1
|
Shahshahani L, King M, Nettekoven C, Ivry RB, Diedrichsen J. Selective recruitment of the cerebellum evidenced by task-dependent gating of inputs. eLife 2024; 13:RP96386. [PMID: 38980147 PMCID: PMC11233132 DOI: 10.7554/elife.96386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Functional magnetic resonance imaging (fMRI) studies have documented cerebellar activity across a wide array of tasks. However, the functional contribution of the cerebellum within these task domains remains unclear because cerebellar activity is often studied in isolation. This is problematic, as cerebellar fMRI activity may simply reflect the transmission of neocortical activity through fixed connections. Here, we present a new approach that addresses this problem. Rather than focus on task-dependent activity changes in the cerebellum alone, we ask if neocortical inputs to the cerebellum are gated in a task-dependent manner. We hypothesize that input is upregulated when the cerebellum functionally contributes to a task. We first validated this approach using a finger movement task, where the integrity of the cerebellum has been shown to be essential for the coordination of rapid alternating movements but not for force generation. While both neocortical and cerebellar activity increased with increasing speed and force, the speed-related changes in the cerebellum were larger than predicted by an optimized cortico-cerebellar connectivity model. We then applied the same approach in a cognitive domain, assessing how the cerebellum supports working memory. Enhanced gating was associated with the encoding of items in working memory, but not with the manipulation or retrieval of the items. Focusing on task-dependent gating of neocortical inputs to the cerebellum offers a promising approach for using fMRI to understand the specific contributions of the cerebellum to cognitive function.
Collapse
Affiliation(s)
- Ladan Shahshahani
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Cognitive, Linguistics, & Psychological Science, Brown University, Providence, United States
| | - Maedbh King
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, United Kingdom
| | - Caroline Nettekoven
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, Berkeley, United States
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, United States
| | - Jörn Diedrichsen
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Department of Statistical and Actuarial Sciences, Western University London, Ontario, Canada
- Department of Computer Science, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Zhao C, Li D, Guo J, Li B, Kong Y, Hu Y, Du B, Ding Y, Li X, Liu H, Song Y. The neurovascular couplings between electrophysiological and hemodynamic activities in anticipatory selective attention. Cereb Cortex 2022; 32:4953-4968. [PMID: 35076708 DOI: 10.1093/cercor/bhab525] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/27/2022] Open
Abstract
Selective attention is thought to involve target enhancement and distractor inhibition processes. Here, we recorded simultaneous electroencephalographic (EEG) and functional near-infrared spectroscopy (fNIRS) data from human adults when they were pre-cued by the visual field of coming target, distractor, or both of them. From the EEG data, we found alpha power relatively decreased contralaterally to the to-be-attended target, as reflected by the positive-going alpha modulation index. Late alpha power relatively increased contralaterally to the to-be-suppressed distractor, as reflected by the negative-going alpha modulation index. From the fNIRS data, we found enhancements of hemodynamic activity over the contralateral hemisphere in response to both the target and the distractor anticipation but within nonoverlapping posterior brain regions. More importantly, we described the specific neurovascular modulation between alpha power and oxygenated hemoglobin signal, which showed a positive coupling effect during target anticipation and a negative coupling effect during distractor anticipation. Such flexible neurovascular couplings between EEG oscillation and hemodynamic activity seem to play an essential role in the final behavioral outcomes. These results provide unique neurovascular evidence for the dissociation of the mechanisms of target enhancement and distractor inhibition. Individual behavioral differences can be related to individual differences in neurovascular coupling.
Collapse
Affiliation(s)
- Chenguang Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai 519087, China.,School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Dongwei Li
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Jialiang Guo
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Bingkun Li
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yuanjun Kong
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yiqing Hu
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Boqi Du
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yulong Ding
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai 519087, China
| | - Hanli Liu
- Department of Bioengineering, the University of Texas at Arlington, Arlington, TX 76019, USA
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai 519087, China
| |
Collapse
|
3
|
LeBel A, Jain S, Huth AG. Voxelwise Encoding Models Show That Cerebellar Language Representations Are Highly Conceptual. J Neurosci 2021; 41:10341-10355. [PMID: 34732520 PMCID: PMC8672691 DOI: 10.1523/jneurosci.0118-21.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/09/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
There is a growing body of research demonstrating that the cerebellum is involved in language understanding. Early theories assumed that the cerebellum is involved in low-level language processing. However, those theories are at odds with recent work demonstrating cerebellar activation during cognitive tasks. Using natural language stimuli and an encoding model framework, we performed an fMRI experiment on 3 men and 2 women, where subjects passively listened to 5 h of natural language stimuli, which allowed us to analyze language processing in the cerebellum with higher precision than previous work. We used these data to fit voxelwise encoding models with five different feature spaces that span the hierarchy of language processing from acoustic input to high-level conceptual processing. Examining the prediction performance of these models on separate BOLD data shows that cerebellar responses to language are almost entirely explained by high-level conceptual language features rather than low-level acoustic or phonemic features. Additionally, we found that the cerebellum has a higher proportion of voxels that represent social semantic categories, which include "social" and "people" words, and lower representations of all other semantic categories, including "mental," "concrete," and "place" words, than cortex. This suggests that the cerebellum is representing language at a conceptual level with a preference for social information.SIGNIFICANCE STATEMENT Recent work has demonstrated that, beyond its typical role in motor planning, the cerebellum is implicated in a wide variety of tasks, including language. However, little is known about the language representations in the cerebellum, or how those representations compare to cortex. Using voxelwise encoding models and natural language fMRI data, we demonstrate here that language representations are significantly different in the cerebellum compared with cortex. Cerebellum language representations are almost entirely semantic, and the cerebellum contains overrepresentation of social semantic information compared with cortex. These results suggest that the cerebellum is not involved in language processing per se, but cognitive processing more generally.
Collapse
Affiliation(s)
- Amanda LeBel
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California 94720
| | - Shailee Jain
- Department of Computer Science, University of Texas-Austin, Austin, Texas 78712
| | - Alexander G Huth
- Department of Neuroscience, University of Texas-Austin, Austin, Texas 78712
- Department of Computer Science, University of Texas-Austin, Austin, Texas 78712
| |
Collapse
|
4
|
Boillat Y, Xin L, van der Zwaag W, Gruetter R. Metabolite concentration changes associated with positive and negative BOLD responses in the human visual cortex: A functional MRS study at 7 Tesla. J Cereb Blood Flow Metab 2020; 40:488-500. [PMID: 30755134 PMCID: PMC7026843 DOI: 10.1177/0271678x19831022] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Negative blood oxygenation-level dependent (BOLD) signal observed during task execution in functional magnetic resonance imaging (fMRI) can be caused by different mechanisms, such as a blood-stealing effect or neuronal deactivation. Electrophysiological recordings showed that neuronal deactivation underlies the negative BOLD observed in the occipital lobe during visual stimulation. In this study, the metabolic demand of such a response was studied by measuring local metabolite concentration changes during a visual checkerboard stimulation using functional magnetic resonance spectroscopy (fMRS) at 7 Tesla. The results showed increases of glutamate and lactate concentrations during the positive BOLD response, consistent with previous fMRS studies. In contrast, during the negative BOLD response, decreasing concentrations of glutamate, lactate and gamma-aminobutyric acid (GABA) were found, suggesting a reduction of glycolytic and oxidative metabolic demand below the baseline. Additionally, the respective changes of the BOLD signal, glutamate and lactate concentrations of both groups suggest that a local increase of inhibitory activity might occur during the negative BOLD response.
Collapse
Affiliation(s)
- Yohan Boillat
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lijing Xin
- Animal imaging and technology core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Wietske van der Zwaag
- Animal imaging and technology core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Animal imaging and technology core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Geneva, Geneva, Switzerland.,Department of Radiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Diedrichsen J, King M, Hernandez-Castillo C, Sereno M, Ivry RB. Universal Transform or Multiple Functionality? Understanding the Contribution of the Human Cerebellum across Task Domains. Neuron 2019; 102:918-928. [PMID: 31170400 PMCID: PMC6686189 DOI: 10.1016/j.neuron.2019.04.021] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 01/18/2023]
Abstract
An impressive body of research over the past 30 years has implicated the human cerebellum in a broad range of functions, including motor control, perception, language, working memory, cognitive control, and social cognition. The relatively uniform anatomy and physiology of the cerebellar cortex has given rise to the idea that this structure performs the same computational function across diverse domains. Here we highlight evidence from the human neuroimaging literature that documents the striking functional heterogeneity of the cerebellum, both in terms of task-evoked activity patterns and, as measured under task-free conditions, functional connectivity with the neocortex. Building on these observations, we discuss the theoretical challenges these results present to the idea of a universal cerebellar computation and consider the alternative concept of multiple functionality, the idea that the same underlying circuit implements functionally distinct computations.
