1
|
Angeley MNJ, Perlman SJ. Symbiosis: A novel relationship cradled in venom. Curr Biol 2025; 35:R293-R295. [PMID: 40262536 DOI: 10.1016/j.cub.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Spalangia wasps have evolved a new association with Sodalis bacteria, transmitting them in an unusual way. They inject them into a host, along with their venom and an egg; the wasp larva then ingests them while feeding on host tissue.
Collapse
Affiliation(s)
- Maxine N J Angeley
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada; Centre for Forest Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Steve J Perlman
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada; Centre for Forest Biology, University of Victoria, Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
2
|
Kaltenpoth M, Flórez LV, Vigneron A, Dirksen P, Engl T. Origin and function of beneficial bacterial symbioses in insects. Nat Rev Microbiol 2025:10.1038/s41579-025-01164-z. [PMID: 40148601 DOI: 10.1038/s41579-025-01164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 03/29/2025]
Abstract
Beneficial bacterial symbionts are widespread in insects and affect the fitness of their hosts by contributing to nutrition, digestion, detoxification, communication or protection from abiotic stressors or natural enemies. Decades of research have formed our understanding of the identity, localization and functional benefits of insect symbionts, and the increasing availability of genome sequences spanning a diversity of pathogens and beneficial bacteria now enables comparative approaches of their metabolic features and their phylogenetic affiliations, shedding new light on the origin and function of beneficial symbioses in insects. In this Review, we explore the symbionts' metabolic traits that can provide benefits to insect hosts and discuss the evolutionary paths to the formation of host-beneficial symbiotic associations. Phylogenetic analyses and molecular studies reveal that extracellular symbioses colonizing cuticular organs or the digestive tract evolved from a broad diversity of bacterial partners, whereas intracellular beneficial symbionts appear to be restricted to a limited number of lineages within the Gram-negative bacteria and probably originated from parasitic ancestors. To unravel the general principles underlying host-symbiont interactions and recapitulate the early evolutionary steps leading towards beneficial symbioses, future efforts should aim to establish more symbiotic systems that are amenable to genetic manipulation and experimental evolution.
Collapse
Affiliation(s)
- Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany.
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany.
| | - Laura V Flórez
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Aurélien Vigneron
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne, France
| | - Philipp Dirksen
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| | - Tobias Engl
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
3
|
Stillson PT, Martinez K, Adamson J, Tehrani A, Ravenscraft A. Temperature influences outcomes of an environmentally acquired symbiosis. THE ISME JOURNAL 2025; 19:wraf056. [PMID: 40116466 PMCID: PMC11995993 DOI: 10.1093/ismejo/wraf056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/07/2025] [Accepted: 03/20/2025] [Indexed: 03/23/2025]
Abstract
Microbial symbioses are essential for many animals, but their outcomes are often context dependent. For example, rising temperatures can disrupt symbioses by eliminating thermally sensitive symbionts. The temperature tolerance of a symbiont may therefore limit the temperature range of its host, but switching to a more thermally tolerant partner could expand this range. Eastern leaf footed bugs (Leptoglossus phyllopus) depend on symbiotic Caballeronia bacteria which they must acquire from the environment early in development. Could this result in intergenerational partner switching that improves host outcomes under changing conditions? As a first step towards answering this question, we tested the hypothesis that host outcomes in this symbiosis vary among symbiont strains in a temperature-dependent manner. Nymphs were provided with one of six Caballeronia strains with varying thermal optima and reared at temperatures from 24-40°C. We observed temperature- and strain-dependent tradeoffs in host outcomes, with different strains conferring improved host weight, development time, and survival at cooler versus warmer temperatures. Differences in host outcomes were most pronounced at high temperatures, with some strains imposing severe costs. However, Caballeronia's in vitro thermal optima did not predict in vivo outcomes. Regardless, strain- and temperature- dependent outcomes suggest that environmental symbiont acquisition could mitigate the effects of thermal stress on host populations. It is often assumed that vertical transmission of a beneficial symbiont from parent to offspring is the optimal strategy, but our results suggest that environmental acquisition could offer unique benefits under changing conditions.
Collapse
Affiliation(s)
- Patrick T Stillson
- Department of Biology, University of Texas at Arlington, 501 S Nedderman Drive, Arlington, TX 76019, United States
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, United States
| | - Kaisy Martinez
- Department of Biology, University of Texas at Arlington, 501 S Nedderman Drive, Arlington, TX 76019, United States
| | - Johnathan Adamson
- Department of Biology, University of Texas at Arlington, 501 S Nedderman Drive, Arlington, TX 76019, United States
| | - Arshya Tehrani
- Department of Biology, University of Texas at Arlington, 501 S Nedderman Drive, Arlington, TX 76019, United States
- Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, United States
| | - Alison Ravenscraft
- Department of Biology, University of Texas at Arlington, 501 S Nedderman Drive, Arlington, TX 76019, United States
| |
Collapse
|
4
|
Wang Y, Du Y. Hypothesis for Molecular Evolution in the Pre-Cellular Stage of the Origin of Life. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70001. [PMID: 39832384 DOI: 10.1002/wrna.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
Life was originated from inorganic world and had experienced a long period of evolution in about 3.8 billion years. The time for emergence of the pioneer creations on Earth is debatable nowadays, and how the scenario for the prebiotic molecular interactions is still mysterious. Before the spreading of cellular organisms, chemical evolution was perhaps prevailing for millions of years, in which inorganic biosynthesis was ultimately replaced by biochemical reactions. Understanding the major molecular players and their interactions toward cellular life is fundamental for current medical science and extraterrestrial life exploration. In this review, we propose a road map for the primordial molecular evolution in early Earth, which probably occurred adjacent to hydrothermal vents with a strong gradient of organic molecules, temperature, and metal contents. Natural selection of the macromolecules with strong secondary structures and catalytic centers is associated with decreasing of overall entropy of the biopolymers. Our review may shed lights into the important selection of gene-coding RNA with secondary structures from large amounts of random biopolymers and formation of ancient ribosomes with biological machines supporting the basic life processes. Integration of the free environmental ribosomes by the early cellular life as symbiotic molecular machines is probably the earliest symbiosis on Earth.
Collapse
Affiliation(s)
- Yong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
| | - Yiling Du
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
| |
Collapse
|
5
|
Martinez K, Stillson PT, Ravenscraft A. Inferior Caballeronia symbiont lacks conserved symbiosis genes. Microb Genom 2024; 10:001333. [PMID: 39680049 PMCID: PMC11893276 DOI: 10.1099/mgen.0.001333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024] Open
Abstract
Pentatomomorphan bugs can form symbiotic associations with bacteria belonging to the supergenus Burkholderia sensu lato. This relationship has become a model for understanding environmental symbiont acquisition. Host insects can utilize various symbiont strains from across Burkholderia sensu lato; however, host colonization success and benefits conferred vary by bacterial clade. Therefore, we conducted a meta-analysis aimed at identifying candidate genes that underpin beneficial symbioses within this system. We scanned the entire Burkholderiaceae family for the presence of 17 colonization-associated genes, as well as 88 candidate genes that are differentially expressed during symbiosis. There was no difference in the distribution of the 17 colonization-associated genes between symbiotic (Caballeronia and insect-associated plant beneficial and environmental clade) and non-symbiotic lineages; however, there was a higher prevalence of the 88 candidate genes in the insect symbiont lineages. We subsequently analysed the genomes of nine symbiotic Caballeronia species that confer varying fitness benefits to their insect hosts. One symbiont species was significantly worse, one was significantly better and the remaining seven were intermediate in terms of conferred host fitness benefits. We found that species possessing a higher number of the candidate genes conferred faster host development time. Furthermore, we identified two candidate genes that were missing in the least beneficial species but present in the other eight, suggesting that these genes may be important in modulating symbiont quality. Our study suggests that the mechanisms required for host colonization are broadly distributed across Burkholderiaceae, but the genes that determine symbiont quality are more prevalent in insect-associated species. This work helps to identify genes that influence this highly specialized yet diverse symbiosis between Pentatomomorphan insects and Burkholderiaceae bacteria.
Collapse
Affiliation(s)
- Kaisy Martinez
- Department of Biology, The University of Texas at Arlington, Arlington, TX, USA
| | - Patrick T. Stillson
- Department of Biology, The University of Texas at Arlington, Arlington, TX, USA
| | - Alison Ravenscraft
- Department of Biology, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
6
|
Favoreto AL, Domingues MM, de Carvalho VR, Ribeiro MF, Zanuncio JC, Wilcken CF. Detection of Arsenophonus in Glycaspis brimblecombei (Hemiptera: Aphalaridae) populations in Brazil. Braz J Microbiol 2024; 55:3075-3079. [PMID: 39042246 PMCID: PMC11711745 DOI: 10.1007/s42770-024-01465-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
Eucalyptus is the most intensively managed tree genus in the world. Different factors, including damage by insect pests, affect its growth and productivity. Among these pests is Glycaspis brimblecombei Moore (Hemiptera: Aphalaridae), an exotic insect of Australian origin. The evolutionary success of this insect depends on symbiotic associations with microorganisms. The influence of these microorganisms on insect pests and their natural enemies is important for integrated management tactics. Within this context, this work aimed to detect Arsenophonus in populations of G. brimblecombei in Brazil. Eucalyptus branches infested with G. brimblecombei nymphs were collected in commercial eucalyptus plantations in six Brazilian states. Specimens of this pest were sampled soon after emergence and frozen for molecular analysis. The genomic DNA of G. brimblecombei adults from each population was extracted and used to detect the endosymbiont Arsenophonus by polymerase chain reaction (PCR) employing specific primers that target its 23 S rRNA gene. This endosymbiont was identified in all of the studied G. brimblecombei populations. This is the first report on the association between Arsenophonus and G. brimblecombei in Brazil.
