1
|
Hu Z, Li Y, Yang J, Liu J, Zhou H, Sun C, Tian C, Zhu C, Shao M, Wang S, Wei L, Liu M, Li S, Wang J, Xu H, Zhu W, Li X, Li J. Improved antitumor effectiveness of oncolytic HSV-1 viruses engineered with IL-15/IL-15Rα complex combined with oncolytic HSV-1-aPD1 targets colon cancer. Sci Rep 2024; 14:23671. [PMID: 39389985 PMCID: PMC11467195 DOI: 10.1038/s41598-024-72888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Oncolytic virotherapy is emerging as a promising therapeutic avenue for cancer treatment, harnessing both innate and tumor-specific immune responses for targeted tumor elimination. In this study, we present a novel oncolytic virus (oHSV1-IL15B) derived from herpes simplex virus-1 (HSV-1), armed with IL-15/IL-15Rα complex, with a focus on treating colon cancer combined with oncolytic HSV-1 expressing anti-PD-1 antibody (oHSV1-aPD1). Results from our study reveal that recombinant oHSV-1 virus equipped with IL-15/IL-15Rα complex exhibited significant anti-tumor effects in a murine CT26 colon adenocarcinoma model. Notably, oHSV1-IL15B combined with oHSV-1-aPD1 demonstrates superior tumor inhibition and prolonged overall survival compared to oHSV1-mock and monotherapy groups. Further exploration highlights the impact of oHSV1-IL15B, oHSV-1-aPD1 and combined group on antitumor capacity, revealing a substantial increase in CD8+ T and CD4+ T cell proportions of CT26-bearing BALB/c mice and promoting apoptosis in tumor tissue. The study emphasizes the pivotal role of cytotoxic CD8+T cells in oncolytic virotherapy, demonstrating that recombinant oHSV1-IL15B combined with oncolytic HSV-1-aPD1 induces a robust tumor-specific T cell response. RNA sequence analysis highlighted oHSV1-IL15B combined with oHSV1-aPD1 improved tumors immune microenvironment on immune response, antiviral response-related genes and apoptosis-related genes, which contributed to anti-tumor immunotherapy. The findings underscore the promising antitumor activity achieved through the combination of IL-15/IL-15Rα complex and anti-PD-1 antibody with oHSV-1. This research opens avenues for diverse therapeutic strategies, suggesting the potential of synergistically utilizing cytokines and anti-PD-1 antibody with oncolytic viruses to enhance immunotherapy for cancer management.
Collapse
Affiliation(s)
- Zongfeng Hu
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Yixiao Li
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | | | - Jiajia Liu
- Beijing WellGene Company, Ltd, Beijing, 100085, China
| | - Hua Zhou
- Beijing WellGene Company, Ltd, Beijing, 100085, China
| | - Chunyang Sun
- Beijing WellGene Company, Ltd, Beijing, 100085, China
| | - Chao Tian
- Beijing WellGene Company, Ltd, Beijing, 100085, China
| | - Chengyang Zhu
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Mingxia Shao
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Shengrun Wang
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Lijun Wei
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Min Liu
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Shuzhen Li
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Jinyu Wang
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Haitian Xu
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Wei Zhu
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Xiaopeng Li
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China.
- Beijing WellGene Company, Ltd, Beijing, 100085, China.
| | - Jingfeng Li
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China.
| |
Collapse
|
2
|
Rosati M, Terpos E, Homan P, Bergamaschi C, Karaliota S, Ntanasis-Stathopoulos I, Devasundaram S, Bear J, Burns R, Bagratuni T, Trougakos IP, Dimopoulos MA, Pavlakis GN, Felber BK. Rapid transient and longer-lasting innate cytokine changes associated with adaptive immunity after repeated SARS-CoV-2 BNT162b2 mRNA vaccinations. Front Immunol 2023; 14:1292568. [PMID: 38090597 PMCID: PMC10711274 DOI: 10.3389/fimmu.2023.1292568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Cytokines and chemokines play an important role in shaping innate and adaptive immunity in response to infection and vaccination. Systems serology identified immunological parameters predictive of beneficial response to the BNT162b2 mRNA vaccine in COVID-19 infection-naïve volunteers, COVID-19 convalescent patients and transplant patients with hematological malignancies. Here, we examined the dynamics of the serum cytokine/chemokine responses after the 3rd BNT162b2 mRNA vaccination in a cohort of COVID-19 infection-naïve volunteers. Methods We measured serum cytokine and chemokine responses after the 3rd dose of the BNT162b2 mRNA (Pfizer/BioNtech) vaccine in COVID-19 infection-naïve individuals by a chemiluminescent assay and ELISA. Anti-Spike binding antibodies were measured by ELISA. Anti-Spike neutralizing antibodies were measured by a pseudotype assay. Results Comparison to responses found after the 1st and 2nd vaccinations showed persistence of the coordinated responses of several cytokine/chemokines including the previously identified rapid and transient IL-15, IFN-γ, CXCL10/IP-10, TNF-α, IL-6 signature. In contrast to the transient (24hrs) effect of the IL-15 signature, an inflammatory/anti-inflammatory cytokine signature (CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, CXCL8/IL-8, IL-1Ra) remained at higher levels up to one month after the 2nd and 3rd booster vaccinations, indicative of a state of longer-lasting innate immune change. We also identified a systemic transient increase of CXCL13 only after the 3rd vaccination, supporting stronger germinal center activity and the higher anti-Spike antibody responses. Changes of the IL-15 signature, and the inflammatory/anti-inflammatory cytokine profile correlated with neutralizing antibody levels also after the 3rd vaccination supporting their role as immune biomarkers for effective development of vaccine-induced humoral responses. Conclusion These data revealed that repeated SARS-Cov-2 BNT162b2 mRNA vaccination induces both rapid transient as well as longer-lasting systemic serum cytokine changes associated with innate and adaptive immune responses. Clinical trial registration Clinicaltrials.gov, identifier NCT04743388.
Collapse
Affiliation(s)
- Margherita Rosati
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Philip Homan
- Center for Cancer Research Collaborative Bioinformatics Resource, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Sevasti Karaliota
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Santhi Devasundaram
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Robert Burns
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Tina Bagratuni
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - George N. Pavlakis
- Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
3
|
Gunst JD, Goonetilleke N, Rasmussen TA, Søgaard OS. Immunomodulation with IL-7 and IL-15 in HIV-1 infection. J Virus Erad 2023; 9:100347. [PMID: 37767312 PMCID: PMC10520363 DOI: 10.1016/j.jve.2023.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Immunomodulating agents are substances that modify the host immune responses in diseases such as infections, autoimmune conditions and cancers. Immunomodulators can be divided into two main groups: 1) immunostimulators that activate the immune system such as cytokines, toll-like receptor agonists and immune checkpoint blockers; and 2) immunosuppressors that dampen an overactive immune system such as corticosteroids and cytokine-blocking antibodies. In this review, we have focussed on the two primarily T and natural killer (NK) cell homeostatic cytokines: interleukin-7 (IL-7) and -15 (IL-15). These cytokines are immunostimulators which act on immune cells independently of the presence or absence of antigen. In vivo studies have shown that IL-7 administration enhances proliferation of circulating T cells whereas IL-15 agonists enhance the proliferation and function of NK and CD8+ T cells. Both IL-7 and IL-15 therapies have been tested as single interventions in HIV-1 cure-related clinical trials. In this review, we explore whether IL-7 and IL-15 could be part of the therapeutic approaches towards HIV-1 remission.
Collapse
Affiliation(s)
- Jesper D. Gunst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Nilu Goonetilleke
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Thomas A. Rasmussen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ole S. Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
4
|
Al-Fartusie FS, Kader SI, Mohammed SJ, Farhan MN, Mahmood FM, Algaber AA. A comparative study of serum Zn, Cu, Mg, Mn, Cr, and Fe levels and their association with the vulnerability of Iraqi COVID-19 patients. J Trace Elem Med Biol 2023; 79:127242. [PMID: 37321048 PMCID: PMC10258130 DOI: 10.1016/j.jtemb.2023.127242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/27/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND For the immune system to protect the body from infectious diseases such as COVID-19, it needs the ideal amount of vital trace elements. Trace element levels, especially, zinc (Zn), copper (Cu), magnesium (Mg), manganese (Mn), chromium (Cr), and iron (Fe) levels, may affect how sensitive an individual is to COVID-19 and other viruses. The current study evaluated the level of those trace elements during stays in the isolation center and investigated their association with vulnerability to COVID-19. METHODS A total of 120 individuals, 49 males and 71 females aged between 20 and 60 years, were included in this study. Forty individuals infected with COVID-19, 40 individuals who had recovered from it, and 40 healthy individuals, were all evaluated and studied. By using a flame atomic absorption spectrophotometer, levels of Zn, Cu, and Mg were assessed for all samples, whereas levels of Mn, and Cr were determined by a flameless atomic absorption spectrophotometer. RESULTS The infected individuals had significantly lower levels of Zn, Mg, Mn, Cr, and Fe than recovered individuals and healthy control individuals (P < 0.0001). On the other hand, the total number of infected patients was found to have much higher levels of Cu than those in the recovered group and the control group. For the recovered and healthy control groups, no significant differences were observed in the levels of trace elements (P > 0.05), except for Zn (P < 0.01). Also, the findings indicated no association of trace elements with age and BMI (P > 0.05). CONCLUSION These results show that an imbalance in the levels of essential trace elements could be associated with increasing the risk of COVID-19 infection. However, additional thorough research of greater scope is required considering the severity of the infection.
Collapse
Affiliation(s)
- Falah S Al-Fartusie
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Safaa I Kader
- Department of Pathology and Forensic Medicine, College of Medicine, Al-Nahrain University, Baghdad, Iraq.
| | - Sara Jassim Mohammed
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq
| | | | - Fahim Muhsin Mahmood
- Department of Pathology and Forensic Medicine, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Anwar A Algaber
- Department of Medical Labs, Mazaya University College, ThiQar, Iraq
| |
Collapse
|
5
|
Arenas VR, Rugeles MT, Perdomo-Celis F, Taborda N. Recent advances in CD8 + T cell-based immune therapies for HIV cure. Heliyon 2023; 9:e17481. [PMID: 37441388 PMCID: PMC10333625 DOI: 10.1016/j.heliyon.2023.e17481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Achieving a cure for HIV infection is a global priority. There is substantial evidence supporting a central role for CD8+ T cells in the natural control of HIV, suggesting the rationale that these cells may be exploited to achieve remission or cure of this infection. In this work, we review the major challenges for achieving an HIV cure, the models of HIV remission, and the mechanisms of HIV control mediated by CD8+ T cells. In addition, we discuss strategies based on this cell population that could be used in the search for an HIV cure. Finally, we analyze the current challenges and perspectives to translate this basic knowledge toward scalable HIV cure strategies.
