1
|
Ghosh P, Chakraborty J. Exploring the role of symbiotic modifier peptidases in the legume - rhizobium symbiosis. Arch Microbiol 2024; 206:147. [PMID: 38462552 DOI: 10.1007/s00203-024-03920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Legumes can establish a mutual association with soil-derived nitrogen-fixing bacteria called 'rhizobia' forming lateral root organs called root nodules. Rhizobia inside the root nodules get transformed into 'bacteroids' that can fix atmospheric nitrogen to ammonia for host plants in return for nutrients and shelter. A substantial 200 million tons of nitrogen is fixed annually through biological nitrogen fixation. Consequently, the symbiotic mechanism of nitrogen fixation is utilized worldwide for sustainable agriculture and plays a crucial role in the Earth's ecosystem. The development of effective nitrogen-fixing symbiosis between legumes and rhizobia is very specialized and requires coordinated signaling. A plethora of plant-derived nodule-specific cysteine-rich (NCR or NCR-like) peptides get actively involved in this complex and tightly regulated signaling process of symbiosis between some legumes of the IRLC (Inverted Repeat-Lacking Clade) and Dalbergioid clades and nitrogen-fixing rhizobia. Recent progress has been made in identifying two such peptidases that actively prevent bacterial differentiation, leading to symbiotic incompatibility. In this review, we outlined the functions of NCRs and two nitrogen-fixing blocking peptidases: HrrP (host range restriction peptidase) and SapA (symbiosis-associated peptidase A). SapA was identified through an overexpression screen from the Sinorhizobium meliloti 1021 core genome, whereas HrrP is inherited extra-chromosomally. Interestingly, both peptidases affect the symbiotic outcome by degrading the NCR peptides generated from the host plants. These NCR-degrading peptidases can shed light on symbiotic incompatibility, helping to elucidate the reasons behind the inefficiency of nitrogen fixation observed in certain groups of rhizobia with specific legumes.
Collapse
Affiliation(s)
- Prithwi Ghosh
- Department of Botany, Narajole Raj College, Vidyasagar University, Midnapore, 721211, India.
| | - Joydeep Chakraborty
- School of Plant Sciences and Food Security, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
2
|
Illuminating the signalomics of microbial biofilm on plant surfaces. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Mendoza-Suárez M, Andersen SU, Poole PS, Sánchez-Cañizares C. Competition, Nodule Occupancy, and Persistence of Inoculant Strains: Key Factors in the Rhizobium-Legume Symbioses. FRONTIERS IN PLANT SCIENCE 2021; 12:690567. [PMID: 34489993 PMCID: PMC8416774 DOI: 10.3389/fpls.2021.690567] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/19/2021] [Indexed: 05/06/2023]
Abstract
Biological nitrogen fixation by Rhizobium-legume symbioses represents an environmentally friendly and inexpensive alternative to the use of chemical nitrogen fertilizers in legume crops. Rhizobial inoculants, applied frequently as biofertilizers, play an important role in sustainable agriculture. However, inoculants often fail to compete for nodule occupancy against native rhizobia with inferior nitrogen-fixing abilities, resulting in low yields. Strains with excellent performance under controlled conditions are typically selected as inoculants, but the rates of nodule occupancy compared to native strains are rarely investigated. Lack of persistence in the field after agricultural cycles, usually due to the transfer of symbiotic genes from the inoculant strain to naturalized populations, also limits the suitability of commercial inoculants. When rhizobial inoculants are based on native strains with a high nitrogen fixation ability, they often have superior performance in the field due to their genetic adaptations to the local environment. Therefore, knowledge from laboratory studies assessing competition and understanding how diverse strains of rhizobia behave, together with assays done under field conditions, may allow us to exploit the effectiveness of native populations selected as elite strains and to breed specific host cultivar-rhizobial strain combinations. Here, we review current knowledge at the molecular level on competition for nodulation and the advances in molecular tools for assessing competitiveness. We then describe ongoing approaches for inoculant development based on native strains and emphasize future perspectives and applications using a multidisciplinary approach to ensure optimal performance of both symbiotic partners.
Collapse
Affiliation(s)
| | - Stig U. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Philip S. Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
4
|
Sinorhizobium meliloti Functions Required for Resistance to Antimicrobial NCR Peptides and Bacteroid Differentiation. mBio 2021; 12:e0089521. [PMID: 34311575 PMCID: PMC8406287 DOI: 10.1128/mbio.00895-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Legumes of the Medicago genus have a symbiotic relationship with the bacterium Sinorhizobium meliloti and develop root nodules housing large numbers of intracellular symbionts. Members of the nodule-specific cysteine-rich peptide (NCR) family induce the endosymbionts into a terminal differentiated state. Individual cationic NCRs are antimicrobial peptides that have the capacity to kill the symbiont, but the nodule cell environment prevents killing. Moreover, the bacterial broad-specificity peptide uptake transporter BacA and exopolysaccharides contribute to protect the endosymbionts against the toxic activity of NCRs. Here, we show that other S. meliloti functions participate in the protection of the endosymbionts; these include an additional broad-specificity peptide uptake transporter encoded by the yejABEF genes and lipopolysaccharide modifications mediated by lpsB and lpxXL, as well as rpoH1, encoding a stress sigma factor. Strains with mutations in these genes show a strain-specific increased sensitivity profile against a panel of NCRs and form nodules in which bacteroid differentiation is affected. The lpsB mutant nodule bacteria do not differentiate, the lpxXL and rpoH1 mutants form some seemingly fully differentiated bacteroids, although most of the nodule bacteria are undifferentiated, while the yejABEF mutants form hypertrophied but nitrogen-fixing bacteroids. The nodule bacteria of all the mutants have a strongly enhanced membrane permeability, which is dependent on the transport of NCRs to the endosymbionts. Our results suggest that S. meliloti relies on a suite of functions, including peptide transporters, the bacterial envelope structures, and stress response regulators, to resist the aggressive assault of NCR peptides in the nodule cells. IMPORTANCE The nitrogen-fixing symbiosis of legumes with rhizobium bacteria has a predominant ecological role in the nitrogen cycle and has the potential to provide the nitrogen required for plant growth in agriculture. The host plants allow the rhizobia to colonize specific symbiotic organs, the nodules, in large numbers in order to produce sufficient reduced nitrogen for the plants' needs. Some legumes, including Medicago spp., produce massively antimicrobial peptides to keep this large bacterial population in check. These peptides, known as NCRs, have the potential to kill the rhizobia, but in nodules, they rather inhibit the division of the bacteria, which maintain a high nitrogen-fixing activity. In this study, we show that the tempering of the antimicrobial activity of the NCR peptides in the Medicago symbiont Sinorhizobium meliloti is multifactorial and requires the YejABEF peptide transporter, the lipopolysaccharide outer membrane, and the stress response regulator RpoH1.
Collapse
|
5
|
Di Lorenzo F, Speciale I, Silipo A, Alías-Villegas C, Acosta-Jurado S, Rodríguez-Carvajal MÁ, Dardanelli MS, Palmigiano A, Garozzo D, Ruiz-Sainz JE, Molinaro A, Vinardell JM. Structure of the unusual Sinorhizobium fredii HH103 lipopolysaccharide and its role in symbiosis. J Biol Chem 2020; 295:10969-10987. [PMID: 32546484 PMCID: PMC7415993 DOI: 10.1074/jbc.ra120.013393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/11/2020] [Indexed: 11/06/2022] Open
Abstract
Rhizobia are soil bacteria that form important symbiotic associations with legumes, and rhizobial surface polysaccharides, such as K-antigen polysaccharide (KPS) and lipopolysaccharide (LPS), might be important for symbiosis. Previously, we obtained a mutant of Sinorhizobium fredii HH103, rkpA, that does not produce KPS, a homopolysaccharide of a pseudaminic acid derivative, but whose LPS electrophoretic profile was indistinguishable from that of the WT strain. We also previously demonstrated that the HH103 rkpLMNOPQ operon is responsible for 5-acetamido-3,5,7,9-tetradeoxy-7-(3-hydroxybutyramido)-l-glycero-l-manno-nonulosonic acid [Pse5NAc7(3OHBu)] production and is involved in HH103 KPS and LPS biosynthesis and that an HH103 rkpM mutant cannot produce KPS and displays an altered LPS structure. Here, we analyzed the LPS structure of HH103 rkpA, focusing on the carbohydrate portion, and found that it contains a highly heterogeneous lipid A and a peculiar core oligosaccharide composed of an unusually high number of hexuronic acids containing β-configured Pse5NAc7(3OHBu). This pseudaminic acid derivative, in its α-configuration, was the only structural component of the S. fredii HH103 KPS and, to the best of our knowledge, has never been reported from any other rhizobial LPS. We also show that Pse5NAc7(3OHBu) is the complete or partial epitope for a mAb, NB6-228.22, that can recognize the HH103 LPS, but not those of most of the S. fredii strains tested here. We also show that the LPS from HH103 rkpM is identical to that of HH103 rkpA but devoid of any Pse5NAc7(3OHBu) residues. Notably, this rkpM mutant was severely impaired in symbiosis with its host, Macroptilium atropurpureum.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Immacolata Speciale
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | | | | | | | - Marta S Dardanelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto-INBIAS, CONICET, Córdoba, Argentina
| | - Angelo Palmigiano
- Istituto per i Polimeri, Compositi e Biomateriali IPCB, Consiglio Nazionale delle Ricerche, Catania, Italy
| | - Domenico Garozzo
- Istituto per i Polimeri, Compositi e Biomateriali IPCB, Consiglio Nazionale delle Ricerche, Catania, Italy
| | | | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - José-María Vinardell
- Department of Microbiology, Faculty of Biology, University of Seville, Sevilla, Spain
| |
Collapse
|
6
|
Mergaert P. Role of antimicrobial peptides in controlling symbiotic bacterial populations. Nat Prod Rep 2019; 35:336-356. [PMID: 29393944 DOI: 10.1039/c7np00056a] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to 2018 Antimicrobial peptides (AMPs) have been known for well over three decades as crucial mediators of the innate immune response in animals and plants, where they are involved in the killing of infecting microbes. However, AMPs have now also been found to be produced by eukaryotic hosts during symbiotic interactions with bacteria. These symbiotic AMPs target the symbionts and therefore have a more subtle biological role: not eliminating the microbial symbiont population but rather keeping it in check. The arsenal of AMPs and the symbionts' adaptations to resist them are in a careful balance, which contributes to the establishment of the host-microbe homeostasis. Although in many cases the biological roles of symbiotic AMPs remain elusive, for a number of symbiotic interactions, precise functions have been assigned or proposed to the AMPs, which are discussed here. The microbiota living on epithelia in animals, from the most primitive ones to the mammals, are challenged by a cocktail of AMPs that determine the specific composition of the bacterial community as well as its spatial organization. In the symbiosis of legume plants with nitrogen-fixing rhizobium bacteria, the host deploys an extremely large panel of AMPs - called nodule-specific cysteine-rich (NCR) peptides - that drive the bacteria into a terminally differentiated state and manipulate the symbiont physiology to maximize the benefit for the host. The NCR peptides are used as tools to enslave the bacterial symbionts, limiting their reproduction but keeping them metabolically active for nitrogen fixation. In the nutritional symbiotic interactions of insects and protists that have vertically transmitted bacterial symbionts with reduced genomes, symbiotic AMPs could facilitate the integration of the endosymbiont and host metabolism by favouring the flow of metabolites across the symbiont membrane through membrane permeabilization.
