1
|
Lumeij LB, van Huijstee AN, Cappaert NLM, Kessels HW. Variance analysis as a method to predict the locus of plasticity at populations of non-uniform synapses. Front Cell Neurosci 2023; 17:1232541. [PMID: 37528963 PMCID: PMC10388551 DOI: 10.3389/fncel.2023.1232541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Our knowledge on synaptic transmission in the central nervous system has often been obtained by evoking synaptic responses to populations of synapses. Analysis of the variance in synaptic responses can be applied as a method to predict whether a change in synaptic responses is a consequence of altered presynaptic neurotransmitter release or postsynaptic receptors. However, variance analysis is based on binomial statistics, which assumes that synapses are uniform. In reality, synapses are far from uniform, which questions the reliability of variance analysis when applying this method to populations of synapses. To address this, we used an in silico model for evoked synaptic responses and compared variance analysis outcomes between populations of uniform versus non-uniform synapses. This simulation revealed that variance analysis produces similar results irrespectively of the grade of uniformity of synapses. We put this variance analysis to the test with an electrophysiology experiment using a model system for which the loci of plasticity are well established: the effect of amyloid-β on synapses. Variance analysis correctly predicted that postsynaptically produced amyloid-β triggered predominantly a loss of synapses and a minor reduction of postsynaptic currents in remaining synapses with little effect on presynaptic release probability. We propose that variance analysis can be reliably used to predict the locus of synaptic changes for populations of non-uniform synapses.
Collapse
|
2
|
Uchigashima M, Hayashi Y, Futai K. Regulation of Presynaptic Release Machinery by Cell Adhesion Molecules. ADVANCES IN NEUROBIOLOGY 2023; 33:333-356. [PMID: 37615873 DOI: 10.1007/978-3-031-34229-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The synapse is a highly specialized asymmetric structure that transmits and stores information in the brain. The size of pre- and postsynaptic structures and function is well coordinated at the individual synapse level. For example, large postsynaptic dendritic spines have a larger postsynaptic density with higher α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) number on their surface, while juxtaposing presynaptic terminals have a larger active zone and higher release probability. This indicates that pre- and postsynaptic domains bidirectionally communicate to coordinate assembly of specific molecules on both sides of the synaptic cleft. Cell adhesion molecules (CAMs) that localize at synapses form transsynaptic protein interactions across the synaptic cleft and play important roles in synapse formation and regulation. The extracellular domain of CAMs is essential for specific synapse formation and function. In contrast, the intracellular domain is necessary for binding with synaptic molecules and signal transduction. Therefore, CAMs play an essential role on synapse function and structure. In fact, ample evidence indicates that transsynaptic CAMs instruct and modulate functions at presynaptic sites. This chapter focuses on transsynaptic protein interactions that regulate presynaptic functions emphasizing the role of neuronal CAMs and the intracellular mechanism of their regulation.
Collapse
Affiliation(s)
- Motokazu Uchigashima
- Department of Cellular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kensuke Futai
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
3
|
Release Mode Dynamically Regulates the RRP Refilling Mechanism at Individual Hippocampal Synapses. J Neurosci 2020; 40:8426-8437. [PMID: 32989096 DOI: 10.1523/jneurosci.3029-19.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Synaptic strength and reliability are determined by the number of vesicles released per action potential and the availability of release-competent vesicles in the readily releasable pool (RRP). Compared with release of a single vesicle (univesicular release), multivesicular release (MVR) would speed up RRP depletion, yet whether the RRP is refilled differently during the two different release modes has not been investigated. Here, we address this question by quantitative optical imaging with an axon-targeting glutamate sensor, iGluSnFRpre. We found that hippocampal synapses preferentially release multiple vesicles per action potential at high extracellular calcium or by paired-pulse stimulation. When MVR prevails, the RRP is recovered very rapidly with a time constant of 430 ms. This rapid recovery is mediated by dynamin-dependent endocytosis followed by direct reuse of retrieved vesicles. Furthermore, our simulation proved that the portion of retrieved vesicles that directly refill the RRP increases dramatically (>70%) in MVR compared with that in univesicular release (<10%). These results suggest that the contribution of rapid and direct recruitment of retrieved vesicle to the RRP changes dynamically with release mode at the level of individual synapses, which suggests a form of presynaptic homeostatic plasticity for reliable synaptic transmission during various synaptic activity.SIGNIFICANCE STATEMENT The number of vesicles released in response to an action potential and the number of release competent vesicles in the readily releasable pool (RRP) are the fundamental determinants of synaptic efficacy. Despite its functional advantages, releasing multiple vesicles, especially at small synapses, can deplete the RRP after a couple of action potentials. To prevent failure of synaptic transmission, the RRP should be refilled rapidly, yet whether the RRP replenishment process is regulated by the release mode has not been investigated. Here, using quantitative optical glutamate imaging and simulation, we demonstrate that the contribution of the fast refilling mechanism changes with release mode at the level of individual synapses, suggesting a rapid form of presynaptic homeostatic plasticity during various synaptic activity.
Collapse
|
4
|
Ecker A, Romani A, Sáray S, Káli S, Migliore M, Falck J, Lange S, Mercer A, Thomson AM, Muller E, Reimann MW, Ramaswamy S. Data-driven integration of hippocampal CA1 synaptic physiology in silico. Hippocampus 2020; 30:1129-1145. [PMID: 32520422 PMCID: PMC7687201 DOI: 10.1002/hipo.23220] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 12/31/2022]
Abstract
The anatomy and physiology of monosynaptic connections in rodent hippocampal CA1 have been extensively studied in recent decades. Yet, the resulting knowledge remains disparate and difficult to reconcile. Here, we present a data‐driven approach to integrate the current state‐of‐the‐art knowledge on the synaptic anatomy and physiology of rodent hippocampal CA1, including axo‐dendritic innervation patterns, number of synapses per connection, quantal conductances, neurotransmitter release probability, and short‐term plasticity into a single coherent resource. First, we undertook an extensive literature review of paired recordings of hippocampal neurons and compiled experimental data on their synaptic anatomy and physiology. The data collected in this manner is sparse and inhomogeneous due to the diversity of experimental techniques used by different groups, which necessitates the need for an integrative framework to unify these data. To this end, we extended a previously developed workflow for the neocortex to constrain a unifying in silico reconstruction of the synaptic physiology of CA1 connections. Our work identifies gaps in the existing knowledge and provides a complementary resource toward a more complete quantification of synaptic anatomy and physiology in the rodent hippocampal CA1 region.
Collapse
Affiliation(s)
- András Ecker
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Campus Biotech, Geneva, Switzerland
| | - Armando Romani
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Campus Biotech, Geneva, Switzerland
| | - Sára Sáray
- Institute of Experimental Medicine, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Szabolcs Káli
- Institute of Experimental Medicine, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Joanne Falck
- UCL School of Pharmacy, University College London, London, UK
| | - Sigrun Lange
- UCL School of Pharmacy, University College London, London, UK.,School of Life Sciences, University of Westminster, London, UK
| | - Audrey Mercer
- UCL School of Pharmacy, University College London, London, UK
| | - Alex M Thomson
- UCL School of Pharmacy, University College London, London, UK
| | - Eilif Muller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Campus Biotech, Geneva, Switzerland
| | - Michael W Reimann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Campus Biotech, Geneva, Switzerland
| | - Srikanth Ramaswamy
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Campus Biotech, Geneva, Switzerland
| |
Collapse
|
5
|
Spike Activity Regulates Vesicle Filling at a Glutamatergic Synapse. J Neurosci 2020; 40:4972-4980. [PMID: 32430294 DOI: 10.1523/jneurosci.2945-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 11/21/2022] Open
Abstract
Synaptic vesicles need to be recycled and refilled rapidly to maintain high-frequency synaptic transmission. However, little is known about the control of neurotransmitter transport into synaptic vesicles, which determines the contents of synaptic vesicles and the strength of synaptic transmission. Here, we report that Na+ substantially accumulated in the calyx of Held terminals of juvenile mice of either sex during high-frequency spiking. The activity-induced elevation of cytosolic Na+ activated vesicular Na+/H+ exchanger, facilitated glutamate loading into synaptic vesicles, and increased quantal size of asynchronous released vesicles but did not affect the vesicle pool size or release probability. Consequently, presynaptic Na+ increased the EPSCs and was required to maintain the reliable high-frequency signal transmission from the presynaptic calyces to the postsynaptic medial nucleus of the trapezoid body (MNTB) neurons. Blocking Na+/H+ exchange activity decreased the postsynaptic current and caused failures in postsynaptic firing. Therefore, during high-frequency synaptic transmission, when large amounts of glutamate are released, Na+ accumulated in the terminals, activated vesicular Na+/H+ exchanger, and regulated glutamate loading as a function of the level of vesicle release.SIGNIFICANCE STATEMENT Auditory information is encoded by action potentials (APs) phase-locked to sound frequency at high rates. A large number of synaptic vesicles are released during high-frequency synaptic transmission; accordingly, synaptic vesicles need to be recycled and refilled rapidly. We have recently found that a Na+/H+ exchanger expressed on synaptic vesicles promotes vesicle filling with glutamate. Here, we showed that when a large number of synaptic vesicles are released during high-frequency synaptic transmission, Na+ accumulates in axon terminals and facilitates glutamate uptake into synaptic vesicles. Na+ thus accelerates vesicle replenishment and sustains reliable synaptic transmission.