Collapse
Affiliation(s)
- Jörn Diedrichsen
- Brain and Mind Institute, Western University London, ON N6A 5B7, Canada; Department of Statistical and Actuarial Sciences, Western University, London, ON N6A 5B7, Canada; Department of Computer Science, Western University, London, ON N6A 5B7, Canada.
| | - Maedbh King
- Department of Psychology, University of California, Berkeley, CA 94720, USA
| | | | - Marty Sereno
- Department of Psychology, San Diego State University, San Diego, CA 92182, USA
| | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
Boillat Y, Zwaag W. Whole brain measurements of the positive BOLD response variability during a finger tapping task at 7 T show regional differences in its profiles. Magn Reson Med 2018; 81:2720-2727. [DOI: 10.1002/mrm.27566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Yohan Boillat
- Laboratory for Functional and Metabolic Imaging Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Wietske Zwaag
- Biomedical Imaging Research Center Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
- Spinoza Centre for Neuroimaging Amsterdam Netherlands
| |
Collapse
|
7
|
Iordanova B, Vazquez A, Kozai TDY, Fukuda M, Kim SG. Optogenetic investigation of the variable neurovascular coupling along the interhemispheric circuits. J Cereb Blood Flow Metab 2018; 38:627-640. [PMID: 29372655 PMCID: PMC5888863 DOI: 10.1177/0271678x18755225] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Abstract
The interhemispheric circuit connecting the left and the right mammalian brain plays a key role in integration of signals from the left and the right side of the body. The information transfer is carried out by modulation of simultaneous excitation and inhibition. Hemodynamic studies of this circuit are inconsistent since little is known about neurovascular coupling of mixed excitatory and inhibitory signals. We investigated the variability in hemodynamic responses driven by the interhemispheric circuit during optogenetic and somatosensory activation. We observed differences in the neurovascular response based on the stimulation site - cell bodies versus distal projections. In half of the experiments, optogenetic stimulation of the cell bodies evoked a predominant post-synaptic inhibition in the other hemisphere, accompanied by metabolic oxygen consumption without coupled functional hyperemia. When the same transcallosal stimulation resulted in predominant post-synaptic excitation, the hemodynamic response was biphasic, consisting of metabolic dip followed by functional hyperemia. Optogenetic suppression of the postsynaptic excitation abolished the coupled functional hyperemia. In contrast, light stimulation at distal projections evoked consistently a metabolic response. Our findings suggest that functional hyperemia requires signals originating from the cell body and the hemodynamic response variability appears to reflect the balance between the post-synaptic excitation and inhibition.
Collapse
Affiliation(s)
- Bistra Iordanova
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alberto Vazquez
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi DY Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mitsuhiro Fukuda
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
8
|
Hermes D, Nguyen M, Winawer J. Neuronal synchrony and the relation between the blood-oxygen-level dependent response and the local field potential. PLoS Biol 2017; 15:e2001461. [PMID: 28742093 PMCID: PMC5524566 DOI: 10.1371/journal.pbio.2001461] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/22/2017] [Indexed: 01/07/2023] Open
Abstract
The most widespread measures of human brain activity are the blood-oxygen-level dependent (BOLD) signal and surface field potential. Prior studies report a variety of relationships between these signals. To develop an understanding of how to interpret these signals and the relationship between them, we developed a model of (a) neuronal population responses and (b) transformations from neuronal responses into the functional magnetic resonance imaging (fMRI) BOLD signal and electrocorticographic (ECoG) field potential. Rather than seeking a transformation between the two measures directly, this approach interprets each measure with respect to the underlying neuronal population responses. This model accounts for the relationship between BOLD and ECoG data from human visual cortex in V1, V2, and V3, with the model predictions and data matching in three ways: across stimuli, the BOLD amplitude and ECoG broadband power were positively correlated, the BOLD amplitude and alpha power (8-13 Hz) were negatively correlated, and the BOLD amplitude and narrowband gamma power (30-80 Hz) were uncorrelated. The two measures provide complementary information about human brain activity, and we infer that features of the field potential that are uncorrelated with BOLD arise largely from changes in synchrony, rather than level, of neuronal activity.
Collapse
Affiliation(s)
- Dora Hermes
- Department of Psychology, New York University, New York, New York, United States of America
- Brain Center Rudolf Magnus, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Psychology, Stanford University, Stanford, California, United States of America
| | - Mai Nguyen
- Department of Psychology, Princeton University, Princeton, New Jersey, United States of America
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, New York, United States of America
| |
Collapse
|
9
|
Changes in fMRI activation in anterior hippocampus and motor cortex during memory retrieval after an intense exercise intervention. Biol Psychol 2017; 124:65-78. [DOI: 10.1016/j.biopsycho.2017.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/02/2017] [Accepted: 01/13/2017] [Indexed: 02/07/2023]
|
10
|
Kannurpatti SS. Mitochondrial calcium homeostasis: Implications for neurovascular and neurometabolic coupling. J Cereb Blood Flow Metab 2017; 37:381-395. [PMID: 27879386 PMCID: PMC5381466 DOI: 10.1177/0271678x16680637] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondrial function is critical to maintain high rates of oxidative metabolism supporting energy demands of both spontaneous and evoked neuronal activity in the brain. Mitochondria not only regulate energy metabolism, but also influence neuronal signaling. Regulation of "energy metabolism" and "neuronal signaling" (i.e. neurometabolic coupling), which are coupled rather than independent can be understood through mitochondria's integrative functions of calcium ion (Ca2+) uptake and cycling. While mitochondrial Ca2+ do not affect hemodynamics directly, neuronal activity changes are mechanistically linked to functional hyperemic responses (i.e. neurovascular coupling). Early in vitro studies lay the foundation of mitochondrial Ca2+ homeostasis and its functional roles within cells. However, recent in vivo approaches indicate mitochondrial Ca2+ homeostasis as maintained by the role of mitochondrial Ca2+ uniporter (mCU) influences system-level brain activity as measured by a variety of techniques. Based on earlier evidence of subcellular cytoplasmic Ca2+ microdomains and cellular bioenergetic states, a mechanistic model of Ca2+ mobilization is presented to understand systems-level neurovascular and neurometabolic coupling. This integrated view from molecular and cellular to the systems level, where mCU plays a major role in mitochondrial and cellular Ca2+ homeostasis, may explain the wide range of activation-induced coupling across neuronal activity, hemodynamic, and metabolic responses.
Collapse
|
11
|
Huang J, Wang F, Ding Y, Niu H, Tian F, Liu H, Song Y. Predicting N2pc from anticipatory HbO activity during sustained visuospatial attention: A concurrent fNIRS–ERP study. Neuroimage 2015; 113:225-34. [PMID: 25818691 DOI: 10.1016/j.neuroimage.2015.03.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 12/20/2022] Open
|
12
|
Tiwari V, Ambadipudi S, Patel AB. Glutamatergic and GABAergic TCA cycle and neurotransmitter cycling fluxes in different regions of mouse brain. J Cereb Blood Flow Metab 2013; 33:1523-31. [PMID: 23838829 PMCID: PMC3790929 DOI: 10.1038/jcbfm.2013.114] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/22/2013] [Accepted: 06/14/2013] [Indexed: 11/09/2022]
Abstract
The (13)C nuclear magnetic resonance (NMR) studies together with the infusion of (13)C-labeled substrates in rats and humans have provided important insight into brain energy metabolism. In the present study, we have extended a three-compartment metabolic model in mouse to investigate glutamatergic and GABAergic tricarboxylic acid (TCA) cycle and neurotransmitter cycle fluxes across different regions of the brain. The (13)C turnover of amino acids from [1,6-(13)C2]glucose was monitored ex vivo using (1)H-[(13)C]-NMR spectroscopy. The astroglial glutamate pool size, one of the important parameters of the model, was estimated by a short infusion of [2-(13)C]acetate. The ratio Vcyc/VTCA was calculated from the steady-state acetate experiment. The (13)C turnover curves of [4-(13)C]/[3-(13)C]glutamate, [4-(13)C]glutamine, [2-(13)C]/[3-(13)C]GABA, and [3-(13)C]aspartate from [1,6-(13)C2]glucose were analyzed using a three-compartment metabolic model to estimate the rates of the TCA cycle and neurotransmitter cycle associated with glutamatergic and GABAergic neurons. The glutamatergic TCA cycle rate was found to be highest in the cerebral cortex (0.91 ± 0.05 μmol/g per minute) and least in the hippocampal region (0.64 ± 0.07 μmol/g per minute) of the mouse brain. In contrast, the GABAergic TCA cycle flux was found to be highest in the thalamus-hypothalamus (0.28 ± 0.01 μmol/g per minute) and least in the cerebral cortex (0.24 ± 0.02 μmol/g per minute). These findings indicate that the energetics of excitatory and inhibitory function is distinct across the mouse brain.