Collapse
Affiliation(s)
- P Mergaert
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
7
|
A Bifunctional UDP-Sugar 4-Epimerase Supports Biosynthesis of Multiple Cell Surface Polysaccharides in Sinorhizobium meliloti. J Bacteriol 2019; 201:JB.00801-18. [PMID: 30833352 DOI: 10.1128/jb.00801-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/25/2019] [Indexed: 01/19/2023] Open
Abstract
Sinorhizobium meliloti produces multiple extracellular glycans, including among others, lipopolysaccharides (LPS), and the exopolysaccharides (EPS) succinoglycan (SG) and galactoglucan (GG). These polysaccharides serve cell protective roles. Furthermore, SG and GG promote the interaction of S. meliloti with its host Medicago sativa in root nodule symbiosis. ExoB has been suggested to be the sole enzyme catalyzing synthesis of UDP-galactose in S. meliloti (A. M. Buendia, B. Enenkel, R. Köplin, K. Niehaus, et al. Mol Microbiol 5:1519-1530, 1991, https://doi.org/10.1111/j.1365-2958.1991.tb00799.x). Accordingly, exoB mutants were previously found to be affected in the synthesis of the galactose-containing glycans LPS, SG, and GG and consequently, in symbiosis. Here, we report that the S. meliloti Rm2011 uxs1-uxe-apsS-apsH1-apsE-apsH2 (SMb20458-63) gene cluster directs biosynthesis of an arabinose-containing polysaccharide (APS), which contributes to biofilm formation, and is solely or mainly composed of arabinose. Uxe has previously been identified as UDP-xylose 4-epimerase. Collectively, our data from mutational and overexpression analyses of the APS biosynthesis genes and in vitro enzymatic assays indicate that Uxe functions as UDP-xylose 4- and UDP-glucose 4-epimerase catalyzing UDP-xylose/UDP-arabinose and UDP-glucose/UDP-galactose interconversions, respectively. Overexpression of uxe suppressed the phenotypes of an exoB mutant, evidencing that Uxe can functionally replace ExoB. We suggest that under conditions stimulating expression of the APS biosynthesis operon, Uxe contributes to the synthesis of multiple glycans and thereby to cell protection, biofilm formation, and symbiosis. Furthermore, we show that the C2H2 zinc finger transcriptional regulator MucR counteracts the previously reported CuxR-c-di-GMP-mediated activation of the APS biosynthesis operon. This integrates the c-di-GMP-dependent control of APS production into the opposing regulation of EPS biosynthesis and swimming motility in S. meliloti IMPORTANCE Bacterial extracellular polysaccharides serve important cell protective, structural, and signaling roles. They have particularly attracted attention as adhesives and matrix components promoting biofilm formation, which significantly contributes to resistance against antibiotics. In the root nodule symbiosis between rhizobia and leguminous plants, extracellular polysaccharides have a signaling function. UDP-sugar 4-epimerases are important enzymes in the synthesis of the activated sugar substrates, which are frequently shared between multiple polysaccharide biosynthesis pathways. Thus, these enzymes are potential targets to interfere with these pathways. Our finding of a bifunctional UDP-sugar 4-epimerase in Sinorhizobium meliloti generally advances the knowledge of substrate promiscuity of such enzymes and specifically of the biosynthesis of extracellular polysaccharides involved in biofilm formation and symbiosis in this alphaproteobacterium.
Collapse
|
8
|
Complete Genome Sequence of Sinorhizobium Phage ΦM6, the First Terrestrial Phage of a Marine Phage Group. Microbiol Resour Announc 2018; 7:MRA01143-18. [PMID: 30533689 PMCID: PMC6256558 DOI: 10.1128/mra.01143-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/06/2018] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium phage ΦM6 infects the nitrogen-fixing rhizobial bacterium Sinorhizobium meliloti. ΦM6 most closely resembles marine phages, such as Puniceispirillum phage HMO-2011, rather than previously sequenced rhizobial phages. Sinorhizobium phage ΦM6 infects the nitrogen-fixing rhizobial bacterium Sinorhizobium meliloti. ΦM6 most closely resembles marine phages, such as Puniceispirillum phage HMO-2011, rather than previously sequenced rhizobial phages. The 68,176-bp genome is predicted to encode 121 open reading frames, only 10 of which have similarity to those of otherwise-unrelated Sinorhizobium phages.
Collapse
|
9
|
Sorroche F, Bogino P, Russo DM, Zorreguieta A, Nievas F, Morales GM, Hirsch AM, Giordano W. Cell Autoaggregation, Biofilm Formation, and Plant Attachment in a Sinorhizobium meliloti lpsB Mutant. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1075-1082. [PMID: 30136892 DOI: 10.1094/mpmi-01-18-0004-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacterial surface molecules are crucial for the establishment of a successful rhizobia-legume symbiosis, and, in most bacteria, are also critical for adherence properties, surface colonization, and as a barrier for defense. Rhizobial mutants defective in the production of exopolysaccharides (EPSs), lipopolysaccharides (LPSs), or capsular polysaccharides are usually affected in symbiosis with their plant hosts. In the present study, we evaluated the role of the combined effects of LPS and EPS II in cell-to-cell and cell-to-surface interactions in Sinorhizobium meliloti by studying planktonic cell autoaggregation, biofilm formation, and symbiosis with the host plant Medicago sativa. The lpsB mutant, which has a defective core portion of LPS, exhibited a reduction in biofilm formation on abiotic surfaces as well as altered biofilm architecture compared with the wild-type Rm8530 strain. Atomic force microscopy and confocal laser microscopy revealed an increase in polar cell-to-cell interactions in the lpsB mutant, which might account for the biofilm deficiency. However, a certain level of biofilm development was observed in the lpsB strain compared with the EPS II-defective mutant strains. Autoaggregation experiments carried out with LPS and EPS mutant strains showed that both polysaccharides have an impact on the cell-to-cell adhesive interactions of planktonic bacteria. Although the lpsB mutation and the loss of EPS II production strongly stimulated early attachment to alfalfa roots, the number of nodules induced in M. sativa was not increased. Taken together, this work demonstrates that S. meliloti interactions with biotic and abiotic surfaces depend on the interplay between LPS and EPS II.
Collapse
Affiliation(s)
- Fernando Sorroche
- 1 Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Pablo Bogino
- 1 Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Daniela M Russo
- 2 Fundación Instituto Leloir and IIBBA CONICET, Buenos Aires, Argentina
| | | | - Fiorela Nievas
- 1 Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Gustavo M Morales
- 3 Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina; and
| | - Ann M Hirsch
- 4 Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California-Los Angeles, U.S.A
| | - Walter Giordano
- 1 Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
10
|
Novel Genes and Regulators That Influence Production of Cell Surface Exopolysaccharides in Sinorhizobium meliloti. J Bacteriol 2018; 200:JB.00501-17. [PMID: 29158240 DOI: 10.1128/jb.00501-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/10/2017] [Indexed: 12/21/2022] Open
Abstract
Sinorhizobium meliloti is a soil-dwelling alphaproteobacterium that engages in a nitrogen-fixing root nodule symbiosis with leguminous plants. Cell surface polysaccharides are important both for adapting to stresses in the soil and for the development of an effective symbiotic interaction. Among the polysaccharides characterized to date, the acidic exopolysaccharides I (EPS-I; succinoglycan) and II (EPS-II; galactoglucan) are particularly important for protection from abiotic stresses, biofilm formation, root colonization, and infection of plant roots. Previous genetic screens discovered mutants with impaired EPS production, allowing the delineation of EPS biosynthetic pathways. Here we report on a genetic screen to isolate mutants with mucoid colonial morphologies that suggest EPS overproduction. Screening with Tn5-110, which allows the recovery of both null and upregulation mutants, yielded 47 mucoid mutants, most of which overproduce EPS-I; among the 30 unique genes and intergenic regions identified, 14 have not been associated with EPS production previously. We identified a new protein-coding gene, emmD, which may be involved in the regulation of EPS-I production as part of the EmmABC three-component regulatory circuit. We also identified a mutant defective in EPS-I production, motility, and symbiosis, where Tn5-110 was not responsible for the mutant phenotypes; these phenotypes result from a missense mutation in rpoA corresponding to the domain of the RNA polymerase alpha subunit known to interact with transcription regulators.IMPORTANCE The alphaproteobacterium Sinorhizobium meliloti converts dinitrogen to ammonium while inhabiting specialized plant organs termed root nodules. The transformation of S. meliloti from a free-living soil bacterium to a nitrogen-fixing plant symbiont is a complex developmental process requiring close interaction between the two partners. As the interface between the bacterium and its environment, the S. meliloti cell surface plays a critical role in adaptation to varied soil environments and in interaction with plant hosts. We isolated and characterized S. meliloti mutants with increased production of exopolysaccharides, key cell surface components. Our diverse set of mutants suggests roles for exopolysaccharide production in growth, metabolism, cell division, envelope homeostasis, biofilm formation, stress response, motility, and symbiosis.
