1
|
Liu R, Yu Y, Wang Q, Zhao Q, Yao Y, Sun M, Zhuang J, Sun C, Qi Y. Interactions between hedgehog signaling pathway and the complex tumor microenvironment in breast cancer: current knowledge and therapeutic promises. Cell Commun Signal 2024; 22:432. [PMID: 39252010 PMCID: PMC11382420 DOI: 10.1186/s12964-024-01812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024] Open
Abstract
Breast cancer ranks as one of the most common malignancies among women, with its prognosis and therapeutic efficacy heavily influenced by factors associated with the tumor cell biology, particularly the tumor microenvironment (TME). The diverse elements of the TME are engaged in dynamic bidirectional signaling interactions with various pathways, which together dictate the growth, invasiveness, and metastatic potential of breast cancer. The Hedgehog (Hh) signaling pathway, first identified in Drosophila, has been established as playing a critical role in human development and disease. Notably, the dysregulation of the Hh pathway is recognized as a major driver in the initiation, progression, and metastasis of breast cancer. Consequently, elucidating the mechanisms by which the Hh pathway interacts with the distinct components of the breast cancer TME is essential for comprehensively evaluating the link between Hh pathway activation and breast cancer risk. This understanding is also imperative for devising novel targeted therapeutic strategies and preventive measures against breast cancer. In this review, we delineate the current understanding of the impact of Hh pathway perturbations on the breast cancer TME, including the intricate and complex network of intersecting signaling cascades. Additionally, we focus on the therapeutic promise and clinical challenges of Hh pathway inhibitors that target the TME, providing insights into their potential clinical utility and the obstacles that must be overcome to harness their full therapeutic potential.
Collapse
Affiliation(s)
- Ruijuan Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China
| | - Yang Yu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
| | - Qingyang Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Qianxiang Zhao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yan Yao
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China
| | - Mengxuan Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261000, China.
| | - Yuanfu Qi
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
2
|
Thazhackavayal Baby B, Kulkarni AM, Gayam PKR, Harikumar KB, Aranjani JM. Beyond cyclopamine: Targeting Hedgehog signaling for cancer intervention. Arch Biochem Biophys 2024; 754:109952. [PMID: 38432565 DOI: 10.1016/j.abb.2024.109952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Hedgehog (Hh) signaling plays a significant role in embryogenesis and several physiological processes, such as wound healing and organ homeostasis. In a pathological setting, it is associated with oncogenesis and is responsible for disease progression and poor clinical outcomes. Hedgehog signaling mediates downstream actions via Glioma Associated Oncogene Homolog (GLI) transcription factors. Inhibiting Hh signaling is an important oncological strategy in which inhibitors of the ligands SMO or GLI have been looked at. This review briefly narrates the Hh ligands, signal transduction, the target genes involved and comprehensively describes the numerous inhibitors that have been evaluated for use in various neoplastic settings.
Collapse
Affiliation(s)
- Beena Thazhackavayal Baby
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Aniruddha Murahar Kulkarni
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Prasanna Kumar Reddy Gayam
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala State, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India.
| |
Collapse
|
3
|
Mohan M, Mannan A, Singh TG. Therapeutic implication of Sonic Hedgehog as a potential modulator in ischemic injury. Pharmacol Rep 2023:10.1007/s43440-023-00505-0. [PMID: 37347388 DOI: 10.1007/s43440-023-00505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Sonic Hedgehog (SHh) is a homology protein that is involved in the modeling and development of embryonic tissues. As SHh plays both protective and harmful roles in ischemia, any disruption in the transduction and regulation of the SHh signaling pathway causes ischemia to worsen. The SHh signal activation occurs when SHh binds to the receptor complex of Ptc-mediated Smoothened (Smo) (Ptc-smo), which initiates the downstream signaling cascade. This article will shed light on how pharmacological modifications to the SHh signaling pathway transduction mechanism alter ischemic conditions via canonical and non-canonical pathways by activating certain downstream signaling cascades with respect to protein kinase pathways, angiogenic cytokines, inflammatory mediators, oxidative parameters, and apoptotic pathways. The canonical pathway includes direct activation of interleukins (ILs), angiogenic cytokines like hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and hypoxia-inducible factor alpha (HIF-), which modulate ischemia. The non-canonical pathway includes indirect activation of certain pathways like mTOR, PI3K/Akt, MAPK, RhoA/ROCK, Wnt/-catenin, NOTCH, Forkhead box protein (FOXF), Toll-like receptors (TLR), oxidative parameters such as GSH, SOD, and CAT, and some apoptotic parameters such as Bcl2. This review provides comprehensive insights that contribute to our knowledge of how SHh impacts the progression and outcomes of ischemic injuries.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
4
|
McCarthy GA, Di Niro R, Finan JM, Jain A, Guo Y, Wyatt C, Guimaraes A, Waugh T, Keith D, Morgan T, Sears R, Brody J. Deletion of the mRNA stability factor ELAVL1 (HuR) in pancreatic cancer cells disrupts the tumor microenvironment integrity. NAR Cancer 2023; 5:zcad016. [PMID: 37089813 PMCID: PMC10113877 DOI: 10.1093/narcan/zcad016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
Stromal cells promote extensive fibrosis in pancreatic ductal adenocarcinoma (PDAC), which is associated with poor prognosis and therapeutic resistance. We report here for the first time that loss of the RNA-binding protein human antigen R (HuR, ELAVL1) in PDAC cells leads to reprogramming of the tumor microenvironment. In multiple in vivo models, CRISPR deletion of ELAVL1 in PDAC cells resulted in a decrease of collagen deposition, accompanied by a decrease of stromal markers (i.e. podoplanin, α-smooth muscle actin, desmin). RNA-sequencing data showed that HuR plays a role in cell-cell communication. Accordingly, cytokine arrays identified that HuR regulates the secretion of signaling molecules involved in stromal activation and extracellular matrix organization [i.e. platelet-derived growth factor AA (PDGFAA) and pentraxin 3]. Ribonucleoprotein immunoprecipitation analysis and transcription inhibition studies validated PDGFA mRNA as a novel HuR target. These data suggest that tumor-intrinsic HuR supports extrinsic activation of the stroma to produce collagen and desmoplasia through regulating signaling molecules (e.g. PDGFAA). HuR-deficient PDAC in vivo tumors with an altered tumor microenvironment are more sensitive to the standard of care gemcitabine, as compared to HuR-proficient tumors. Taken together, we identified a novel role of tumor-intrinsic HuR in its ability to modify the surrounding tumor microenvironment and regulate PDGFAA.
Collapse
Affiliation(s)
- Grace A McCarthy
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Roberto Di Niro
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jennifer M Finan
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Aditi Jain
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yifei Guo
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Cory R Wyatt
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR 97239, USA
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alexander R Guimaraes
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR 97239, USA
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Trent A Waugh
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
| | - Dove Keith
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
| | - Terry K Morgan
- Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rosalie C Sears
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jonathan R Brody
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
5
|
Ali M, Wani SUD, Salahuddin M, S.N. M, K M, Dey T, Zargar MI, Singh J. Recent advance of herbal medicines in cancer- a molecular approach. Heliyon 2023; 9:e13684. [PMID: 36865478 PMCID: PMC9971193 DOI: 10.1016/j.heliyon.2023.e13684] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Bioactive compounds are crucial for an extensive range of therapeutic uses, and some exhibit anticancer activity. Scientists advocate that phytochemicals modulate autophagy and apoptosis, involved in the underlying pathobiology of cancer development and regulation. The pharmacological aiming of the autophagy-apoptosis signaling pathway using phytocompounds hence offers an auspicious method that is complementary to conventional cancer chemotherapy. The current review aims to explore the molecular level of the autophagic-apoptotic pathway to know its implication in the pathobiology of cancer and explore the essential cellular process as a druggable anticancer target and therapeutic emergence of naturally derived phytocompound-based anticancer agents. The data in the review were collected from scientific databases such as Google search, Web of Science, PubMed, Scopus, Medline, and Clinical Trials. With a broad outlook, we investigated their cutting-edge scientifically revealed and/or searched pharmacologic effects, a novel mechanism of action, and molecular signaling pathway of phytochemicals in cancer therapy. In this review, the evidence is focused on molecular pharmacology, specifically caspase, Nrf2, NF-kB, autophagic-apoptotic pathway, and several mechanisms to understand their role in cancer biology.
Collapse
Affiliation(s)
- Mohammad Ali
- Department of Pharmacy Practice, East Point College of Pharmacy, Bangalore, 560049, India
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, 190006, India
| | - Md Salahuddin
- Department of Pharmaceutical Chemistry, Al-Ameen College of Pharmacy, Bangalore, 560027, India
| | - Manjula S.N.
- Department of Pharmacology, JSS College of Pharmacy Mysuru, JSS Academy of Higher Education and Research, Mysuru, 570004, India
| | - Mruthunjaya K
- Department of Pharmacognosy, JSS College of Pharmacy Mysuru, JSS Academy of Higher Education and Research, Mysuru, 570004, India
| | - Tathagata Dey
- Department of Pharmaceutical Chemistry, East Point College of Pharmacy, Bangalore, 560049, India
| | - Mohammed Iqbal Zargar
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, 190006, India
| | - Jagadeesh Singh
- Department of Pharmacognosy, East Point College of Pharmacy, Bangalore, 560049, India
| |
Collapse
|
6
|
Quatannens D, Verhoeven Y, Van Dam P, Lardon F, Prenen H, Roeyen G, Peeters M, Smits ELJ, Van Audenaerde J. Targeting hedgehog signaling in pancreatic ductal adenocarcinoma. Pharmacol Ther 2022; 236:108107. [PMID: 34999181 DOI: 10.1016/j.pharmthera.2022.108107] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a leading cause of cancer related death. The urgent need for effective therapies is highlighted by the lack of adequate targeting. In PDAC, hedgehog (Hh) signaling is known to be aberrantly activated, which prompted the pathway as a possible target for effective treatment for PDAC patients. Unfortunately, specific targeting of upstream molecules within the Hh signaling pathway failed to bring clinical benefit. This led to the ongoing debate on Hh targeting as a therapeutic treatment for PDAC patients. Additionally, concurrent non-canonical activation routes also result in translocation of Gli transcription factors into the nucleus. Therefore, different downstream targets of the Hh signaling pathway were identified and evaluated in preclinical and clinical research. In this review we summarize the variety of Hh signaling antagonists in different preclinical models of PDAC. Furthermore, we discuss published and ongoing clinical trials that evaluated Hh antagonists and point out the current hurdles and future perspectives in the light of redesigning Hh-targeting therapies for the treatment of PDAC patients.
Collapse
Affiliation(s)
- Delphine Quatannens
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Yannick Verhoeven
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Peter Van Dam
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Unit of Gynecologic Oncology, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Hans Prenen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Department of Oncology, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Geert Roeyen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Department of Hepatobiliary Transplantation and Endocrine Surgery, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Department of Oncology, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Evelien L J Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Jonas Van Audenaerde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
7
|
Viswakarma N, Sondarva G, Principe DR, Nair RS, Kumar S, Singh SK, Das S, Sinha SC, Grippo PJ, Grimaldo S, Giulianotti PC, Rana B, Rana A. Mixed Lineage Kinase 3 phosphorylates prolyl-isomerase PIN1 and potentiates GLI1 signaling in pancreatic cancer development. Cancer Lett 2021; 515:1-13. [PMID: 34052323 PMCID: PMC8215900 DOI: 10.1016/j.canlet.2021.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/07/2021] [Accepted: 04/17/2021] [Indexed: 01/03/2023]
Abstract
The transcription factor Glioma-Associated Oncogene Homolog 1 (GLI1) is activated by sonic hedgehog (SHH) cascade and is an established driver of pancreatic ductal adenocarcinoma (PDAC). However, therapies targeting upstream hedgehog signaling have shown little to no efficacy in clinical trials. Here, we identify Mixed Lineage Kinase 3 (MLK3) as a druggable regulator of oncogenic GLI1. Earlier, we reported that MLK3 phosphorylated a peptidyl-prolyl isomerase PIN1 on the S138 site, and the PIN1-pS138 translocated to the nucleus. In this report, we identify GLI1 as one of the targets of PIN1-pS138 and demonstrate that PIN1-pS138 is upregulated in human PDAC and strongly associates with the upregulation of GLI1 and MLK3 expression. Moreover, we also identified two new phosphorylation sites on GLI1, T394, and S1089, which are directly phosphorylated by MLK3 to promote GLI1 nuclear translocation, transcriptional activity, and cell proliferation. Additionally, pharmacological inhibition of MLK3 by CEP-1347 promoted apoptosis in PDAC cell lines, reduced tumor burden, extended survival, and reduced GLI1 expression in the Pdx1-Cre x LSL-KRASG12D x LSL-TP53R172H (KPC) mouse model of PDAC. These findings collectively suggest that MLK3 is an important regulator of oncogenic GLI1 and that therapies targeting MLK3 warrant consideration in the management of PDAC patients.