Collapse
Affiliation(s)
| | - María T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | | | - Natalia Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellin, Colombia
| |
Collapse
|
6
|
Araujo IL, Piraine REA, Fischer G, Leite FPL. Recombinant BoHV-5 glycoprotein (rgD5) elicits long-lasting protective immunity in cattle. Virology 2023; 584:44-52. [PMID: 37244054 DOI: 10.1016/j.virol.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 05/29/2023]
Abstract
BoHV-5 is a worldwide distributed pathogen usually associated with a lethal neurological disease in dairy and beef cattle resulting in important economic losses due to the cattle industry. Using recombinant gD5, we evaluated the long-duration humoral immunity of the recombinant vaccines in a cattle model. Here we report that two doses of intramuscular immunization, particularly with the rgD5ISA vaccine, induce long-lasting antibody responses. Recombinant gD5 antigen elicited tightly mRNA transcription of the Bcl6 and the chemokine receptor CXCR5 which mediate memory B cells and long-lived plasma cells in germinal centers. In addition, using an in-house indirect ELISA we observed higher and earlier responses of rgD5-specific IgG antibody and the upregulation of mRNA transcription of IL2, IL4, IL10, IL15, and IFN-γ in rgD5 vaccinated cattle, indicating a mixed immune response. We further show that rgD5 immunization protects against both BoHV -1 and -5. Our findings indicate that the rgD5-based vaccine represents an effective vaccine strategy to induce an efficient control of herpesviruses.
Collapse
Affiliation(s)
- Itauá L Araujo
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Brazil.
| | - Renan E A Piraine
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Brazil.
| | - Geferson Fischer
- Laboratory of Virology and Immunology, Federal University of Federal de Pelotas, Pelotas, RS, Brazil.
| | - Fábio P L Leite
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Brazil; Laboratory of Virology and Immunology, Federal University of Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
7
|
Maksoud S, El Hokayem J. The cytokine/chemokine response in Leishmania/HIV infection and co-infection. Heliyon 2023; 9:e15055. [PMID: 37082641 PMCID: PMC10112040 DOI: 10.1016/j.heliyon.2023.e15055] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
HIV infection progressively weakens the immune system by infecting and destroying cells involved in host defense. Viral infection symptoms are generated and aggravated as immunosuppression progresses, triggered by the presence of opportunistic infections: among these is leishmaniasis, a disease caused by the intracellular parasite Leishmania. The incidence of this co-infection is growing progressively due to the geographic distribution overlap. Both pathogens infect monocytes/macrophages and dendritic cells, although they can also modulate the activity of other cells without co-infecting, such as T and B lymphocytes. Leishmania/HIV co-infection could be described as a system comprising modulations of cell surface molecule expression, production of soluble factors, and intracellular death activities, leading ultimately to the potentiation of infectivity, replication, and spread of both pathogens. This review describes the cytokine/chemokine response in Leishmania/HIV infection and co-infection, discussing how these molecules modulate the course of the disease and analyzing the therapeutic potential of targeting this network.
Collapse
|
8
|
Yaseen MM, Abuharfeil NM, Darmani H. The impact of MDSCs on the efficacy of preventive and therapeutic HIV vaccines. Cell Immunol 2021; 369:104440. [PMID: 34560382 DOI: 10.1016/j.cellimm.2021.104440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/07/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022]
Abstract
In spite of four decades of research on human immunodeficiency virus (HIV), the virus remains a major health problem, affecting tens of millions of people around the world. As such, developing an effective preventive/protective and therapeutic vaccines against HIV are essential to prevent/limit the continuous spread of the virus as well as to control the disease progression and to completely eradicate the virus from HIV infected patients, respectively. There are several factors that have impeded the development of such vaccines, and we need to gain further insight into these factors in order to enhance our knowledge concerning the proper immune activation pathways in the hope of accelerating the development of the highly sought-after vaccine. Recently, new immune cell populations, namely the myeloid-derived suppressor cells (MDSCs), were added to the battle of HIV infection. Indeed, MDSCs seem to play a central role in determining the efficacy of therapeutic and preventive vaccines, especially because vaccines, in general, enhance immune responses, while as a potent immunosuppressor cell population, MDSCs, in turn, subvert and limit the activation of immune responses. Hence, in this work, we sought to address the role of MDSCs in the context of preventive/protective, as well as, therapeutic HIV vaccines.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Homa Darmani
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
9
|
Harwood O, O’Connor S. Therapeutic Potential of IL-15 and N-803 in HIV/SIV Infection. Viruses 2021; 13:1750. [PMID: 34578331 PMCID: PMC8473246 DOI: 10.3390/v13091750] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
IL-15, a proinflammatory cytokine critical for the generation, maintenance, and homeostasis of T cell responses, is produced naturally in response to HIV/SIV infection, but has also demonstrated therapeutic potential. IL-15 can boost CD4+ and CD8+ T cell and NK cell proliferation, activation, and function. However, IL-15 treatment may cause aberrant immune activation and accelerated disease progression in certain circumstances. Moreover, the relationship between the timing of IL-15 administration and disease progression remains unclear. The IL-15 superagonist N-803 was developed to expand the therapeutic potential of IL-15 by maximizing its tissue distribution and half-life. N-803 has garnered enthusiasm recently as a way to enhance the innate and cellular immune responses to HIV/SIV by improving CD8+ T cell recognition and killing of virus-infected cells and directing immune cells to mucosal sites and lymph nodes, the primary sites of virus replication. N-803 has also been evaluated in "shock and kill" strategies due to its potential to reverse latency (shock) and enhance antiviral immunity (kill). This review examines the current literature about the effects of IL-15 and N-803 on innate and cellular immunity, viral burden, and latency reversal in the context of HIV/SIV, and their therapeutic potential both alone and combined with additional interventions such as antiretroviral therapy (ART) and vaccination.
Collapse
Affiliation(s)
| | - Shelby O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA;
| |
Collapse
|
10
|
Systemic IL-15, IFN-γ, and IP-10/CXCL10 signature associated with effective immune response to SARS-CoV-2 in BNT162b2 mRNA vaccine recipients. Cell Rep 2021; 36:109504. [PMID: 34352226 PMCID: PMC8299183 DOI: 10.1016/j.celrep.2021.109504] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/16/2021] [Accepted: 07/19/2021] [Indexed: 12/29/2022] Open
Abstract
Early responses to vaccination are important for shaping both humoral and cellular protective immunity. Dissecting innate vaccine signatures may predict immunogenicity to help optimize the efficacy of mRNA and other vaccine strategies. Here, we characterize the cytokine and chemokine responses to the 1st and 2nd dose of the BNT162b2 mRNA (Pfizer/BioNtech) vaccine in antigen-naive and in previously coronavirus disease 2019 (COVID-19)-infected individuals (NCT04743388). Transient increases in interleukin-15 (IL-15) and interferon gamma (IFN-γ) levels early after boost correlate with Spike antibody levels, supporting their use as biomarkers of effective humoral immunity development in response to vaccination. We identify a systemic signature including increases in IL-15, IFN-γ, and IP-10/CXCL10 after the 1st vaccination, which were enriched by tumor necrosis factor alpha (TNF-α) and IL-6 after the 2nd vaccination. In previously COVID-19-infected individuals, a single vaccination results in both strong cytokine induction and antibody titers similar to the ones observed upon booster vaccination in antigen-naive individuals, a result with potential implication for future public health recommendations.
Collapse
|
11
|
Patidar M, Yadav N, Dalai SK. Development of Stable Chimeric IL-15 for Trans-Presentation by the Antigen Presenting Cells. Front Immunol 2021; 12:646159. [PMID: 33953717 PMCID: PMC8092395 DOI: 10.3389/fimmu.2021.646159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
IL-15 is one of the important biologics considered for vaccine adjuvant and treatment of cancer. However, a short half-life and poor bioavailability limit its therapeutic potential. Herein, we have structured IL-15 into a chimeric protein to improve its half-life enabling greater bioavailability for longer periods. We have covalently linked IL-15 with IgG2 base to make the IL-15 a stable chimeric protein, which also increased its serum half-life by 40 fold. The dimeric structure of this kind of IgG based biologics has greater stability, resistance to proteolytic cleavage, and less frequent dosing schedule with minimum dosage for achieving the desired response compared to that of their monomeric forms. The structured chimeric IL-15 naturally forms a dimer, and retains its affinity for binding to its receptor, IL-15Rβ. Moreover, with the focused action of the structured chimeric IL-15, antigen-presenting cells (APC) would transpresent chimeric IL-15 along with antigen to the T cell, that will help the generation of quantitatively and qualitatively better antigen-specific memory T cells. In vitro and in vivo studies demonstrate the biological activity of chimeric IL-15 with respect to its ability to induce IL-15 signaling and modulating CD8+ T cell response in favor of memory generation. Thus, a longer half-life, dimeric nature, and anticipated focused transpresentation by APCs to the T cells will make chimeric IL-15 a super-agonist for memory CD8+ T cell responses.
Collapse
Affiliation(s)
- Manoj Patidar
- Institute of Science, Nirma University, Ahmedabad, India.,Department of Zoology, Govt. College Manawar, Dhar, India
| | - Naveen Yadav
- Institute of Science, Nirma University, Ahmedabad, India.,Translation Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - Sarat K Dalai
- Institute of Science, Nirma University, Ahmedabad, India
| |
Collapse
|
12
|
Park DB, Ahn BE, Son H, Lee YR, Kim YR, Jo SK, Chun JH, Yu JY, Choi MM, Rhie GE. Construction of a bivalent vaccine against anthrax and smallpox using the attenuated vaccinia virus KVAC103. BMC Microbiol 2021; 21:76. [PMID: 33685392 PMCID: PMC7938549 DOI: 10.1186/s12866-021-02121-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background Anthrax and smallpox are high-risk infectious diseases, and considered as potential agents for bioterrorism. To develop an effective countermeasure for these diseases, we constructed a bivalent vaccine against both anthrax and smallpox by integrating a gene encoding protective antigen (PA) of Bacillus anthracis to the genome of the attenuated vaccinia virus strain, KVAC103. Results Immunization with this bivalent vaccine induced antibodies against both PA and vaccinia virus in a mouse model. We also observed that the efficacy of this vaccine can be enhanced by combined immunization with immunoadjuvant-expressing KVAC103. Mouse groups co-immunized with PA-expressing KVAC103 and either interleukin-15 (IL-15) or cholera toxin subunit A (CTA1)-expressing KVAC103 showed increased anti-PA IgG titer and survival rate against B. anthracis spore challenge compared to the group immunized with PA-expressing KVAC103 alone. Conclusions We demonstrated that the attenuated smallpox vaccine KVAC103 is an available platform for a multivalent vaccine and co-immunization of immunoadjuvants can improve vaccine performance. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02121-5.