Collapse
Affiliation(s)
- Vivek Tiwari
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Habsiguda India
| | | | | |
Collapse
|
13
|
Atabaki A, Dicke P, Karnath HO, Thier P. The dependencies of fronto-parietal BOLD responses evoked by covert visual search suggest eye-centred coding. Eur J Neurosci 2013; 37:1320-9. [DOI: 10.1111/ejn.12139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 11/29/2022]
Affiliation(s)
- A. Atabaki
- Center of Neurology; Department for Cognitive Neurology; Hertie-Institute for Clinical Brain Research; Otfried-Müller-Strasse 27; Tübingen; Germany
| | - P.W. Dicke
- Center of Neurology; Department for Cognitive Neurology; Hertie-Institute for Clinical Brain Research; Otfried-Müller-Strasse 27; Tübingen; Germany
| | - H.-O. Karnath
- Center of Neurology; Department for Cognitive Neurology; Hertie-Institute for Clinical Brain Research; Otfried-Müller-Strasse 27; Tübingen; Germany
| | - P. Thier
- Center of Neurology; Department for Cognitive Neurology; Hertie-Institute for Clinical Brain Research; Otfried-Müller-Strasse 27; Tübingen; Germany
| |
Collapse
|
14
|
Localization of function in anterior cingulate cortex: From psychosurgery to functional neuroimaging. Neurosci Biobehav Rev 2013; 37:340-8. [DOI: 10.1016/j.neubiorev.2013.01.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 12/10/2012] [Accepted: 01/03/2013] [Indexed: 12/19/2022]
|
15
|
Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses. Neuroimage 2012; 62:1040-50. [PMID: 22261372 DOI: 10.1016/j.neuroimage.2012.01.040] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/27/2011] [Accepted: 01/01/2012] [Indexed: 12/30/2022] Open
Abstract
Brain's electrical activity correlates strongly to changes in cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO(2)). Subthreshold synaptic processes correlate better than the spike rates of principal neurons to CBF, CMRO(2) and positive BOLD signals. Stimulation-induced rises in CMRO(2) are controlled by the ATP turnover, which depends on the energy used to fuel the Na,K-ATPase to reestablish ionic gradients, while stimulation-induced CBF responses to a large extent are controlled by mechanisms that depend on Ca(2+) rises in neurons and astrocytes. This dichotomy of metabolic and vascular control explains the gap between the stimulation-induced rises in CMRO(2) and CBF, and in turn the BOLD signal. Activity-dependent rises in CBF and CMRO(2) vary within and between brain regions due to differences in ATP turnover and Ca(2+)-dependent mechanisms. Nerve cells produce and release vasodilators that evoke positive BOLD signals, while the mechanisms that control negative BOLD signals by activity-dependent vasoconstriction are less well understood. Activation of both excitatory and inhibitory neurons produces rises in CBF and positive BOLD signals, while negative BOLD signals under most conditions correlate to excitation of inhibitory interneurons, but there are important exceptions to that rule as described in this paper. Thus, variations in the balance between synaptic excitation and inhibition contribute dynamically to the control of metabolic and hemodynamic responses, and in turn the amplitude and polarity of the BOLD signal. Therefore, it is not possible based on a negative or positive BOLD signal alone to decide whether the underlying activity goes on in principal or inhibitory neurons.
Collapse
|
16
|
Koopmans PJ, Barth M, Norris DG. Layer-specific BOLD activation in human V1. Hum Brain Mapp 2011; 31:1297-304. [PMID: 20082333 DOI: 10.1002/hbm.20936] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The neocortex is known to have a distinct laminar structure which has previously been probed in animals using high-resolution fMRI. Detection of layer-specific activation in humans has however to date proven elusive. In this study we demonstrate for the first time such layer-specific activation, specifically at a depth corresponding to layer IV of human primary visual cortex (V1). We used a gradient-echo (GE) sequence at 3T with an isotropic resolution of 0.75 mm, in which a stria at the depth of layer IV was visible in the averaged time series, and could be used as an anatomical landmark. Upon visual stimulation (7.5 Hz flickering checkerboard) the signal increase of 3% in layer IV was significantly higher than in the neighboring laminae. The width of this activation peak was 0.8-1 mm. Based on this result and known laminar organization of the intracortical vasculature we conclude that in the direction perpendicular to the cortical surface the intrinsic spatial resolution of the GE-BOLD fMRI signal is in the submillimetre range. Human laminar fMRI is a significant development which may improve our understanding of intracortical activation patterns and of the way in which different cortical regions interact.
Collapse
Affiliation(s)
- Peter J Koopmans
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
17
|
Stimulus-induced and state-dependent sustained gamma activity is tightly coupled to the hemodynamic response in humans. J Neurosci 2009; 29:13962-70. [PMID: 19890006 DOI: 10.1523/jneurosci.1402-09.2009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A prompt behavioral response to a stimulus depends both on the salience of the stimulus as well as the subject's preparedness. Thus, both stimulus properties and cognitive factors, such as attention, may determine the strength of neuronal synchronization in the gamma range. For a comprehensive investigation of stimulus-response processing through noninvasive imaging, it is, however, a crucial issue whether both kinds of gamma modulation elicit a hemodynamic response. Here, we show that, in the human visual cortex, stimulus strength and internal state modulate sustained gamma activity and hemodynamic response in close correspondence. When participants reported velocity changes of gratings varying in contrast, gamma activity (35-70 Hz) increased systematically with contrast. For stimuli of constant contrast, the amplitude of gamma activity before the behaviorally relevant velocity change was inversely correlated to the behavioral response latency. This indicates that gamma activity also reflects an overall attentive state. For both sources of variance, gamma activity was tightly coupled to the hemodynamic response measured through optical topography. Because of the close relationship between high-frequency neuronal activity and the hemodynamic signal, we conclude that both stimulus-induced and state-dependent gamma activity trigger a metabolic demand and are amenable to vascular-based imaging.
Collapse
|
18
|
Yassa MA, Stark CEL. Multiple signals of recognition memory in the medial temporal lobe. Hippocampus 2009; 18:945-54. [PMID: 18493928 DOI: 10.1002/hipo.20452] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The medial temporal lobe (MTL) is known to play an essential role in recognition memory (the ability to judge the prior occurrence of a stimulus). Electrophysiological studies in nonhuman primates have suggested the presence of more than one type of recognition signal in the medial temporal lobe (e.g., novelty, familiarity, and recency). It has also been suggested that the perirhinal cortex plays an essential role in visual recognition memory. Here, we present fMRI results from 16 college-aged participants who underwent a continuous yes/no recognition task of novel and familiar pictures with multiple stimulus presentations. Our goal was to understand the dynamics of recognition in the MTL over multiple trials. We hypothesized that we could see changes in signal with repeated exposure that carry information related to novelty, familiarity, and recency. Whole brain activation maps demonstrated a strong novelty effect, marked by activity in several frontal and occipital regions that decreases with increasing number of presentations. The opposite pattern was observed in several other regions that include the supramarginal gyrus and inferior parietal lobule. In the MTL region, we observed monotonic decreases in activity across trials in the parahippocampal cortex as well as the anterior perirhinal cortex. We also observed monotonic increases in activity in the posterior perirhinal cortex with increasing memory strength. In addition, we observed clear effects of pre-experimental familiarity with the stimulus in several regions. Consistent with previously reported electrophysiological data, we found evidence for several medial temporal lobe signals carrying recency, familiarity, and novelty information.
Collapse
Affiliation(s)
- Michael A Yassa
- Center for Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
19
|
Bartlett K, Saka M, Jones M. Polarographic Electrode Measures of Cerebral Tissue Oxygenation: Implications for Functional Brain Imaging. SENSORS 2008; 8:7649-7670. [PMID: 27873951 PMCID: PMC3790982 DOI: 10.3390/s8127649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 10/30/2008] [Accepted: 11/26/2008] [Indexed: 02/02/2023]
Abstract
The changes in blood flow, blood volume and oxygenation that accompany focal increases in neural activity are collectively referred to as the hemodynamic response and form the basis of non-invasive neuroimaging techniques such as blood oxygen level dependent (BOLD) functional magnetic resonance imaging. A principle factor influencing blood oxygenation, the cerebral metabolic rate of oxygen consumption is poorly understood and as such, data from imaging techniques are difficult to interpret in terms of the underlying neural activity. In particular how neurometabolic changes vary temporally, spatially and in magnitude remains uncertain. Furthermore knowledge of which aspects of neural activity are closely reflected by metabolic changes is essential for the correct interpretation of cognitive neuroscience studies in terms of information processing. Polarographic electrode measurements of cerebral tissue oxygenation in animal models following presentation of sensory stimuli have started to address these issues. Early studies demonstrated both increases and decreases in tissue oxygenation following neural activation. However a recent series of elegant studies in the cat visual system demonstrated a tight spatial and temporal coupling between evoked peri-synaptic activity and oxygen consumption following presentation of visual stimuli.
Collapse
Affiliation(s)
- Kate Bartlett
- The Centre for Signal Processing in Neuroimaging and Systems Neuroscience (SPINSN), Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK.
| | - Mohamad Saka
- The Centre for Signal Processing in Neuroimaging and Systems Neuroscience (SPINSN), Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK.
| | - Myles Jones
- The Centre for Signal Processing in Neuroimaging and Systems Neuroscience (SPINSN), Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK.
| |
Collapse
|
20
|
Babajani-Feremi A, Soltanian-Zadeh H, Moran JE. Integrated MEG/fMRI model validated using real auditory data. Brain Topogr 2008; 21:61-74. [PMID: 18478325 DOI: 10.1007/s10548-008-0056-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2008] [Indexed: 11/30/2022]
Abstract
The main objective of this paper is to present methods and results for the estimation of parameters of our proposed integrated magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) model. We use real auditory MEG and fMRI datasets from 7 normal subjects to estimate the parameters of the model. The MEG and fMRI data were acquired at different times, but the stimulus profile was the same for both techniques. We use independent component analysis (ICA) to extract activation-related signal from the MEG data. The stimulus-correlated ICA component is used to estimate MEG parameters of the model. The temporal and spatial information of the fMRI datasets are used to estimate fMRI parameters of the model. The estimated parameters have reasonable means and standard deviations for all subjects. Goodness of fit of the real data to our model shows the possibility of using the proposed model to simulate realistic datasets for evaluation of integrated MEG/fMRI analysis methods.
