1
|
Maltseva D, Zhiyanov A, Lange T, Tonevitsky A. CD44 knockdown alters miRNA expression and their target genes in colon cancer. Front Immunol 2025; 16:1552665. [PMID: 40438109 PMCID: PMC12116639 DOI: 10.3389/fimmu.2025.1552665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 04/25/2025] [Indexed: 06/01/2025] Open
Abstract
Introduction Metastasis formation poses a significant challenge to oncologists, as it severely limits the survival of colorectal cancer (CRC) patients. Recently, we demonstrated that CD44 promotes spontaneous distant metastasis in a CRC xenograft model. The depletion of CD44 was associated with reduction in hypoxia, EMT, as well as improved mitochondrial metabolism in primary tumor. Collectively, these effects decreased the metastatic potential of the CRC xenograft tumors under investigation. In this study we explore the molecular mechanisms by which CD44 knockdown (kd) leads to such substantial changes of tumor properties. Methods Using miRNA-Seq data combined with bioinformatic analysis, we investigated the role of miRNA expression changes in the metastasis prevention observed with CD44 kd. Results Among the differentially expressed miRNAs, three members of Let-7 family (let-7a-5p, let-7b-5p, and let-7c-5p), two isoforms of miR-203a (canonical miR-203a-3p and its +1 5'-isoform), miR-101-3p, miR-200b-3p|+1 5'-isoform, miR-125a-5p, and miR-185-5p were identified as potentially involved in regulating CD44-mediated metastasis. Gene set analysis of differentially expressed mRNA targets of these miRNAs, along with an examination of key regulators driving the observed changes in both mRNA and miRNA expression profiles, suggests that the CD44-STAT3-Let-7 miRNA axis as one of the most relevant in regulation of colon cancer metastasis via the CD44 receptor. Discussion Our findings suggest a regulatory relationship between CD44, Let-7 miRNAs, and STAT3 in HT-29 tumors. Additionally, we propose the potential involvement of both isoforms of miR-203a (canonical and its +1 5'-isoform) in this regulatory network and suggest a role for miR-101-3p and miR-125a-5p in metastasis regulation through CD44 kd.
Collapse
Affiliation(s)
- Diana Maltseva
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
| | - Anton Zhiyanov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
| | - Tobias Lange
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Barjasteh AH, Jaseb Mazhar AleKassar R, Al-Asady AM, Latifi H, Avan A, Khazaei M, Ryzhikov M, Hassanian SM. Therapeutic Potentials of MiRNA for Colorectal Cancer Liver Metastasis Treatment: A Narrative Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2025; 50:202-219. [PMID: 40255223 PMCID: PMC12008659 DOI: 10.30476/ijms.2024.102910.3622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/01/2024] [Accepted: 11/26/2024] [Indexed: 04/22/2025]
Abstract
Colorectal cancer (CRC) ranks among the most prevalent cancers worldwide and is the fourth leading cause of cancer-related deaths. Metastasis poses a significant obstacle in CRC treatment, as distant metastasis, particularly to the liver, remains the primary cause of mortality. Colorectal liver metastasis (CRLM) occurs frequently due to the liver's direct vascular connection to the colorectal region via the portal vein. Standard treatment approaches for CRLM are limited; only a few patients qualify for surgical intervention, resulting in a persistently low survival rate. Additionally, resistance to chemotherapy is common, emphasizing the need for more effective targeted therapies. Emerging evidence highlights the pivotal role of microRNAs (miRNAs) in modulating critical pathways associated with CRLM, including tumor invasion, epithelial-mesenchymal transition, and angiogenesis. MiRNAs exhibit dual functions as tumor suppressors and oncogenes by targeting multiple genes, thus playing a complex role in both the initiation and progression of metastasis. The regulatory mechanisms of miRNAs could help to identify novel biomarkers for early diagnosis and prognosis of CRLM, as well as promising therapeutic targets to overcome chemoresistance. Despite numerous studies on miRNA involvement in CRC metastasis, dedicated reviews focusing on miRNAs and CRLM remain scarce. This review aims to approach targeted therapies by examining the current understanding of miRNA involvement in CRLM and exploring their potential as diagnostic, prognostic, and therapeutic agents. Through an integrative approach, we aim to provide insights that could transform CRLM management and improve patient outcomes.