Collapse
Affiliation(s)
- Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Gautam Sondarva
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Daniel R Principe
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rakesh Sathish Nair
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Subhasis Das
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | - Paul J Grippo
- Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sam Grimaldo
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Pier Cristoforo Giulianotti
- Division of General, Minimally Invasive, and Robotic Surgery, The University of Illinois at Chicago, Chicago, IL, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, The University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, The University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
8
|
A single-cell-resolution fate map of endoderm reveals demarcation of pancreatic progenitors by cell cycle. Proc Natl Acad Sci U S A 2021; 118:2025793118. [PMID: 34161274 DOI: 10.1073/pnas.2025793118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A progenitor cell could generate a certain type or multiple types of descendant cells during embryonic development. To make all the descendant cell types and developmental trajectories of every single progenitor cell clear remains an ultimate goal in developmental biology. Characterizations of descendant cells produced by each uncommitted progenitor for a full germ layer represent a big step toward the goal. Here, we focus on early foregut endoderm, which generates foregut digestive organs, including the pancreas, liver, foregut, and ductal system, through distinct lineages. Using unbiased single-cell labeling techniques, we label every individual zebrafish foregut endodermal progenitor cell out of 216 cells to visibly trace the distribution and number of their descendant cells. Hence, single-cell-resolution fate and proliferation maps of early foregut endoderm are established, in which progenitor regions of each foregut digestive organ are precisely demarcated. The maps indicate that the pancreatic endocrine progenitors are featured by a cell cycle state with a long G1 phase. Manipulating durations of the G1 phase modulates pancreatic progenitor populations. This study illustrates foregut endodermal progenitor cell fate at single-cell resolution, precisely demarcates different progenitor populations, and sheds light on mechanistic insights into pancreatic fate determination.
Collapse
|
9
|
Steele NG, Biffi G, Kemp SB, Zhang Y, Drouillard D, Syu L, Hao Y, Oni TE, Brosnan E, Elyada E, Doshi A, Hansma C, Espinoza C, Abbas A, The S, Irizarry-Negron V, Halbrook CJ, Franks NE, Hoffman MT, Brown K, Carpenter ES, Nwosu ZC, Johnson C, Lima F, Anderson MA, Park Y, Crawford HC, Lyssiotis CA, Frankel TL, Rao A, Bednar F, Dlugosz AA, Preall JB, Tuveson DA, Allen BL, Pasca di Magliano M. Inhibition of Hedgehog Signaling Alters Fibroblast Composition in Pancreatic Cancer. Clin Cancer Res 2021; 27:2023-2037. [PMID: 33495315 PMCID: PMC8026631 DOI: 10.1158/1078-0432.ccr-20-3715] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease characterized by an extensive fibroinflammatory stroma, which includes abundant cancer-associated fibroblast (CAF) populations. PDAC CAFs are heterogeneous, but the nature of this heterogeneity is incompletely understood. The Hedgehog pathway functions in PDAC in a paracrine manner, with ligands secreted by cancer cells signaling to stromal cells in the microenvironment. Previous reports investigating the role of Hedgehog signaling in PDAC have been contradictory, with Hedgehog signaling alternately proposed to promote or restrict tumor growth. In light of the newly discovered CAF heterogeneity, we investigated how Hedgehog pathway inhibition reprograms the PDAC microenvironment. EXPERIMENTAL DESIGN We used a combination of pharmacologic inhibition, gain- and loss-of-function genetic experiments, cytometry by time-of-flight, and single-cell RNA sequencing to study the roles of Hedgehog signaling in PDAC. RESULTS We found that Hedgehog signaling is uniquely activated in fibroblasts and differentially elevated in myofibroblastic CAFs (myCAF) compared with inflammatory CAFs (iCAF). Sonic Hedgehog overexpression promotes tumor growth, while Hedgehog pathway inhibition with the smoothened antagonist, LDE225, impairs tumor growth. Furthermore, Hedgehog pathway inhibition reduces myCAF numbers and increases iCAF numbers, which correlates with a decrease in cytotoxic T cells and an expansion in regulatory T cells, consistent with increased immunosuppression. CONCLUSIONS Hedgehog pathway inhibition alters fibroblast composition and immune infiltration in the pancreatic cancer microenvironment.
Collapse
Affiliation(s)
- Nina G Steele
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Giulia Biffi
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, England, United Kingdom
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Samantha B Kemp
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - LiJyun Syu
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Yuan Hao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, New York
| | - Tobiloba E Oni
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Erin Brosnan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Ela Elyada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Abhishek Doshi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Christa Hansma
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Carlos Espinoza
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Ahmed Abbas
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Stephanie The
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | | | - Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Nicole E Franks
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Megan T Hoffman
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Kristee Brown
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Eileen S Carpenter
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Zeribe C Nwosu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Fatima Lima
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Michelle A Anderson
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Howard C Crawford
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Costas A Lyssiotis
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | | | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Michigan Institute of Data Science (MIDAS), University of Michigan, Ann Arbor, Michigan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Andrzej A Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | | | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
10
|
Wang Z, Yang Q, Tan Y, Tang Y, Ye J, Yuan B, Yu W. Cancer-Associated Fibroblasts Suppress Cancer Development: The Other Side of the Coin. Front Cell Dev Biol 2021; 9:613534. [PMID: 33614646 PMCID: PMC7890026 DOI: 10.3389/fcell.2021.613534] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the main stromal components of cancer, representing a group of heterogeneous cells. Many studies indicate that CAFs promote tumor development. Besides, evidence of the tumor suppression effects of CAFs keeps on merging. In the tumor microenvironment, multiple stimuli can activate fibroblasts. Notably, this does not necessarily mean the activated CAFs become strong tumor promoters immediately. The varying degree of CAFs activation makes quiescent CAFs, tumor-restraining CAFs, and tumor-promoting CAFs. Quiescent CAFs and tumor-restraining CAFs are more present in early-stage cancer, while comparatively, more tumor-promoting CAFs present in advanced-stage cancer. The underlying mechanism that balances tumor promotion or tumor inhibition effects of CAFs is mostly unknown. This review focus on the inhibitory effects of CAFs on cancer development. We describe the heterogeneous origin, markers, and metabolism in the CAFs population. Transgenetic mouse models that deplete CAFs or deplete CAFs activation signaling in the tumor stroma present direct evidence of CAFs protective effects against cancer. Moreover, we outline CAFs subpopulation and CAFs derived soluble factors that act as a tumor suppressor. Single-cell RNA-sequencing on CAFs population provides us new insight to classify CAFs subsets. Understanding the full picture of CAFs will help translate CAFs biology from bench to bedside and develop new strategies to improve precision cancer therapy.
Collapse
Affiliation(s)
- Zhanhuai Wang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Yang
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinuo Tan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Tang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Yuan
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Wei Yu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Kokkorakis N, Gaitanou M. Minibrain-related kinase/dual-specificity tyrosine-regulated kinase 1B implication in stem/cancer stem cells biology. World J Stem Cells 2020; 12:1553-1575. [PMID: 33505600 PMCID: PMC7789127 DOI: 10.4252/wjsc.v12.i12.1553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1B (DYRK1B), also known as minibrain-related kinase (MIRK) is one of the best functionally studied members of the DYRK kinase family. DYRKs comprise a family of protein kinases that are emerging modulators of signal transduction pathways, cell proliferation and differentiation, survival, and cell motility. DYRKs were found to participate in several signaling pathways critical for development and cell homeostasis. In this review, we focus on the DYRK1B protein kinase from a functional point of view concerning the signaling pathways through which DYRK1B exerts its cell type-dependent function in a positive or negative manner, in development and human diseases. In particular, we focus on the physiological role of DYRK1B in behavior of stem cells in myogenesis, adipogenesis, spermatogenesis and neurogenesis, as well as in its pathological implication in cancer and metabolic syndrome. Thus, understanding of the molecular mechanisms that regulate signaling pathways is of high importance. Recent studies have identified a close regulatory connection between DYRK1B and the hedgehog (HH) signaling pathway. Here, we aim to bring together what is known about the functional integration and cross-talk between DYRK1B and several signaling pathways, such as HH, RAS and PI3K/mTOR/AKT, as well as how this might affect cellular and molecular processes in development, physiology, and pathology. Thus, this review summarizes the major known functions of DYRK1B kinase, as well as the mechanisms by which DYRK1B exerts its functions in development and human diseases focusing on the homeostasis of stem and cancer stem cells.
Collapse
Affiliation(s)
- Nikolaos Kokkorakis
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens 11521, Greece.
| |
Collapse
|
12
|
Dusek CO, Hadden MK. Targeting the GLI family of transcription factors for the development of anti-cancer drugs. Expert Opin Drug Discov 2020; 16:289-302. [PMID: 33006903 DOI: 10.1080/17460441.2021.1832078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION GLI1 is a transcription factor that has been identified as a downstream effector for multiple tumorigenic signaling pathways. These include the Hedgehog, RAS-RAF-MEK-ERK, and PI3K-AKT-mTOR pathways, which have all been separately validated as individual anti-cancer drug targets. The identification of GLI1 as a key transcriptional regulator for each of these pathways highlights its promise as a therapeutic target. Small molecule GLI1 inhibitors are potentially efficacious against human malignancies arising from multiple oncogenic mechanisms. AREAS COVERED This review provides an overview of the key oncogenic cellular pathways that regulate GLI1 transcriptional activity. It also provides a detailed account of small molecule GLI1 inhibitors that are currently under development as potential anti-cancer chemotherapeutics. EXPERT OPINION Interest in developing inhibitors of GLI1-mediated transcription has significantly increased as its role in multiple oncogenic signaling pathways has been elucidated. To date, it has proven difficult to directly target GLI1 with small molecules, and the majority of compounds that inhibit GLI1 activity function through indirect mechanisms. To date, no direct-acting GLI1 inhibitor has entered clinical trials. The identification and development of new scaffolds that can bind and directly inhibit GLI1 are essential to further advance this class of chemotherapeutics.
Collapse
Affiliation(s)
- Christopher O Dusek
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
13
|
Carr RM, Duma N, McCleary-Wheeler AL, Almada LL, Marks DL, Graham RP, Smyrk TC, Lowe V, Borad MJ, Kim G, Johnson GB, Allred JB, Yin J, Lim VS, Bekaii-Saab T, Ma WW, Erlichman C, Adjei AA, Fernandez-Zapico ME. Targeting of the Hedgehog/GLI and mTOR pathways in advanced pancreatic cancer, a phase 1 trial of Vismodegib and Sirolimus combination. Pancreatology 2020; 20:1115-1122. [PMID: 32778368 DOI: 10.1016/j.pan.2020.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES Preclinical data indicated a functional and molecular interaction between Hedgehog (HH)/GLI and PI3K-AKT-mTOR pathways promoting pancreatic ductal adenocarcinoma (PDAC). A phase I study was conducted of Vismodegib and Sirolimus combination to evaluate maximum tolerated dose (MTD) and preliminary anti-tumor efficacy. METHODS Cohort I included advanced solid tumors patients following a traditional 3 + 3 design. Vismodegib was orally administered at 150 mg daily with Sirolimus starting at 3 mg daily, increasing to 6 mg daily at dose level 2. Cohort II included only metastatic PDAC patients. Anti-tumor efficacy was evaluated every two cycles and target assessment at pre-treatment and after a single cycle. RESULTS Nine patient were enrolled in cohort I and 22 patients in cohort II. Twenty-eight patients were evaluated for dose-limiting toxicities (DLTs). One DLT was observed in each cohort, consisting of grade 2 mucositis and grade 3 thrombocytopenia. The MTD for Vismodegib and Sirolimus were 150 mg daily and 6 mg daily, respectively. The most common grade 3-4 toxicities were fatigue, thrombocytopenia, dehydration, and infections. A total of 6 patients had stable disease. No partial or complete responses were observed. Paired biopsy analysis before and after the first cycle in cohort II consistently demonstrated reduced GLI1 expression. Conversely, GLI and mTOR downstream targets were not significantly affected. CONCLUSIONS The combination of Vismodegib and Sirolimus was well tolerated. Clinical benefit was limited to stable disease in a subgroup of patients. Targeting efficacy demonstrated consistent partial decreases in HH/GLI signaling with limited impact on mTOR signaling. These findings conflict with pre-clinical models and warrant further investigations.
Collapse
Affiliation(s)
- Ryan M Carr
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA; Department of Medical Oncology, Department of Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55902, USA
| | - Narjust Duma
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Angela L McCleary-Wheeler
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Luciana L Almada
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - David L Marks
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Rondell P Graham
- Department of Laboratory Medicine Pathology, Mayo Clinic, Rochester, MN, USA
| | - Thomas C Smyrk
- Department of Laboratory Medicine Pathology, Mayo Clinic, Rochester, MN, USA
| | - Val Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Mitesh J Borad
- Division of Hematology-Medical Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - George Kim
- Division of Hematology-Oncology, The George Washington University, Washington, DC, USA
| | | | - Jacob B Allred
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jun Yin
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Vun-Sin Lim
- Department of Medical Oncology, Department of Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55902, USA
| | - Tanios Bekaii-Saab
- Division of Hematology-Medical Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Wen We Ma
- Department of Medical Oncology, Department of Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55902, USA
| | - Charles Erlichman
- Department of Medical Oncology, Department of Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55902, USA
| | - Alex A Adjei
- Department of Medical Oncology, Department of Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55902, USA.