Collapse
Affiliation(s)
- Ana Laura Favoreto
- Departamento de Proteção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Avenida Universitária, 3780, Botucatu, São Paulo, 18610-034, Brasil
| | - Maurício Magalhães Domingues
- Departamento de Proteção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Avenida Universitária, 3780, Botucatu, São Paulo, 18610-034, Brasil.
| | - Vanessa Rafaela de Carvalho
- Departamento de Proteção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Avenida Universitária, 3780, Botucatu, São Paulo, 18610-034, Brasil
| | - Murilo Fonseca Ribeiro
- Departamento de Proteção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Avenida Universitária, 3780, Botucatu, São Paulo, 18610-034, Brasil
| | - José Cola Zanuncio
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, José Cola Zanuncio, Viçosa, 36570-900, Minas Gerais, Brasil
| | - Carlos Frederico Wilcken
- Departamento de Proteção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Avenida Universitária, 3780, Botucatu, São Paulo, 18610-034, Brasil
| |
Collapse
|
7
|
Iwai S. A simple model and rules for the evolution of microbial mutualistic symbiosis with positive fitness feedbacks. Theor Popul Biol 2024; 160:14-24. [PMID: 39384161 DOI: 10.1016/j.tpb.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
The evolution of microbe-microbe mutualistic symbiosis is considered to be promoted by repeated exchanges of fitness benefits, which can generate positive fitness feedbacks ('partner fidelity feedback') between species. However, previous evolutionary models for mutualism have not captured feedback dynamics or coupling of fitness between species. Here, a simple population model is developed to understand the evolution of mutualistic symbiosis in which two microbial species (host and symbiont) continuously grow and exchange fitness benefits to generate feedback dynamics but do not strictly control each other. The assumption that individual microbes provide constant amounts of resources, which are equally divided among interacting partner individual, enables us to reveal a simple rule for the evolution of costly mutualism with positive fitness feedbacks: the product of the benefit-to-cost ratios for each species exceeds one. When this condition holds, high cooperative investment levels are favored in both species regardless of the amount invested by each partner. The model is then extended to examine how symbiont mutation, immigration, or switching affects the spread of selfish or cooperative symbionts, which decrease and increase their investment levels, respectively. In particular, when a host associates with numerous symbionts without enforcement, neither mutation nor immigration but rather random switching would allow the spread of cooperative symbionts. Examples using symbiont switching for evolution would include large ciliates hosting numerous intracellular endosymbionts. The simple model and rules would provide a basis for understanding the evolution of microbe-microbe mutualistic symbiosis with positive fitness feedbacks and without enforcement mechanisms.
Collapse
Affiliation(s)
- Sosuke Iwai
- Department of Biology, Faculty of Education, Hirosaki University, Hirosaki 036-8560, Japan.
| |
Collapse
|
8
|
Serga S, Kovalenko PA, Maistrenko OM, Deconninck G, Shevchenko O, Iakovenko N, Protsenko Y, Susulovsky A, Kaczmarek Ł, Pavlovska M, Convey P, Kozeretska I. Wolbachia in Antarctic terrestrial invertebrates: Absent or undiscovered? ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70040. [PMID: 39533947 PMCID: PMC11558105 DOI: 10.1111/1758-2229.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Interactions between a host organism and its associated microbiota, including symbiotic bacteria, play a crucial role in host adaptation to changing environmental conditions. Antarctica provides a unique environment for the establishment and maintenance of symbiotic relationships. One of the most extensively studied symbiotic bacteria in invertebrates is Wolbachia pipientis, which is associated with a wide variety of invertebrates. Wolbachia is known for manipulating host reproduction and having obligate or facultative mutualistic relationships with various hosts. However, there is a lack of clear understanding of the prevalence of Wolbachia in terrestrial invertebrates in Antarctica. We present the outcomes of a literature search for information on the occurrence of Wolbachia in each of the major taxonomic groups of terrestrial invertebrates (Acari, Collembola, Diptera, Rotifera, Nematoda, Tardigrada). We also performed profiling of prokaryotes based on three marker genes and Kraken2 in available whole genome sequence data obtained from Antarctic invertebrate samples. We found no reports or molecular evidence of Wolbachia in these invertebrate groups in Antarctica. We discuss possible reasons underlying this apparent absence and suggest opportunities for more targeted future research to confirm bacteria's presence or absence.
Collapse
Affiliation(s)
- Svitlana Serga
- CBGP, Univ Montpellier, CIRAD, INRAE, IRDInstitut Agro MontpellierMontpellierFrance
- National Antarctic Scientific Center of UkraineKyivUkraine
| | - Pavlo A. Kovalenko
- National Antarctic Scientific Center of UkraineKyivUkraine
- State Institution Institute for Evolutionary EcologyNational Academy of Sciences of UkraineKyivUkraine
| | - Oleksandr M. Maistrenko
- European Molecular Biology LaboratoryStructural and Computational Biology UnitHeidelbergGermany
- Royal Netherlands Institute for Sea Research, 't Horntje (Texel)Den HoornNetherlands
| | - Gwenaëlle Deconninck
- UMR CNRS 7261 Institut de Recherche sur la Biologie de l'InsecteUniversité de Tours, Parc GrandmontToursFrance
| | - Oleksandra Shevchenko
- Institute for Problems of Cryobiology and CryomedicineNational Academy of Sciences of UkraineKharkivUkraine
- I.I. Schmalhausen Institute of ZoologyNational Academy of Sciences of UkraineKyivUkraine
| | - Nataliia Iakovenko
- I.I. Schmalhausen Institute of ZoologyNational Academy of Sciences of UkraineKyivUkraine
- Czech University of Life Sciences PragueFaculty of Forestry and Wood SciencesSuchdolCzech Republic
- Institute of Animal Physiology and Genetics AS ČRLaboratory of Nonmendelian EvolutionLibechovCzech Republic
| | | | - Andrij Susulovsky
- State Museum of Natural HistoryNational Academy of Sciences of UkraineLvivUkraine
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | | | - Peter Convey
- British Antarctic Survey, NERC, High CrossCambridgeUK
- Department of ZoologyUniversity of JohannesburgAuckland ParkSouth Africa
- Biodiversity of Antarctic and Sub‐Antarctic Ecosystems (BASE)SantiagoChile
| | | |
Collapse
|
9
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
10
|
Castelli M, Nardi T, Giovannini M, Sassera D. Addictive manipulation: a perspective on the role of reproductive parasitism in the evolution of bacteria-eukaryote symbioses. Biol Lett 2024; 20:20240310. [PMID: 39288812 PMCID: PMC11496725 DOI: 10.1098/rsbl.2024.0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024] Open
Abstract
Wolbachia bacteria encompass noteworthy reproductive manipulators of their arthropod hosts. which influence host reproduction to favour their own transmission, also exploiting toxin-antitoxin systems. Recently, multiple other bacterial symbionts of arthropods have been shown to display comparable manipulative capabilities. Here, we wonder whether such phenomena are truly restricted to arthropod hosts. We focused on protists, primary models for evolutionary investigations on eukaryotes due to their diversity and antiquity, but still overall under-investigated. After a thorough re-examination of the literature on bacterial-protist interactions with this question in mind, we conclude that such bacterial 'addictive manipulators' of protists do exist, are probably widespread, and have been overlooked until now as a consequence of the fact that investigations are commonly host-centred, thus ineffective to detect such behaviour. Additionally, we posit that toxin-antitoxin systems are crucial in these phenomena of addictive manipulation of protists, as a result of recurrent evolutionary repurposing. This indicates intriguing functional analogy and molecular homology with plasmid-bacterial interplays. Finally, we remark that multiple addictive manipulators are affiliated with specific bacterial lineages with ancient associations with diverse eukaryotes. This suggests a possible role of addictive manipulation of protists in paving the way to the evolution of bacteria associated with multicellular organisms.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Tiago Nardi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Michele Giovannini
- Department of Biology, University of Pisa, Pisa, Italy
- Department of Biology, University of Florence, Florence, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
11
|
Bischof PSP, Bartolomaeus TUP, Löber U, Bleidorn C. Microbiome Dynamics and Functional Composition in Coelopa frigida (Diptera, Coelopidae): Insights into Trophic Specialization of Kelp Flies. MICROBIAL ECOLOGY 2024; 87:91. [PMID: 38960913 PMCID: PMC11222186 DOI: 10.1007/s00248-024-02403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Coelopidae (Diptera), known as kelp flies, exhibit an ecological association with beached kelp and other rotting seaweeds. This unique trophic specialization necessitates significant adaptations to overcome the limitations of an algal diet. We aimed to investigate whether the flies' microbiome could be one of these adaptive mechanisms. Our analysis focused on assessing composition and diversity of adult and larval microbiota of the kelp fly Coelopa frigida. Feeding habits of the larvae of this species have been subject of numerous studies, with debates whether they directly consume kelp or primarily feed on associated bacteria. By using a 16S rRNA metabarcoding approach, we found that the larval microbiota displayed considerably less diversity than adults, heavily dominated by only four operational taxonomic units (OTUs). Phylogenetic placement recovered the most dominant OTU of the larval microbiome, which is the source of more than half of all metabarcoding sequence reads, as an undescribed genus of Orbaceae (Gammaproteobacteria). Interestingly, this OTU is barely found among the 15 most abundant taxa of the adult microbiome, where it is responsible for less than 2% of the metabarcoding sequence reads. The other three OTUs dominating the larval microbiome have been assigned as Psychrobacter (Gammaproteobacteria), Wohlfahrtiimonas (Gammaproteobacteria), and Cetobacterium (Fusobacteriota). Moreover, we also uncovered a distinct shift in the functional composition between the larval and adult stages, where our taxonomic profiling suggests a significant decrease in functional diversity in larval samples. Our study offers insights into the microbiome dynamics and functional composition of Coelopa frigida.
Collapse
Affiliation(s)
- Paul S P Bischof
- Department for Animal Evolution and Biodiversity, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Theda U P Bartolomaeus
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Centre for Cardiovascular Research, Berlin, Germany
| | - Ulrike Löber
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Centre for Cardiovascular Research, Berlin, Germany
| | - Christoph Bleidorn
- Department for Animal Evolution and Biodiversity, Georg-August-Universität Göttingen, Göttingen, Germany.
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain.
- Biologische Anstalt Helgoland, Alfred Wegener Institute, Helgoland, Germany.
| |
Collapse
|
12
|
Bennett GM, Kwak Y, Maynard R. Endosymbioses Have Shaped the Evolution of Biological Diversity and Complexity Time and Time Again. Genome Biol Evol 2024; 16:evae112. [PMID: 38813885 PMCID: PMC11154151 DOI: 10.1093/gbe/evae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Life on Earth comprises prokaryotes and a broad assemblage of endosymbioses. The pages of Molecular Biology and Evolution and Genome Biology and Evolution have provided an essential window into how these endosymbiotic interactions have evolved and shaped biological diversity. Here, we provide a current perspective on this knowledge by drawing on decades of revelatory research published in Molecular Biology and Evolution and Genome Biology and Evolution, and insights from the field at large. The accumulated work illustrates how endosymbioses provide hosts with novel phenotypes that allow them to transition between adaptive landscapes to access environmental resources. Such endosymbiotic relationships have shaped and reshaped life on Earth. The early serial establishment of mitochondria and chloroplasts through endosymbioses permitted massive upscaling of cellular energetics, multicellularity, and terrestrial planetary greening. These endosymbioses are also the foundation upon which all later ones are built, including everything from land-plant endosymbioses with fungi and bacteria to nutritional endosymbioses found in invertebrate animals. Common evolutionary mechanisms have shaped this broad range of interactions. Endosymbionts generally experience adaptive and stochastic genome streamlining, the extent of which depends on several key factors (e.g. mode of transmission). Hosts, in contrast, adapt complex mechanisms of resource exchange, cellular integration and regulation, and genetic support mechanisms to prop up degraded symbionts. However, there are significant differences between endosymbiotic interactions not only in how partners have evolved with each other but also in the scope of their influence on biological diversity. These differences are important considerations for predicting how endosymbioses will persist and adapt to a changing planet.