Collapse
Affiliation(s)
- Deok Bum Park
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, South Korea.,Present address: Forensic DNA Division, Gwangju Institute, National Forensic Service, Jeonnam, South Korea
| | - Bo-Eun Ahn
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - Hosun Son
- Division of Vaccine Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, South Korea
| | - Young-Ran Lee
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, South Korea.,Present address: Convergence Bioceramic Materials Center, Korea Institute of Ceramic Engineering and Technology, Cheongju, South Korea
| | - Yu-Ri Kim
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - Su Kyoung Jo
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - Jeong-Hoon Chun
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - Jae-Yon Yu
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - Myung-Min Choi
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - Gi-Eun Rhie
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, South Korea.
| |
Collapse
|
13
|
Sun S, Yang Q, Sheng Y, Fu Y, Sun C, Deng C. Investigational drugs with dual activity against HBV and HIV (Review). Exp Ther Med 2020; 21:35. [PMID: 33262821 PMCID: PMC7690342 DOI: 10.3892/etm.2020.9467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic hepatitis B (CHB) and acquired immunodeficiency syndrome (AIDS) are global public health problems that pose a significant health burden. Human immunodeficiency virus (HIV) and hepatitis B virus (HBV) coinfection is common, as these viruses have similar transmission routes, such as blood transmission, sexual transmission and mother-to-child transmission. Coinfection frequently leads to accelerated disease progression. For individuals coinfected with HIV/HBV, combination antiretroviral therapy containing dual anti-HBV drugs is recommended. Certain studies have also indicated the benefits of antiretroviral drugs with anti-HBV activity in patients with coinfection. A total of four Food and Drug Administration-approved HIV drugs also have anti-HBV activity; namely, emtricitabine, lamivudine, tenofovir disoproxil fumarate and tenofovir alafenamide, which are all nucleoside reverse transcriptase inhibitors. However, various issues, including drug resistance and side effects, limit their application. Therefore, it is necessary to develop more drugs with dual activity against HBV and HIV. The present review outlines the mechanisms, safety and efficacy of certain drugs that have been investigated for this purpose.
Collapse
Affiliation(s)
- Shiyu Sun
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qing Yang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yunjian Sheng
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yi Fu
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Changfeng Sun
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Cunliang Deng
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
14
|
Transcriptomic analysis of chicken immune response to infection of different doses of Newcastle disease vaccine. Gene 2020; 766:145077. [PMID: 32941951 DOI: 10.1016/j.gene.2020.145077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
Newcastle disease virus (NDV) is a contagious poultry paramyxovirus, leading to substantial economic losses to the poultry industry. Here, RNA-seq was carried out to investigate the altered expression of immune-related genes in chicken thymus within 96 h in response to NDV infection. In NDV-infected chicken thymus tissues, comparative transcriptome analysis revealed 1386 differentially expressed genes (DEGs) at 24 h with 989 up- and 397 down-regulated genes, 728 DEGs at 48 h with 567 up- and 161 down-regulated genes, 1514 DEGs at 72 h with 1016 up- and 498 down-regulated genes, and 1196 DEGs at 96 h with 522 up- and 674 down-regulated genes, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these candidate targets mainly participate in biological processes or biochemical, metabolic and signal transduction processes. Notably, there is large enrichment in biological processes, cell components and metabolic processes, which may be related to NDV pathogenicity. In addition, the expression of five immune-related DEGs identified by RNA-seq was validated by quantitative real-time polymerase chain reaction (qRT-PCR). Our results indicated that the expression levels of AvBD5, IL16, IL22 and IL18R1 were obviously up-regulated, and Il-18 expression was also changed, but not significantly, which play key roles in the defense against NDV. Overall, we identified several candidate targets that may be involved in the regulation of NDV infection, which provide new insights into the complicated regulatory mechanisms of virus-host interactions, and explore new strategies for protecting chickens against the virus.
Collapse
|
15
|
Maruoka Y, Furusawa A, Okada R, Inagaki F, Wakiyama H, Kato T, Nagaya T, Choyke PL, Kobayashi H. Interleukin-15 after Near-Infrared Photoimmunotherapy (NIR-PIT) Enhances T Cell Response against Syngeneic Mouse Tumors. Cancers (Basel) 2020; 12:cancers12092575. [PMID: 32927646 PMCID: PMC7564397 DOI: 10.3390/cancers12092575] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Near infrared photoimmunotherapy is a newly developed and highly selective cancer treatment that employs a monoclonal antibody conjugated to a photo-absorber dye, IRDye700DX, which is activated by 690 nm light. Cancer cell-targeted near infrared photoimmunotherapy selectively induces rapid necrotic/immunogenic cell death only on target cancer cells and this induces antitumor host immunity including re-priming and proliferation of multi-chronal T-cells that can react with cancer-specific antigens. Interleukin-15 is a type-I cytokine that activates natural killer-, B- and T-cells while having minimal effect on regulatory T-cells that lack the interleukin-15 receptor. Therefore, interleukin-15 administration combined with cancer cell-targeted near infrared photoimmunotherapy could further inhibit tumor growth by increasing antitumor host immunity. In tumor-bearing immunocompetent mice receiving this combination therapy, significant tumor growth inhibition and prolonged survival was demonstrated compared with either single therapy alone, and tumor infiltrating CD8+ T-cells increased in number in combination-treated mice. Interleukin-15 enhances therapeutic effects of cancer-targeted near infrared photoimmunotherapy. Abstract Near infrared photoimmunotherapy (NIR-PIT) is a newly developed and highly selective cancer treatment that employs a monoclonal antibody (mAb) conjugated to a photo-absorber dye, IRDye700DX, which is activated by 690 nm light. Cancer cell-targeted NIR-PIT induces rapid necrotic/immunogenic cell death (ICD) that induces antitumor host immunity including re-priming and proliferation of T cells. Interleukin-15 (IL-15) is a cytokine that activates natural killer (NK)-, B- and T-cells while having minimal effect on regulatory T cells (Tregs) that lack the IL-15 receptor. Here, we hypothesized that IL-15 administration with cancer cell-targeted NIR-PIT could further inhibit tumor growth by increasing antitumor host immunity. Three syngeneic mouse tumor models, MC38-luc, LL/2, and MOC1, underwent combined CD44-targeted NIR-PIT and short-term IL-15 administration with appropriate controls. Comparing with the single-agent therapy, the combination therapy of IL-15 after NIR-PIT inhibited tumor growth, prolonged survival, and increased tumor infiltrating CD8+ T cells more efficiently in tumor-bearing mice. IL-15 appears to enhance the therapeutic effect of cancer-targeted NIR-PIT.
Collapse
|
16
|
Yamaguchi T, Takizawa F, Furihata M, Soto-Lampe V, Dijkstra JM, Fischer U. Teleost cytotoxic T cells. FISH & SHELLFISH IMMUNOLOGY 2019; 95:422-439. [PMID: 31669897 DOI: 10.1016/j.fsi.2019.10.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Cell-mediated cytotoxicity is one of the major mechanisms by which vertebrates control intracellular pathogens. Two cell types are the main players in this immune response, natural killer (NK) cells and cytotoxic T lymphocytes (CTL). While NK cells recognize altered target cells in a relatively unspecific manner CTLs use their T cell receptor to identify pathogen-specific peptides that are presented by major histocompatibility (MHC) class I molecules on the surface of infected cells. However, several other signals are needed to regulate cell-mediated cytotoxicity involving a complex network of cytokine- and ligand-receptor interactions. Since the first description of MHC class I molecules in teleosts during the early 90s of the last century a remarkable amount of information on teleost immune responses has been published. The corresponding studies describe teleost cells and molecules that are involved in CTL responses of higher vertebrates. These studies are backed by functional investigations on the killing activity of CTLs in a few teleost species. The present knowledge on teleost CTLs still leaves considerable room for further investigations on the mechanisms by which CTLs act. Nevertheless the information on teleost CTLs and their regulation might already be useful for the control of fish diseases by designing efficient vaccines against such diseases where CTL responses are known to be decisive for the elimination of the corresponding pathogen. This review summarizes the present knowledge on CTL regulation and functions in teleosts. In a special chapter, the role of CTLs in vaccination is discussed.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Fumio Takizawa
- Laboratory of Marine Biotechnology, Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan
| | - Mitsuru Furihata
- Nagano Prefectural Fisheries Experimental Station, 2871 Akashina-nakagawate, Azumino-shi, Nagano-ken, 399-7102, Japan
| | - Veronica Soto-Lampe
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Uwe Fischer
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
17
|
Conlon KC, Potter EL, Pittaluga S, Lee CCR, Miljkovic MD, Fleisher TA, Dubois S, Bryant BR, Petrus M, Perera LP, Hsu J, Figg WD, Peer CJ, Shih JH, Yovandich JL, Creekmore SP, Roederer M, Waldmann TA. IL15 by Continuous Intravenous Infusion to Adult Patients with Solid Tumors in a Phase I Trial Induced Dramatic NK-Cell Subset Expansion. Clin Cancer Res 2019; 25:4945-4954. [PMID: 31142503 DOI: 10.1158/1078-0432.ccr-18-3468] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/26/2019] [Accepted: 05/17/2019] [Indexed: 01/05/2023]
Abstract
PURPOSE The first-in-human clinical trial with human bolus intravenous infusion IL15 (rhIL15) was limited by treatment-associated toxicity. Here, we report toxicity, immunomodulation, and clinical activity of rhIL15 administered as a 10-day continuous intravenous infusion (CIV) to patients with cancers in a phase I trial. PATIENTS AND METHODS Patients received treatment for 10 days with CIV rhIL15 in doses of 0.125, 0.25, 0.5, 1, 2, or 4 μg/kg/day. Correlative laboratory tests included IL15 pharmacokinetic (PK) analyses, and assessment of changes in lymphocyte subset numbers. RESULTS Twenty-seven patients were treated with rhIL15; 2 μg/kg/day was identified as the MTD. There were eight serious adverse events including two bleeding events, papilledema, uveitis, pneumonitis, duodenal erosions, and two deaths (one due to likely drug-related gastrointestinal ischemia). Evidence of antitumor effects was observed in several patients, but stable disease was the best response noted. Patients in the 2 μg/kg/day group had a 5.8-fold increase in number of circulating CD8+ T cells, 38-fold increase in total NK cells, and 358-fold increase in CD56bright NK cells. Serum IL15 concentrations were markedly lower during the last 3 days of infusion. CONCLUSIONS This phase I trial identified the MTD for CIV rhIL15 and defined a treatment regimen that produced significant expansions of CD8+ T and NK effector cells in circulation and tumor deposits. This regimen has identified several biological features, including dramatic increases in numbers of NK cells, supporting trials of IL15 with anticancer mAbs to increase antibody-dependent cell-mediated cytotoxicity and anticancer efficacy.