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA; Department of Medical Oncology, Department of Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55902, USA.
| |
Collapse
|
14
|
Shi Y, Wang Y, Qian J, Yan X, Han Y, Yao N, Ma J. MGMT expression affects the gemcitabine resistance of pancreatic cancer cells. Life Sci 2020; 259:118148. [PMID: 32721465 DOI: 10.1016/j.lfs.2020.118148] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/30/2023]
Abstract
Pancreatic cancer is a malignant cancer with poor prognosis. This study aimed to explore how O6-methylguanine-DNA methyltransferase (MGMT) affects the gemcitabine resistance of pancreatic cancer cells by the regulatory role of SHH/GLI signaling pathway. MGMT inhibition induced by lomeguatrib (LM) suppressed the proliferation, invasion, migration and autophagy, promoted the apoptosis of PanC-1/GEM cells and up-regulated the GEM inhibition rates for PanC-1/GEM cells. Moreover, MGMT inhibition increased the expression of Caspase-3 and Bax and decreased the expression of Bcl-2, Beclin1 and Atg5 in PanC-1/GEM cells. PVT1 silencing could also produce the similar effects of MGMT inhibition induced by LM on PanC-1/GEM cells. And, PVT1 silencing could inhibit the SHH/GLI signaling pathway in PanC-1/GEM cells by regulating the MGMT expression. miR-409 was demonstrated to be a potential target of PVT1 and SHH was demonstrated to be a potential target of miR-409. Furthermore, GLI overexpression could reverse the effects of PVT1 silencing. In the xenograft model of pancreatic cancer, nude mice were treated with GEM. MGMT inhibition suppressed the tumor growth and autophagy and promoted the apoptosis in tumor tissues. And, PVT1 silencing could inhibit the SHH/GLI signaling pathway in tumor tissues. In conclusion, MGMT inhibition could suppress the proliferation, invasion, migration and autophagy and promote the apoptosis of PanC-1/GEM cells in vitro and in vivo. PVT1 silencing may affect the PanC-1/GEM cells through changing the MGMT expression by inhibiting the SHH/GLI signaling pathway.
Collapse
Affiliation(s)
- Yu Shi
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yan Wang
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jing Qian
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaodi Yan
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yong Han
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Ninghua Yao
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jianbo Ma
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
15
|
Niyaz M, Khan MS, Mudassar S. Hedgehog Signaling: An Achilles' Heel in Cancer. Transl Oncol 2019; 12:1334-1344. [PMID: 31352196 PMCID: PMC6664200 DOI: 10.1016/j.tranon.2019.07.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Hedgehog signaling pathway originally identified in the fruit fly Drosophila is an evolutionarily conserved signaling mechanism with crucial roles in embryogenesis, growth and patterning. It exerts its biological effect through a signaling mechanism that terminates at glioma-associated oncogene (GLI) transcription factors which alternate between activator and repressor forms and mediate various responses. The important components of the pathway include the hedgehog ligands (SHH), the Patched (PTCH) receptor, Smoothened (SMO), Suppressor of Fused (SuFu) and GLI transcription factors. Activating or inactivating mutations in key genes cause uncontrolled activation of the pathway in a ligand independent manner. The ligand-dependent aberrant activation of the hedgehog pathway causing overexpression of hedgehog pathway components and its target genes occurs in autocrine as well as paracrine fashion. In adults, aberrant activation of hedgehog signaling has been linked to birth defects and multiple solid cancers. In this review, we assimilate data from recent studies to understand the mechanism of functioning of the hedgehog signaling pathway, role in cancer, its association in various solid malignancies and the current strategies being used to target this pathway for cancer treatment.
Collapse
Affiliation(s)
- Madiha Niyaz
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, - 190011 Srinagar, Kashmir
| | - Mosin S Khan
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, - 190011 Srinagar, Kashmir
| | - Syed Mudassar
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, - 190011 Srinagar, Kashmir.
| |
Collapse
|
16
|
Ali I, Suhail M, Naqshbandi MF, Fazil M, Ahmad B, Sayeed A. Role of Unani Medicines in Cancer Control and Management. CURRENT DRUG THERAPY 2019. [DOI: 10.2174/1574885513666180907103659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background:Cancer is a havoc and killer disease. Several ways including allopathic chemotherapy have been used in the cancer treatment. Allopathic chemotherapy has several limitations and side effects. Unani medicine is also one of the therapies to cure cancer.Objective:In this type of treatment, herbal drugs are used for the treatment and prevention of cancer. The main attractive thing about herbal drug is no side effect as compared to allopathic chemotherapy.Methods:Actually, herbal drugs are the extracts of medicinal plants. The plant extracts are obtained by crushing and heating the main part of the plants; showing anticancer activity. The main plants used in the treatment of cancer are oroxylum indicum, dillenia indica, terminalia arjuna etc.Results:Mainly the cancers treated are of digestive system, breast, cervical, brain, blood, bone, lungs, thyroid, uterine, bladder, throat etc.Conclusion:The present review article discusses the importance of Unani system of medicine for the treatment of cancer. Besides, the future perspectives of Unani medicine in cancer treatment are also highlighted.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi-110025, India
| | - Mohd. Suhail
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi-110025, India
| | - Mohd. Farooq Naqshbandi
- Department of Biotechnology, Jamia Millia Islamia (Central University), New Delhi- 110025, India
| | - Mohd. Fazil
- Hakim Ajmal Khan Institute for Literary & Historical Research in Unani Medicine, Dr. M. A. Ansari Health Centre, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi-110025, India
| | - Bilal Ahmad
- Hakim Ajmal Khan Institute for Literary & Historical Research in Unani Medicine, Dr. M. A. Ansari Health Centre, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi-110025, India
| | - Ahmad Sayeed
- Hakim Ajmal Khan Institute for Literary & Historical Research in Unani Medicine, Dr. M. A. Ansari Health Centre, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi-110025, India
| |
Collapse
|
17
|
Pietrobono S, Gagliardi S, Stecca B. Non-canonical Hedgehog Signaling Pathway in Cancer: Activation of GLI Transcription Factors Beyond Smoothened. Front Genet 2019; 10:556. [PMID: 31244888 PMCID: PMC6581679 DOI: 10.3389/fgene.2019.00556] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/24/2019] [Indexed: 12/16/2022] Open
Abstract
The Hedgehog-GLI (HH-GLI) pathway is a highly conserved signaling that plays a critical role in controlling cell specification, cell–cell interaction and tissue patterning during embryonic development. Canonical activation of HH-GLI signaling occurs through binding of HH ligands to the twelve-pass transmembrane receptor Patched 1 (PTCH1), which derepresses the seven-pass transmembrane G protein-coupled receptor Smoothened (SMO). Thus, active SMO initiates a complex intracellular cascade that leads to the activation of the three GLI transcription factors, the final effectors of the HH-GLI pathway. Aberrant activation of this signaling has been implicated in a wide variety of tumors, such as those of the brain, skin, breast, gastrointestinal, lung, pancreas, prostate and ovary. In several of these cases, activation of HH-GLI signaling is mediated by overproduction of HH ligands (e.g., prostate cancer), loss-of-function mutations in PTCH1 or gain-of-function mutations in SMO, which occur in the majority of basal cell carcinoma (BCC), SHH-subtype medulloblastoma and rhabdomyosarcoma. Besides the classical canonical ligand-PTCH1-SMO route, mounting evidence points toward additional, non-canonical ways of GLI activation in cancer. By non-canonical we refer to all those mechanisms of activation of the GLI transcription factors occurring independently of SMO. Often, in a given cancer type canonical and non-canonical activation of HH-GLI signaling co-exist, and in some cancer types, more than one mechanism of non-canonical activation may occur. Tumors harboring non-canonical HH-GLI signaling are less sensitive to SMO inhibition, posing a threat for therapeutic efficacy of these antagonists. Here we will review the most recent findings on the involvement of alternative signaling pathways in inducing GLI activity in cancer and stem cells. We will also discuss the rationale of targeting these oncogenic pathways in combination with HH-GLI inhibitors as a promising anti-cancer therapies.
Collapse
Affiliation(s)
- Silvia Pietrobono
- Tumor Cell Biology Unit - Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Sinforosa Gagliardi
- Tumor Cell Biology Unit - Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Barbara Stecca
- Tumor Cell Biology Unit - Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| |
Collapse
|
18
|
Dugnani E, Sordi V, Pellegrini S, Chimienti R, Marzinotto I, Pasquale V, Liberati D, Balzano G, Doglioni C, Reni M, Gandolfi A, Falconi M, Lampasona V, Piemonti L. Gene expression analysis of embryonic pancreas development master regulators and terminal cell fate markers in resected pancreatic cancer: A correlation with clinical outcome. Pancreatology 2018; 18:945-953. [PMID: 30293872 DOI: 10.1016/j.pan.2018.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 09/03/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Despite the recent introduction of new drugs and the development of innovative multi-target treatments, the prognosis of pancreatic ductal adenocarcinoma (PDAC) remains very poor. Even when PDAC is resectable, the rate of local or widespread disease recurrence remains particularly high. Currently, reliable prognostic biomarkers of recurrence are lacking. We decided to explore the potential usefulness of pancreatic developmental regulators as biomarkers of PDAC relapse. METHODS We analyzed by quantitative real-time PCR the mRNA of selected factors involved either in pancreatic organogenesis (ISL1, NEUROD1, NGN3, NKX2.2, NKX6.1, PAX4, PAX6, PDX1 and PTF1α) or associated with terminally committed pancreatic cells (CHGA, CHGB, GAD2, GCG, HNF6α, INS, KRT19, SYP) in 17 PDAC cell lines and in frozen tumor samples from 41 PDAC patients. RESULTS High baseline levels of the ISL1, KRT19, PAX6 and PDX1 mRNAs in PDAC cell lines, were risk factors for time-dependent xenograft appearance after subcutaneous injection in CD1-Nude mice. Consistently, in human PDAC samples, high levels of KRT19 mRNA were associated with reduced overall survival and earlier recurrence. Higher levels of PDX1 or PAX6 mRNAs were instead associated with a higher frequency of local recurrence. CONCLUSIONS Our findings suggest that selected factors associated with pancreas development or its terminal differentiation might be implicated in mechanisms of PDAC progression and/or metastatic spread and that the measurement of their mRNA in tumors might be potentially used to improve patient prognostic stratification and prediction of the relapse site.
Collapse
Affiliation(s)
- Erica Dugnani
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Silvia Pellegrini
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Raniero Chimienti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Ilaria Marzinotto
- Division of Genetics and Cell Biology, Genomic Unit for the Diagnosis of Human Pathologies, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valentina Pasquale
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Daniela Liberati
- Division of Genetics and Cell Biology, Genomic Unit for the Diagnosis of Human Pathologies, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gianpaolo Balzano
- Pancreatic Surgery Unit, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Claudio Doglioni
- Department of Pathology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Michele Reni
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Alessandra Gandolfi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Massimo Falconi
- Pancreatic Surgery Unit, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Vito Lampasona
- Division of Genetics and Cell Biology, Genomic Unit for the Diagnosis of Human Pathologies, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
19
|
Geyer N, Ridzewski R, Bauer J, Kuzyakova M, Dittmann K, Dullin C, Rosenberger A, Schildhaus HU, Uhmann A, Fulda S, Hahn H. Different Response of Ptch Mutant and Ptch Wildtype Rhabdomyosarcoma Toward SMO and PI3K Inhibitors. Front Oncol 2018; 8:396. [PMID: 30319965 PMCID: PMC6168716 DOI: 10.3389/fonc.2018.00396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/31/2018] [Indexed: 01/10/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma with poor prognosis. RMS frequently show Hedgehog (HH) pathway activity, which is predominantly seen in the embryonal subtype (ERMS). They also show activation of Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) signaling. Here we compared the therapeutic effectiveness and the impact on HH target gene expression of Smoothened (SMO) antagonists with those of the PI3K inhibitor pictilisib in ERMS with and without mutations in the HH receptor Patched1 (PTCH). Our data demonstrate that growth of ERMS showing canonical Hh signaling activity due to Ptch germline mutations is efficiently reduced by SMO antagonists. This goes along with strong downregulation of the Hh target Gli1. Likewise Ptch mutant tumors are highly responsive toward the PI3K inhibitor pictilisib, which involves modulation of AKT and caspase activity. Pictilisib also modulates Hh target gene expression, which, however, is rather not correlated with its antitumoral effects. In contrast, sporadic ERMS, which usually express HH target genes without having PTCH mutation, apparently lack canonical HH signaling activity. Thus, stimulation by Sonic HE (SHH) or SAG (Smoothened agonist) or inhibition by SMO antagonists do not modulate HH target gene expression. In addition, SMO antagonists do not provoke efficient anticancer effects and rather exert off-target effects. In contrast, pictilisib and other PI3K/AKT/mTOR inhibitors potently inhibit cellular growth. They also efficiently inhibit HH target gene expression. However, of whether this is correlated with their antitumoral effects it is not clear. Together, these data suggest that PI3K inhibitors are a good and reliable therapeutic option for all ERMS, whereas SMO inhibitors might only be beneficial for ERMS driven by PTCH mutations.