Collapse
Affiliation(s)
- Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
- National Science Foundation Biological Integration Institute—INSITE, University of California, Merced, CA, USA
| | - Younghwan Kwak
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
- National Science Foundation Biological Integration Institute—INSITE, University of California, Merced, CA, USA
| | - Reo Maynard
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| |
Collapse
|
13
|
Polycarpo CR, Walter-Nuno AB, Azevedo-Reis L, Paiva-Silva GO. The vector-symbiont affair: a relationship as (im)perfect as it can be. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101203. [PMID: 38705385 DOI: 10.1016/j.cois.2024.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Vector-borne diseases are globally prevalent and represent a major socioeconomic problem worldwide. Blood-sucking arthropods transmit most pathogenic agents that cause these human infections. The pathogens transmission to their vertebrate hosts depends on how efficiently they infect their vector, which is particularly impacted by the microbiota residing in the intestinal lumen, as well as its cells or internal organs such as ovaries. The balance between costs and benefits provided by these interactions ultimately determines the outcome of the relationship. Here, we will explore aspects concerning the nature of microbe-vector interactions, including the adaptive traits required for their establishment, the varied outcomes of symbiotic interactions, as well as the factors influencing the transition of these relationships across a continuum from parasitism to mutualism.
Collapse
Affiliation(s)
- Carla R Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Ana B Walter-Nuno
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Leonan Azevedo-Reis
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
14
|
Angulo-Cánovas E, Bartual A, López-Igual R, Luque I, Radzinski NP, Shilova I, Anjur-Dietrich M, García-Jurado G, Úbeda B, González-Reyes JA, Díez J, Chisholm SW, García-Fernández JM, del Carmen Muñoz-Marín M. Direct interaction between marine cyanobacteria mediated by nanotubes. SCIENCE ADVANCES 2024; 10:eadj1539. [PMID: 38781331 PMCID: PMC11114229 DOI: 10.1126/sciadv.adj1539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Microbial associations and interactions drive and regulate nutrient fluxes in the ocean. However, physical contact between cells of marine cyanobacteria has not been studied thus far. Here, we show a mechanism of direct interaction between the marine cyanobacteria Prochlorococcus and Synechococcus, the intercellular membrane nanotubes. We present evidence of inter- and intra-genus exchange of cytoplasmic material between neighboring and distant cells of cyanobacteria mediated by nanotubes. We visualized and measured these structures in xenic and axenic cultures and in natural samples. We show that nanotubes are produced between living cells, suggesting that this is a relevant system of exchange material in vivo. The discovery of nanotubes acting as exchange bridges in the most abundant photosynthetic organisms in the ocean may have important implications for their interactions with other organisms and their population dynamics.
Collapse
Affiliation(s)
- Elisa Angulo-Cánovas
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba 14014, Spain
| | - Ana Bartual
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Rocío López-Igual
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain
| | - Nikolai P. Radzinski
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Maya Anjur-Dietrich
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gema García-Jurado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Bárbara Úbeda
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - José Antonio González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba 14014, Spain
| | - Jesús Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba 14014, Spain
| | - Sallie W. Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - José Manuel García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba 14014, Spain
| | - María del Carmen Muñoz-Marín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba 14014, Spain
| |
Collapse
|
15
|
García-Lozano M, Henzler C, Porras MÁG, Pons I, Berasategui A, Lanz C, Budde H, Oguchi K, Matsuura Y, Pauchet Y, Goffredi S, Fukatsu T, Windsor D, Salem H. Paleocene origin of a streamlined digestive symbiosis in leaf beetles. Curr Biol 2024; 34:1621-1634.e9. [PMID: 38377997 DOI: 10.1016/j.cub.2024.01.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Timing the acquisition of a beneficial microbe relative to the evolutionary history of its host can shed light on the adaptive impact of a partnership. Here, we investigated the onset and molecular evolution of an obligate symbiosis between Cassidinae leaf beetles and Candidatus Stammera capleta, a γ-proteobacterium. Residing extracellularly within foregut symbiotic organs, Stammera upgrades the digestive physiology of its host by supplementing plant cell wall-degrading enzymes. We observe that Stammera is a shared symbiont across tortoise and hispine beetles that collectively comprise the Cassidinae subfamily, despite differences in their folivorous habits. In contrast to its transcriptional profile during vertical transmission, Stammera elevates the expression of genes encoding digestive enzymes while in the foregut symbiotic organs, matching the nutritional requirements of its host. Despite the widespread distribution of Stammera across Cassidinae beetles, symbiont acquisition during the Paleocene (∼62 mya) did not coincide with the origin of the subfamily. Early diverging lineages lack the symbiont and the specialized organs that house it. Reconstructing the ancestral state of host-beneficial factors revealed that Stammera encoded three digestive enzymes at the onset of symbiosis, including polygalacturonase-a pectinase that is universally shared. Although non-symbiotic cassidines encode polygalacturonase endogenously, their repertoire of plant cell wall-degrading enzymes is more limited compared with symbiotic beetles supplemented with digestive enzymes from Stammera. Highlighting the potential impact of a symbiotic condition and an upgraded metabolic potential, Stammera-harboring beetles exploit a greater variety of plants and are more speciose compared with non-symbiotic members of the Cassidinae.
Collapse
Affiliation(s)
- Marleny García-Lozano
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Christine Henzler
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | | | - Inès Pons
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Aileen Berasategui
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany; Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam 1081 HV, the Netherlands
| | - Christa Lanz
- Genome Center, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Heike Budde
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Kohei Oguchi
- National Institute for Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan; Misaki Marine Biological Station, The University of Tokyo, Miura 238-0225, Japan
| | - Yu Matsuura
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Yannick Pauchet
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Shana Goffredi
- Department of Biology, Occidental College, Los Angeles, CA 90041, USA
| | - Takema Fukatsu
- National Institute for Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Donald Windsor
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany; Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama.
| |
Collapse
|
16
|
Brockhurst MA, Cameron DD, Beckerman AP. Fitness trade-offs and the origins of endosymbiosis. PLoS Biol 2024; 22:e3002580. [PMID: 38607979 PMCID: PMC11014431 DOI: 10.1371/journal.pbio.3002580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024] Open
Abstract
Endosymbiosis drives evolutionary innovation and underpins the function of diverse ecosystems. The mechanistic origins of symbioses, however, remain unclear, in part because early evolutionary events are obscured by subsequent evolution and genetic drift. This Essay highlights how experimental studies of facultative, host-switched, and synthetic symbioses are revealing the important role of fitness trade-offs between within-host and free-living niches during the early-stage evolution of new symbiotic associations. The mutational targets underpinning such trade-offs are commonly regulatory genes, such that single mutations have major phenotypic effects on multiple traits, thus enabling and reinforcing the transition to a symbiotic lifestyle.
Collapse
Affiliation(s)
- Michael A. Brockhurst
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Duncan D. Cameron
- Department of Environmental and Earth Sciences, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew P. Beckerman
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
17
|
Rohner PT, Jones JA, Moczek AP. Plasticity, symbionts and niche construction interact in shaping dung beetle development and evolution. J Exp Biol 2024; 227:jeb245976. [PMID: 38449332 DOI: 10.1242/jeb.245976] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Developmental plasticity is an important product of evolutionary processes, allowing organisms to maintain high fitness in the face of environmental perturbations. Once evolved, plasticity also has the potential to influence subsequent evolutionary outcomes, for example, by shaping phenotypic variation visible to selection and facilitating the emergence of novel trait variants. Furthermore, organisms may not just respond to environmental conditions through plasticity but may also actively modify the abiotic and (sym)biotic environments to which they themselves respond, causing plasticity to interact in complex ways with niche construction. Here, we explore developmental mechanisms and evolutionary consequences of plasticity in horned dung beetles. First, we discuss how post-invasion evolution of plasticity in an introduced Onthophagus species facilitated rapid range expansion and concurrent local adaptation of life history and morphology to novel climatic conditions. Second, we discuss how, in addition to plastically responding to variation in nutritional conditions, dung beetles engage in behaviors that modify the environment that they themselves respond to during later development. We document that these environment-modifying behaviors mask heritable variation for life history traits within populations, thereby shielding genetic variants from selection. Such cryptic genetic variation may be released and become selectable when these behaviors are compromised. Together, this work documents the complex interactions between plasticity, symbionts and niche construction, and highlights the usefulness of an integrative Eco-Evo-Devo framework to study the varied mechanisms and consequences of plasticity in development and evolution.
Collapse
Affiliation(s)
- Patrick T Rohner
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405, USA
- Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA 92093, USA
| | - Joshua A Jones
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405, USA
| | - Armin P Moczek
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405, USA
| |
Collapse
|
18
|
Shi Y, Ma L, Zhou M, He Z, Zhao Y, Hong J, Zou X, Zhang L, Shu L. Copper stress shapes the dynamic behavior of amoebae and their associated bacteria. THE ISME JOURNAL 2024; 18:wrae100. [PMID: 38848278 PMCID: PMC11197307 DOI: 10.1093/ismejo/wrae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024]
Abstract
Amoeba-bacteria interactions are prevalent in both natural ecosystems and engineered environments. Amoebae, as essential consumers, hold significant ecological importance within ecosystems. Besides, they can establish stable symbiotic associations with bacteria. Copper plays a critical role in amoeba predation by either killing or restricting the growth of ingested bacteria in phagosomes. However, certain symbiotic bacteria have evolved mechanisms to persist within the phagosomal vacuole, evading antimicrobial defenses. Despite these insights, the impact of copper on the symbiotic relationships between amoebae and bacteria remains poorly understood. In this study, we investigated the effects of copper stress on amoebae and their symbiotic relationships with bacteria. Our findings revealed that elevated copper concentration adversely affected amoeba growth and altered cellular fate. Symbiont type significantly influenced the responses of the symbiotic relationships to copper stress. Beneficial symbionts maintained stability under copper stress, but parasitic symbionts exhibited enhanced colonization of amoebae. Furthermore, copper stress favored the transition of symbiotic relationships between amoebae and beneficial symbionts toward the host's benefit. Conversely, the pathogenic effects of parasitic symbionts on hosts were exacerbated under copper stress. This study sheds light on the intricate response mechanisms of soil amoebae and amoeba-bacteria symbiotic systems to copper stress, providing new insights into symbiotic dynamics under abiotic factors. Additionally, the results underscore the potential risks of copper accumulation in the environment for pathogen transmission and biosafety.