Collapse
|
11
|
Johnson MC, Sena-Velez M, Washburn BK, Platt GN, Lu S, Brewer TE, Lynn JS, Stroupe ME, Jones KM. Structure, proteome and genome of Sinorhizobium meliloti phage ΦM5: A virus with LUZ24-like morphology and a highly mosaic genome. J Struct Biol 2017; 200:343-359. [DOI: 10.1016/j.jsb.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/24/2017] [Accepted: 08/21/2017] [Indexed: 11/26/2022]
|
12
|
Genome-Wide Sensitivity Analysis of the Microsymbiont Sinorhizobium meliloti to Symbiotically Important, Defensin-Like Host Peptides. mBio 2017; 8:mBio.01060-17. [PMID: 28765224 PMCID: PMC5539429 DOI: 10.1128/mbio.01060-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The model legume species Medicago truncatula expresses more than 700 nodule-specific cysteine-rich (NCR) signaling peptides that mediate the differentiation of Sinorhizobium meliloti bacteria into nitrogen-fixing bacteroids. NCR peptides are essential for a successful symbiosis in legume plants of the inverted-repeat-lacking clade (IRLC) and show similarity to mammalian defensins. In addition to signaling functions, many NCR peptides exhibit antimicrobial activity in vitro and in vivo. Bacterial resistance to these antimicrobial activities is likely to be important for symbiosis. However, the mechanisms used by S. meliloti to resist antimicrobial activity of plant peptides are poorly understood. To address this, we applied a global genetic approach using transposon mutagenesis followed by high-throughput sequencing (Tn-seq) to identify S. meliloti genes and pathways that increase or decrease bacterial competitiveness during exposure to the well-studied cationic NCR247 peptide and also to the unrelated model antimicrobial peptide polymyxin B. We identified 78 genes and several diverse pathways whose interruption alters S. meliloti resistance to NCR247. These genes encode the following: (i) cell envelope polysaccharide biosynthesis and modification proteins, (ii) inner and outer membrane proteins, (iii) peptidoglycan (PG) effector proteins, and (iv) non-membrane-associated factors such as transcriptional regulators and ribosome-associated factors. We describe a previously uncharacterized yet highly conserved peptidase, which protects S. meliloti from NCR247 and increases competitiveness during symbiosis. Additionally, we highlight a considerable number of uncharacterized genes that provide the basis for future studies to investigate the molecular basis of symbiotic development as well as chronic pathogenic interactions. Soil rhizobial bacteria enter into an ecologically and economically important symbiotic interaction with legumes, in which they differentiate into physiologically distinct bacteroids that provide essential ammonia to the plant in return for carbon sources. Plant signal peptides are essential and specific to achieve these physiological changes. These peptides show similarity to mammalian defensin peptides which are part of the first line of defense to control invading bacterial populations. A number of these legume peptides are indeed known to possess antimicrobial activity, and so far, only the bacterial BacA protein is known to protect rhizobial bacteria against their antimicrobial action. This study identified numerous additional bacterial factors that mediate protection and belong to diverse biological pathways. Our results significantly contribute to our understanding of the molecular roles of bacterial factors during legume symbioses and, second, provide insights into the mechanisms that pathogenic bacteria may use to resist the antimicrobial effects of defensins during infections.
Collapse
|
13
|
Morphotype of bacteroids in different legumes correlates with the number and type of symbiotic NCR peptides. Proc Natl Acad Sci U S A 2017; 114:5041-5046. [PMID: 28438996 DOI: 10.1073/pnas.1704217114] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In legume nodules, rhizobia differentiate into nitrogen-fixing forms called bacteroids, which are enclosed by a plant membrane in an organelle-like structure called the symbiosome. In the Inverted Repeat-Lacking Clade (IRLC) of legumes, this differentiation is terminal due to irreversible loss of cell division ability and is associated with genome amplification and different morphologies of the bacteroids that can be swollen, elongated, spherical, and elongated-branched, depending on the host plant. In Medicago truncatula, this process is orchestrated by nodule-specific cysteine-rich peptides (NCRs) delivered into developing bacteroids. Here, we identified the predicted NCR proteins in 10 legumes representing different subclades of the IRLC with distinct bacteroid morphotypes. Analysis of their expression and predicted sequences establishes correlations between the composition of the NCR family and the morphotypes of bacteroids. Although NCRs have a single origin, their evolution has followed different routes in individual lineages, and enrichment and diversification of cationic peptides has resulted in the ability to impose major morphological changes on the endosymbionts. The wide range of effects provoked by NCRs such as cell enlargement, membrane alterations and permeabilization, and biofilm and vesicle formation is dependent on the amino acid composition and charge of the peptides. These effects are strongly influenced by the rhizobial surface polysaccharides that affect NCR-induced differentiation and survival of rhizobia in nodule cells.
Collapse
|
14
|
Glyan’ko AK, Ischenko AA. Immunity of a leguminous plant infected by nodular bacteria Rhizobium spp. F.: Review. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817020107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
López-Baena FJ, Ruiz-Sainz JE, Rodríguez-Carvajal MA, Vinardell JM. Bacterial Molecular Signals in the Sinorhizobium fredii-Soybean Symbiosis. Int J Mol Sci 2016; 17:E755. [PMID: 27213334 PMCID: PMC4881576 DOI: 10.3390/ijms17050755] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/20/2022] Open
Abstract
Sinorhizobium (Ensifer) fredii (S. fredii) is a rhizobial species exhibiting a remarkably broad nodulation host-range. Thus, S. fredii is able to effectively nodulate dozens of different legumes, including plants forming determinate nodules, such as the important crops soybean and cowpea, and plants forming indeterminate nodules, such as Glycyrrhiza uralensis and pigeon-pea. This capacity of adaptation to different symbioses makes the study of the molecular signals produced by S. fredii strains of increasing interest since it allows the analysis of their symbiotic role in different types of nodule. In this review, we analyze in depth different S. fredii molecules that act as signals in symbiosis, including nodulation factors, different surface polysaccharides (exopolysaccharides, lipopolysaccharides, cyclic glucans, and K-antigen capsular polysaccharides), and effectors delivered to the interior of the host cells through a symbiotic type 3 secretion system.
Collapse
Affiliation(s)
- Francisco J López-Baena
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida de Reina Mercedes, 6, 41012 Sevilla, Spain.
| | - José E Ruiz-Sainz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida de Reina Mercedes, 6, 41012 Sevilla, Spain.
| | - Miguel A Rodríguez-Carvajal
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González, 1, 41012 Sevilla, Spain.
| | - José M Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida de Reina Mercedes, 6, 41012 Sevilla, Spain.
| |
Collapse
|
16
|
Wakao S, Siarot L, Aono T, Oyaizu H. Effects of alteration in LPS structure in Azorhizobium caulinodans on nodule development. J GEN APPL MICROBIOL 2016; 61:248-54. [PMID: 26782655 DOI: 10.2323/jgam.61.248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The lipopolysaccharide (LPS) of Azorhizobium caulinodans ORS571, which forms N2-fixing nodules on the stems and roots of Sesbania rostrata, is known to be a positive signal required for the progression of nodule formation. In this study, four A. caulinodans mutants producing a variety of defective LPSs were compared. The LPSs of the mutants having Tn5 insertion in the rfaF, rfaD, and rfaE genes were more truncated than the modified LPSs of the oac2 mutants. However, the nodule formation by the rfaF, rfaD, and rfaE mutants was more advanced than that of the oac2 mutant, suggesting that invasion ability depends on the LPS structure. Our hypothesis is that not only the wild-type LPSs but also the altered LPSs of the oac2 mutant may be recognized as signal molecules by plants. The altered LPSs may act as negative signals that halt the symbiotic process, whereas the wild-type LPSs may prevent the halt of the symbiotic process. The more truncated LPSs of the rfaF, rfaD, and rfaE mutants perhaps no longer function as negative signals inducing discontinuation of the symbiotic process, and thus these strains form more advanced nodules than ORS571-oac2.
Collapse
Affiliation(s)
- Seiji Wakao
- Biotechnology Research Center, The University of Tokyo
| | | | | | | |
Collapse
|
17
|
Geddes BA, Oresnik IJ. The Mechanism of Symbiotic Nitrogen Fixation. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-28068-4_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Sinorhizobium meliloti Phage ΦM9 Defines a New Group of T4 Superfamily Phages with Unusual Genomic Features but a Common T=16 Capsid. J Virol 2015; 89:10945-58. [PMID: 26311868 PMCID: PMC4621102 DOI: 10.1128/jvi.01353-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/10/2015] [Indexed: 01/21/2023] Open
Abstract
Relatively little is known about the phages that infect agriculturally important nitrogen-fixing rhizobial bacteria. Here we report the genome and cryo-electron microscopy structure of the Sinorhizobium meliloti-infecting T4 superfamily phage ΦM9. This phage and its close relative Rhizobium phage vB_RleM_P10VF define a new group of T4 superfamily phages. These phages are distinctly different from the recently characterized cyanophage-like S. meliloti phages of the ΦM12 group. Structurally, ΦM9 has a T=16 capsid formed from repeating units of an extended gp23-like subunit that assemble through interactions between one subunit and the adjacent E-loop insertion domain. Though genetically very distant from the cyanophages, the ΦM9 capsid closely resembles that of the T4 superfamily cyanophage Syn9. ΦM9 also has the same T=16 capsid architecture as the very distant phage SPO1 and the herpesviruses. Despite their overall lack of similarity at the genomic and structural levels, ΦM9 and S. meliloti phage ΦM12 have a small number of open reading frames in common that appear to encode structural proteins involved in interaction with the host and which may have been acquired by horizontal transfer. These proteins are predicted to encode tail baseplate proteins, tail fibers, tail fiber assembly proteins, and glycanases that cleave host exopolysaccharide. IMPORTANCE Despite recent advances in the phylogenetic and structural characterization of bacteriophages, only a small number of phages of plant-symbiotic nitrogen-fixing soil bacteria have been studied at the molecular level. The effects of phage predation upon beneficial bacteria that promote plant growth remain poorly characterized. First steps in understanding these soil bacterium-phage dynamics are genetic, molecular, and structural characterizations of these groups of phages. The T4 superfamily phages are among the most complex phages; they have large genomes packaged within an icosahedral head and a long, contractile tail through which the DNA is delivered to host cells. This phylogenetic and structural study of S. meliloti-infecting T4 superfamily phage ΦM9 provides new insight into the diversity of this family. The comparison of structure-related genes in both ΦM9 and S. meliloti-infecting T4 superfamily phage ΦM12, which comes from a completely different lineage of these phages, allows the identification of host infection-related factors.
