aid in the development of a vaccine protective against pneumonic tularemia, we generated and characterized a panel of F. tularensis isolates that can be used as challenge strains to assess vaccine efficacy. Our panel consists of both historical and contemporary isolates derived from clinical and environmental sources, including human, tick, and rabbit isolates. Whole genome sequencing was performed to assess the genetic diversity in comparison to the reference genome F. tularensis Schu S4. Average nucleotide identity analysis showed >99% genomic similarity across the strains in our panel, and pan-genome analysis revealed a core genome of 1,707 genes, and an accessory genome of 233 genes. Three of the strains in our panel, FRAN254 (tick-derived), FRAN255 (a type B strain), and FRAN256 (a human isolate) exhibited variation from the other strains. Moreover, we identified several unique mutations within the Francisella Pathogenicity Island across multiple strains in our panel, revealing unexpected diversity in this region. Notably, FRAN031 (Scherm) completely lacked the second pathogenicity island but retained virulence in mice. In contrast, FRAN037 (Coll) was attenuated in a murine pneumonic tularemia model and had mutations in pdpB and iglA which likely led to attenuation. All of the strains, except FRAN037, retained full virulence, indicating their effectiveness as challenge strains for future vaccine testing. Overall, we provide a well-characterized panel of virulent F. tularensis strains that can be utilized in ongoing efforts to develop an effective vaccine against pneumonic tularemia to ensure protection is achieved across a range F. tularensis strains.
Collapse
Affiliation(s)
- Beth A. Bachert
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Joshua B. Richardson
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Kevin D. Mlynek
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Christopher P. Klimko
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Ronald G. Toothman
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - David P. Fetterer
- Division of Biostatistics, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Andrea E. Luquette
- Biodefense Reference Material Repository, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Kitty Chase
- Biodefense Reference Material Repository, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Jessica L. Storrs
- Biodefense Reference Material Repository, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Ashley K. Rogers
- Biodefense Reference Material Repository, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Christopher K. Cote
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - David A. Rozak
- Biodefense Reference Material Repository, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Joel A. Bozue
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| |
Collapse
|
13
|
MCR Expression Conferring Varied Fitness Costs on Host Bacteria and Affecting Bacteria Virulence. Antibiotics (Basel) 2021; 10:antibiotics10070872. [PMID: 34356793 PMCID: PMC8300855 DOI: 10.3390/antibiotics10070872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 11/30/2022] Open
Abstract
Since the first report of the plasmid-mediated, colistin-resistant gene, mcr-1, nine mcr genes and their subvariants have been identified. The spreading scope of mcr-1~10 varies greatly, suggesting that mcr-1~10 may have different evolutionary advantages. Depending on MCR family phylogeny, mcr-6 is highly similar to mcr-1 and -2, and mcr-7~10 are highly similar to mcr-3 and -4. We compared the expression effects of MCR-1~5 on bacteria of common physiological background. The MCR-1-expressing strain showed better growth than did MCR-2~5-expressing strains in the presence of colistin. LIVE/DEAD staining analysis revealed that MCR-3~5 expression exerted more severe fitness burdens on bacteria than did MCR-1 and -2. Bacteria expressing MCRs except MCR-2 showed enhanced virulence with increased epithelial penetration ability determined by trans-well model (p < 0.05). Enhanced virulence was also observed in the Galleria mellonella model, which may have resulted from bacterial membrane damage and different levels of lipopolysaccharide (LPS) release due to MCR expression. Collectively, MCR-1-expressing strain showed the best survival advantage of MCR-1~5-expressing strains, which may partly explain the worldwide distribution of mcr-1. Our results suggested that MCR expression may cause increased bacterial virulence, which is alarming, and further attention will be needed to focus on the control of infectious diseases caused by mcr-carrying pathogens.
Collapse
|
14
|
Kassinger SJ, van Hoek ML. Genetic Determinants of Antibiotic Resistance in Francisella. Front Microbiol 2021; 12:644855. [PMID: 34054749 PMCID: PMC8149597 DOI: 10.3389/fmicb.2021.644855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
Tularemia, caused by Francisella tularensis, is endemic to the northern hemisphere. This zoonotic organism has historically been developed into a biological weapon. For this Tier 1, Category A select agent, it is important to expand our understanding of its mechanisms of antibiotic resistance (AMR). Francisella is unlike many Gram-negative organisms in that it does not have significant plasmid mobility, and does not express AMR mechanisms on plasmids; thus plasmid-mediated resistance does not occur naturally. It is possible to artificially introduce plasmids with AMR markers for cloning and gene expression purposes. In this review, we survey both the experimental research on AMR in Francisella and bioinformatic databases which contain genomic and proteomic data. We explore both the genetic determinants of intrinsic AMR and naturally acquired or engineered antimicrobial resistance as well as phenotypic resistance in Francisella. Herein we survey resistance to beta-lactams, monobactams, carbapenems, aminoglycosides, tetracycline, polymyxins, macrolides, rifampin, fosmidomycin, and fluoroquinolones. We also highlight research about the phenotypic AMR difference between planktonic and biofilm Francisella. We discuss newly developed methods of testing antibiotics against Francisella which involve the intracellular nature of Francisella infection and may better reflect the eventual clinical outcomes for new antibiotic compounds. Understanding the genetically encoded determinants of AMR in Francisella is key to optimizing the treatment of patients and potentially developing new antimicrobials for this dangerous intracellular pathogen.
Collapse
Affiliation(s)
| | - Monique L. van Hoek
- School of Systems Biology, George Mason University, Manassas, VA, United States
| |
Collapse
|
15
|
Muszyński A, Zarember KA, Heiss C, Shiloach J, Berg LJ, Audley J, Kozyr A, Greenberg DE, Holland SM, Malech HL, Azadi P, Carlson RW, Gallin JI. Granulibacter bethesdensis, a Pathogen from Patients with Chronic Granulomatous Disease, Produces a Penta-Acylated Hypostimulatory Glycero-D-talo-oct-2-ulosonic Acid-Lipid A Glycolipid (Ko-Lipid A). Int J Mol Sci 2021; 22:3303. [PMID: 33804872 PMCID: PMC8036547 DOI: 10.3390/ijms22073303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Granulibacter bethesdensis can infect patients with chronic granulomatous disease, an immunodeficiency caused by reduced phagocyte NADPH oxidase function. Intact G. bethesdensis (Gb) is hypostimulatory compared to Escherichia coli, i.e., cytokine production in human blood requires 10-100 times more G. bethesdensis CFU/mL than E. coli. To better understand the pathogenicity of G. bethesdensis, we isolated its lipopolysaccharide (GbLPS) and characterized its lipid A. Unlike with typical Enterobacteriaceae, the release of presumptive Gb lipid A from its LPS required a strong acid. NMR and mass spectrometry demonstrated that the carbohydrate portion of the isolated glycolipid consists of α-Manp-(1→4)-β-GlcpN3N-(1→6)-α-GlcpN-(1⇿1)-α-GlcpA tetra-saccharide substituted with five acyl chains: the amide-linked N-3' 14:0(3-OH), N-2' 16:0(3-O16:0), and N-2 18:0(3-OH) and the ester-linked O-3 14:0(3-OH) and 16:0. The identification of glycero-d-talo-oct-2-ulosonic acid (Ko) as the first constituent of the core region of the LPS that is covalently attached to GlcpN3N of the lipid backbone may account for the acid resistance of GbLPS. In addition, the presence of Ko and only five acyl chains may explain the >10-fold lower proinflammatory potency of GbKo-lipidA compared to E. coli lipid A, as measured by cytokine induction in human blood. These unusual structural properties of the G.bethesdensis Ko-lipid A glycolipid likely contribute to immune evasion during pathogenesis and resistance to antimicrobial peptides.