Collapse
Affiliation(s)
- Abbas Babajani-Feremi
- Image Analysis Laboratory, Radiology Department, Henry Ford Hospital, One Ford Place, 2F, Detroit, MI 48202, USA.
| | | | | |
Collapse
|
21
|
Riera JJ, Schousboe A, Waagepetersen HS, Howarth C, Hyder F. The micro-architecture of the cerebral cortex: functional neuroimaging models and metabolism. Neuroimage 2008; 40:1436-59. [PMID: 18343162 PMCID: PMC4348032 DOI: 10.1016/j.neuroimage.2007.12.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 01/22/2023] Open
Abstract
In order to interpret/integrate data obtained with different functional neuroimaging modalities (e.g. fMRI, EEG/MEG, PET/SPECT, fNIRS), forward-generative models of a diversity of brain mechanisms at the mesoscopic level are considered necessary. For the cerebral cortex, the brain structure with possibly the most relevance for functional neuroimaging, a variety of such biophysical models has been proposed over the last decade. The development of technological tools to investigate in vitro the physiological, anatomical and biochemical principles at the microscopic scale in comparative studies formed the basis for such theoretical progresses. However, with the most recent introduction of systems to record electrical (e.g. miniaturized probes chronically/acutely implantable in the brain), optical (e.g. two-photon laser scanning microscopy) and atomic nuclear spectral (e.g. nuclear magnetic resonance spectroscopy) signals using living laboratory animals, the field is receiving even greater attention. Major advances have been achieved by combining such sophisticated recording systems with new experimental strategies (e.g. transgenic/knock-out animals, high resolution stereotaxic manipulation systems for probe-guidance and cellular-scale chemical-delivery). Theoreticians may now be encouraged to re-consider previously formulated mesoscopic level models in order to incorporate important findings recently made at the microscopic scale. In this series of reviews, we summarize the background at the microscopic scale, which we suggest will constitute the foundations for upcoming representations at the mesoscopic level. In this first part, we focus our attention on the nerve ending particles in order to summarize basic principles and mechanisms underlying cellular metabolism in the cerebral cortex. It will be followed by two parts highlighting major features in its organization/working-principles to regulate both cerebral blood circulation and neuronal activity, respectively. Contemporary theoretical models for functional neuroimaging will be revised in the fourth part, with particular emphasis in their applications, advantages/limitations and future prospects.
Collapse
Affiliation(s)
- Jorge J Riera
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | | | | | | | | |
Collapse
|
22
|
Goloshevsky AG, Silva AC, Dodd SJ, Koretsky AP. BOLD fMRI and somatosensory evoked potentials are well correlated over a broad range of frequency content of somatosensory stimulation of the rat forepaw. Brain Res 2008; 1195:67-76. [PMID: 18206862 PMCID: PMC2275811 DOI: 10.1016/j.brainres.2007.11.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 11/07/2007] [Accepted: 11/13/2007] [Indexed: 11/22/2022]
Abstract
Electrical stimulation of the rat paw is commonly used to study the hemodynamic, metabolic and neuronal mechanisms of functional MRI (fMRI) responses in somatosensory cortex. Several groups have reported good correlation between the blood oxygenation level-dependent (BOLD) fMRI signal and somatosensory evoked potentials (SEPs) using short, typically 300 micros, square stimulation pulses. The spectral power of these short pulses is evenly distributed over a wide range of frequencies and thus the effects of the frequency content of the stimulation pulse on fMRI responses have not been previously described. Here, the effects that different stimulation pulse waveforms with a range of frequency content have on neuronal activity, as measured by SEPs, and on the amplitude of the BOLD fMRI signal in rat somatosensory cortex are investigated. The peak-to-peak SEP amplitudes increased as the power in the high frequency harmonics of the different pulse waveforms increased, using either triangular or sinusoidal stimuli waveforms from 9 Hz to 180 Hz. Similarly, BOLD fMRI response increased with increased high frequency content of the stimulation pulse. There was a linear correlation between SEPs and BOLD fMRI over the full range of frequency content in the stimulations.
Collapse
Affiliation(s)
- Artem G Goloshevsky
- Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
The temporal relationship between cerebral electro-physiological activities, higher brain functions and brain energy metabolism is reviewed. The duration of action potentials and transmission through glutamate and GABA are most often less than 5 ms. Subjects may perform complex psycho-physiological tasks within 50 to 200 ms, and perception of conscious experience requires 0.5 to 2 s. Activation of cerebral oxygen consumption starts after at least 100 ms and increases of local blood flow become maximal after about 1 s. Current imaging technologies are unable to detect rapid physiological brain functions. We introduce the concepts of potential and metabolic brain energy to distinguish trans-membrane gradients of ions or neurotransmitters and the capacity to generate energy from intra- or extra-cerebral substrates, respectively. Higher brain functions, such as memory retrieval, speaking, consciousness and self-consciousness are so fast that their execution depends primarily on fast neurotransmission (in the millisecond range) and action-potentials. In other words: brain functioning requires primarily maximal potential energy. Metabolic brain energy is necessary to restore and maintain the potential energy.
Collapse
Affiliation(s)
- Jakob Korf
- Department of Psychiatry and Graduate School of Behavioural and Cognitive Neurosciences, Groningen University, Groningen, The Netherlands.
| | | |
Collapse
|
24
|
Kirwan CB, Stark CE. Overcoming interference: an fMRI investigation of pattern separation in the medial temporal lobe. Learn Mem 2007; 14:625-33. [PMID: 17848502 PMCID: PMC1994079 DOI: 10.1101/lm.663507] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The medial temporal lobe (MTL) supports the formation and retrieval of long-term declarative memories, or memories for facts and everyday events. One challenge posed for this type of memory stems from the highly overlapping nature of common episodes. Within cognitive psychology, it is widely accepted that interference between information learned at different times is a major limitation on memory. In spite of several decades of intense research in the fields of interference theory and the neurobiological underpinnings of declarative memory, there is little direct evidence bearing on how the MTL resolves this interference to form accurate memories of everyday facts and events. Computational models of MTL function have proposed a mechanism in which the MTL, specifically the hippocampus, performs pattern separation, whereby overlapping representations are made less similar. However, there is little evidence bearing on how this process is carried out in the intact human MTL. Using high-resolution fMRI, we conducted a set of experiments that taxed behavioral pattern separation by using highly similar, interfering stimuli in a modified continuous recognition task. Regions within the parahippocampal gyrus demonstrated activity consistent with a "recall to reject" strategy. In contrast and critical to performing the task, activity within the hippocampus distinguished between correctly identified true stimulus repetitions, correctly rejected presentations of similar lure stimuli, and false alarms to similar lures. These data support the computational models' assertion that the hippocampus plays a key role in pattern separation.
Collapse
Affiliation(s)
- C. Brock Kirwan
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Craig E.L. Stark
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Corresponding author.E-mail ; fax (410) 516-4478
| |
Collapse
|
25
|
Diedrichsen J, Criscimagna-Hemminger SE, Shadmehr R. Dissociating timing and coordination as functions of the cerebellum. J Neurosci 2007; 27:6291-301. [PMID: 17554003 PMCID: PMC2216743 DOI: 10.1523/jneurosci.0061-07.2007] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The function of the cerebellum in motor control is a long-standing puzzle because cerebellar damage is associated with both timing and coordination deficits. Timing is the ability to produce consistent intervals between movements based on an internal representation of time. Coordination, in contrast, is a state-dependent control process in which motor commands to one effector depend on the predicted state of another effector. Here we considered a task consisting of two components, an arm movement and an isometric press with the thumb. We found that when the two components temporally overlapped, the brain controlled the thumb using an estimate of the state of the arm. In contrast, when the components did not temporally overlap, the brain controlled the thumb solely based on an internal estimate of time. Using functional magnetic resonance imaging, we contrasted these two conditions and found that lobule V of the cerebellum ipsilateral to the arm movement was consistently more activated during state-dependent control. When the brain learned time-dependent control, no region of the cerebellum showed consistently increased activity compared with state-dependent control. Rather, the consistent activity associated with time-dependent control was found in language areas of the left cerebral hemisphere along the Sylvian fissure. We suggest that timing and coordination are behaviorally distinct modes of motor control and that the anterior cerebellum is a crucial node in state-dependent motor control, computing a predictive state estimate of one effector (e.g., the arm) to coordinate actions of another effector (the thumb).
Collapse
Affiliation(s)
- Jörn Diedrichsen
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | | | |
Collapse
|
26
|
Abstract
A theoretical neural model is developed, along with supportive evidence, to explain how the medial preoptic area (MPOA) of the hypothalamus can regulate maternal responsiveness toward infant-related stimuli. It is proposed that efferents from a hormone-primed MPOA (a) depress a central aversion system (composed of neural circuits between the amygdala, medial hypothalamus, and midbrain) so that novel infant stimuli do not activate defensive or avoidance behavior and (b) excite the mesolimbic dopamine system so that active, voluntary maternal responses are promoted. The effects of oxytocin and maternal experience are included in the model, and the specificity of MPOA effects are discussed. The model may be relevant to the mechanisms through which other hypothalamic nuclei regulate other basic motivational states. In addition, aspects of the model may define a core neural circuitry for maternal behavior in mammals.
Collapse
Affiliation(s)
- Michael Numan
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
27
|
Gurden H, Uchida N, Mainen ZF. Sensory-evoked intrinsic optical signals in the olfactory bulb are coupled to glutamate release and uptake. Neuron 2007; 52:335-45. [PMID: 17046695 DOI: 10.1016/j.neuron.2006.07.022] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 06/08/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
Functional imaging signals arise from metabolic and hemodynamic activity, but how these processes are related to the synaptic and electrical activity of neurons is not well understood. To provide insight into this issue, we used in vivo imaging and simultaneous local pharmacology to study how sensory-evoked neural activity leads to intrinsic optical signals (IOS) in the well-defined circuitry of the olfactory glomerulus. Odor-evoked IOS were tightly coupled to release of glutamate and were strongly modulated by activation of presynaptic dopamine and GABA-B receptors. Surprisingly, IOS were independent of postsynaptic transmission through ionotropic or metabotropic glutamate receptors, but instead were inhibited when uptake by astrocytic glutamate transporters was blocked. These data suggest that presynaptic glutamate release and uptake by astrocytes form a critical pathway through which neural activity is linked to metabolic processing and hence to functional imaging signals.