Collapse
|
6
|
van Huijstee AN, Kessels HW. Variance analysis as a tool to predict the mechanism underlying synaptic plasticity. J Neurosci Methods 2020; 331:108526. [PMID: 31756397 DOI: 10.1016/j.jneumeth.2019.108526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The strength of synaptic transmission onto a neuron depends on the number of functional vesicle release sites (N), the probability of vesicle release (Pr), and the quantal size (Q). Statistical tools based on the quantal model of synaptic transmission can be used to acquire information on which of these parameters is the source of plasticity. However, quantal analysis depends on assumptions that may not be met at central synapses. NEW METHOD We examined the merit of quantal analysis to extract the mechanisms underlying synaptic plasticity by applying binomial statistics on the variance in amplitude of postsynaptic currents evoked at Schaffer collateral-CA1 (Sc-CA1) synapses in mouse hippocampal slices. We extend this analysis by combining the conventional inverse square of the coefficient of variation (1/CV2) with the variance-to-mean ratio (VMR). RESULTS This method can be used to assess the relative, but not absolute, contribution of N, Pr and Q to synaptic plasticity. The changes in 1/CV2 and VMR values correctly reflect experimental modifications of N, Pr and Q at Sc-CA1 synapses. COMPARISON WITH EXISTING METHODS While the 1/CV2 depends on N and Pr, but is independent of Q, the VMR is dependent on Pr and Q, but not on N. Combining both allows for a rapid assessment of the mechanism underlying synaptic plasticity without the need for additional electrophysiological experiments. CONCLUSION Combining the 1/CV2 with the VMR allows for a reliable prediction of the relative contribution of changes in N, Pr and Q to synaptic plasticity.
Collapse
Affiliation(s)
- Aile N van Huijstee
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands; The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands; The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Barros-Zulaica N, Rahmon J, Chindemi G, Perin R, Markram H, Muller E, Ramaswamy S. Estimating the Readily-Releasable Vesicle Pool Size at Synaptic Connections in the Neocortex. Front Synaptic Neurosci 2019; 11:29. [PMID: 31680928 PMCID: PMC6813366 DOI: 10.3389/fnsyn.2019.00029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022] Open
Abstract
Previous studies based on the 'Quantal Model' for synaptic transmission suggest that neurotransmitter release is mediated by a single release site at individual synaptic contacts in the neocortex. However, recent studies seem to contradict this hypothesis and indicate that multi-vesicular release (MVR) could better explain the synaptic response variability observed in vitro. In this study we present a novel method to estimate the number of release sites per synapse, also known as the size of the readily releasable pool (NRRP), from paired whole-cell recordings of connections between layer 5 thick tufted pyramidal cell (L5_TTPC) in the juvenile rat somatosensory cortex. Our approach extends the work of Loebel et al. (2009) by leveraging a recently published data-driven biophysical model of neocortical tissue. Using this approach, we estimated NRRP to be between two to three for synaptic connections between L5_TTPCs. To constrain NRRP values for other connections in the microcircuit, we developed and validated a generalization approach using published data on the coefficient of variation (CV) of the amplitudes of post-synaptic potentials (PSPs) from literature and comparing them against in silico experiments. Our study predicts that transmitter release at synaptic connections in the neocortex could be mediated by MVR and provides a data-driven approach to constrain the MVR model parameters in the microcircuit.
Collapse
Affiliation(s)
| | - John Rahmon
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Giuseppe Chindemi
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Rodrigo Perin
- Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.,Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Eilif Muller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Srikanth Ramaswamy
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| |
Collapse
|
8
|
Soares C, Trotter D, Longtin A, Béïque JC, Naud R. Parsing Out the Variability of Transmission at Central Synapses Using Optical Quantal Analysis. Front Synaptic Neurosci 2019; 11:22. [PMID: 31474847 PMCID: PMC6702664 DOI: 10.3389/fnsyn.2019.00022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Properties of synaptic release dictates the core of information transfer in neural circuits. Despite decades of technical and theoretical advances, distinguishing bona fide information content from the multiple sources of synaptic variability remains a challenging problem. Here, we employed a combination of computational approaches with cellular electrophysiology, two-photon uncaging of MNI-Glutamate and imaging at single synapses. We describe and calibrate the use of the fluorescent glutamate sensor iGluSnFR and found that its kinetic profile is close to that of AMPA receptors, therefore providing several distinct advantages over slower methods relying on NMDA receptor activation (i.e., chemical or genetically encoded calcium indicators). Using an array of statistical methods, we further developed, and validated on surrogate data, an expectation-maximization algorithm that, by biophysically constraining release variability, extracts the quantal parameters n (maximum number of released vesicles) and p (unitary probability of release) from single-synapse iGluSnFR-mediated transients. Together, we present a generalizable mathematical formalism which, when applied to optical recordings, paves the way to an increasingly precise investigation of information transfer at central synapses.
Collapse
Affiliation(s)
- Cary Soares
- Department of Cellular and Molecular Medicine, uOttawa Brain and Mind Research Institute, Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
| | - Daniel Trotter
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | - André Longtin
- Department of Cellular and Molecular Medicine, uOttawa Brain and Mind Research Institute, Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | - Jean-Claude Béïque
- Department of Cellular and Molecular Medicine, uOttawa Brain and Mind Research Institute, Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
| | - Richard Naud
- Department of Cellular and Molecular Medicine, uOttawa Brain and Mind Research Institute, Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
9
|
He Y, Kulasiri D, Liang J. A mathematical model of synaptotagmin 7 revealing functional importance of short-term synaptic plasticity. Neural Regen Res 2019; 14:621-631. [PMID: 30632502 PMCID: PMC6352580 DOI: 10.4103/1673-5374.247466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Synaptotagmin 7 (Syt7), a presynaptic calcium sensor, has a significant role in the facilitation in short-term synaptic plasticity: Syt7 knock out mice show a significant reduction in the facilitation. The functional importance of short-term synaptic plasticity such as facilitation is not well understood. In this study, we attempt to investigate the potential functional relationship between the short-term synaptic plasticity and postsynaptic response by developing a mathematical model that captures the responses of both wild-type and Syt7 knock-out mice. We then studied the model behaviours of wild-type and Syt7 knock-out mice in response to multiple input action potentials. These behaviors could establish functional importance of short-term plasticity in regulating the postsynaptic response and related synaptic properties. In agreement with previous modeling studies, we show that release sites are governed by non-uniform release probabilities of neurotransmitters. The structure of non-uniform release of neurotransmitters makes short-term synaptic plasticity to act as a high-pass filter. We also propose that Syt7 may be a modulator for the long-term changes of postsynaptic response that helps to train the target frequency of the filter. We have developed a mathematical model of short-term plasticity which explains the experimental data.
Collapse
Affiliation(s)
- Yao He
- Center for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand
| | - Don Kulasiri
- Center for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand
| | - Jingyi Liang
- Center for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand
| |
Collapse
|
10
|
Basilico B, Pagani F, Grimaldi A, Cortese B, Di Angelantonio S, Weinhard L, Gross C, Limatola C, Maggi L, Ragozzino D. Microglia shape presynaptic properties at developing glutamatergic synapses. Glia 2018; 67:53-67. [DOI: 10.1002/glia.23508] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/13/2018] [Accepted: 06/22/2018] [Indexed: 12/30/2022]
Affiliation(s)
| | | | | | - Barbara Cortese
- CNR NANOTEC-Istituto di Nanotecnologia, Dept of Physics; Sapienza University; Rome Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology; Sapienza University; Rome Italy
- Istituto Italiano di Tecnologia; Rome Italy
| | | | | | - Cristina Limatola
- Pasteur Institute, Department of Physiology and Pharmacology; Sapienza University; Rome Italy
- IRCCS NEUROMED; Via Atinese Pozzilli Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology; Sapienza University; Rome Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology; Sapienza University; Rome Italy
- IRCCS NEUROMED; Via Atinese Pozzilli Italy
| |
Collapse
|
11
|
Quinta-Ferreira ME, Sampaio Dos Aidos FDS, Matias CM, Mendes PJ, Dionísio JC, Santos RM, Rosário LM, Quinta-Ferreira RM. Modelling zinc changes at the hippocampal mossy fiber synaptic cleft. J Comput Neurosci 2016; 41:323-337. [PMID: 27696002 DOI: 10.1007/s10827-016-0620-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 01/18/2023]
Abstract
Zinc, a transition metal existing in very high concentrations in the hippocampal mossy fibers from CA3 area, is assumed to be co-released with glutamate and to have a neuromodulatory role at the corresponding synapses. The synaptic action of zinc is determined both by the spatiotemporal characteristics of the zinc release process and by the kinetics of zinc binding to sites located in the cleft area, as well as by their concentrations. This work addresses total, free and complexed zinc concentration changes, in an individual synaptic cleft, following single, short and long periods of evoked zinc release. The results estimate the magnitude and time course of the concentrations of zinc complexes, assuming that the dynamics of the release processes are similar to those of glutamate. It is also considered that, for the cleft zinc concentrations used in the model (≤ 1 μM), there is no postsynaptic zinc entry. For this reason, all released zinc ends up being reuptaken in a process that is several orders of magnitude slower than that of release and has thus a much smaller amplitude. The time derivative of the total zinc concentration in the cleft is represented by the difference between two alpha functions, corresponding to the released and uptaken components. These include specific parameters that were chosen assuming zinc and glutamate co-release, with similar time courses. The peak amplitudes of free zinc in the cleft were selected based on previously reported experimental cleft zinc concentration changes evoked by single and multiple stimulation protocols. The results suggest that following a low amount of zinc release, similar to that associated with one or a few stimuli, zinc clearance is mainly mediated by zinc binding to the high-affinity sites on the NMDA receptors and to the low-affinity sites on the highly abundant GLAST glutamate transporters. In the case of higher zinc release brought about by a larger group of stimuli, most zinc binding occurs essentially to the GLAST transporters, having the corresponding zinc complex a maximum concentration that is more than one order of magnitude larger than that for the high and low affinity NMDA sites. The other zinc complexes considered in the model, namely those formed with sites on the AMPA receptors, calcium and KATP channels and with ATP molecules, have much smaller contributions to the synaptic zinc clearance.
Collapse
Affiliation(s)
- M E Quinta-Ferreira
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, P-3004-504, Coimbra, Portugal.
