1
|
Kwok JC, Sato Y, Niggel JK, Ozdogan E, Murgiano L, Miyadera K. Delayed-onset cord1 progressive retinal atrophy in English Springer Spaniels genetically affected with the RPGRIP1 variant. Vet Ophthalmol 2024:10.1111/vop.13290. [PMID: 39428496 PMCID: PMC12009339 DOI: 10.1111/vop.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
OBJECTIVE Cone-rod dystrophy (cord1) is a form of progressive retinal atrophy. It is linked to an RPGRIP1 genetic variant which is the third most common canine disease variant thus far. While the variant affects various breeds, it is highly prevalent in English Springer Spaniels (ESSs). Yet its clinical and pathological implications remain equivocal. Herein, we study the retinal phenotype in ESSs genetically affected with the RPGRIP1 variant. ANIMAL STUDIED Over 4 years, 494 ESSs (123 affected) were enrolled. PROCEDURE(S) Owner-perceived vision was collected via a questionnaire. Ophthalmic examination included fundus photography. In selected ESSs, retinal function and structure were assessed using electroretinography (ERG, 148 dogs) and optical coherence tomography (OCT, 4 dogs). RESULTS Ophthalmoscopic changes included peripheral hypo-reflective lesions often with distinct borders progressing centripetally culminating in generalized retinal atrophy. Cross-sectional study revealed declining photopic ERG amplitudes with age in the affected group but not in controls. OCT indicated progressive photoreceptor loss. Despite ophthalmoscopic, ERG, or OCT abnormalities, most affected dogs were not visually impaired per their owners. In a fraction of afflicted ESSs, vision/globe-threatening complications were documented including cataracts, lens luxation, and glaucoma. CONCLUSIONS In ESSs, the RPGRIP1 variant is associated with insidious pathology with delayed-onset visual defects. The subtle phenotype without apparent visual deficit until the final years of life, if at all, may have caused underdiagnosis of cord1. Still, DNA testing remains informative, and ERG and OCT indicate progressive pathology. Peripheral fundus examination and photopic ERG are particularly useful for early detection and monitoring of cord1.
Collapse
Affiliation(s)
- Jennifer C. Kwok
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu Sato
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica K. Niggel
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emma Ozdogan
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leonardo Murgiano
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keiko Miyadera
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Antropoli A, Arrigo A, Pili L, Bianco L, Berni A, Saladino A, Bandello F, Battaglia Parodi M. Pigmented paravenous chorioretinal atrophy: Updated scenario. Eur J Ophthalmol 2024; 34:941-951. [PMID: 37670517 PMCID: PMC11295417 DOI: 10.1177/11206721231199118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 07/08/2023] [Indexed: 09/07/2023]
Abstract
Pigmented paravenous chorioretinal atrophy (PPCRA) is an uncommon form of chorioretinal atrophy characterized by perivenous aggregations of pigment clumps associated with peripapillary and radial zones of retinal pigment epithelial atrophy that are distributed along the retinal veins. Most patients are asymptomatic, and evidence suggest that PPCRA is slowly progressing. Unless macular involvement is present, the majority of patients usually retain a normal visual function. Our ability to diagnose PPCRA has recently improved thanks to multimodal imaging, especially with the advent of ultra-widefield (UWF) imaging. Blood tests and functional and genetic testing can help with the correct differential diagnosis of pseudo-PPCRA or other disorders with similar characteristics. Although the cause of PPCRA is unknown, it is possible that it has a genetic basis. In this review we provide a summary of the multimodal imaging characteristics of PPCRA, and discuss its possible pathogenesis, based on the genes that have been associated with this disease.
Collapse
Affiliation(s)
- Alessio Antropoli
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Pili
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Bianco
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Berni
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
3
|
Megaw R, Moye A, Zhang Z, Newton F, McPhie F, Murphy LC, McKie L, He F, Jungnickel MK, von Kriegsheim A, Tennant PA, Brotherton C, Gurniak C, Gross AK, Machesky LM, Wensel TG, Mill P. Ciliary tip actin dynamics regulate photoreceptor outer segment integrity. Nat Commun 2024; 15:4316. [PMID: 38773095 PMCID: PMC11109262 DOI: 10.1038/s41467-024-48639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/09/2024] [Indexed: 05/23/2024] Open
Abstract
As signalling organelles, cilia regulate their G protein-coupled receptor content by ectocytosis, a process requiring localised actin dynamics to alter membrane shape. Photoreceptor outer segments comprise an expanse of folded membranes (discs) at the tip of highly-specialised connecting cilia, into which photosensitive GPCRs are concentrated. Discs are shed and remade daily. Defects in this process, due to mutations, cause retinitis pigmentosa (RP). Whilst fundamental for vision, the mechanism of photoreceptor disc generation is poorly understood. Here, we show membrane deformation required for disc genesis is driven by dynamic actin changes in a process akin to ectocytosis. We show RPGR, a leading RP gene, regulates actin-binding protein activity central to this process. Actin dynamics, required for disc formation, are perturbed in Rpgr mouse models, leading to aborted membrane shedding as ectosome-like vesicles, photoreceptor death and visual loss. Actin manipulation partially rescues this, suggesting the pathway could be targeted therapeutically. These findings help define how actin-mediated dynamics control outer segment turnover.
Collapse
Affiliation(s)
- Roly Megaw
- MRC Human Genetics Unit, MRC Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK.
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, EH3 9HA, UK.
| | - Abigail Moye
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhixian Zhang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fay Newton
- MRC Human Genetics Unit, MRC Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Fraser McPhie
- MRC Human Genetics Unit, MRC Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Laura C Murphy
- MRC Human Genetics Unit, MRC Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Lisa McKie
- MRC Human Genetics Unit, MRC Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Feng He
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melissa K Jungnickel
- MRC Human Genetics Unit, MRC Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Alex von Kriegsheim
- Edinburgh Cancer Research United Kingdom Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Peter A Tennant
- MRC Human Genetics Unit, MRC Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Chloe Brotherton
- MRC Human Genetics Unit, MRC Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Christine Gurniak
- Institute fur Genetik, Universitat Bonn, Karlrobert-Kreiten-Strasse, 53115, Bonn, Germany
| | - Alecia K Gross
- University of Alabama at Birmingham, 2nd Ave South, Birmingham, AL, 35294, USA
| | - Laura M Machesky
- CRUK Scotland Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB1 7UY, UK
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pleasantine Mill
- MRC Human Genetics Unit, MRC Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| |
Collapse
|
4
|
Suga A, Mizobuchi K, Inooka T, Yoshitake K, Minematsu N, Tsunoda K, Kuniyoshi K, Kawai Y, Omae Y, Tokunaga K, Hayashi T, Ueno S, Iwata T. A homozygous structural variant of RPGRIP1 is frequently associated with achromatopsia in Japanese patients with IRD. GENETICS IN MEDICINE OPEN 2024; 2:101843. [PMID: 39669618 PMCID: PMC11613597 DOI: 10.1016/j.gimo.2024.101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 12/14/2024]
Abstract
Purpose Achromatopsia (ACHM) is an early-onset cone dysfunction caused by 5 genes with cone-specific functions (CNGA3, CNGB3, GNAT2, PDE6C, and PDE6H) and by ATF6, a transcription factor with ubiquitous expression. To improve the relatively low variant detection ratio in these genes in a cohort of exome-sequenced Japanese patients with inherited retinal diseases (IRD), we performed genome sequencing to detect structural variants and intronic variants in patients with ACHM. Methods Genome sequencing of 10 ACHM pedigrees was performed after exome sequencing. Structural, non-coding, and coding variants were filtered based on segregation between the affected and unaffected in each pedigree. Variant frequency and predicted damage scores were considered in identifying pathogenic variants. Results A homozygous deletion involving exon 18 of RPGRIP1 was detected in 5 of 10 ACHM probands, and variant inheritance from each parent was confirmed. This deletion was relatively frequent (minor allele frequency = 0.0023) in the Japanese population but was only homozygous in patients with ACHM among the 199 Japanese IRD probands analyzed by the same genome sequencing pipeline. Conclusion The deletion involving exon 18 of RPGRIP1 is a prevalent cause of ACHM in Japanese patients and contributes to the wide spectrum of RPGRIP1-associated IRD phenotypes, from Leber congenital amaurosis to ACHM.
Collapse
Affiliation(s)
- Akiko Suga
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Taiga Inooka
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Kazutoshi Yoshitake
- Laboratory of Aquatic Molecular Biology and Biotechnology, Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoko Minematsu
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Kazushige Tsunoda
- Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yosuke Omae
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| |
Collapse
|
5
|
Bianco L, Antropoli A, Arrigo A, Saladino A, Berni A, Bandello F, Mansour AM, Parodi MB. RPGRIP1 variant associated with pigmented paravenous chorioretinal atrophy. Eur J Ophthalmol 2023; 33:NP6-NP9. [PMID: 36755384 PMCID: PMC10590017 DOI: 10.1177/11206721231155042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
PURPOSE To report a case of Pigmented Paravenous Chorioretinal Atrophy (PPCRA) associated with a novel RPGRIP1 dominant variant. METHODS Case report. The patient underwent multimodal retinal imaging, including spectral-domain optical coherence tomography (OCT), OCT Angiography (OCTA), blue-light autofluorescence (BAF), and ultra-widefield pseudocolor retinography and autofluorescence. Genetic testing was performed using next-generation sequencing. RESULTS A 67-year-old male presented with a clinical suspicion of retinitis pigmentosa. His best-corrected visual acuity was 20/32 in the right eye and 20/200 in the left eye. On fundus examination, paravenous pigment clumping and chorioretinal atrophy were seen bilaterally, matching confluent hypoautofluorescent areas departing from the optic disc. This clinical presentation suggested a case of PPCRA. Genetic testing found a heterozygous deletion of nucleotide 631 (c.631del) in the RPGRIP1 gene, a frameshift variant that generates a premature stop codon (p.Ser211Valfs*64) and therefore results in a truncated or absent protein product. The variant was regarded as likely pathogenic (class IV). CONCLUSION In this report, we describe a case of PPCRA in association with a novel, likely pathogenic c.631del, p.Ser211Valfs*64 variant in RPGRIP1, a gene that has been associated with Leber congenital amaurosis and cone-rod dystrophy. Our case expands the spectrum of genes associated with PPCRA and prompts further studies to ascertain the molecular etiopathogenesis of this disease.
Collapse
Affiliation(s)
- Lorenzo Bianco
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessio Antropoli
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Berni
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ahmad M Mansour
- Department of Ophthalmology, American University of Beirut, Beirut, Lebanon
- Department of Ophthalmology, Rafic Hariri University Hospital, Beirut, Lebanon
| | | |
Collapse
|
6
|
Karamali F, Behtaj S, Babaei-Abraki S, Hadady H, Atefi A, Savoj S, Soroushzadeh S, Najafian S, Nasr Esfahani MH, Klassen H. Potential therapeutic strategies for photoreceptor degeneration: the path to restore vision. J Transl Med 2022; 20:572. [PMID: 36476500 PMCID: PMC9727916 DOI: 10.1186/s12967-022-03738-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and functional impairment of these cells, causes significant diminution of the retina's ability to detect light, with consequent loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotective therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. However, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to overcome the current limitations of this growing research area are suggested. Overall, the majority of current treatment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical and clinical, before full restoration of visual function in PR degeneration diseases can be realized.