Collapse
Affiliation(s)
- Hirac Gurden
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York, 11724, USA
| | | | | |
Collapse
|
28
|
Sugiura M, Friston KJ, Willmes K, Shah NJ, Zilles K, Fink GR. Analysis of intersubject variability in activation: an application to the incidental episodic retrieval during recognition test. Hum Brain Mapp 2007; 28:49-58. [PMID: 16718653 PMCID: PMC6871327 DOI: 10.1002/hbm.20256] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2005] [Accepted: 01/13/2006] [Indexed: 11/09/2022] Open
Abstract
Since the brain may engage different neuronal systems for a single behavioral goal, activation may show intersubject variability expressed in the systematic recruitment of multiple distinct networks. We apply a principal component analysis (PCA) to activation over task conditions and subjects to reveal cortical networks that may underlie this intersubject variability. Normal subjects were presented with novel meaningless objects, which appeared in personally familiar or unfamiliar places. During a subsequent, event-related functional MRI (fMRI) experiment, each subject was presented with learned or novel objects in isolation and performed a learned/novel judgment. Recollection of places was not essential for the task, and may exhibit large intersubject variations. The right posterodorsal posterior cingulate cortex (pPCC) and left retrosplenial cortex, whose involvement in place-recognition has been previously established, were selected as regions of interest for the PCA. Neural responses to objects associated with familiar relative to unfamiliar places in pPCC, but not in the retrosplenial cortex, were negatively correlated with task-related activation (common over all objects) in the right anterolateral prefrontal cortex and the left intraparietal sulcus. The latter areas have been implicated previously in cognitive control and object recognition, respectively. These results suggest right prefrontal control over neural processes both in the left parietal cortex, related to object-recognition (enhancement), and pPCC, related to nonessential recollection of place-memory (suppression), but not in the retrosplenial cortex, related to the sense of familiarity. This analysis revealed an important aspect of functional anatomy that was not detectable using a conventional analysis of average activations.
Collapse
|
29
|
Lefebvre VA, Zheng Y, Devonshire IM, Martin CJ, Mayhew JEW. Investigating the coupling between stimulation and neural activity: a dynamic modeling approach. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2007; 2007:1105-1108. [PMID: 18002155 DOI: 10.1109/iembs.2007.4352489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The objective of the present study was to build a dynamic model relating changes in neural responses in rat barrel cortex to an electrical whisker stimulation pulse train of varying frequencies. This work is part of a formal mathematical system currently being developed, which links stimulation to the Blood Oxygen Level Dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) signal. Neural responses were measured in terms of local field potentials, which were then converted into current source density (CSD) data. Responses were found to be strongly suppressed immediately following the first stimulus pulse, before recovering to a steady state, which was maintained throughout the rest of the stimulation. The amplitude of this steady state decreases as the stimulation frequency increases. The model structure is based on the physiological pathway from the rat sensory organ to the cortex. Dynamic linear second order systems are used to model the excitatory as well as the suppressive components of the neural response. The interactions between components contain nonlinear modulations. The model was evaluated against CSD data from experiments with varying stimulation frequency (1-40 Hz), and shows a plausible fit. The model parameters obtained by optimization for different physiological conditions (anaesthetized or awake) were significantly different. Although this is a descriptive model, it may well have some physiological implications.
Collapse
Affiliation(s)
- Veronique A Lefebvre
- Signal Processing in Neuroimaging and Systems Neuroscience group, University of Sheffield, UK.
| | | | | | | | | |
Collapse
|
30
|
Riera JJ, Wan X, Jimenez JC, Kawashima R. Nonlinear local electrovascular coupling. I: A theoretical model. Hum Brain Mapp 2006; 27:896-914. [PMID: 16729288 PMCID: PMC6871312 DOI: 10.1002/hbm.20230] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we present a detailed biophysical model of how brain electrical and vascular dynamics are generated within a basic cortical unit. The model was obtained from coupling a canonical neuronal mass and an expandable vasculature. In this proposal, we address several aspects related to electroencephalographic and functional magnetic resonance imaging data fusion: (1) the impact of the cerebral architecture (at different physical levels) on the observations; (2) the physiology involved in electrovascular coupling; and (3) energetic considerations to gain a better understanding of how the glucose budget is used during neuronal activity. The model has three components. The first is the canonical neural mass model of three subpopulations of neurons that respond to incoming excitatory synaptic inputs. The generation of the membrane potentials in the somas of these neurons and the electric currents flowing in the neuropil are modeled by this component. The second and third components model the electrovascular coupling and the dynamics of vascular states in an extended balloon approach, respectively. In the first part we describe, in some detail, the biophysical model and establish its face validity using simulations of visually evoked responses under different flickering frequencies and luminous contrasts. In a second part, a recursive optimization algorithm is developed and used to make statistical inferences about this forward/generative model from actual data.
Collapse
Affiliation(s)
- Jorge J Riera
- Advanced Science and Technology of Materials, NICHe, Tohoku University, Sendai, Japan.
| | | | | | | |
Collapse
|
31
|
Winder R, Cortes CR, Reggia JA, Tagamets MA. Functional connectivity in fMRI: A modeling approach for estimation and for relating to local circuits. Neuroimage 2006; 34:1093-107. [PMID: 17134917 PMCID: PMC1866913 DOI: 10.1016/j.neuroimage.2006.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/07/2006] [Accepted: 10/06/2006] [Indexed: 11/25/2022] Open
Abstract
Although progress has been made in relating neuronal events to changes in brain metabolism and blood flow, the interpretation of functional neuroimaging data in terms of the underlying brain circuits is still poorly understood. Computational modeling of connection patterns both among and within regions can be helpful in this interpretation. We present a neural network model of the ventral visual pathway and its relevant functional connections. This includes a new learning method that adjusts the magnitude of interregional connections in order to match experimental results of an arbitrary functional magnetic resonance imaging (fMRI) data set. We demonstrate that this method finds the appropriate connection strengths when trained on a model system with known, randomly chosen connection weights. We then use the method for examining fMRI results from a one-back matching task in human subjects, both healthy and those with schizophrenia. The results discovered by the learning method support previous findings of a disconnection between left temporal and frontal cortices in the group with schizophrenia and a concomitant increase of right-sided temporo-frontal connection strengths. We then demonstrate that the disconnection may be explained by reduced local recurrent circuitry in frontal cortex. This method extends currently available methods for estimating functional connectivity from human imaging data by including both local circuits and features of interregional connections, such as topography and sparseness, in addition to total connection strengths. Furthermore, our results suggest how fronto-temporal functional disconnection in schizophrenia can result from reduced local synaptic connections within frontal cortex rather than compromised interregional connections.
Collapse
Affiliation(s)
- Ransom Winder
- Department of Computer Science, University of Maryland at College Park, MD, USA
| | | | | | | |
Collapse
|
32
|
Whitney D, Bressler DW. Spatially asymmetric response to moving patterns in the visual cortex: re-examining the local sign hypothesis. Vision Res 2006; 47:50-9. [PMID: 17049580 PMCID: PMC3890257 DOI: 10.1016/j.visres.2006.08.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/11/2006] [Accepted: 08/15/2006] [Indexed: 11/28/2022]
Abstract
One of the most fundamental functions of the visual system is to code the positions of objects. Most studies, especially those using fMRI, widely assume that the location of the peak retinotopic activity generated in the visual cortex by an object is the position assigned to that object-this is a simplified version of the local sign hypothesis. Here, we employed a novel technique to compare the pattern of responses to moving and stationary objects and found that the local sign hypothesis is false. By spatially correlating populations of voxel responses to different moving and stationary stimuli in different positions, we recovered the modulation transfer function for moving patterns. The results show that the pattern of responses to a moving object is best correlated with the response to a static object that is located behind the moving one. The pattern of responses across the visual cortex was able to distinguish object positions separated by about 0.25 deg visual angle, equivalent to approximately 0.25 mm cortical distance. We also found that the position assigned to a pattern is not simply dictated by the peak activity-the shape of the luminance envelope and the resulting shape of the population response, including the shape and skew in the response at the edges of the pattern, influences where the visual cortex assigns the object's position. Therefore, visually coded position is not conveyed by the peak but by the overall profile of activity.
Collapse
Affiliation(s)
- David Whitney
- The Center for Mind and Brain, The Department of Psychology, The University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
33
|
Ruff CC, Driver J. Attentional preparation for a lateralized visual distractor: behavioral and fMRI evidence. J Cogn Neurosci 2006; 18:522-38. [PMID: 16768358 DOI: 10.1162/jocn.2006.18.4.522] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Attending to the location of an expected visual target can lead to anticipatory activations in spatiotopic occipital cortex, emerging before target onset. But less is known about how the brain may prepare for a distractor at a known location remote from the target. In a psychophysical experiment, we found that trial-to-trial advance knowledge about the presence of a distractor in the target-opposite hemifield significantly reduced its behavioral cost. In a subsequent functional magnetic resonance imaging experiment with similar task and stimuli, we found anticipatory activations in the occipital cortex contralateral to the expected distractor, but no additional target modulation, when participants were given advance information about a distractor's subsequent presence and location. Several attention-related control structures (frontal eye fields and superior parietal cortex) were active during attentional preparation for all trials, whereas the left superior prefrontal and right angular gyri were additionally activated when a distractor was anticipated. The right temporoparietal junction showed stronger functional coupling with occipital regions during preparation for trials with an isolated target than for trials with a distractor expected. These results show that anticipation of a visual distractor at a known location, remote from the target, can lead to (1) a reduction in the behavioral cost of that distractor, (2) preparatory modulation of the occipital cortex contralateral to the location of the expected distractor, and (3) anticipatory activation of distinct parietal and frontal brain structures. These findings indicate that specific components of preparatory visual attention may be devoted to minimizing the impact of distractors, not just to enhancements of target processing.