Collapse
|
19
|
Noh JG, Jeon HE, So JS, Chang WS. Effects of the Bradyrhizobium japonicum waaL (rfaL) Gene on Hydrophobicity, Motility, Stress Tolerance, and Symbiotic Relationship with Soybeans. Int J Mol Sci 2015; 16:16778-91. [PMID: 26213919 PMCID: PMC4581169 DOI: 10.3390/ijms160816778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/16/2015] [Accepted: 07/22/2015] [Indexed: 11/16/2022] Open
Abstract
We cloned and sequenced the waaL (rfaL) gene from Bradyrhizobium japonicum, which infects soybean and forms nitrogen-fixing nodules on soybean roots. waaL has been extensively studied in the lipopolysaccharide (LPS) biosynthesis of enteric bacteria, but little is known about its function in (brady)rhizobial LPS architecture. To characterize its role as O-antigen ligase in the LPS biosynthesis pathway, we constructed a waaL knock-out mutant and its complemented strain named JS015 and CS015, respectively. LPS analysis showed that an LPS structure of JS015 is deficient in O-antigen as compared to that of the wild type and complemented strain CS015, suggesting that WaaL ligates the O-antigen to lipid A-core oligosaccharide to form a complete LPS. JS015 also revealed increased cell surface hydrophobicity, but it showed decreased motility in soft agar plates. In addition to the alteration in cell surface properties, disruption of the waaL gene caused increased sensitivity of JS015 to hydrogen peroxide, osmotic pressure, and novobiocin. Specifically, plant tests revealed that JS015 failed to nodulate the host plant soybean, indicating that the rhizobial waaL gene is responsible for the establishment of a symbiotic relationship between soybean and B. japonicum.
Collapse
Affiliation(s)
- Jun-Gu Noh
- Department of Biological Engineering, Inha University, Incheon 402-751, Korea.
| | - Han-Eul Jeon
- Department of Biological Engineering, Inha University, Incheon 402-751, Korea.
| | - Jae-Seong So
- Department of Biological Engineering, Inha University, Incheon 402-751, Korea.
| | - Woo-Suk Chang
- Department of Biology, University of Texas, Arlington, TX 76019, USA.
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752, Korea.
| |
Collapse
|
20
|
Lipopolysaccharide O-chain core region required for cellular cohesion and compaction of in vitro and root biofilms developed by Rhizobium leguminosarum. Appl Environ Microbiol 2014; 81:1013-23. [PMID: 25416773 DOI: 10.1128/aem.03175-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The formation of biofilms is an important survival strategy allowing rhizobia to live on soil particles and plant roots. Within the microcolonies of the biofilm developed by Rhizobium leguminosarum, rhizobial cells interact tightly through lateral and polar connections, forming organized and compact cell aggregates. These microcolonies are embedded in a biofilm matrix, whose main component is the acidic exopolysaccharide (EPS). Our work shows that the O-chain core region of the R. leguminosarum lipopolysaccharide (LPS) (which stretches out of the cell surface) strongly influences bacterial adhesive properties and cell-cell cohesion. Mutants defective in the O chain or O-chain core moiety developed premature microcolonies in which lateral bacterial contacts were greatly reduced. Furthermore, cell-cell interactions within the microcolonies of the LPS mutants were mediated mostly through their poles, resulting in a biofilm with an altered three-dimensional structure and increased thickness. In addition, on the root epidermis and on root hairs, O-antigen core-defective strains showed altered biofilm patterns with the typical microcolony compaction impaired. Taken together, these results indicate that the surface-exposed moiety of the LPS is crucial for proper cell-to-cell interactions and for the formation of robust biofilms on different surfaces.
Collapse
|
21
|
Serrato RV. Lipopolysaccharides in diazotrophic bacteria. Front Cell Infect Microbiol 2014; 4:119. [PMID: 25232535 PMCID: PMC4153317 DOI: 10.3389/fcimb.2014.00119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/14/2014] [Indexed: 01/21/2023] Open
Abstract
Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure.
Collapse
|
22
|
Lee HI, In YH, Jeong SY, Jeon JM, Noh JG, So JS, Chang WS. Inactivation of the lpcC gene alters surface-related properties and symbiotic capability of Bradyrhizobium japonicum. Lett Appl Microbiol 2014; 59:9-16. [PMID: 24521100 DOI: 10.1111/lam.12232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 12/24/2022]
Abstract
UNLABELLED We investigated the role of the Bradyrhizobium japonicum lpcC gene, encoding a mannosyl transferase, involved in the lipopolysaccharide (LPS) biosynthesis. The inactivation of the lpcC gene considerably altered the LPS structure and the cell surface properties. LPS analysis showed that the lpcC mutant JS715 had an abnormal LPS structure deficient in O-antigen. The cell surface hydrophobicity increased approximately threefold in JS715 compared to the wild type. The increased cell surface hydrophobicity is likely to be related with cell aggregation in the mutant culture. For the growth comparison, JS715 showed slower growth rate than the wild type. The motility of JS715 decreased in soft agar plates, but it showed enhanced biofilm-forming ability. Interestingly, JS715 was not able to nodulate the host legume soybean (Glycine max). This study shows not only that lpcC is involved in the biosynthesis of O-antigen in the B. japonicum LPS, but also that inactivation of the lpcC gene affects symbiotic capability of B. japonicum and surface-related properties such as cell hydrophobicity, biofilm formation and motility. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates the role of the B. japonicum lpcC in nodulation with soybean and importance of cell surface hydrophobicity. The results also highlight that intact LPS is required for successful symbiosis between B. japonicum and soybeans. Our findings not only support previous studies emphasizing the necessity of LPS on the interaction between the two symbiotic partners, but also contribute to a better understanding of the symbiotic mechanisms.
Collapse
Affiliation(s)
- H-I Lee
- Department of Biology, University of Texas, Arlington, TX, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Transcriptional regulator LsrB of Sinorhizobium meliloti positively regulates the expression of genes involved in lipopolysaccharide biosynthesis. Appl Environ Microbiol 2014; 80:5265-73. [PMID: 24951786 DOI: 10.1128/aem.01393-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobia induce nitrogen-fixing nodules on host legumes, which is important in agriculture and ecology. Lipopolysaccharide (LPS) produced by rhizobia is required for infection or bacteroid survival in host cells. Genes required for LPS biosynthesis have been identified in several Rhizobium species. However, the regulation of their expression is not well understood. Here, Sinorhizobium meliloti LsrB, a member of the LysR family of transcriptional regulators, was found to be involved in LPS biosynthesis by positively regulating the expression of the lrp3-lpsCDE operon. An lsrB in-frame deletion mutant displayed growth deficiency, sensitivity to the detergent sodium dodecyl sulfate, and acidic pH compared to the parent strain. This mutant produced slightly less LPS due to lower expression of the lrp3 operon. Analysis of the transcriptional start sites of the lrp3 and lpsCDE gene suggested that they constitute one operon. The expression of lsrB was positively autoregulated. The promoter region of lrp3 was specifically precipitated by anti-LsrB antibodies in vivo. The promoter DNA fragment containing TN11A motifs was bound by the purified LsrB protein in vitro. These new findings suggest that S. meliloti LsrB is associated with LPS biosynthesis, which is required for symbiotic nitrogen fixation on some ecotypes of alfalfa plants.
Collapse
|
24
|
Brewer TE, Stroupe ME, Jones KM. The genome, proteome and phylogenetic analysis of Sinorhizobium meliloti phage ΦM12, the founder of a new group of T4-superfamily phages. Virology 2013; 450-451:84-97. [PMID: 24503070 DOI: 10.1016/j.virol.2013.11.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 01/21/2023]
Abstract
Phage ΦM12 is an important transducing phage of the nitrogen-fixing rhizobial bacterium Sinorhizobium meliloti. Here we report the genome, phylogenetic analysis, and proteome of ΦM12, the first report of the genome and proteome of a rhizobium-infecting T4-superfamily phage. The structural genes of ΦM12 are most similar to T4-superfamily phages of cyanobacteria. ΦM12 is the first reported T4-superfamily phage to lack genes encoding class I ribonucleotide reductase (RNR) and exonuclease dexA, and to possess a class II coenzyme B12-dependent RNR. ΦM12's novel collection of genes establishes it as the founder of a new group of T4-superfamily phages, fusing features of cyanophages and phages of enteric bacteria.