Collapse
Affiliation(s)
- Natalie Geyer
- Institute for Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Rosalie Ridzewski
- Institute for Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Julia Bauer
- Institute for Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Maria Kuzyakova
- Institute for Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Kai Dittmann
- Institute for Celluar and Molecular Immunology, University Medical Center Goettingen, Goettingen, Germany
| | - Christian Dullin
- Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center Goettingen, Goettingen, Germany
| | | | - Anja Uhmann
- Institute for Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
| | - Heidi Hahn
- Institute for Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
20
|
Niyaz M, Khan MS, Hussain MU, Wani RA, Shah OJ, Mudassar S. Expression Undercurrents of Sonic Hedgehog in Colorectal and Pancreatic Cancers. GENE REPORTS 2018; 12:310-316. [DOI: 10.1016/j.genrep.2018.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Wang B, Zhang Y, Dong H, Gong S, Wei B, Luo M, Wang H, Wu X, Liu W, Xu X, Zheng Y, Sun M. Loss of Tctn3 causes neuronal apoptosis and neural tube defects in mice. Cell Death Dis 2018; 9:520. [PMID: 29725084 PMCID: PMC5938703 DOI: 10.1038/s41419-018-0563-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022]
Abstract
Tctn3 belongs to the Tectonic (Tctn) family and is a single-pass membrane protein localized at the transition zone of primary cilia as an important component of ciliopathy-related protein complexes. Previous studies showed that mutations in Tctn1 and Tctn2, two members of the tectonic family, have been reported to disrupt neural tube development in humans and mice, but the functions of Tctn3 in brain development remain elusive. In this study, Tctn3 knockout (KO) mice were generated by utilizing the piggyBac (PB) transposon system. We found that Tctn3 KO mice exhibited abnormal global development, including prenatal lethality, microphthalmia, polysyndactyly, and abnormal head, sternum, and neural tube, whereas Tctn3 heterozygous KO mice did not show abnormal development or behaviors. Further, we found that the mRNA levels of Gli1 and Ptch1, downstream signaling components of the Shh pathway, were significantly reduced. Likewise, neural tube patterning-related proteins, such as Shh, Foxa2, and Nkx2.2, were altered in their distribution. Interestingly, Tctn3 KO led to significant changes in apoptosis-related proteins, including Bcl-2, Bax, and cleaved PARP1, resulting in reduced numbers of neuronal cells in embryonic brains. Tctn3 KO inhibited the PI3K/Akt signaling pathway but not the mTOR-dependent pathway. The small molecule SC79, a specific Akt activator, blocked apoptotic cell death in primary mouse embryonic fibroblasts from Tctn3 KO mice. Finally, NPHP1, a protein with anti-apoptotic ability, was found to form a complex with Tctn3, and its levels were decreased in Tctn3 KO mice. In conclusion, our results show that Tctn3 KO disrupts the Shh signaling pathway and neural tube patterning, resulting in abnormal embryonic development, cellular apoptosis, and prenatal death in mice.
Collapse
Affiliation(s)
- Bin Wang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.,Institute of Neuroscience, Soochow University, Suzhou City, 215123, Jiangsu, China
| | - Yingying Zhang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Hongli Dong
- Department of Neurology, Suzhou Hospital of Traditional Chinese Medicine, Suzhou City, 215123, Jiangsu, China
| | - Siyi Gong
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.,Institute of Neuroscience, Soochow University, Suzhou City, 215123, Jiangsu, China
| | - Bin Wei
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Man Luo
- Institute of Neuroscience, Soochow University, Suzhou City, 215123, Jiangsu, China
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital Research Center, Institute of Reproduction and Development, Fudan University, Shanghai, 200433, China.,State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaohui Wu
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, 200433, China
| | - Wei Liu
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Xingshun Xu
- Institute of Neuroscience, Soochow University, Suzhou City, 215123, Jiangsu, China.
| | - Yufang Zheng
- Obstetrics and Gynecology Hospital Research Center, Institute of Reproduction and Development, Fudan University, Shanghai, 200433, China. .,State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, 200433, China.
| | - Miao Sun
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.
| |
Collapse
|
22
|
Wang W, Dong B, Yang F. Avian Retrovirus‐Mediated Tumor‐Specific Gene Knockout. ACTA ACUST UNITED AC 2018; 121:23.17.1-23.17.7. [DOI: 10.1002/cpmb.54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Wei Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine Houston Texas
| | - Bingning Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine Houston Texas
| | - Feng Yang
- Department of Molecular and Cellular Biology, Baylor College of Medicine Houston Texas
| |
Collapse
|
23
|
Mohelnikova-Duchonova B, Kocik M, Duchonova B, Brynychova V, Oliverius M, Hlavsa J, Honsova E, Mazanec J, Kala Z, Ojima I, Hughes DJ, Doherty JE, Murray HA, Crockard MA, Lemstrova R, Soucek P. Hedgehog pathway overexpression in pancreatic cancer is abrogated by new-generation taxoid SB-T-1216. THE PHARMACOGENOMICS JOURNAL 2017; 17:452-460. [PMID: 27573236 DOI: 10.1038/tpj.2016.55] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/19/2016] [Accepted: 06/06/2016] [Indexed: 02/07/2023]
Abstract
The Hedgehog pathway is one of the major driver pathways in pancreatic ductal adenocarcinoma. This study investigated prognostic importance of Hedgehog signaling pathway in pancreatic cancer patients who underwent a radical resection. Tumors and adjacent non-neoplastic pancreatic tissues were obtained from 45 patients with histologically verified pancreatic cancer. The effect of experimental taxane chemotherapy on the expression of Hedgehog pathway was evaluated in vivo using a mouse xenograft model prepared using pancreatic cancer cell line Paca-44. Mice were treated by experimental Stony Brook Taxane SB-T-1216. The transcript profile of 34 Hedgehog pathway genes in patients and xenografts was assessed using quantitative PCR. The Hedgehog pathway was strongly overexpressed in pancreatic tumors and upregulation of SHH, IHH, HHAT and PTCH1 was associated with a trend toward decreased patient survival. No association of Hedgehog pathway expression with KRAS mutation status was found in tumors. Sonic hedgehog ligand was overexpressed, but all other downstream genes were downregulated by SB-T-1216 treatment in vivo. Suppression of HH pathway expression in vivo by taxane-based chemotherapy suggests a new mechanism of action for treatment of this aggressive tumor.
Collapse
Affiliation(s)
- B Mohelnikova-Duchonova
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
- Department of Oncology, Palacky University Medical School and Teaching Hospital, Olomouc, Czech Republic
| | - M Kocik
- Department of Transplantation Surgery, Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - V Brynychova
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
- Charles University in Prague, Prague, Czech Republic
| | - M Oliverius
- Department of Transplantation Surgery, Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | - J Hlavsa
- Department of Surgery, University Hospital and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - E Honsova
- Department of Clinical and Transplantation Pathology, Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | - J Mazanec
- Department of Pathology, University Hospital and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Z Kala
- Department of Surgery, University Hospital and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - I Ojima
- Institute of Chemical Biology and Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - D J Hughes
- Department of Physiology &Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | | | | | - R Lemstrova
- Department of Oncology, Palacky University Medical School and Teaching Hospital, Olomouc, Czech Republic
| | - P Soucek
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
| |
Collapse
|
24
|
Ma YY, Jin KT, Wang SB, Wang HJ, Tong XM, Huang DS, Mou XZ. Molecular Imaging of Cancer with Nanoparticle-Based Theranostic Probes. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:1026270. [PMID: 29097909 PMCID: PMC5612740 DOI: 10.1155/2017/1026270] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/16/2017] [Indexed: 11/18/2022]
Abstract
Although advancements in medical technology supporting cancer diagnosis and treatment have improved survival, these technologies still have limitations. Recently, the application of noninvasive imaging for cancer diagnosis and therapy has become an indispensable component in clinical practice. However, current imaging contrasts and tracers, which are in widespread clinical use, have their intrinsic limitations and disadvantages. Nanotechnologies, which have improved in vivo detection and enhanced targeting efficiency for cancer, may overcome some of the limitations of cancer diagnosis and therapy. Theranostic nanoparticles have great potential as a therapeutic model, which possesses the ability of their nanoplatforms to load targeted molecule for both imaging and therapeutic functions. The resulting nanosystem will likely be critical with the growth of personalized medicine because of their diagnostic potential, effectiveness as a drug delivery vehicle, and ability to oversee patient response to therapy. In this review, we discuss the achievements of modern nanoparticles with the goal of accurate tumor imaging and effective treatment and discuss the future prospects.
Collapse
Affiliation(s)
- Ying-Yu Ma
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province, Hangzhou 310014, China
| | - Ke-Tao Jin
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, China
| | - Shi-Bing Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province, Hangzhou 310014, China
| | - Hui-Ju Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province, Hangzhou 310014, China
| | - Xiang-Min Tong
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province, Hangzhou 310014, China
| | - Dong-Sheng Huang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province, Hangzhou 310014, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province, Hangzhou 310014, China
- School of Basic Medical Sciences, Hangzhou Medical College, Hangzhou 310053, China
| |
Collapse
|
25
|
Wang W, Meng Y, Dong B, Dong J, Ittmann MM, Creighton CJ, Lu Y, Zhang H, Shen T, Wang J, Rowley DR, Li Y, Chen F, Moore DD, Yang F. A Versatile Tumor Gene Deletion System Reveals a Crucial Role for FGFR1 in Breast Cancer Metastasis. Neoplasia 2017; 19:421-428. [PMID: 28433771 PMCID: PMC5402631 DOI: 10.1016/j.neo.2017.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022] Open
Abstract
RCAS avian viruses have been used to deliver oncogene expression and induce tumors in transgenic mice expressing the virus receptor TVA. Here we report the generation and characterization of a novel RCAS-Cre-IRES-PyMT (RCI-PyMT) virus designed to specifically knockout genes of interest in tumors generated in appropriate mutant mouse hosts. FGF receptor 1 (FGFR1) is a gene that is amplified in human breast cancer, but there have been no definitive studies on its function in mammary tumorigenesis, progression, and metastasis in vivo in spontaneous tumors in mice. We used the retroviral tumor knockout, or TuKO, strategy to delete fgfr1 in PyMT-induced mammary tumors in K19-tva/fgfr1loxP/loxP mice. The similarly injected control K19-tva mice developed mammary tumors exhibiting high metastasis to lung, making this an ideal model for breast cancer metastasis. The fgfr1 TuKO tumors showed significantly decreased primary tumor growth and, most importantly, greatly reduced metastasis to lung. In contrast to previous reports, FGFR1 action in this spontaneous mammary tumor model does not significantly induce epithelial-to-mesenchymal transition. Loss of FGFR1 does generate a gene signature that is reverse correlated with FGFR1 gene amplification and/or upregulation in human breast cancer. Our results suggest that FGFR1 signaling is a key pathway driving breast cancer lung metastasis and that targeting FGFR1 in breast cancer is an exciting approach to inhibit metastasis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Yanling Meng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Bingning Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Jie Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Yang Lu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Hong Zhang
- Department of Pathology and Laboratory Medicine, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States
| | - Tao Shen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Jianghua Wang
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - David R Rowley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Yi Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Fengju Chen
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Feng Yang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States.
| |
Collapse
|
26
|
Sano M, Ichimaru Y, Kurita M, Hayashi E, Homma T, Saito H, Masuda S, Nemoto N, Hemmi A, Suzuki T, Miyairi S, Hao H. Induction of cell death in pancreatic ductal adenocarcinoma by indirubin 3'-oxime and 5-methoxyindirubin 3'-oxime in vitro and in vivo. Cancer Lett 2017; 397:72-82. [PMID: 28347789 DOI: 10.1016/j.canlet.2017.03.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 11/27/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a poor prognosis. To identify potential effective therapeutic drugs for PDAC, we established a screening system based on spheroid formation using 170#3 mouse PDAC cells with or without fibroblasts. We found that indirubin 3'-oxime (Indox) and 5-methoxyindirubin 3'-oxime (5MeOIndox) inhibited PDAC cell proliferation. Furthermore, PDAC xenograft growth was also inhibited in BALB/c nu/nu mice after administration of Indox and 5MeOIndox. Both phosphorylated CDK1 and cyclin B1 levels in 170#3 cells were significantly reduced by treatment with Indox and 5MeOIndox in vitro and in vivo. Cell cycle analysis revealed that 5MeOIndox, but not Indox, induced G2/M arrest. Annexin V-propidium iodide double-staining analysis demonstrated that Indox induced abundant non-apoptotic cell death of 170#3 cells, while 5MeOIndox predominantly induced early apoptosis, indicating that the cytotoxicity of 5MeOIndox is lower than that of Indox. These results suggest that one mechanism of 5MeOIndox is to induce G2/M arrest of PDAC cells via inhibition of CDK1/cyclin B1 levels, thereby leading to apoptosis. Our findings suggest 5MeOIndox as a potential useful anticancer agent in PDAC.