Collapse
|
34
|
Gsell W, Burke M, Wiedermann D, Bonvento G, Silva AC, Dauphin F, Bührle C, Hoehn M, Schwindt W. Differential effects of NMDA and AMPA glutamate receptors on functional magnetic resonance imaging signals and evoked neuronal activity during forepaw stimulation of the rat. J Neurosci 2006; 26:8409-16. [PMID: 16914666 PMCID: PMC6674350 DOI: 10.1523/jneurosci.4615-05.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most of the currently used methods for functional brain imaging do not visualize neuronal activity directly but rather rely on the elicited hemodynamic and/or metabolic responses. Glutamate, the major excitatory neurotransmitter, plays an important role in the neurovascular/neurometabolic coupling, but the specific mechanisms are still poorly understood. To investigate the role of the two major ionotropic glutamate receptors [NMDA receptors (NMDA-Rs) and AMPA receptors (AMPA-Rs)] for the generation of functional magnetic resonance imaging (fMRI) signals, we used fMRI [measurements of blood oxygenation level-dependent (BOLD), perfusion-weighted imaging (PWI), and cerebral blood volume (CBV)] together with recordings of somatosensory evoked potentials (SEPs) during electrical forepaw stimulation in the alpha-chloralose anesthetized rat. Intravenous injection of the NMDA-R antagonist MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate] (0.06 mg/kg plus 3.6 microg x kg(-1) x h(-1)) significantly decreased BOLD (-51 +/- 19%; n = 5) and PWI (-57 +/- 26%; n = 5) responses but reduced the SEPs only mildly (approximately -10%). Systemic application of the AMPA-R antagonist GYKI-53655 [1-(4-aminophenyl)-3-methylcarbamyl-4-methyl-7,8-methylenedioxy-3,4-dihydro-5H-2,3-benzodiazepine] significantly decreased both the hemodynamic response (BOLD, -49 +/- 13 and -65 +/- 15%; PWI, -22 +/- 48 and -68 +/- 4% for 5 and 7 mg/kg, i.v., respectively; CBV, -80 +/- 7% for 7 mg/kg; n = 4) and the SEPs (up to -60%). These data indicate that the interaction of glutamate with its postsynaptic and/or glial receptors is necessary for the generation of blood flow and BOLD responses and illustrate the differential role of NMDA-Rs and AMPA-Rs in the signaling chain leading from increased neuronal activity to the hemodynamic response in the somatosensory cortex.
Collapse
|
35
|
Martin C, Martindale J, Berwick J, Mayhew J. Investigating neural–hemodynamic coupling and the hemodynamic response function in the awake rat. Neuroimage 2006; 32:33-48. [PMID: 16725349 DOI: 10.1016/j.neuroimage.2006.02.021] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 12/16/2005] [Accepted: 02/20/2006] [Indexed: 10/24/2022] Open
Abstract
An understanding of the relationship between changes in neural activity and the accompanying hemodynamic response is crucial for accurate interpretation of functional brain imaging data and in particular the blood oxygen level-dependent (BOLD) fMRI signal. Much physiological research investigating this topic uses anesthetized animal preparations, and yet, the effects of anesthesia upon the neural and hemodynamic responses measured in such studies are not well understood. In this study, we electrically stimulated the whisker pad of both awake and urethane anesthetized rats at frequencies of 1-40 Hz. Evoked field potential responses were recorded using electrodes implanted into the contralateral barrel cortex. Changes in hemoglobin oxygenation and concentration were measured using optical imaging spectroscopy, and cerebral blood flow changes were measured using laser Doppler flowmetry. A linear neural-hemodynamic coupling relationship was found in the awake but not the anesthetized animal preparation. Over the range of stimulation conditions studied, hemodynamic response magnitude increased monotonically with summed neural activity in awake, but not in anesthetized, animals. Additionally, the temporal structure of the hemodynamic response function was different in awake compared to anesthetized animals. The responses in each case were well approximated by gamma variates, but these were different in terms of mean latency (approximately 2 s awake; 4 s anesthetized) and width (approximately 0.6 s awake; 2.5 s anesthetized). These findings have important implications for research into the intrinsic signals that underpin BOLD fMRI and for biophysical models of cortical hemodynamics and neural-hemodynamic coupling.
Collapse
Affiliation(s)
- Chris Martin
- SPiNSN, Department of Psychology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | | | | | | |
Collapse
|
36
|
Rancillac A, Rossier J, Guille M, Tong XK, Geoffroy H, Amatore C, Arbault S, Hamel E, Cauli B. Glutamatergic Control of Microvascular Tone by Distinct GABA Neurons in the Cerebellum. J Neurosci 2006; 26:6997-7006. [PMID: 16807329 PMCID: PMC6673912 DOI: 10.1523/jneurosci.5515-05.2006] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The tight coupling between increased neuronal activity and local cerebral blood flow, known as functional hyperemia, is essential for normal brain function. However, its cellular and molecular mechanisms remain poorly understood. In the cerebellum, functional hyperemia depends almost exclusively on nitric oxide (NO). Here, we investigated the role of different neuronal populations in the control of microvascular tone by in situ amperometric detection of NO and infrared videomicroscopy of microvessel movements in rat cerebellar slices. Bath application of an NO donor induced both NO flux and vasodilation. Surprisingly, endogenous release of NO elicited by glutamate was accompanied by vasoconstriction that was abolished by inhibition of Ca2+-phopholipase A2 and impaired by cyclooxygenase and thromboxane synthase inhibition and endothelin A receptor blockade, indicating a role for prostanoids and endothelin 1 in this response. Interestingly, direct stimulation of single endothelin 1-immunopositive Purkinje cells elicited constriction of neighboring microvessels. In contrast to glutamate, NMDA induced both NO flux and vasodilation that were abolished by treatment with a NO synthase inhibitor or with tetrodotoxin. These findings indicate that NO derived from neuronal origin is necessary for vasodilation induced by NMDA and, furthermore, that NO-producing interneurons mediate this vasomotor response. Correspondingly, electrophysiological stimulation of single nitrergic stellate cells by patch clamp was sufficient to release NO and dilate both intraparenchymal and upstream pial microvessels. These findings demonstrate that cerebellar stellate and Purkinje cells dilate and constrict, respectively, neighboring microvessels and highlight distinct roles for different neurons in neurovascular coupling.
Collapse
|
37
|
Poznanski RR, Riera JJ. fMRI MODELS OF DENDRITIC AND ASTROCYTIC NETWORKS. J Integr Neurosci 2006; 5:273-326. [PMID: 16783872 DOI: 10.1142/s0219635206001173] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 02/06/2006] [Indexed: 11/18/2022] Open
Abstract
In order to elucidate the relationships between hierarchical structures within the neocortical neuropil and the information carried by an ensemble of neurons encompassing a single voxel, it is essential to predict through volume conductor modeling LFPs representing average extracellular potentials, which are expressed in terms of interstitial potentials of individual cells in networks of gap-junctionally connected astrocytes and synaptically connected neurons. These relationships have been provided and can then be used to investigate how the underlying neuronal population activity can be inferred from the measurement of the BOLD signal through electrovascular coupling mechanisms across the blood-brain barrier. The importance of both synaptic and extrasynaptic transmission as the basis of electrophysiological indices triggering vascular responses between dendritic and astrocytic networks, and sequential configurations of firing patterns in composite neural networks is emphasized. The purpose of this review is to show how fMRI data may be used to draw conclusions about the information transmitted by individual neurons in populations generating the BOLD signal.
Collapse
Affiliation(s)
- Roman R Poznanski
- CRIAMS, Claremont Graduate University, Claremont CA 91711-3988, USA.
| | | |
Collapse
|
38
|
Burke M, Bührle C. BOLD response during uncoupling of neuronal activity and CBF. Neuroimage 2006; 32:1-8. [PMID: 16677832 DOI: 10.1016/j.neuroimage.2006.03.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 02/27/2006] [Accepted: 03/16/2006] [Indexed: 11/22/2022] Open
Abstract
The widely used technique of functional magnetic resonance imaging (fMRI) based on the blood oxygenation level-dependent (BOLD) effect is a tool for the investigation of changes in local brain activity upon stimulation. The principle of measurement is based on the assumption that there is a strong coupling between changes in neural activity, metabolism, vascular response and oxygen extraction in the area under investigation. As fMRI is on the way to become a routine tool in clinical examinations, we wanted to investigate whether, generally and under a variety of conditions, there is a strong link between the BOLD signal and neural activity. For clinical and experimental application of the method, it is crucial, whether the absence of changes in BOLD signal intensity upon stimulation can always be interpreted as an absence of changes in brain activity. We approached this question by inhibiting the nitric oxide mediated 'neurovascular coupling' via application of 7 nitroindazole. Before and after inhibition of this neurovascular coupling, we acquired evoked potentials and performed fMRI during somatosensory stimulation in rats. Cerebral blood flow response as well as BOLD signal intensity changes following electrical stimulation were abolished within 10 min after application of 7 nitroindazole, whereas somatosensory-evoked potentials were only slightly affected but still clearly detectable. Even 1 h after injection of 7 nitroindazole, there was still remaining electrical activity. Thus, we observed an uncoupling between electrical, i.e., neural activity and the BOLD signal. According to our results, the absence of BOLD signal changes did not permit the conclusion that there was no neural activity in the area under investigation. Our findings are especially relevant for the clinical application of fMRI in patients suffering from cerebrovascular and other brain diseases.