Collapse
Affiliation(s)
- Kevin C Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - E Lake Potter
- ImmunoTechnology Section Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | - Milos D Miljkovic
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Thomas A Fleisher
- NIH Clinical Center, Department of Laboratory Medicine, NIH, Bethesda, Maryland
| | - Sigrid Dubois
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Bonita R Bryant
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Michael Petrus
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Liyanage P Perera
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Jennifer Hsu
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - William D Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Cody J Peer
- Genitourinary Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Joanna H Shih
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Jason L Yovandich
- Biological Resources Branch, Division of Cancer Treatment and Diagnosis, Developmental Therapeutics Program, NCI, NIH, Frederick, Maryland
| | - Stephen P Creekmore
- Biological Resources Branch, Division of Cancer Treatment and Diagnosis, Developmental Therapeutics Program, NCI, NIH, Frederick, Maryland
| | - Mario Roederer
- ImmunoTechnology Section Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
18
|
Mariatulqabtiah AR, Nor Majid N, Giotis ES, Omar AR, Skinner MA. Inoculation of fowlpox viruses coexpressing avian influenza H5 and chicken IL-15 cytokine gene stimulates diverse host immune responses. ACTA ACUST UNITED AC 2019. [DOI: 10.35118/apjmbb.2019.027.1.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fowlpox virus (FWPV) has been used as a recombinant vaccine vector to express antigens from several important avian pathogens. Attempts have been made to improve vaccine strains induced-host immune responses by coexpressing cytokines. This study describes the construction of recombinant FWPV (rFWPV) strain FP9 and immunological responses in specific-pathogen-free (SPF) chickens, co-expressing avian influenza virus (AIV) H5 of A/Chicken/Malaysia/5858/2004, and chicken IL-15 cytokine genes. Expression of H5 (50 kD) was confirmed by western blotting. Anti-H5 antibodies, which were measured by the haemagglutinin inhibition test, were at the highest levels at Week 3 post-inoculation in both rFWPV/H5- and rFWPV/H5/IL-15-vaccinated chickens, but decreased to undetectable levels from Week 5 onwards. CD3+/CD4+ or CD3+/CD8+T cell populations, assessed using flow cytometry, were significantly increased in both WT FP9- and rFWPV/H5-vaccinated chickens and were also higher than in rFWPV/H5/IL-15- vaccinated chickens, at Week 2. Gene expression analysis using real time quantitative polymerase chain reaction (qPCR) demonstrated upregulation of IL-15 expression in all vaccinated groups with rFWPV/H5/IL-15 having the highest fold change, at day 2 (117±51.53). Despite showing upregulation, fold change values of the IL-18 expression were below 1.00 for all vaccinated groups at day 2, 4 and 6. This study shows successful construction of rFWPV/H5 co-expressing IL-15, with modified immunogenicity upon inoculation into SPF chickens.
Collapse
Affiliation(s)
- Abdul Razak Mariatulqabtiah
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nadzreeq Nor Majid
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Efstathios S. Giotis
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London W2 1PG United Kingdom
| | - Abdul Rahman Omar
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Michael A. Skinner
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London W2 1PG United Kingdom
| |
Collapse
|
19
|
Liu Y, Wang Y, Xing J, Li Y, Liu J, Wang Z. A novel multifunctional anti-CEA-IL15 molecule displays potent antitumor activities. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2645-2654. [PMID: 30214153 PMCID: PMC6120566 DOI: 10.2147/dddt.s166373] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction Interleukin-15 (IL-15) is an immunomodulatory cytokine. It can activate and expand cytotoxic CD8 T lymphocytes and natural killer cells, leading to potent antitumor effects. Various forms of IL-15 are now in different stages of development for cancer immunotherapy. One of the major issues with IL-15 or IL15–IL15Rα fusion is high toxicity due to systemic activation of immune cells. Materials and methods In this study, we engineered a nanobody–cytokine fusion molecule, anti-CEA-IL15, in which an anti-CEA nanobody was linked to an IL15Rα–IL15 fusion. The nanobody–cytokine fusion exhibited multiple mechanisms to kill tumor cells, including promoting immune cell proliferation and directing antibody-dependent cytotoxicity against CEA-positive tumor cells. Results In xenograft models, anti-CEA-IL15 was localized in the tumor microenvironment and exhibited more potent antitumor activities than non-targeting IL-15, supporting potential application of this multifunctional fusion molecule in tumor immunotherapy. Conclusion We generated and validated a tumortargeting fusion protein, anti-CEA-IL15, which has potent cytokine activity to activate and mobilize the immune system to fight cancer cells. Such strategies may also be applied to other cytokines and tumor-targeting molecules to increase antitumor efficacy.
Collapse
Affiliation(s)
- Yue Liu
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| | - Yanlan Wang
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| | - Jieyu Xing
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| | - Yumei Li
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| | - Jiayu Liu
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| | - Zhong Wang
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| |
Collapse
|
20
|
Wang W, Jin J, Dai F, Long Z, Liu X, Cai H, Zhou Y, Chen Z, Huang H. Interleukin-15 suppresses gastric cancer liver metastases by enhancing natural killer cell activity in a murine model. Oncol Lett 2018; 16:4839-4846. [PMID: 30250549 PMCID: PMC6144747 DOI: 10.3892/ol.2018.9303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-15 is a promising cytokine for cancer immunotherapy as it is a critical factor for the proliferation and activation of natural killer (NK) cells. Previous studies have suggested critical roles of IL-15 in tumor invasion and metastasis. However, the association between IL-15 and liver metastasis of gastric cancer (LMGC) remains unknown. The present study investigated the therapeutic efficacy of recombinant mouse IL-15 (rmIL-15) in murine LMGC models, in which stable green fluorescent protein (GFP)-expressing MKN45 cells (MKN45-GFP cells) were injected into the spleen parenchyma of mice for liver metastasis. At different treatments (high dose group: 2.5 µg of rmIL-15; low dose group: 0.2 µg of rmIL-15; control group: PBS), it was found that rmIL-15 decreased the formation of liver metastasis sites. Additionally, this treatment lead to improved survival of mice following tumor cell transplantation. Treatment with a high dose of rmIL-15 provided greater therapeutic efficacy by prolonged survival of the mice compared with low dose group and control group. It was found that NK cells isolated from the liver that received the high dose of rmIL-15 showed stronger cytotoxic activity compared with the other two groups on the target cells. These findings hold significant importance for the use of IL-15 as a potential adjuvant/therapeutic for liver metastasis from gastric cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Jiejie Jin
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Faxiang Dai
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Ziwen Long
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xiaowen Liu
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hong Cai
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Ye Zhou
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Hua Huang
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
21
|
Liu B, Jones M, Kong L, Noel T, Jeng EK, Shi S, England CG, Alter S, Miller JS, Cai W, Rhode PR, Wong HC. Evaluation of the biological activities of the IL-15 superagonist complex, ALT-803, following intravenous versus subcutaneous administration in murine models. Cytokine 2018; 107:105-112. [PMID: 29452720 DOI: 10.1016/j.cyto.2017.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 01/09/2023]
Abstract
ALT-803 is a fusion protein complex consisting of an interleukin (IL)-15 superagonist and a dimeric IL-15 receptor alpha sushi domain IgG1 Fc fusion protein. When administered to mice, ALT-803 is capable of inducing natural killer (NK) and CD8+ T cell proliferation and activation, and effectively promoting potent anti-tumor responses. Currently, ALT-803 is in clinical trials for treatment of various solid tumors and hematological malignancies. In the initial phase of these clinical studies, intravenous (iv) injection was used according to the route used in pre-clinical efficacy studies. In order to evaluate the possible advantage of subcutaneous (sc) injection versus iv injection, this study compared the biological activity of the two treatment regimens of ALT-803 in pre-clinical in vivo models. The pharmacokinetics, immune stimulation, and anti-tumor efficacy of iv and sc injection routes of ALT-803 in C57BL/6 mice were compared. The half-life of ALT-803 was 7.5 h for iv versus 7.7 h for sc with the maximal detected serum concentration of ALT-803 to be 3926 ng/ml at 0.5 h time-point following iv injection versus 495 ng/ml at 16 h post sc injection. Biodistribution studies indicated that sc ALT-803, similarly to iv ALT-803 as previously reported, has a greater tissue distribution and longer residence time in lymphoid tissues compared to recombinant IL-15. Notably, ALT-803 when administered either iv or sc induced comparable proliferation and activation of CD8+ T and NK cells and resulted in similar reductions of tumor burden. A toxicity study of mice receiving multiple injections of ALT-803 for 4 weeks by iv or sc routes revealed equivalent immune-related changes. The gradual absorbance into the blood stream and lower maximal blood levels of ALT-803 in sc-injected mice, along with similar anti-tumor efficacy support the administration of ALT-803 by sc injection in patients with various malignancies and infectious diseases.
Collapse
Affiliation(s)
- Bai Liu
- Altor BioScience, Miramar, FL, USA
| | | | - Lin Kong
- Altor BioScience, Miramar, FL, USA
| | | | | | - Sixiang Shi
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Christopher G England
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, USA
| | | | - Jeffrey S Miller
- Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, USA
| | | | | |
Collapse
|
22
|
Wrangle JM, Patterson A, Johnson CB, Neitzke DJ, Mehrotra S, Denlinger CE, Paulos CM, Li Z, Cole DJ, Rubinstein MP. IL-2 and Beyond in Cancer Immunotherapy. J Interferon Cytokine Res 2018; 38:45-68. [PMID: 29443657 PMCID: PMC5815463 DOI: 10.1089/jir.2017.0101] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/26/2017] [Indexed: 12/11/2022] Open
Abstract
The development of the T- and natural killer (NK) cell growth factor IL-2 has been a sentinel force ushering in the era of immunotherapy in cancer. With the advent of clinical grade recombinant IL-2 in the mid-1980s, oncologists could for the first time directly manipulate lymphocyte populations with systemic therapy. By itself, recombinant IL-2 can induce clinical responses in up to 15% of patients with metastatic cancer or renal cell carcinoma. When administered with adoptively transferred tumor-reactive lymphocytes, IL-2 promotes T cell engraftment and response rates of up to 50% in metastatic melanoma patients. Importantly, these IL-2-driven responses can yield complete and durable responses in a subset of patients. However, the use of IL-2 is limited by toxicity and concern of the expansion of T regulatory cells. To overcome these limitations and improve response rates, other T cell growth factors, including IL-15 and modified forms of IL-2, are in clinical development. Administering T cell growth factors in combination with other agents, such as immune checkpoint pathway inhibitors, may also improve efficacy. In this study, we review the development of T- and NK cell growth factors and highlight current combinatorial approaches based on these reagents.
Collapse
Affiliation(s)
- John M. Wrangle
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Alicia Patterson
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - C. Bryce Johnson
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Daniel J. Neitzke
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Chadrick E. Denlinger
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Chrystal M. Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - David J. Cole
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Mark P. Rubinstein
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
23
|
Li KP, Shanmuganad S, Carroll K, Katz JD, Jordan MB, Hildeman DA. Dying to protect: cell death and the control of T-cell homeostasis. Immunol Rev 2017; 277:21-43. [PMID: 28462527 PMCID: PMC5416827 DOI: 10.1111/imr.12538] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 02/07/2023]
Abstract
T cells play a critical role in immune responses as they specifically recognize peptide/MHC complexes with their T-cell receptors and initiate adaptive immune responses. While T cells are critical for performing appropriate effector functions and maintaining immune memory, they also can cause autoimmunity or neoplasia if misdirected or dysregulated. Thus, T cells must be tightly regulated from their development onward. Maintenance of appropriate T-cell homeostasis is essential to promote protective immunity and limit autoimmunity and neoplasia. This review will focus on the role of cell death in maintenance of T-cell homeostasis and outline novel therapeutic strategies tailored to manipulate cell death to limit T-cell survival (eg, autoimmunity and transplantation) or enhance T-cell survival (eg, vaccination and immune deficiency).