Collapse
Affiliation(s)
- Tess E Brewer
- Department of Biological Science, Florida State University, Biology Unit I, 230A, 89 Chieftain Way, Tallahassee, FL 32306-4370, United States
| | - M Elizabeth Stroupe
- Department of Biological Science, Florida State University, Biology Unit I, 230A, 89 Chieftain Way, Tallahassee, FL 32306-4370, United States; Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way Tallahassee, FL 32306-4380 United States
| | - Kathryn M Jones
- Department of Biological Science, Florida State University, Biology Unit I, 230A, 89 Chieftain Way, Tallahassee, FL 32306-4370, United States.
| |
Collapse
|
25
|
Margaret I, Lucas MM, Acosta-Jurado S, Buendía-Clavería AM, Fedorova E, Hidalgo Á, Rodríguez-Carvajal MA, Rodriguez-Navarro DN, Ruiz-Sainz JE, Vinardell JM. The Sinorhizobium fredii HH103 lipopolysaccharide is not only relevant at early soybean nodulation stages but also for symbiosome stability in mature nodules. PLoS One 2013; 8:e74717. [PMID: 24098345 PMCID: PMC3788101 DOI: 10.1371/journal.pone.0074717] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/04/2013] [Indexed: 11/25/2022] Open
Abstract
In this work we have characterised the Sinorhizobium fredii HH103 greA lpsB lpsCDE genetic region and analysed for the first time the symbiotic performance of Sinorhizobium fredii lps mutants on soybean. The organization of the S. fredii HH103 greA, lpsB, and lpsCDE genes was equal to that of Sinorhizobium meliloti 1021. S. fredii HH103 greA, lpsB, and lpsE mutant derivatives produced altered LPS profiles that were characteristic of the gene mutated. In addition, S. fredii HH103 greA mutants showed a reduction in bacterial mobility and an increase of auto-agglutination in liquid cultures. RT-PCR and qPCR experiments demonstrated that the HH103 greA gene has a positive effect on the transcription of lpsB. Soybean plants inoculated with HH103 greA, lpsB or lpsE mutants formed numerous ineffective pseudonodules and showed severe symptoms of nitrogen starvation. However, HH103 greA and lps mutants were also able to induce the formation of a reduced number of soybean nodules of normal external morphology, allowing the possibility of studying the importance of bacterial LPS in later stages of the S. fredii HH103-soybean symbiosis. The infected cells of these nodules showed signs of early termination of symbiosis and lytical clearance of bacteroids. These cells also had very thick walls and accumulation of phenolic-like compounds, pointing to induced defense reactions. Our results show the importance of bacterial LPS in later stages of the S. fredii HH103-soybean symbiosis and their role in preventing host cell defense reactions. S. fredii HH103 lpsB mutants also showed reduced nodulation with Vigna unguiculata, although the symbiotic impairment was less pronounced than in soybean.
Collapse
Affiliation(s)
- Isabel Margaret
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | | | | | | | | | - Ángeles Hidalgo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | | | | | - José E. Ruiz-Sainz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | - José M. Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| |
Collapse
|
26
|
Crook MB, Draper AL, Guillory RJ, Griffitts JS. The Sinorhizobium meliloti essential porin RopA1 is a target for numerous bacteriophages. J Bacteriol 2013; 195:3663-71. [PMID: 23749981 PMCID: PMC3754576 DOI: 10.1128/jb.00480-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/05/2013] [Indexed: 01/21/2023] Open
Abstract
The symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti harbors a gene, SMc02396, which encodes a predicted outer membrane porin that is conserved in many symbiotic and pathogenic bacteria in the order Rhizobiales. Here, this gene (renamed ropA1) is shown to be required for infection by two commonly utilized transducing bacteriophages (ΦM12 and N3). Mapping of S. meliloti mutations conferring resistance to ΦM12, N3, or both phages simultaneously revealed diverse mutations mapping within the ropA1 open reading frame. Subsequent tests determined that RopA1, lipopolysaccharide, or both are required for infection by all of a larger collection of Sinorhizobium-specific phages. Failed attempts to disrupt or delete ropA1 suggest that this gene is essential for viability. Phylogenetic analysis reveals that ropA1 homologs in many Rhizobiales species are often found as two genetically linked copies and that the intraspecies duplicates are always more closely related to each other than to homologs in other species, suggesting multiple independent duplication events.
Collapse
Affiliation(s)
- Matthew B Crook
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | | | | | | |
Collapse
|
27
|
Bogino PC, de las Mercedes Oliva M, Sorroche FG, Giordano W. The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 2013; 14:15838-59. [PMID: 23903045 PMCID: PMC3759889 DOI: 10.3390/ijms140815838] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/18/2013] [Accepted: 06/28/2013] [Indexed: 01/09/2023] Open
Abstract
The role of bacterial surface components in combination with bacterial functional signals in the process of biofilm formation has been increasingly studied in recent years. Plants support a diverse array of bacteria on or in their roots, transport vessels, stems, and leaves. These plant-associated bacteria have important effects on plant health and productivity. Biofilm formation on plants is associated with symbiotic and pathogenic responses, but how plants regulate such associations is unclear. Certain bacteria in biofilm matrices have been found to induce plant growth and to protect plants from phytopathogens (a process termed biocontrol), whereas others are involved in pathogenesis. In this review, we systematically describe the various components and mechanisms involved in bacterial biofilm formation and attachment to plant surfaces and the relationships of these mechanisms to bacterial activity and survival.
Collapse
Affiliation(s)
- Pablo C. Bogino
- Department of Molecular Biology, National University of Río Cuarto, Ruta 36 Km 601, Río Cuarto, Córdoba X5804BYA, Argentina; E-Mails: (P.C.B.); (F.G.S.)
| | - María de las Mercedes Oliva
- Department of Microbiology and Immunology, National University of Río Cuarto, Ruta 36 Km 601, Córdoba X5804BYA, Argentina; E-Mail:
| | - Fernando G. Sorroche
- Department of Molecular Biology, National University of Río Cuarto, Ruta 36 Km 601, Río Cuarto, Córdoba X5804BYA, Argentina; E-Mails: (P.C.B.); (F.G.S.)
| | - Walter Giordano
- Department of Molecular Biology, National University of Río Cuarto, Ruta 36 Km 601, Río Cuarto, Córdoba X5804BYA, Argentina; E-Mails: (P.C.B.); (F.G.S.)
| |
Collapse
|
28
|
Tang G, Lu D, Wang D, Luo L. Sinorhizobium meliloti lsrB is involved in alfalfa root nodule development and nitrogen-fixing bacteroid differentiation. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5960-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Haag AF, Arnold MFF, Myka KK, Kerscher B, Dall'Angelo S, Zanda M, Mergaert P, Ferguson GP. Molecular insights into bacteroid development duringRhizobium–legume symbiosis. FEMS Microbiol Rev 2013; 37:364-83. [DOI: 10.1111/1574-6976.12003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 01/09/2023] Open
|
30
|
Haag AF, Arnold MFF, Myka KK, Kerscher B, Dall'Angelo S, Zanda M, Mergaert P, Ferguson GP. Molecular insights into bacteroid development duringRhizobium-legume symbiosis. FEMS Microbiol Rev 2012. [DOI: 10.1111/1574-6976.2012.12003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Andreas F. Haag
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | - Markus F. F. Arnold
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | - Kamila K. Myka
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | - Bernhard Kerscher
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | - Sergio Dall'Angelo
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | | | - Peter Mergaert
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique; Gif-sur-Yvette Cedex; France
| | - Gail P. Ferguson
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| |
Collapse
|
31
|
Abstract
Sinorhizobium meliloti ExoR regulates the production of succinoglycan and flagella through the ExoS/ChvI two-component regulatory system. ExoR has been proposed to inhibit the ExoS sensor through direct interaction in the periplasm. To understand how ExoR suppression of ExoS is relieved, which is required for the expression of ExoS/ChvI-regulated symbiosis genes, we characterized wild-type ExoR and ExoR95 mutant proteins. In addition to the previously identified precursor and mature forms of ExoR (designated ExoR(p) and ExoR(m), respectively), we detected a 20-kDa form of ExoR (designated ExoR(c20)) derived from the wild-type ExoR protein, but not from the ExoR95 mutant protein. ExoR(c20) was isolated directly from S. meliloti periplasm to identify its N-terminal amino acids and the site of the proteolysis, which is highly conserved among ExoR homologs. ExoR(c20) retains the C terminus of the wild-type ExoR. When expressed directly, ExoR(c20) did not complement the exoR95 mutation, suggesting that ExoR(c20) does not function directly in the ExoR-ExoS/ChvI regulatory pathway and that ExoR(m) is the functional form of ExoR. A single-amino-acid change (ExoRL81A) at the site of ExoR periplasmic proteolysis resulted in the reduction of the amount of ExoR(m) and the loss of the regulatory function of the ExoR protein. These findings suggest that ExoR(m) is a target of periplasmic proteolysis and that the amount of ExoR(m) could be reduced through effective proteolysis to relieve its suppression of ExoS.
Collapse
|
32
|
A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Appl Environ Microbiol 2012; 78:4092-101. [PMID: 22492433 DOI: 10.1128/aem.07826-11] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodule formation on roots of alfalfa plants. S. meliloti produces two exopolysaccharides (EPSs), termed EPS I and EPS II, that are both able to promote symbiosis. EPS I and EPS II are secreted in two major fractions that reflect differing degrees of subunit polymerization, designated high- and low-molecular-weight fractions. We reported previously that EPSs are crucial for autoaggregation and biofilm formation in S. meliloti reference strains and isogenic mutants. However, the previous observations were obtained by use of "domesticated" laboratory strains, with mutations resulting from successive passages under unnatural conditions, as has been documented for reference strain Rm1021. In the present study, we analyzed the autoaggregation and biofilm formation abilities of native S. meliloti strains isolated from root nodules of alfalfa plants grown in four regions of Argentina. 16S rRNA gene analysis of all the native isolates revealed a high degree of identity with reference S. meliloti strains. PCR analysis of the expR gene of all the isolates showed that, as in the case of reference strain Rm8530, this gene is not interrupted by an insertion sequence (IS) element. A positive correlation was found between autoaggregation and biofilm formation abilities in these rhizobia, indicating that both processes depend on the same physical adhesive forces. Extracellular complementation experiments using mutants of the native strains showed that autoaggregation was dependent on EPS II production. Our results indicate that a functional EPS II synthetic pathway and its proper regulation are essential for cell-cell interactions and surface attachment of S. meliloti.