Collapse
Affiliation(s)
- Yijing Shi
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Lu Ma
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Zhou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanchen Zhao
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Junyue Hong
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinyue Zou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
19
|
Christensen SM, Srinivas SN, McFrederick QS, Danforth BN, Buchmann SL, Vannette RL. Symbiotic bacteria and fungi proliferate in diapause and may enhance overwintering survival in a solitary bee. THE ISME JOURNAL 2024; 18:wrae089. [PMID: 38767866 PMCID: PMC11177884 DOI: 10.1093/ismejo/wrae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Host-microbe interactions underlie the development and fitness of many macroorganisms, including bees. Whereas many social bees benefit from vertically transmitted gut bacteria, current data suggests that solitary bees, which comprise the vast majority of species diversity within bees, lack a highly specialized gut microbiome. Here, we examine the composition and abundance of bacteria and fungi throughout the complete life cycle of the ground-nesting solitary bee Anthophora bomboides standfordiana. In contrast to expectations, immature bee stages maintain a distinct core microbiome consisting of Actinobacterial genera (Streptomyces, Nocardiodes) and the fungus Moniliella spathulata. Dormant (diapausing) larval bees hosted the most abundant and distinctive bacteria and fungi, attaining 33 and 52 times their initial copy number, respectively. We tested two adaptive hypotheses regarding microbial functions for diapausing bees. First, using isolated bacteria and fungi, we found that Streptomyces from brood cells inhibited the growth of multiple pathogenic filamentous fungi, suggesting a role in pathogen protection during overwintering, when bees face high pathogen pressure. Second, sugar alcohol composition changed in tandem with major changes in fungal abundance, suggesting links with bee cold tolerance or overwintering biology. We find that A. bomboides hosts a conserved core microbiome that may provide key fitness advantages through larval development and diapause, which raises the question of how this microbiome is maintained and faithfully transmitted between generations. Our results suggest that focus on microbiomes of mature or active insect developmental stages may overlook stage-specific symbionts and microbial fitness contributions during host dormancy.
Collapse
Affiliation(s)
- Shawn M Christensen
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| | - Sriram N Srinivas
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| | - Quinn S McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA 92521, United States
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Ithaca, NY 14853, United States
| | - Stephen L Buchmann
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ 85719, United States
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
20
|
Cai T, Nadal-Jimenez P, Gao Y, Arai H, Li C, Su C, King KC, He S, Li J, Hurst GDD, Wan H. Insecticide susceptibility in a planthopper pest increases following inoculation with cultured Arsenophonus. THE ISME JOURNAL 2024; 18:wrae194. [PMID: 39375012 PMCID: PMC11491930 DOI: 10.1093/ismejo/wrae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Facultative vertically transmitted symbionts are a common feature of insects that determine many aspects of their hosts' phenotype. Our capacity to understand and exploit these symbioses is commonly compromised by the microbes unculturability and consequent lack of genetic tools, an impediment of particular significance for symbioses of pest and vector species. Previous work had established that insecticide susceptibility of the economically important pest of rice, the brown planthopper Nilaparvata lugens, was higher in field-collected lineages that carry Ca. Arsenophonus nilaparvatae. We established Ca. A. nilaparvatae into cell-free culture and used this to establish the complete closed genome of the symbiont. We transformed the strain to express GFP and reintroduced it to N. lugens to track infection in vivo. The symbiont established vertical transmission, generating a discrete infection focus towards the posterior pole of each N. lugens oocyte. This infection focus was retained in early embryogenesis before transition to a diffuse somatic infection in late N. lugens embryos and nymphs. We additionally generated somatic infection in novel host species, but these did not establish vertical transmission. Transinfected planthopper lines acquired the insecticide sensitivity trait, with associated downregulation of the P450 xenobiotic detoxification system of the host. Our results causally establish the role of the symbiont in increasing host insecticide sensitivity with implications for insecticide use and stewardship. Furthermore, the culturability and transformation of this intracellular symbiont, combined with its ease of reintroduction to planthopper hosts, enables novel approaches both for research into symbiosis and into control of insect pest species.
Collapse
Affiliation(s)
- Tingwei Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Pol Nadal-Jimenez
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Yuanyuan Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hiroshi Arai
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Chengyue Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunyan Su
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kayla C King
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shun He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Hu Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
21
|
Medina-Chávez NO, Torres-Cerda A, Chacón JM, Harcombe WR, De la Torre-Zavala S, Travisano M. Disentangling a metabolic cross-feeding in a halophilic archaea-bacteria consortium. Front Microbiol 2023; 14:1276438. [PMID: 38179456 PMCID: PMC10764424 DOI: 10.3389/fmicb.2023.1276438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Microbial syntrophy, a cooperative metabolic interaction among prokaryotes, serves a critical role in shaping communities, due to the auxotrophic nature of many microorganisms. Syntrophy played a key role in the evolution of life, including the hypothesized origin of eukaryotes. In a recent exploration of the microbial mats within the exceptional and uniquely extreme Cuatro Cienegas Basin (CCB), a halophilic isolate, designated as AD140, emerged as a standout due to its distinct growth pattern. Subsequent genome sequencing revealed AD140 to be a co-culture of a halophilic archaeon from the Halorubrum genus and a marine halophilic bacterium, Marinococcus luteus, both occupying the same ecological niche. This intriguing coexistence hints at an early-stage symbiotic relationship that thrives on adaptability. By delving into their metabolic interdependence through genomic analysis, this study aims to uncover shared characteristics that enhance their symbiotic association, offering insights into the evolution of halophilic microorganisms and their remarkable adaptations to high-salinity environments.
Collapse
Affiliation(s)
- Nahui Olin Medina-Chávez
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Abigail Torres-Cerda
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, San Nicolás de los Garza, Mexico
| | - Jeremy M. Chacón
- Minnesota Supercomputing Institute, Minneapolis, MN, United States
| | - William R. Harcombe
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Susana De la Torre-Zavala
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, San Nicolás de los Garza, Mexico
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
- Minnesota Center for the Philosophy of Science, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
22
|
Chen MY, Haney CH. It takes a plant village to raise a microbiome. Cell Host Microbe 2023; 31:1956-1958. [PMID: 38096789 DOI: 10.1016/j.chom.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
In this issue of Cell Host and Microbe, Meyer et al. explore the effects of host history on the inheritance of the plant microbiome. They find that transmission from the same plant species resulted in microbiota specialization, while transmission from a different species resulted in host generalism.
Collapse
Affiliation(s)
- Melissa Y Chen
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver BC, Canada
| | - Cara H Haney
- Department of Biological Sciences, The University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
23
|
Valdivia C, Newton JA, von Beeren C, O'Donnell S, Kronauer DJC, Russell JA, Łukasik P. Microbial symbionts are shared between ants and their associated beetles. Environ Microbiol 2023; 25:3466-3483. [PMID: 37968789 DOI: 10.1111/1462-2920.16544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023]
Abstract
The transmission of microbial symbionts across animal species could strongly affect their biology and evolution, but our understanding of transmission patterns and dynamics is limited. Army ants (Formicidae: Dorylinae) and their hundreds of closely associated insect guest species (myrmecophiles) can provide unique insights into interspecific microbial symbiont sharing. Here, we compared the microbiota of workers and larvae of the army ant Eciton burchellii with those of 13 myrmecophile beetle species using 16S rRNA amplicon sequencing. We found that the previously characterized specialized bacterial symbionts of army ant workers were largely absent from ant larvae and myrmecophiles, whose microbial communities were usually dominated by Rickettsia, Wolbachia, Rickettsiella and/or Weissella. Strikingly, different species of myrmecophiles and ant larvae often shared identical 16S rRNA genotypes of these common bacteria. Protein-coding gene sequences confirmed the close relationship of Weissella strains colonizing army ant larvae, some workers and several myrmecophile species. Unexpectedly, these strains were also similar to strains infecting dissimilar animals inhabiting very different habitats: trout and whales. Together, our data show that closely interacting species can share much of their microbiota, and some versatile microbial species can inhabit and possibly transmit across a diverse range of hosts and environments.
Collapse
Affiliation(s)
- Catalina Valdivia
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Justin A Newton
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Christoph von Beeren
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, USA
| | - Sean O'Donnell
- Department of Biodiversity, Earth & Environmental Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Duncan RP, Anderson CMH, Thwaites DT, Luetje CW, Wilson ACC. Co-option of a conserved host glutamine transporter facilitates aphid/ Buchnera metabolic integration. Proc Natl Acad Sci U S A 2023; 120:e2308448120. [PMID: 37844224 PMCID: PMC10614625 DOI: 10.1073/pnas.2308448120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/14/2023] [Indexed: 10/18/2023] Open
Abstract
Organisms across the tree of life colonize novel environments by partnering with bacterial symbionts. These symbioses are characterized by intimate integration of host/endosymbiont biology at multiple levels, including metabolically. Metabolic integration is particularly important for sap-feeding insects and their symbionts, which supplement nutritionally unbalanced host diets. Many studies reveal parallel evolution of host/endosymbiont metabolic complementarity in amino acid biosynthesis, raising questions about how amino acid metabolism is regulated, how regulatory mechanisms evolve, and the extent to which similar mechanisms evolve in different systems. In the aphid/Buchnera symbiosis, the transporter ApGLNT1 (Acyrthosiphon pisum glutamine transporter 1) supplies glutamine, an amino donor in transamination reactions, to bacteriocytes (where Buchnera reside) and is competitively inhibited by Buchnera-supplied arginine-consistent with a role regulating amino acid metabolism given host demand for Buchnera-produced amino acids. We examined how ApGLNT1 evolved a regulatory role by functionally characterizing orthologs in insects with and without endosymbionts. ApGLNT1 orthologs are functionally similar, and orthology searches coupled with homology modeling revealed that GLNT1 is ancient and structurally conserved across insects. Our results indicate that the ApGLNT1 symbiotic regulatory role is derived from its ancestral role and, in aphids, is likely facilitated by loss of arginine biosynthesis through the urea cycle. Given consistent loss of host arginine biosynthesis and retention of endosymbiont arginine supply, we hypothesize that GLNT1 is a general mechanism regulating amino acid metabolism in sap-feeding insects. This work fills a gap, highlighting the broad importance of co-option of ancestral proteins to novel contexts in the evolution of host/symbiont systems.
Collapse
Affiliation(s)
| | - Catriona M. H. Anderson
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon TyneNE1 7RU, United Kingdom
| | - David T. Thwaites
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, United Kingdom
| | - Charles W. Luetje
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL33136
| | | |
Collapse
|
25
|
Štarhová Serbina L, Corretto E, Enciso Garcia JS, Berta M, Giovanelli T, Dittmer J, Schuler H. Seasonal wild dance of dual endosymbionts in the pear psyllid Cacopsylla pyricola (Hemiptera: Psylloidea). Sci Rep 2023; 13:16038. [PMID: 37749181 PMCID: PMC10519999 DOI: 10.1038/s41598-023-43130-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023] Open
Abstract
Most sap-feeding insects maintain obligate relationships with endosymbiotic bacteria that provide their hosts with essential nutrients. However, knowledge about the dynamics of endosymbiont titers across seasons in natural host populations is scarce. Here, we used quantitative PCR to investigate the seasonal dynamics of the dual endosymbionts "Candidatus Carsonella ruddii" and "Ca. Psyllophila symbiotica" in a natural population of the pear psyllid Cacopsylla pyricola (Hemiptera: Psylloidea: Psyllidae). Psyllid individuals were collected across an entire year, covering both summer and overwintering generations. Immatures harboured the highest titers of both endosymbionts, while the lowest endosymbiont density was observed in males. The density of Carsonella remained high and relatively stable across the vegetative period of the pear trees, but significantly dropped during the non-vegetative period, overlapping with C. pyricola's reproductive diapause. In contrast, the titer of Psyllophila was consistently higher than Carsonella's and exhibited fluctuations throughout the sampling year, which might be related to host age. Despite a tightly integrated metabolic complementarity between Carsonella and Psyllophila, our findings highlight differences in their density dynamics throughout the year, that might be linked to their metabolic roles at different life stages of the host.