Collapse
Affiliation(s)
- Fereshteh Karamali
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sanaz Behtaj
- grid.1022.10000 0004 0437 5432Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia ,grid.1022.10000 0004 0437 5432Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia
| | - Shahnaz Babaei-Abraki
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hanieh Hadady
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Atefeh Atefi
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Soraya Savoj
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sareh Soroushzadeh
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Najafian
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Henry Klassen
- grid.266093.80000 0001 0668 7243Gavin Herbert Eye Institute, Irvine, CA USA
| |
Collapse
|
7
|
Liu Y, Chen J, Sager R, Sasaki E, Hu H. Interactions between C8orf37 and FAM161A, Two Ciliary Proteins Essential for Photoreceptor Survival. Int J Mol Sci 2022; 23:12033. [PMID: 36233334 PMCID: PMC9570145 DOI: 10.3390/ijms231912033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in C8orf37 cause Bardet-Biedl syndrome (BBS), retinitis pigmentosa (RP), and cone-rod dystrophy (CRD), all manifest in photoreceptor degeneration. Little is known about which proteins C8orf37 interacts with to contribute to photoreceptor survival. To determine the proteins that potentially interact with C8orf37, we carried out a yeast two-hybrid (Y2H) screen using C8orf37 as a bait. FAM161A, a microtubule-binding protein localized at the photoreceptor cilium required for photoreceptor survival, was identified as one of the preys. Double immunofluorescence staining and proximity ligation assay (PLA) of marmoset retinal sections showed that C8orf37 was enriched and was co-localized with FAM161A at the ciliary base of photoreceptors. Epitope-tagged C8orf37 and FAM161A, expressed in HEK293 cells, were also found to be co-localized by double immunofluorescence staining and PLA. Furthermore, interaction domain mapping assays identified that the N-terminal region of C8orf37 and amino acid residues 341-517 within the PFAM UPF0564 domain of FAM161A were critical for C8orf37-FAM161A interaction. These data suggest that the two photoreceptor survival proteins, C8orf37 and FAM161A, interact with each other which may contribute to photoreceptor health.
Collapse
Affiliation(s)
- Yu Liu
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY 13210, USA
| | - Jinjun Chen
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY 13210, USA
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Rachel Sager
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY 13210, USA
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Tonomachi, Kawasaki 210-0821, Kanagawa, Japan
| | - Huaiyu Hu
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
8
|
Perkins BD. Zebrafish models of inherited retinal dystrophies. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2022; 6:95-110. [PMID: 35693295 PMCID: PMC9186516 DOI: 10.20517/jtgg.2021.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Inherited retinal degenerations (IRDs) cause permanent vision impairment or vision loss due to the death of rod and cone photoreceptors. Animal models of IRDs have been instrumental in providing knowledge of the pathological mechanisms that cause photoreceptor death and in developing successful approaches that could slow or prevent vision loss. Zebrafish models of IRDs represent an ideal model system to study IRDs in a cone-rich retina and to test strategies that exploit the natural ability to regenerate damaged neurons. This review highlights those zebrafish mutants and transgenic lines that exhibit adult-onset retinal degeneration and serve as models of retinitis pigmentosa, cone-rod dystrophy, and ciliopathies.
Collapse
Affiliation(s)
- Brian D. Perkins
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, OH 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
9
|
Ocular Characteristics of Patients with Leber Congenital Amaurosis 6 Caused by Pathogenic RPGRIP1 Gene Variation in a Chinese Cohort. J Ophthalmol 2021; 2021:9966427. [PMID: 34796026 PMCID: PMC8595035 DOI: 10.1155/2021/9966427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose To delineate the clinical and genetic characteristics of Chinese patients with RPGRIP1-associated Leber congenital amaurosis 6 (LCA6). Methods After screening 352 unrelated families with clinically diagnosed RP, five LCA6 patients with RPGRIP1 variations from unrelated Chinese families were identified. Full ophthalmology examinations, including decimal best-corrected visual acuity (BCVA), fundus photography, fundus autofluorescence imaging, spectral-domain optical coherence tomography (SD-OCT), full-field electroretinography (ffERG), multifocal electroretinography (mfERG), perimetry, and flash visual evoked potential (FVEP), were performed. Target next-generation sequencing (NGS) and Sanger sequencing were performed for the five patients to identify and to validate candidate disease-causing variants. Results Five patients were molecularly diagnosed as the LCA6 associated with RPGRIP1 variation, with typical clinical characteristics including congenital night blindness, nystagmus, and visual defect, at an early age. Interestingly, LCA6 exhibited extensive clinical heterogeneity and the changes in the morphology and function were not completely consistent in the five LCA6 patients. Case 1 showed extensive inferior-nasal retinal atrophy with a corresponding area of hypofluorescence in fundus autofluorescence, and the fundus photograph was nearly normal in cases 2 and 3. The ERG results displayed a moderately reduced rod-system response in cases 1 and 2 and a significant reduced rod-system response in case 3. Both case 4 and case 5 showed mottled pigmentation in fundi and an unrecordable rod and cone-system response in ERG. Moreover, we identified eight compound variants and one homozygous variant in the five patients with RPGRIP1. Conclusions This is the largest report focused on the clinical electrophysiological features of patients with associated LCA6 caused by the variation in the RPGRIP1 gene in the Chinese population with an enriched phenotypic and genotypic background of LCA6 to improve future gene therapies.
Collapse
|
10
|
Beryozkin A, Aweidah H, Carrero Valenzuela RD, Berman M, Iguzquiza O, Cremers FPM, Khan MI, Swaroop A, Amer R, Khateb S, Ben-Yosef T, Sharon D, Banin E. Retinal Degeneration Associated With RPGRIP1: A Review of Natural History, Mutation Spectrum, and Genotype-Phenotype Correlation in 228 Patients. Front Cell Dev Biol 2021; 9:746781. [PMID: 34722527 PMCID: PMC8551679 DOI: 10.3389/fcell.2021.746781] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/15/2021] [Indexed: 12/03/2022] Open
Abstract
Purpose:RPGRIP1 encodes a ciliary protein expressed in the photoreceptor connecting cilium. Mutations in this gene cause ∼5% of Leber congenital amaurosis (LCA) worldwide, but are also associated with cone–rod dystrophy (CRD) and retinitis pigmentosa (RP) phenotypes. Our purpose was to clinically characterize RPGRIP1 patients from our cohort, collect clinical data of additional RPGRIP1 patients reported previously in the literature, identify common clinical features, and seek genotype–phenotype correlations. Methods: Clinical data were collected from 16 patients of our cohort and 212 previously reported RPGRIP1 patients and included (when available) family history, best corrected visual acuity (BCVA), refraction, comprehensive ocular examination, optical coherence tomography (OCT) imaging, visual fields (VF), and full-field electroretinography (ffERG). Results: Out of 228 patients, the majority (197, 86%) were diagnosed with LCA, 18 (7%) with RP, and 13 (5%) with CRD. Age of onset was during early childhood (n = 133, average of 1.7 years). All patients but 6 had moderate hyperopia (n = 59, mean of 4.8D), and average BCVA was 0.06 Snellen (n = 124; only 10 patients had visual acuity [VA] > 0.10 Snellen). On funduscopy, narrowing of blood vessels was noted early in life. Most patients had mild bone spicule-like pigmentation starting in the midperiphery and later encroaching upon the posterior pole. OCT showed thinning of the outer nuclear layer (ONL), while cystoid changes and edema were relatively rare. VF were usually very constricted from early on. ffERG responses were non-detectable in the vast majority of cases. Most of the mutations are predicted to be null (363 alleles), and 93 alleles harbored missense mutations. Missense mutations were identified only in two regions: the RPGR-interacting domain and the C2 domains. Biallelic null mutations are mostly associated with a severe form of the disease, whereas biallelic missense mutations usually cause a milder disease (mostly CRD). Conclusion: Our results indicate that RPGRIP1 biallelic mutations usually cause severe retinal degeneration at an early age with a cone–rod pattern. However, most of the patients exhibit preservation of some (usually low) BCVA for a long period and can potentially benefit from gene therapy. Missense changes appear only in the conserved domains and are associated with a milder phenotype.
Collapse
Affiliation(s)
- Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hamzah Aweidah
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Myriam Berman
- Ophthalmology, Clinical Department, Faculty of Medicine, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Oscar Iguzquiza
- Neurology, Clinical Department, Faculty of Medicine, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Radgonde Amer
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samer Khateb
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Ben-Yosef
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
11
|
Shughoury A, Ciulla TA, Bakall B, Pennesi ME, Kiss S, Cunningham ET. Genes and Gene Therapy in Inherited Retinal Disease. Int Ophthalmol Clin 2021; 61:3-45. [PMID: 34584043 DOI: 10.1097/iio.0000000000000377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Georgiou M, Awadh Hashem S, Daich Varela M, Michaelides M. Gene Therapy in X-linked Retinitis Pigmentosa Due to Defects in RPGR. Int Ophthalmol Clin 2021; 61:97-108. [PMID: 34584047 DOI: 10.1097/iio.0000000000000384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Wensel TG, Potter VL, Moye A, Zhang Z, Robichaux MA. Structure and dynamics of photoreceptor sensory cilia. Pflugers Arch 2021; 473:1517-1537. [PMID: 34050409 PMCID: PMC11216635 DOI: 10.1007/s00424-021-02564-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
The rod and cone photoreceptor cells of the vertebrate retina have highly specialized structures that enable them to carry out their function of light detection over a broad range of illumination intensities with optimized spatial and temporal resolution. Most prominent are their unusually large sensory cilia, consisting of outer segments packed with photosensitive disc membranes, a connecting cilium with many features reminiscent of the primary cilium transition zone, and a pair of centrioles forming a basal body which serves as the platform upon which the ciliary axoneme is assembled. These structures form a highway through which an enormous flux of material moves on a daily basis to sustain the continual turnover of outer segment discs and the energetic demands of phototransduction. After decades of study, the details of the fine structure and distribution of molecular components of these structures are still incompletely understood, but recent advances in cellular imaging techniques and animal models of inherited ciliary defects are yielding important new insights. This knowledge informs our understanding both of the mechanisms of trafficking and assembly and of the pathophysiological mechanisms of human blinding ciliopathies.
Collapse
Affiliation(s)
- Theodore G Wensel
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology and Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Valencia L Potter
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology and Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Medical Scientist Training Program (MSTP), Baylor College of Medicine, Houston, TX, 77030, USA
| | - Abigail Moye
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhixian Zhang
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael A Robichaux
- Departments of Ophthalmology and Biochemistry, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
14
|
Jiang K, Fairless E, Kanda A, Gotoh N, Cogliati T, Li T, Swaroop A. Divergent Effects of HSP70 Overexpression in Photoreceptors During Inherited Retinal Degeneration. Invest Ophthalmol Vis Sci 2021; 61:25. [PMID: 33107904 PMCID: PMC7594617 DOI: 10.1167/iovs.61.12.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Disruption of proteostasis is a key event in many neurodegenerative diseases. Heat shock proteins (HSPs) participate in multiple functions associated with intracellular transport and proteostasis. We evaluated the effect of augmented HSP70 expression in mutant photoreceptors of mouse retinal degeneration models to test the hypothesis that failure to sustain HSP70 expression contributes to photoreceptor cell death. Methods We examined HSP70 expression in retinas of wild-type and mutant mice by RNA and protein analysis. A transgenic mouse line, TgCrx-Hspa1a-Flag, was generated to express FLAG-tagged full-length HSP70 protein under control of a 2.3 kb mouse Crx promoter. This line was crossed to three distinct retinal degeneration mouse models. Retinal structure and function were evaluated by histology, immunohistochemistry, and electroretinography. Results In seven different mouse models of retinal degeneration, we detected transient elevation of endogenous HSP70 expression at early stages, followed by a dramatic reduction as cell death ensues, suggesting an initial adaptive response to cellular stress. Augmented expression of HSP70 in RHOT17M mice, in which mutant rhodopsin is misfolded, marginally improved photoreceptor survival, whereas elevated HSP70 led to more severe retinal degeneration in rd10 mutants that produce a partially functional PDE6B. In Rpgrip1−/− mice that display a ciliary defect, higher HSP70 had no impact on photoreceptor survival or function. Conclusions HSP70 overexpression has divergent effects in photoreceptors determined, at least in part, by the nature of the mutant protein each model carries. Additional investigations on HSP pathways and associated chaperone networks in photoreceptors are needed before designing therapeutic strategies targeting proteostasis.