Collapse
|
33
|
Vanderlinde EM, Yost CK. Mutation of the sensor kinase chvG in Rhizobium leguminosarum negatively impacts cellular metabolism, outer membrane stability, and symbiosis. J Bacteriol 2012; 194:768-77. [PMID: 22155778 PMCID: PMC3272964 DOI: 10.1128/jb.06357-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/01/2011] [Indexed: 11/20/2022] Open
Abstract
Two-component signal transduction systems (TCS) are a main strategy used by bacteria to sense and adapt to changes in their environment. In the legume symbiont Rhizobium leguminosarum biovar viciae VF39, mutation of chvG, a histidine kinase, caused a number of pleiotropic phenotypes. ChvG mutants are unable to grow on proline, glutamate, histidine, or arginine as the sole carbon source. The chvG mutant secreted smaller amounts of acidic and neutral surface polysaccharides and accumulated abnormally large amounts of poly-ß-hydroxybutyrate. Mutation of chvG caused symbiotic defects on peas, lentils, and vetch; nodules formed by the chvG mutant were small and white and contained only a few cells that had failed to differentiate into bacteroids. Mutation of chvG also destabilized the outer membrane of R. leguminosarum, resulting in increased sensitivity to membrane stressors. Constitutive expression of ropB, the outer membrane protein-encoding gene, restored membrane stability and rescued the sensitivity phenotypes described above. Similar phenotypes have been described for mutations in other ChvG-regulated genes encoding a conserved operon of unknown function and in the fabXL genes required for synthesis of the lipid A very-long-chain fatty acid, suggesting that ChvG is a key component of the envelope stress response in Rhizobium leguminosarum. Collectively, the results of this study demonstrate the important and unique role the ChvG/ChvI TCS plays in the physiology, metabolism, and symbiotic competency of R. leguminosarum.
Collapse
|
34
|
Ardissone S, Noel KD, Klement M, Broughton WJ, Deakin WJ. Synthesis of the flavonoid-induced lipopolysaccharide of Rhizobium Sp. strain NGR234 requires rhamnosyl transferases encoded by genes rgpF and wbgA. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1513-1521. [PMID: 22066901 DOI: 10.1094/mpmi-05-11-0143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In the presence of flavonoids, Rhizobium sp. strain NGR234 synthesizes a new lipopolysaccharide (LPS), characterized by a rhamnan O-antigen. The presence of this rhamnose-rich LPS is important for the establishment of competent symbiotic interactions between NGR234 and many species of leguminous plants. Two putative rhamnosyl transferases are encoded in a cluster of genes previously shown to be necessary for the synthesis of the rhamnose-rich LPS. These two genes, wbgA and rgpF, were mutated. The resulting mutant strains synthesized truncated rough LPS species rather than the wild-type rhamnose-rich LPS when grown with flavonoids. Based on the compositions of these purified mutant LPS species, we inferred that RgpF is responsible for adding the first one to three rhamnose residues to the flavonoid-induced LPS, whereas WbgA is necessary for the synthesis of the rest of the rhamnan O-antigen. The NGR234 homologue of lpsB, which, in other bacteria, encodes a glycosyl transferase acting early in synthesis of the core portion of LPS, was identified and also mutated. LpsB was required for all the LPS species produced by NGR234, in the presence or absence of flavonoids. Mutants (i.e., of lpsB and rgpF) that lacked any portion of the rhamnan O-antigen of the induced LPS were severely affected in their symbiotic interaction with Vigna unguiculata, whereas the NGR?wbgA mutant, although having very few rhamnose residues in its LPS, was able to elicit functional nodules.
Collapse
|
35
|
Kereszt A, Mergaert P, Kondorosi E. Bacteroid development in legume nodules: evolution of mutual benefit or of sacrificial victims? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1300-9. [PMID: 21995798 DOI: 10.1094/mpmi-06-11-0152] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Symbiosomes are organelle-like structures in the cytoplasm of legume nodule cells which are composed of the special, nitrogen-fixing forms of rhizobia called bacteroids, the peribacteroid space and the enveloping peribacteroid membrane of plant origin. The formation of these symbiosomes requires a complex and coordinated interaction between the two partners during all stages of nodule development as any failure in the differentiation of either symbiotic partner, the bacterium or the plant cell prevents the subsequent transcriptional and developmental steps resulting in early senescence of the nodules. Certain legume hosts impose irreversible terminal differentiation onto bacteria. In the inverted repeat-lacking clade (IRLC) of legumes, host dominance is achieved by nodule-specific cysteine-rich peptides that resemble defensin-like antimicrobial peptides, the known effector molecules of animal and plant innate immunity. This article provides an overview on the bacteroid and symbiosome development including the terminal differentiation of bacteria in IRLC legumes as well as the bacterial and plant genes and proteins participating in these processes.
Collapse
|
36
|
Kucho KI, Hay AE, Normand P. The determinants of the actinorhizal symbiosis. Microbes Environ 2011; 25:241-52. [PMID: 21576879 DOI: 10.1264/jsme2.me10143] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The actinorhizal symbiosis is a major contributor to the global nitrogen budget, playing a dominant role in ecological successions following disturbances. The mechanisms involved are still poorly known but there emerges the vision that on the plant side, the kinases that transmit the symbiotic signal are conserved with those involved in the transmission of the Rhizobium Nod signal in legumes. However, on the microbial side, complementation with Frankia DNA of Rhizobium nod mutants failed to permit identification of symbiotic genes. Furthermore, analysis of three Frankia genomes failed to permit identification of canonical nod genes and revealed symbiosis-associated genes such as nif, hup, suf and shc to be spread around the genomes. The present review explores some recently published approaches aimed at identifying bacterial symbiotic determinants.
Collapse
Affiliation(s)
- Ken-Ichi Kucho
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima UniversityKorimoto1–21–35, Kagoshima 890–0065, Japan
| | | | | |
Collapse
|
37
|
Haag AF, Wehmeier S, Muszyński A, Kerscher B, Fletcher V, Berry SH, Hold GL, Carlson RW, Ferguson GP. Biochemical characterization of Sinorhizobium meliloti mutants reveals gene products involved in the biosynthesis of the unusual lipid A very long-chain fatty acid. J Biol Chem 2011; 286:17455-66. [PMID: 21454518 PMCID: PMC3093819 DOI: 10.1074/jbc.m111.236356] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 03/25/2011] [Indexed: 11/06/2022] Open
Abstract
Sinorhizobium meliloti forms a symbiosis with the legume alfalfa, whereby it differentiates into a nitrogen-fixing bacteroid. The lipid A species of S. meliloti are modified with very long-chain fatty acids (VLCFAs), which play a central role in bacteroid development. A six-gene cluster was hypothesized to be essential for the biosynthesis of VLCFA-modified lipid A. Previously, two cluster gene products, AcpXL and LpxXL, were found to be essential for S. meliloti lipid A VLCFA biosynthesis. In this paper, we show that the remaining four cluster genes are all involved in lipid A VLCFA biosynthesis. Therefore, we have identified novel gene products involved in the biosynthesis of these unusual lipid modifications. By physiological characterization of the cluster mutant strains, we demonstrate the importance of this gene cluster in the legume symbiosis and for growth in the absence of salt. Bacterial LPS species modified with VLCFAs are substantially less immunogenic than Escherichia coli LPS species, which lack VLCFAs. However, we show that the VLCFA modifications do not suppress the immunogenicity of S. meliloti LPS or affect the ability of S. meliloti to induce fluorescent plant defense molecules within the legume. Because VLCFA-modified lipids are produced by other rhizobia and mammalian pathogens, these findings will also be important in understanding the function and biosynthesis of these unusual fatty acids in diverse bacterial species.
Collapse
Affiliation(s)
- Andreas F. Haag
- From the School of Medicine and Dentistry, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom and
| | - Silvia Wehmeier
- From the School of Medicine and Dentistry, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom and
| | - Artur Muszyński
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | | | - Vivien Fletcher
- From the School of Medicine and Dentistry, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom and
| | - Susan H. Berry
- From the School of Medicine and Dentistry, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom and
| | - Georgina L. Hold
- From the School of Medicine and Dentistry, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom and
| | - Russell W. Carlson
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Gail P. Ferguson
- From the School of Medicine and Dentistry, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom and
| |
Collapse
|
38
|
Saeki K. Rhizobial measures to evade host defense strategies and endogenous threats to persistent symbiotic nitrogen fixation: a focus on two legume-rhizobium model systems. Cell Mol Life Sci 2011; 68:1327-39. [PMID: 21365276 PMCID: PMC11114668 DOI: 10.1007/s00018-011-0650-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
The establishment and maintenance of rhizobium-legume symbioses require a sequence of highly regulated and coordinated events between the organisms. Although the interaction is mutually beneficial under nitrogen-limited conditions, it can resemble a pathogenic infection at some stages. Some host legumes mount defense reactions, including the production of reactive oxygen species (ROS) and defensin-like antimicrobial compounds. To subvert these host defenses, the infecting rhizobial cells can use measures to passively protect themselves and actively modulate host functions. This review first describes the establishment and maintenance of active nodules, as well as the external and endogenous attack and threat stages. Next, recent studies of ROS scavenging enzymes, the BacA protein originally found in Sinorhizobium meliloti, and the type III/IV secretion systems are discussed, with a focus on two legume-rhizobium model systems.