Collapse
Affiliation(s)
- Amir Hossein Barjasteh
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rawa Jaseb Mazhar AleKassar
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdulridha Mohammed Al-Asady
- Department of Medical Sciences, Faculty of Nursing, Warith Al-Anbiyaa University, Iraq
- Department of Medical Sciences, Faculty of Dentistry, University of Kerbala, Iraq
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Latifi
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Van Branteghem C, Henry N, Craciun L, Maenhaut C. HMGA2 Overexpression in Papillary Thyroid Cancer Promotes Thyroid Cell Dedifferentiation and Invasion, and These Effects Are Counteracted by Suramin. Int J Mol Sci 2025; 26:1643. [PMID: 40004107 PMCID: PMC11854921 DOI: 10.3390/ijms26041643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Thyroid cancer is the most prevalent endocrine malignancy, and papillary thyroid carcinoma (PTC) is the most common type of thyroid malignancy. While PTC generally has a favorable prognosis, a subset dedifferentiates into aggressive forms. However, the molecular mechanisms responsible for aggressiveness and dedifferentiation are still poorly understood. We previously showed that HMGA2, a non-histone architectural transcription factor overexpressed in PTC, is involved in cell invasion. This study aimed to further analyze the role of HMGA2 in PTC tumorigenesis by exploring the expression of thyroid-specific and EMT-related genes following HMGA2 knockdown in thyroid cancer cell lines. Then, the clinical relevance of our data was evaluated in vivo. HMGA2 silencing did not modulate the expression of EMT related genes but led to the increased expression of thyroid differentiation genes. Our data also suggest that the MAPK pathway induces thyroid cell dedifferentiation through HMGA2. On the other hand, forskolin, promoting thyroid differentiation, decreased HMGA2 expression. The negative correlations between HMGA2 and thyroid-specific gene expressions were confirmed in a transgenic mouse model of PTC and in human PTC. Finally, we showed that HMGA2 inhibition by suramin reduced cell invasion and induced differentiation expression in vitro, indicating a new therapeutic strategy for treating thyroid cancer.
Collapse
Affiliation(s)
- Cindy Van Branteghem
- IRIBHM—Jacques E. Dumont, Université Libre de Bruxelles, 1070 Brussels, Belgium; (C.V.B.); (N.H.)
| | - Nicolas Henry
- IRIBHM—Jacques E. Dumont, Université Libre de Bruxelles, 1070 Brussels, Belgium; (C.V.B.); (N.H.)
| | - Ligia Craciun
- Anatomie Pathologique, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Carine Maenhaut
- IRIBHM—Jacques E. Dumont, Université Libre de Bruxelles, 1070 Brussels, Belgium; (C.V.B.); (N.H.)
| |
Collapse
|
4
|
Zárate-Segura PB, Martínez-Castillo M, Garduño-Gutiérrez AP, Hernández-Hernández JM, Cano-Martínez LJ, García-Mena J, Coral-Vázquez RM, Bastida-González F. Changes in miRNA Pattern Expression Associated With COVID-19 Severity. In Vivo 2025; 39:482-490. [PMID: 39740904 PMCID: PMC11705121 DOI: 10.21873/invivo.13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND/AIM Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 infection, manifests a wide range of clinical symptoms ranging from mild to moderate and severe. Host-related factors influence the course of SARS-CoV-2 infection; for instance, the expression of host microRNAs (miRNAs) could influence the progression and complications of COVID-19. This study aimed to determine the expression pattern of endogenous miRNAs in 80 severe COVID-19 patients compared to a group of healthy individuals. MATERIALS AND METHODS The miRNA screening expression analysis was performed using TaqMan Low-Density Array, and the expression changes of miR-490-3p, miR-195-5p, miR-454-3p, and miR-431-5p were validated using RT-qPCR. In silico analysis was used to identify new targets and predict the pathways, biological processes, and interactions of the selected miRNAs. RESULTS The miR-490-3p, miR-195-5p, miR-454-3p, and miR-431-5p, were over-expressed in the total population of severe COVID-19 patients compared to the control group. miR-490-3p was found to be over-expressed in both female and male COVID-19 patients. CONCLUSION Specific miRNAs might be a potential biomarker for predicting the clinical course of COVID-19.