Collapse
Affiliation(s)
- Ke Jiang
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Elizabeth Fairless
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Atsuhiro Kanda
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Norimoto Gotoh
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Tiziana Cogliati
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Tiansen Li
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Anand Swaroop
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
15
|
Hadalin V, Šuštar M, Volk M, Maver A, Sajovic J, Jarc-Vidmar M, Peterlin B, Hawlina M, Fakin A. Cone Dystrophy Associated with a Novel Variant in the Terminal Codon of the RPGR- ORF15. Genes (Basel) 2021; 12:genes12040499. [PMID: 33805381 PMCID: PMC8066792 DOI: 10.3390/genes12040499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/30/2022] Open
Abstract
Mutations in RPGRORF15 are associated with rod-cone or cone/cone-rod dystrophy, the latter associated with mutations at the distal end. We describe the phenotype associated with a novel variant in the terminal codon of the RPGRORF15 c.3457T>A (Ter1153Lysext*38), which results in a C-terminal extension. Three male patients from two families were recruited, aged 31, 35, and 38 years. Genetic testing was performed by whole exome sequencing. Filtered variants were analysed according to the population frequency, ClinVar database, the variant’s putative impact, and predicted pathogenicity; and were classified according to the ACMG guidelines. Examination included visual acuity (Snellen), colour vision (Ishihara), visual field, fundus autofluorescence (FAF), optical coherence tomography (OCT), and electrophysiology. All patients were myopic, and had central scotoma and reduced colour vision. Visual acuities on better eyes were counting fingers, 0.3 and 0.05. Electrophysiology showed severely reduced cone-specific responses and macular dysfunction, while the rod-specific response was normal. FAF showed hyperautofluorescent ring centred at the fovea encompassing an area of photoreceptor loss approximately two optic discs in diameter (3462–6342 μm). Follow up after 2–11 years showed enlargement of the diameter (avg. 100 μm/year). The novel c.3457T>A (Ter1153Lysext*38) mutation in the terminal RPGRORF15 codon is associated with cone dystrophy, which corresponds to the previously described phenotypes associated with mutations in the distal end of the RPGRORF15. Minimal progression during follow-up years suggests a relatively stable disease after the initial loss of the central cones.
Collapse
Affiliation(s)
- Vlasta Hadalin
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (V.H.); (M.Š.); (J.S.); (M.J.-V.); (M.H.)
| | - Maja Šuštar
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (V.H.); (M.Š.); (J.S.); (M.J.-V.); (M.H.)
| | - Marija Volk
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Šlajmerjeva ulica 4, 1000 Ljubljana, Slovenia; (M.V.); (A.M.); (B.P.)
| | - Aleš Maver
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Šlajmerjeva ulica 4, 1000 Ljubljana, Slovenia; (M.V.); (A.M.); (B.P.)
| | - Jana Sajovic
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (V.H.); (M.Š.); (J.S.); (M.J.-V.); (M.H.)
| | - Martina Jarc-Vidmar
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (V.H.); (M.Š.); (J.S.); (M.J.-V.); (M.H.)
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Šlajmerjeva ulica 4, 1000 Ljubljana, Slovenia; (M.V.); (A.M.); (B.P.)
| | - Marko Hawlina
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (V.H.); (M.Š.); (J.S.); (M.J.-V.); (M.H.)
| | - Ana Fakin
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (V.H.); (M.Š.); (J.S.); (M.J.-V.); (M.H.)
- Correspondence:
| |
Collapse
|
16
|
Perrault I, Hanein S, Gérard X, Mounguengue N, Bouyakoub R, Zarhrate M, Fourrage C, Jabot-Hanin F, Bocquet B, Meunier I, Zanlonghi X, Kaplan J, Rozet JM. Whole Locus Sequencing Identifies a Prevalent Founder Deep Intronic RPGRIP1 Pathologic Variant in the French Leber Congenital Amaurosis Cohort. Genes (Basel) 2021; 12:genes12020287. [PMID: 33670832 PMCID: PMC7922592 DOI: 10.3390/genes12020287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023] Open
Abstract
Leber congenital amaurosis (LCA) encompasses the earliest and most severe retinal dystrophies and can occur as a non-syndromic or a syndromic disease. Molecular diagnosis in LCA is of particular importance in clinical decision-making and patient care since it can provide ocular and extraocular prognostics and identify patients eligible to develop gene-specific therapies. Routine high-throughput molecular testing in LCA yields 70%–80% of genetic diagnosis. In this study, we aimed to investigate the non-coding regions of one non-syndromic LCA gene, RPGRIP1, in a series of six families displaying one single disease allele after a gene-panel screening of 722 LCA families which identified 26 biallelic RPGRIP1 families. Using trio-based high-throughput whole locus sequencing (WLS) for second disease alleles, we identified a founder deep intronic mutation (NM_020366.3:c.1468-128T>G) in 3/6 families. We employed Sanger sequencing to search for the pathologic variant in unresolved LCA cases (106/722) and identified three additional families (two homozygous and one compound heterozygous with the NM_020366.3:c.930+77A>G deep intronic change). This makes the c.1468-128T>G the most frequent RPGRIP1 disease allele (8/60, 13%) in our cohort. Studying patient lymphoblasts, we show that the pathologic variant creates a donor splice-site and leads to the insertion of the pseudo-exon in the mRNA, which we were able to hamper using splice-switching antisense oligonucleotides (AONs), paving the way to therapies.
Collapse
Affiliation(s)
- Isabelle Perrault
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases, Imagine and Paris Descartes University, 75015 Paris, France; (X.G.); (N.M.); (R.B.); (J.K.); (J.-M.R.)
- Correspondence:
| | - Sylvain Hanein
- Translational Genetics, Institute of Genetic Diseases, INSERM UMR1163, Imagine and Paris Descartes University, 75015 Paris, France;
| | - Xavier Gérard
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases, Imagine and Paris Descartes University, 75015 Paris, France; (X.G.); (N.M.); (R.B.); (J.K.); (J.-M.R.)
| | - Nelson Mounguengue
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases, Imagine and Paris Descartes University, 75015 Paris, France; (X.G.); (N.M.); (R.B.); (J.K.); (J.-M.R.)
| | - Ryme Bouyakoub
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases, Imagine and Paris Descartes University, 75015 Paris, France; (X.G.); (N.M.); (R.B.); (J.K.); (J.-M.R.)
| | - Mohammed Zarhrate
- Genomics Platform, Institute of Genetics Diseases, Imagine and Paris Descartes University, 75015 Paris, France;
| | - Cécile Fourrage
- Bioinformatic Platform, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France; (C.F.); (F.J.-H.)
| | - Fabienne Jabot-Hanin
- Bioinformatic Platform, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France; (C.F.); (F.J.-H.)
- Bioinformatics Core Facility, Université Paris Descartes-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, 75015 Paris, France
| | - Béatrice Bocquet
- Centre de Référence des Affections Sensorielles Génétiques, Institut des Neurosciences de Montpellier, CHU-Saint Eloi Montpellier, 34091 Montpellier, France; (B.B.); (I.M.)
| | - Isabelle Meunier
- Centre de Référence des Affections Sensorielles Génétiques, Institut des Neurosciences de Montpellier, CHU-Saint Eloi Montpellier, 34091 Montpellier, France; (B.B.); (I.M.)
- National Reference Centre for Inherited Sensory Diseases, Univ Montpellier, CHU, 34091 Montpellier, France
| | - Xavier Zanlonghi
- Eye Clinic Jules Verne, 44300 Nantes, France;
- CHU, 35000 Rennes, France
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases, Imagine and Paris Descartes University, 75015 Paris, France; (X.G.); (N.M.); (R.B.); (J.K.); (J.-M.R.)
- Ophthalmology Department, University Hospital Henri Mondor, APHP, 94000 Créteil, France
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases, Imagine and Paris Descartes University, 75015 Paris, France; (X.G.); (N.M.); (R.B.); (J.K.); (J.-M.R.)
| |
Collapse
|
17
|
Alhasani RH, Zhou X, Biswas L, Li X, Reilly J, Zeng Z, Shu X. Gypenosides attenuate retinal degeneration in a zebrafish retinitis pigmentosa model. Exp Eye Res 2020; 201:108291. [PMID: 33049273 DOI: 10.1016/j.exer.2020.108291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/07/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022]
Abstract
Retinitis pigmentosa (RP) is a collection of heterogenous genetic retinal disorders resulting in cumulative retinal deterioration involving progressive loss of photoreceptors and eventually in total blindness. Oxidative stress plays a central role in this photoreceptor loss. Gypenosides (Gyp) are the main functional component isolated from the climbing vine Gynostemma pentaphyllum and have been shown to defend cells against the effects of oxidative stress and inflammation, providing protection in experimentally-induced optic neuritis. The zebrafish model has been used to investigate a range of human diseases. Previously we reported early retinal degeneration in a mutant zebrafish line carrying a point-nonsense mutation in the retinitis pigmentosa GTPase regulator interacting protein 1 (rpgrip1) gene that is mutated in RP patients. The current study investigated the potential protective effects of Gyp against photoreceptor degeneration in the Rpgrip1 deleted zebrafish. Rpgrip1 mutant zebrafish were treated with 5 μg/ml of Gyp in E3 medium from 6 h post fertilization (hpf) till 1 month post fertilization (mpf). Rpgrip1 mutant zebrafish treated with 5 μg/ml of Gyp showed a significant decrease by 68.41% (p = 0.0002) in photoreceptor cell death compared to that of untreated mutant zebrafish. Expression of antioxidant genes catalase, sod1, sod2, gpx1, gclm, nqo-1 and nrf-2 was significantly decreased in rpgrip1 mutant zebrafish eyes by 61.51%, 77.40%, 60.11%, 81.17%, 72.07%, 78.95% and 85.42% (all p < 0.0001), respectively, when compared to that of wildtype zebrafish; superoxide dismutase and catalase activities, and glutathione levels in rpgrip1 mutant zebrafish eyes were significantly decreased by 87.21%, 21.55% and 96.51% (all p < 0.0001), respectively. There were marked increases in the production of reactive oxygen species (ROS) and malondialdehyde (MDA) by 2738.73% and 510.69% (all p < 0.0001), respectively, in rpgrip1 mutant zebrafish eyes; expression of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α was also significantly increased by 150.11%, 267.79% and 190.72% (all p < 0.0001), respectively, in rpgrip1 mutant zebrafish eyes, compared to that of wildtype zebrafish. Treatment with Gyp significantly counteracted these effects. This study indicates that Gyp has a potential role in the treatment of RP.
Collapse
Affiliation(s)
- Reem Hasaballah Alhasani
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom; Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Xinzhi Zhou
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
| | - Lincoln Biswas
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
| | - Xing Li
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan, 422000, PR China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
| | - Zhihong Zeng
- College of Biological and Environmental Engineering, Changsha University, Changsha, Hunan, 410022, PR China.
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom; Department of Vision Science, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom; School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan, 422000, PR China.
| |
Collapse
|
18
|
Sallum JMF, Motta FL, Arno G, Porto FBO, Resende RG, Belfort R. Clinical and molecular findings in a cohort of 152 Brazilian severe early onset inherited retinal dystrophy patients. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:728-752. [PMID: 32865313 DOI: 10.1002/ajmg.c.31828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
Leber congenital amaurosis (LCA) and early-onset retinal dystrophy (EORD) are severe inherited retinal dystrophy that can cause deep blindness childhood. They represent 5% of all retinal dystrophies in the world population and about 10% in Brazil. Clinical findings and molecular basis of syndromic and nonsyndromic LCA/EORD in a Brazilian sample (152 patients/137 families) were studied. In this population, 15 genes were found to be related to the phenotype, 38 new variants were detected and four new complex alleles were discovered. Among 123 variants found, the most common were CEP290: c.2991+1655A>G, CRB1: p.Cys948Tyr, and RPGRIP1: exon10-18 deletion.