- Department of Physics, University of Coimbra, P-3004-516, Coimbra, Portugal.
| | - F D S Sampaio Dos Aidos
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, P-3004-504, Coimbra, Portugal
- Department of Physics, University of Coimbra, P-3004-516, Coimbra, Portugal
- CFisUC, Department of Physics, University of Coimbra, P-3004-516, Coimbra, Portugal
| | - C M Matias
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, P-3004-504, Coimbra, Portugal
- UTAD- University of Trás-os-montes and Alto Douro, P-5000-801, Vila Real, Portugal
| | - P J Mendes
- Department of Physics, University of Coimbra, P-3004-516, Coimbra, Portugal
- LIP- Laboratory of Instrumentation and Experimental Particles Physics, P-3004-516, Coimbra, Portugal
| | - J C Dionísio
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, P-3004-504, Coimbra, Portugal
- Department of Animal Biology, University of Lisbon, P-1749-016, Lisbon, Portugal
| | - R M Santos
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, P-3004-504, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, P-3004-516, Coimbra, Portugal
| | - L M Rosário
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, P-3004-504, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, P-3004-516, Coimbra, Portugal
| | - R M Quinta-Ferreira
- CIEPQPF - Research Centre of Chemical Process Engineering and Forest Products, Department of Chemical Engineering, University of Coimbra, P-3030-790, Coimbra, Portugal
| |
Collapse
|
12
|
Krishnan B, Scott MT, Pollandt S, Schroeder B, Kurosky A, Shinnick-Gallagher P. Fear potentiated startle increases phospholipase D (PLD) expression/activity and PLD-linked metabotropic glutamate receptor mediated post-tetanic potentiation in rat amygdala. Neurobiol Learn Mem 2016; 128:65-79. [PMID: 26748024 PMCID: PMC4744522 DOI: 10.1016/j.nlm.2015.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/08/2015] [Accepted: 12/25/2015] [Indexed: 12/30/2022]
Abstract
Long-term memory (LTM) of fear stores activity dependent modifications that include changes in amygdala signaling. Previously, we identified an enhanced probability of release of glutamate mediated signaling to be important in rat fear potentiated startle (FPS), a well-established translational behavioral measure of fear. Here, we investigated short- and long-term synaptic plasticity in FPS involving metabotropic glutamate receptors (mGluRs) and associated downstream proteomic changes in the thalamic-lateral amygdala pathway (Th-LA). Aldolase A, an inhibitor of phospholipase D (PLD), expression was reduced, concurrent with significantly elevated PLD protein expression. Blocking the PLD-mGluR signaling significantly reduced PLD activity. While transmitter release probability increased in FPS, PLD-mGluR agonist and antagonist actions were occluded. In the unpaired group (UNP), blocking the PLD-mGluR increased while activating the receptor decreased transmitter release probability, consistent with decreased synaptic potentials during tetanic stimulation. FPS Post-tetanic potentiation (PTP) immediately following long-term potentiation (LTP) induction was significantly increased. Blocking PLD-mGluR signaling prevented PTP and reduced cumulative PTP probability but not LTP maintenance in both groups. These effects are similar to those mediated through mGluR7, which is co-immunoprecipitated with PLD in FPS. Lastly, blocking mGluR-PLD in the rat amygdala was sufficient to prevent behavioral expression of fear memory. Thus, our study in the Th-LA pathway provides the first evidence for PLD as an important target of mGluR signaling in amygdala fear-associated memory. Importantly, the PLD-mGluR provides a novel therapeutic target for treating maladaptive fear memories in posttraumatic stress and anxiety disorders.
Collapse
MESH Headings
- Amygdala/enzymology
- Amygdala/physiology
- Animals
- Conditioning, Classical/drug effects
- Conditioning, Classical/physiology
- Cyclopropanes/pharmacology
- Electric Stimulation
- Excitatory Postsynaptic Potentials/drug effects
- Fear/drug effects
- Fear/physiology
- Fructose-Bisphosphate Aldolase/metabolism
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Long-Term Potentiation/drug effects
- Male
- Memory, Long-Term/drug effects
- Memory, Long-Term/physiology
- Neural Pathways/drug effects
- Neural Pathways/physiology
- Phospholipase D/antagonists & inhibitors
- Phospholipase D/metabolism
- Phospholipase D/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Metabotropic Glutamate/agonists
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/physiology
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Thalamus/physiology
Collapse
Affiliation(s)
- Balaji Krishnan
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States; UTMB Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States.
| | - Michael T Scott
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Sebastian Pollandt
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Bradley Schroeder
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Alexander Kurosky
- UTMB NHLBI Proteomics Center, Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | | |
Collapse
|
13
|
Wee KSL, Tan FCK, Cheong YP, Khanna S, Low CM. Ontogenic Profile and Synaptic Distribution of GluN3 Proteins in the Rat Brain and Hippocampal Neurons. Neurochem Res 2015; 41:290-7. [DOI: 10.1007/s11064-015-1794-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 12/01/2022]
|
14
|
Allam SL, Bouteiller JMC, Hu EY, Ambert N, Greget R, Bischoff S, Baudry M, Berger TW. Synaptic Efficacy as a Function of Ionotropic Receptor Distribution: A Computational Study. PLoS One 2015; 10:e0140333. [PMID: 26480028 PMCID: PMC4610697 DOI: 10.1371/journal.pone.0140333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/24/2015] [Indexed: 11/22/2022] Open
Abstract
Glutamatergic synapses are the most prevalent functional elements of information processing in the brain. Changes in pre-synaptic activity and in the function of various post-synaptic elements contribute to generate a large variety of synaptic responses. Previous studies have explored postsynaptic factors responsible for regulating synaptic strength variations, but have given far less importance to synaptic geometry, and more specifically to the subcellular distribution of ionotropic receptors. We analyzed the functional effects resulting from changing the subsynaptic localization of ionotropic receptors by using a hippocampal synaptic computational framework. The present study was performed using the EONS (Elementary Objects of the Nervous System) synaptic modeling platform, which was specifically developed to explore the roles of subsynaptic elements as well as their interactions, and that of synaptic geometry. More specifically, we determined the effects of changing the localization of ionotropic receptors relative to the presynaptic glutamate release site, on synaptic efficacy and its variations following single pulse and paired-pulse stimulation protocols. The results indicate that changes in synaptic geometry do have consequences on synaptic efficacy and its dynamics.
Collapse
Affiliation(s)
- Sushmita L. Allam
- Center for Neural Engineering, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Jean-Marie C. Bouteiller
- Center for Neural Engineering, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
- Rhenovia Pharma, Mulhouse, France
- * E-mail:
| | - Eric Y. Hu
- Center for Neural Engineering, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| | | | | | | | - Michel Baudry
- Rhenovia Pharma, Mulhouse, France
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States of America
| | - Theodore W. Berger
- Center for Neural Engineering, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
15
|
The ubiquitous nature of multivesicular release. Trends Neurosci 2015; 38:428-38. [PMID: 26100141 DOI: 10.1016/j.tins.2015.05.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/20/2015] [Accepted: 05/24/2015] [Indexed: 11/21/2022]
Abstract
'Simplicity is prerequisite for reliability' (E.W. Dijkstra [1]) Presynaptic action potentials trigger the fusion of vesicles to release neurotransmitter onto postsynaptic neurons. Each release site was originally thought to liberate at most one vesicle per action potential in a probabilistic fashion, rendering synaptic transmission unreliable. However, the simultaneous release of several vesicles, or multivesicular release (MVR), represents a simple mechanism to overcome the intrinsic unreliability of synaptic transmission. MVR was initially identified at specialized synapses but is now known to be common throughout the brain. MVR determines the temporal and spatial dispersion of transmitter, controls the extent of receptor activation, and contributes to adapting synaptic strength during plasticity and neuromodulation. MVR consequently represents a widespread mechanism that extends the dynamic range of synaptic processing.
Collapse
|
16
|
Activity-dependent dendritic spine neck changes are correlated with synaptic strength. Proc Natl Acad Sci U S A 2014; 111:E2895-904. [PMID: 24982196 DOI: 10.1073/pnas.1321869111] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most excitatory inputs in the mammalian brain are made on dendritic spines, rather than on dendritic shafts. Spines compartmentalize calcium, and this biochemical isolation can underlie input-specific synaptic plasticity, providing a raison d'etre for spines. However, recent results indicate that the spine can experience a membrane potential different from that in the parent dendrite, as though the spine neck electrically isolated the spine. Here we use two-photon calcium imaging of mouse neocortical pyramidal neurons to analyze the correlation between the morphologies of spines activated under minimal synaptic stimulation and the excitatory postsynaptic potentials they generate. We find that excitatory postsynaptic potential amplitudes are inversely correlated with spine neck lengths. Furthermore, a spike timing-dependent plasticity protocol, in which two-photon glutamate uncaging over a spine is paired with postsynaptic spikes, produces rapid shrinkage of the spine neck and concomitant increases in the amplitude of the evoked spine potentials. Using numerical simulations, we explore the parameter regimes for the spine neck resistance and synaptic conductance changes necessary to explain our observations. Our data, directly correlating synaptic and morphological plasticity, imply that long-necked spines have small or negligible somatic voltage contributions, but that, upon synaptic stimulation paired with postsynaptic activity, they can shorten their necks and increase synaptic efficacy, thus changing the input/output gain of pyramidal neurons.