Collapse
Affiliation(s)
- Makoto Sano
- Division of Human Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Yoshimi Ichimaru
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Masahiro Kurita
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Emiko Hayashi
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Taku Homma
- Division of Human Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hiroaki Saito
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Shinobu Masuda
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Norimichi Nemoto
- Division of Human Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Akihiro Hemmi
- Division of Human Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Takashi Suzuki
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Shinichi Miyairi
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan.
| | - Hiroyuki Hao
- Division of Human Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
27
|
Diarylheptanoids suppress proliferation of pancreatic cancer PANC-1 cells through modulating shh-Gli-FoxM1 pathway. Arch Pharm Res 2017; 40:509-517. [PMID: 28258481 DOI: 10.1007/s12272-017-0905-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 02/22/2017] [Indexed: 12/18/2022]
Abstract
Pancreatic cancer is one of the leading causes of cancer, and it has the lowest 5-year survival rates. It is necessary to develop more potent anti-pancreatic cancer drugs to overcome the fast metastasis and resistance to surgery, radiotherapy, chemotherapy, and combinations of these. We have identified several diarylheptanoids as anti-pancreatic cancer agents from Alpinia officinarum (lesser galangal) and Alnus japonica. These diarylheptanoids suppressed cell proliferation and induced the cell cycle arrest of pancreatic cancer cells (PANC-1). Among them, the most potent compounds 1 and 7 inhibited the shh-Gli-FoxM1 pathway and their target gene expression in PANC-1 cells. Furthermore, they suppressed the expression of the cell cycle associated genes that were rescued by the overexpression of exogenous FoxM1. Taken together, (E)-7-(4-hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3-one (1) from Alpinia officinarum (lesser galangal) and platyphyllenone (7) from Alnus japonica inhibit PANC-1 cell proliferation by suppressing the shh-Gli-FoxM1 pathway, and they can be potential candidates for anti-pancreatic cancer drug development.
Collapse
|
28
|
Schneeweis C, Wirth M, Saur D, Reichert M, Schneider G. Oncogenic KRAS and the EGFR loop in pancreatic carcinogenesis-A connection to licensing nodes. Small GTPases 2017; 9:457-464. [PMID: 27880072 DOI: 10.1080/21541248.2016.1262935] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
EGFR signaling has a critical role in oncogenic KRAS-driven tumorigenesis of the pancreas, whereas it is dispensable in other organs. The complex signaling network engaged by oncogenic KRAS and its modulation by EGFR signaling, remains incompletely understood. In order to study early signaling events activated by oncogenic KRAS in the pancreas, we recently developed a novel model system based on murine primary pancreatic epithelial cells enabling the time-specific expression of mutant KrasG12D from its endogenous promoter. Here, we discuss our findings of a KrasG12D-induced autocrine EGFR loop, how this loop is integrated by the MYC oncogene, and point to possible translational implications.
Collapse
Affiliation(s)
- Christian Schneeweis
- a II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München , München , Germany
| | - Matthias Wirth
- a II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München , München , Germany
| | - Dieter Saur
- a II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München , München , Germany.,b German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK) , Heidelberg , Germany
| | - Maximilian Reichert
- a II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München , München , Germany
| | - Günter Schneider
- a II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München , München , Germany.,b German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK) , Heidelberg , Germany
| |
Collapse
|
29
|
Singh R, Dhanyamraju PK, Lauth M. DYRK1B blocks canonical and promotes non-canonical Hedgehog signaling through activation of the mTOR/AKT pathway. Oncotarget 2017; 8:833-845. [PMID: 27903983 PMCID: PMC5352201 DOI: 10.18632/oncotarget.13662] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022] Open
Abstract
Hedgehog (Hh) signaling plays important roles in embryonic development and in tumor formation. Apart from the well-established stimulation of the GLI family of transcription factors, Hh ligands promote the phosphorylation and activation of mTOR and AKT kinases, yet the molecular mechanism underlying these processes are unknown. Here, we identify the DYRK1B kinase as a mediator between Hh signaling and mTOR/AKT activation. In fibroblasts, Hh signaling induces DYRK1B protein expression, resulting in activation of the mTOR/AKT kinase signaling arm. Furthermore, DYRK1B exerts positive and negative feedback regulation on the Hh pathway itself: It negatively interferes with SMO-elicited canonical Hh signaling, while at the same time it provides positive feed-forward functions by promoting AKT-mediated GLI stability. Due to the fact that the mTOR/AKT pathway is itself subject to strong negative feedback regulation, pharmacological inhibition of DYRK1B results in initial upregulation followed by downregulation of AKT phosphorylation and GLI stabilization. Addressing this issue therapeutically, we show that a pharmacological approach combining a DYRK1B antagonist with an mTOR/AKT inhibitor results in strong GLI1 targeting and in pronounced cytotoxicity in human pancreatic and ovarian cancer cells.
Collapse
Affiliation(s)
- Rajeev Singh
- Philipps University Marburg, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor- and Immunobiology, 35043 Marburg, Germany
| | - Pavan Kumar Dhanyamraju
- Philipps University Marburg, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor- and Immunobiology, 35043 Marburg, Germany
| | - Matthias Lauth
- Philipps University Marburg, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor- and Immunobiology, 35043 Marburg, Germany
| |
Collapse
|
30
|
Sano M, Driscoll DR, DeJesus-Monge WE, Quattrochi B, Appleman VA, Ou J, Zhu LJ, Yoshida N, Yamazaki S, Takayama T, Sugitani M, Nemoto N, Klimstra DS, Lewis BC. Activation of WNT/β-Catenin Signaling Enhances Pancreatic Cancer Development and the Malignant Potential Via Up-regulation of Cyr61. Neoplasia 2016; 18:785-794. [PMID: 27889647 PMCID: PMC5126137 DOI: 10.1016/j.neo.2016.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a poor prognostic cancer, commonly develops following activating mutations in the KRAS oncogene. Activation of WNT signaling is also commonly observed in PDAC. To ascertain the impact of postnatal activation of WNT-stimulated signaling pathways in PDAC development, we combined the Elastase-tva-based RCAS-TVA pancreatic cancer model with the established LSL-KrasG12D, Ptf1a-cre model. Delivery of RCAS viruses encoding β-cateninS37A and WNT1 stimulated the progression of premalignant pancreatic intraepithelial neoplasias (PanIN) and PDAC development. Moreover, mice injected with RCAS-β-cateninS37A or RCAS-Wnt1 had reduced survival relative to RCAS-GFP-injected controls (P < .05). Ectopic expression of active β-catenin, or its DNA-binding partner TCF4, enhanced transformation associated phenotypes in PDAC cells. In contrast, these phenotypes were significantly impaired by the introduction of ICAT, an inhibitor of the β-catenin/TCF4 interaction. By gene expression profiling, we identified Cyr61 as a target molecule of the WNT/β-catenin signaling pathway in pancreatic cancer cells. Nuclear β-catenin and CYR61 expression were predominantly detected in moderately to poorly differentiated murine and human PDAC. Indeed, nuclear β-catenin- and CYR61-positive PDAC patients demonstrated poor prognosis (P < .01). Knockdown of CYR61 in a β-catenin-activated pancreatic cancer cell line reduced soft agar, migration and invasion activity. Together, these data suggest that the WNT/β-catenin signaling pathway enhances pancreatic cancer development and malignancy in part via up-regulation of CYR61.
Collapse
Affiliation(s)
- Makoto Sano
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605; Division of Pathology, Department of Pathology and Microbiology, Tokyo, 173-8610, Japan.
| | - David R Driscoll
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Wilfredo E DeJesus-Monge
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Brian Quattrochi
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Victoria A Appleman
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Nao Yoshida
- Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Shintaro Yamazaki
- Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Tadatoshi Takayama
- Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Masahiko Sugitani
- Division of Pathology, Department of Pathology and Microbiology, Tokyo, 173-8610, Japan
| | - Norimichi Nemoto
- Division of Pathology, Department of Pathology and Microbiology, Tokyo, 173-8610, Japan
| | - David S Klimstra
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10021
| | - Brian C Lewis
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605; Cancer Center, University of Massachusetts Medical School, Worcester, MA, 01605.
| |
Collapse
|
31
|
Modi S, Kir D, Banerjee S, Saluja A. Control of Apoptosis in Treatment and Biology of Pancreatic Cancer. J Cell Biochem 2016. [PMID: 26206252 DOI: 10.1002/jcb.25284] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer is estimated to be the 12th most common cancer in the United States in 2014 and yet this malignancy is the fourth leading cause of cancer-related death in the United States. Late detection and resistance to therapy are the major causes for its dismal prognosis. Apoptosis is an actively orchestrated cell death mechanism that serves to maintain tissue homoeostasis. Cancer develops from normal cells by accruing significant changes through one or more mechanisms, leading to DNA damage and mutations, which in a normal cell would induce this programmed cell death pathway. As a result, evasion of apoptosis is one of the hallmarks of cancer cells. PDAC is notoriously resistant to apoptosis, thereby explaining its aggressive nature and resistance to conventional treatment modalities. The current review is focus on understanding different intrinsic and extrinsic pathways in pancreatic cancer that may affect apoptosis in this disease.
Collapse
Affiliation(s)
- Shrey Modi
- Division of Basic and Translational Research, Department of Surgery, Minneapolis, Minnesota
| | - Devika Kir
- Division of Basic and Translational Research, Department of Surgery, Minneapolis, Minnesota
| | - Sulagna Banerjee
- Division of Basic and Translational Research, Department of Surgery, Minneapolis, Minnesota
| | - Ashok Saluja
- Division of Basic and Translational Research, Department of Surgery, Minneapolis, Minnesota
| |
Collapse
|
32
|
Lee HJ, Wu Q, Li H, Bae GU, Kim AK, Ryu JH. A sesquiterpene lactone from Siegesbeckia glabrescens suppresses Hedgehog/Gli-mediated transcription in pancreatic cancer cells. Oncol Lett 2016; 12:2912-2917. [PMID: 27698879 DOI: 10.3892/ol.2016.4994] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/16/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is aggressive and therefore difficult to treat; however, continued efforts have been made with the aim of developing an effective therapy against the disease. The Hedgehog (Hh) signaling pathway is reportedly involved in the proliferation and survival of pancreatic cancer cells. The transcription factor glioma-associated oncogene (Gli) is a key component of the Hh signaling pathway and the primary effector of pancreatic cancer development. Inhibiting Gli is a proven therapeutic strategy for this disease. The present study examined the regulation of Gli and the expression of its target genes to identify an inhibitor of the Sonic Hh (Shh) pathway. A germacranolide sesquiterpene lactone (GSL) was isolated from Siegesbeckia glabrescens as an inhibitor of Gli-mediated transcription. The results demonstrated that GSL inhibited Shh-induced osteoblast differentiation and Gli homolog 1 (Gli1)-mediated transcriptional activity in mesenchymal C3H10T1/2 stem cells. Furthermore, GSL suppressed Gli-mediated transcriptional activity in human pancreatic cancer PANC-1 and AsPC-1 cells, which resulted in reduced cancer cell proliferation and downregulated expression of the Gli-target genes, Gli1 and cyclin D1. A sesquiterpene lactone from S. glabrescens may therefore serve as a candidate for the treatment of Hh/Gli-dependent pancreatic cancer.
Collapse
Affiliation(s)
- Hwa Jin Lee
- Department of Natural Medicine Resources, Semyung University, Jecheon, Chungcheongbuk-do 390-711, Republic of Korea
| | - Qian Wu
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Hua Li
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Gyu-Un Bae
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - An Keun Kim
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Jae-Ha Ryu
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| |
Collapse
|
33
|
Polireddy K, Chen Q. Cancer of the Pancreas: Molecular Pathways and Current Advancement in Treatment. J Cancer 2016; 7:1497-514. [PMID: 27471566 PMCID: PMC4964134 DOI: 10.7150/jca.14922] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most lethal cancers among all malignances, with a median overall survival of <1 year and a 5-year survival of ~5%. The dismal survival rate and prognosis are likely due to lack of early diagnosis, fulminant disease course, high metastasis rate, and disappointing treatment outcome. Pancreatic cancers harbor a variety of genetic alternations that render it difficult to treat even with targeted therapy. Recent studies revealed that pancreatic cancers are highly enriched with a cancer stem cell (CSC) population, which is resistant to chemotherapeutic drugs, and therefore escapes chemotherapy and promotes tumor recurrence. Cancer cell epithelial to mesenchymal transition (EMT) is highly associated with metastasis, generation of CSCs, and treatment resistance in pancreatic cancer. Reviewed here are the molecular biology of pancreatic cancer, the major signaling pathways regulating pancreatic cancer EMT and CSCs, and the advancement in current clinical and experimental treatments for pancreatic cancer.