Collapse
Affiliation(s)
- Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.H.); (P.A.); (R.W.C.)
| | - Kol A. Zarember
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.H.); (P.A.); (R.W.C.)
| | - Joseph Shiloach
- Biotechnology Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Lars J. Berg
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| | - John Audley
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| | - Arina Kozyr
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| | - David E. Greenberg
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| | - Harry L. Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.H.); (P.A.); (R.W.C.)
| | - Russell W. Carlson
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.H.); (P.A.); (R.W.C.)
| | - John I. Gallin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| |
Collapse
|
16
|
Microbial Lipid A Remodeling Controls Cross-Presentation Efficiency and CD8 T Cell Priming by Modulating Dendritic Cell Function. Infect Immun 2021; 89:IAI.00335-20. [PMID: 33257533 DOI: 10.1128/iai.00335-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
The majority of Gram-negative bacteria elicit a potent immune response via recognition of lipid A expressed on the outer bacterial membrane by the host immune receptor Toll-like receptor 4 (TLR4). However, some Gram-negative bacteria evade detection by TLR4 or alter the outcome of TLR4 signaling by modification of lipid A species. Although the role of lipid A modifications on host innate immunity has been examined in some detail, it is currently unclear how lipid A remodeling influences host adaptive immunity. One prototypic Gram-negative bacterium that modifies its lipid A structure is Porphyromonas gingivalis, an anaerobic pathobiont that colonizes the human periodontium and induces chronic low-grade inflammation that is associated with periodontal disease as well as a number of systemic inflammatory disorders. P. gingivalis produces dephosphorylated and deacylated lipid A structures displaying altered activities at TLR4. Here, we explored the functional role of P. gingivalis lipid A modifications on TLR4-dependent innate and adaptive immune responses in mouse bone marrow-derived dendritic cells (BMDCs). We discovered that lipid A 4'-phosphate removal is required for P. gingivalis to evade BMDC-dependent proinflammatory cytokine responses and markedly limits the bacterium's capacity to induce beta interferon (IFN-β) production. In addition, lipid A 4'-phosphatase activity prevents canonical bacterium-induced delay in antigen degradation, which leads to inefficient antigen cross-presentation and a failure to cross-prime CD8 T cells specific for a P. gingivalis-associated antigen. We propose that lipid A modifications produced by this bacterium alter host TLR4-dependent adaptive immunity to establish chronic infections associated with a number of systemic inflammatory disorders.
Collapse
|
17
|
Virulence of Francisella tularensis Subspecies holarctica Biovar japonica and Phenotypic Change during Serial Passages on Artificial Media. Microorganisms 2020; 8:microorganisms8121881. [PMID: 33261098 PMCID: PMC7760542 DOI: 10.3390/microorganisms8121881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023] Open
Abstract
Francisella tularensis (F. tularensis) is the etiological agent of the zoonotic disease tularemia. F. tularensis subspecies holarctica biovar japonica has rarely been isolated in Japan and is considered to have moderate virulence, although the biological properties of fresh isolates have not been analyzed in detail. Here, we analyzed the virulence of two strains of F. tularensis subspecies holarctica biovar japonica (NVF1 and KU-1) and their phenotypic stability during serial passages in Eugon chocolate agar (ECA) and Chamberlain's chemically defined medium (CDM) based agar (CDMA). C57BL/6 mice intradermally inoculated with 101 colony-forming units of NVF1 or KU-1 died within 9 days, with a median time to death of 7.5 and 7 days, respectively. Both NVF1 and KU-1 strains passaged on ECA 10 times had comparable virulence prior to passaging, whereas strains passaged on ECA 20 times and on CDMA 50 times were attenuated. Attenuated strains had decreased viability in 0.01% H2O2 and lower intracellular growth rates, suggesting both properties are important for F. tularensis virulence. Additionally, passage on ECA of the KU-1 strains altered lipopolysaccharide antigenicity and bacterial susceptibility to β-lactam antibiotics. Our data demonstrate F. tularensis strain virulence in Japan and contribute to understanding phenotypic differences between natural and laboratory environments.
Collapse
|
18
|
Zamyatina A, Heine H. Lipopolysaccharide Recognition in the Crossroads of TLR4 and Caspase-4/11 Mediated Inflammatory Pathways. Front Immunol 2020; 11:585146. [PMID: 33329561 PMCID: PMC7732686 DOI: 10.3389/fimmu.2020.585146] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
The innate immune response to lipopolysaccharide is essential for host defense against Gram-negative bacteria. In response to bacterial infection, the TLR4/MD-2 complex that is expressed on the surface of macrophages, monocytes, dendritic, and epithelial cells senses picomolar concentrations of endotoxic LPS and triggers the production of various pro-inflammatory mediators. In addition, LPS from extracellular bacteria which is either endocytosed or transfected into the cytosol of host cells or cytosolic LPS produced by intracellular bacteria is recognized by cytosolic proteases caspase-4/11 and hosts guanylate binding proteins that are involved in the assembly and activation of the NLRP3 inflammasome. All these events result in the initiation of pro-inflammatory signaling cascades directed at bacterial eradication. However, TLR4-mediated signaling and caspase-4/11-induced pyroptosis are largely involved in the pathogenesis of chronic and acute inflammation. Both extra- and intracellular LPS receptors-TLR4/MD-2 complex and caspase-4/11, respectively-are able to directly bind the lipid A motif of LPS. Whereas the structural basis of lipid A recognition by the TLR4 complex is profoundly studied and well understood, the atomic mechanism of LPS/lipid A interaction with caspase-4/11 is largely unknown. Here we describe the LPS-induced TLR4 and caspase-4/11 mediated signaling pathways and their cross-talk and scrutinize specific structural features of the lipid A motif of diverse LPS variants that have been reported to activate caspase-4/11 or to induce caspase-4/11 mediated activation of NLRP3 inflammasome (either upon transfection of LPS in vitro or upon infection of cell cultures with intracellular bacteria or by LPS as a component of the outer membrane vesicles). Generally, inflammatory caspases show rather similar structural requirements as the TLR4/MD-2 complex, so that a "basic" hexaacylated bisphosphorylated lipid A architecture is sufficient for activation. However, caspase-4/11 can sense and respond to much broader variety of lipid A variants compared to the very "narrow" specificity of TLR4/MD-2 complex as far as the number and the length of lipid chains attached at the diglucosamine backbone of lipid A is concerned. Besides, modification of the lipid A phosphate groups with positively charged appendages such as phosphoethanolamine or aminoarabinose could be essential for the interaction of lipid A/LPS with inflammatory caspases and related proteins.
Collapse
Affiliation(s)
- Alla Zamyatina
- Institute of Organic Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Holger Heine
- Research Group Innate Immunity, Research Center Borstel—Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Disease (DZL), Borstel, Germany
| |
Collapse
|
19
|
Zhou Q, Tan X, Meng X, Wang J, Ji F, Wang X. Identification of four secondary acyltransferases for lipid A biosynthesis in Vibrio parahaemolyticus. Biotechnol Appl Biochem 2020; 68:1486-1500. [PMID: 33150647 DOI: 10.1002/bab.2070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022]
Abstract
In this study, four genes encoding secondary acyltransferases of lipid A in Vibrio parahaemolyticus ATCC33846 were identified. When the four genes were overexpressed in Escherichia coli MLK1067 that which produces the penta-acylated lipid A lacking the secondary acylation at the C3' position, a C12:0 secondary acyl chain was added at the C3' position of lipid A only in E. coli overexpressing VP_RS01045, but not VP_RS00880, VP_RS08405, or VP_RS12170. When the four genes were overexpressed in E. coli MKV15b that produces lipid IVA , a C12:0 secondary acyl chain was again added at the C3' position in E. coli overexpressing VP_RS01045, but a C14:0 secondary acyl chain was added at the C2' position of lipid A in E. coli overexpressing VP_RS00880, VP_RS08405, or VP_RS12170. The results indicate that four acyltransferases of lipid A are encoded by VP_RS01045, VP_RS00880, VP_RS08405, or VP_RS12170 in V. parahaemolyticus. The acyltransferase encoded by VP_RS01045 adds a C12:0 secondary acyl chain at the C3' position of lipid A, whereas the acyltransferase encoded by VP_RS00880, VP_RS08405, or VP_RS12170 adds a C14:0 secondary acyl chain at the C2' position of lipid A. This work contributes to understanding the biosynthetic pathway of lipid A in V. parahaemolyticus.