Collapse
Affiliation(s)
- Kazuhiko Saeki
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Kitauoya Nishimachi, Nara, Japan.
| |
Collapse
|
39
|
Role of BacA in lipopolysaccharide synthesis, peptide transport, and nodulation by Rhizobium sp. strain NGR234. J Bacteriol 2011; 193:2218-28. [PMID: 21357487 DOI: 10.1128/jb.01260-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BacA of Sinorhizobium meliloti plays an essential role in the establishment of nitrogen-fixing symbioses with Medicago plants, where it is involved in peptide import and in the addition of very-long-chain fatty acids (VLCFA) to lipid A of lipopolysaccharide (LPS). We investigated the role of BacA in Rhizobium species strain NGR234 by mutating the bacA gene. In the NGR234 bacA mutant, peptide import was impaired, but no effect on VLCFA addition was observed. More importantly, the symbiotic ability of the mutant was comparable to that of the wild type for a variety of legume species. Concurrently, an acpXL mutant of NGR234 was created and assayed. In rhizobia, AcpXL is a dedicated acyl carrier protein necessary for the addition of VLCFA to lipid A. LPS extracted from the NGR234 mutant lacked VLCFA, and this mutant was severely impaired in the ability to form functional nodules with the majority of legumes tested. Our work demonstrates the importance of VLCFA in the NGR234-legume symbiosis and also shows that the necessity of BacA for bacteroid differentiation is restricted to specific legume-Rhizobium interactions.
Collapse
|
40
|
Mutation of a broadly conserved operon (RL3499-RL3502) from Rhizobium leguminosarum biovar viciae causes defects in cell morphology and envelope integrity. J Bacteriol 2011; 193:2684-94. [PMID: 21357485 DOI: 10.1128/jb.01456-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The bacterial cell envelope is of critical importance to the function and survival of the cell; it acts as a barrier against harmful toxins while allowing the flow of nutrients into the cell. It also serves as a point of physical contact between a bacterial cell and its host. Hence, the cell envelope of Rhizobium leguminosarum is critical to cell survival under both free-living and symbiotic conditions. Transposon mutagenesis of R. leguminosarum strain 3841 followed by a screen to isolate mutants with defective cell envelopes led to the identification of a novel conserved operon (RL3499-RL3502) consisting of a putative moxR-like AAA(+) ATPase, a hypothetical protein with a domain of unknown function (designated domain of unknown function 58), and two hypothetical transmembrane proteins. Mutation of genes within this operon resulted in increased sensitivity to membrane-disruptive agents such as detergents, hydrophobic antibiotics, and alkaline pH. On minimal media, the mutants retain their rod shape but are roughly 3 times larger than the wild type. On media containing glycine or peptides such as yeast extract, the mutants form large, distorted spheres and are incapable of sustained growth under these culture conditions. Expression of the operon is maximal during the stationary phase of growth and is reduced in a chvG mutant, indicating a role for this sensor kinase in regulation of the operon. Our findings provide the first functional insight into these genes of unknown function, suggesting a possible role in cell envelope development in Rhizobium leguminosarum. Given the broad conservation of these genes among the Alphaproteobacteria, the results of this study may also provide insight into the physiological role of these genes in other Alphaproteobacteria, including the animal pathogen Brucella.
Collapse
|
41
|
Naringenin regulates expression of genes involved in cell wall synthesis in Herbaspirillum seropedicae. Appl Environ Microbiol 2011; 77:2180-3. [PMID: 21257805 DOI: 10.1128/aem.02071-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Five thousand mutants of Herbaspirillum seropedicae SmR1 carrying random insertions of transposon pTnMod-OGmKmlacZ were screened for differential expression of LacZ in the presence of naringenin. Among the 16 mutants whose expression was regulated by naringenin were genes predicted to be involved in the synthesis of exopolysaccharides, lipopolysaccharides, and auxin. These loci are probably involved in establishing interactions with host plants.
Collapse
|
42
|
Taga ME, Walker GC. Sinorhizobium meliloti requires a cobalamin-dependent ribonucleotide reductase for symbiosis with its plant host. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1643-54. [PMID: 20698752 PMCID: PMC2979309 DOI: 10.1094/mpmi-07-10-0151] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Vitamin B(12) (cobalamin) is a critical cofactor for animals and protists, yet its biosynthesis is limited to prokaryotes. We previously showed that the symbiotic nitrogen-fixing alphaproteobacterium Sinorhizobium meliloti requires cobalamin to establish a symbiotic relationship with its plant host, Medicago sativa (alfalfa). Here, the specific requirement for cobalamin in the S. meliloti-alfalfa symbiosis was investigated. Of the three known cobalamin-dependent enzymes in S. meliloti, the methylmalonyl CoA mutase (BhbA) does not affect symbiosis, whereas disruption of the metH gene encoding the cobalamin-dependent methionine synthase causes a significant defect in symbiosis. Expression of the cobalamin-independent methionine synthase MetE alleviates this symbiotic defect, indicating that the requirement for methionine synthesis does not reflect a need for the cobalamin-dependent enzyme. To investigate the function of the cobalamin-dependent ribonucleotide reductase (RNR) encoded by nrdJ, S. meliloti was engineered to express an Escherichia coli cobalamin-independent (class Ia) RNR instead of nrdJ. This strain is severely defective in symbiosis. Electron micrographs show that these cells can penetrate alfalfa nodules but are unable to differentiate into nitrogen-fixing bacteroids and, instead, are lysed in the plant cytoplasm. Flow cytometry analysis indicates that these bacteria are largely unable to undergo endoreduplication. These phenotypes may be due either to the inactivation of the class Ia RNR by reactive oxygen species, inadequate oxygen availability in the nodule, or both. These results show that the critical role of the cobalamin-dependent RNR for survival of S. meliloti in its plant host can account for the considerable resources that S. meliloti dedicates to cobalamin biosynthesis.
Collapse
Affiliation(s)
- Michiko E. Taga
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A
| |
Collapse
|
43
|
Gu X, Lee SG, Bar-Peled M. Biosynthesis of UDP-xylose and UDP-arabinose in Sinorhizobium meliloti 1021: first characterization of a bacterial UDP-xylose synthase, and UDP-xylose 4-epimerase. MICROBIOLOGY-SGM 2010; 157:260-269. [PMID: 20847005 PMCID: PMC3068629 DOI: 10.1099/mic.0.040758-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sinorhizobium meliloti is a soil bacterium that fixes nitrogen after being established inside nodules that can form on the roots of several legumes, including Medicago truncatula. A mutation in an S. meliloti gene (lpsB) required for lipopolysaccharide synthesis has been reported to result in defective nodulation and an increase in the synthesis of a xylose-containing glycan. Glycans containing xylose as well as arabinose are also formed by other rhizobial species, but little is known about their structures and the biosynthetic pathways leading to their formation. To gain insight into the biosynthesis of these glycans and their biological roles, we report the identification of an operon in S. meliloti 1021 that contains two genes encoding activities not previously described in bacteria. One gene encodes a UDP-xylose synthase (Uxs) that converts UDP-glucuronic acid to UDP-xylose, and the second encodes a UDP-xylose 4-epimerase (Uxe) that interconverts UDP-xylose and UDP-arabinose. Similar genes were also identified in other rhizobial species, including Rhizobium leguminosarum, suggesting that they have important roles in the life cycle of this agronomically important class of bacteria. Functional studies established that recombinant SmUxs1 is likely to be active as a dimer and is inhibited by NADH and UDP-arabinose. SmUxe is inhibited by UDP-galactose, even though this nucleotide sugar is not a substrate for the 4-epimerase. Unambiguous evidence for the conversions of UDP-glucuronic acid to UDP-α-d-xylose and then to UDP-β-l-arabinose (UDP-arabinopyranose) was obtained using real-time 1H-NMR spectroscopy. Our results provide new information about the ability of rhizobia to form UDP-xylose and UDP-arabinose, which are then used for the synthesis of xylose- and arabinose-containing glycans.
Collapse
Affiliation(s)
- Xiaogang Gu
- Complex Carbohydrate Research Center (CCRC), University of Georgia, Athens, GA 30602, USA
| | - Sung G Lee
- Complex Carbohydrate Research Center (CCRC), University of Georgia, Athens, GA 30602, USA
| | - Maor Bar-Peled
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.,Complex Carbohydrate Research Center (CCRC), University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
44
|
Ingram BO, Sohlenkamp C, Geiger O, Raetz CRH. Altered lipid A structures and polymyxin hypersensitivity of Rhizobium etli mutants lacking the LpxE and LpxF phosphatases. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1801:593-604. [PMID: 20153447 PMCID: PMC2839054 DOI: 10.1016/j.bbalip.2010.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 01/21/2010] [Accepted: 02/01/2010] [Indexed: 01/02/2023]
Abstract
The lipid A of Rhizobium etli, a nitrogen-fixing plant endosymbiont, displays significant structural differences when compared to that of Escherichia coli. An especially striking feature of R. etli lipid A is that it lacks both the 1- and 4'-phosphate groups. The 4'-phosphate moiety of the distal glucosamine unit is replaced with a galacturonic acid residue. The dephosphorylated proximal unit is present as a mixture of the glucosamine hemiacetal and an oxidized 2-aminogluconate derivative. Distinct lipid A phosphatases directed to the 1 or the 4'-positions have been identified previously in extracts of R. etli and Rhizobium leguminosarum. The corresponding structural genes, lpxE and lpxF, respectively, have also been identified. Here, we describe the isolation and characterization of R. etli deletion mutants in each of these phosphatase genes and the construction of a double phosphatase mutant. Mass spectrometry confirmed that the mutant strains completely lacked the wild-type lipid A species and accumulated the expected phosphate-containing derivatives. Moreover, radiochemical analysis revealed that phosphatase activity was absent in membranes prepared from the mutants. Our results indicate that LpxE and LpxF are solely responsible for selectively dephosphorylating the lipid A molecules of R. etli. All the mutant strains showed an increased sensitivity to polymyxin relative to the wild-type. However, despite the presence of altered lipid A species containing one or both phosphate groups, all the phosphatase mutants formed nitrogen-fixing nodules on Phaseolus vulgaris. Therefore, the dephosphorylation of lipid A molecules in R. etli is not required for nodulation but may instead play a role in protecting the bacteria from cationic antimicrobial peptides or other immune responses of plants.