Collapse
Affiliation(s)
- Liliya Štarhová Serbina
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100, Bolzano, Italy.
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 60200, Brno, Czech Republic.
| | - Erika Corretto
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
| | - Juan Sebastian Enciso Garcia
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
| | - Michela Berta
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
| | - Tobia Giovanelli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
| | - Jessica Dittmer
- UMR 1345, Institut Agro, INRAE, IRHS, SFR Quasav, Université d'Angers, Angers, France
| | - Hannes Schuler
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
| |
Collapse
|
26
|
Pinnow N, Chibani CM, Güllert S, Weiland-Bräuer N. Microbial community changes correlate with impaired host fitness of Aurelia aurita after environmental challenge. Anim Microbiome 2023; 5:45. [PMID: 37735458 PMCID: PMC10515101 DOI: 10.1186/s42523-023-00266-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
Climate change globally endangers certain marine species, but at the same time, such changes may promote species that can tolerate and adapt to varying environmental conditions. Such acclimatization can be accompanied or possibly even be enabled by a host's microbiome; however, few studies have so far directly addressed this process. Here we show that acute, individual rises in seawater temperature and salinity to sub-lethal levels diminished host fitness of the benthic Aurelia aurita polyp, demonstrated by up to 34% reduced survival rate, shrinking of the animals, and almost halted asexual reproduction. Changes in the fitness of the polyps to environmental stressors coincided with microbiome changes, mainly within the phyla Proteobacteria and Bacteroidota. The absence of bacteria amplified these effects, pointing to the benefit of a balanced microbiota to cope with a changing environment. In a future ocean scenario, mimicked by a combined but milder rise of temperature and salinity, the fitness of polyps was severely less impaired, together with condition-specific changes in the microbiome composition. Our results show that the effects on host fitness correlate with the strength of environmental stress, while salt-conveyed thermotolerance might be involved. Further, a specific, balanced microbiome of A. aurita polyps supports the host's acclimatization. Microbiomes may provide a means for acclimatization, and microbiome flexibility can be a fundamental strategy for marine animals to adapt to future ocean scenarios and maintain biodiversity and ecosystem functioning.
Collapse
Affiliation(s)
- Nicole Pinnow
- General Microbiology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Cynthia M Chibani
- General Microbiology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Simon Güllert
- General Microbiology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
- Current address: Sysmex Inostics GmbH, Falkenried 88, 20251, Hamburg, Germany
| | - Nancy Weiland-Bräuer
- General Microbiology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| |
Collapse
|
27
|
Salem H, Biedermann PHW, Fukatsu T. Editorial: Diversity of beetles and associated microorganisms. Front Microbiol 2023; 14:1252736. [PMID: 37564291 PMCID: PMC10411724 DOI: 10.3389/fmicb.2023.1252736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023] Open
Affiliation(s)
- Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen, Germany
| | - Peter H. W. Biedermann
- Chair of Forest Entomology and Protection, University of Freiburg, Freiburg im Breisgau, Germany
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
28
|
Sun Y, Chen J, Ye Y, Xu K, Li J. Comparison of Mitochondrial Genome Sequences between Two Palaemon Species of the Family Palaemonidae (Decapoda: Caridea): Gene Rearrangement and Phylogenetic Implications. Genes (Basel) 2023; 14:1499. [PMID: 37510403 PMCID: PMC10379425 DOI: 10.3390/genes14071499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
To further understand the origin and evolution of Palaemonidae (Decapoda: Caridea), we determined the mitochondrial genome sequence of Palaemon macrodactylus and Palaemon tenuidactylus. The entire mitochondrial genome sequences of these two Palaemon species encompassed 37 typical genes, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (rRNAs), and 22 transfer RNA genes (tRNAs), and a control region (CR). The lengths of their mitochondrial genomes were 15,744 bp (P. macrodactylus) and 15,735 bp (P. tenuidactylus), respectively. We analyzed their genomic features and structural functions. In comparison with the ancestral Decapoda, these two newly sequenced Palaemon species exhibited a translocation event, where the gene order was trnK-trnD instead of trnD-trnK. Based on phylogenetic analysis constructed from 13 PCGs, the 12 families from Caridea can be divided into four major clades. Furthermore, it was revealed that Alpheidae and Palaemonidae formed sister groups, supporting the monophyly of various families within Caridea. These findings highlight the significant gene rearrangements within Palaemonidae and provide valuable evidence for the phylogenetic relationships within Caridea.
Collapse
Affiliation(s)
- Yuman Sun
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jian Chen
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Kaida Xu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of China, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
29
|
Fiutek N, Couger MB, Pirro S, Roy SW, de la Torre JR, Connor EF. Genomic Assessment of the Contribution of the Wolbachia Endosymbiont of Eurosta solidaginis to Gall Induction. Int J Mol Sci 2023; 24:ijms24119613. [PMID: 37298563 DOI: 10.3390/ijms24119613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
We explored the genome of the Wolbachia strain, wEsol, symbiotic with the plant-gall-inducing fly Eurosta solidaginis with the goal of determining if wEsol contributes to gall induction by its insect host. Gall induction by insects has been hypothesized to involve the secretion of the phytohormones cytokinin and auxin and/or proteinaceous effectors to stimulate cell division and growth in the host plant. We sequenced the metagenome of E. solidaginis and wEsol and assembled and annotated the genome of wEsol. The wEsol genome has an assembled length of 1.66 Mbp and contains 1878 protein-coding genes. The wEsol genome is replete with proteins encoded by mobile genetic elements and shows evidence of seven different prophages. We also detected evidence of multiple small insertions of wEsol genes into the genome of the host insect. Our characterization of the genome of wEsol indicates that it is compromised in the synthesis of dimethylallyl pyrophosphate (DMAPP) and S-adenosyl L-methionine (SAM), which are precursors required for the synthesis of cytokinins and methylthiolated cytokinins. wEsol is also incapable of synthesizing tryptophan, and its genome contains no enzymes in any of the known pathways for the synthesis of indole-3-acetic acid (IAA) from tryptophan. wEsol must steal DMAPP and L-methionine from its host and therefore is unlikely to provide cytokinin and auxin to its insect host for use in gall induction. Furthermore, in spite of its large repertoire of predicted Type IV secreted effector proteins, these effectors are more likely to contribute to the acquisition of nutrients and the manipulation of the host's cellular environment to contribute to growth and reproduction of wEsol than to aid E. solidaginis in manipulating its host plant. Combined with earlier work that shows that wEsol is absent from the salivary glands of E. solidaginis, our results suggest that wEsol does not contribute to gall induction by its host.
Collapse
Affiliation(s)
- Natalie Fiutek
- Department of Biology, San Francisco State University, San Francisco, CA 94112, USA
| | - Matthew B Couger
- Department of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stacy Pirro
- Iridian Genomes Inc., Bethesda, MD 20817, USA
| | - Scott W Roy
- Department of Biology, San Francisco State University, San Francisco, CA 94112, USA
| | - José R de la Torre
- Department of Biology, San Francisco State University, San Francisco, CA 94112, USA
| | - Edward F Connor
- Department of Biology, San Francisco State University, San Francisco, CA 94112, USA
| |
Collapse
|
30
|
Riley AB, Grillo MA, Epstein B, Tiffin P, Heath KD. Discordant population structure among rhizobium divided genomes and their legume hosts. Mol Ecol 2023; 32:2646-2659. [PMID: 36161739 DOI: 10.1111/mec.16704] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022]
Abstract
Symbiosis often occurs between partners with distinct life history characteristics and dispersal mechanisms. Many bacterial symbionts have genomes comprising multiple replicons with distinct rates of evolution and horizontal transmission. Such differences might drive differences in population structure between hosts and symbionts and among the elements of the divided genomes of bacterial symbionts. These differences might, in turn, shape the evolution of symbiotic interactions and bacterial evolution. Here we use whole genome resequencing of a hierarchically structured sample of 191 strains of Sinorhizobium meliloti collected from 21 locations in southern Europe to characterize population structures of this bacterial symbiont, which forms a root nodule symbiosis with the host plant Medicago truncatula. S. meliloti genomes showed high local (within-site) variation and little isolation by distance. This was particularly true for the two symbiosis elements, pSymA and pSymB, which have population structures that are similar to each other, but distinct from both the bacterial chromosome and the host plant. Given limited recombination on the chromosome, compared to the symbiosis elements, distinct population structures may result from differences in effective gene flow. Alternatively, positive or purifying selection, with little recombination, may explain distinct geographical patterns at the chromosome. Discordant population structure between hosts and symbionts indicates that geographically and genetically distinct host populations in different parts of the range might interact with genetically similar symbionts, potentially minimizing local specialization.
Collapse
Affiliation(s)
- Alex B Riley
- Department of Plant Biology, University of Illinois, Urbana, Illinois, USA
| | - Michael A Grillo
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Katy D Heath
- Department of Plant Biology, University of Illinois, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
31
|
Guo Y, Meng L, Wang M, Zhong Z, Li D, Zhang Y, Li H, Zhang H, Seim I, Li Y, Jiang A, Ji Q, Su X, Chen J, Fan G, Li C, Liu S. Hologenome analysis reveals independent evolution to chemosymbiosis by deep-sea bivalves. BMC Biol 2023; 21:51. [PMID: 36882766 PMCID: PMC9993606 DOI: 10.1186/s12915-023-01551-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Bivalves have independently evolved a variety of symbiotic relationships with chemosynthetic bacteria. These relationships range from endo- to extracellular interactions, making them ideal for studies on symbiosis-related evolution. It is still unclear whether there are universal patterns to symbiosis across bivalves. Here, we investigate the hologenome of an extracellular symbiotic thyasirid clam that represents the early stages of symbiosis evolution. RESULTS We present a hologenome of Conchocele bisecta (Bivalvia: Thyasiridae) collected from deep-sea hydrothermal vents with extracellular symbionts, along with related ultrastructural evidence and expression data. Based on ultrastructural and sequencing evidence, only one dominant Thioglobaceae bacteria was densely aggregated in the large bacterial chambers of C. bisecta, and the bacterial genome shows nutritional complementarity and immune interactions with the host. Overall, gene family expansions may contribute to the symbiosis-related phenotypic variations in different bivalves. For instance, convergent expansions of gaseous substrate transport families in the endosymbiotic bivalves are absent in C. bisecta. Compared to endosymbiotic relatives, the thyasirid genome exhibits large-scale expansion in phagocytosis, which may facilitate symbiont digestion and account for extracellular symbiotic phenotypes. We also reveal that distinct immune system evolution, including expansion in lipopolysaccharide scavenging and contraction of IAP (inhibitor of apoptosis protein), may contribute to the different manners of bacterial virulence resistance in C. bisecta. CONCLUSIONS Thus, bivalves employ different pathways to adapt to the long-term co-existence with their bacterial symbionts, further highlighting the contribution of stochastic evolution to the independent gain of a symbiotic lifestyle in the lineage.