Collapse
Affiliation(s)
- Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Xiangyu Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Fan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
20
|
Control of Francisella tularensis Virulence at Gene Level: Network of Transcription Factors. Microorganisms 2020; 8:microorganisms8101622. [PMID: 33096715 PMCID: PMC7588896 DOI: 10.3390/microorganisms8101622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023] Open
Abstract
Regulation of gene transcription is the initial step in the complex process that controls gene expression within bacteria. Transcriptional control involves the joint effort of RNA polymerases and numerous other regulatory factors. Whether global or local, positive or negative, regulators play an essential role in the bacterial cell. For instance, some regulators specifically modify the transcription of virulence genes, thereby being indispensable to pathogenic bacteria. Here, we provide a comprehensive overview of important transcription factors and DNA-binding proteins described for the virulent bacterium Francisella tularensis, the causative agent of tularemia. This is an unexplored research area, and the poorly described networks of transcription factors merit additional experimental studies to help elucidate the molecular mechanisms of pathogenesis in this bacterium, and how they contribute to disease.
Collapse
|
21
|
Oh C, Verma A, Aachoui Y. Caspase-11 Non-canonical Inflammasomes in the Lung. Front Immunol 2020; 11:1895. [PMID: 32973786 PMCID: PMC7472987 DOI: 10.3389/fimmu.2020.01895] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/14/2020] [Indexed: 12/27/2022] Open
Abstract
The airway epithelium and underlying innate immune cells comprise the first line of host defense in the lung. They recognize pathogen-associated molecular patterns (PAMPs) using membrane-bound receptors, as well as cytosolic receptors such as inflammasomes. Inflammasomes activate inflammatory caspases, which in turn process and release the inflammatory cytokines IL-1β and IL-18. Additionally, inflammasomes trigger a form of lytic cell death termed pyroptosis. One of the most important inflammasomes at the host-pathogen interface is the non-canonical caspase-11 inflammasome that responds to LPS in the cytosol. Caspase-11 is important in defense against Gram-negative pathogens, and can drive inflammatory diseases such as LPS-induced sepsis. However, pathogens can employ evasive strategies to minimize or evade host caspase-11 detection. In this review, we present a comprehensive overview of the function of the non-canonical caspase-11 inflammasome in sensing of cytosolic LPS, and its mechanism of action with particular emphasis in the role of caspase-11 in the lung. We also explore some of the strategies pathogens use to evade caspase-11.
Collapse
Affiliation(s)
- Changhoon Oh
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ambika Verma
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Youssef Aachoui
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
22
|
Baindara P, Ghosh AK, Mandal SM. Coevolution of Resistance Against Antimicrobial Peptides. Microb Drug Resist 2020; 26:880-899. [PMID: 32119634 DOI: 10.1089/mdr.2019.0291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are produced by all forms of life, ranging from eukaryotes to prokaryotes, and they are a crucial component of innate immunity, involved in clearing infection by inhibiting pathogen colonization. In the recent past, AMPs received high attention due to the increase of extensive antibiotic resistance by these pathogens. AMPs exhibit a diverse spectrum of activity against bacteria, fungi, parasites, and various types of cancer. AMPs are active against various bacterial pathogens that cause disease in animals and plants. However, because of the coevolution of host and pathogen interaction, bacteria have developed the mechanisms to sense and exhibit an adaptive response against AMPs. These resistance mechanisms are playing an important role in bacterial virulence within the host. Here, we have discussed the different resistance mechanisms used by gram-positive and gram-negative bacteria to sense and combat AMP actions. Understanding the mechanism of AMP resistance may provide directions toward the development of novel therapeutic strategies to control multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ananta K Ghosh
- Department of Biotechnology, Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Santi M Mandal
- Department of Biotechnology, Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
23
|
Inflammasomes, Autophagy, and Cell Death: The Trinity of Innate Host Defense against Intracellular Bacteria. Mediators Inflamm 2019; 2019:2471215. [PMID: 30728749 PMCID: PMC6341260 DOI: 10.1155/2019/2471215] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/19/2018] [Indexed: 01/17/2023] Open
Abstract
Inflammasome activation is an innate host defense mechanism initiated upon sensing pathogens or danger in the cytosol. Both autophagy and cell death are cell autonomous processes important in development, as well as in host defense against intracellular bacteria. Inflammasome, autophagy, and cell death pathways can be activated by pathogens, pathogen-associated molecular patterns (PAMPs), cell stress, and host-derived damage-associated molecular patterns (DAMPs). Phagocytosis and toll-like receptor (TLR) signaling induce reactive oxygen species (ROS), type I IFN, NFκB activation of proinflammatory cytokines, and the mitogen-activated protein kinase cascade. ROS and IFNγ are also prominent inducers of autophagy. Pathogens, PAMPs, and DAMPs activate TLRs and intracellular inflammasomes, inducing apoptotic and inflammatory caspases in a context-dependent manner to promote various forms of cell death to eliminate pathogens. Common downstream signaling molecules of inflammasomes, autophagy, and cell death pathways interact to initiate appropriate measures against pathogens and determine host survival as well as pathological consequences of infection. The integration of inflammasome activation, autophagy, and cell death is central to pathogen clearance. Various pathogens produce virulence factors to control inflammasomes, subvert autophagy, and modulate host cell death in order to evade host defense. This review highlights the interaction of inflammasomes, autophagy, and host cell death pathways in counteracting Burkholderia pseudomallei, the causative agent of melioidosis. Contrasting evasion strategies used by B. pseudomallei, Mycobacterium tuberculosis, and Legionella pneumophila to avoid and dampen these innate immune responses will be discussed.
Collapse
|
24
|
Conde-Álvarez R, Palacios-Chaves L, Gil-Ramírez Y, Salvador-Bescós M, Bárcena-Varela M, Aragón-Aranda B, Martínez-Gómez E, Zúñiga-Ripa A, de Miguel MJ, Bartholomew TL, Hanniffy S, Grilló MJ, Vences-Guzmán MÁ, Bengoechea JA, Arce-Gorvel V, Gorvel JP, Moriyón I, Iriarte M. Identification of lptA, lpxE, and lpxO, Three Genes Involved in the Remodeling of Brucella Cell Envelope. Front Microbiol 2018; 8:2657. [PMID: 29375522 PMCID: PMC5767591 DOI: 10.3389/fmicb.2017.02657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022] Open
Abstract
The brucellae are facultative intracellular bacteria that cause a worldwide extended zoonosis. One of the pathogenicity mechanisms of these bacteria is their ability to avoid rapid recognition by innate immunity because of a reduction of the pathogen-associated molecular pattern (PAMP) of the lipopolysaccharide (LPS), free-lipids, and other envelope molecules. We investigated the Brucella homologs of lptA, lpxE, and lpxO, three genes that in some pathogens encode enzymes that mask the LPS PAMP by upsetting the core-lipid A charge/hydrophobic balance. Brucella lptA, which encodes a putative ethanolamine transferase, carries a frame-shift in B. abortus but not in other Brucella spp. and phylogenetic neighbors like the opportunistic pathogen Ochrobactrum anthropi. Consistent with the genomic evidence, a B. melitensis lptA mutant lacked lipid A-linked ethanolamine and displayed increased sensitivity to polymyxin B (a surrogate of innate immunity bactericidal peptides), while B. abortus carrying B. melitensis lptA displayed increased resistance. Brucella lpxE encodes a putative phosphatase acting on lipid A or on a free-lipid that is highly conserved in all brucellae and O. anthropi. Although we found no evidence of lipid A dephosphorylation, a B. abortus lpxE mutant showed increased polymyxin B sensitivity, suggesting the existence of a hitherto unidentified free-lipid involved in bactericidal peptide resistance. Gene lpxO putatively encoding an acyl hydroxylase carries a frame-shift in all brucellae except B. microti and is intact in O. anthropi. Free-lipid analysis revealed that lpxO corresponded to olsC, the gene coding for the ornithine lipid (OL) acyl hydroxylase active in O. anthropi and B. microti, while B. abortus carrying the olsC of O. anthropi and B. microti synthesized hydroxylated OLs. Interestingly, mutants in lptA, lpxE, or olsC were not attenuated in dendritic cells or mice. This lack of an obvious effect on virulence together with the presence of the intact homolog genes in O. anthropi and B. microti but not in other brucellae suggests that LptA, LpxE, or OL β-hydroxylase do not significantly alter the PAMP properties of Brucella LPS and free-lipids and are therefore not positively selected during the adaptation to intracellular life.