Collapse
Affiliation(s)
- Kun-Po Li
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sharmila Shanmuganad
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Kaitlin Carroll
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jonathan D. Katz
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Endocrinology, Diabetes Research Center, Cincinnati, OH 45229, USA
| | - Michael B. Jordan
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children’s Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | |
Collapse
|
24
|
Miles B, Miller SM, Folkvord JM, Levy DN, Rakasz EG, Skinner PJ, Connick E. Follicular Regulatory CD8 T Cells Impair the Germinal Center Response in SIV and Ex Vivo HIV Infection. PLoS Pathog 2016; 12:e1005924. [PMID: 27716848 PMCID: PMC5055335 DOI: 10.1371/journal.ppat.1005924] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/10/2016] [Indexed: 12/21/2022] Open
Abstract
During chronic HIV infection, viral replication is concentrated in secondary lymphoid follicles. Cytotoxic CD8 T cells control HIV replication in extrafollicular regions, but not in the follicle. Here, we show CXCR5hiCD44hiCD8 T cells are a regulatory subset differing from conventional CD8 T cells, and constitute the majority of CD8 T cells in the follicle. This subset, CD8 follicular regulatory T cells (CD8 TFR), expand in chronic SIV infection, exhibit enhanced expression of Tim-3 and IL-10, and express less perforin compared to conventional CD8 T cells. CD8 TFR modestly limit HIV replication in follicular helper T cells (TFH), impair TFH IL-21 production via Tim-3, and inhibit IgG production by B cells during ex vivo HIV infection. CD8 TFR induce TFH apoptosis through HLA-E, but induce less apoptosis than conventional CD8 T cells. These data demonstrate that a unique regulatory CD8 population exists in follicles that impairs GC function in HIV infection.
Collapse
Affiliation(s)
- Brodie Miles
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado Denver, Colorado, United States of America
| | - Shannon M. Miller
- Department of Immunology and Microbiology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Colorado, United States of America
| | - Joy M. Folkvord
- Division of Infectious Diseases, University of Arizona, Arizona, United States of America
| | - David N. Levy
- Department of Basic Science, New York University College of Dentistry, New York, United States of America
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Pamela J. Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minnesota, United States of America
| | - Elizabeth Connick
- Division of Infectious Diseases, University of Arizona, Arizona, United States of America
| |
Collapse
|
25
|
Patidar M, Yadav N, Dalai SK. Interleukin 15: A key cytokine for immunotherapy. Cytokine Growth Factor Rev 2016; 31:49-59. [PMID: 27325459 DOI: 10.1016/j.cytogfr.2016.06.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/20/2016] [Accepted: 06/03/2016] [Indexed: 12/20/2022]
Abstract
Interleukin (IL)-15, a member of the immunoregulatory cytokines family, is a pluripotent molecule with therapeutic potential. It is predominantly expressed by the myeloid cells, as well as other cell types. IL-15 serves multiple functions including dictating T cell response, regulating tissue repair and B cell homing, modulating inflammation, and activating NK cells. Among cytokines, IL-15 is unique because of its wide expression, tightly regulated secretion, trans-presentation, and therapeutic potential. IL-15 has been investigated for its therapeutic potential for the induction and maintenance of T cell responses. In addition, IL-15 can be targeted by antibody- or mutant IL-15 therapy to reduce inflammation. Its multifaceted biological applications are crucial in immunotherapy. In this article, we review the functions, expression, and regulation of IL-15 for designing an improved IL-15-based therapy targeting the IL-15 signaling pathway.
Collapse
Affiliation(s)
- Manoj Patidar
- Institute of Science, Nirma University, Ahmedabad 382481, India.
| | - Naveen Yadav
- Institute of Science, Nirma University, Ahmedabad 382481, India.
| | - Sarat K Dalai
- Institute of Science, Nirma University, Ahmedabad 382481, India.
| |
Collapse
|
26
|
He F, Leyrer S, Kwang J. Strategies towards universal pandemic influenza vaccines. Expert Rev Vaccines 2015; 15:215-25. [DOI: 10.1586/14760584.2016.1115352] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fang He
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Sonja Leyrer
- Emergent Product Development Germany GmbH, Munich, Germany
| | - Jimmy Kwang
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Microbiology, Faculty of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
27
|
Parra M, Liu X, Derrick SC, Yang A, Molina-Cruz A, Barillas-Mury C, Zheng H, Thao Pham P, Sedegah M, Belmonte A, Litilit DD, Waldmann TA, Kumar S, Morris SL, Perera LP. Co-expression of Interleukin-15 Enhances the Protective Immune Responses Induced by Immunization with a Murine Malaria MVA-Based Vaccine Encoding the Circumsporozoite Protein. PLoS One 2015; 10:e0141141. [PMID: 26505634 PMCID: PMC4624717 DOI: 10.1371/journal.pone.0141141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/04/2015] [Indexed: 01/01/2023] Open
Abstract
Malaria remains a major global public health problem with an estimated 200 million cases detected in 2012. Although the most advanced candidate malaria vaccine (RTS,S) has shown promise in clinical trials, its modest efficacy and durability have created uncertainty about the impact of RTS,S immunization (when used alone) on global malaria transmission. Here we describe the development and characterization of a novel modified vaccinia virus Ankara (MVA)–based malaria vaccine which co-expresses the Plasmodium yoelii circumsporozoite protein (CSP) and IL-15. Vaccination/challenge studies showed that C57BL/6 mice immunized with the MVA-CSP/IL15 vaccine were protected significantly better against a P. yoelii 17XNL sporozoite challenge than either mice immunized with an MVA vaccine expressing only CSP or naïve controls. Importantly, the levels of total anti-CSP IgG were elevated about 100-fold for the MVA-CSP/IL15 immunized group compared to mice immunized with the MVA-CSP construct that does not express IL-15. Among the IgG subtypes, the IL-15 expressing MVA-CSP vaccine induced levels of IgG1 (8 fold) and IgG2b (80 fold) higher than the MVA-CSP construct. The significantly enhanced humoral responses and protection detected after immunization with the MVA-CSP/IL15 vaccine suggest that this IL-15 expressing MVA construct could be considered in the development of future malaria immunization strategies.
Collapse
Affiliation(s)
- Marcela Parra
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, 20993, United States of America
| | - Xia Liu
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, 20993, United States of America
| | - Steven C. Derrick
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, 20993, United States of America
| | - Amy Yang
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, 20993, United States of America
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, 20852, United States of America
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, 20852, United States of America
| | - Hong Zheng
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, 20993, United States of America
| | - Phuong Thao Pham
- Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Martha Sedegah
- Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Arnel Belmonte
- Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Dianne D. Litilit
- Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Thomas A. Waldmann
- National Cancer Institute, Bethesda, MD, 20892, United States of America
| | - Sanjai Kumar
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, 20993, United States of America
| | - Sheldon L. Morris
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, 20993, United States of America
| | - Liyanage P. Perera
- National Cancer Institute, Bethesda, MD, 20892, United States of America
- * E-mail:
| |
Collapse
|
28
|
Waldmann TA. The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res 2015; 3:219-27. [PMID: 25736261 DOI: 10.1158/2326-6066.cir-15-0009] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
IL2 and IL15, members of the 4α-helix bundle family of cytokines, play pivotal roles in the control of the life and death of lymphocytes. Although their heterotrimeric receptors have two receptor subunits in common, these two cytokines have contrasting roles in adaptive immune responses. The unique role of IL2 through maintenance of fitness of regulatory T cells and activation-induced cell death is the elimination of self-reactive T cells to prevent autoimmunity. In contrast with IL2, IL15 is dedicated to the prolonged maintenance of memory T-cell responses to invading pathogens. Blockade of IL2 and IL15 using monoclonal antibodies has been reported to be of value in the treatment of patients with leukemia, autoimmune disorders, and in the prevention of allograft rejection. IL2 has been approved by the FDA for the treatment of patients with malignant renal cell cancer and metastatic malignant melanoma. Clinical trials involving recombinant human IL15 given by bolus infusions have been completed, and studies assessing subcutaneous and continuous intravenous infusions are under way in patients with metastatic malignancy. Furthermore, clinical trials are being initiated that employ the combination of IL15 with IL15Rα(+/-) IgFc.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
29
|
Lorenzi T, Chisholm RH, Melensi M, Lorz A, Delitala M. Mathematical model reveals how regulating the three phases of T-cell response could counteract immune evasion. Immunology 2015; 146:271-80. [PMID: 26119966 DOI: 10.1111/imm.12500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 02/01/2023] Open
Abstract
T cells are key players in immune action against the invasion of target cells expressing non-self antigens. During an immune response, antigen-specific T cells dynamically sculpt the antigenic distribution of target cells, and target cells concurrently shape the host's repertoire of antigen-specific T cells. The succession of these reciprocal selective sweeps can result in 'chase-and-escape' dynamics and lead to immune evasion. It has been proposed that immune evasion can be countered by immunotherapy strategies aimed at regulating the three phases of the immune response orchestrated by antigen-specific T cells: expansion, contraction and memory. Here, we test this hypothesis with a mathematical model that considers the immune response as a selection contest between T cells and target cells. The outcomes of our model suggest that shortening the duration of the contraction phase and stabilizing as many T cells as possible inside the long-lived memory reservoir, using dual immunotherapies based on the cytokines interleukin-7 and/or interleukin-15 in combination with molecular factors that can keep the immunomodulatory action of these interleukins under control, should be an important focus of future immunotherapy research.
Collapse
Affiliation(s)
- Tommaso Lorenzi
- Centre de Mathématiques et de Leurs Applications, ENS Cachan, CNRS, Cachan Cedex, France
| | - Rebecca H Chisholm
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Matteo Melensi
- Department of Health Sciences, A. Avogadro Università del Piemonte Orientale, Novara, Italy
| | - Alexander Lorz
- MAMBA Team, INRIA-Paris-Rocquencourt, Le Chesnay Cedex, France.,Laboratoire Jacques-Louis Lions, Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Paris, France.,Laboratoire Jacques-Louis Lions, CNRS, UMR 7598, Paris, France
| | - Marcello Delitala
- Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy
| |
Collapse
|
30
|
García-Arriaza J, Esteban M. Enhancing poxvirus vectors vaccine immunogenicity. Hum Vaccin Immunother 2015; 10:2235-44. [PMID: 25424927 DOI: 10.4161/hv.28974] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Attenuated recombinant poxvirus vectors expressing heterologous antigens from pathogens are currently at various stages in clinical trials with the aim to establish their efficacy. This is because these vectors have shown excellent safety profiles, significant immunogenicity against foreign expressed antigens and are able to induce protective immune responses. In view of the limited efficacy triggered by some poxvirus strains used in clinical trials (i.e, ALVAC in the RV144 phase III clinical trial for HIV), and of the restrictive replication capacity of the highly attenuated vectors like MVA and NYVAC, there is a consensus that further improvements of these vectors should be pursuit. In this review we considered several strategies that are currently being implemented, as well as new approaches, to improve the immunogenicity of the poxvirus vectors. This includes heterologous prime/boost protocols, use of co-stimulatory molecules, deletion of viral immunomodulatory genes still present in the poxvirus genome, enhancing virus promoter strength, enhancing vector replication capacity, optimizing expression of foreign heterologous sequences, and the combined use of adjuvants. An optimized poxvirus vector triggering long-lasting immunity with a high protective efficacy against a selective disease should be sought.