Collapse
|
17
|
Le Duigou C, Simonnet J, Teleñczuk MT, Fricker D, Miles R. Recurrent synapses and circuits in the CA3 region of the hippocampus: an associative network. Front Cell Neurosci 2014; 7:262. [PMID: 24409118 PMCID: PMC3884140 DOI: 10.3389/fncel.2013.00262] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 12/02/2013] [Indexed: 11/29/2022] Open
Abstract
In the CA3 region of the hippocampus, pyramidal cells excite other pyramidal cells and interneurons. The axons of CA3 pyramidal cells spread throughout most of the region to form an associative network. These connections were first drawn by Cajal and Lorente de No. Their physiological properties were explored to understand epileptiform discharges generated in the region. Synapses between pairs of pyramidal cells involve one or few release sites and are weaker than connections made by mossy fibers on CA3 pyramidal cells. Synapses with interneurons are rather effective, as needed to control unchecked excitation. We examine contributions of recurrent synapses to epileptiform synchrony, to the genesis of sharp waves in the CA3 region and to population oscillations at theta and gamma frequencies. Recurrent connections in CA3, as other associative cortices, have a lower connectivity spread over a larger area than in primary sensory cortices. This sparse, but wide-ranging connectivity serves the functions of an associative network, including acquisition of neuronal representations as activity in groups of CA3 cells and completion involving the recall from partial cues of these ensemble firing patterns.
Collapse
Affiliation(s)
- Caroline Le Duigou
- Centre de Recherche de l'Institut du Cerveau et de la Moelle, INSERM U975, CHU Pitié-Salpêtrière, Université Pierre et Marie Curie Paris, France
| | - Jean Simonnet
- Centre de Recherche de l'Institut du Cerveau et de la Moelle, INSERM U975, CHU Pitié-Salpêtrière, Université Pierre et Marie Curie Paris, France
| | - Maria T Teleñczuk
- Centre de Recherche de l'Institut du Cerveau et de la Moelle, INSERM U975, CHU Pitié-Salpêtrière, Université Pierre et Marie Curie Paris, France
| | - Desdemona Fricker
- Centre de Recherche de l'Institut du Cerveau et de la Moelle, INSERM U975, CHU Pitié-Salpêtrière, Université Pierre et Marie Curie Paris, France
| | - Richard Miles
- Centre de Recherche de l'Institut du Cerveau et de la Moelle, INSERM U975, CHU Pitié-Salpêtrière, Université Pierre et Marie Curie Paris, France
| |
Collapse
|
18
|
Kessler JP. Control of cleft glutamate concentration and glutamate spill-out by perisynaptic glia: uptake and diffusion barriers. PLoS One 2013; 8:e70791. [PMID: 23951010 PMCID: PMC3741295 DOI: 10.1371/journal.pone.0070791] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/25/2013] [Indexed: 01/17/2023] Open
Abstract
Most glutamatergic synapses in the mammalian central nervous system are covered by thin astroglial processes that exert a dual action on synaptically released glutamate: they form physical barriers that oppose diffusion and they carry specific transporters that remove glutamate from the extracellular space. The present study was undertaken to investigate the dual action of glia by means of computer simulation. A realistic synapse model based on electron microscope data and Monte Carlo algorithms were used for this purpose. Results show (1) that physical obstacles formed by glial processes delay glutamate exit from the cleft and (2) that this effect is efficiently counteracted by glutamate uptake. Thus, depending on transporter densities, the presence of perisynaptic glia may result in increased or decreased glutamate transient in the synaptic cleft. Changes in temporal profiles of cleft glutamate concentration induced by glia differentially impact the response of the various synaptic and perisynaptic receptor subtypes. In particular, GluN2B- and GluN2C-NMDA receptor responses are strongly modified while GluN2A-NMDA receptor responses are almost unaffected. Thus, variations in glial transporter expression may allow differential tuning of NMDA receptors according to their subunit composition. In addition, simulation data suggest that the sink effect generated by transporters accumulation in the vicinity of the release site is the main mechanism limiting glutamate spill-out. Physical obstacles formed by glial processes play a comparatively minor role.
Collapse
|
19
|
Sun T, Qiao H, Pan PY, Chen Y, Sheng ZH. Motile axonal mitochondria contribute to the variability of presynaptic strength. Cell Rep 2013; 4:413-419. [PMID: 23891000 DOI: 10.1016/j.celrep.2013.06.040] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 04/29/2013] [Accepted: 06/28/2013] [Indexed: 11/16/2022] Open
Abstract
One of the most notable characteristics of synaptic transmission is the wide variation in synaptic strength in response to identical stimulation. In hippocampal neurons, approximately one-third of axonal mitochondria are highly motile, and some dynamically pass through presynaptic boutons. This raises a fundamental question: can motile mitochondria contribute to the pulse-to-pulse variability of presynaptic strength? Recently, we identified syntaphilin as an axonal mitochondrial-docking protein. Using hippocampal neurons and slices of syntaphilin knockout mice, we demonstrate that the motility of axonal mitochondria correlates with presynaptic variability. Enhancing mitochondrial motility increases the pulse-to-pulse variability, whereas immobilizing mitochondria reduces the variability. By dual-color live imaging at single-bouton levels, we further show that motile mitochondria passing through boutons dynamically influence synaptic vesicle release, mainly by altering ATP homeostasis in axons. Thus, our study provides insight into the fundamental properties of the CNS to ensure the plasticity and reliability of synaptic transmission.
Collapse
Affiliation(s)
- Tao Sun
- Synaptic Functions Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| | - Haifa Qiao
- Synaptic Functions Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| | - Ping-Yue Pan
- Synaptic Functions Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| | - Yanmin Chen
- Synaptic Functions Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Functions Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| |
Collapse
|
20
|
Christian DT, Alexander NJ, Diaz MR, McCool BA. Thalamic glutamatergic afferents into the rat basolateral amygdala exhibit increased presynaptic glutamate function following withdrawal from chronic intermittent ethanol. Neuropharmacology 2013; 65:134-42. [PMID: 22982568 PMCID: PMC3521082 DOI: 10.1016/j.neuropharm.2012.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 12/28/2022]
Abstract
Amygdala glutamatergic neurotransmission regulates withdrawal induced anxiety-like behaviors following chronic ethanol exposure. The lateral/basolateral amygdala receives multiple glutamatergic projections that contribute to overall amygdala function. Our lab has previously shown that rat cortical (external capsule) afferents express postsynaptic alterations during chronic intermittent ethanol exposure and withdrawal. However, thalamic (internal capsule) afferents also provide crucial glutamatergic input during behavioral conditioning, and they have not been studied in the context of chronic drug exposure. We report here that these thalamic inputs express altered presynaptic function during withdrawal from chronic ethanol exposure. This is characterized by enhanced release probability, as exemplified by altered paired-pulse ratios and decreased failure rates of unitary events, and increased concentrations of synaptic glutamate. Quantal analysis further implicates a withdrawal-dependent enhancement of the readily releasable pool of vesicles as a probable mechanism. These functional alterations are accompanied by increased expression of vesicle associated protein markers. These data demonstrate that chronic ethanol modulation of glutamate neurotransmission in the rat lateral/basolateral amygdala is afferent-specific. Further, presynaptic regulation of lateral/basolateral amygdala thalamic inputs by chronic ethanol may be a novel neurobiological mechanism contributing to the increased anxiety-like behaviors that characterize withdrawal.
Collapse
Affiliation(s)
- Daniel T Christian
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | | |
Collapse
|
21
|
Ziehn MO, Avedisian AA, Dervin SM, O’Dell TJ, Voskuhl RR. Estriol preserves synaptic transmission in the hippocampus during autoimmune demyelinating disease. J Transl Med 2012; 92:1234-45. [PMID: 22525427 PMCID: PMC4343001 DOI: 10.1038/labinvest.2012.76] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cognitive deficits occur in over half of multiple sclerosis patients, with hippocampal-dependent learning and memory commonly impaired. Data from in vivo MRI and post-mortem studies in MS indicate that the hippocampus is targeted. However, the relationship between structural pathology and dysfunction of the hippocampus in MS remains unclear. Hippocampal neuropathology also occurs in experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS. Although estrogen treatment of EAE has been shown to be anti-inflammatory and neuroprotective in the spinal cord, it is unknown if estrogen treatment may prevent hippocampal pathology and dysfunction. In the current study we examined excitatory synaptic transmission during EAE and focused on pathological changes in synaptic protein complexes known to orchestrate functional synaptic transmission in the hippocampus. We then determined if estriol, a candidate hormone treatment, was capable of preventing functional changes in synaptic transmission and corresponding hippocampal synaptic pathology. Electrophysiological studies revealed altered excitatory synaptic transmission and paired-pulse facilitation (PPF) during EAE. Neuropathological experiments demonstrated that there were decreased levels of pre- and post-synaptic proteins in the hippocampus, diffuse loss of myelin staining and atrophy of the pyramidal layers of hippocampal cornu ammonis 1 (CA1). Estriol treatment prevented decreases in excitatory synaptic transmission and lessened the effect of EAE on PPF. In addition, estriol treatment prevented several neuropathological alterations that occurred in the hippocampus during EAE. Cross-modality correlations revealed that deficits in excitatory synaptic transmission were significantly correlated with reductions in trans-synaptic protein binding partners known to modulate excitatory synaptic transmission. To our knowledge, this is the first report describing a functional correlate to hippocampal neuropathology in any MS model. Furthermore, a treatment was identified that prevented both deficits in synaptic function and hippocampal neuropathology.