Collapse
Affiliation(s)
- Juliana Maria Ferraz Sallum
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil.,Instituto de Genética Ocular, Sao Paulo, Brazil
| | - Fabiana Louise Motta
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil.,Instituto de Genética Ocular, Sao Paulo, Brazil
| | - Gavin Arno
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Fernanda Belga Ottoni Porto
- INRET Clínica e Centro de Pesquisa, Belo Horizonte, Minas Gerais, Brazil.,Centro Oftalmológico de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Rubens Belfort
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
19
|
Sato S, Morimoto T, Tanaka S, Hotta K, Fujikado T, Tsujikawa M, Nishida K. Novel mutation identified in Leber congenital amaurosis - a case report. BMC Ophthalmol 2020; 20:313. [PMID: 32736544 PMCID: PMC7393846 DOI: 10.1186/s12886-020-01577-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/21/2020] [Indexed: 11/20/2022] Open
Abstract
Background Leber congenital amaurosis (LCA) is the earliest onset and the most severe form of all inherited retinal degenerative disorders, characterized by blindness, or severe visual impairment from birth, and typically exhibits clinical and genetic heterogeneity. Recently, 14 causative genes of LCA were reported. We performed whole-exome sequencing (WES) for Japanese siblings, and identified a novel homozygous nonsense mutation in the RPGR-interacting protein 1 (RPGRIP1) gene. We also report their follow-up data over 27 years. Case presentation Patient 1 is a 37-year-old male. In 1992, his eye position indicated orthophoria, however, horizontal nystagmus was evident, and he complained of photophobia. His best corrected decimal visual acuity (BCVA) was 0.2 (S + 6.5/C-3.5/170°) OD and 0.1 (S + 6.0/C-2.5/10°) OS. Fundus examination revealed bisymmetrical inferior focal retinal pigment epithelium (RPE) mottling. Bright-flash electroretinogram (ERG) revealed a subnormal pattern, while 30 Hz flicker ERG was non-recordable in both eyes. At his final visit in 2019, his BCVA was 0.09 (S + 3.5/C-3.5/180°) OD and 0.09 (S + 3.0/C-4.0/10°) OS. Patient 2, a 34-year-old female, is the sibling of patient 1. In 1992, her BCVA was 0.05 (S + 6.0) OD and 0.06 (S + 5.0) OS. She was in a chin-up position during visual acuity testing. Horizontal nystagmus was evident, and she also complained of photophobia. Bright-flash ERG was severely attenuated, and 30 Hz flicker ERG was non-recordable in both eyes. At her final visit in 2019, her BCVA was 0.02 (uncorrectable) OD and 0.03 (uncorrectable) OS. There were no other patients with LCA in their family and their parents were non-consanguineous. WES revealed a homozygous, consecutive, two-nucleotide variation in the RPGRIP1 gene (NM_020366: exon15:c.G2294A and c.C2295A, p.C765X), resulting in a premature stop codon. We interpreted this variation as a novel pathogenic mutation of RPGRIP1 that contributes to LCA6 development. Conclusions Herein, we report a novel nonsense mutation of RPGRIP1 in two patients with LCA6 and present their long-term follow-up data. These clinical data linked to genotypes provide important information for the development of new treatments, such as gene therapy, as well as for genetic counseling.
Collapse
Affiliation(s)
- Shigeru Sato
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Laboratory of Regenerative Medicine and Development, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Takeshi Morimoto
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Advanced Visual Neuroscience, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sayaka Tanaka
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kikuko Hotta
- Laboratory of Pathophysiology and Pharmacotherapeutics, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Takashi Fujikado
- Special Research Promotion Group, Osaka University Graduate School of Frontier Biosciences, Osaka, Japan
| | - Motokazu Tsujikawa
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Laboratory of Regenerative Medicine and Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Trans-disciplinary Research Initiatives, Osaka University, Osaka, Japan
| |
Collapse
|
20
|
Collin GB, Gogna N, Chang B, Damkham N, Pinkney J, Hyde LF, Stone L, Naggert JK, Nishina PM, Krebs MP. Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss. Cells 2020; 9:E931. [PMID: 32290105 PMCID: PMC7227028 DOI: 10.3390/cells9040931] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Navdeep Gogna
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Nattaya Damkham
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jai Pinkney
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lillian F. Hyde
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Jürgen K. Naggert
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| |
Collapse
|
21
|
Liang Q, Dharmat R, Owen L, Shakoor A, Li Y, Kim S, Vitale A, Kim I, Morgan D, Liang S, Wu N, Chen K, DeAngelis MM, Chen R. Single-nuclei RNA-seq on human retinal tissue provides improved transcriptome profiling. Nat Commun 2019; 10:5743. [PMID: 31848347 PMCID: PMC6917696 DOI: 10.1038/s41467-019-12917-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/02/2019] [Indexed: 12/23/2022] Open
Abstract
Single-cell RNA-seq is a powerful tool in decoding the heterogeneity in complex tissues by generating transcriptomic profiles of the individual cell. Here, we report a single-nuclei RNA-seq (snRNA-seq) transcriptomic study on human retinal tissue, which is composed of multiple cell types with distinct functions. Six samples from three healthy donors are profiled and high-quality RNA-seq data is obtained for 5873 single nuclei. All major retinal cell types are observed and marker genes for each cell type are identified. The gene expression of the macular and peripheral retina is compared to each other at cell-type level. Furthermore, our dataset shows an improved power for prioritizing genes associated with human retinal diseases compared to both mouse single-cell RNA-seq and human bulk RNA-seq results. In conclusion, we demonstrate that obtaining single cell transcriptomes from human frozen tissues can provide insight missed by either human bulk RNA-seq or animal models.
Collapse
Affiliation(s)
- Qingnan Liang
- HGSC, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, 77030, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rachayata Dharmat
- HGSC, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, 77030, TX, USA
- St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Leah Owen
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Akbar Shakoor
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Yumei Li
- HGSC, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sangbae Kim
- HGSC, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Albert Vitale
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Ivana Kim
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Denise Morgan
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
- Department of Pharmacotherapy, the College of Pharmacy, University of Utah, Salt Lake City, UT, 84132, USA
| | - Shaoheng Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nathaniel Wu
- HGSC, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Margaret M DeAngelis
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA.
- Department of Pharmacotherapy, the College of Pharmacy, University of Utah, Salt Lake City, UT, 84132, USA.
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA.
| | - Rui Chen
- HGSC, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, 77030, TX, USA.
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Leber congenital amaurosis: Current genetic basis, scope for genetic testing and personalized medicine. Exp Eye Res 2019; 189:107834. [PMID: 31639339 DOI: 10.1016/j.exer.2019.107834] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023]
Abstract
Retinal dystrophies are one of the leading causes of pediatric congenital blindness. Leber's congenital amaurosis (LCA) encompasses one of the most severe forms of inherited retinal dystrophy responsible for early-onset childhood blindness in infancy. These are clinically characterized by nystagmus, amaurotic pupil response and markedly reduced or in most instances completely absent full-field electroretinogram. LCA exhibits immense genetic heterogeneity. With advances in next-generation genetic technologies, tremendous progress has been achieved over the last two decades in discovering genes and genetic defects leading to retinal dystrophies. Currently, 28 genes have been implicated in the pathogenesis of LCA and with initial reports of success in management with targeted gene therapy the disease has attracted a lot of research attention in the recent time. The review provides an update on genetic basis of LCA, scope for genetic testing and pharmacogenetic medicine in diagnosis and treatment of these diseases.
Collapse
|
23
|
Kim YJ, Kim J. Therapeutic perspectives for structural and functional abnormalities of cilia. Cell Mol Life Sci 2019; 76:3695-3709. [PMID: 31147753 PMCID: PMC11105626 DOI: 10.1007/s00018-019-03158-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
Ciliopathies are a group of hereditary disorders that result from structural or functional abnormalities of cilia. Recent intense research efforts have uncovered the genetic bases of ciliopathies, and our understanding of the assembly and functions of cilia has been improved significantly. Although mechanism-specific therapies for ciliopathies have not yet received regulatory approval, the use of innovative therapeutic modalities such as oligonucleotide therapy, gene replacement therapy, and gene editing in addition to symptomatic treatments are expected to provide valid treatment options in the near future. Moreover, candidate chemical compounds for developing small molecule drugs to treat ciliopathies have been identified. This review introduces the key features of cilia and ciliopathies, and summarizes the advances as well as the challenges that remain with the development of therapies for treating ciliopathies.
Collapse
Affiliation(s)
- Yong Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
24
|
Miyamichi D, Nishina S, Hosono K, Yokoi T, Kurata K, Sato M, Hotta Y, Azuma N. Retinal structure in Leber's congenital amaurosis caused by RPGRIP1 mutations. Hum Genome Var 2019; 6:32. [PMID: 31666973 PMCID: PMC6804879 DOI: 10.1038/s41439-019-0064-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/29/2019] [Accepted: 05/12/2019] [Indexed: 12/27/2022] Open
Abstract
This study aimed to evaluate retinal structure in the early stage of Leber’s congenital amaurosis (LCA) caused by RPGRIP1 mutations. Four patients from two families were included. Case 1 was a 13-year-old girl, cases 2 and 3 were 7-year-old monozygotic twin brothers of case 1, and case 4 was a 17-year-old boy. Comprehensive ophthalmic examinations were performed, including visual acuity measurements, perimetry, electroretinography (ERG), and optical coherence tomography (OCT). To identify potential pathogenic mutations, 74 genes known to cause retinitis pigmentosa or LCA were assessed using targeted next-generation sequencing. OCT showed photoreceptor outer nuclear layer (ONL) thinning in all patients. The lamellar structure was retained in all patients, whereas the ellipsoid zone was extinguished in cases 1, 2, and 3. In case 4, the ellipsoid zone was maintained at 9 years of age but became blurred at 17 years of age. In case 1, OCT indicated slight photoreceptor ONL thinning during the period between 7 and 11 years of age. Mutation analysis revealed RPGRIP1 mutations as the cause for autosomal recessive LCA in all patients. Photoreceptor ONL on OCT is relatively well preserved in the early stage of LCA caused by RPGRIP1 mutations. Researchers in Japan have characterized the early stages of the inherited retinal disease Leber’s congenital amaurosis (LCA), raising hope that gene therapy could help before the disease progresses too far. LCA results in early-onset blindness or severe visual impairment and has been linked with several genes, including RPGRIP1. Daisuke Miyamichi from Hamamatsu University School of Medicine, Japan, and coworkers conducted ophthalamic tests on four young patients with RPGRIP1 mutations. In all four cases, they found thinning of the photoreceptor outer nuclear layer, a layer of the retina. The outer nuclear layer progressively thinned in consecutive samples taken from the same patient at different ages, and was better retained in the younger patients. Taken together, these findings suggest that gene therapy to correct RPGRIP1 mutations could be effective if carried out in early childhood.
Collapse
Affiliation(s)
- Daisuke Miyamichi
- 1Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Sachiko Nishina
- 2Department of Ophthalmology and Laboratory for Visual Science, National Center for Child Health and Development, Tokyo, Japan
| | - Katsuhiro Hosono
- 1Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tadashi Yokoi
- 2Department of Ophthalmology and Laboratory for Visual Science, National Center for Child Health and Development, Tokyo, Japan
| | - Kentaro Kurata
- 1Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Miho Sato
- 1Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yoshihiro Hotta
- 1Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Noriyuki Azuma
- 2Department of Ophthalmology and Laboratory for Visual Science, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
25
|
Khanna H. More Than Meets the Eye: Current Understanding of RPGR Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1074:521-538. [PMID: 29721984 DOI: 10.1007/978-3-319-75402-4_64] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
This article summarizes the recent advances in our understanding of a major retinal disease gene RPGR (retinitis pigmentosa GTPase regulator), mutations in which are associated with majority of X-linked forms of retinal degenerations. A great deal of work has been done to uncover the ciliary localization of RPGR and its interacting proteins in the retina. However, the molecular mechanisms of action of RPGR in the photoreceptors are still unclear. Recent studies have begun to shed light on the intracellular pathways in which RPGR is likely involved. The deregulation of such pathways may underlie the pathogenesis of severe retinal degeneration associated with RPGR. With the recent advances in the gene augmentation therapy for RPGR-associated disease, there is a lot of excitement in the field. Patients with RPGR mutations, however, present with clinically heterogeneous manifestations. It is therefore imperative to examine the function of RPGR in detail, so that we can design patient-oriented therapeutic strategies for this disease.