Collapse
Affiliation(s)
- M Burke
- Faculty of Psychology, Section for Experimental and Biological Psychology, Philipps-Universität Marburg, Gutenbergstrasse 18, D-35032 Marburg, Germany.
| | | |
Collapse
|
39
|
Law JR, Flanery MA, Wirth S, Yanike M, Smith AC, Frank LM, Suzuki WA, Brown EN, Stark CEL. Functional magnetic resonance imaging activity during the gradual acquisition and expression of paired-associate memory. J Neurosci 2006; 25:5720-9. [PMID: 15958738 PMCID: PMC6724878 DOI: 10.1523/jneurosci.4935-04.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent neurophysiological findings from the monkey hippocampus showed dramatic changes in the firing rate of individual hippocampal cells as a function of learning new associations. To extend these findings to humans, we used blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to examine the patterns of brain activity during learning of an analogous associative task. We observed bilateral, monotonic increases in activity during learning not only in the hippocampus but also in the parahippocampal and right perirhinal cortices. In addition, activity related to simple novelty signals was observed throughout the medial temporal lobe (MTL) memory system and in several frontal regions. A contrasting pattern was observed in a frontoparietal network in which a high level of activity was sustained until the association was well learned, at which point the activity decreased to baseline. Thus, we found that associative learning in humans is accompanied by striking increases in BOLD fMRI activity throughout the MTL as well as in the cingulate cortex and frontal lobe, consistent with neurophysiological findings in the monkey hippocampus. The finding that both the hippocampus and surrounding MTL cortex exhibited similar associative learning and novelty signals argues strongly against the view that there is a clear division of labor in the MTL in which the hippocampus is essential for forming associations and the cortex is involved in novelty detection. A second experiment addressed a striking aspect of the data from the first experiment by demonstrating a substantial effect of baseline task difficulty on MTL activity capable of rendering mnemonic activity as either "positive" or "negative."
Collapse
Affiliation(s)
- Jon R Law
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Roth JK, Serences JT, Courtney SM. Neural System for Controlling the Contents of Object Working Memory in Humans. Cereb Cortex 2005; 16:1595-603. [PMID: 16357333 DOI: 10.1093/cercor/bhj096] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Working memory (WM), the active maintenance of currently relevant information, is a flexible system allowing for fast and frequent goal-directed changes of rehearsed information. Successful WM maintenance prevents interference from distracting stimuli while allowing new task-relevant information to update the contents of WM. We used functional magnetic resonance imaging to show that when WM contents were updated, regardless of stimulus type (faces or houses), a frontoparietal network showed transient increases in activation. Some of these regions are highly similar to those identified in studies of shifting attention, supporting the idea that updating WM involves a change in the attentional priority afforded to the current perceptual input. A region within the mid-ventrolateral prefrontal cortex, near the junction of the inferior frontal sulcus and precentral sulcus (inferior frontal junction), that has previously been implicated in cognitive control, demonstrated transient increases in activity during updating as well as sustained maintenance activity. A more anterior prefrontal region, middle frontal gyrus, previously implicated in protecting the contents of WM from interfering stimuli during maintenance, demonstrated transient increases in activity during updating. The current study suggests that updating WM results from a combination of increased attention to the visual stimulus and a change in the system's interference protection state.
Collapse
Affiliation(s)
- Jennifer K Roth
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
41
|
Babajani A, Nekooei MH, Soltanian-Zadeh H. Integrated MEG and fMRI model: synthesis and analysis. Brain Topogr 2005; 18:101-13. [PMID: 16341578 DOI: 10.1007/s10548-005-0279-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2005] [Indexed: 11/26/2022]
Abstract
An integrated model for magnetoencephalography (MEG) and functional Magnetic Resonance Imaging (fMRI) is proposed. In the model, the neural activity is related to the Post Synaptic Potentials (PSPs) which is common link between MEG and fMRI. Each PSP is modeled by the direction and strength of its current flow which are treated as random variables. The overall neural activity in each voxel is used for equivalent current dipole in MEG and as input of extended Balloon model in fMRI. The proposed model shows the possibility of detecting activation by fMRI in a voxel while the voxel is silent for MEG and vice versa. Parameters of the model can illustrate situations like closed field due to non-pyramidal cells, canceling effect of inhibitory PSP on excitatory PSP, and effect of synchronicity. In addition, the model shows that the crosstalk from neural activities of the adjacent voxels in fMRI may result in the detection of activations in these voxels that contain no neural activities. The proposed model is instrumental in evaluating and comparing different analysis methods of MEG and fMRI. It is also useful in characterizing the upcoming combined methods for simultaneous analysis of MEG and fMRI.
Collapse
Affiliation(s)
- Abbas Babajani
- Control and Intelligent Processing Center of Excellence, Electrical and Computer Engineering Department, University of Tehran, Tehran, Iran
| | | | | |
Collapse
|
42
|
Abstract
The last decade has seen an unprecedented increase in the use of functional magnetic resonance imaging (fMRI) to understand the neural basis of cognition and behavior. Being non-invasive and relatively easy to use, most studies relied on changes in the blood oxygenation level dependent (BOLD) contrast as an indirect marker of variations in brain activity. However, the fact that BOLD fMRI is dependent on the blood flow response that follows neural activity and does not measure neural activity per se is seen as an inherent cause for concern while interpreting data from these studies. In order to characterize the BOLD signal correctly, it is imperative that we have a better understanding of neural events that lead to the BOLD response. A review of recent studies that addressed several aspects of BOLD fMRI including events at the level of the synapse, the nature of the neurovascular coupling, and some parameters of the BOLD signal is provided. This is intended to serve as background information for the interpretation of fMRI data in normal subjects and in patients with compromised neurovascular coupling. One of the aims is also to encourage researchers to interpret the results of functional imaging studies in light of the dynamic interactions between different brain regions, something that often is neglected.
Collapse
Affiliation(s)
- Dinesh G Nair
- Palmer 127, Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
43
|
Riera J, Aubert E, Iwata K, Kawashima R, Wan X, Ozaki T. Fusing EEG and fMRI based on a bottom-up model: inferring activation and effective connectivity in neural masses. Philos Trans R Soc Lond B Biol Sci 2005; 360:1025-41. [PMID: 16087446 PMCID: PMC1854929 DOI: 10.1098/rstb.2005.1646] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The elucidation of the complex machinery used by the human brain to segregate and integrate information while performing high cognitive functions is a subject of imminent future consequences. The most significant contributions to date in this field, known as cognitive neuroscience, have been achieved by using innovative neuroimaging techniques, such as electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI), which measure variations in both the time and the space of some interpretable physical magnitudes. Extraordinary maps of cerebral activation involving function-restricted brain areas, as well as graphs of the functional connectivity between them, have been obtained from EEG and fMRI data by solving some spatio-temporal inverse problems, which constitutes a top-down approach. However, in many cases, a natural bridge between these maps/graphs and the causal physiological processes is lacking, leading to some misunderstandings in their interpretation. Recent advances in the comprehension of the underlying physiological mechanisms associated with different cerebral scales have provided researchers with an excellent scenario to develop sophisticated biophysical models that permit an integration of these neuroimage modalities, which must share a common aetiology. This paper proposes a bottom-up approach, involving physiological parameters in a specific mesoscopic dynamic equations system. Further observation equations encapsulating the relationship between the mesostates and the EEG/fMRI data are obtained on the basis of the physical foundations of these techniques. A methodology for the estimation of parameters from fused EEG/fMRI data is also presented. In this context, the concepts of activation and effective connectivity are carefully revised. This new approach permits us to examine and discuss some future prospects for the integration of multimodal neuroimages.
Collapse
Affiliation(s)
- J Riera
- Advanced Science and Technology of Materials, NICHe, Tohoku University, Aoba 10, Aramaki, Aobaku, Sendai 980-8579, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Jones M, Berwick J, Hewson-Stoate N, Gias C, Mayhew J. The effect of hypercapnia on the neural and hemodynamic responses to somatosensory stimulation. Neuroimage 2005; 27:609-23. [PMID: 15978844 DOI: 10.1016/j.neuroimage.2005.04.036] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 03/17/2005] [Accepted: 04/28/2005] [Indexed: 11/16/2022] Open
Abstract
Modern non-invasive imaging techniques utilize the coupling between neural activity and changes in blood flow, volume and oxygenation to map the functional architecture of the human brain. An understanding of how the hemodynamic response is influenced by pre-stimulus baseline perfusion is important for the interpretation of imaging data. To address this issue, the present study measured hemodynamics with optical imaging spectroscopy and laser Doppler flowmetry, while multi-channel electrophysiology was used to record local field potentials (LFP) and multi-unit activity (MUA). The response to whisker stimulation in rodent barrel cortex was recorded during baseline (normocapnia) and elevated perfusion rates produced by two levels of hypercapnia (5 and 10%). With the exception of the 'washout' of deoxyhemoglobin, which was attenuated, all aspects of the neural and hemodynamic response to whisker stimulation were similar during 5% hypercapnia to those evoked during normocapnia. In contrast, 10% hypercapnia produced cortical arousal and a reduction in both the current sink and MUA elicited by stimulation. Blood flow and volume responses were reduced by a similar magnitude to that observed in the current sink. The deoxyhemoglobin 'washout', however, was attenuated to a greater degree than could be expected from the neural activity. These data suggest that imaging techniques based on perfusion or blood volume changes may be more robust to shifts in baseline than those based on the dilution of deoxyhemoglobin, such as conventional BOLD fMRI.