Collapse
Affiliation(s)
- Kishore Polireddy
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, USA 66160
| | - Qi Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, USA 66160
| |
Collapse
|
34
|
Wang W, Dong B, Ittmann MM, Yang F. A Versatile Gene Delivery System for Efficient and Tumor Specific Gene Manipulation in vivo. Discoveries (Craiova) 2016; 4. [PMID: 27376150 PMCID: PMC4926771 DOI: 10.15190/d.2016.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Replication-Competent Avian Sarcoma-leukosis virus long-terminal repeat with splice acceptor (RCAS)-Tumor Virus A (TVA) gene delivery system has been created based on the fact that avian sarcoma leukosis virus subgroup A only infects cells expressing its receptor, TVA. This system has been successfully applied to create various mouse models for human cancers. Here we briefly discuss the advantages and the potential caveats of using this RCAS-TVA gene delivery system in cancer research. We also introduce and discuss how our newly designed RCAS-based gene delivery system (RCI-Oncogene, for RCAS-Cre-IRES-Oncogene) allows concise and efficient manipulation of gene expression in tumors in vivo, and how this system can be used to rapidly study the biological function of gene(s) and/or the collaborative actions of multiple genes in regulating tumor initiation, progression and/or metastasis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bingning Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Feng Yang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
35
|
Klieser E, Swierczynski S, Mayr C, Jäger T, Schmidt J, Neureiter D, Kiesslich T, Illig R. Differential role of Hedgehog signaling in human pancreatic (patho-) physiology: An up to date review. World J Gastrointest Pathophysiol 2016; 7:199-210. [PMID: 27190692 PMCID: PMC4867399 DOI: 10.4291/wjgp.v7.i2.199] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/21/2015] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of the Hedgehog (Hh) pathway in drosophila melanogaster, our knowledge of the role of Hh in embryonic development, inflammation, and cancerogenesis in humans has dramatically increased over the last decades. This is the case especially concerning the pancreas, however, real therapeutic breakthroughs are missing until now. In general, Hh signaling is essential for pancreatic organogenesis, development, and tissue maturation. In the case of acute pancreatitis, Hh has a protective role, whereas in chronic pancreatitis, Hh interacts with pancreatic stellate cells, leading to destructive parenchym fibrosis and atrophy, as well as to irregular tissue remodeling with potency of initiating cancerogenesis. In vitro and in situ analysis of Hh in pancreatic cancer revealed that the Hh pathway participates in the development of pancreatic precursor lesions and ductal adenocarcinoma including critical interactions with the tumor microenvironment. The application of specific inhibitors of components of the Hh pathway is currently subject of ongoing clinical trials (phases 1 and 2). Furthermore, a combination of Hh pathway inhibitors and established chemotherapeutic drugs could also represent a promising therapeutic approach. In this review, we give a structured survey of the role of the Hh pathway in pancreatic development, pancreatitis, pancreatic carcinogenesis and pancreatic cancer as well as an overview of current clinical trials concerning Hh pathway inhibitors and pancreas cancer.
Collapse
|
36
|
Ko AH, LoConte N, Tempero MA, Walker EJ, Kelley RK, Lewis S, Chang WC, Kantoff E, Vannier MW, Catenacci DV, Venook AP, Kindler HL. A Phase I Study of FOLFIRINOX Plus IPI-926, a Hedgehog Pathway Inhibitor, for Advanced Pancreatic Adenocarcinoma. Pancreas 2016; 45:370-5. [PMID: 26390428 PMCID: PMC5908466 DOI: 10.1097/mpa.0000000000000458] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES In mouse models of pancreatic cancer, IPI-926, an oral Hedgehog inhibitor, increases chemotherapy delivery by depleting tumor-associated stroma. This multicenter phase Ib study evaluated IPI-926 in combination with FOLFIRINOX (5-fluorouracil, leucovorin, irinotecan, oxaliplatin) in patients with advanced pancreatic cancer. METHODS Patients were treated with once-daily IPI-926 plus FOLFIRINOX. A 3 + 3 dose escalation design was used, with cohort expansion at the maximum tolerated dose. A subset of patients underwent perfusion computed tomography to assess changes in tumor perfusion. RESULTS The maximum tolerated dose was identified 1 dose level below standard FOLFIRINOX. Common treatment-related adverse events included liver function test abnormalities, neuropathy, nausea/vomiting, and diarrhea. Objective response rate was high (67%), and patients receiving IPI-926 maintenance showed further declines in CA19-9 levels even after FOLFIRINOX discontinuation. Treatment did not result in consistent increases in tumor perfusion. The study closed early when a separate phase II trial of IPI-926 plus gemcitabine indicated detrimental effects of this combination. CONCLUSIONS This is the first study to demonstrate the feasibility of using FOLFIRINOX as the chemotherapeutic backbone in a clinical trial design. Although robust antitumor activity and acceptable safety were observed with the addition of IPI-926 to this regimen, future development of Hedgehog inhibitors in pancreatic cancer seems unlikely.
Collapse
Affiliation(s)
- Andrew H. Ko
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA
| | - Noelle LoConte
- Division of Hematology/Oncology, University of Wisconsin, Madison, WI
| | - Margaret A. Tempero
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA
| | - Evan J. Walker
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA
| | - R. Kate Kelley
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA
| | - Stephanie Lewis
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA
| | - Wei-Chou Chang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Emily Kantoff
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA
| | | | | | - Alan P. Venook
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA
| | - Hedy L. Kindler
- Division of Hematology/Oncology, University of Chicago, Chicago, IL
| |
Collapse
|
37
|
Zhou ZG, Zhang CY, Fei HX, Zhong LL, Bai Y. Phenolic alkaloids from Menispermum dauricum inhibits BxPC-3 pancreatic cancer cells by blocking of Hedgehog signaling pathway. Pharmacogn Mag 2015; 11:690-7. [PMID: 26600712 PMCID: PMC4621636 DOI: 10.4103/0973-1296.165548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: The Hedgehog (Hh) signaling pathway plays an important role in pancreatic cancer (PC) cells. Phenolic alkaloids from Menispermum dauricum (PAMD), a traditional Chinese medicine used for the treatment of immune disorders, have been reported to have antitumor activity recently. Objective: To investigate the efficacy and mechanism of PAMD against PC cell BxPC-3. Materials and Methods: F assay was used to assess cell proliferation inhibition of PAMD; the apoptotic induction and cell cycle arrest was detected by flow cytometry; the BxPC-3 xenograft was established to evaluate the tumor growth inhibition of PAMD; hematoxylin-eosin staining was applied to analyze the pathological morphology of tumor tissues; immunohistochemistry (IHC) and Western blot was adopted to detect the protein levels; quantitative real-time polymerase chain reaction was used to determine the mRNA expressions. Results: PAMD shows time-and dose-dependent proliferation inhibition on the BxPC-3 cell, induced G0/G1 phase arrest and cell apoptosis in vitro. PAMD also showed better inhibition of tumor growth and a preferable safety profile compared with chemotherapeutic regimen 5-fluoro-2, 4 (1 H, 3 H) pyrimidinedione in BxPC-3 xenograft in vivo. Furthermore, PAMD directly decreases the protein and mRNA levels of Sonic Hedgehog (Shh) and its downstream transcription factor Gli-1 in the BxPC-3 tumor tissues. Conclusion: The treatment of PAMD displayed Hh signaling pathway blockade through decreasing the protein and mRNA levels of Shh and its downstream transcription factor Gli-1, suggesting a promising strategy in treating human PC.
Collapse
Affiliation(s)
- Zhong-Guang Zhou
- Research Institute of Traditional Chinese Medicine, Heilongjiang, China
| | - Chao-Ying Zhang
- The Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Hong-Xin Fei
- Research Institute of Traditional Chinese Medicine, Heilongjiang, China ; Department of Qiqihar Medical University, Basic Medicine, Heilongjiang, China
| | - Li-Li Zhong
- Department of Pathology, The First Affiliated Hospital, Heilongjiang, China
| | - Yun Bai
- Basic Medical College, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| |
Collapse
|
38
|
Lu Y, Li J, Cheng J, Lubahn DB. Genes targeted by the Hedgehog-signaling pathway can be regulated by Estrogen related receptor β. BMC Mol Biol 2015; 16:19. [PMID: 26597826 PMCID: PMC4657266 DOI: 10.1186/s12867-015-0047-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/06/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nuclear receptor family member, Estrogen related receptor β, and the Hedgehog signal transduction pathway are both reported to relate to tumorigenesis and induced pluripotent stem cell reprogramming. We hypothesize that Estrogen related receptor β can modulate the Hedgehog signaling pathway and affect Hedgehog driven downstream gene expression. RESULTS We established an estrogen related receptor β-expressing Hedgehog-responsive NIH3T3 cell line by Esrrb transfection, and performed mRNA profiling using RNA-Seq after Hedgehog ligand conditioned medium treatment. Esrrb expression altered 171 genes, while Hedgehog signaling activation alone altered 339 genes. Additionally, estrogen related receptor β expression in combination with Hedgehog signaling activation affects a group of 109 Hedgehog responsive mRNAs, including Hsd11b1, Ogn, Smoc2, Igf1, Pdcd4, Igfbp4, Stmn1, Hp, Hoxd8, Top2a, Tubb4b, Sfrp2, Saa3, Prl2c3 and Dpt. CONCLUSIONS We conclude that Estrogen related receptor β is capable of interacting with Hh-signaling downstream targets. Our results suggest a new level of regulation of Hedgehog signaling by Estrogen related receptor β, and indicate modulation of Estrogen related receptor β can be a new strategy to regulate various functions driven by the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Yuan Lu
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA. .,MU Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, 65211, USA. .,Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, 78666, USA.
| | - Jilong Li
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, 65211, USA. .,Computer Science Department, University of Missouri, Columbia, MO, 65211, USA. .,Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.
| | - Jianlin Cheng
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, 65211, USA. .,Computer Science Department, University of Missouri, Columbia, MO, 65211, USA. .,Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.
| | - Dennis B Lubahn
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA. .,MU Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
39
|
Kras(G12D) induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells. Oncogene 2015; 35:3880-6. [PMID: 26592448 PMCID: PMC4877299 DOI: 10.1038/onc.2015.437] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/24/2014] [Accepted: 10/15/2015] [Indexed: 02/08/2023]
Abstract
Epidermal growth factor receptor (EGFR) signaling has a critical role in oncogenic Kras-driven pancreatic carcinogenesis. However, the downstream targets of this signaling network are largely unknown. We developed a novel model system utilizing murine primary pancreatic ductal epithelial cells (PDECs), genetically engineered to allow time-specific expression of oncogenic KrasG12D from the endogenous promoter. We show that primary PDECs are susceptible to KrasG12D-driven transformation and form pancreatic ductal adenocarcinomas (PDAC) in vivo after Cdkn2a inactivation. In addition, we demonstrate that activation of KrasG12D induces an EGFR signaling loop to drive proliferation. Interestingly, pharmacological inhibition of EGFR fails to decrease KrasG12D-activated ERK or PI3K signaling. Instead our data provide novel evidence that EGFR signaling is needed to activate the oncogenic and pro-proliferative transcription factor c-MYC. EGFR and c-MYC have been shown to be essential for pancreatic carcinogenesis. Importantly, our data link both pathways and thereby, explain the crucial role of EGFR for KrasG12D-driven carcinogenesis in the pancreas.
Collapse
|
40
|
Al-Bahrani R, Nagamori S, Leng R, Petryk A, Sergi C. Differential Expression of Sonic Hedgehog Protein in Human Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Pathol Oncol Res 2015; 21:901-908. [PMID: 25740074 DOI: 10.1007/s12253-015-9918-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 02/18/2015] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (CCA) are the two most common primary liver malignancies in adult patients. The molecular mechanisms underlying the pathogenesis of HCC and CCA are still poorly understood. Sonic hedgehog (SHH) signaling plays an essential role during mammalian development, i.e., promoting organ growth, tissue differentiation, and cell polarity. The upregulation of SHH has been observed during carcinogenesis, including colorectal carcinoma. Our aim was to investigate the expression pattern of SHH in HCC and CCA. We investigated 40 malignant tumors of the liver, including 21 HCC and 19 of intrahepatic CCA cases by immunohistochemistry (IHC) using a polyclonal antibody against SHH and Avidin-Biotin Complex method. We also investigated the co-localization of SHH and Bone morphogenetic protein 4 (BMP4) in CCA using indirect double IHC. Moreover, we examined whether SHH is expressed in two HCC cell lines HepG2 and HuH-7 and three CCA cell lines OZ, HuCCT1 and HuH28. We found that SHH was expressed in 15 out of 21 cases (71.4 %) of HCC and 100 % of CCA cases by immunohistochemistry. SHH expression showed a positive trend in liver tumors (HCC, CCA) with high grade (G2-G3). SHH localized to the epithelial cells, while BMP4 was expressed in the stromal cells in CCA by double IHC. However, both HCC and CCA cell lines showed SHH expression by Western blot analysis. In conclusion, SHH seems to be an interesting marker of de-differentiation in liver tumors and the simultaneous epithelial-mesenchymal expression may be an intriguing prompt to investigate cross-talks between SHH and BMP4.