Collapse
Affiliation(s)
- Hemant Khanna
- Department of Ophthalmology and Neurobiology, UMASS Medical School, Worcester, MA, USA.
| |
Collapse
|
26
|
Dilan TL, Singh RK, Saravanan T, Moye A, Goldberg AFX, Stoilov P, Ramamurthy V. Bardet-Biedl syndrome-8 (BBS8) protein is crucial for the development of outer segments in photoreceptor neurons. Hum Mol Genet 2019; 27:283-294. [PMID: 29126234 DOI: 10.1093/hmg/ddx399] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/06/2017] [Indexed: 11/15/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathy characterized by developmental abnormalities and vision loss. To date, mutations in 21 genes have been linked to BBS. The products of eight of these BBS genes form a stable octameric complex termed the BBSome. Mutations in BBS8, a component of the BBSome, cause early vision loss, but the role of BBS8 in supporting vision is not known. To understand the mechanisms by which BBS8 supports rod and cone photoreceptor function, we generated animal models lacking BBS8. The loss of BBS8 protein led to concomitant decrease in the levels of BBSome subunits, BBS2 and BBS5 and increase in the levels of the BBS1 and BBS4 subunits. BBS8 ablation was associated with severe reduction of rod and cone photoreceptor function and progressive degeneration of each photoreceptor subtype. We observed disorganized and shortened photoreceptor outer segments (OS) at post-natal day 10 as the OS elaborates. Interestingly, loss of BBS8 led to changes in the distribution of photoreceptor axonemal proteins and hyper-acetylation of ciliary microtubules. In contrast to properly localized phototransduction machinery, we observed OS accumulation of syntaxin3, a protein normally found in the cytoplasm and the synaptic termini. In conclusion, our studies demonstrate the requirement for BBS8 in early development and elaboration of ciliated photoreceptor OS, explaining the need for BBS8 in normal vision. The findings from our study also imply that early targeting of both rods and cones in BBS8 patients is crucial for successful restoration of vision.
Collapse
Affiliation(s)
- Tanya L Dilan
- Departments of Ophthalmology, West Virginia University, Morgantown, WA 26506, USA.,Biochemistry, West Virginia University, Morgantown, WA 26506, USA
| | - Ratnesh K Singh
- Departments of Ophthalmology, West Virginia University, Morgantown, WA 26506, USA.,Biochemistry, West Virginia University, Morgantown, WA 26506, USA
| | | | - Abigail Moye
- Departments of Ophthalmology, West Virginia University, Morgantown, WA 26506, USA.,Biochemistry, West Virginia University, Morgantown, WA 26506, USA
| | | | - Peter Stoilov
- Biochemistry, West Virginia University, Morgantown, WA 26506, USA
| | - Visvanathan Ramamurthy
- Departments of Ophthalmology, West Virginia University, Morgantown, WA 26506, USA.,Biochemistry, West Virginia University, Morgantown, WA 26506, USA.,Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WA 26506, USA
| |
Collapse
|
27
|
Baehr W, Hanke-Gogokhia C, Sharif A, Reed M, Dahl T, Frederick JM, Ying G. Insights into photoreceptor ciliogenesis revealed by animal models. Prog Retin Eye Res 2018; 71:26-56. [PMID: 30590118 DOI: 10.1016/j.preteyeres.2018.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
Photoreceptors are polarized neurons, with very specific subcellular compartmentalization and unique requirements for protein expression and trafficking. Each photoreceptor contains an outer segment, the site of photon capture that initiates vision, an inner segment that houses the biosynthetic machinery and a synaptic terminal for signal transmission to downstream neurons. Outer segments and inner segments are connected by a connecting cilium (CC), the equivalent of a transition zone (TZ) of primary cilia. The connecting cilium is part of the basal body/axoneme backbone that stabilizes the outer segment. This report will update the reader on late developments in photoreceptor ciliogenesis and transition zone formation, specifically in mouse photoreceptors, focusing on early events in photoreceptor ciliogenesis. The connecting cilium, an elongated and narrow structure through which all outer segment proteins and membrane components must traffic, functions as a gate that controls access to the outer segment. Here we will review genes and their protein products essential for basal body maturation and for CC/TZ genesis, sorted by phenotype. Emphasis is given to naturally occurring mouse mutants and gene knockouts that interfere with CC/TZ formation and ciliogenesis.
Collapse
Affiliation(s)
- Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA.
| | - Christin Hanke-Gogokhia
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Ali Sharif
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Michelle Reed
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Tiffanie Dahl
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Jeanne M Frederick
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Guoxin Ying
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| |
Collapse
|
28
|
Wiegering A, Rüther U, Gerhardt C. The ciliary protein Rpgrip1l in development and disease. Dev Biol 2018; 442:60-68. [DOI: 10.1016/j.ydbio.2018.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/13/2018] [Accepted: 07/28/2018] [Indexed: 12/28/2022]
|
29
|
Dharmat R, Eblimit A, Robichaux MA, Zhang Z, Nguyen TMT, Jung SY, He F, Jain A, Li Y, Qin J, Overbeek P, Roepman R, Mardon G, Wensel TG, Chen R. SPATA7 maintains a novel photoreceptor-specific zone in the distal connecting cilium. J Cell Biol 2018; 217:2851-2865. [PMID: 29899041 PMCID: PMC6080925 DOI: 10.1083/jcb.201712117] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/09/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022] Open
Abstract
Photoreceptor-specific ciliopathies often affect a structure that is considered functionally homologous to the ciliary transition zone (TZ) called the connecting cilium (CC). However, it is unclear how mutations in certain ciliary genes disrupt the photoreceptor CC without impacting the primary cilia systemically. By applying stochastic optical reconstruction microscopy technology in different genetic models, we show that the CC can be partitioned into two regions: the proximal CC (PCC), which is homologous to the TZ of primary cilia, and the distal CC (DCC), a photoreceptor-specific extension of the ciliary TZ. This specialized distal zone of the CC in photoreceptors is maintained by SPATA7, which interacts with other photoreceptor-specific ciliary proteins such as RPGR and RPGRIP1. The absence of Spata7 results in the mislocalization of DCC proteins without affecting the PCC protein complexes. This collapse results in destabilization of the axonemal microtubules, which consequently results in photoreceptor degeneration. These data provide a novel mechanism to explain how genetic disruption of ubiquitously present ciliary proteins exerts tissue-specific ciliopathy phenotypes.
Collapse
Affiliation(s)
- Rachayata Dharmat
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Aiden Eblimit
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Michael A Robichaux
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Zhixian Zhang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Thanh-Minh T Nguyen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Feng He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Antrix Jain
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Jun Qin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Paul Overbeek
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Graeme Mardon
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Rui Chen
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
30
|
Moye AR, Singh R, Kimler VA, Dilan TL, Munezero D, Saravanan T, Goldberg AFX, Ramamurthy V. ARL2BP, a protein linked to retinitis pigmentosa, is needed for normal photoreceptor cilia doublets and outer segment structure. Mol Biol Cell 2018; 29:1590-1598. [PMID: 29718757 PMCID: PMC6080659 DOI: 10.1091/mbc.e18-01-0040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The outer segment (OS) of photoreceptor cells is an elaboration of a primary cilium with organized stacks of membranous disks that contain the proteins needed for phototransduction and vision. Though ciliary formation and function has been well characterized, little is known about the role of cilia in the development of photoreceptor OS. Nevertheless, progress has been made by studying mutations in ciliary proteins, which often result in malformed OSs and lead to blinding diseases. To investigate how ciliary proteins contribute to OS formation, we generated a knockout (KO) mouse model for ARL2BP, a ciliary protein linked to retinitis pigmentosa. The KO mice display an early and progressive reduction in visual response. Before photoreceptor degeneration, we observed disorganization of the photoreceptor OS, with vertically aligned disks and shortened axonemes. Interestingly, ciliary doublet microtubule (MT) structure was also impaired, displaying open B-tubule doublets, paired with loss of singlet MTs. On the basis of results from this study, we conclude that ARL2BP is necessary for photoreceptor ciliary doublet formation and axoneme elongation, which is required for OS morphogenesis and vision.
Collapse
Affiliation(s)
- Abigail R Moye
- Department of Ophthalmology, West Virginia University, Morgantown, WV 26506.,Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Ratnesh Singh
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | | | - Tanya L Dilan
- Department of Ophthalmology, West Virginia University, Morgantown, WV 26506.,Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Daniella Munezero
- Department of Ophthalmology, West Virginia University, Morgantown, WV 26506.,Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | | | | | - Visvanathan Ramamurthy
- Department of Ophthalmology, West Virginia University, Morgantown, WV 26506.,Department of Biochemistry, West Virginia University, Morgantown, WV 26506.,Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
31
|
Patnaik SR, Zhang X, Biswas L, Akhtar S, Zhou X, Kusuluri DK, Reilly J, May-Simera H, Chalmers S, McCarron JG, Shu X. RPGR protein complex regulates proteasome activity and mediates store-operated calcium entry. Oncotarget 2018; 9:23183-23197. [PMID: 29796181 PMCID: PMC5955404 DOI: 10.18632/oncotarget.25259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/07/2018] [Indexed: 11/25/2022] Open
Abstract
Ciliopathies are a group of genetically heterogeneous disorders, characterized by defects in cilia genesis or maintenance. Mutations in the RPGR gene and its interacting partners, RPGRIP1 and RPGRIP1L, cause ciliopathies, but the function of their proteins remains unclear. Here we show that knockdown (KD) of RPGR, RPGRIP1 or RPGRIP1L in hTERT-RPE1 cells results in abnormal actin cytoskeleton organization. The actin cytoskeleton rearrangement is regulated by the small GTPase RhoA via the planar cell polarity (PCP) pathway. RhoA activity was upregulated in the absence of RPGR, RPGRIP1 or RPGRIP1L proteins. In RPGR, RPGRIP1 or RPGRIP1L KD cells, we observed increased levels of DVl2 and DVl3 proteins, the core components of the PCP pathway, due to impaired proteasomal activity. RPGR, RPGRIP1 or RPGRIP1L KD cells treated with thapsigargin (TG), an inhibitor of sarcoendoplasmic reticulum Ca2+- ATPases, showed impaired store-operated Ca2+ entry (SOCE), which is mediated by STIM1 and Orai1 proteins. STIM1 was not localized to the ER-PM junction upon ER store depletion in RPGR, RPGRIP1 or RPGRIP1L KD cells. Our results demonstrate that the RPGR protein complex is required for regulating proteasomal activity and for modulating SOCE, which may contribute to the ciliopathy phenotype.
Collapse
Affiliation(s)
- Sarita Rani Patnaik
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
- Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
| | - Xun Zhang
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| | - Lincoln Biswas
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| | - Saeed Akhtar
- Cornea Research Chair, Department of Optometry, King Saud University, Riyadh 11433, Kingdom of Saudi Arabia
| | - Xinzhi Zhou
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| | - Deva Krupakar Kusuluri
- Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
| | - James Reilly
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| | - Helen May-Simera
- Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
| | - Susan Chalmers
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - John G. McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| |
Collapse
|
32
|
The Role of the Microglial Cx3cr1 Pathway in the Postnatal Maturation of Retinal Photoreceptors. J Neurosci 2018; 38:4708-4723. [PMID: 29669747 DOI: 10.1523/jneurosci.2368-17.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 11/21/2022] Open
Abstract
Microglia are the resident immune cells of the CNS, and their response to infection, injury and disease is well documented. More recently, microglia have been shown to play a role in normal CNS development, with the fractalkine-Cx3cr1 signaling pathway of particular importance. This work describes the interaction between the light-sensitive photoreceptors and microglia during eye opening, a time of postnatal photoreceptor maturation. Genetic removal of Cx3cr1 (Cx3cr1GFP/GFP ) led to an early retinal dysfunction soon after eye opening [postnatal day 17 (P17)] and cone photoreceptor loss (P30 onward) in mice of either sex. This dysfunction occurred at a time when fractalkine expression was predominantly outer retinal, when there was an increased microglial presence near the photoreceptor layer and increased microglial-cone photoreceptor contacts. Photoreceptor maturation and outer segment elongation was coincident with increased opsin photopigment expression in wild-type retina, while this was aberrant in the Cx3cr1GFP/GFP retina and outer segment length was reduced. A beadchip array highlighted Cx3cr1 regulation of genes involved in the photoreceptor cilium, a key structure that is important for outer segment elongation. This was confirmed with quantitative PCR with specific cilium-related genes, Rpgr and Rpgrip1, downregulated at eye opening (P14). While the overall cilium structure was unaffected, expression of Rpgr, Rpgrip1, and centrin were restricted to more proximal regions of the transitional zone. This study highlighted a novel role for microglia in postnatal neuronal development within the retina, with loss of fractalkine-Cx3cr1 signaling leading to an altered distribution of cilium proteins, failure of outer segment elongation and ultimately cone photoreceptor loss.SIGNIFICANCE STATEMENT Microglia are involved in CNS development and disease. This work highlights the role of microglia in postnatal development of the light-detecting photoreceptor neurons within the mouse retina. Loss of the microglial Cx3cr1 signaling pathway resulted in specific alterations in the cilium, a key structure in photoreceptor outer segment elongation. The distribution of key components of the cilium transitional zone, Rpgr, Rpgrip1, and centrin, were altered in retinae lacking Cx3cr1 with reduced outer segment length and cone photoreceptor death observed at later postnatal ages. This work identifies a novel role for microglia in the postnatal maturation of retinal photoreceptors.