Collapse
Affiliation(s)
- Marina O. Ziehn
- Interdepartmental Program of Neuroscience, University of California, Los Angeles
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles
| | - Andrea A. Avedisian
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles
| | - Shannon M. Dervin
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles
| | - Thomas J. O’Dell
- Department of Physiology, David Geffen School of Medicine at the University of California, Los Angeles
| | - Rhonda R. Voskuhl
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles
| |
Collapse
|
22
|
Fukazawa Y, Shigemoto R. Intra-synapse-type and inter-synapse-type relationships between synaptic size and AMPAR expression. Curr Opin Neurobiol 2012; 22:446-52. [DOI: 10.1016/j.conb.2012.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/19/2012] [Indexed: 11/16/2022]
|
23
|
Synapse geometry and receptor dynamics modulate synaptic strength. PLoS One 2011; 6:e25122. [PMID: 21984900 PMCID: PMC3184958 DOI: 10.1371/journal.pone.0025122] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/25/2011] [Indexed: 11/19/2022] Open
Abstract
Synaptic transmission relies on several processes, such as the location of a released vesicle, the number and type of receptors, trafficking between the postsynaptic density (PSD) and extrasynaptic compartment, as well as the synapse organization. To study the impact of these parameters on excitatory synaptic transmission, we present a computational model for the fast AMPA-receptor mediated synaptic current. We show that in addition to the vesicular release probability, due to variations in their release locations and the AMPAR distribution, the postsynaptic current amplitude has a large variance, making a synapse an intrinsic unreliable device. We use our model to examine our experimental data recorded from CA1 mice hippocampal slices to study the differences between mEPSC and evoked EPSC variance. The synaptic current but not the coefficient of variation is maximal when the active zone where vesicles are released is apposed to the PSD. Moreover, we find that for certain type of synapses, receptor trafficking can affect the magnitude of synaptic depression. Finally, we demonstrate that perisynaptic microdomains located outside the PSD impacts synaptic transmission by regulating the number of desensitized receptors and their trafficking to the PSD. We conclude that geometrical modifications, reorganization of the PSD or perisynaptic microdomains modulate synaptic strength, as the mechanisms underlying long-term plasticity.
Collapse
|
24
|
Presynaptic regulation of quantal size: K+/H+ exchange stimulates vesicular glutamate transport. Nat Neurosci 2011; 14:1285-92. [PMID: 21874016 PMCID: PMC3183113 DOI: 10.1038/nn.2898] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/11/2011] [Indexed: 11/29/2022]
Abstract
The amount of neurotransmitter stored in a single synaptic vesicle can determine the size of the postsynaptic response, but the factors that regulate vesicle filling remain poorly understood. A proton electrochemical gradient (ΔμH+) generated by the vacuolar H+-ATPase drives the accumulation of classical transmitters into synaptic vesicles. The chemical component of ΔμH+ (ΔpH) has received particular attention for its role in the vesicular transport of cationic transmitters as well as protein sorting and degradation. Thus, considerable work has addressed the factors that promote ΔpH. However, synaptic vesicle uptake of the principal excitatory transmitter glutamate depends on the electrical component of ΔμH+ (Δψ). We now find that rat brain synaptic vesicles express monovalent cation/H+ exchange activity that converts ΔpH into Δψ, and this promotes synaptic vesicle filling with glutamate. Manipulating presynaptic K+ at a glutamatergic synapse influences quantal size, demonstrating that synaptic vesicle K+/H+ exchange regulates glutamate release and synaptic transmission.
Collapse
|
25
|
Singh P, Hockenberry AJ, Tiruvadi VR, Meaney DF. Computational investigation of the changing patterns of subtype specific NMDA receptor activation during physiological glutamatergic neurotransmission. PLoS Comput Biol 2011; 7:e1002106. [PMID: 21738464 PMCID: PMC3127809 DOI: 10.1371/journal.pcbi.1002106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 05/13/2011] [Indexed: 11/23/2022] Open
Abstract
NMDA receptors (NMDARs) are the major mediator of the postsynaptic response during synaptic neurotransmission. The diversity of roles for NMDARs in influencing synaptic plasticity and neuronal survival is often linked to selective activation of multiple NMDAR subtypes (NR1/NR2A-NMDARs, NR1/NR2B-NMDARs, and triheteromeric NR1/NR2A/NR2B-NMDARs). However, the lack of available pharmacological tools to block specific NMDAR populations leads to debates on the potential role for each NMDAR subtype in physiological signaling, including different models of synaptic plasticity. Here, we developed a computational model of glutamatergic signaling at a prototypical dendritic spine to examine the patterns of NMDAR subtype activation at temporal and spatial resolutions that are difficult to obtain experimentally. We demonstrate that NMDAR subtypes have different dynamic ranges of activation, with NR1/NR2A-NMDAR activation sensitive at univesicular glutamate release conditions, and NR2B containing NMDARs contributing at conditions of multivesicular release. We further show that NR1/NR2A-NMDAR signaling dominates in conditions simulating long-term depression (LTD), while the contribution of NR2B containing NMDAR significantly increases for stimulation frequencies that approximate long-term potentiation (LTP). Finally, we show that NR1/NR2A-NMDAR content significantly enhances response magnitude and fidelity at single synapses during chemical LTP and spike timed dependent plasticity induction, pointing out an important developmental switch in synaptic maturation. Together, our model suggests that NMDAR subtypes are differentially activated during different types of physiological glutamatergic signaling, enhancing the ability for individual spines to produce unique responses to these different inputs. Release of glutamate from one neuron onto glutamate receptors on adjacent neurons serves as the primary basis for neuronal communication. Further, different types of glutamate signals produce unique responses within the neuronal network, providing the ability for glutamate receptors to discriminate between alternative types of signaling. The NMDA receptor (NMDAR) is a glutamate receptor that mediates a variety of physiological functions, including the molecular basis for learning and memory. These receptors exist as a variety of subtypes, and this molecular heterogeneity is used to explain the diversity in signaling initiated by NMDARs. However, the lack of reliable experimental tools to control the activation of each subtype has led to debate over the subtype specific roles of the NMDAR. We have developed a stochastic model of glutamate receptor activation at a single synapse and find that NMDAR subtypes detect different types of glutamate signals. Moreover, the presence of multiple populations of NMDAR subtypes on a given neuron allows for differential patterns of NMDAR activation in response to varied glutamate inputs. This model demonstrates how NMDAR subtypes enable effective and reliable communication within neuronal networks and can be used as a tool to examine specific roles of NMDAR subtypes in neuronal function.
Collapse
Affiliation(s)
- Pallab Singh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Adam J. Hockenberry
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Vineet R. Tiruvadi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
26
|
Liu Z, Zhang T, Ren G, Yang Z. Nano-Ag inhibiting action potential independent glutamatergic synaptic transmission but increasing excitability in rat CA1 pyramidal neurons. Nanotoxicology 2011; 6:414-23. [DOI: 10.3109/17435390.2011.583996] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Nadkarni S, Bartol TM, Sejnowski TJ, Levine H. Modelling vesicular release at hippocampal synapses. PLoS Comput Biol 2010; 6:e1000983. [PMID: 21085682 PMCID: PMC2978677 DOI: 10.1371/journal.pcbi.1000983] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 10/01/2010] [Indexed: 01/13/2023] Open
Abstract
We study local calcium dynamics leading to a vesicle fusion in a stochastic, and spatially explicit, biophysical model of the CA3-CA1 presynaptic bouton. The kinetic model for vesicle release has two calcium sensors, a sensor for fast synchronous release that lasts a few tens of milliseconds and a separate sensor for slow asynchronous release that lasts a few hundred milliseconds. A wide range of data can be accounted for consistently only when a refractory period lasting a few milliseconds between releases is included. The inclusion of a second sensor for asynchronous release with a slow unbinding site, and thereby a long memory, affects short-term plasticity by facilitating release. Our simulations also reveal a third time scale of vesicle release that is correlated with the stimulus and is distinct from the fast and the slow releases. In these detailed Monte Carlo simulations all three time scales of vesicle release are insensitive to the spatial details of the synaptic ultrastructure. Furthermore, our simulations allow us to identify features of synaptic transmission that are universal and those that are modulated by structure. Chemical synaptic transmission in neurons takes place when a neurotransmitter released from a nerve terminal of the presynaptic neuron signals to the postsynaptic neuron that an event has occurred. The goal of our research was to model the release at a type of synapse found in the hippocampus, a part of the brain that is involved with learning and memory. The synapse model was simulated in a computer that kept track of all of the important molecules in the nerve terminal. The model led to a better understanding of the extant experimental data including exact conditions that lead to the release of a single packet of neurotransmitter. According to our model, the release of more than one packet can be triggered by a single presynaptic event but the packets are released one at a time. Furthermore, we uncovered the mechanisms underlying an extremely fast form of release that had not been previously studied. The model made predictions for other properties of the synapse that can be tested experimentally. A better understanding of how the normal synapses in the hippocampus work will help us to better understand what goes wrong with synapses in mental disorders such as depression and schizophrenia.
Collapse
Affiliation(s)
- Suhita Nadkarni
- Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, California, United States of America
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Thomas M. Bartol
- Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, California, United States of America
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Terrence J. Sejnowski
- Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, California, United States of America
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, United States of America
- Division of Biological Sciences, University of California at San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Herbert Levine
- Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, California, United States of America
| |
Collapse
|
28
|
Miyawaki H, Hirano T. Different correlations among physiological and morphological properties at single glutamatergic synapses in the rat hippocampus and the cerebellum. Synapse 2010; 65:412-23. [PMID: 20812293 DOI: 10.1002/syn.20860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 08/15/2010] [Indexed: 11/10/2022]
Abstract
Synapses in the mammalian central nervous system show substantial diversity in their physiological and morphological properties. However, the correlations among them have remained elusive. Here, we tried to clarify the correlations by establishing a method to record excitatory postsynaptic currents (EPSCs) at individual synapses and also to observe the morphology at the same time. A pair of pre- and postsynaptic neurons were labeled with different fluorescent dyes, and a presynaptic varicosity was selectively stimulated with a θ-tube glass electrode under conditions in which action potential generation was suppressed. Two representative types of excitatory glutamatergic synapses, one on hippocampal pyramidal neurons and the other on cerebellar Purkinje neurons, were studied. The correlations between the properties of quantal EPSCs (qEPSCs) and those of synaptic morphology were analyzed in rat primary culture preparations. The amplitude and the decay time of qEPSC were correlated with the size of the postsynaptic spine only at hippocampal synapses. In contrast, the size of the presynaptic varicosity was correlated with the size of the postsynaptic spine and the quantal content of evoked EPSCs only at granule neuron-Purkinje neuron synapses in the cerebellum. These results suggest that the interaction between pre- and postsynaptic structures and the coupling of postsynaptic responsiveness and the spine morphology differ between cerebellar and hippocampal glutamatergic synapses.