Collapse
Affiliation(s)
- Juan García-Arriaza
- a Department of Molecular and Cellular Biology; Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas (CSIC); Madrid, Spain
| | | |
Collapse
|
31
|
Shah PD, Zhong Q, Lendermon EA, Pipeling MR, McDyer JF. Hyperexpansion of Functional Viral-Specific CD8+ T Cells in Lymphopenia-Associated MCMV Pneumonitis. Viral Immunol 2015; 28:255-64. [PMID: 26046830 DOI: 10.1089/vim.2015.0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cytomegalovirus (CMV) is a significant cause of morbidity and mortality in immunocompromised hosts, many of whom undergo significant periods of lymphopenia. However, the impact of lymphopenia and subsequent immune reconstitution on T cell responses and pulmonary pathology are poorly understood. Using a model of primary murine CMV infection in mice treated with cyclophosphamide (CY), the relationship of CD8+ T cell reconstitution to pneumonitis pathology was studied. Female BALB/c mice were infected with murine CMV (MCMV) with/without CY on day 1 post-infection. Lung pathology and viral specific T cell responses were assessed on days 7-28. T cell lymphocyte subsets, effector responses, and MCMV specificity were assessed at baseline and after in vitro stimulation of cells with immediate-early peptide pp89. CY treatment of MCMV-infected mice resulted in interstitial pneumonitis not seen with MCMV alone. Compared to MCMV alone, on day 14, MCMV/CY mice had greater number of CD8+ T cells, a fourfold increase in absolute number of pp89 tetramer-specific CD8+ cells, and an eightfold increase in MCMV specific T cell effector responses (IFN-γ; p<0.001). This expansion was preceded by transient lymphopenia, increased viral titers, and, most strikingly, a 10-fold increased proliferative capacity in MCMV/CY mice. In the setting of CY-associated lymphopenia, concurrent MCMV infection alters immune reconstitution toward a hyperexpanded MCMV-specific CD8+ effector T cell pool that correlates with significant lung immunopathology.
Collapse
Affiliation(s)
- Pali D Shah
- 1Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qiong Zhong
- 1Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth A Lendermon
- 2Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Matthew R Pipeling
- 2Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John F McDyer
- 2Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
32
|
Abstract
IL-15 is a 14-15 kDa member of the four α-helix bundle of cytokines that acts through a heterotrimeric receptor involving IL-2/IL-15R β, γc and the IL-15 specific receptor subunit IL-15R α. IL-15 stimulates the proliferation of T, B and NK cells, and induces stem, central and effector memory CD8 T cells. In rhesus macaques, continuous infusion of recombinant human IL-15 at 20 μg/kg/day was associated with approximately a 10-fold increase in the numbers of circulating NK, γ/δ cells and monocytes, and an 80- to 100-fold increase in the numbers of effector memory CD8 T cells. IL-15 has shown efficacy in murine models of malignancy. Clinical trials involving recombinant human IL-15 given by bolus infusions have been completed and by subcutaneous and continuous intravenous infusions are underway in patients with metastatic malignancy. Furthermore, clinical trials are being initiated that employ the combination of IL-15 with IL-15R α(+/-) IgFc.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Building 10, Room 4N115, Bethesda, MD 20892-1374, USA
| |
Collapse
|
33
|
Sui Y, Hogg A, Wang Y, Frey B, Yu H, Xia Z, Venzon D, McKinnon K, Smedley J, Gathuka M, Klinman D, Keele BF, Langermann S, Liu L, Franchini G, Berzofsky JA. Vaccine-induced myeloid cell population dampens protective immunity to SIV. J Clin Invest 2014; 124:2538-49. [PMID: 24837435 PMCID: PMC4038576 DOI: 10.1172/jci73518] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vaccines are largely evaluated for their ability to promote adaptive immunity, with little focus on the induction of negative immune regulators. Adjuvants facilitate and enhance vaccine-induced immune responses and have been explored for mediating protection against HIV. Using a regimen of peptide priming followed by a modified vaccinia Ankara (MVA) boost in a nonhuman primate model, we found that an SIV vaccine incorporating molecular adjuvants mediated partial protection against rectal SIVmac251 challenges. Animals treated with vaccine and multiple adjuvants exhibited a reduced viral load (VL) compared with those treated with vaccine only. Surprisingly, animals treated with adjuvant alone had reduced VLs that were comparable to or better than those of the vaccine-treated group. VL reduction was greatest in animals with the MHC class I allele Mamu-A*01 that were treated with adjuvant only and was largely dependent on CD8+ T cells. Early VLs correlated with Ki67+CCR5+CD4+ T cell frequency, while set-point VL was associated with expansion of a myeloid cell population that was phenotypically similar to myeloid-derived suppressor cells (MDSCs) and that suppressed T cell responses in vitro. MDSC expansion occurred in animals receiving vaccine and was not observed in the adjuvant-only group. Collectively, these results indicate that vaccine-induced MDSCs inhibit protective cellular immunity and suggest that preventing MDSC induction may be critical for effective AIDS vaccination.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Alison Hogg
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Yichuan Wang
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Blake Frey
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Huifeng Yu
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Zheng Xia
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - David Venzon
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Katherine McKinnon
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Jeremy Smedley
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Mercy Gathuka
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Dennis Klinman
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Brandon F. Keele
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Sol Langermann
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Linda Liu
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Genoveffa Franchini
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Jay A. Berzofsky
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| |
Collapse
|
34
|
Hakim FT, Gress RE. Immunosenescence: immune deficits in the elderly and therapeutic strategies to enhance immune competence. Expert Rev Clin Immunol 2014; 1:443-58. [DOI: 10.1586/1744666x.1.3.443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Fraser CK, Diener KR, Brown MP, Hayball JD. Improving vaccines by incorporating immunological coadjuvants. Expert Rev Vaccines 2014; 6:559-78. [PMID: 17669010 DOI: 10.1586/14760584.6.4.559] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While vaccination continues to be the most successful interventionist health policy to date, infectious disease remains a significant cause of death worldwide. A primary reason that vaccination is not able to generate effective immunity is a lack of appropriate adjuvants capable of initiating the desired immune response. Adjuvant combinations can potentially overcome this problem; however, the possible permutations to consider, which include the route and kinetics of vaccination, as well as combinations of adjuvants, are practically limitless. This review aims to summarize the current understanding of adjuvants and related immunological processes and how this knowledge can and has been applied to the strategic selection of adjuvant combinations as components of vaccines against human infectious disease.
Collapse
Affiliation(s)
- Cara K Fraser
- Experimental Therapeutics Laboratory, Hanson Institute, and School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Australia.
| | | | | | | |
Collapse
|
36
|
Marçais A, Viel S, Grau M, Henry T, Marvel J, Walzer T. Regulation of mouse NK cell development and function by cytokines. Front Immunol 2013; 4:450. [PMID: 24376448 PMCID: PMC3859915 DOI: 10.3389/fimmu.2013.00450] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/27/2013] [Indexed: 12/22/2022] Open
Abstract
Natural Killer (NK) cells are innate lymphocytes with an important role in the early defense against intracellular pathogens and against tumors. Like other immune cells, almost every aspects of their biology are regulated by cytokines. Interleukin (IL)-15 is pivotal for their development, homeostasis, and activation. Moreover, numerous other activating or inhibitory cytokines such as IL-2, IL-4, IL-7, IL-10, IL-12, IL-18, IL-21, Transforming growth factor-β (TGFβ) and type I interferons regulate their activation and their effector functions at different stages of the immune response. In this review we summarize the current understanding on the effect of these different cytokines on NK cell development, homeostasis, and functions during steady-state or upon infection by different pathogens. We try to delineate the cellular sources of these cytokines, the intracellular pathways they trigger and the transcription factors they regulate. We describe the known synergies or antagonisms between different cytokines and highlight outstanding questions in this field of investigation. Finally, we discuss how a better knowledge of cytokine action on NK cells could help improve strategies to manipulate NK cells in different clinical situations.
Collapse
Affiliation(s)
- Antoine Marçais
- CIRI, International Center for Infectiology Research, Université de Lyon , Lyon , France ; U1111, INSERM , Lyon , France ; Ecole Normale Supérieure de Lyon , Lyon , France ; Centre International de Recherche en Infectiologie, Université Lyon 1 , Lyon , France ; UMR5308, CNRS , Lyon , France
| | - Sébastien Viel
- CIRI, International Center for Infectiology Research, Université de Lyon , Lyon , France ; U1111, INSERM , Lyon , France ; Ecole Normale Supérieure de Lyon , Lyon , France ; Centre International de Recherche en Infectiologie, Université Lyon 1 , Lyon , France ; UMR5308, CNRS , Lyon , France ; Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud , Lyon , France
| | - Morgan Grau
- CIRI, International Center for Infectiology Research, Université de Lyon , Lyon , France ; U1111, INSERM , Lyon , France ; Ecole Normale Supérieure de Lyon , Lyon , France ; Centre International de Recherche en Infectiologie, Université Lyon 1 , Lyon , France ; UMR5308, CNRS , Lyon , France
| | - Thomas Henry
- CIRI, International Center for Infectiology Research, Université de Lyon , Lyon , France ; U1111, INSERM , Lyon , France ; Ecole Normale Supérieure de Lyon , Lyon , France ; Centre International de Recherche en Infectiologie, Université Lyon 1 , Lyon , France ; UMR5308, CNRS , Lyon , France
| | - Jacqueline Marvel
- CIRI, International Center for Infectiology Research, Université de Lyon , Lyon , France ; U1111, INSERM , Lyon , France ; Ecole Normale Supérieure de Lyon , Lyon , France ; Centre International de Recherche en Infectiologie, Université Lyon 1 , Lyon , France ; UMR5308, CNRS , Lyon , France
| | - Thierry Walzer
- CIRI, International Center for Infectiology Research, Université de Lyon , Lyon , France ; U1111, INSERM , Lyon , France ; Ecole Normale Supérieure de Lyon , Lyon , France ; Centre International de Recherche en Infectiologie, Université Lyon 1 , Lyon , France ; UMR5308, CNRS , Lyon , France
| |
Collapse
|
37
|
Berzofsky JA, Wood LV, Terabe M. Cancer vaccines: 21st century approaches to harnessing an ancient modality to fight cancer. Expert Rev Vaccines 2013; 12:1115-8. [PMID: 24124874 PMCID: PMC6326573 DOI: 10.1586/14760584.2013.836906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 41-Room D702D, 41 Medlars Drive, Bethesda, MD 20892, USA +1 301 496 6874 +1 301 480 0681
| | | | | |
Collapse
|
38
|
Abstract
In 2010, the US FDA approved the first therapeutic cancer vaccine for the treatment of castration refractory prostate cancer - sipuleucel-T. Prostate cancer is an ideal model for cancer vaccine development based on the ready demonstration of humoral and cellular immunity to a range of cancer antigens as well as often slow progression which means that patients who are otherwise well may have a radiologically evaluable minor progression, after conventional treatment and can undergo vaccine therapy over sufficient periods of time, so as to allow the generation of a robust antitumor response. The association of prostate cancer with one of the few serum cancer biomarkers in general use has also allowed assessment of response and risk stratification of patients. In this review, we will examine key aspects of the evolution of prostate cancer vaccines, which provides an accurate prototype for other cancers, and the challenges we face.