Collapse
|
33
|
Wiegering A, Dildrop R, Kalfhues L, Spychala A, Kuschel S, Lier JM, Zobel T, Dahmen S, Leu T, Struchtrup A, Legendre F, Vesque C, Schneider-Maunoury S, Saunier S, Rüther U, Gerhardt C. Cell type-specific regulation of ciliary transition zone assembly in vertebrates. EMBO J 2018; 37:embj.201797791. [PMID: 29650680 PMCID: PMC5978567 DOI: 10.15252/embj.201797791] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 01/07/2023] Open
Abstract
Ciliopathies are life-threatening human diseases caused by defective cilia. They can often be traced back to mutations of genes encoding transition zone (TZ) proteins demonstrating that the understanding of TZ organisation is of paramount importance. The TZ consists of multimeric protein modules that are subject to a stringent assembly hierarchy. Previous reports place Rpgrip1l at the top of the TZ assembly hierarchy in Caenorhabditis elegans By performing quantitative immunofluorescence studies in RPGRIP1L-/- mouse embryos and human embryonic cells, we recognise a different situation in vertebrates in which Rpgrip1l deficiency affects TZ assembly in a cell type-specific manner. In cell types in which the loss of Rpgrip1l alone does not affect all modules, additional truncation or removal of vertebrate-specific Rpgrip1 results in an impairment of all modules. Consequently, Rpgrip1l and Rpgrip1 synergistically ensure the TZ composition in several vertebrate cell types, revealing a higher complexity of TZ assembly in vertebrates than in invertebrates.
Collapse
Affiliation(s)
- Antonia Wiegering
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Renate Dildrop
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Lisa Kalfhues
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - André Spychala
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Stefanie Kuschel
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Johanna Maria Lier
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Thomas Zobel
- Center for Advanced Imaging (CAi), Heinrich Heine University, Düsseldorf, Germany
| | - Stefanie Dahmen
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Tristan Leu
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Andreas Struchtrup
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Flora Legendre
- INSERM, U983, Hôpital Necker-Enfants Malades, Paris, France.,Sorbonne Paris Cité, Faculté de Médecine, Université Paris-Descartes, Paris, France
| | - Christine Vesque
- Paris-Seine (IBPS) - Developmental Biology Laboratory, Institut de Biologie, CNRS, UMR7622, INSERM U1156, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Sylvie Schneider-Maunoury
- Paris-Seine (IBPS) - Developmental Biology Laboratory, Institut de Biologie, CNRS, UMR7622, INSERM U1156, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Sophie Saunier
- INSERM, U983, Hôpital Necker-Enfants Malades, Paris, France.,Sorbonne Paris Cité, Faculté de Médecine, Université Paris-Descartes, Paris, France
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
34
|
Targeted next generation sequencing identified novel mutations in RPGRIP1 associated with both retinitis pigmentosa and Leber's congenital amaurosis in unrelated Chinese patients. Oncotarget 2018; 8:35176-35183. [PMID: 28456785 PMCID: PMC5471044 DOI: 10.18632/oncotarget.17052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/15/2017] [Indexed: 01/01/2023] Open
Abstract
As the most common inherited retinal degenerations, retinitis pigmentosa (RP) is clinically and genetically heterogeneous. Some of the RP genes are also associated with other retinal diseases, such as LCA (Leber's congenital amaurosis) and CORD (cone-rod dystrophy). Here, in our molecular diagnosis of 99 Chinese RP patients using targeted gene capture sequencing, three probands were found to carry mutations of RPGRIP1, which was known to be associated with pathogenesis of LCA and CORD. By further clinical analysis, two probands were confirmed to be RP patients and one was confirmed to be LCA patient. These novel mutations were co-segregated with the disease phenotype in their families. Our result not only expands the mutational spectrum of the RPGRIP1 gene but also gives supports to clinical diagnosis and molecular treatment of RP patients.
Collapse
|
35
|
Rao KN, Zhang W, Li L, Anand M, Khanna H. Prenylated retinal ciliopathy protein RPGR interacts with PDE6δ and regulates ciliary localization of Joubert syndrome-associated protein INPP5E. Hum Mol Genet 2018; 25:4533-4545. [PMID: 28172980 DOI: 10.1093/hmg/ddw281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/24/2016] [Accepted: 08/19/2016] [Indexed: 12/11/2022] Open
Abstract
Ciliary trafficking defects underlie the pathogenesis of severe human ciliopathies, including Joubert Syndrome (JBTS), Bardet-Biedl Syndrome, and some forms of retinitis pigmentosa (RP). Mutations in the ciliary protein RPGR (retinitis pigmentosa GTPase regulator) are common causes of RP-associated photoreceptor degeneration worldwide. While previous work has suggested that the localization of RPGR to cilia is critical to its functions, the mechanism by which RPGR and its associated cargo are trafficked to the cilia is unclear. Using proteomic and biochemical approaches, we show that RPGR interacts with two JBTS-associated ciliary proteins: PDE6δ (delta subunit of phosphodiesterase; a prenyl-binding protein) and INPP5E (inositol polyphosphate-5-phosphatase 5E). We find that PDE6δ binds selectively to the C-terminus of RPGR and that this interaction is critical for RPGR’s localization to cilia. Furthermore, we show that INPP5E associates with the N-terminus of RPGR and trafficking of INPP5E to cilia is dependent upon the ciliary localization of RPGR. These results implicate prenylation of RPGR as a critical modification for its localization to cilia and, in turn suggest that trafficking of INPP5E to cilia depends upon the interaction of RPGR with PDE6δ. Finally, our results implicate INPP5E, a novel RPGR-interacting protein, in the pathogenesis of RPGR-associated ciliopathies.
Collapse
Affiliation(s)
- Kollu N Rao
- Department of Ophthalmology, Horae Gene Therapy Center, UMASS Medical School, Worcester, MA, USA
| | - Wei Zhang
- Department of Ophthalmology, Horae Gene Therapy Center, UMASS Medical School, Worcester, MA, USA
| | - Linjing Li
- Department of Ophthalmology, Horae Gene Therapy Center, UMASS Medical School, Worcester, MA, USA
| | - Manisha Anand
- Department of Ophthalmology, Horae Gene Therapy Center, UMASS Medical School, Worcester, MA, USA
| | - Hemant Khanna
- Department of Ophthalmology, Horae Gene Therapy Center, UMASS Medical School, Worcester, MA, USA
| |
Collapse
|
36
|
C8ORF37 Is Required for Photoreceptor Outer Segment Disc Morphogenesis by Maintaining Outer Segment Membrane Protein Homeostasis. J Neurosci 2018; 38:3160-3176. [PMID: 29440555 DOI: 10.1523/jneurosci.2964-17.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 01/09/2023] Open
Abstract
C8ORF37 is a causative gene for three different clinical forms of incurable retinal degeneration. However, the completely unknown function of C8ORF37 limits our understanding of the pathogenicity of C8ORF37 mutations. Here, we performed a comprehensive phenotypic characterization of a C8orf37 KO mouse line, generated using CRISPR/Cas9 technology. Both C8orf37 KO male and female mice exhibited progressive and simultaneous degeneration of rod and cone photoreceptors but no non-ocular phenotypes. The major ultrastructural feature of C8orf37 KO photoreceptors was massive disorganization of the outer segment (OS) membrane discs starting from the onset of disc morphogenesis during development. At the molecular level, the amounts of multiple OS-specific membrane proteins, including proteins involved in membrane disc organization, were reduced, although these proteins were targeted normally to the OS. Considering the distribution of C8ORF37 throughout the photoreceptor cell body, the normal structure of the KO photoreceptor connecting cilium, and the absence of defects in other ciliary organs of the KO mice, our findings do not support the previous notion that C8ORF37 was a ciliary protein. Because C8ORF37 is absent in the photoreceptor OS, C8ORF37 may participate in the secretory pathway of OS membrane proteins in the photoreceptor cell body and thus maintain the homeostasis of these proteins. This study established a valid animal model for future therapeutic studies of C8ORF37-associated retinal degeneration. This study also shed new light on the role of C8ORF37 in photoreceptors and on the pathogenic mechanism underlying retinal degeneration caused by C8ORF37 mutations.SIGNIFICANCE STATEMENT Inherited retinal degeneration is a group of incurable conditions with poorly understood underlying molecular mechanisms. We investigated C8ORF37, a causative gene for three retinal degenerative conditions: retinitis pigmentosa, cone-rod dystrophy, and Bardet-Biedl syndrome. C8ORF37 encodes a protein with no known functional domains and thus its biological function is unpredictable. We knocked out the C8ORF37 ortholog in mice, which resulted in a retinal phenotype similar to that observed in patients. We further demonstrated that C8ORF37 is required for photoreceptor outer segment disc formation and alignment, a process that is critical for photoreceptor function and survival. This study advances our understanding of the pathogenesis of retinal degeneration and establishes a valuable mouse model for future therapeutic development.
Collapse
|
37
|
Rpgrip1 is required for rod outer segment development and ciliary protein trafficking in zebrafish. Sci Rep 2017; 7:16881. [PMID: 29203866 PMCID: PMC5715152 DOI: 10.1038/s41598-017-12838-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/14/2017] [Indexed: 12/23/2022] Open
Abstract
Mutations in the RPGR-interacting protein 1 (RPGRIP1) gene cause recessive Leber congenital amaurosis (LCA), juvenile retinitis pigmentosa (RP) and cone-rod dystrophy. RPGRIP1 interacts with other retinal disease-causing proteins and has been proposed to have a role in ciliary protein transport; however, its function remains elusive. Here, we describe a new zebrafish model carrying a nonsense mutation in the rpgrip1 gene. Rpgrip1homozygous mutants do not form rod outer segments and display mislocalization of rhodopsin, suggesting a role for RPGRIP1 in rhodopsin-bearing vesicle trafficking. Furthermore, Rab8, the key regulator of rhodopsin ciliary trafficking, was mislocalized in photoreceptor cells of rpgrip1 mutants. The degeneration of rod cells is early onset, followed by the death of cone cells. These phenotypes are similar to that observed in LCA and juvenile RP patients. Our data indicate RPGRIP1 is necessary for rod outer segment development through regulating ciliary protein trafficking. The rpgrip1 mutant zebrafish may provide a platform for developing therapeutic treatments for RP patients.
Collapse
|
38
|
Das RG, Marinho FP, Iwabe S, Santana E, McDaid KS, Aguirre GD, Miyadera K. Variabilities in retinal function and structure in a canine model of cone-rod dystrophy associated with RPGRIP1 support multigenic etiology. Sci Rep 2017; 7:12823. [PMID: 28993665 PMCID: PMC5634483 DOI: 10.1038/s41598-017-13112-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 09/13/2017] [Indexed: 01/01/2023] Open
Abstract
Defects in the cilia gene RPGRIP1 cause Leber congenital amaurosis and cone-rod dystrophy in humans. A form of canine cone-rod dystrophy (cord1) was originally associated with a homozygous insertion in RPGRIP1 (RPGRIP1ins/ins) as the primary disease locus while a homozygous deletion in MAP9 (MAP9del/del) was later identified as a modifier associated with the early onset form. However, we find further variability in cone electroretinograms (ERGs) ranging from normal to absent in an extended RPGRIP1ins/ins canine colony, irrespective of the MAP9 genotype. Ophthalmoscopically, cone ERGabsentRPGRIP1ins/ins eyes show discolouration of the tapetal fundus with varying onset and disease progression, while sd-OCT reveals atrophic changes. Despite marked changes in cone ERG and retinal morphology, photopic vision-guided behaviour is comparable between normal and cone ERGabsentRPGRIP1ins/ins littermates. Cone morphology of the dogs lacking cone ERG are truncated with shortened outer and inner segments. Immunohistochemically, cone ERGabsentRPGRIP1ins/ins retinas have extensive L/M-opsin mislocalization, lack CNGB3 labelling in the L/M-cones, and lack GC1 in all cones. Our results indicate that cord1 is a multigenic disease in which mutations in neither RPGRIP1 nor MAP9 alone lead to visual deficits, and additional gene(s) contribute to cone-specific functional and morphologic defects.