Collapse
Affiliation(s)
- Raquel Conde-Álvarez
- Universidad de Navarra, Facultad de Medicina, Departamento de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN) e Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Leyre Palacios-Chaves
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas - Universidad Pública de Navarra - Gobierno de Navarra, Pamplona, Spain
| | - Yolanda Gil-Ramírez
- Universidad de Navarra, Facultad de Medicina, Departamento de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN) e Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Miriam Salvador-Bescós
- Universidad de Navarra, Facultad de Medicina, Departamento de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN) e Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Marina Bárcena-Varela
- Universidad de Navarra, Facultad de Medicina, Departamento de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN) e Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Beatriz Aragón-Aranda
- Universidad de Navarra, Facultad de Medicina, Departamento de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN) e Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Estrella Martínez-Gómez
- Universidad de Navarra, Facultad de Medicina, Departamento de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN) e Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Amaia Zúñiga-Ripa
- Universidad de Navarra, Facultad de Medicina, Departamento de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN) e Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - María J de Miguel
- Unidad de Producción y Sanidad Animal, Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón - Universidad de Zaragoza, Zaragoza, Spain
| | - Toby Leigh Bartholomew
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Sean Hanniffy
- Institut National de la Santé et de la Recherche Médicale, U1104, Centre National de la Recherche Scientifique UMR7280, Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Marseille, France
| | - María-Jesús Grilló
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas - Universidad Pública de Navarra - Gobierno de Navarra, Pamplona, Spain
| | | | - José A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Vilma Arce-Gorvel
- Institut National de la Santé et de la Recherche Médicale, U1104, Centre National de la Recherche Scientifique UMR7280, Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Marseille, France
| | - Jean-Pierre Gorvel
- Institut National de la Santé et de la Recherche Médicale, U1104, Centre National de la Recherche Scientifique UMR7280, Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Marseille, France
| | - Ignacio Moriyón
- Universidad de Navarra, Facultad de Medicina, Departamento de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN) e Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Maite Iriarte
- Universidad de Navarra, Facultad de Medicina, Departamento de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN) e Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| |
Collapse
|
25
|
Mass spectrometry analysis of intact Francisella bacteria identifies lipid A structure remodeling in response to acidic pH stress. Biochimie 2017; 141:16-20. [DOI: 10.1016/j.biochi.2017.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/09/2017] [Indexed: 11/18/2022]
|
26
|
Norris MH, Rahman Khan MS, Schweizer HP, Tuanyok A. An avirulent Burkholderia pseudomallei ∆purM strain with atypical type B LPS: expansion of the toolkit for biosafe studies of melioidosis. BMC Microbiol 2017; 17:132. [PMID: 28592242 PMCID: PMC5461690 DOI: 10.1186/s12866-017-1040-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/26/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The work was undertaken to expand the tools available for researching Burkholderia pseudomallei (Bp), the etiological agent of the tropical disease melioidosis. Melioidosis has the potential to pose a severe threat to public health and safety. In the United States, Bp is listed as a Tier-1 select agent by the Centers for Disease Control and Prevention (CDC), thus requiring high levels of regulation and biosafety level 3 (BSL3) facilities for experimental manipulation of live organisms. An avirulent ∆purM derivative of strain 1026b (Bp82) has proven to be a valuable tool for biosafe research as a select-agent excluded strain, but the high level of genetic diversity between Bp strains necessitates an expansion of the biosafe toolset. RESULTS The ∆purM mutation was recapitulated in the Bp 576a strain, a serotype B background. An important difference between strains 1026b and 576a is the lipopolysaccharide (LPS), a major virulence factor and protective antigen. Polyclonal sera from 1026b-challenged non-human primates showed no cross reactivity with strain 576a LPS and low reactivity with whole cell lysate. Strain 576a replicates to higher levels in mouse organs and induces more TNF-α in the lungs of BALB/c mice compared to 1026b. The newly created Bp 576a ∆purM strain, designated 576mn, was auxotrophic for adenine in minimal media, capable of wild-type growth in rich media with addition of adenine, and auxotrophy was abrogated with single-copy complementation. Bp 576mn was unable to replicate in human cells and was avirulent in BALB/c mice following high-dose intranasal inoculation, similar to Bp82. Organ loads indicated a significant reduction in bacterial replication. CONCLUSIONS In this work, the new biosafe strain 576mn with atypical type B LPS was generated. This strain should prove a valuable addition to the toolkit for biosafe studies of Bp and development of therapeutic and preventative strategies aimed at combatting melioidosis. Strain 576mn is an ideal candidate for select-agent exclusion.
Collapse
Affiliation(s)
- Michael H Norris
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, Univeristy of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Md Siddiqur Rahman Khan
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, Univeristy of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Herbert P Schweizer
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Apichai Tuanyok
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, Univeristy of Florida, Gainesville, FL, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
27
|
Effects of lipid A acyltransferases on the pathogenesis of F. novicida. Microb Pathog 2017; 109:313-318. [PMID: 28478203 DOI: 10.1016/j.micpath.2017.04.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
Abstract
Francisella novicida is a gram-negative pathogen commonly used to study infections by the potential bioterrorism agent, Francisella tularensis. The Francisella lipid A structure has been well characterized and showed to affect the pathogenesis of F. novicida. Previous work characterized two lipid A acyltransferases, LpxD1 and LpxD2, and constructed the lpxD1-null and lpxD2-null mutants. Mutational analysis showed the lpxD1-null mutant was attenuated in mice and subsequently exhibited protection against a lethal WT challenge. However, details as how the virulence has been changed have remained elusive. This study aims to analyze effects of lipid A acyltransferases on the pathogenesis of F. novicida. MS and MSn were conducted to confirm the lipid A structures of lpxD1-null and lpxD2-null mutants. The stress tolerance, Toll-like receptor 4 (TLR4) stimulation level, intracellular survival and replication ability and cytotoxicity of lpxD1-null and lpxD2-null mutants were analyzed. The results suggested the lpxD1-null mutant with shorter acyl chains in lipid A is more sensitive to various environmental stresses than F. novicida and lpxD2-null mutant. In addition, the lpxD1-null mutant fails to survive and replicate in cells and shows lower cytotoxicity to infected cells. This study provides insights into the pathogenesis of F. novicida.
Collapse
|
28
|
Ekiert DC, Bhabha G, Isom GL, Greenan G, Ovchinnikov S, Henderson IR, Cox JS, Vale RD. Architectures of Lipid Transport Systems for the Bacterial Outer Membrane. Cell 2017; 169:273-285.e17. [PMID: 28388411 PMCID: PMC5467742 DOI: 10.1016/j.cell.2017.03.019] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/07/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
How phospholipids are trafficked between the bacterial inner and outer membranes through the hydrophilic space of the periplasm is not known. We report that members of the mammalian cell entry (MCE) protein family form hexameric assemblies with a central channel capable of mediating lipid transport. The E. coli MCE protein, MlaD, forms a ring associated with an ABC transporter complex in the inner membrane. A soluble lipid-binding protein, MlaC, ferries lipids between MlaD and an outer membrane protein complex. In contrast, EM structures of two other E. coli MCE proteins show that YebT forms an elongated tube consisting of seven stacked MCE rings, and PqiB adopts a syringe-like architecture. Both YebT and PqiB create channels of sufficient length to span the periplasmic space. This work reveals diverse architectures of highly conserved protein-based channels implicated in the transport of lipids between the membranes of bacteria and some eukaryotic organelles.
Collapse
Affiliation(s)
- Damian C Ekiert
- Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, The University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, The University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94158, USA.
| | - Gira Bhabha
- Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, The University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94158, USA
| | - Georgia L Isom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Garrett Greenan
- Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, The University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94158, USA
| | - Sergey Ovchinnikov
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Ian R Henderson
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Jeffery S Cox
- Department of Microbiology and Immunology, The University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94158, USA
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, The University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94158, USA
| |
Collapse
|
29
|
Norris MH, Schweizer HP, Tuanyok A. Structural diversity of Burkholderia pseudomallei lipopolysaccharides affects innate immune signaling. PLoS Negl Trop Dis 2017; 11:e0005571. [PMID: 28453531 PMCID: PMC5425228 DOI: 10.1371/journal.pntd.0005571] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/10/2017] [Accepted: 04/17/2017] [Indexed: 12/21/2022] Open
Abstract
Burkholderia pseudomallei (Bp) causes the disease melioidosis. The main cause of mortality in this disease is septic shock triggered by the host responding to lipopolysaccharide (LPS) components of the Gram-negative outer membrane. Bp LPS is thought to be a weak inducer of the host immune system. LPS from several strains of Bp were purified and their ability to induce the inflammatory mediators TNF-α and iNOS in murine macrophages at low concentrations was investigated. Innate and adaptive immunity qPCR arrays were used to profile expression patterns of 84 gene targets in response to the different LPS types. Additional qPCR validation confirmed large differences in macrophage response. LPS from a high-virulence serotype B strain 576a and a virulent rough central nervous system tropic strain MSHR435 greatly induced the innate immune response indicating that the immunopathogenesis of these strains is different than in infections with strains similar to the prototype strain 1026b. The accumulation of autophagic vesicles was also increased in macrophages challenged with highly immunogenic Bp LPS. Gene induction and concomitant cytokine secretion profiles of human PBMCs in response to the various LPS were also investigated. MALDI-TOF/TOF was used to probe the lipid A portions of the LPS, indicating substantial structural differences that likely play a role in host response to LPS. These findings add to the evolving knowledge of host-response to bacterial LPS, which can be used to better understand septic shock in melioidosis patients and in the rational design of vaccines.