Collapse
Affiliation(s)
- Redha Al-Bahrani
- Department of Laboratory Medicine and Pathology, University of Alberta, 8440-112 Street, Edmonton, T6G 2B7, AB, Canada
| | | | | | | | | |
Collapse
|
41
|
Gu D, Xie J. Non-Canonical Hh Signaling in Cancer-Current Understanding and Future Directions. Cancers (Basel) 2015; 7:1684-98. [PMID: 26343727 PMCID: PMC4586790 DOI: 10.3390/cancers7030857] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/17/2015] [Accepted: 08/24/2015] [Indexed: 01/07/2023] Open
Abstract
As a major regulatory pathway for embryonic development and tissue patterning, hedgehog signaling is not active in most adult tissues, but is reactivated in a number of human cancer types. A major milestone in hedgehog signaling in cancer is the Food and Drug Administration (FDA) approval of a smoothened inhibitor Vismodegib for treatment of basal cell carcinomas. Vismodegib can block ligand-mediated hedgehog signaling, but numerous additional clinical trials have failed to show significant improvements in cancer patients. Amounting evidence indicate that ligand-independent hedgehog signaling plays an essential role in cancer. Ligand-independent hedgehog signaling, also named non-canonical hedgehog signaling, generally is not sensitive to smoothened inhibitors. What we know about non-canonical hedgehog signaling in cancer, and how should we prevent its activation? In this review, we will summarize recent development of non-canonical hedgehog signaling in cancer, and will discuss potential ways to prevent this type of hedgehog signaling.
Collapse
Affiliation(s)
- Dongsheng Gu
- Departments of Pediatrics, Biochemistry and Molecular Biology, Pharmacology and Toxicology, The Wells Center for Pediatrics Research, 1044 W, Walnut Street, Indianapolis, IN 46202, USA.
| | - Jingwu Xie
- Departments of Pediatrics, Biochemistry and Molecular Biology, Pharmacology and Toxicology, The Wells Center for Pediatrics Research, 1044 W, Walnut Street, Indianapolis, IN 46202, USA.
| |
Collapse
|
42
|
Chang L, Zhao D, Liu HB, Wang QS, Zhang P, Li CL, Du WZ, Wang HJ, Liu X, Zhang ZR, Jiang CL. Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma. Mol Med Rep 2015; 12:6702-10. [PMID: 26299938 PMCID: PMC4626128 DOI: 10.3892/mmr.2015.4229] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 07/28/2015] [Indexed: 01/29/2023] Open
Abstract
Aberrant hedgehog signaling contributes to the development of various malignancies, including glioblastoma (GBM). However, the potential mechanism of hedgehog signaling in GBM migration and invasion has remained to be elucidated. The present study showed that enhanced hedgehog signaling by recombinant human sonic hedgehog N-terminal peptide (rhSHH) promoted the adhesion, invasion and migration of GBM cells, accompanied by increases in mRNA and protein levels of matrix metalloproteinase-2 (MMP-2) and MMP-9. However, inhibition of hedgehog signaling with cyclopamine suppressed the adhesion, invasion and migration of GBM cells, accompanied by decreases in mRNA and protein levels of MMP-2 and -9. Furthermore, it was found that MMP-2- and MMP-9-neutralizing antibodies or GAM6001 reversed the inductive effects of rhSHH on cell migration and invasion. In addition, enhanced hedgehog signaling by rhSHH increased AKT phosphorylation, whereas blockade of hedgehog signaling decreased AKT phosphorylations. Further experiments showed that LY294002, an inhibitor of phosphoinositide-3 kinase (PI3K), decreased rhSHH-induced upregulation of MMP-2 and -9. Finally, the protein expression of glioblastoma-associated oncogene 1 was positively correlated with levels of phosphorylated AKT as well as protein expressions of MMP-2 and -9 in GBM tissue samples. In conclusion, the present study indicated that the hedgehog pathway regulates GBM-cell migration and invasion by increasing MMP-2 and MMP-9 production via the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Liang Chang
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Dan Zhao
- Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hui-Bin Liu
- Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Qiu-Shi Wang
- Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ping Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Chen-Long Li
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Wen-Zhong Du
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hong-Jun Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xing Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zhi-Ren Zhang
- Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Chuan-Lu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
43
|
Rovida E, Stecca B. Mitogen-activated protein kinases and Hedgehog-GLI signaling in cancer: A crosstalk providing therapeutic opportunities? Semin Cancer Biol 2015; 35:154-67. [PMID: 26292171 DOI: 10.1016/j.semcancer.2015.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 01/07/2023]
Abstract
The Hedgehog-GLI (HH-GLI) signaling is of critical importance during embryonic development, where it regulates a number of cellular processes, including patterning, proliferation and differentiation. Its aberrant activation has been linked to several types of cancer. HH-GLI signaling is triggered by binding of ligands to the transmembrane receptor patched and is subsequently mediated by transcriptional effectors belonging to the GLI family, whose function is fine tuned by a series of molecular interactions and modifications. Several HH-GLI inhibitors have been developed and are in clinical trials. Similarly, the mitogen-activated protein kinases (MAPK) are involved in a number of biological processes and play an important role in many diseases including cancer. Inhibiting molecules targeting MAPK signaling, especially those elicited by the MEK1/2-ERK1/2 pathway, have been developed and are moving into clinical trials. ERK1/2 may be activated as a consequence of aberrant activation of upstream signaling molecules or during development of drug resistance following treatment with kinase inhibitors such as those for PI3K or BRAF. Evidence of a crosstalk between HH-GLI and other oncogenic signaling pathways has been reported in many tumor types, as shown by recent reviews. Here we will focus on the interaction between HH-GLI and the final MAPK effectors ERK1/2, p38 and JNK in cancer in view of its possible implications for cancer therapy. Several reports highlight the existence of a consistent crosstalk between HH signaling and MAPK, especially with the MEK1/2-ERK1/2 pathway, and this fact should be taken into consideration for designing optimal treatment and prevent tumor relapse.
Collapse
Affiliation(s)
- Elisabetta Rovida
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Sezione di Patologia, Università degli Studi di Firenze, Firenze, Italy
| | - Barbara Stecca
- Laboratory of Tumor Cell Biology, Core Research Laboratory-Istituto Toscano Tumori (CRL-ITT), Florence, Italy; Department of Oncology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.
| |
Collapse
|
44
|
Baer R, Cintas C, Therville N, Guillermet-Guibert J. Implication of PI3K/Akt pathway in pancreatic cancer: When PI3K isoforms matter? Adv Biol Regul 2015; 59:19-35. [PMID: 26166735 DOI: 10.1016/j.jbior.2015.05.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 12/18/2022]
Abstract
Pancreatic cancer belongs to the incurable family of solid cancers. Despite of a recent better understanding its molecular biology, and an increased number of clinical trials, there is still a lack for innovative targeted therapies to fight this deadly malignancy. PI3K/Akt signalling is one of the most commonly deregulated signalling pathways in cancer, which explains the massive attention from many pharmaceutical companies over the ten past years on these signalling molecules. The already developed small molecule inhibitors are currently under clinical trial in various cancer types. Class I PI3Ks have 4 isoforms for which the role in physiology starts to be well described in the literature. Data are more unclear for their differential involvement in oncogenesis. In this review, we will discuss about the cognitive and therapeutic potential of targeting this signalling pathway and in particular Class I PI3K isoforms for pancreatic cancer treatment. Isoform-specificity of PI3K inhibitors are currently designed to achieve the same goal as pan-PI3K inhibitors but without potential adverse effects. We will discuss if such strategy is relevant in pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Romain Baer
- Inserm, U1037, Université Toulouse III, Centre de Recherches en Cancérologie de Toulouse, Oncopole de Toulouse, F31037, Toulouse, France
| | - Célia Cintas
- Inserm, U1037, Université Toulouse III, Centre de Recherches en Cancérologie de Toulouse, Oncopole de Toulouse, F31037, Toulouse, France
| | - Nicole Therville
- Inserm, U1037, Université Toulouse III, Centre de Recherches en Cancérologie de Toulouse, Oncopole de Toulouse, F31037, Toulouse, France
| | - Julie Guillermet-Guibert
- Inserm, U1037, Université Toulouse III, Centre de Recherches en Cancérologie de Toulouse, Oncopole de Toulouse, F31037, Toulouse, France.
| |
Collapse
|
45
|
Ridzewski R, Rettberg D, Dittmann K, Cuvelier N, Fulda S, Hahn H. Hedgehog Inhibitors in Rhabdomyosarcoma: A Comparison of Four Compounds and Responsiveness of Four Cell Lines. Front Oncol 2015; 5:130. [PMID: 26106586 PMCID: PMC4459089 DOI: 10.3389/fonc.2015.00130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/22/2015] [Indexed: 11/22/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and is divided into two major histological subgroups, i.e., embryonal (ERMS) and alveolar RMS (ARMS). RMS can show HEDGEHOG/SMOOTHENED (HH/SMO) signaling activity and several clinical trials using HH inhibitors for therapy of RMS have been launched. We here compared the antitumoral effects of the SMO inhibitors GDC-0449, LDE225, HhA, and cyclopamine in two ERMS (RD, RUCH-2) and two ARMS (RMS-13, Rh41) cell lines. Our data show that the antitumoral effects of these SMO inhibitors are highly divers and do not necessarily correlate with inhibition of HH signaling. In addition, the responsiveness of the RMS cell lines to the drugs is highly heterogeneous. Whereas some SMO inhibitors (i.e., LDE225 and HhA) induce strong proapoptotic and antiproliferative effects in some RMS cell lines, others paradoxically induce cellular proliferation at certain concentrations (e.g., 10 μM GDC-0449 or 5 μM cyclopamine in RUCH-2 and Rh41 cells) or can increase HH signaling activity as judged by GLI1 expression (i.e., LDE225, HhA, and cyclopamine). Similarly, some drugs (e.g., HhA) inhibit PI3K/AKT signaling or induce autophagy (e.g., LDE225) in some cell lines, whereas others cannot (e.g., GDC-0449). In addition, the effects of SMO inhibitors are concentration-dependent (e.g., 1 and 10 μM GDC-0449 decrease GLI1 expression in RD cells whereas 30 μM GDC-0449 does not). Together these data show that some SMO inhibitors can induce strong antitumoral effects in some, but not all, RMS cell lines. Due to the highly heterogeneous response, we propose to conduct thorough pretesting of SMO inhibitors in patient-derived short-term RMS cultures or patient-derived xenograft mouse models before applying these drugs to RMS patients.
Collapse
Affiliation(s)
- Rosalie Ridzewski
- Institute of Human Genetics, University Medical Center Goettingen , Goettingen , Germany
| | - Diana Rettberg
- Institute of Human Genetics, University Medical Center Goettingen , Goettingen , Germany
| | - Kai Dittmann
- Institute for Cellular and Molecular Immunology, University Medical Center Goettingen , Goettingen , Germany
| | - Nicole Cuvelier
- Institute of Human Genetics, University Medical Center Goettingen , Goettingen , Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt , Frankfurt , Germany
| | - Heidi Hahn
- Institute of Human Genetics, University Medical Center Goettingen , Goettingen , Germany
| |
Collapse
|
46
|
Khan S, Ebeling MC, Chauhan N, Thompson PA, Gara RK, Ganju A, Yallapu MM, Behrman SW, Zhao H, Zafar N, Singh MM, Jaggi M, Chauhan SC. Ormeloxifene suppresses desmoplasia and enhances sensitivity of gemcitabine in pancreatic cancer. Cancer Res 2015; 75:2292-304. [PMID: 25840985 PMCID: PMC4452412 DOI: 10.1158/0008-5472.can-14-2397] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/21/2015] [Indexed: 12/29/2022]
Abstract
The management of pancreatic ductal adenocarcinoma (PDAC) is extremely poor due to lack of an efficient therapy and development of chemoresistance to the current standard therapy, gemcitabine. Recent studies implicate the intimate reciprocal interactions between epithelia and underlying stroma due to paracrine Sonic hedgehog (SHH) signaling in producing desmoplasia and chemoresistance in PDAC. Herein, we report for the first time that a nonsteroidal drug, ormeloxifene, has potent anticancer properties and depletes tumor-associated stromal tissue by inhibiting the SHH signaling pathway in PDAC. We found that ormeloxifene inhibited cell proliferation and induced death in PDAC cells, which provoked us to investigate the combinatorial effects of ormeloxifene with gemcitabine at the molecular level. Ormeloxifene caused potent inhibition of the SHH signaling pathway via downregulation of SHH and its related important downstream targets such as Gli-1, SMO, PTCH1/2, NF-κB, p-AKT, and cyclin D1. Ormeloxifene potentiated the antitumorigenic effect of gemcitabine by 75% in PDAC xenograft mice. Furthermore, ormeloxifene depleted tumor-associated stroma in xenograft tumor tissues by inhibiting the SHH cellular signaling pathway and mouse/human collagen I expression. Xenograft tumors treated with ormeloxifene in combination with gemcitabine restored the tumor-suppressor miR-132 and inhibited stromal cell infiltration into the tumor tissues. In addition, invasiveness of tumor cells cocultivated with TGFβ-stimulated human pancreatic stromal cells was effectively inhibited by ormeloxifene treatment alone or in combination with gemcitabine. We propose that ormeloxifene has high therapeutic index and in a combination therapy with gemcitabine, it possesses great promise as a treatment of choice for PDAC/pancreatic cancer.