Collapse
Affiliation(s)
- Rueben G Das
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Felipe Pompeo Marinho
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simone Iwabe
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Evelyn Santana
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kendra Sierra McDaid
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gustavo D Aguirre
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Keiko Miyadera
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
39
|
Krebs MP, Collin GB, Hicks WL, Yu M, Charette JR, Shi LY, Wang J, Naggert JK, Peachey NS, Nishina PM. Mouse models of human ocular disease for translational research. PLoS One 2017; 12:e0183837. [PMID: 28859131 PMCID: PMC5578669 DOI: 10.1371/journal.pone.0183837] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/12/2017] [Indexed: 01/24/2023] Open
Abstract
Mouse models provide a valuable tool for exploring pathogenic mechanisms underlying inherited human disease. Here, we describe seven mouse models identified through the Translational Vision Research Models (TVRM) program, each carrying a new allele of a gene previously linked to retinal developmental and/or degenerative disease. The mutations include four alleles of three genes linked to human nonsyndromic ocular diseases (Aipl1tvrm119, Aipl1tvrm127, Rpgrip1tvrm111, RhoTvrm334) and three alleles of genes associated with human syndromic diseases that exhibit ocular phentoypes (Alms1tvrm102, Clcn2nmf289, Fkrptvrm53). Phenotypic characterization of each model is provided in the context of existing literature, in some cases refining our current understanding of specific disease attributes. These murine models, on fixed genetic backgrounds, are available for distribution upon request and may be useful for understanding the function of the gene in the retina, the pathological mechanisms induced by its disruption, and for testing experimental approaches to treat the corresponding human ocular diseases.
Collapse
Affiliation(s)
- Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Wanda L. Hicks
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | | | - Lan Ying Shi
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Jieping Wang
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Neal S. Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States of America
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|
40
|
Disease mechanisms of X-linked retinitis pigmentosa due to RP2 and RPGR mutations. Biochem Soc Trans 2017; 44:1235-1244. [PMID: 27911705 DOI: 10.1042/bst20160148] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 01/24/2023]
Abstract
Photoreceptor degeneration is the prominent characteristic of retinitis pigmentosa (RP), a heterogeneous group of inherited retinal dystrophies resulting in blindness. Although abnormalities in many pathways can cause photoreceptor degeneration, one of the most important causes is defective protein transport through the connecting cilium, the structure that connects the biosynthetic inner segment with the photosensitive outer segment of the photoreceptors. The majority of patients with X-linked RP have mutations in the retinitis pigmentosa GTPase regulator (RPGR) or RP2 genes, the protein products of which are both components of the connecting cilium and associated with distinct mechanisms of protein delivery to the outer segment. RP2 and RPGR proteins are associated with severe diseases ranging from classic RP to atypical forms. In this short review, we will summarise current knowledge generated by experimental studies and knockout animal models, compare and discuss the prominent hypotheses about the two proteins' functions in retinal cell biology.
Collapse
|
41
|
Kumaran N, Moore AT, Weleber RG, Michaelides M. Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions. Br J Ophthalmol 2017; 101:1147-1154. [PMID: 28689169 PMCID: PMC5574398 DOI: 10.1136/bjophthalmol-2016-309975] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/26/2017] [Accepted: 04/30/2017] [Indexed: 12/29/2022]
Abstract
Leber congenital amaurosis (LCA) and early-onset severe retinal dystrophy (EOSRD) are both genetically and phenotypically heterogeneous, and characterised clinically by severe congenital/early infancy visual loss, nystagmus, amaurotic pupils and markedly reduced/absent full-field electroretinograms. The vast genetic heterogeneity of inherited retinal disease has been established over the last 10 - 20 years, with disease-causing variants identified in 25 genes to date associated with LCA/EOSRD, accounting for 70–80% of cases, with thereby more genes yet to be identified. There is now far greater understanding of the structural and functional associations seen in the various LCA/EOSRD genotypes. Subsequent development/characterisation of LCA/EOSRD animal models has shed light on the underlying pathogenesis and allowed the demonstration of successful rescue with gene replacement therapy and pharmacological intervention in multiple models. These advancements have culminated in more than 12 completed, ongoing and anticipated phase I/II and phase III gene therapy and pharmacological human clinical trials. This review describes the clinical and genetic characteristics of LCA/EOSRD and the differential diagnoses to be considered. We discuss in further detail the diagnostic clinical features, pathophysiology, animal models and human treatment studies and trials, in the more common genetic subtypes and/or those closest to intervention.
Collapse
Affiliation(s)
- Neruban Kumaran
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK.,University of California San Francisco, San Francisco CA, California, USA
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
42
|
Gonçalves J, Pelletier L. The Ciliary Transition Zone: Finding the Pieces and Assembling the Gate. Mol Cells 2017; 40:243-253. [PMID: 28401750 PMCID: PMC5424270 DOI: 10.14348/molcells.2017.0054] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic cilia are organelles that project from the surface of cells to fulfill motility and sensory functions. In vertebrates, the functions of both motile and immotile cilia are critical for embryonic development and adult tissue homeostasis. Importantly, a multitude of human diseases is caused by abnormal cilia biogenesis and functions which rely on the compartmentalization of the cilium and the maintenance of its protein composition. The transition zone (TZ) is a specialized ciliary domain present at the base of the cilium and is part of a gate that controls protein entry and exit from this organelle. The relevance of the TZ is highlighted by the fact that several of its components are coded by ciliopathy genes. Here we review recent developments in the study of TZ proteomes, the mapping of individual components to the TZ structure and the establishment of the TZ as a lipid gate.
Collapse
Affiliation(s)
- João Gonçalves
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5,
Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5,
Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8,
Canada
| |
Collapse
|
43
|
Broadgate S, Yu J, Downes SM, Halford S. Unravelling the genetics of inherited retinal dystrophies: Past, present and future. Prog Retin Eye Res 2017; 59:53-96. [PMID: 28363849 DOI: 10.1016/j.preteyeres.2017.03.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
The identification of the genes underlying monogenic diseases has been of interest to clinicians and scientists for many years. Using inherited retinal dystrophies as an example of monogenic disease we describe the history of molecular genetic techniques that have been pivotal in the discovery of disease causing genes. The methods that were developed in the 1970's and 80's are still in use today but have been refined and improved. These techniques enabled the concept of the Human Genome Project to be envisaged and ultimately realised. When the successful conclusion of the project was announced in 2003 many new tools and, as importantly, many collaborations had been developed that facilitated a rapid identification of disease genes. In the post-human genome project era advances in computing power and the clever use of the properties of DNA replication has allowed the development of next-generation sequencing technologies. These methods have revolutionised the identification of disease genes because for the first time there is no need to define the position of the gene in the genome. The use of next generation sequencing in a diagnostic setting has allowed many more patients with an inherited retinal dystrophy to obtain a molecular diagnosis for their disease. The identification of novel genes that have a role in the development or maintenance of retinal function is opening up avenues of research which will lead to the development of new pharmacological and gene therapy approaches. Neither of which can be used unless the defective gene and protein is known. The continued development of sequencing technologies also holds great promise for the advent of truly personalised medicine.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Susan M Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| |
Collapse
|
44
|
Dias MDS, Hamel CP, Meunier I, Varin J, Blanchard S, Boyard F, Sahel JA, Zeitz C. Novel splice-site mutation in TTLL5 causes cone dystrophy in a consanguineous family. Mol Vis 2017; 23:131-139. [PMID: 28356705 PMCID: PMC5360453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/16/2017] [Indexed: 11/03/2022] Open
Abstract
PURPOSE To report the clinical and genetic findings of one family with autosomal recessive cone dystrophy (CD) and to identify the causative mutation. METHODS An institutional study of three family members from two generations. The clinical examination included best-corrected Snellen visual acuity measurement, fundoscopy, the Farnsworth D-15 color vision test, a full-field electroretinogram (ERG) that incorporated the International Society for Clinical Electrophysiology of Vision standards and methodology, fundus autofluorescence (FAF) and infrared (IR), and spectral-domain optical coherence tomography (SD-OCT). Genetic findings were achieved with DNA analysis using whole exome sequencing (WES) and Sanger sequencing. RESULTS The proband, a 9-year-old boy, presented with a condition that appeared to be congenital and stationary. The clinical presentation initially reflected incomplete congenital stationary night blindness (icCSNB) because of myopia, a decrease in visual acuity, abnormal oscillatory potentials, and reduced amplitudes on the 30 Hz flicker ERG but was atypical because there were no clear electronegative responses. However, no disease-causing mutations in the genes underlying icCSNB were identified. Following WES analysis of family members, a homozygous splice-site mutation in intron 3 of TTLL5 (c.182-3_182-1delinsAA) was found cosegregating within the phenotype in the family. CONCLUSIONS The distinction between icCSNB and CD phenotypes is not always straightforward in young patients. The patient was quite young, which most likely explains why the progression of the CD was not obvious. WES analysis provided prompt diagnosis for this family; thus, the use of this technique to refine the diagnosis is highlighted in this study.
Collapse
Affiliation(s)
- Miguel de Sousa Dias
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, 17 rue Moreau, Paris, France
| | - Christian P. Hamel
- INSERM U 1051, Institut des Neurosciences de Montpellier, Hôpital Saint-Eloi, Montpellier, France,Affections Sensorielles Génétiques, CHU de Montpellier, 191 Avenue du Doyen Gaston Giraud, Montpellier, France,Université Montpellier, 163 Avenue Auguste Broussonnet, Montpellier, France
| | - Isabelle Meunier
- INSERM U 1051, Institut des Neurosciences de Montpellier, Hôpital Saint-Eloi, Montpellier, France,Affections Sensorielles Génétiques, CHU de Montpellier, 191 Avenue du Doyen Gaston Giraud, Montpellier, France,Université Montpellier, 163 Avenue Auguste Broussonnet, Montpellier, France
| | - Juliette Varin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, 17 rue Moreau, Paris, France
| | | | - Fiona Boyard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, 17 rue Moreau, Paris, France
| | - José-Alain Sahel
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, 17 rue Moreau, Paris, France,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, 28 rue de Charenton, Paris, France,Institute of Ophthalmology, University College of London, London EC1V 9EL, UK,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France,Academie des Sciences, Institut de France, Paris, France,Department of Ophthalmology, The University of Pittsburghschool of Medicine, Pittsburg, PA
| | - Christina Zeitz
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, 17 rue Moreau, Paris, France
| |
Collapse
|
45
|
Dutta N, Seo S. RPGR, a prenylated retinal ciliopathy protein, is targeted to cilia in a prenylation- and PDE6D-dependent manner. Biol Open 2016; 5:1283-9. [PMID: 27493202 PMCID: PMC5051646 DOI: 10.1242/bio.020461] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
RPGR (retinitis pigmentosa GTPase regulator) is a ciliary protein associated with several forms of inherited retinal degenerative diseases. PDE6D is a ubiquitously expressed prenyl-binding protein and involved in ciliary targeting of prenylated proteins. The current working model for the RPGR function depicts that RPGR acts as a scaffold protein to recruit cargo-loaded PDE6D to primary cilia. Here, we present evidence demonstrating an alternative relationship between RPGR and PDE6D, in which RPGR is a cargo of PDE6D for ciliary targeting. We found that the constitutive isoform of RPGR, which is prenylated, requires prenylation for its ciliary localization. We also found that there are at least two independent ciliary targeting signals in RPGR: one within the N-terminal region that contains the RCC1-like domain and the other near the prenylation site at the C-terminus. Ablation of PDE6D blocked ciliary targeting of RPGR. Our study indicates that prenylated RPGR is one of the cargos of PDE6D for ciliary trafficking and provides insight into the mechanisms by which RPGR is targeted to cilia. Summary: RPGR is a ciliary protein that functions as a scaffold to recruit cargo-loaded PDE6D to cilia. Our study shows that RPGR is also a cargo of PDE6D.