Collapse
Affiliation(s)
- Hiroyuki Miyawaki
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto, Japan
| | | |
Collapse
|
29
|
Nauen DW. Methods of measuring activity at individual synapses: a review of techniques and the findings they have made possible. J Neurosci Methods 2010; 194:195-205. [PMID: 20888362 DOI: 10.1016/j.jneumeth.2010.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
Neurons in the brain are often linked by single synaptic contacts (Gulyás et al., 1993) and the probabilistic character of synaptic activity makes it desirable to increase the resolution of physiological experiments by observing the function of the smallest possible number of synaptic terminals, ideally, one. Because they are critically important and technically difficult to resolve, several of the core questions investigated in singe-site experiments have been under study for decades (Auger and Marty, 2000). Many approaches have been taken toward the goal of measuring activity at few synapses, and consideration of the capabilities and limitations of each of these methods permits a review of the contributions each has made possible to present understanding of synaptic function. A number of methodological advances in recent years have increased resolving power. New techniques often build on previous developments and many effective approaches combine components of existing specialized methods with new technology. One theme that emerges is that synaptic properties vary among regions, reducing the utility of general questions such as whether synaptic glutamate saturates receptors or how rapidly synaptic vesicle pools are depleted. For several core questions, multiple studies using different methods have reached similar conclusions, suggesting that consensus may be emerging for some anatomic synapses.
Collapse
Affiliation(s)
- David W Nauen
- Department of Neurobiology, University of Pittsburgh School of Medicine, W1401 BST, 200 Lothrop Street, Pittsburgh, PA 15261, United States.
| |
Collapse
|
30
|
Ariel P, Ryan TA. Optical mapping of release properties in synapses. Front Neural Circuits 2010; 4. [PMID: 20802854 PMCID: PMC2928663 DOI: 10.3389/fncir.2010.00018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 06/18/2010] [Indexed: 11/13/2022] Open
Abstract
Synapses are important functional units that determine how information flows through the brain. Understanding their biophysical properties and the molecules that underpin them is an important goal of cellular neuroscience. Thus, it is of interest to develop protocols that allow easy measurement of synaptic parameters in model systems that permit molecular manipulations. Here, we used a sensitive and high-time resolution optical approach that allowed us to characterize two functional parameters critical to presynaptic efficacy: vesicle fusion probability (Pv) and readily-releasable pool size (RRP). We implemented two different approaches to determine the RRP size that were in broad agreement: depletion of the RRP by high-frequency stimulation and saturation of the calcium sensor during single action potential stimuli. Our methods are based on reporters that provide a robust, quantitative, purely presynaptic readout and present a new avenue to study molecules that affect synaptic vesicle exocytosis.
Collapse
Affiliation(s)
- Pablo Ariel
- Department of Biochemistry, Weill Cornell Medical College New York, NY, USA
| | | |
Collapse
|
31
|
Cabezas C, Buño W. BDNF is required for the induction of a presynaptic component of the functional conversion of silent synapses. Hippocampus 2010; 21:374-85. [DOI: 10.1002/hipo.20754] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Scimemi A, Beato M. Determining the neurotransmitter concentration profile at active synapses. Mol Neurobiol 2009; 40:289-306. [PMID: 19844813 PMCID: PMC2777263 DOI: 10.1007/s12035-009-8087-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/30/2009] [Indexed: 10/29/2022]
Abstract
Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission.
Collapse
Affiliation(s)
- Annalisa Scimemi
- Synaptic Physiology Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3701, USA.
| | | |
Collapse
|
33
|
|
34
|
|
35
|
Spine neck plasticity controls postsynaptic calcium signals through electrical compartmentalization. J Neurosci 2009; 28:13457-66. [PMID: 19074019 DOI: 10.1523/jneurosci.2702-08.2008] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dendritic spines have been proposed to function as electrical compartments for the active processing of local synaptic signals. However, estimates of the resistance between the spine head and the parent dendrite suggest that compartmentalization is not tight enough to electrically decouple the synapse. Here we show in acute hippocampal slices that spine compartmentalization is initially very weak, but increases dramatically upon postsynaptic depolarization. Using NMDA receptors as voltage sensors, we provide evidence that spine necks not only regulate diffusional coupling between spines and dendrites, but also control local depolarization of the spine head. In spines with high-resistance necks, presynaptic activity alone was sufficient to trigger calcium influx through NMDA receptors and R-type calcium channels. We conclude that calcium influx into spines, a key trigger for synaptic plasticity, is dynamically regulated by spine neck plasticity through a process of electrical compartmentalization.
Collapse
|
36
|
Nicholson DA, Geinisman Y. Axospinous synaptic subtype-specific differences in structure, size, ionotropic receptor expression, and connectivity in apical dendritic regions of rat hippocampal CA1 pyramidal neurons. J Comp Neurol 2009; 512:399-418. [PMID: 19006199 PMCID: PMC2592507 DOI: 10.1002/cne.21896] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The morphology of axospinous synapses and their parent spines varies widely. Additionally, many of these synapses are contacted by multiple synapse boutons (MSBs) and show substantial variability in receptor expression. The two major axospinous synaptic subtypes are perforated and nonperforated, but there are several subcategories within these two classes. The present study used serial section electron microscopy to determine whether perforated and nonperforated synaptic subtypes differed with regard to their distribution, size, receptor expression, and connectivity to MSBs in three apical dendritic regions of rat hippocampal area CA1: the proximal and distal thirds of stratum radiatum, and the stratum lacunosum-moleculare. All synaptic subtypes were present throughout the apical dendritic regions, but there were several subclass-specific differences. First, segmented, completely partitioned synapses changed in number, proportion, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor expression with distance from the soma beyond that found within other perforated synaptic subtypes. Second, atypically large, nonperforated synapses showed N-methyl-D-aspartate (NMDA) receptor immunoreactivity identical to that of perforated synapses, levels of AMPA receptor expression intermediate to that of nonperforated and perforated synapses, and perforated synapse-like changes in structure with distance from the soma. Finally, MSB connectivity was highest in the proximal stratum radiatum, but only for those MSBs composed of nonperforated synapses. The immunogold data suggest that most MSBs would not generate simultaneous depolarizations in multiple neurons or spines, however, because the vast majority of MSBs are comprised of two synapses with abnormally low levels of receptor expression, or involve one synapse with a high level of receptor expression and another with only a low level.
Collapse
Affiliation(s)
- Daniel A Nicholson
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
37
|
Abrahamsson T, Gustafsson B, Hanse E. AMPA Silencing Is a Prerequisite for Developmental Long-Term Potentiation in the Hippocampal CA1 Region. J Neurophysiol 2008; 100:2605-14. [DOI: 10.1152/jn.90476.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) unsilencing is an often proposed expression mechanism both for developmental long-term potentiation (LTP), involved in circuitry refinement during brain development, and for mature LTP, involved in learning and memory. In the hippocampal CA3–CA1 connection naïve (nonstimulated) synapses are AMPA signaling and AMPA-silent synapses are created from naïve AMPA-signaling (AMPA-labile) synapses by test-pulse synaptic activation (AMPA silencing). To investigate to what extent LTPs at different developmental stages are explained by AMPA unsilencing, the amount of LTP obtained at these different developmental stages was related to the amount of AMPA silencing that preceded the induction of LTP. When examined in the second postnatal week Hebbian induction was found to produce no more stable potentiation than that causing a return to the naïve synaptic strength existing prior to the AMPA silencing. Moreover, in the absence of a preceding AMPA silencing Hebbian induction produced no stable potentiation above the naïve synaptic strength. Thus this early, or developmental, LTP is nothing more than an unsilencing (dedepression) and stabilization of the AMPA signaling that was lost by the prior AMPA silencing. This dedepression and stabilization of AMPA signaling was mimicked by the presence of the protein kinase A activator forskolin. As the relative degree of AMPA silencing decreased with development, LTP manifested itself more and more as a “genuine” potentiation (as opposed to a dedepression) not explained by unsilencing and stabilization of AMPA-labile synapses. This “genuine,” or mature, LTP rose from close to nothing of total LTP prior to postnatal day (P)13, to about 70% of total LTP at P16, and to about 90% of total LTP at P30. Developmental LTP, by stabilization of AMPA-labile synapses, thus seems adapted to select synaptic connections to the growing synaptic network. Mature LTP, by instead strengthening existing stable connections between cells, may then create functionally tightly connected cell assemblies within this network.
Collapse
|
38
|
O'Connor DH, Wittenberg GM, Wang SSH. Timing and contributions of pre-synaptic and post-synaptic parameter changes during unitary plasticity events at CA3-CA1 synapses. Synapse 2007; 61:664-78. [PMID: 17503487 DOI: 10.1002/syn.20403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
At individual synapses, post-synaptic responses include a mixture of "successes" and "failures" in which transmitter is released or not released, respectively. Previously we measured synaptic strength at CA3-CA1 synapses averaged over all trials, including both successes and failures, using an induction protocol that allowed us to observe potentiation and depression events as step-like changes. Here we report quantal properties of 15 of the earlier experiments, including 14 potentiation events and eight depression events. In five experiments both potentiation events and depression events were evoked at the same synapse. During potentiation, success rate increased from 0.56 +/- 0.14 (mean +/- SD) to 0.69 +/- 0.12, and during depression, success rate decreased from 0.70 +/- 0.09 to 0.51 +/- 0.10. During potentiation potency increased from 10 +/- 5 to 19 +/- 9 pA, and during depression, potency decreased from 18 +/- 12 to 12 +/- 7 pA. On average, changes in potency accounted for 76% of the change in response size in potentiation events and 60% of the change in depression events. A reduced-assumption spectral analysis method showed evidence for multiple quantal peaks in distributions of post-synaptic current amplitudes. Consistent with the observed changes in potency, estimated quantal size (Q) increased with potentiation and decreased with depression. A change in potency, which is thought to reflect post-synaptic expression mechanisms, was followed within seconds to minutes by a change in success rate, which is thought to reflect pre-synaptic expression mechanisms. Synaptic plasticity events may therefore consist of changes that occur on both sides of a synapse in a temporally coordinated fashion.