Collapse
Affiliation(s)
- Agnieszka Michael
- Oncology Group, Faculty of Health & Medical Sciences, Leggett Building, University of Surrey, Guildford, GU2 7WG, UK.
| | | | | | | |
Collapse
|
39
|
Abstract
Poxvirus expression vectors were described in 1982 and quickly became widely used for vaccine development as well as research in numerous fields. Advantages of the vectors include simple construction, ability to accommodate large amounts of foreign DNA and high expression levels. Numerous poxvirus-based veterinary vaccines are currently in use and many others are in human clinical trials. The early reports of poxvirus vectors paved the way for and stimulated the development of other viral vectors and recombinant DNA vaccines.
Collapse
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
Immunogenicity of a vaccine regimen composed of simian immunodeficiency virus DNA, rMVA, and viral particles administered to female rhesus macaques via four different mucosal routes. J Virol 2013; 87:4738-50. [PMID: 23408627 DOI: 10.1128/jvi.03531-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A comparative evaluation of the immunity stimulated with a vaccine regimen that includes simian immunodeficiency virus (SIV), interleukin 2 (IL-2), and IL-15 DNAs, recombinant modified vaccinia virus Ankara (rMVA), and inactivated SIVmac239 particles administered into the oral and nasal cavities, small intestine, and vagina was carried out in female rhesus macaques to determine the best route to induce diverse anti-SIV immunity that may be critical to protection from SIV infection and disease. All four immunizations generated mucosal SIV-specific IgA. Oral immunization was as effective as vaginal immunization in inducing SIV-specific IgA in vaginal secretions and generated greater IgA responses in rectal secretions and saliva samples compared to the other immunization routes. All four immunizations stimulated systemic T-cell responses against Gag and Env, albeit to a different extent, with oral immunization providing greater magnitude and nasal immunization providing wider functional heterogeneity. SIV-specific T cells producing gamma interferon (IFN-γ) dominated these responses. Limited levels of SIV-specific IgG antibodies were detected in plasma samples, and no SIV-specific IgG antibodies were detected in secretions. Vaccination also induced CD4(+) and CD8(+) T-cell responses in the rectal and vaginal mucosa with greater functional heterogeneity than in blood samples. Rectal T-cell responses were significantly greater in the orally vaccinated animals than in the other animals. The most balanced, diverse, and higher-magnitude vaginal T-cell responses were observed after intestinal vaccination. Significantly higher CD8(+) granzyme B-positive T-cell responses were observed systemically after intestinal vaccination and in rectal cells after oral immunization. The majority of SIV-specific T cells that produced granzyme B did not produce cytokines. Of the immunization routes tested, oral vaccination provided the most diverse and significant response to the vaccine.
Collapse
|
41
|
Liver gene transfer of interkeukin-15 constructs that become part of circulating high density lipoproteins for immunotherapy. PLoS One 2012; 7:e52370. [PMID: 23285013 PMCID: PMC3528770 DOI: 10.1371/journal.pone.0052370] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 11/13/2012] [Indexed: 12/11/2022] Open
Abstract
Apolipoprotein A-I (Apo A-I) is a major component of high density lipoproteins (HDL) that transport cholesterol in circulation. We have constructed an expression plasmid encoding a chimeric molecule encompassing interleukin-15 (IL-15) and Apo A-I (pApo-hIL15) that was tested by hydrodynamic injections into mice and was co-administered with a plasmid encoding the sushi domain of IL-15Rα (pSushi) in order to enhance IL-15 trans-presentation and thereby bioactivity. The pharmacokinetics of the Apo A-I chimeric protein were much longer than non-stabilized IL-15 and its bioactivity was enhanced in combination with IL-15Rα Sushi. Importantly, the APO-IL-15 fusion protein was incorporated in part into circulating HDL. Liver gene transfer of these constructs increased NK and memory-phenotype CD8 lymphocyte numbers in peripheral blood, spleen and liver as a result of proliferation documented by CFSE dilution and BrdU incorporation. Moreover, the gene transfer procedure partly rescued the NK and memory T-cell deficiency observed in IL-15Rα−/− mice. pApo-hIL15+ pSushi gene transfer to the liver showed a modest therapeutic activity against subcutaneously transplanted MC38 colon carcinoma tumors, that was more evident when tumors were set up as liver metastases. The improved pharmacokinetic profile and the strong biological activity of APO-IL-15 fusion protein holds promise for further development in combination with other immunotherapies.
Collapse
|
42
|
Lim KL, Jazayeri SD, Yeap SK, Alitheen NBM, Bejo MH, Ideris A, Omar AR. Co-administration of avian influenza virus H5 plasmid DNA with chicken IL-15 and IL-18 enhanced chickens immune responses. BMC Vet Res 2012; 8:132. [PMID: 22866758 PMCID: PMC3511295 DOI: 10.1186/1746-6148-8-132] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 07/24/2012] [Indexed: 11/10/2022] Open
Abstract
Background DNA vaccines offer several advantages over conventional vaccines in the development of effective vaccines against avian influenza virus (AIV). However, one of the limitations of the DNA vaccine in poultry is that it induces poor immune responses. In this study, chicken interleukin (IL) -15 and IL-18 were used as genetic adjuvants to improve the immune responses induced from the H5 DNA vaccination in chickens. The immunogenicity of the recombinant plasmid DNA was analyzed based on the antibody production, T cell responses and cytokine production, following inoculation in 1-day-old (Trial 1) and 14-day-old (Trial 2) specific-pathogen-free chickens. Hence, the purpose of the present study was to explore the role of chicken IL-15 and IL-18 as adjuvants following the vaccination of chickens with the H5 DNA vaccine. Results The overall HI antibody titer in chickens immunized with pDis/H5 + pDis/IL-15 was higher compared to chickens immunized with pDis/H5 (p < 0.05). The findings revealed that the inoculation of the 14-day-old chickens exhibited a shorter time to achieve the highest HI titer in comparison to the inoculation of the 1-day-old chickens. The cellular immunity was assessed by the flow cytometry analysis to enumerate CD4+ and CD8 + T cells in the peripheral blood. The chickens inoculated with pDis/H5 + pDis/IL-15 demonstrated the highest increase in CD4+ T cells population relative to the control chickens. However, this study revealed that pDis/H5 + pDis/IL-15 was not significant (P > 0.05) in inducing CD8+ T cells. Meanwhile, with the exception of Trial 1, the flow cytometry results for Trial 2 demonstrated that the pDis/H5 + pDis/IL-18 inoculated group was able to trigger a higher increase in CD4+ T cells than the pDis/H5 group (P < 0.05). On the other hand, the pDis/H5 + pDis/IL-18 group was not significant (P > 0.05) in modulating CD8+ T cells population in both trials. The pDis/H5 + pDis/IL-15 inoculated group showed the highest IL-15 gene expression in both trials compared to other inoculated groups (P < 0.05). Similar results were obtained for the IL-18 expression where the pDis/H5 + pDis/IL-18 groups in both trials (Table 8) were significantly higher compared to the control group (P < 0.05). However, the expressions of other cytokines remained low or undetected by GeXP assay. Conclusions This study shows the diverse immunogenicity of pDis/H5 co-administered with chicken IL-15 and IL-18,with pDis/H5 + pDis/IL-15 being a better vaccine candidate compared to other groups.
Collapse
Affiliation(s)
- Kian-Lam Lim
- Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | | | | | | | | | | | | |
Collapse
|
43
|
Berzofsky JA. A push-pull vaccine strategy using Toll-like receptor ligands, IL-15, and blockade of negative regulation to improve the quality and quantity of T cell immune responses. Vaccine 2012; 30:4323-7. [PMID: 22115635 PMCID: PMC3319860 DOI: 10.1016/j.vaccine.2011.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 10/25/2011] [Accepted: 11/10/2011] [Indexed: 01/17/2023]
Abstract
We have developed a strategy to optimize the efficacy of vaccines to induce T-cell immunity against chronic viral infections and cancer based on a "push-pull" approach in which we first optimize the antigen structure by increasing the affinity of epitopes for major histocompatibility complex molecules ("epitope enhancement"), then push the response not only in magnitude but also in quality toward the desired response phenotype, using synergistic combinations of cytokines, Toll-like receptor ligands, and costimulatory molecules, and then pull the response by removing the brakes exerted by negative regulatory mechanisms, including regulatory cells, cell surface molecules, and cytokines. Components of this approach show promise in macaque models of AIDS virus infection and in murine models of cancer, and are being developed for human clinical trials.
Collapse
Affiliation(s)
- Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Building 10, Room 6B-04 (MSC#1578) NIH, Bethesda, MD 20892-1578, USA.
| |
Collapse
|
44
|
Abstract
Cancers so much resemble self that they prove difficult for the immune system to eliminate, and those that have already escaped natural immunosurveillance have gotten past the natural immune barriers to malignancy. A successful therapeutic cancer vaccine must overcome these escape mechanisms. Our laboratory has focused on a multistep "push-pull" approach in which we combine strategies to overcome each of the mechanisms of escape. If tumor epitopes are insufficiently immunogenic, we increase their immunogenicity by epitope enhancement, improving their binding affinity to major histocompatibility complex (MHC) molecules. If the anti-tumor response is too weak or of the wrong phenotype, we use cytokines, costimulatory molecules, Toll-like receptor ligands, and other molecular adjuvants to increase not only the quantity of the response but also its quality, to push the response in the right direction. Finally, the tumor invokes multiple immunosuppressive mechanisms to defend itself, so we need to overcome those as well, including blocking or depleting regulatory cells or inhibiting regulatory molecules, to pull the response by removing the brakes. Some of these strategies individually have now been translated into human clinical trials in cancer patients. Combinations of these in a push-pull approach are promising for the successful immunotherapy of cancer.