Collapse
Affiliation(s)
- Paola B Zárate-Segura
- Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico;
| | - Macario Martínez-Castillo
- Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | - Luis Javier Cano-Martínez
- Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav, Mexico City, Mexico
| | - Ramón M Coral-Vázquez
- Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Fernando Bastida-González
- Laboratorio de Biología Molecular, Laboratorio Estatal de Salud Pública del Estado de México, Toluca de Lerdo, Mexico
| |
Collapse
|
5
|
Dahl O, Myklebust MP. A study of microRNAs as new prognostic biomarkers in anal cancer patients. Acta Oncol 2024; 63:456-465. [PMID: 38899393 PMCID: PMC11332526 DOI: 10.2340/1651-226x.2024.27976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND MicroRNA (MiR) influences the growth of cancer by regulation of mRNA for 50-60% of all genes. We present as per our knowledge the first global analysis of microRNA expression in anal cancer patients and their prognostic impact. METHODS Twenty-nine patients with T1-4 N0-3 M0 anal cancer treated with curative intent from September 2003 to April 2011 were included in the study. RNA was extracted from fresh frozen tissue and sequenced using NGS. Differentially expressed microRNAs were identified using the R-package DEseq2 and the endpoints were time to progression (TTP) and cancer specific survival (CSS). RESULTS Five microRNAs were significantly associated with 5-year progression free survival (PFS): Low expression of two microRNAs was associated with higher PFS, miR-1246 (100% vs. 55.6%, p = 0.008), and miR-135b-5p (92.9% vs. 59.3%, p = 0.041). On the other hand, high expressions of three microRNAs were associated with higher PFS, miR-148a-3p (93.3% vs. 53.6%, p = 0.025), miR-99a-5p (92.9% vs. 57.1%, p = 0.016), and let-7c-3p (92.9% vs. 57.1%, p = 0.016). Corresponding findings were documented for CSS. INTERPRETATION Our study identified five microRNAs as prognostic markers in anal cancer. MiR-1246 and microRNA-135b-5p were oncoMiRs (miRs with oncogene effects), while miR-148a-3p, miR- 99a-5p, and let-7c-3p acted as tumour suppressors in anal cancer patients.
Collapse
Affiliation(s)
- Olav Dahl
- Department of Oncology, Haukeland University Hospital, Bergen, Norway; University of Bergen, Bergen Norway.
| | | |
Collapse
|
6
|
Wang F, Zhou C, Zhu Y, Keshavarzi M. The microRNA Let-7 and its exosomal form: Epigenetic regulators of gynecological cancers. Cell Biol Toxicol 2024; 40:42. [PMID: 38836981 PMCID: PMC11153289 DOI: 10.1007/s10565-024-09884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Many types of gynecological cancer (GC) are often silent until they reach an advanced stage, and are therefore often diagnosed too late for effective treatment. Hence, there is a real need for more efficient diagnosis and treatment for patients with GC. During recent years, researchers have increasingly studied the impact of microRNAs cancer development, leading to a number of applications in detection and treatment. MicroRNAs are a particular group of tiny RNA molecules that regulate regular gene expression by affecting the translation process. The downregulation of numerous miRNAs has been observed in human malignancies. Let-7 is an example of a miRNA that controls cellular processes as well as signaling cascades to affect post-transcriptional gene expression. Recent research supports the hypothesis that enhancing let-7 expression in those cancers where it is downregulated may be a potential treatment option. Exosomes are tiny vesicles that move through body fluids and can include components like miRNAs (including let-7) that are important for communication between cells. Studies proved that exosomes are able to enhance tumor growth, angiogenesis, chemoresistance, metastasis, and immune evasion, thus suggesting their importance in GC management.
Collapse
Affiliation(s)
- Fei Wang
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Chundi Zhou
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Yanping Zhu
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China.
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Chen Z, Li C, Huang H, Shi YL, Wang X. Research Progress of Aging-related MicroRNAs. Curr Stem Cell Res Ther 2024; 19:334-350. [PMID: 36892029 DOI: 10.2174/1574888x18666230308111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 03/10/2023]
Abstract
Senescence refers to the irreversible state in which cells enter cell cycle arrest due to internal or external stimuli. The accumulation of senescent cells can lead to many age-related diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancers. MicroRNAs are short non-coding RNAs that bind to target mRNA to regulate gene expression after transcription and play an important regulatory role in the aging process. From nematodes to humans, a variety of miRNAs have been confirmed to alter and affect the aging process. Studying the regulatory mechanisms of miRNAs in aging can further deepen our understanding of cell and body aging and provide a new perspective for the diagnosis and treatment of aging-related diseases. In this review, we illustrate the current research status of miRNAs in aging and discuss the possible prospects for clinical applications of targeting miRNAs in senile diseases.