Collapse
Affiliation(s)
- Yang Guo
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lingfeng Meng
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minxiao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zhaoshan Zhong
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Denghui Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Hanbo Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Huan Zhang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Yuli Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Aijun Jiang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Qianyue Ji
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Xiaoshan Su
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Jianwei Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Chaolun Li
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- College of Marine Science, University of Chinese Academy of Sciences, Qingdao, 266400, China.
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.
- Qingdao Key Laboratory of Marine Genomics, BGI-qingdao, Qingdao, China.
| |
Collapse
|
32
|
Osvatic JT, Yuen B, Kunert M, Wilkins L, Hausmann B, Girguis P, Lundin K, Taylor J, Jospin G, Petersen JM. Gene loss and symbiont switching during adaptation to the deep sea in a globally distributed symbiosis. THE ISME JOURNAL 2023; 17:453-466. [PMID: 36639537 PMCID: PMC9938160 DOI: 10.1038/s41396-022-01355-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Chemosynthetic symbioses between bacteria and invertebrates occur worldwide from coastal sediments to the deep sea. Most host groups are restricted to either shallow or deep waters. In contrast, Lucinidae, the most species-rich family of chemosymbiotic invertebrates, has both shallow- and deep-sea representatives. Multiple lucinid species have independently colonized the deep sea, which provides a unique framework for understanding the role microbial symbionts play in evolutionary transitions between shallow and deep waters. Lucinids acquire their symbionts from their surroundings during early development, which may allow them to flexibly acquire symbionts that are adapted to local environments. Via metagenomic analyses of museum and other samples collected over decades, we investigated the biodiversity and metabolic capabilities of the symbionts of 22 mostly deep-water lucinid species. We aimed to test the theory that the symbiont played a role in adaptation to life in deep-sea habitats. We identified 16 symbiont species, mostly within the previously described genus Ca. Thiodiazotropha. Most genomic functions were shared by both shallow-water and deep-sea Ca. Thiodiazotropha, though nitrogen fixation was exclusive to shallow-water species. We discovered multiple cases of symbiont switching near deep-sea hydrothermal vents and cold seeps, where distantly related hosts convergently acquired novel symbionts from a different bacterial order. Finally, analyses of selection revealed consistently stronger purifying selection on symbiont genomes in two extreme habitats - hydrothermal vents and an oxygen-minimum zone. Our findings reveal that shifts in symbiont metabolic capability and, in some cases, acquisition of a novel symbiont accompanied adaptation of lucinids to challenging deep-sea habitats.
Collapse
Affiliation(s)
- Jay T Osvatic
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, Division of Microbial Ecology, Djerassiplatz 1, 1030, Vienna, Austria.
- University of Venna, Doctoral School in Microbiology and Environmental Science, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Benedict Yuen
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, Division of Microbial Ecology, Djerassiplatz 1, 1030, Vienna, Austria
| | - Martin Kunert
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, Division of Microbial Ecology, Djerassiplatz 1, 1030, Vienna, Austria
| | - Laetitia Wilkins
- Eco-Evolutionary Interactions Group, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28209, Bremen, Germany
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1030, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Peter Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Kennet Lundin
- Gothenburg Natural History Museum, Box 7283, 40235, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, 40530, Gothenburg, Sweden
| | - John Taylor
- Natural History Museum, Cromwell Rd, London, SW7 5BD, UK
| | - Guillaume Jospin
- AnimalBiome, 400 29th Street, Suite 502, Oakland, CA, 94609, USA
| | - Jillian M Petersen
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, Division of Microbial Ecology, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
33
|
Halter T, Köstlbacher S, Rattei T, Hendrickx F, Manzano-Marín A, Horn M. One to host them all: genomics of the diverse bacterial endosymbionts of the spider Oedothorax gibbosus. Microb Genom 2023; 9:mgen000943. [PMID: 36757767 PMCID: PMC9997750 DOI: 10.1099/mgen.0.000943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/04/2022] [Indexed: 02/10/2023] Open
Abstract
Bacterial endosymbionts of the groups Wolbachia, Cardinium and Rickettsiaceae are well known for their diverse effects on their arthropod hosts, ranging from mutualistic relationships to reproductive phenotypes. Here, we analysed a unique system in which the dwarf spider Oedothorax gibbosus is co-infected with up to five different endosymbionts affiliated with Wolbachia, 'Candidatus Tisiphia' (formerly Torix group Rickettsia), Cardinium and Rhabdochlamydia. Using short-read genome sequencing data, we show that the endosymbionts are heterogeneously distributed among O. gibbosus populations and are frequently found co-infecting spider individuals. To study this intricate host-endosymbiont system on a genome-resolved level, we used long-read sequencing to reconstruct closed genomes of the Wolbachia, 'Ca. Tisiphia' and Cardinium endosymbionts. We provide insights into the ecology and evolution of the endosymbionts and shed light on the interactions with their spider host. We detected high quantities of transposable elements in all endosymbiont genomes and provide evidence that ancestors of the Cardinium, 'Ca. Tisiphia' and Wolbachia endosymbionts have co-infected the same hosts in the past. Our findings contribute to broadening our knowledge about endosymbionts infecting one of the largest animal phyla on Earth and show the usefulness of transposable elements as an evolutionary 'contact-tracing' tool.
Collapse
Affiliation(s)
- Tamara Halter
- Centre for Microbiology and Environmental Systems Science, University of Vienna. Djerassiplatz 1, 1030 Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna. Universitätsring 1, 1010 Vienna, Austria
| | - Stephan Köstlbacher
- Centre for Microbiology and Environmental Systems Science, University of Vienna. Djerassiplatz 1, 1030 Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna. Universitätsring 1, 1010 Vienna, Austria
- Current address: Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6700 EH Wageningen, The Netherlands
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, University of Vienna. Djerassiplatz 1, 1030 Vienna, Austria
| | - Frederik Hendrickx
- OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences. Rue Vautier/Vautierstraat 29,, 1000 Brussels, Belgium
| | - Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science, University of Vienna. Djerassiplatz 1, 1030 Vienna, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna. Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
34
|
Wang C, Li X, Jin D, Gong P, Li Q, Zhang Y, Li X, Deng Y, Cernava T, Zhu X. Implications of environmentally shaped microbial communities for insecticide resistance in Sitobion miscanthi. ENVIRONMENTAL RESEARCH 2022; 215:114409. [PMID: 36152886 DOI: 10.1016/j.envres.2022.114409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/27/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Insect-associated bacteria play an important role in the resistance to pesticides, yet bacterial community compositions in wild insect host populations and the environmental factors that shape them are mostly elusive. In this study, Sitobion miscanthi (Takahashi) populations were collected from major wheat growing regions in China. Following high-throughput sequencing of 16S rRNA gene fragments, association analyses were performed within the bacterial community associated with S. miscanthi, as well as with population resistance levels to four commonly used pesticides and different environmental factors. We found that bacterial community structures differed in various regions, and that the abundances of dominant bacteria such as Buchnera, Candidatus Regiella, Candidatus Hamiltonella showed high variations. The resistance of S. miscanthi to avermectin and bifenthrin was shown to decline with increasing bacterial diversity. Meanwhile, with the increase of bacterial network modularity, the resistance of S. miscanthi populations to imidacloprid, avermectin and bifenthrin also increased correspondingly. In addition, correlation analysis indicated that altitude and air pressure had the strongest impact on bacterial community diversity and relative abundance, followed by humidity, rainfall and temperature. Overall, insights into such complex interactions between bacteria and their insect hosts offer new directions for biological pest control.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Decai Jin
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Peipan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiuchi Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ye Deng
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
35
|
Lack of host phylogenetic structure in the gut bacterial communities of New Zealand cicadas and their interspecific hybrids. Sci Rep 2022; 12:20559. [PMID: 36446872 PMCID: PMC9709078 DOI: 10.1038/s41598-022-24723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
Host-microbe interactions are intimately linked to eukaryotic evolution, particularly in sap-sucking insects that often rely on obligate microbial symbionts for nutrient provisioning. Cicadas (Cicadidae: Auchenorrhyncha) specialize on xylem fluid and derive many essential amino acids and vitamins from intracellular bacteria or fungi (Hodgkinia, Sulcia, and Ophiocordyceps) that are propagated via transmission from mothers to offspring. Despite the beneficial role of these non-gut symbionts in nutrient provisioning, the role of beneficial microbiota within the gut remains unclear. Here, we investigate the relative abundance and impact of host phylogeny and ecology on gut microbial diversity in cicadas using 16S ribosomal RNA gene amplicon sequencing data from 197 wild-collected cicadas and new mitochondrial genomes across 38 New Zealand cicada species, including natural hybrids between one pair of two species. We find low abundance and a lack of phylogenetic structure and hybrid effects but a significant role of elevation in explaining variation in gut microbiota.
Collapse
|
36
|
Miyokawa R, Hanada M, Togawa Y, Itoh TQ, Kobayakawa Y, Kusumi J. Symbiont specificity differs among green hydra strains. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220789. [PMID: 36312570 PMCID: PMC9554523 DOI: 10.1098/rsos.220789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The symbiotic hydra Hydra viridissima has a stable symbiotic relationship with the green alga Chlorella. This hydra appears to cospeciate with the symbiotic alga, and some strains are known to have strain-specific host/symbiont combinations. To investigate the mechanism of the specificity between host and symbiont, we explored the effect of the removal or exchange of symbionts in two distantly related H. viridissima strains (K10 and M9). In the K10 strain, severe morphological and behavioural changes were found in symbiont-removed and symbiont-exchanged polyps. Interestingly, both polyps showed a similar gene expression pattern. The gene ontology (GO) enrichment analysis revealed that the removal or exchange of symbionts caused the downregulation of genes involved in the electron transport chain and the upregulation of genes involved in translation in the K10 strain. On the other hand, symbiont-removed and symbiont-exchanged M9 polyps showed modest changes in their morphology and behaviour compared with the K10 strain. Furthermore, the patterns of the gene expression changes in the M9 strain were quite different between the symbiont-removed and symbiont-exchanged polyps. Our results suggested that the regulation of energy balance is one of the crucial mechanisms for maintaining symbiotic relationships in green hydra, and this mechanism differs between the strains.