Collapse
Affiliation(s)
- Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
45
|
Schlom J. Therapeutic cancer vaccines: current status and moving forward. J Natl Cancer Inst 2012; 104:599-613. [PMID: 22395641 DOI: 10.1093/jnci/djs033] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Concurrent with U.S. Food and Drug Administration (FDA) approval of the first therapeutic cancer vaccine, a wide spectrum of other cancer vaccine platforms that target a diverse range of tumor-associated antigens is currently being evaluated in randomized phase II and phase III trials. The profound influence of the tumor microenvironment and other immunosuppressive entities, however, can limit the effectiveness of these vaccines. Numerous strategies are currently being evaluated both preclinically and clinically to counteract these immunosuppressive entities, including the combined use of vaccines with immune checkpoint inhibitors, certain chemotherapeutics, small-molecule targeted therapies, and radiation. The potential influence of the appropriate patient population and clinical trial endpoint in vaccine therapy studies is discussed, as well as the potential importance of biomarkers in future directions of this field.
Collapse
Affiliation(s)
- Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr, Rm 8B09, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Perera PY, Lichy JH, Waldmann TA, Perera LP. The role of interleukin-15 in inflammation and immune responses to infection: implications for its therapeutic use. Microbes Infect 2012; 14:247-61. [PMID: 22064066 PMCID: PMC3270128 DOI: 10.1016/j.micinf.2011.10.006] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 10/18/2011] [Indexed: 01/02/2023]
Abstract
Interleukin-15 (IL-15) is a pleiotropic cytokine with a broad range of biological functions in many diverse cell types. It plays a major role in the development of inflammatory and protective immune responses to microbial invaders and parasites by modulating immune cells of both the innate and adaptive immune systems. This review provides an overview of the mechanisms by which IL-15 modulates the host response to infectious agents and its utility as a cytokine adjuvant in vaccines against infectious pathogens.
Collapse
Affiliation(s)
- Pin-Yu Perera
- Veterans Affairs Medical Center, Washington D.C. 20422
| | - Jack H. Lichy
- Veterans Affairs Medical Center, Washington D.C. 20422
| | - Thomas A. Waldmann
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Liyanage P. Perera
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
47
|
Goulding J, Tahiliani V, Salek-Ardakani S. OX40:OX40L axis: emerging targets for improving poxvirus-based CD8(+) T-cell vaccines against respiratory viruses. Immunol Rev 2012; 244:149-68. [PMID: 22017437 PMCID: PMC3422077 DOI: 10.1111/j.1600-065x.2011.01062.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human respiratory tract is an entry point for over 200 known viruses that collectively contribute to millions of annual deaths worldwide. Consequently, the World Health Organization has designated respiratory viral infections as a priority for vaccine development. Despite enormous advances in understanding the attributes of a protective mucosal antiviral immune response, current vaccines continue to fail in effectively generating long-lived protective CD8(+) T-cell immunity. To date, the majority of licensed human vaccines afford protection against infectious pathogens through the generation of specific immunoglobulin responses. In recent years, the selective manipulation of specific costimulatory pathways, which are critical in regulating T cell-mediated immune responses, has generated increasing interest. Impressive results in animal models have shown that the tumor necrosis factor receptor (TNFR) family member OX40 (CD134) and its binding partner OX40L (CD252) are key costimulatory molecules involved in the generation of protective CD8(+) T-cell responses at mucosal surfaces, such as the lung. In this review, we highlight these new findings with a particular emphasis on their potential as immunological adjuvants to enhance poxvirus-based CD8(+) T-cell vaccines.
Collapse
Affiliation(s)
- John Goulding
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, San Diego, CA, USA
| | | | | |
Collapse
|
48
|
Sui Y, Gagnon S, Dzutsev A, Zhu Q, Yu H, Hogg A, Wang Y, Xia Z, Belyakov IM, Venzon D, Klinman D, Strober W, Kelsall B, Franchini G, Berzofsky JA. TLR agonists and/or IL-15 adjuvanted mucosal SIV vaccine reduced gut CD4⁺ memory T cell loss in SIVmac251-challenged rhesus macaques. Vaccine 2011; 30:59-68. [PMID: 22041305 PMCID: PMC3258186 DOI: 10.1016/j.vaccine.2011.10.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 10/18/2011] [Indexed: 01/08/2023]
Abstract
Adjuvant plays an important role in increasing and directing vaccine-induced immune responses. In a previous study, we found that a mucosal SIV vaccine using a combination of IL-15 and TLR agonists as adjuvant mediated partial protection against SIVmac251 rectal challenge, whereas neither IL-15 nor TLR agonists alone as an adjuvant impacted the plasma viral loads. In this study, dissociation of CD4(+) T cell preservation with viral loads was observed in the animals vaccinated with adjuvants. Significantly higher levels of memory CD4(+) T cell numbers were preserved after SIVmac251 infection in the colons of the animals vaccinated with vaccine containing any of these adjuvants compared to no adjuvant. When we measured the viral-specific CD8(+) tetramer responses in the colon lamina propria, we found significantly higher levels of gag, tat, and pol epitope tetramer(+) T cell responses in these animals compared to ones without adjuvant, even if some of the animals had similarly high viral loads. Furthermore, this CD4(+) T preservation was positively correlated with increased levels of gag and Tat, but not pol tetramer(+) T cell responses, and inversely correlated with beta-chemokine expression. The pre-challenged APOBEC3G expression level, which has previously been shown inversely associated with viral loads, was further found positively correlated with CD4(+) T cell number preservation. Overall, these data highlight one unrecognized role of adjuvant in HIV vaccine development, and show that vaccines can produce a surprising discordance between CD4(+) T cell levels and SIV viral load.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, National Institutes of Health, Bethesda, MD 20892
| | - Susan Gagnon
- Vaccine Branch, National Institutes of Health, Bethesda, MD 20892
| | - Amiran Dzutsev
- Vaccine Branch, National Institutes of Health, Bethesda, MD 20892
| | - Qing Zhu
- Vaccine Branch, National Institutes of Health, Bethesda, MD 20892
| | - Huifeng Yu
- Vaccine Branch, National Institutes of Health, Bethesda, MD 20892
| | - Alison Hogg
- Vaccine Branch, National Institutes of Health, Bethesda, MD 20892
| | - Yichuan Wang
- Vaccine Branch, National Institutes of Health, Bethesda, MD 20892
| | - Zheng Xia
- Vaccine Branch, National Institutes of Health, Bethesda, MD 20892
| | - Igor M. Belyakov
- Vaccine Branch, National Institutes of Health, Bethesda, MD 20892
| | - David Venzon
- Vaccine Branch, National Institutes of Health, Bethesda, MD 20892
| | - Dennis Klinman
- Laboratory of Experimental Immunology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Warren Strober
- Laboratory of Host Defenses, National Institutes of Health, Bethesda, MD 20892
| | - Brian Kelsall
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892
| | | | - Jay A. Berzofsky
- Vaccine Branch, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
49
|
Steel JC, Waldmann TA, Morris JC. Interleukin-15 biology and its therapeutic implications in cancer. Trends Pharmacol Sci 2011; 33:35-41. [PMID: 22032984 DOI: 10.1016/j.tips.2011.09.004] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 10/16/2022]
Abstract
Cancer immunotherapy is designed to stimulate the immune system to reject and destroy tumors. Recently, interleukin-15 (IL-15), a member of the four α-helix bundle family of cytokines, has emerged as a candidate immunomodulator for the treatment of cancer. IL-15 acts through its specific receptor, IL-15Rα, which is expressed on antigen-presenting dendritic cells, monocytes and macrophages. IL-15 exhibits broad activity and induces the differentiation and proliferation of T, B and natural killer (NK) cells. It also enhances the cytolytic activity of CD8(+) T cells and induces long-lasting antigen-experienced CD8(+)CD44(hi) memory T cells. IL-15 stimulates differentiation and immunoglobulin synthesis by B cells and induces maturation of dendritic cells. It does not stimulate immunosuppressive T regulatory cells (Tregs). Thus, boosting IL-15 activity could enhance innate and specific immunity and fight tumors. Here we review aspects of IL-15 biology that make it a promising agent for anticancer therapy. We also discuss preclinical models in which IL-15 has demonstrated antitumor activity and highlight ongoing clinical trials of IL-15 in patients with cancer and HIV infection.
Collapse
Affiliation(s)
- Jason C Steel
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267-0562, USA
| | | | | |
Collapse
|
50
|
Mengus C, Le Magnen C, Trella E, Yousef K, Bubendorf L, Provenzano M, Bachmann A, Heberer M, Spagnoli GC, Wyler S. Elevated levels of circulating IL-7 and IL-15 in patients with early stage prostate cancer. J Transl Med 2011; 9:162. [PMID: 21943235 PMCID: PMC3191336 DOI: 10.1186/1479-5876-9-162] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 09/26/2011] [Indexed: 11/17/2022] Open
Abstract
Background Chronic inflammation has been suggested to favour prostate cancer (PCA) development. Interleukins (IL) represent essential inflammation mediators. IL-2, IL-7, IL-15 and IL-21, sharing a common receptor γ chain (c-γ), control T lymphocyte homeostasis and proliferation and play major roles in regulating cancer-immune system interactions. We evaluated local IL-2, IL-7, IL-15 and IL-21 gene expression in prostate tissues from patients with early stage PCA or benign prostatic hyperplasia (BPH). As control, we used IL-6 gene, encoding an IL involved in PCA progression. IL-6, IL-7 and IL-15 titres were also measured in patients' sera. Methods Eighty patients with BPH and 79 with early (1 to 2c) stage PCA were enrolled. Gene expression in prostate tissues was analyzed by quantitative real-time PCR (qRT-PCR). Serum IL concentrations and acute phase protein titres were evaluated by ELISA. Mann-Whitney, Wilcoxon and χ2 tests were used to compare IL gene expression and serum titers in the two groups of patients. Receiver operating characteristic (ROC) curves were constructed to evaluate the possibility to distinguish sera from different groups of patients based on IL titers. Results IL-2 and IL-21 gene expression was comparably detectable, with low frequency and at low extents, in PCA and BPH tissues. In contrast, IL-6, IL-7 and IL-15 genes were expressed more frequently (p < 0.0001, p = 0.0047 and p = 0.0085, respectively) and to significantly higher extents (p = 0.0051, p = 0.0310 and p = 0.0205, respectively) in early stage PCA than in BPH tissues. Corresponding proteins could be detected to significantly higher amounts in sera from patients with localized PCA, than in those from patients with BPH (p = 0.0153, p = 0.0174 and p = 0.0064, respectively). Analysis of ROC curves indicates that IL-7 (p = 0.0039), but not IL-6 (p = 0.2938) or IL-15 (p = 0.1804) titres were able to distinguish sera from patients with malignancy from those from patients with benign disease. Serum titres of C reactive (CRP), high mobility group B1 (HMGB1) and serum amyloid A (SAA) acute phase proteins were similar in both groups of patients. Conclusions Expression IL-7 and IL-15 genes in prostate tissues and corresponding serum titres are significantly increased in patients with early stage PCA as compared with patients with BPH.
Collapse
Affiliation(s)
- Chantal Mengus
- ICFS, Department of Surgery, Basel University Hospital, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|