Collapse
Affiliation(s)
- Nirmal Dutta
- Department of Ophthalmology and Visual Sciences, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Seongjin Seo
- Department of Ophthalmology and Visual Sciences, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
46
|
Coppieters F, Ascari G, Dannhausen K, Nikopoulos K, Peelman F, Karlstetter M, Xu M, Brachet C, Meunier I, Tsilimbaris M, Tsika C, Blazaki S, Vergult S, Farinelli P, Van Laethem T, Bauwens M, De Bruyne M, Chen R, Langmann T, Sui R, Meire F, Rivolta C, Hamel C, Leroy B, De Baere E. Isolated and Syndromic Retinal Dystrophy Caused by Biallelic Mutations in RCBTB1, a Gene Implicated in Ubiquitination. Am J Hum Genet 2016; 99:470-80. [PMID: 27486781 PMCID: PMC4974088 DOI: 10.1016/j.ajhg.2016.06.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 06/20/2016] [Indexed: 11/24/2022] Open
Abstract
Inherited retinal dystrophies (iRDs) are a group of genetically and clinically heterogeneous conditions resulting from mutations in over 250 genes. Here, homozygosity mapping and whole-exome sequencing (WES) in a consanguineous family revealed a homozygous missense mutation, c.973C>T (p.His325Tyr), in RCBTB1. In affected individuals, it was found to segregate with retinitis pigmentosa (RP), goiter, primary ovarian insufficiency, and mild intellectual disability. Subsequent analysis of WES data in different cohorts uncovered four additional homozygous missense mutations in five unrelated families in whom iRD segregates with or without syndromic features. Ocular phenotypes ranged from typical RP starting in the second decade to chorioretinal dystrophy with a later age of onset. The five missense mutations affect highly conserved residues either in the sixth repeat of the RCC1 domain or in the BTB1 domain. A founder haplotype was identified for mutation c.919G>A (p.Val307Met), occurring in two families of Mediterranean origin. We showed ubiquitous mRNA expression of RCBTB1 and demonstrated predominant RCBTB1 localization in human inner retina. RCBTB1 was very recently shown to be involved in ubiquitination, more specifically as a CUL3 substrate adaptor. Therefore, the effect on different components of the CUL3 and NFE2L2 (NRF2) pathway was assessed in affected individuals’ lymphocytes, revealing decreased mRNA expression of NFE2L2 and several NFE2L2 target genes. In conclusion, our study puts forward mutations in RCBTB1 as a cause of autosomal-recessive non-syndromic and syndromic iRD. Finally, our data support a role for impaired ubiquitination in the pathogenetic mechanism of RCBTB1 mutations.
Collapse
|
47
|
Loss of RPGR glutamylation underlies the pathogenic mechanism of retinal dystrophy caused by TTLL5 mutations. Proc Natl Acad Sci U S A 2016; 113:E2925-34. [PMID: 27162334 DOI: 10.1073/pnas.1523201113] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mutations in the X-linked retinitis pigmentosa GTPase regulator (RPGR) gene are a major cause of retinitis pigmentosa, a blinding retinal disease resulting from photoreceptor degeneration. A photoreceptor specific ORF15 variant of RPGR (RPGR(ORF15)), carrying multiple Glu-Gly tandem repeats and a C-terminal basic domain of unknown function, localizes to the connecting cilium where it is thought to regulate cargo trafficking. Here we show that tubulin tyrosine ligase like-5 (TTLL5) glutamylates RPGR(ORF15) in its Glu-Gly-rich repetitive region containing motifs homologous to the α-tubulin C-terminal tail. The RPGR(ORF15) C-terminal basic domain binds to the noncatalytic cofactor interaction domain unique to TTLL5 among TTLL family glutamylases and targets TTLL5 to glutamylate RPGR. Only TTLL5 and not other TTLL family glutamylases interacts with RPGR(ORF15) when expressed transiently in cells. Consistent with this, a Ttll5 mutant mouse displays a complete loss of RPGR glutamylation without marked changes in tubulin glutamylation levels. The Ttll5 mutant mouse develops slow photoreceptor degeneration with early mislocalization of cone opsins, features resembling those of Rpgr-null mice. Moreover TTLL5 disease mutants that cause human retinal dystrophy show impaired glutamylation of RPGR(ORF15) Thus, RPGR(ORF15) is a novel glutamylation substrate, and this posttranslational modification is critical for its function in photoreceptors. Our study uncovers the pathogenic mechanism whereby absence of RPGR(ORF15) glutamylation leads to retinal pathology in patients with TTLL5 gene mutations and connects these two genes into a common disease pathway.
Collapse
|
48
|
Kooragayala K, Gotoh N, Cogliati T, Nellissery J, Kaden TR, French S, Balaban R, Li W, Covian R, Swaroop A. Quantification of Oxygen Consumption in Retina Ex Vivo Demonstrates Limited Reserve Capacity of Photoreceptor Mitochondria. Invest Ophthalmol Vis Sci 2016; 56:8428-36. [PMID: 26747773 DOI: 10.1167/iovs.15-17901] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Cell death in neurodegeneration occurs at the convergence of diverse metabolic pathways. In the retina, a common underlying mechanism involves mitochondrial dysfunction since photoreceptor homeostasis and survival are highly susceptible to altered aerobic energy metabolism. We sought to develop an assay to directly measure oxygen consumption in intact retina with the goal of identifying alterations in respiration during photoreceptor dysfunction and degeneration. METHODS Circular punches of freshly isolated mouse retina, adjacent to the optic nerve head, were used in the microplate-based Seahorse Extracellular Flux Analyzer to measure oxygen consumption. Tissue integrity was evaluated by propidium iodide staining and live imaging. Different substrates were tested for mitochondrial respiration. Basal and maximal respiration were expressed as oxygen consumption rate (OCR) and respectively measured in Ames' medium before and after the addition of mitochondrial uncoupler, BAM15. RESULTS We show that glucose is an essential substrate for retinal mitochondria. At baseline, mitochondria respiration in the intact wild-type retina was close to maximal, with limited reserve capacity. Similar OCR and limited mitochondrial reserve capacity was also observed in cone-only Nrl-/- retina. However, the retina of Pde6brd1/rd1, Cep290rd16/rd16 and Rpgrip1-/- mice, all with dysfunctional or no photoreceptors, had reduced OCR and higher mitochondrial reserve capacity. CONCLUSIONS We have optimized a method to directly measure oxygen consumption in acutely isolated, ex vivo mouse retina and demonstrate that photoreceptors have low mitochondrial reserve capacity. Our data provide a plausible explanation for the high vulnerability of photoreceptors to altered energy homeostasis caused by mutations or metabolic challenges.
Collapse
Affiliation(s)
- Keshav Kooragayala
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Norimoto Gotoh
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Tiziana Cogliati
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jacob Nellissery
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Talia R Kaden
- Retinal Neurobiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Stephanie French
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert Balaban
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Wei Li
- Retinal Neurobiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Raul Covian
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
49
|
Forman OP, Hitti RJ, Boursnell M, Miyadera K, Sargan D, Mellersh C. Canine genome assembly correction facilitates identification of a MAP9 deletion as a potential age of onset modifier for RPGRIP1-associated canine retinal degeneration. Mamm Genome 2016; 27:237-45. [PMID: 27017229 DOI: 10.1007/s00335-016-9627-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/15/2016] [Indexed: 11/25/2022]
Abstract
Retinal degeneration (RD) in the Miniature Long Haired Dachshund (MLHD) is a cone-rod dystrophy resulting in eventual blindness in affected individuals. In a previous study, a 44-nucleotide insertion (ins44) in exon 2 of RPGRIP1 was associated with RD. However, results on an extended population of MLHD revealed a variable RD onset age for ins44 homozygous dogs. Further investigations using a genome-wide association study comparing early onset and late onset RD cases identified an age of onset modifying locus for RD, approximately 30 Mb upstream of RPGRIP1 on chr15. In this investigation, target enriched sequencing identified a MAP9 deletion spanning approximately 22 kb associated with early RD onset. Identification of the deletion required correction to the CanFam3.1 genome build as canine MAP9 is part of a historic tandem duplication, resulting in incomplete assembly of this genome region. The deletion breakpoints were identified in MAP9 intron 10 and in a downstream partial MAP9 pseudogene. The fusion of these two genes, which we have called MAP9 EORD (microtubule-associated protein, early onset retinal degeneration), is in frame and is expressed at the RNA level, with the 3' region containing several predicted deleterious variants. We speculate that MAP9 associates with α-tubulin in the basal body of the cilium. RPGRIP1 is also known to locate to the cilium, where it is closely associated with RPGR. RPGRIP1 mutations also cause redistribution of α-tubulin away from the ciliary region in photoreceptors. Hence, a MAP9 partial deficit is a particularly attractive candidate to synergise with a partial RPGRIP1 deficit to cause a more serious disease.
Collapse
Affiliation(s)
- Oliver P Forman
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, Suffolk, CB8 7UU, UK
| | - Rebekkah J Hitti
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, Suffolk, CB8 7UU, UK.
| | - Mike Boursnell
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, Suffolk, CB8 7UU, UK
| | - Keiko Miyadera
- School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St, Philadelphia, PA, 19104, USA
| | - David Sargan
- Comparative Genetics Group, Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Rd., Cambridge, CB3 0ES, UK
| | - Cathryn Mellersh
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, Suffolk, CB8 7UU, UK
| |
Collapse
|
50
|
Rao KN, Zhang W, Li L, Ronquillo C, Baehr W, Khanna H. Ciliopathy-associated protein CEP290 modifies the severity of retinal degeneration due to loss of RPGR. Hum Mol Genet 2016; 25:2005-2012. [PMID: 26936822 DOI: 10.1093/hmg/ddw075] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/29/2016] [Indexed: 12/25/2022] Open
Abstract
Mutations in RPGR (retinitis pigmentosa GTPase regulator) are the most common cause of X-linked RP, a severe blindness disorder. RPGR mutations result in clinically variable disease with early- to late-onset phenotypic presentation. Molecular mechanisms underlying such heterogeneity are unclear. Here we show that phenotypic expression of Rpgr-loss in mice is influenced genetically by the loss of Cep290, a human ciliopathy gene. We found that Rpgrko/Y mice with a heterozygous hypomorphic allele of Cep290 (Cep290rd16/+) but not of a heterozygous null allele of Cep290 (Cep290null/+) or of other ciliopathy genes, Rpgrip1, Nphp1, Nphp4 and Nphp5, exhibit relatively early onset (by 3 months of age) retinal degeneration and dysfunction when compared with the onset at ∼7 months of age in the Rpgrko/Y mice. We also observed disorganized photoreceptor outer-segment morphology and defective trafficking of opsins in the Rpgrko/Y::Cep290rd16/+ mice. Together with a physical interaction between RPGR and the C-terminal domain of CEP290, our data suggest that RPGR and CEP290 genetically interact and highlight the involvement of hypomorphic alleles of genes as potential modifiers of heterogeneous retinal ciliopathies.
Collapse
Affiliation(s)
- Kollu N Rao
- Department of Ophthalmology, Horae Gene Therapy Center, UMASS Medical School, Worcester, MA, USA and
| | - Wei Zhang
- Department of Ophthalmology, Horae Gene Therapy Center, UMASS Medical School, Worcester, MA, USA and
| | - Linjing Li
- Department of Ophthalmology, Horae Gene Therapy Center, UMASS Medical School, Worcester, MA, USA and
| | - Cecinio Ronquillo
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Hemant Khanna
- Department of Ophthalmology, Horae Gene Therapy Center, UMASS Medical School, Worcester, MA, USA and
| |
Collapse
|