Collapse
Affiliation(s)
- Michael H. Norris
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Herbert P. Schweizer
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Apichai Tuanyok
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
30
|
A spontaneous mutation in kdsD, a biosynthesis gene for 3 Deoxy-D-manno-Octulosonic Acid, occurred in a ciprofloxacin resistant strain of Francisella tularensis and caused a high level of attenuation in murine models of tularemia. PLoS One 2017; 12:e0174106. [PMID: 28328947 PMCID: PMC5362203 DOI: 10.1371/journal.pone.0174106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/03/2017] [Indexed: 12/26/2022] Open
Abstract
Francisella tularensis, a gram-negative facultative intracellular bacterial pathogen, is the causative agent of tularemia and able to infect many mammalian species, including humans. Because of its ability to cause a lethal infection, low infectious dose, and aerosolizable nature, F. tularensis subspecies tularensis is considered a potential biowarfare agent. Due to its in vitro efficacy, ciprofloxacin is one of the antibiotics recommended for post-exposure prophylaxis of tularemia. In order to identify therapeutics that will be efficacious against infections caused by drug resistant select-agents and to better understand the threat, we sought to characterize an existing ciprofloxacin resistant (CipR) mutant in the Schu S4 strain of F. tularensis by determining its phenotypic characteristics and sequencing the chromosome to identify additional genetic alterations that may have occurred during the selection process. In addition to the previously described genetic alterations, the sequence of the CipR mutant strain revealed several additional mutations. Of particular interest was a frameshift mutation within kdsD which encodes for an enzyme necessary for the production of 3-Deoxy-D-manno-Octulosonic Acid (KDO), an integral component of the lipopolysaccharide (LPS). A kdsD mutant was constructed in the Schu S4 strain. Although it was not resistant to ciprofloxacin, the kdsD mutant shared many phenotypic characteristics with the CipR mutant, including growth defects under different conditions, sensitivity to hydrophobic agents, altered LPS profiles, and attenuation in multiple models of murine tularemia. This study demonstrates that the KdsD enzyme is essential for Francisella virulence and may be an attractive therapeutic target for developing novel medical countermeasures.
Collapse
|
31
|
Liu L, Li Y, Wang X, Guo W. A phosphoethanolamine transferase specific for the 4′-phosphate residue of Cronobacter sakazakii
lipid A. J Appl Microbiol 2016; 121:1444-1456. [DOI: 10.1111/jam.13280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 11/29/2022]
Affiliation(s)
- L. Liu
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi China
- School of Biotechnology; Jiangnan University; Wuxi China
| | - Y. Li
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi China
- Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan University; Wuxi China
| | - X. Wang
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi China
- School of Biotechnology; Jiangnan University; Wuxi China
- Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan University; Wuxi China
| | - W. Guo
- School of Biotechnology; Jiangnan University; Wuxi China
| |
Collapse
|
32
|
Joo SH, Chung HS. Crystal structure and activity of Francisella novicida UDP-N-acetylglucosamine acyltransferase. Biochem Biophys Res Commun 2016; 478:1223-9. [PMID: 27545601 DOI: 10.1016/j.bbrc.2016.08.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 08/17/2016] [Indexed: 01/26/2023]
Abstract
The first step of lipid A biosynthesis in Escherichia coli (E. coli) is catalyzed by LpxA (EcLpxA), an acyltransferase selective for UDP-N-acetylglucosamine (UDP-GlcNAc) and R-3-hydroxymyristoyl-acyl carrier protein (3-OH-C14-ACP), and is an essential step in majority of Gram-negative bacteria. Since the majority of lipid A species isolated from F. novicida contains 3-OH-C16 or 3-OH-C18 at its C3 and C3' positions, FnLpxA was thought to be selective for longer acyl chain (3-OH-C16 and 3-OH-C18) over short acyl chain (3-OH-C14, 3-OH-C12, and 3-OH-C10). Here we demonstrate that Francisella novicida (F. novicida) lpxA functionally complements an E. coli lpxA knockout mutant and efficiently transfers 3-OH-C14 as well as 3-OH-C16 in E. coli. Our results implicate that the acyl chain length of lipid A is determined by several factors including acyl chain selectivity of LpxA and downstream enzymes, as well as the composition of the acyl-ACP pool in vivo. We also report the crystal structure of F. novicida LpxA (FnLpxA) at 2.06 Å. The N-terminal parallel beta-helix (LβH) and C-terminal alpha-helical domain are similar to other reported structures of LpxAs. However, our structure indicates that the supposed ruler residues for hydrocarbon length, 171L in one monomer and 168H in the adjacent monomer in a functional trimer of FnLpxA, are located just 3.8 Å apart that renders not enough space for binding of 3-OH-C12 or longer acyl chains. This implicates that FnLpxA may have an alternative hydrophobic pocket, or the acyl chain may bend while binding to FnLpxA. In addition, the FnLpxA structure suggests a potential inhibitor binding site for development of antibiotics.
Collapse
Affiliation(s)
- Sang Hoon Joo
- Department of Pharmacy, Catholic University of Daegu, Gyeongbuk 38430, South Korea; Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Hak Suk Chung
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA; Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, South Korea; Department of Biological Chemistry, Korea University of Science and Technology (UST), KIST Campus, Seoul 02792, South Korea.
| |
Collapse
|
33
|
Wu X, Ren G, Gunning WT, Weaver DA, Kalinoski AL, Khuder SA, Huntley JF. FmvB: A Francisella tularensis Magnesium-Responsive Outer Membrane Protein that Plays a Role in Virulence. PLoS One 2016; 11:e0160977. [PMID: 27513341 PMCID: PMC4981453 DOI: 10.1371/journal.pone.0160977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/26/2016] [Indexed: 02/06/2023] Open
Abstract
Francisella tularensis is the causative agent of the lethal disease tularemia. Despite decades of research, little is understood about why F. tularensis is so virulent. Bacterial outer membrane proteins (OMPs) are involved in various virulence processes, including protein secretion, host cell attachment, and intracellular survival. Many pathogenic bacteria require metals for intracellular survival and OMPs often play important roles in metal uptake. Previous studies identified three F. tularensis OMPs that play roles in iron acquisition. In this study, we examined two previously uncharacterized proteins, FTT0267 (named fmvA, for Francisellametal and virulence) and FTT0602c (fmvB), which are homologs of the previously studied F. tularensis iron acquisition genes and are predicted OMPs. To study the potential roles of FmvA and FmvB in metal acquisition and virulence, we first examined fmvA and fmvB expression following pulmonary infection of mice, finding that fmvB was upregulated up to 5-fold during F. tularensis infection of mice. Despite sequence homology to previously-characterized iron-acquisition genes, FmvA and FmvB do not appear to be involved iron uptake, as neither fmvA nor fmvB were upregulated in iron-limiting media and neither ΔfmvA nor ΔfmvB exhibited growth defects in iron limitation. However, when other metals were examined in this study, magnesium-limitation significantly induced fmvB expression, ΔfmvB was found to express significantly higher levels of lipopolysaccharide (LPS) in magnesium-limiting medium, and increased numbers of surface protrusions were observed on ΔfmvB in magnesium-limiting medium, compared to wild-type F. tularensis grown in magnesium-limiting medium. RNA sequencing analysis of ΔfmvB revealed the potential mechanism for increased LPS expression, as LPS synthesis genes kdtA and wbtA were significantly upregulated in ΔfmvB, compared with wild-type F. tularensis. To provide further evidence for the potential role of FmvB in magnesium uptake, we demonstrated that FmvB was outer membrane-localized. Finally, ΔfmvB was found to be attenuated in mice and cytokine analyses revealed that ΔfmvB-infected mice produced lower levels of pro-inflammatory cytokines, including GM-CSF, IL-3, and IL-10, compared with mice infected with wild-type F. tularensis. Taken together, although the function of FmvA remains unknown, FmvB appears to play a role in magnesium uptake and F. tularensis virulence. These results may provide new insights into the importance of magnesium for intracellular pathogens.