Collapse
Affiliation(s)
- Daniel H O'Connor
- Department of Molecular Biology and Program in Neuroscience, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | |
Collapse
|
39
|
Lisman JE, Raghavachari S, Tsien RW. The sequence of events that underlie quantal transmission at central glutamatergic synapses. Nat Rev Neurosci 2007; 8:597-609. [PMID: 17637801 DOI: 10.1038/nrn2191] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The properties of synaptic transmission were first elucidated at the neuromuscular junction. More recent work has examined transmission at synapses within the brain. Here we review the remarkable progress in understanding the biophysical and molecular basis of the sequential steps in this process. These steps include the elevation of Ca2+ in microdomains of the presynaptic terminal, the diffusion of transmitter through the fusion pore into the synaptic cleft and the activation of postsynaptic receptors. The results give insight into the factors that control the precision of quantal transmission and provide a framework for understanding synaptic plasticity.
Collapse
Affiliation(s)
- John E Lisman
- Brandeis University, Department of Biology, MS 008, 415 South Street, Waltham, Massachusetts 02454-9110, USA.
| | | | | |
Collapse
|
40
|
Manita S, Suzuki T, Inoue M, Kudo Y, Miyakawa H. Paired-pulse ratio of synaptically induced transporter currents at hippocampal CA1 synapses is not related to release probability. Brain Res 2007; 1154:71-9. [PMID: 17482582 DOI: 10.1016/j.brainres.2007.03.089] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 03/24/2007] [Accepted: 03/27/2007] [Indexed: 11/27/2022]
Abstract
When a synapse is stimulated in rapid succession, the second post-synaptic response can be larger than the first and termed paired-pulse facilitation. It has been reported that the paired-pulse ratio (PPR), which is the ratio of the amplitude of the second response to that of the first, depends on the probability of vesicular release at the synapse, and PPR has been used as an easy measure of the release probability. To re-examine the relation of PPR with transmitter release probability, we made whole-cell recordings from astrocytes and pyramidal neurons in the CA1 area of rat hippocampal slices, and studied responses evoked by paired-pulse stimulus of the Schaffer collaterals. In a control condition in which blockers for ionotropic glutamate receptors were added to the artificial cerebrospinal fluid, synaptically induced transporter currents (STCs) recorded from astrocytes showed PPF with similar dependency on stimulus interval as the AMPA-receptor-mediated excitatory post-synaptic currents (AMPA-EPSCs) recorded from pyramidal neurons. When the transmitter release was enhanced by raising Ca2+ concentration in the bathing medium or by applying 8-CPT, an adenosine A1 receptor antagonist, the PPR of the neuronal AMPA-EPSCs decreased significantly. In the same condition, although the amplitude of STCs was significantly increased, the PPR of STCs did not show significant change. The PPR of AMPA-EPSCs, however, recovered by lowering the stimulus intensity or by applying low concentration of NBQX, a competitive antagonist for AMPA-receptor. These results imply that the PPR of transmitter release at Schaffer collateral synapses stays constant as the release probability was altered.
Collapse
Affiliation(s)
- Satoshi Manita
- Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | |
Collapse
|
41
|
Futai K, Kim MJ, Hashikawa T, Scheiffele P, Sheng M, Hayashi Y. Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin. Nat Neurosci 2007; 10:186-95. [PMID: 17237775 PMCID: PMC4755312 DOI: 10.1038/nn1837] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 12/22/2006] [Indexed: 02/03/2023]
Abstract
The structure and function of presynaptic and postsynaptic components of the synapse are highly coordinated. How such coordination is achieved and the molecules involved in this process have not been clarified. Several lines of evidence suggest that presynaptic functionalities are regulated by retrograde mechanisms from the postsynaptic side. We therefore sought postsynaptic mechanisms responsible for trans-synaptic regulation of presynaptic function at excitatory synapses in rat hippocampal CA1 pyramidal neurons. We show here that the postsynaptic complex of scaffolding protein PSD-95 and neuroligin can modulate the release probability of transmitter vesicles at synapse in a retrograde way, resulting in altered presynaptic short-term plasticity. Presynaptic beta-neurexin serves as a likely presynaptic mediator of this effect. Our results indicate that trans-synaptic protein-protein interactions can link postsynaptic and presynaptic function.
Collapse
Affiliation(s)
- Kensuke Futai
- RIKEN-MIT Neuroscience Research Center, The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
42
|
Biró ÁA, Holderith NB, Nusser Z. Release probability-dependent scaling of the postsynaptic responses at single hippocampal GABAergic synapses. J Neurosci 2006; 26:12487-96. [PMID: 17135411 PMCID: PMC2630420 DOI: 10.1523/jneurosci.3106-06.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 10/24/2006] [Accepted: 10/24/2006] [Indexed: 11/21/2022] Open
Abstract
The amount of neurotransmitter released after the arrival of an action potential affects the strength and the trial-to-trial variability of postsynaptic responses. Most studies examining the dependence of synaptic neurotransmitter concentration on the release probability (P(r)) have focused on glutamatergic synapses. Here we asked whether univesicular or multivesicular release characterizes transmission at hippocampal GABAergic synapses. We used multiple probability functional analysis to derive quantal parameters at inhibitory connections between cannabinoid receptor- and cholecystokinin (CCK)-expressing interneurons and CA3 pyramidal cells. After the recordings, the cells were visualized and reconstructed at the light-microscopic level, and the number of boutons mediating the IPSCs was determined using electron microscopy (EM). The number of active zones (AZs) per CCK-immunopositive bouton was determined from three-dimensional EM reconstructions, thus allowing the calculation of the total number of AZs for each pair. Our results reveal an approximate fivefold discrepancy between the numbers of functionally determined release sites (17.4 +/- 3.2) and structurally identified AZs (3.7 +/- 0.9). Channel modeling predicts that a fivefold to sevenfold increase in the peak synaptic GABA concentration is required for the fivefold enhancement of the postsynaptic responses. Kinetic analysis of the unitary IPSCs indicates that the increase in synaptic GABA concentration is most likely attributable to multivesicular release. This change in the synaptic GABA concentration transient together with extremely low postsynaptic receptor occupancy permits a P(r)-dependent scaling of the postsynaptic response generated at a single hippocampal GABAergic synaptic contact.
Collapse
Affiliation(s)
- Ágota A. Biró
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| | - Noémi B. Holderith
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| |
Collapse
|
43
|
Nicholson DA, Trana R, Katz Y, Kath WL, Spruston N, Geinisman Y. Distance-dependent differences in synapse number and AMPA receptor expression in hippocampal CA1 pyramidal neurons. Neuron 2006; 50:431-42. [PMID: 16675397 DOI: 10.1016/j.neuron.2006.03.022] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 02/22/2006] [Accepted: 03/16/2006] [Indexed: 11/29/2022]
Abstract
The ability of synapses throughout the dendritic tree to influence neuronal output is crucial for information processing in the brain. Synaptic potentials attenuate dramatically, however, as they propagate along dendrites toward the soma. To examine whether excitatory axospinous synapses on CA1 pyramidal neurons compensate for their distance from the soma to counteract such dendritic filtering, we evaluated axospinous synapse number and receptor expression in three progressively distal regions: proximal and distal stratum radiatum (SR), and stratum lacunosum-moleculare (SLM). We found that the proportion of perforated synapses increases as a function of distance from the soma and that their AMPAR, but not NMDAR, expression is highest in distal SR and lowest in SLM. Computational models of pyramidal neurons derived from these results suggest that they arise from the compartment-specific use of conductance scaling in SR and dendritic spikes in SLM to minimize the influence of distance on synaptic efficacy.
Collapse
Affiliation(s)
- Daniel A Nicholson
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
44
|
Foster KA, Crowley JJ, Regehr WG. The influence of multivesicular release and postsynaptic receptor saturation on transmission at granule cell to Purkinje cell synapses. J Neurosci 2006; 25:11655-65. [PMID: 16354924 PMCID: PMC6726039 DOI: 10.1523/jneurosci.4029-05.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The properties of a synapse are crucially dependent on whether an action potential can trigger the release of multiple vesicles at an individual release site [multivesicular release (MVR)] and whether fusion of a single vesicle leads to receptor saturation. MVR and receptor saturation both occur at some high p synapses, but it is not known whether they also occur at low p synapses. Here we examine this issue at the low p synapse between parallel fibers and Purkinje cells using the low-affinity antagonist DGG (gamma-D-glutamylglycine) to relieve AMPA receptor saturation. We find that the presence of MVR and receptor saturation at this synapse alters the calcium dependence of synaptic transmission and reduces the extent of facilitation. These findings establish that MVR and postsynaptic receptor saturation can influence transmission even at synapses with a low initial probability of release and suggest that these properties may be common at synapses in the mammalian brain.
Collapse
Affiliation(s)
- Kelly A Foster
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
45
|
Ricci-Tersenghi F, Minneci F, Sola E, Cherubini E, Maggi L. Multivesicular release at developing Schaffer collateral-CA1 synapses: an analytic approach to describe experimental data. J Neurophysiol 2006; 96:15-26. [PMID: 16598063 DOI: 10.1152/jn.01202.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We developed and analytically solved a simple and general stochastic model to distinguish the univesicular from the multivesicular mode of glutamate release. The model solution gives analytical mathematical expressions for average values of quantities that can be measured experimentally. Comparison of these quantities with the experimental measures allows one to discriminate the release mode and to determine the most probable values of model parameters. The model has been validated at glutamatergic CA3-CA1 synapses in the hippocampus from newborn (P1-P5 old) rats. Our results strongly support a multivesicular type of release process requiring a variable pool of immediately releasable vesicles. Moreover, computing quantities that are functions of the model parameters, the mean amplitude of the synaptic response to the release of a single vesicle (q) was estimated to be 5-10 pA, in very good agreement with experimental findings. In addition a multivesicular type of release was supported by the following experimental evidences: 1) a high variability of the amplitude of successes, with a coefficient of variation ranging from 0.12 to 0.73; 2) an average potency ratio a2/a1 between the second and first response to a pair of stimuli >1; and 3) changes in the potency of the synaptic response to the first stimulus when the release probability was modified by increasing or decreasing the extracellular calcium concentration. Our results indicate that at Schaffer collateral-CA1 synapses of the neonatal rat hippocampus a single action potential may induce the release of more than one vesicle from the same release site.