Collapse
Affiliation(s)
- Brian O Ingram
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
45
|
Lee YW, Jeong SY, In YH, Kim KY, So JS, Chang WS. Lack ofO-polysaccharide enhances biofilm formation byBradyrhizobium japonicum. Lett Appl Microbiol 2010; 50:452-6. [DOI: 10.1111/j.1472-765x.2010.02813.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Alloisio N, Queiroux C, Fournier P, Pujic P, Normand P, Vallenet D, Médigue C, Yamaura M, Kakoi K, Kucho KI. The Frankia alni symbiotic transcriptome. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:593-607. [PMID: 20367468 DOI: 10.1094/mpmi-23-5-0593] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The actinobacteria Frankia spp. are able to induce the formation of nodules on the roots of a large spectrum of actinorhizal plants, where they convert dinitrogen to ammonia in exchange for plant photosynthates. In the present study, transcriptional analyses were performed on nitrogen-replete free-living Frankia alni cells and on Alnus glutinosa nodule bacteria, using whole-genome microarrays. Distribution of nodule-induced genes on the genome was found to be mostly over regions with high synteny between three Frankia spp. genomes, while nodule-repressed genes, which were mostly hypothetical and not conserved, were spread around the genome. Genes known to be related to nitrogen fixation were highly induced, nif (nitrogenase), hup2 (hydrogenase uptake), suf (sulfur-iron cluster), and shc (hopanoids synthesis). The expression of genes involved in ammonium assimilation and transport was strongly modified, suggesting that bacteria ammonium assimilation was limited. Genes involved in particular in transcriptional regulation, signaling processes, protein drug export, protein secretion, lipopolysaccharide, and peptidoglycan biosynthesis that may play a role in symbiosis were also identified. We also showed that this Frankia symbiotic transcriptome was highly similar among phylogenetically distant plant families Betulaceae and Myricaceae. Finally, comparison with rhizobia transcriptome suggested that F. alni is metabolically more active in symbiosis than rhizobia.
Collapse
|
47
|
Balsanelli E, Serrato RV, de Baura VA, Sassaki G, Yates MG, Rigo LU, Pedrosa FO, de Souza EM, Monteiro RA. Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization. Environ Microbiol 2010; 12:2233-44. [PMID: 21966916 DOI: 10.1111/j.1462-2920.2010.02187.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In this study we disrupted two Herbaspirillum seropedicae genes, rfbB and rfbC, responsible for rhamnose biosynthesis and its incoporation into LPS. GC-MS analysis of the H. seropedicae wild-type strain LPS oligosaccharide chain showed that rhamnose, glucose and N-acetyl glucosamine are the predominant monosaccharides, whereas rhamnose and N-acetyl glucosamine were not found in the rfbB and rfbC strains. The electrophoretic pattern of the mutants LPS was drastically altered when compared with the wild type. Knockout of rfbB or rfbC increased the sensitivity towards SDS, polymyxin B sulfate and salicylic acid. The mutants attachment capacity to maize root surface plantlets was 100-fold lower than the wild type. Interestingly, the wild-type capacity to attach to maize roots was reduced to a level similar to that of the mutants when the assay was performed in the presence of isolated wild-type LPS, glucosamine or N-acetyl glucosamine. The mutant strains were also significantly less efficient in endophytic colonization of maize. Expression analysis indicated that the rfbB gene is upregulated by naringenin, apigenin and CaCl(2). Together, the results suggest that intact LPS is required for H. seropedicae attachment to maize root and internal colonization of plant tissues.
Collapse
Affiliation(s)
- Eduardo Balsanelli
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Maunoury N, Redondo-Nieto M, Bourcy M, Van de Velde W, Alunni B, Laporte P, Durand P, Agier N, Marisa L, Vaubert D, Delacroix H, Duc G, Ratet P, Aggerbeck L, Kondorosi E, Mergaert P. Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches. PLoS One 2010; 5:e9519. [PMID: 20209049 PMCID: PMC2832008 DOI: 10.1371/journal.pone.0009519] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 02/12/2010] [Indexed: 12/16/2022] Open
Abstract
The legume plant Medicago truncatula establishes a symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti which takes place in root nodules. The formation of nodules employs a complex developmental program involving organogenesis, specific cellular differentiation of the host cells and the endosymbiotic bacteria, called bacteroids, as well as the specific activation of a large number of plant genes. By using a collection of plant and bacterial mutants inducing non-functional, Fix(-) nodules, we studied the differentiation processes of the symbiotic partners together with the nodule transcriptome, with the aim of unravelling links between cell differentiation and transcriptome activation. Two waves of transcriptional reprogramming involving the repression and the massive induction of hundreds of genes were observed during wild-type nodule formation. The dominant features of this "nodule-specific transcriptome" were the repression of plant defense-related genes, the transient activation of cell cycle and protein synthesis genes at the early stage of nodule development and the activation of the secretory pathway along with a large number of transmembrane and secretory proteins or peptides throughout organogenesis. The fifteen plant and bacterial mutants that were analyzed fell into four major categories. Members of the first category of mutants formed non-functional nodules although they had differentiated nodule cells and bacteroids. This group passed the two transcriptome switch-points similarly to the wild type. The second category, which formed nodules in which the plant cells were differentiated and infected but the bacteroids did not differentiate, passed the first transcriptome switch but not the second one. Nodules in the third category contained infection threads but were devoid of differentiated symbiotic cells and displayed a root-like transcriptome. Nodules in the fourth category were free of bacteria, devoid of differentiated symbiotic cells and also displayed a root-like transcriptome. A correlation thus exists between the differentiation of symbiotic nodule cells and the first wave of nodule specific gene activation and between differentiation of rhizobia to bacteroids and the second transcriptome wave in nodules. The differentiation of symbiotic cells and of bacteroids may therefore constitute signals for the execution of these transcriptome-switches.
Collapse
Affiliation(s)
- Nicolas Maunoury
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Miguel Redondo-Nieto
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Marie Bourcy
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Willem Van de Velde
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Benoit Alunni
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Philippe Laporte
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Patricia Durand
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Nicolas Agier
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Formation de Recherche en Evolution 3144 and Gif/Orsay DNA MicroArray Platform (GODMAP), Gif-sur-Yvette, France
| | - Laetitia Marisa
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Formation de Recherche en Evolution 3144 and Gif/Orsay DNA MicroArray Platform (GODMAP), Gif-sur-Yvette, France
| | - Danièle Vaubert
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Hervé Delacroix
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Formation de Recherche en Evolution 3144 and Gif/Orsay DNA MicroArray Platform (GODMAP), Gif-sur-Yvette, France
- Université Paris-Sud 11, Orsay, France
| | - Gérard Duc
- Génétique et Ecophysiologie des Légumineuses à Graines, Institut National de la Recherche Agronomique, Dijon, France
| | - Pascal Ratet
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Lawrence Aggerbeck
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Formation de Recherche en Evolution 3144 and Gif/Orsay DNA MicroArray Platform (GODMAP), Gif-sur-Yvette, France
| | - Eva Kondorosi
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
- Bay Zoltan Foundation for Applied Research, Institute of Plant Genomics, Human Biotechnology and Bioenergy, Szeged, Hungary
| | - Peter Mergaert
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| |
Collapse
|
49
|
Bastianelli F, Costa A, Vescovi M, D'Apuzzo E, Zottini M, Chiurazzi M, Lo Schiavo F. Salicylic acid differentially affects suspension cell cultures of Lotus japonicus and one of its non-symbiotic mutants. PLANT MOLECULAR BIOLOGY 2010; 72:469-83. [PMID: 20012170 DOI: 10.1007/s11103-009-9585-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 11/30/2009] [Indexed: 05/07/2023]
Abstract
Salicylic acid (SA) is known to play an important role in the interaction between plant and micro-organisms, both symbiotic and pathogen. In particular, high levels of SA block nodule formation and mycorrhizal colonization in plants. A mutant of Lotus japonicus, named Ljsym4-2, was characterized as unable to establish positive interactions with Rhizobium and fungi (NOD(-), MYC(-)); in particular, it does not recognize signal molecules released by symbiotic micro-organisms so that eventually, epidermal cells undergo PCD at the contact area. We performed a detailed characterization of wild-type and Ljsym4-2 cultured cells by taking into account several parameters characterizing cell responses to SA, a molecule strongly involved in defense signaling pathways. In the presence of 0.5 mM SA, Ljsym4-2 suspension-cultured cells reduce their growth and eventually die, whereas in order to induce the same effects in wt suspension cells, SA concentration must be raised to 1.5 mM. An early and short production of nitric oxide (NO) and reactive oxygen species (ROS) was detected in wt-treated cells. In contrast, a continuous production of NO and a double-peak ROS response, similar to that reported after a pathogenic attack, was observed in the mutant Ljsym4-2 cells. At the molecular level, a constitutive higher level of a SA-inducible pathogenesis related gene was observed. The analysis in planta revealed a strong induction of the LjPR1 gene in the Ljsym4-2 mutant inoculated with Mesorhizobium loti.
Collapse
|
50
|
Pérez Guerra JC, Coussens G, De Keyser A, De Rycke R, De Bodt S, Van De Velde W, Goormachtig S, Holsters M. Comparison of developmental and stress-induced nodule senescence in Medicago truncatula. PLANT PHYSIOLOGY 2010; 152:1574-84. [PMID: 20081044 PMCID: PMC2832273 DOI: 10.1104/pp.109.151399] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 01/13/2010] [Indexed: 05/20/2023]
Abstract
Mature indeterminate Medicago truncatula nodules are zonated with an apical meristem, an infection zone, a fixation zone with nitrogen-fixing bacteroids, and a "developmental" senescence zone that follows nodule growth with a conical front originating in the center of the fixation zone. In nitrogen-fixing cells, senescence is initiated coincidently with the expression of a family of conserved cysteine proteases that might be involved in the degradation of symbiotic structures. Environmental stress, such as prolonged dark treatment, interferes with nodule functioning and triggers a fast and global nodule senescence. Developmental and dark stress-induced senescence have several different structural and expression features, suggesting at least partly divergent underlying molecular mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marcelle Holsters
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, and Department of Plant Biotechnology and Genetics, Ghent University, B–9052 Ghent, Belgium
| |
Collapse
|