Collapse
Affiliation(s)
- Xiaojun Wu
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Guoping Ren
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - William T. Gunning
- Department of Pathology and Electron Microscopy Facility, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - David A. Weaver
- Department of Surgery and Advanced Microscopy and Imaging Center, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Andrea L. Kalinoski
- Department of Surgery and Advanced Microscopy and Imaging Center, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Sadik A. Khuder
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Jason F. Huntley
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
- * E-mail:
| |
Collapse
|
34
|
Sándor V, Kilár A, Kilár F, Kocsis B, Dörnyei Á. Characterization of complex, heterogeneous lipid A samples using HPLC-MS/MS technique II. Structural elucidation of non-phosphorylated lipid A by negative-ion mode tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:615-628. [PMID: 28239963 DOI: 10.1002/jms.3786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 06/06/2023]
Abstract
Non-phosphorylated lipid A species confer reduced inflammatory potential for the bacteria. Knowledge on their chemical structure and presence in bacterial pathogens may contribute to the understanding of bacterial resistance and activation of the host innate immune system. In this study, we report the fragmentation pathways of negatively charged, non-phosphorylated lipid A species under low-energy collision-induced dissociation conditions of an electrospray ionization quadrupole time-of-flight instrument. Charge-promoted consecutive and competitive eliminations of the acyl chains and cross-ring cleavages of the sugar residues were observed. The A-type fragment ion series and the complementary X-type fragment(s) with corresponding deprotonated carboxamide(s) were diagnostic for the distribution of the primary and secondary acyl residues on the non-reducing and the reducing ends, respectively, of the non-phosphorylated lipid A backbone. Reversed-phase liquid chromatography in combination with negative-ion electrospray ionization quadrupole time-of-flight tandem mass spectrometry could provide sufficient information on the primary and secondary acyl residues of a non-phosphorylated lipid A. As a standard, the hexa-acylated ion at m/z 1636 with the Escherichia coli-type acyl distribution (from E. coli O111) was used. The method was tested and refined with the analysis of other non-phosphorylated hexa- and several hepta-, penta-, and tetra-acylated lipid A species detected in crude lipid A fractions from E. coli O111 and Proteus morganii O34 bacteria. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Viktor Sándor
- Institute of Bioanalysis and Szentágothai Research Centre, University of Pécs, Szigeti út 12., 7624, Pécs, Hungary
| | - Anikó Kilár
- MTA-PTE Molecular Interactions in Separation Science Research Group, Ifjúság útja 6., 7624, Pécs, Hungary
| | - Ferenc Kilár
- Institute of Bioanalysis and Szentágothai Research Centre, University of Pécs, Szigeti út 12., 7624, Pécs, Hungary
- Department of Analytical and Environmental Chemistry, Faculty of Sciences, University of Pécs, Ifjúság útja 6., 7624, Pécs, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Pécs, Szigeti út 12., 7624, Pécs, Hungary
| | - Ágnes Dörnyei
- Department of Analytical and Environmental Chemistry, Faculty of Sciences, University of Pécs, Ifjúság útja 6., 7624, Pécs, Hungary
| |
Collapse
|
35
|
Abstract
Cationic antimicrobial peptides (CAMPs) are important innate immune defenses that inhibit colonization by pathogens and contribute to clearance of infections. Gram-negative bacterial pathogens are a major target, yet many of them have evolved mechanisms to resist these antimicrobials. These resistance mechanisms can be critical contributors to bacterial virulence and are often crucial for survival within the host. Here, we summarize methods used by Gram-negative bacteria to resist CAMPs. Understanding these mechanisms may lead to new therapeutic strategies against pathogens with extensive CAMP resistance.
Collapse
Affiliation(s)
- Victor I. Band
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30329, USA; E-Mail:
- Yerkes Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA
| | - David S. Weiss
- Yerkes Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30329, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-404-727-8214; Fax: +1-404-727-8199
| |
Collapse
|
36
|
Abstract
Francisella tularensis is a facultative intracellular bacterium causing tularemia, a zoonotic disease. Francisella replicates in the macrophage cytosol and eventually triggers cytosolic immune responses. In murine macrophages, Francisella novicida and Francisella tularensis live vaccine strain lyse in the host cytosol and activate the cytosolic DNA receptor Aim2. Here, we review the mechanisms leading or contributing to Aim2 inflammasome activation, including the role of TLRs and of IFN signaling and the implication of the guanylate-binding proteins 2 and 5 in triggering cytosolic bacteriolysis. Furthermore, we present how this cytosolic Gram-negative bacterium escapes recognition by caspase-11 but can trigger a non-canonical caspase-8 inflammasome. In addition, we highlight the differences in inflammasome activation in murine and human cells with pyrin, NLRP3, and AIM2 involved in sensing Francisella in human phagocytes. From a bacterial prospective, we describe the hiding strategy of Francisella to escape recognition by innate sensors and to resist to bacteriolysis in the host cytosol. Finally, we discuss the inability of the inflammasome sensors to detect F. tularensis subspecies tularensis strains, making them highly pathogenic stealth microbes.
Collapse
|
37
|
Mingeot-Leclercq MP, Décout JL. Bacterial lipid membranes as promising targets to fight antimicrobial resistance, molecular foundations and illustration through the renewal of aminoglycoside antibiotics and emergence of amphiphilic aminoglycosides. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00503e] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Membrane anionic lipids as attractive targets in the design of amphiphilic antibacterial drugs active against resistant bacteria: molecular foundations and examples.
Collapse
Affiliation(s)
- Marie-Paule Mingeot-Leclercq
- Louvain Drug Research Institute
- Université catholique de Louvain
- Unité de Pharmacologie Cellulaire et Moléculaire
- Brussels
- Belgium
| | - Jean-Luc Décout
- Département de Pharmacochimie Moléculaire
- Université Grenoble Alpes/CNRS
- UMR 5063
- ICMG FR 2607
- F-38041 Grenoble
| |
Collapse
|
38
|
Rowe HM, Huntley JF. From the Outside-In: The Francisella tularensis Envelope and Virulence. Front Cell Infect Microbiol 2015; 5:94. [PMID: 26779445 PMCID: PMC4688374 DOI: 10.3389/fcimb.2015.00094] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022] Open
Abstract
Francisella tularensis is a highly-infectious bacterium that causes the rapid, and often lethal disease, tularemia. Many studies have been performed to identify and characterize the virulence factors that F. tularensis uses to infect a wide variety of hosts and host cell types, evade immune defenses, and induce severe disease and death. This review focuses on the virulence factors that are present in the F. tularensis envelope, including capsule, LPS, outer membrane, periplasm, inner membrane, secretion systems, and various molecules in each of aforementioned sub-compartments. Whereas, no single bacterial molecule or molecular complex single-handedly controls F. tularensis virulence, we review here how diverse bacterial systems work in conjunction to subvert the immune system, attach to and invade host cells, alter phagosome/lysosome maturation pathways, replicate in host cells without being detected, inhibit apoptosis, and induce host cell death for bacterial release and infection of adjacent cells. Given that the F. tularensis envelope is the outermost layer of the bacterium, we highlight herein how many of these molecules directly interact with the host to promote infection and disease. These and future envelope studies are important to advance our collective understanding of F. tularensis virulence mechanisms and offer targets for future vaccine development efforts.