Collapse
Affiliation(s)
- F Ricci-Tersenghi
- Dipartimento di Fisica Umana e Farmacologia, University La Sapienza, Piazzale A Rome, Italy
| | | | | | | | | |
Collapse
|
46
|
Cabezas C, Buño W. Distinct transmitter release properties determine differences in short-term plasticity at functional and silent synapses. J Neurophysiol 2006; 95:3024-34. [PMID: 16436482 DOI: 10.1152/jn.00739.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent evidence suggests that functional and silent synapses are not only postsynaptically different but also presynaptically distinct. The presynaptic differences may be of functional importance in memory formation because a proposed mechanism for long-term potentiation is the conversion of silent synapses into functional ones. However, there is little direct experimentally evidence of these differences. We have investigated the transmitter release properties of functional and silent Schaffer collateral synapses and show that on the average functional synapses displayed a lower percentage of failures and higher excitatory postsynaptic current (EPSC) amplitudes than silent synapses at +60 mV. Moreover, functional but not silent synapses show paired-pulse facilitation (PPF) at +60 mV and thus presynaptic short-term plasticity will be distinct in the two types of synapse. We examined whether intraterminal endoplasmic reticulum Ca2+ stores influenced the release properties of these synapses. Ryanodine (100 microM) and thapsigargin (1 microM) increased the percentage of failures and decreased both the EPSC amplitude and PPF in functional synapses. Caffeine (10 mM) had the opposite effects. In contrast, silent synapses were insensitive to both ryanodine and caffeine. Hence we have identified differences in the release properties of functional and silent synapses, suggesting that synaptic terminals of functional synapses express regulatory molecular mechanisms that are absent in silent synapses.
Collapse
Affiliation(s)
- Carolina Cabezas
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Av. Dr Arce 37, 28002, Madrid, Spain
| | | |
Collapse
|
47
|
Christie JM, Jahr CE. Multivesicular release at Schaffer collateral-CA1 hippocampal synapses. J Neurosci 2006; 26:210-6. [PMID: 16399689 PMCID: PMC2670931 DOI: 10.1523/jneurosci.4307-05.2006] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 11/07/2005] [Accepted: 11/08/2005] [Indexed: 11/21/2022] Open
Abstract
Whether an individual synapse releases single or multiple vesicles of transmitter per action potential is contentious and probably depends on the type of synapse. One possibility is that multivesicular release (MVR) is determined by the instantaneous release probability (Pr) and therefore can be controlled by activity-dependent changes in Pr. We investigated transmitter release across a range of Pr at synapses between Schaffer collaterals (SCs) and CA1 pyramidal cells in acute hippocampal slices using patch-clamp recordings. The size of the synaptic glutamate transient was estimated by the degree of inhibition of AMPA receptor EPSCs with the rapidly equilibrating antagonist gamma-D-glutamylglycine. The glutamate transient sensed by AMPA receptors depended on Pr but not spillover, indicating that multiple vesicles are essentially simultaneously released from the same presynaptic active zone. Consistent with an enhanced glutamate transient, increasing Pr prolonged NMDA receptor EPSCs when glutamate transporters were inhibited. We suggest that MVR occurs at SC-CA1 synapses when Pr is elevated by facilitation and that MVR may be a phenomenon common to many synapses throughout the CNS.
Collapse
Affiliation(s)
- Jason M Christie
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA.
| | | |
Collapse
|
48
|
Biró AA, Holderith NB, Nusser Z. Quantal size is independent of the release probability at hippocampal excitatory synapses. J Neurosci 2005; 25:223-32. [PMID: 15634785 PMCID: PMC6725207 DOI: 10.1523/jneurosci.3688-04.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Short-term synaptic plasticity changes the reliability of transmission during repetitive activation and allows different neuronal ensembles to encode distinct features of action potential trains. Identifying the mechanisms and the locus of expression of such plasticity is essential for understanding neuronal information processing. To determine the quantal parameters and the locus of alterations during short-term plasticity of cortical glutamatergic synapses, EPSCs were evoked in hippocampal oriens-alveus interneurons by CA1 pyramidal cells. The robust short-term facilitation of this connection allowed us to examine the transmission under functionally relevant but widely different release probability (P(r)) conditions. Paired whole-cell recordings permitted the functional and post hoc morphological characterization of the synapses. To determine the quantal size (q), the P(r), and the number of functional release sites (N(F)), two independent quantal analysis methods were used. Light and electron microscopy were performed to identify the number of synaptic junctions (N(EM)) between the recorded cells. The mean number of functional release sites (N(F(f)) = 2.9 +/- 0.4; n = 8) as inferred from a simple binomial model with no quantal variance agreed well with the mean of N(EM) (2.8 +/- 0.8; n = 6), but N(F(f)) never matched N(EM) when they were compared in individual pairs; however, including quantal variance in the model improved the functional prediction of the structural data. Furthermore, an increased P(r) (4.8 +/- 0.8-fold) fully accounted for the marked short-term facilitation of EPSCs (5.0 +/- 0.7-fold), and q was independent of P(r). Our results are consistent with the "one-release site, one-vesicle" hypothesis.
Collapse
Affiliation(s)
- Agota A Biró
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| | | | | |
Collapse
|
49
|
Crochet S, Chauvette S, Boucetta S, Timofeev I. Modulation of synaptic transmission in neocortex by network activities. Eur J Neurosci 2005; 21:1030-44. [PMID: 15787708 DOI: 10.1111/j.1460-9568.2005.03932.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neocortical neurons integrate inputs from thousands of presynaptic neurons that fire in vivo with frequencies that can reach 20 Hz. An important issue in understanding cortical integration is to determine the actual impact of presynaptic firing on postsynaptic neuron in the context of an active network. We used dual intracellular recordings from synaptically connected neurons or microstimulation to study the properties of spontaneous and evoked single-axon excitatory postsynaptic potentials (EPSPs) in vivo, in barbiturate or ketamine-xylazine anaesthetized cats. We found that active states of the cortical network were associated with higher variability and decrease in amplitude and duration of the EPSPs owing to a shunting effect. Moreover, the number of apparent failures markedly increased during active states as compared with silent states. Single-axon EPSPs in vivo showed mainly paired-pulse facilitation, and the paired-pulse ratio increased during active states as compare to silent states, suggesting a decrease in release probability during active states. Raising extracellular Ca(2+) concentration to 2.5-3.0 mm by reverse microdialysis reduced the number of apparent failures and significantly increased the mean amplitude of individual synaptic potentials. Quantitative analysis of spontaneous synaptic activity suggested that the proportion of presynaptic activity that impact at the soma of a cortical neuron in vivo was low because of a high failure rate, a shunting effect and probably dendritic filtering. We conclude that during active states of cortical network, the efficacy of synaptic transmission in individual synapses is low, thus safe transmission of information requires synchronized activity of a large population of presynaptic neurons.
Collapse
Affiliation(s)
- Sylvain Crochet
- Department of Anatomy and Physiology, Laval University, Québec, G1K 7P4, Canada
| | | | | | | |
Collapse
|
50
|
Abstract
We have used Monte Carlo simulations to understand the generation of quantal responses at the single active zones of CA1 synapses. We constructed a model of AMPA channel activation that accounts for the responses to controlled glutamate application and a model of glutamate diffusion in the synaptic cleft. With no further adjustments to these models, we simulated the response to the release of glutamate from a single vesicle. The predicted response closely matches the rise time of observed responses, which recent measurements show is much faster (<100 μs) than previously thought. The simulations show that initial channel opening is driven by a brief (<100 μs) glutamate spike near the site of vesicle fusion, producing a hotspot of channel activation (diameter: ∼250 nm) smaller than many synapses. Quantal size therefore depends more strongly on the density of channels than their number, a finding that has important implications for measuring synaptic strength. Recent measurements allow estimation of AMPA receptor density at CA1 synapses. Using this value, our simulations correctly predicts a quantal amplitude of ∼10 pA. We have also analyzed the properties of excitatory postsynaptic currents (EPSCs) generated by the multivesicular release that can occur during evoked responses. We find that summation is nearly linear and that the existence of multiple narrow peaks in amplitude histograms can be accounted for. It has been unclear how to reconcile the existence of these narrow peaks, which indicate that the variation of quantal amplitude is small (CV < 0.2) with the highly variable amplitude of miniature EPSCs (mEPSCs; CV ∼ 0.6). According to one theory, mEPSC variability arises from variation in vesicle glutamate content. However, both our modeling results and recent experimental results indicate that this view cannot account for the observed rise time/amplitude correlation of mEPSCs. In contrast, this correlation and the high mEPSC variability can be accounted for if some mEPSCs are generated by two or more vesicles released with small temporal jitter. We conclude that a broad range of results can be accounted for by simple principles: quantal amplitude (∼10 pA) is stereotyped, some mEPSCs are multivesicular at moderate and large synapses, and evoked responses are generated by quasi-linear summation of multiple quanta.
Collapse
Affiliation(s)
- Sridhar Raghavachari
- Dept. of Biology and Volen Center for Complex Systems, Brandeis University MS 008, 415 South S., Waltham, MA 02454, USA
| | | |
Collapse
|