Collapse
Affiliation(s)
- Myles Jones
- The Centre for Signal Processing in Neuroimaging and Systems Neuroscience (SPINSN), Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK.
| | | | | | | | | |
Collapse
|
45
|
Steinbrink J, Kempf FCD, Villringer A, Obrig H. The fast optical signal--robust or elusive when non-invasively measured in the human adult? Neuroimage 2005; 26:996-1008. [PMID: 15961042 DOI: 10.1016/j.neuroimage.2005.03.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 02/15/2005] [Accepted: 03/10/2005] [Indexed: 11/25/2022] Open
Abstract
Near infrared spectroscopy (NIRS) can detect vascular changes in cerebral cortical tissue elicited by functional stimulation. For some 10 years, another optical signal has been reported to be accessible by NIRS. This signal has been reported to correlate to the electrophysiological response rendering NIRS an exquisite non-invasive approach to investigate neurovascular coupling in the human adult. Due to their typical latency of up to hundreds of milliseconds, these signals have been termed "fast" optical signals and have been postulated to stem from scatter changes in neuronal tissue, as a fingerprint of the electrophysiological response. Here, we utter a less optimistic view on the non-invasive detectability of these changes in the human, motivated by an upper limit signal size estimation, predicting a signal size by orders of magnitude smaller than those previously reported. Also, we discuss the influence of small stimulus correlated movement artifacts potentially mimicking a fast optical signal. Based on invasive studies, we perform an upper limit estimation for changes in intensity and mean time of flight, which can be expected assuming a scatter change in the cerebral cortex while measuring on the surface of the head of an adult subject. Since the resulting numbers are far below those previously reported, we constructed a simple system, which minimizes technical noise. The system allows us to detect rather small intensity changes (2 x 10(-3)%) when averaging over approximately 3000 stimuli. Despite this outstandingly low noise level of the system, we find a reliable change in response to a sub-motor-threshold steady state median nerve stimulation in just one single subject (8 subjects examined, 4 subjects twice). Exceeding the motor threshold leads to large stimulus related artifacts, on a similar time scale and with comparable amplitude as previously reported signals. To check for potential modality specific problems, we next performed a visual stimulation study, avoiding potential motor artifacts. For the steady state visually evoked response, no subject yielded a reliable result (11 subjects examined, 4 subjects twice). The paper discusses these findings by a review of the literature on fast optical signals and their being accessible in the adult human.
Collapse
Affiliation(s)
- Jens Steinbrink
- Division of Optical Neuroimaging, Berlin NeuroImaging Center, Schumannstrasse 20/21, 10098 Berlin, Germany.
| | | | | | | |
Collapse
|
46
|
Patel AB, de Graaf RA, Mason GF, Rothman DL, Shulman RG, Behar KL. The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci U S A 2005; 102:5588-93. [PMID: 15809416 PMCID: PMC556230 DOI: 10.1073/pnas.0501703102] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that the glutamate/glutamine (Glu/Gln) neurotransmitter cycle and neuronal glucose oxidation are proportional (1:1), with increasing neuronal activity above isoelectricity. GABA, a product of Glu metabolism, is synthesized from astroglial Gln and contributes to total Glu/Gln neurotransmitter cycling, although the fraction contributed by GABA is unknown. In the present study, we used (13)C NMR spectroscopy together with i.v. infusions of [1,6-(13)C(2)]glucose and [2-(13)C]acetate to separately determine rates of Glu/Gln and GABA/Gln cycling and their respective tricarboxylic acid cycles in the rat cortex under conditions of halothane anesthesia and pentobarbital-induced isoelectricity. Under 1% halothane anesthesia, GABA/Gln cycle flux comprised 23% of total (Glu plus GABA) neurotransmitter cycling and 18% of total neuronal tricarboxylic acid cycle flux. In isoelectric cortex, glucose oxidation was reduced >3-fold in glutamatergic and GABAergic neurons, and neurotransmitter cycling was below detection. Hence, in both cell types, the primary energetic costs are associated with neurotransmission, which increase together as cortical activity is increased. The contribution of GABAergic neurons and inhibition to cortical energy metabolism has broad implications for the interpretation of functional imaging signals.
Collapse
Affiliation(s)
- Anant B Patel
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Vanzetta I, Hildesheim R, Grinvald A. Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry. J Neurosci 2005; 25:2233-44. [PMID: 15745949 PMCID: PMC6726087 DOI: 10.1523/jneurosci.3032-04.2005] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2004] [Revised: 01/07/2005] [Accepted: 01/08/2005] [Indexed: 11/21/2022] Open
Abstract
Optical imaging, positron emission tomography, and functional magnetic resonance imaging (fMRI) all rely on vascular responses to image neuronal activity. Although these imaging techniques are used successfully for functional brain mapping, the detailed spatiotemporal dynamics of hemodynamic events in the various microvascular compartments have remained unknown. Here we used high-resolution optical imaging in area 18 of anesthetized cats to selectively explore sensory-evoked cerebral blood-volume (CBV) changes in the various cortical microvascular compartments. To avoid the confounding effects of hematocrit and oximetry changes, we developed and used a new fluorescent blood plasma tracer and combined these measurements with optical imaging of intrinsic signals at a near-isosbestic wavelength for hemoglobin (565 nm). The vascular response began at the arteriolar level, rapidly spreading toward capillaries and venules. Larger veins lagged behind. Capillaries exhibited clear blood-volume changes. Arterioles and arteries had the largest response, whereas the venous response was smallest. Information about compartment-specific oxygen tension dynamics was obtained in imaging sessions using 605 nm illumination, a wavelength known to reflect primarily oximetric changes, thus being more directly related to electrical activity than CBV changes. Those images were radically different: the response began at the parenchyma level, followed only later by the other microvascular compartments. These results have implications for the modeling of fMRI responses (e.g., the balloon model). Furthermore, functional maps obtained by imaging the capillary CBV response were similar but not identical to those obtained using the early oximetric signal, suggesting the presence of different regulatory mechanisms underlying these two hemodynamic processes.
Collapse
Affiliation(s)
- Ivo Vanzetta
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | |
Collapse
|
48
|
Abstract
A key goal in functional neuroimaging is to use signals that are related to local changes in metabolism and blood flow to track the neuronal correlates of mental activity. Recent findings indicate that the dendritic processing of excitatory synaptic inputs correlates more closely than the generation of spikes with brain imaging signals. The correlation is often nonlinear and context-sensitive, and cannot be generalized for every condition or brain region. The vascular signals are mainly produced by increases in intracellular calcium in neurons and possibly astrocytes, which activate important enzymes that produce vasodilators to generate increments in flow and the positive blood oxygen level dependent signal. Our understanding of the cellular mechanisms of functional imaging signals places constraints on the interpretation of the data.
Collapse
Affiliation(s)
- Martin Lauritzen
- Department of Clinical Neurophysiology, Glostrup Hospital, DK-2600 Glostrup, Denmark.
| |
Collapse
|
49
|
Harms MP, Guinan JJ, Sigalovsky IS, Melcher JR. Short-Term Sound Temporal Envelope Characteristics Determine Multisecond Time Patterns of Activity in Human Auditory Cortex as Shown by fMRI. J Neurophysiol 2005; 93:210-22. [PMID: 15306629 DOI: 10.1152/jn.00712.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) of human auditory cortex has demonstrated a striking range of temporal waveshapes in responses to sound. Prolonged (30 s) low-rate (2/s) noise burst trains elicit “sustained” responses, whereas high-rate (35/s) trains elicit “phasic” responses with peaks just after train onset and offset. As a step toward understanding the significance of these responses for auditory processing, the present fMRI study sought to resolve exactly which features of sound determine cortical response waveshape. The results indicate that sound temporal envelope characteristics, but not sound level or bandwidth, strongly influence response waveshapes, and thus the underlying time patterns of neural activity. The results show that sensitivity to sound temporal envelope holds in both primary and nonprimary cortical areas, but nonprimary areas show more pronounced phasic responses for some types of stimuli (higher-rate trains, continuous noise), indicating more prominent neural activity at sound onset and offset. It has been hypothesized that the neural activity underlying the onset and offset peaks reflects the beginning and end of auditory perceptual events. The present data support this idea because sound temporal envelope, the sound characteristic that most strongly influences whether fMRI responses are phasic, also strongly influences whether successive stimuli (e.g., the bursts of a train) are perceptually grouped into a single auditory event. Thus fMRI waveshape may provide a window onto neural activity patterns that reflect the segmentation of our auditory environment into distinct, meaningful events.
Collapse
Affiliation(s)
- Michael P Harms
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.
| | | | | | | |
Collapse
|
50
|
Mathiak K, Fallgatter AJ. Combining Magnetoencephalography and Functional Magnetic Resonance Imaging. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 68:121-48. [PMID: 16443012 DOI: 10.1016/s0074-7742(05)68005-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Klaus Mathiak
- Department of Psychiatry, RWTH Aachen University D-52074 Aachen, Germany
| | | |
Collapse
|