Collapse
Affiliation(s)
- Hannah M Rowe
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| | - Jason F Huntley
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| |
Collapse
|
39
|
Modification of the 1-Phosphate Group during Biosynthesis of Capnocytophaga canimorsus Lipid A. Infect Immun 2015; 84:550-61. [PMID: 26644381 PMCID: PMC4730577 DOI: 10.1128/iai.01006-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/27/2015] [Indexed: 11/20/2022] Open
Abstract
Capnocytophaga canimorsus, a commensal bacterium of dog's mouth flora causing severe infections in humans after dog bites or scratches, has a lipopolysaccharide (LPS) (endotoxin) with low-inflammatory lipid A. In particular, it contains a phosphoethanolamine (P-Etn) instead of a free phosphate group at the C-1 position of the lipid A backbone, usually present in highly toxic enterobacterial Gram-negative lipid A. Here we show that the C. canimorsus genome comprises a single operon encoding a lipid A 1-phosphatase (LpxE) and a lipid A 1 P-Etn transferase (EptA). This suggests that lipid A is modified during biosynthesis after completing acylation of the backbone by removal of the 1-phosphate and subsequent addition of an P-Etn group. As endotoxicity of lipid A is known to depend largely on the degree of unsubstituted or unmodified phosphate residues, deletion of lpxE or eptA led to mutants lacking the P-Etn group, with consequently increased endotoxicity and decreased resistance to cationic antimicrobial peptides (CAMP). Consistent with the proposed sequential biosynthetic mechanism, the endotoxicity and CAMP resistance of a double deletion mutant of lpxE-eptA was similar to that of a single lpxE mutant. Finally, the proposed enzymatic activities of LpxE and EptA based on sequence similarity could be successfully validated by mass spectrometry (MS)-based analysis of lipid A isolated from the corresponding deletion mutant strains.
Collapse
|
40
|
Peptides and Peptidomimetics for Antimicrobial Drug Design. Pharmaceuticals (Basel) 2015; 8:366-415. [PMID: 26184232 PMCID: PMC4588174 DOI: 10.3390/ph8030366] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/27/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022] Open
Abstract
The purpose of this paper is to introduce and highlight a few classes of traditional antimicrobial peptides with a focus on structure-activity relationship studies. After first dissecting the important physiochemical properties that influence the antimicrobial and toxic properties of antimicrobial peptides, the contributions of individual amino acids with respect to the peptides antibacterial properties are presented. A brief discussion of the mechanisms of action of different antimicrobials as well as the development of bacterial resistance towards antimicrobial peptides follows. Finally, current efforts on novel design strategies and peptidomimetics are introduced to illustrate the importance of antimicrobial peptide research in the development of future antibiotics.
Collapse
|
41
|
Antimicrobial peptide resistance in Neisseria meningitidis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3026-31. [PMID: 26002321 DOI: 10.1016/j.bbamem.2015.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 12/26/2022]
Abstract
Antimicrobial peptides (AMPs) play an important role as a host defense against microbial pathogens and are key components of the human innate immune response. Neisseria meningitidis frequently colonizes the human nasopharynx as a commensal but also is a worldwide cause of epidemic meningitis and rapidly fatal sepsis. In the human respiratory tract, the only known reservoir of N. meningitidis, meningococci are exposed to human endogenous AMPs. Thus, it is not surprising that meningococci have evolved effective mechanisms to confer intrinsic and high levels of resistance to the action of AMPs. This article reviews the current knowledge about AMP resistance mechanisms employed by N. meningitidis. Two major resistance mechanisms employed by meningococci are the constitutive modification of the lipid A head groups of lipooligosaccharides by phosphoethanolamine and the active efflux pump mediated excretion of AMPs. Other factors influencing AMP resistance, such as the major porin PorB, the pilin biogenesis apparatus, and capsular polysaccharides, have also been identified. Even with an inherently high intrinsic resistance, several AMP resistance determinants can be further induced upon exposure to AMPs. Many well-characterized AMP resistance mechanisms in other Gram-negative bacteria are not found in meningococci. Thus, N. meningitidis utilizes a limited but highly effective set of molecular mechanisms to mediate antimicrobial peptide resistance. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
|
42
|
Zariri A, van der Ley P. Biosynthetically engineered lipopolysaccharide as vaccine adjuvant. Expert Rev Vaccines 2015; 14:861-76. [PMID: 25797360 DOI: 10.1586/14760584.2015.1026808] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lipopolysaccharide (LPS), a dominant component of the Gram-negative bacterial outer membrane, is a strong activator of the innate immune system, and thereby an important determinant in the adaptive immune response following bacterial infection. This adjuvant activity can be harnessed following immunization with bacteria-derived vaccines that naturally contain LPS, and when LPS or molecules derived from it are added to purified vaccine antigens. However, the downside of the strong biological activity of LPS is its ability to contribute to vaccine reactogenicity. Modification of the LPS structure allows triggering of a proper immune response needed in a vaccine against a particular pathogen while at the same time lowering its toxicity. Extensive modifications to the basic structure are possible by using our current knowledge of bacterial genes involved in LPS biosynthesis and modification. This review focuses on biosynthetic engineering of the structure of LPS and implications of these modifications for generation of safe adjuvants.
Collapse
Affiliation(s)
- Afshin Zariri
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | | |
Collapse
|
43
|
Díaz L, Hoare A, Soto C, Bugueño I, Silva N, Dutzan N, Venegas D, Salinas D, Pérez-Donoso JM, Gamonal J, Bravo D. Changes in lipopolysaccharide profile of Porphyromonas gingivalis clinical isolates correlate with changes in colony morphology and polymyxin B resistance. Anaerobe 2015; 33:25-32. [PMID: 25638398 DOI: 10.1016/j.anaerobe.2015.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 01/19/2015] [Accepted: 01/27/2015] [Indexed: 01/19/2023]
Abstract
Virulence factors on the surface of Porphyromonas gingivalis constitute the first line of interaction with host cells and contribute to immune modulation and periodontitis progression. In order to characterize surface virulence factors present on P. gingivalis, we obtained clinical isolates from healthy and periodontitis subjects and compared them with reference strains. Colony morphology, aggregation in liquid medium, surface charge, membrane permeability to bactericidal compounds, novobiocin and polymyxin B resistance, capsule presence and lipopolysaccharide (LPS) profiles were evaluated. By comparing isolates from healthy and periodontitis subjects, differences in colony morphology and aggregation in liquid culture were found; the latter being similar to two reference strains. These differences were not a consequence of variations in bacterial surface charge. Furthermore, isolates also presented differences in polymyxin B and novobiocin resistance; isolates from healthy subjects were susceptible to polymyxin B and resistant to novobiocin and, in contrast, isolates from periodontitis subjects were resistant to polymyxin B and susceptible to novobiocin. These changes in antimicrobial resistance levels correlate with variations in LPS profiles, since -unlike periodontitis isolates-isolates from healthy samples synthesize LPS molecules lacking both O-antigen moieties and anionic polysaccharide. Additionally, this phenotype correlated with the absence of O-antigen ligase activity. Altogether, our results reveal novel variations on surface components of P. gingivalis isolates obtained from healthy and periodontitis subjects that could be associated with differences in bacterial virulence and periodontitis progression.
Collapse
Affiliation(s)
- Leonor Díaz
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Laboratory of Periodontal Biology, Conservative Dentistry Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Anilei Hoare
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Laboratory of Periodontal Biology, Conservative Dentistry Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Cristopher Soto
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Isaac Bugueño
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Nora Silva
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Nicolás Dutzan
- Laboratory of Periodontal Biology, Conservative Dentistry Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Darna Venegas
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Daniela Salinas
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - José Manuel Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Biological Sciences, Universidad Andres Bello, Santiago, Chile
| | - Jorge Gamonal
- Laboratory of Periodontal Biology, Conservative Dentistry Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Denisse Bravo
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
44
|
Ohland CL, Jobin C. Microbial activities and intestinal homeostasis: A delicate balance between health and disease. Cell Mol Gastroenterol Hepatol 2014; 1:28-40. [PMID: 25729763 PMCID: PMC4339954 DOI: 10.1016/j.jcmgh.2014.11.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The concept that the intestinal microbiota modulates numerous physiological processes including immune development and function, nutrition and metabolism as well as pathogen exclusion is relatively well established in the scientific community. The molecular mechanisms driving these various effects and the events leading to the establishment of a "healthy" microbiome are slowly emerging. The objective of this review is to bring into focus important aspects of microbial/host interactions in the intestine and to discuss key molecular mechanisms controlling health and disease states. We will discuss recent evidence on how microbes interact with the host and one another and their impact on intestinal homeostasis.