Collapse
Affiliation(s)
- Ryo Miyokawa
- Graduate School of Integrated Science for Global Society, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Maki Hanada
- Graduate School of Systems Life Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yumiko Togawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Ten-noudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Taichi Q. Itoh
- Faculty of Arts and Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshitaka Kobayakawa
- Faculty of Arts and Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Junko Kusumi
- Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
37
|
Li Z, Li Y, Xue AZ, Dang V, Renee Holmes V, Spencer Johnston J, Barrick JE, Moran NA. The genomic basis of evolutionary novelties in a leafhopper. Mol Biol Evol 2022; 39:6677381. [PMID: 36026509 PMCID: PMC9450646 DOI: 10.1093/molbev/msac184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Evolutionary innovations generate phenotypic and species diversity. Elucidating the genomic processes underlying such innovations is central to understanding biodiversity. In this study, we addressed the genomic basis of evolutionary novelties in the glassy-winged sharpshooter (Homalodisca vitripennis, GWSS), an agricultural pest. Prominent evolutionary innovations in leafhoppers include brochosomes, proteinaceous structures that are excreted and used to coat the body, and obligate symbiotic associations with two bacterial types that reside within cytoplasm of distinctive cell types. Using PacBio long-read sequencing and Dovetail Omni-C technology, we generated a chromosome-level genome assembly for the GWSS and then validated the assembly using flow cytometry and karyotyping. Additional transcriptomic and proteomic data were used to identify novel genes that underlie brochosome production. We found that brochosome-associated genes include novel gene families that have diversified through tandem duplications. We also identified the locations of genes involved in interactions with bacterial symbionts. Ancestors of the GWSS acquired bacterial genes through horizontal gene transfer (HGT), and these genes appear to contribute to symbiont support. Using a phylogenomics approach, we inferred HGT sources and timing. We found that some HGT events date to the common ancestor of the hemipteran suborder Auchenorrhyncha, representing some of the oldest known examples of HGT in animals. Overall, we show that evolutionary novelties in leafhoppers are generated by the combination of acquiring novel genes, produced both de novo and through tandem duplication, acquiring new symbiotic associations that enable use of novel diets and niches, and recruiting foreign genes to support symbionts and enhance herbivory.
Collapse
Affiliation(s)
- Zheng Li
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Yiyuan Li
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Allen Z Xue
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Vy Dang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - V Renee Holmes
- Department of Entomology, Texas A&M University, College Station, TX,USA
| | | | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Nancy A Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
38
|
Vasquez YM, Bennett GM. A complex interplay of evolutionary forces continues to shape ancient co-occurring symbiont genomes. iScience 2022; 25:104786. [PMID: 35982793 PMCID: PMC9379567 DOI: 10.1016/j.isci.2022.104786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/03/2022] [Accepted: 07/13/2022] [Indexed: 01/03/2023] Open
Abstract
Many insects depend on ancient associations with intracellular bacteria for essential nutrition. The genomes of these bacteria are often highly reduced. Although drift is a major driver of symbiont evolution, other evolutionary forces continue to influence them. To understand how ongoing molecular evolution and gene loss shape symbiont genomes, we sequenced two of the most ancient symbionts known, Sulcia and Nasuia, from 20 Hawaiian Nesophrosyne leafhoppers. We leveraged the parallel divergence of Nesophrosyne lineages throughout Hawaii as a natural experimental framework. Sulcia and Nasuia experience ongoing-but divergent-gene loss, often in a convergent fashion. Although some genes are under relaxed selection, purifying and positive selection are also important drivers of genome evolution, particularly in maintaining certain nutritional and cellular functions. Our results further demonstrate that symbionts experience dramatically different evolutionary environments, as evidenced by the finding that Sulcia and Nasuia have one of the slowest and fastest rates of molecular evolution known.
Collapse
Affiliation(s)
- Yumary M. Vasquez
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Gordon M. Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| |
Collapse
|
39
|
Zhou L, Chen C, Wang X. Gut Bacterial Diversity and Community Structure of Spodoptera exigua (Lepidoptera: Noctuidae) in the Welsh Onion-producing Areas of North China. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1102-1114. [PMID: 35765845 DOI: 10.1093/jee/toac103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Indexed: 06/15/2023]
Abstract
Gut microbiota play an important role in digestion, development, nutritional metabolism, and detoxification in insects. However, scant information exists on the gut bacterial variation, composition, and community structure of the beet armyworm, Spodoptera exigua (Hübner), and how its gut microbiota has adapted to different geographical environments. Using 16S rRNA high-throughput sequencing technology, we detected 3,837,408 high-quality reads and 1,457 operational taxonomic units (OTUs) in 47 gut samples of S. exigua collected from ten sites in northern China. Overall, we identified 697 bacterial genera from 30 phyla, among which Proteobacteria and Firmicutes were the most dominant phyla. Gut bacterial alpha-diversity metrics revealed significant differences among these populations. We detected the highest alpha bacterial diversity in Xinming, northern Liaoning Province, and the lowest bacterial diversity in Zhangwu, western Liaoning Province. Beta diversity indicated that the gut microbial community structure of S. exigua in Liaoning Province was significantly different from that of other populations. There was a similar microbial community structure among populations in the adjacent province, suggesting that the environment influences bacterial succession in this pest. Finally, PICRUSt analysis demonstrated that microbial functions closely associated with the gut microbiomes mainly included membrane transport, carbohydrate metabolism and replication, and amino acid metabolism.
Collapse
Affiliation(s)
- Lihong Zhou
- Institute of Flower, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, 110161, P.R. China
| | - Chen Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China
| | - Xingya Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China
| |
Collapse
|
40
|
Scott TJ, Queller DC, Strassmann JE. Context dependence in the symbiosis between
Dictyostelium discoideum
and
Paraburkholderia. Evol Lett 2022; 6:245-254. [PMID: 35784451 PMCID: PMC9233174 DOI: 10.1002/evl3.281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/22/2022] [Accepted: 04/01/2022] [Indexed: 01/13/2023] Open
Affiliation(s)
- Trey J. Scott
- Department of Biology Washington University in St. Louis St. Louis Missouri 63130
| | - David C. Queller
- Department of Biology Washington University in St. Louis St. Louis Missouri 63130
| | - Joan E. Strassmann
- Department of Biology Washington University in St. Louis St. Louis Missouri 63130
| |
Collapse
|
41
|
Similar Bacterial Communities among Different Populations of a Newly Emerging Invasive Species, Tuta absoluta (Meyrick). INSECTS 2022; 13:insects13030252. [PMID: 35323550 PMCID: PMC8951508 DOI: 10.3390/insects13030252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary As an invasive pest in China, the moth Tuta absoluta has spread extremely quickly, and now causes serious harm to the Chinese tomato industry. Understanding gut microbial diversity and composition can potentially identify the adaptive potential of introduced species. In this study, we found there were no significant differences in microbial diversity among three geographical populations, and the gut microbial compositions were similar among the Spanish, Xinjiang and Yunnan geographical populations. Abstract Microorganisms in the guts of insects enhance the adaptability of their hosts with different lifestyles, or those that live in different habitats. Tuta absoluta is an invasive pest that is a serious threat to tomato production in China. It has quickly spread and colonized Xinjiang, Yunnan and other provinces and regions. We used Illumina HiSeq next generation sequencing of the 16S rRNA gene to study and analyze the composition and diversity of the gut microbiota of three geographical populations of T. absoluta. At the phylum level, the most common bacteria in T. absoluta across all three geographical populations were Proteobacteria and Firmicutes. An uncultured bacterium in the Enterobacteriaceae was the dominant bacterial genus in the T. absoluta gut microbiotas. There were no significant differences in alpha diversity metrics among the Spanish, Yunnan and Xinjiang populations. The structures of the gut microbiota of the three populations were similar based on PCoA and NMDS results. The results confirmed that the microbial structures of T. absoluta from different regions were similar.
Collapse
|
42
|
Pons I, Scieur N, Dhondt L, Renard ME, Renoz F, Hance T. Pervasiveness of the symbiont Serratia symbiotica in the aphid natural environment: distribution, diversity and evolution at a multitrophic level. FEMS Microbiol Ecol 2022; 98:6526308. [PMID: 35142841 DOI: 10.1093/femsec/fiac012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/05/2022] [Accepted: 02/08/2022] [Indexed: 11/12/2022] Open
Abstract
Symbioses are significant drivers of insect evolutionary ecology. Despite recent findings that these associations can emerge from environmentally derived bacterial precursors, there is still little information on how these potential progenitors of insect symbionts circulate in trophic systems. Serratia symbiotica represents a valuable model for deciphering evolutionary scenarios of bacterial acquisition by insects, as its diversity includes gut-associated strains that retained the ability to live independently of their hosts, representing a potential reservoir for symbioses emergence. Here, we conducted a field study to examine the distribution and diversity of S. symbiotica found in aphid populations, and in different compartments of their surrounding environment. Twenty % of aphids colonies were infected with S. symbiotica, including a wide diversity of strains with varied tissue tropism corresponding to different lifestyle. We also showed that the prevalence of S. symbiotica is influenced by seasonal temperatures. We found that S. symbiotica was present in non-aphid species and in host plants, and that its prevalence in these samples was higher when associated aphid colonies were infected. Furthermore, phylogenetic analyses suggest the existence of horizontal transfers between the different trophic levels. These results provide a new picture of the pervasiveness of an insect symbiont in nature.
Collapse
Affiliation(s)
- Inès Pons
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Nora Scieur
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Linda Dhondt
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Marie-Eve Renard
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - François Renoz
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Thierry Hance
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
43
|
Wu W, Shan HW, Li JM, Zhang CX, Chen JP, Mao Q. Roles of Bacterial Symbionts in Transmission of Plant Virus by Hemipteran Vectors. Front Microbiol 2022; 13:805352. [PMID: 35154053 PMCID: PMC8829006 DOI: 10.3389/fmicb.2022.805352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
The majority of plant viruses are transmitted by hemipteran insects. Bacterial symbionts in hemipteran hosts have a significant impact on the host life, physiology and ecology. Recently, the involvement of bacterial symbionts in hemipteran vector-virus and vector-plant interactions has been documented. Thus, the exploitation and manipulation of bacterial symbionts have great potential for plant viral disease control. Herein, we review the studies performed on the impact of symbiotic bacteria on plant virus transmission, including insect-bacterial symbiont associations, the role of these bacterial symbionts in viral acquisition, stability and release during viral circulation in insect bodies, and in viral vertical transmission. Besides, we prospect further studies aimed to understand tripartite interactions of the virus-symbiotic microorganisms-insect vector.