Collapse
Affiliation(s)
- Sheema Khan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Mara C Ebeling
- Cancer Biology and Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Paul A Thompson
- Methodology and Data Analysis Center, Sanford Research, Sioux Falls, South Dakota
| | - Rishi K Gara
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Aditya Ganju
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Stephen W Behrman
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Haotian Zhao
- Cancer Biology and Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Nadeem Zafar
- Department of Pathology, University of Tennessee at Memphis, Memphis, Tennessee
| | | | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|
47
|
Goel G, Sun W. Novel approaches in the management of pancreatic ductal adenocarcinoma: potential promises for the future. J Hematol Oncol 2015; 8:44. [PMID: 25935754 PMCID: PMC4431030 DOI: 10.1186/s13045-015-0141-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/21/2015] [Indexed: 02/08/2023] Open
Abstract
Despite a few breakthroughs in therapy for advanced disease in the recent years, pancreatic ductal adenocarcinoma continues to remain one of the most challenging human malignancies to treat. The overall prognosis for the majority of patients with pancreatic cancer is rather dismal, and therefore, more effective treatment options are being desperately sought. The practical goals of management are to improve the cure rates for patients with resectable disease, achieve a higher conversion rate of locally advanced tumor into potentially resectable disease, and finally, prolong the overall survival for those who develop metastatic disease. Our understanding of the complex genetic alterations, the implicated molecular pathways, and the role of desmoplastic stroma in pancreatic cancer tumorigenesis has increased several folds in the recent years. This has facilitated the development of novel therapeutic strategies against pancreatic cancer, some of which are currently under evaluation in ongoing preclinical and clinical studies. This review will summarize the existing treatment approaches for this devastating disease and also discuss the promising therapeutic approaches that are currently in different stages of clinical development.
Collapse
Affiliation(s)
- Gaurav Goel
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5150 Centre Avenue, Fifth Floor, Pittsburgh, PA, 15232, USA.
| | - Weijing Sun
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5150 Centre Avenue, Fifth Floor, Pittsburgh, PA, 15232, USA.
| |
Collapse
|
48
|
GLI2-dependent c-MYC upregulation mediates resistance of pancreatic cancer cells to the BET bromodomain inhibitor JQ1. Sci Rep 2015; 5:9489. [PMID: 25807524 PMCID: PMC4452877 DOI: 10.1038/srep09489] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/10/2015] [Indexed: 12/31/2022] Open
Abstract
JQ1 and I-BET151 are selective inhibitors of BET bromodomain proteins that have efficacy against a number of different cancers. Since the effectiveness of targeted therapies is often limited by development of resistance, we examined whether it was possible for cancer cells to develop resistance to the BET inhibitor JQ1. Here we show that pancreatic cancer cells developing resistance to JQ1 demonstrate cross-resistance to I-BET151 and insensitivity to BRD4 downregulation. The resistant cells maintain expression of c-MYC, increase expression of JQ1-target genes FOSL1 and HMGA2, and demonstrate evidence of epithelial-mesenchymal transition (EMT). However, reverting EMT fails to sensitize the resistant cells to JQ1 treatment. Importantly, the JQ1-resistant cells remain dependent on c-MYC that now becomes co-regulated by high levels of GLI2. Furthermore, downregulating GLI2 re-sensitizes the resistant cells to JQ1. Overall, these results identify a mechanism by which cancer cells develop resistance to BET inhibitors.
Collapse
|
49
|
Maréchal R, Bachet JB, Calomme A, Demetter P, Delpero JR, Svrcek M, Cros J, Bardier-Dupas A, Puleo F, Monges G, Hammel P, Louvet C, Paye F, Bachelier P, Le Treut YP, Vaillant JC, Sauvanet A, André T, Salmon I, Devière J, Emile JF, Van Laethem JL. Sonic hedgehog and Gli1 expression predict outcome in resected pancreatic adenocarcinoma. Clin Cancer Res 2015; 21:1215-24. [PMID: 25552484 DOI: 10.1158/1078-0432.ccr-14-0667] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE Aberrant activation of the hedgehog (Hh) pathway is implicated in pancreatic ductal adenocarcinoma (PDAC) tumorigenesis. We investigated the prognostic and predictive value of four Hh signaling proteins and of the tumor stromal density. EXPERIMENTAL DESIGN Using tissue microarray and immunohistochemistry, the expression of Shh, Gli1, SMO, and PTCH1 was assessed in 567 patients from three independent cohorts who underwent surgical resection for PDAC. In 82 patients, the tumor stromal index (SI) was calculated, and its association with overall survival (OS) and disease-free survival (DFS) was investigated. RESULTS Shh and Gli1 protein abundance were independent prognostic factors in resected PDACs; low expressors for those proteins experiencing a better OS and DFS. The combination of Shh and Gli1 levels was the most significant predictor for OS and defined 3 clinically relevant subgroups of patients with different prognosis (Gli1 and Shh low; HR set at 1 vs. 3.08 for Shh or Gli1 high vs. 5.69 for Shh and Gli1 high; P < 0.001). The two validating cohorts recapitulated the findings of the training cohort. After further stratification by lymph node status, the prognostic significance of combined Shh and Gli1 was maintained. The tumor SI was correlated with Shh levels and was significantly associated with OS (P = 0.023). CONCLUSIONS Shh and Gli1 are prognostic biomarkers for patients with resected PDAC.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/mortality
- Adenocarcinoma/pathology
- Adenocarcinoma/therapy
- Adult
- Aged
- Aged, 80 and over
- Biomarkers/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/therapy
- Cohort Studies
- Female
- Follow-Up Studies
- Gene Expression
- Hedgehog Proteins/genetics
- Hedgehog Proteins/metabolism
- Humans
- Immunohistochemistry
- Male
- Middle Aged
- Neoplasm Grading
- Neoplasm Metastasis
- Neoplasm Staging
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Patched Receptors
- Patched-1 Receptor
- Patient Outcome Assessment
- Prognosis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Smoothened Receptor
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Zinc Finger Protein GLI1
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Raphaël Maréchal
- Saint Antoine Department of Gastroenterology and Gastrointestinal Cancer Unit, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium. Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| | - Jean-Baptiste Bachet
- Medical University Pierre et Marie Curie, UFR Paris VI, Paris, France. EA4340 "Epidémiologie et oncogènes des tumeurs digestives," Versailles Saint-Quentin-en-Yvelines University, Versailles, France. Department of Hepato-Gastroenterology, Pitié Salpêtrière Hospital, APHP, Paris, France
| | - Annabelle Calomme
- Saint Antoine Department of Gastroenterology and Gastrointestinal Cancer Unit, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium. Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Pieter Demetter
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, and DiaPath, Brussels, Belgium
| | - Jean Robert Delpero
- Department of Surgery, Institute Paoli Calmettes, Marseille, France. Aix Marseille Université, Marseille, France
| | - Magali Svrcek
- Department of Pathology, Saint Antoine Hospital, APHP, Paris, France
| | - Jérôme Cros
- Department of Pathology, Beaujon Hospital, APHP, Clichy, France
| | - Armelle Bardier-Dupas
- Medical University Pierre et Marie Curie, UFR Paris VI, Paris, France. Department of Pathology, Pitié Salpêtrière Hospital, APHP, Paris, France
| | - Francesco Puleo
- Saint Antoine Department of Gastroenterology and Gastrointestinal Cancer Unit, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium. Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Geneviève Monges
- Department of Pathology, Institute Paoli Calmettes, Marseille, France
| | - Pascal Hammel
- Department of Gastroenterology, Beaujon Hospital, APHP, Clichy, France
| | - Christophe Louvet
- Medical University Pierre et Marie Curie, UFR Paris VI, Paris, France. Department of Oncology, Institut Mutualiste Montsouris, Paris, France
| | - François Paye
- Medical University Pierre et Marie Curie, UFR Paris VI, Paris, France. Department of Surgery, Saint Antoine Hospital, APHP, Paris, France
| | - Philippe Bachelier
- Department of Surgery, University Hospital of Hautepierre, Strasbourg, France
| | | | - Jean-Christophe Vaillant
- Medical University Pierre et Marie Curie, UFR Paris VI, Paris, France. Department of Digestive Surgery, Pitié Salpêtrière Hospital, Paris, France
| | - Alain Sauvanet
- Department of Digestive Surgery, Beaujon Hospital, APHP, Clichy, France
| | - Thierry André
- Department of Oncology, Saint-Antoine Hospital, APHP, Paris, France
| | - Isabelle Salmon
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, and DiaPath, Brussels, Belgium. DIAPath - Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Jacques Devière
- Saint Antoine Department of Gastroenterology and Gastrointestinal Cancer Unit, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium. Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-François Emile
- EA4340 "Epidémiologie et oncogènes des tumeurs digestives," Versailles Saint-Quentin-en-Yvelines University, Versailles, France. Department of Pathology, Ambroise Paré Hospital, APHP, Boulogne Billancourt, France
| | - Jean-Luc Van Laethem
- Saint Antoine Department of Gastroenterology and Gastrointestinal Cancer Unit, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
50
|
Kumar V, Mondal G, Slavik P, Rachagani S, Batra SK, Mahato RI. Codelivery of small molecule hedgehog inhibitor and miRNA for treating pancreatic cancer. Mol Pharm 2015; 12:1289-98. [PMID: 25679326 DOI: 10.1021/mp500847s] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Successful treatment of pancreatic ductal adenocarcinoma (PDAC) remains a challenge due to the desmoplastic microenvironment that promotes both tumor growth and metastasis and forms a barrier to chemotherapy. Hedgehog (Hh) signaling is implicated in initiation and progression of PDAC and also contributes to desmoplasia. While Hh levels are increased in pancreatic cancer cells, levels of tumor suppressor miR-let7b, which targets several genes involved in PDAC pathogenesis, is downregulated. Therefore, our overall objective was to inhibit Hh pathway and restore miR-let7b simultaneously for synergistically treating PDAC. miR-let7b and Hh inhibitor GDC-0449 could inhibit the proliferation of human pancreatic cancer cells (Capan-1, HPAF-II, T3M4, and MIA PaCa-2), and there was synergistic effect when miR-let7b and GDC-0449 were coformulated into micelles using methoxy poly(ethylene glycol)-block-poly(2-methyl- 2-carboxyl-propylenecarbonate-graft-dodecanol-graft-tetraethylene-pentamine) (mPEG-b-PCC-g-DC-g-TEPA). This copolymer self-assembled into micelles of <100 nm and encapsulated hydrophobic GDC-0449 into its core with 5% w/w drug loading and allowed complex formation between miR-let7b and its cationic pendant chains. Complete polyplex formation with miRNA was observed at the N/P ratio of 16/1. Almost 80% of GDC-0449 was released from the polyplex in a sustained manner in 2 days. miRNA in the micelle formulation was stable for up to 24 h in the presence of serum and high uptake efficiency was achieved with low cytotoxicity. This combination therapy effectively inhibited tumor growth when injected to athymic nude mice bearing ectopic tumor generated using MIA PaCa-2 cells compared to micelles carrying GDC-0449 or miR-let7b alone. Immunohistochemical analysis revealed decreased tumor cell proliferation with increased apoptosis in the animals treated with miR-let7b and GDC-0449 combination.
Collapse
Affiliation(s)
- Virender Kumar
- †Departments of Pharmaceutical Sciences and ‡Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Goutam Mondal
- †Departments of Pharmaceutical Sciences and ‡Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Paige Slavik
- †Departments of Pharmaceutical Sciences and ‡Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Satyanarayna Rachagani
- †Departments of Pharmaceutical Sciences and ‡Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Surinder K Batra
- †Departments of Pharmaceutical Sciences and ‡Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Ram I Mahato
- †Departments of Pharmaceutical Sciences and ‡Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|