Collapse
Affiliation(s)
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida
- Correspondence Address correspondence to: Christian Jobin, PhD, Department of Medicine, University of Florida, 2033 Mowry Road, Office 461, Gainesville, Florida 32610. fax: (352) 392-3944.
| |
Collapse
|
45
|
Baum D, Kosma P, Zamyatina A. Synthesis of zwitterionic 1,1'-glycosylphosphodiester: a partial structure of galactosamine-modified Francisella lipid A. Org Lett 2014; 16:3772-5. [PMID: 25003818 PMCID: PMC4106266 DOI: 10.1021/ol501639c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Indexed: 02/08/2023]
Abstract
Synthesis of a "double glycosidic" phosphodiester comprising anomeric centers of two 2-amino-2-deoxy-sugars is reported. The carbohydrate epitope of Francisella lipid A modified with α-d-galactosamine at the anomerically linked phosphate has been stereoselectively prepared and coupled to maleimide-activated bovine serum albumin via an amide-linked thiol-terminated spacer group. H-Phosphonate and phosphoramidite approaches have been explored for the coupling of 4,6-DTBS-2-azido-protected GalN lactol and peracetylated spacer-equipped reducing βGlcN(1→6)GlcN disaccharide via phosphodiester linkage. Deprotection conditions preserving the integrity of the labile glycosidic zwitterionic phosphodiester were elaborated.
Collapse
Affiliation(s)
- David Baum
- Department
of Chemistry, University of Natural Resources
and Life Sciences, Muthgasse
18, A-1190 Vienna, Austria
| | - Paul Kosma
- Department
of Chemistry, University of Natural Resources
and Life Sciences, Muthgasse
18, A-1190 Vienna, Austria
| | - Alla Zamyatina
- Department
of Chemistry, University of Natural Resources
and Life Sciences, Muthgasse
18, A-1190 Vienna, Austria
| |
Collapse
|
46
|
Wang X, Quinn PJ, Yan A. Kdo2 -lipid A: structural diversity and impact on immunopharmacology. Biol Rev Camb Philos Soc 2014; 90:408-27. [PMID: 24838025 PMCID: PMC4402001 DOI: 10.1111/brv.12114] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 04/10/2014] [Accepted: 04/17/2014] [Indexed: 12/11/2022]
Abstract
3-deoxy-d-manno-octulosonic acid-lipid A (Kdo2-lipid A) is the essential component of lipopolysaccharide in most Gram-negative bacteria and the minimal structural component to sustain bacterial viability. It serves as the active component of lipopolysaccharide to stimulate potent host immune responses through the complex of Toll-like-receptor 4 (TLR4) and myeloid differentiation protein 2. The entire biosynthetic pathway of Escherichia coli Kdo2-lipid A has been elucidated and the nine enzymes of the pathway are shared by most Gram-negative bacteria, indicating conserved Kdo2-lipid A structure across different species. Yet many bacteria can modify the structure of their Kdo2-lipid A which serves as a strategy to modulate bacterial virulence and adapt to different growth environments as well as to avoid recognition by the mammalian innate immune systems. Key enzymes and receptors involved in Kdo2-lipid A biosynthesis, structural modification and its interaction with the TLR4 pathway represent a clear opportunity for immunopharmacological exploitation. These include the development of novel antibiotics targeting key biosynthetic enzymes and utilization of structurally modified Kdo2-lipid A or correspondingly engineered live bacteria as vaccines and adjuvants. Kdo2-lipid A/TLR4 antagonists can also be applied in anti-inflammatory interventions. This review summarizes recent knowledge on both the fundamental processes of Kdo2-lipid A biosynthesis, structural modification and immune stimulation, and applied research on pharmacological exploitations of these processes for therapeutic development.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | | | | |
Collapse
|
47
|
Wang J, Ma W, Wang Z, Li Y, Wang X. Construction and characterization of an Escherichia coli mutant producing Kdo₂-lipid A. Mar Drugs 2014; 12:1495-511. [PMID: 24633251 PMCID: PMC3967223 DOI: 10.3390/md12031495] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/06/2014] [Accepted: 02/13/2014] [Indexed: 12/15/2022] Open
Abstract
3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)₂-lipid A is the conserved structure domain of lipopolysaccharide found in most Gram-negative bacteria, and it is believed to stimulate the innate immune system through the TLR4/MD2 complex. Therefore, Kdo₂-lipid A is an important stimulator for studying the mechanism of the innate immune system and for developing bacterial vaccine adjuvants. Kdo₂-lipid A has not been chemically synthesized to date and could only be isolated from an Escherichia coli mutant strain, WBB06. WBB06 cells grow slowly and have to grow in the presence of tetracycline. In this study, a novel E. coli mutant strain, WJW00, that could synthesize Kdo2-lipid A was constructed by deleting the rfaD gene from the genome of E. coli W3110. The rfaD gene encodes ADP-L-glycero-D-manno-heptose-6-epimerase RfaD. Based on the analysis by SDS-PAGE, thin layer chromatography (TLC) and electrospray ionization mass spectrometry (ESI/MS), WJW00 could produce similar levels of Kdo₂-lipid A to WBB06. WJW00 cells grow much better than WBB06 cells and do not need to add any antibiotics during growth. Compared with the wild-type strain, W3110, WJW00 showed increased hydrophobicity, higher cell permeability, greater autoaggregation and decreased biofilm-forming ability. Therefore, WJW00 could be a more suitable strain than WBB06 for producing Kdo₂-lipid A and a good base strain for developing lipid A adjuvants.
Collapse
Affiliation(s)
- Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Wenjian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhou Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Ye Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
48
|
Abstract
Lipopolysaccharide molecules represent a unique family of glycolipids based on a highly conserved lipid moiety known as lipid A. These molecules are produced by most gram-negative bacteria, in which they play important roles in the integrity of the outer-membrane permeability barrier and participate extensively in host-pathogen interplay. Few bacteria contain lipopolysaccharide molecules composed only of lipid A. In most forms, lipid A is glycosylated by addition of the core oligosaccharide that, in some bacteria, provides an attachment site for a long-chain O-antigenic polysaccharide. The complexity of lipopolysaccharide structures is reflected in the processes used for their biosynthesis and export. Rapid growth and cell division depend on the bacterial cell's capacity to synthesize and export lipopolysaccharide efficiently and in large amounts. We review recent advances in those processes, emphasizing the reactions that are essential for viability.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| | | |
Collapse
|
49
|
Abstract
Over the past three decades, a powerful array of techniques has been developed for expressing heterologous proteins and saccharides on the surface of bacteria. Surface-engineered bacteria, in turn, have proven useful in a variety of settings, including high-throughput screening, biofuel production, and vaccinology. In this chapter, we provide a comprehensive review of methods for displaying polypeptides and sugars on the bacterial cell surface, and discuss the many innovative applications these methods have found to date. While already an important biotechnological tool, we believe bacterial surface display may be further improved through integration with emerging methodology in other fields, such as protein engineering and synthetic chemistry. Ultimately, we envision bacterial display becoming a multidisciplinary platform with the potential to transform basic and applied research in bacteriology, biotechnology, and biomedicine.
Collapse
|
50
|
Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 2013; 341:1250-3. [PMID: 24031018 DOI: 10.1126/science.1240988] [Citation(s) in RCA: 989] [Impact Index Per Article: 82.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Inflammatory caspases, such as caspase-1 and -11, mediate innate immune detection of pathogens. Caspase-11 induces pyroptosis, a form of programmed cell death, and specifically defends against bacterial pathogens that invade the cytosol. During endotoxemia, however, excessive caspase-11 activation causes shock. We report that contamination of the cytoplasm by lipopolysaccharide (LPS) is the signal that triggers caspase-11 activation in mice. Specifically, caspase-11 responds to penta- and hexa-acylated lipid A, whereas tetra-acylated lipid A is not detected, providing a mechanism of evasion for cytosol-invasive Francisella. Priming the caspase-11 pathway in vivo resulted in extreme sensitivity to subsequent LPS challenge in both wild-type and Tlr4-deficient mice, whereas Casp11-deficient mice were relatively resistant. Together, our data reveal a new pathway for detecting cytoplasmic LPS.
Collapse
Affiliation(s)
- Jon A Hagar
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|