Collapse
|
44
|
Wang D, Huang Z, Billen J, Zhang G, He H, Wei C. Complex co-evolutionary relationships between cicadas and their symbionts. Environ Microbiol 2021; 24:195-211. [PMID: 34927333 DOI: 10.1111/1462-2920.15829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
Previous evidence suggests that cicadas lacking Hodgkinia may harbour the yeast-like fungal symbionts (YLS). Here, we reinforce an earlier conclusion that the pathogenic ancestor of YLS independently infected different cicada lineages instead of the common ancestor of Cicadidae. Five independent replacement events in the loss of Hodgkinia/acquisition of YLS and seven other replacement events of YLS (from an Ophiocordyceps fungus to another Ophiocordyceps fungus) are hypothesised to have occurred within the sampled cicada taxa. The divergence time of YLS lineages was later than that of corresponding cicada lineages. The rapid shift of diversification rates of YLS and related cicada-parasitizing Ophiocordyceps began at approximately 32.94 Ma, and the diversification rate reached the highest value at approximately 24.82 Ma, which corresponds to the cooling climate changes at the Eocene-Oligocene boundary and the Oligocene-Miocene transition respectively. Combined with related acquisition/replacement events of YLS occurred during the cooling-climate periods, we hypothesise that the cooling-climate changes impacted the interactions between cicadas and related Ophiocordyceps, which coupled with the unusual life cycle and the differentiation of cicadas may finally led to the diversification of YLS in Cicadidae. Our results contribute to a better understanding of the evolutionary transition of YLS from entomopathogenic fungi in insects.
Collapse
Affiliation(s)
- Dandan Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhi Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Johan Billen
- Zoological Institute, University of Leuven, Naamsestraat 59, Leuven, B-3000, Belgium
| | - Guoyun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hong He
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
45
|
Decline in symbiont-dependent host detoxification metabolism contributes to increased insecticide susceptibility of insects under high temperature. THE ISME JOURNAL 2021; 15:3693-3703. [PMID: 34188180 PMCID: PMC8630103 DOI: 10.1038/s41396-021-01046-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023]
Abstract
The interactions between insects and their bacterial symbionts are shaped by a variety of abiotic factors, including temperature. As global temperatures continue to break high records, a great deal of uncertainty surrounds how agriculturally important insect pests and their symbionts may be affected by elevated temperatures, and its implications for future pest management. In this study, we examine the role of bacterial symbionts in the brown planthopper Nilaparvata lugens response to insecticide (imidacloprid) under different temperature scenarios. Our results reveal that the bacterial symbionts orchestrate host detoxification metabolism via the CncC pathway to promote host insecticide resistance, whereby the symbiont-inducible CncC pathway acts as a signaling conduit between exogenous abiotic stimuli and host metabolism. However, this insect-bacterial partnership function is vulnerable to high temperature, which causes a significant decline in host-bacterial content. In particular, we have identified the temperature-sensitive Wolbachia as a candidate player in N. lugens detoxification metabolism. Wolbachia-dependent insecticide resistance was confirmed through a series of insecticide assays and experiments comparing Wolbachia-free and Wolbachia-infected N. lugens and also Drosophila melanogaster. Together, our research reveals elevated temperatures negatively impact insect-bacterial symbiosis, triggering adverse consequences on host response to insecticide (imidacloprid) and potentially other xenobiotics.
Collapse
|
46
|
Chen H, Wang M, Zhang H, Wang H, Zhou L, Zhong Z, Cao L, Lian C, Sun Y, Li C. microRNAs facilitate comprehensive responses of Bathymodiolinae mussel against symbiotic and nonsymbiotic bacteria stimulation. FISH & SHELLFISH IMMUNOLOGY 2021; 119:420-431. [PMID: 34687882 DOI: 10.1016/j.fsi.2021.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/08/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Bathymodiolinae mussels are dominant species in cold seeps and hydrothermal vents and could harbor endosymbionts in gill bacteriocytes. However, mechanisms underlying the symbiosis have remained largely undisclosed for years. In the present study, the global expression pattern of immune-related genes and miRNAs were surveyed in Gigantidas platifrons during bacterial challenges using enriched symbiotic methane oxidation bacteria MOBs or nonsymbiotic Vibrio. As a result, multiple pattern recognition receptors were found differentially expressed at 12 h and 24 h post bacteria challenges and distinctly clustered between stimulations. Dozens of immune effectors along with signal transducers were also modulated simultaneously during MOB or Vibrio challenge. A total of 459 miRNAs were identified in the gill while some were differentially expressed post MOB or nonsymbiotic bacteria challenge. A variety of immune-related genes were annotated as target genes of aforesaid differentially expressed miRNAs. As a result, biological processes including the immune recognition, lysosome activity and bacteria engulfment were suggested to be dynamically modulated by miRNAs in either symbiotic or nonsymbiotic bacteria challenge. It was suggested that G. platifrons mussels could maintain a robust immune response against invading pathogens while establishing symbiosis with chemosynthetic bacteria with the orchestra of immune-related genes and miRNAs.
Collapse
Affiliation(s)
- Hao Chen
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Minxiao Wang
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Huan Zhang
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hao Wang
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Li Zhou
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Lei Cao
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chao Lian
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yan Sun
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 10049, China.
| |
Collapse
|
47
|
Whittle M, Barreaux AMG, Bonsall MB, Ponton F, English S. Insect-host control of obligate, intracellular symbiont density. Proc Biol Sci 2021; 288:20211993. [PMID: 34814751 PMCID: PMC8611330 DOI: 10.1098/rspb.2021.1993] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Many insects rely on intracellular bacterial symbionts to supplement their specialized diets with micronutrients. Using data from diverse and well-studied insect systems, we propose three lines of evidence suggesting that hosts have tight control over the density of their obligate, intracellular bacterial partners. First, empirical studies have demonstrated that the within-host symbiont density varies depending on the nutritional and developmental requirements of the host. Second, symbiont genomes are highly reduced and have limited capacity for self-replication or transcriptional regulation. Third, several mechanisms exist for hosts to tolerate, regulate and remove symbionts including physical compartmentalization and autophagy. We then consider whether such regulation is adaptive, by discussing the relationship between symbiont density and host fitness. We discuss current limitations of empirical studies for exploring fitness effects in host-symbiont relationships, and emphasize the potential for using mathematical models to formalize evolutionary hypotheses and to generate testable predictions for future work.
Collapse
Affiliation(s)
- Mathilda Whittle
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Michael B. Bonsall
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
- St Peter's College, Oxford, OX1 2DL
| | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
48
|
Vostinar AE, Skocelas KG, Lalejini A, Zaman L. Symbiosis in Digital Evolution: Past, Present, and Future. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.739047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Symbiosis, the living together of unlike organisms as symbionts, is ubiquitous in the natural world. Symbioses occur within and across all scales of life, from microbial to macro-faunal systems. Further, the interactions between symbionts are multimodal in both strength and type, can span from parasitic to mutualistic within one partnership, and persist over generations. Studying the ecological and evolutionary dynamics of symbiosis in natural or laboratory systems poses a wide range of challenges, including the long time scales at which symbioses evolve de novo, the limited capacity to experimentally control symbiotic interactions, the weak resolution at which we can quantify interactions, and the idiosyncrasies of current model systems. These issues are especially challenging when seeking to understand the ecological effects and evolutionary pressures on and of a symbiosis, such as how a symbiosis may shift between parasitic and mutualistic modes and how that shift impacts the dynamics of the partner population. In digital evolution, populations of computational organisms compete, mutate, and evolve in a virtual environment. Digital evolution features perfect data tracking and allows for experimental manipulations that are impractical or impossible in natural systems. Furthermore, modern computational power allows experimenters to observe thousands of generations of evolution in minutes (as opposed to several months or years), which greatly expands the range of possible studies. As such, digital evolution is poised to become a keystone technique in our methodological repertoire for studying the ecological and evolutionary dynamics of symbioses. Here, we review how digital evolution has been used to study symbiosis, and we propose a series of open questions that digital evolution is well-positioned to answer.
Collapse
|
49
|
Maire J, Blackall LL, van Oppen MJH. Intracellular Bacterial Symbionts in Corals: Challenges and Future Directions. Microorganisms 2021; 9:2209. [PMID: 34835335 PMCID: PMC8619543 DOI: 10.3390/microorganisms9112209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
Corals are the main primary producers of coral reefs and build the three-dimensional reef structure that provides habitat to more than 25% of all marine eukaryotes. They harbor a complex consortium of microorganisms, including bacteria, archaea, fungi, viruses, and protists, which they rely on for their survival. The symbiosis between corals and bacteria is poorly studied, and their symbiotic relationships with intracellular bacteria are only just beginning to be acknowledged. In this review, we emphasize the importance of characterizing intracellular bacteria associated with corals and explore how successful approaches used to study such microorganisms in other systems could be adapted for research on corals. We propose a framework for the description, identification, and functional characterization of coral-associated intracellular bacterial symbionts. Finally, we highlight the possible value of intracellular bacteria in microbiome manipulation and mitigating coral bleaching.
Collapse
Affiliation(s)
- Justin Maire
- School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (L.L.B.); (M.J.H.v.O.)
| | - Linda L. Blackall
- School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (L.L.B.); (M.J.H.v.O.)
| | - Madeleine J. H. van Oppen
- School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (L.L.B.); (M.J.H.v.O.)
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| |
Collapse
|
50
|
Deng Y, Huang H, Lei F, Fu S, Zou K, Zhang S, Liu X, Jiang L, Liu H, Miao B, Liang Y. Endophytic Bacterial Communities of Ginkgo biloba Leaves During Leaf Developmental Period. Front Microbiol 2021; 12:698703. [PMID: 34671323 PMCID: PMC8521191 DOI: 10.3389/fmicb.2021.698703] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/06/2021] [Indexed: 11/23/2022] Open
Abstract
Plant-specialized secondary metabolites have ecological functions in mediating interactions between plants and their entophytes. In this study, high-throughput gene sequencing was used to analyze the composition and abundance of bacteria from Ginkgo leaves at five different sampling times. The results indicated that the bacterial community structure varied during leaf developmental stage. Bacterial diversity was observed to be the highest at T2 stage and the lowest at T1 stage. Proteobacteria, Firmicutes, Actinobacteria, Chloroflexi, Cyanobacteria, and Bacteroidetes were found as the dominant phyla. The major genera also showed consistency across sampling times, but there was a significant variation in their abundance, such as Bacillus, Lysinibacillus, and Staphylococcus. Significant correlations were observed between endophytic bacteria and flavonoids. Especially, Staphylococcus showed a significant positive correlation with quercetin, and changes in the abundance of Staphylococcus also showed a strong correlation with flavonoid content. In order to determine the effect of flavonoids on endophytic bacteria of Ginkgo leaves, an extracorporeal culture of related strains (a strain of Staphylococcus and a strain of Deinococcus) was performed, and it was found that the effect of flavonoids on them remained consistent. The predicted result of Tax4Fun2 revealed that flavonoids might lead to a lower abundance of endophytic microorganisms, which further proved the correlation between bacterial communities and flavonoids. This study provided the first insight into the bacterial community composition during the development of Ginkgo leaves and the correlation between the endophytic bacteria and flavonoids.
Collapse
Affiliation(s)
- Yan Deng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Haonan Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Fangying Lei
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Shaodong Fu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Kai Zou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Shuangfei Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Bo Miao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| |
Collapse
|