Collapse
Affiliation(s)
- Zhongyu Chen
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Chenxu Li
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Haitao Huang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Yi-Ling Shi
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
- Key Laboratory of University Cell Biology, Dali, Yunnan, 671000, China
| |
Collapse
|
8
|
Ramphan S, Chumchanchira C, Sornjai W, Chailangkarn T, Jongkaewwattana A, Assavalapsakul W, Smith DR. Strain Variation Can Significantly Modulate the miRNA Response to Zika Virus Infection. Int J Mol Sci 2023; 24:16216. [PMID: 38003407 PMCID: PMC10671159 DOI: 10.3390/ijms242216216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-transmitted virus that has emerged as a major public health concern due to its association with neurological disorders in humans, including microcephaly in fetuses. ZIKV infection has been shown to alter the miRNA profile in host cells, and these changes can contain elements that are proviral, while others can be antiviral in action. In this study, the expression of 22 miRNAs in human A549 cells infected with two different ZIKV isolates was investigated. All of the investigated miRNAs showed significant changes in expression at at least one time point examined. Markedly, 18 of the miRNAs examined showed statistically significant differences in expression between the two strains examined. Four miRNAs (miR-21, miR-34a, miR-128 and miR-155) were subsequently selected for further investigation. These four miRNAs were shown to modulate antiviral effects against ZIKV, as downregulation of their expression through anti-miRNA oligonucleotides resulted in increased virus production, whereas their overexpression through miRNA mimics reduced virus production. However, statistically significant changes were again seen when comparing the two strains investigated. Lastly, candidate targets of the miRNAs miR-34a and miR-128 were examined at the level of the mRNA and protein. HSP70 was identified as a target of miR-34a, but, again, the effects were strain type-specific. The two ZIKV strains used in this study differ by only nine amino acids, and the results highlight that consideration must be given to strain type variation when examining the roles of miRNAs in ZIKV, and probably other virus infections.
Collapse
Affiliation(s)
- Suwipa Ramphan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; (S.R.); (W.S.)
| | - Chanida Chumchanchira
- Department of Biology, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wannapa Sornjai
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; (S.R.); (W.S.)
| | - Thanathom Chailangkarn
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand; (T.C.); (A.J.)
| | - Anan Jongkaewwattana
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand; (T.C.); (A.J.)
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; (S.R.); (W.S.)
| |
Collapse
|
9
|
Fasoulakis Z, Psarommati MZ, Papapanagiotou A, Pergialiotis V, Koutras A, Douligeris A, Mortaki A, Mihail A, Theodora M, Stavros S, Karakalpakis D, Papamihail M, Kontomanolis EN, Daskalakis G, Antsaklis P. MicroRNAs Can Influence Ovarian Cancer Progression by Dysregulating Integrin Activity. Cancers (Basel) 2023; 15:4449. [PMID: 37760437 PMCID: PMC10526761 DOI: 10.3390/cancers15184449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Ovarian cancer is a deadly disease that affects thousands of women worldwide. Integrins, transmembrane receptors that mediate cell adhesion and signaling, play important roles in ovarian cancer progression, metastasis, and drug resistance. Dysregulated expression of integrins is implicated in various cellular processes, such as cell migration, invasion, and proliferation. Emerging evidence suggests that microRNAs (miRNAs) can regulate integrin expression and function, thus affecting various physiological and pathological processes, including ovarian cancer. In this article, we review the current understanding of integrin-mediated cellular processes in ovarian cancer and the roles of miRNAs in regulating integrins. We also discuss the therapeutic potential of targeting miRNAs that regulate integrins for the treatment of ovarian cancer. Targeting miRNAs that regulate integrins or downstream signaling pathways of integrins may provide novel therapeutic strategies for inhibiting integrin-mediated ovarian cancer progression.
Collapse
Affiliation(s)
- Zacharias Fasoulakis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Michaela-Zoi Psarommati
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 681 00 Alexandroupolis, Greece; (M.-Z.P.); (E.N.K.)
| | - Angeliki Papapanagiotou
- Laboratory of Chemistry Biology, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Vasilios Pergialiotis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Antonios Koutras
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Athanasios Douligeris
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Anastasia Mortaki
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Antonios Mihail
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Marianna Theodora
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Sofoklis Stavros
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Medical School, Attikon Hospital, 124 62 Athens, Greece;
| | - Defkalion Karakalpakis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Maria Papamihail
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Emmanuel N. Kontomanolis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 681 00 Alexandroupolis, Greece; (M.-Z.P.); (E.N.K.)
| | - George Daskalakis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 106 76 Athens, Greece; (G.D.); (P.A.)
| | - Panos Antsaklis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 106 76 Athens, Greece; (G.D.); (P.A.)
| |
Collapse
|
10
|
Zhu Z, Jiang L, Ding X. Advancing Breast Cancer Heterogeneity Analysis: Insights from Genomics, Transcriptomics and Proteomics at Bulk and Single-Cell Levels. Cancers (Basel) 2023; 15:4164. [PMID: 37627192 PMCID: PMC10452610 DOI: 10.3390/cancers15164164] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/23/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer continues to pose a significant healthcare challenge worldwide for its inherent molecular heterogeneity. This review offers an in-depth assessment of the molecular profiling undertaken to understand this heterogeneity, focusing on multi-omics strategies applied both in traditional bulk and single-cell levels. Genomic investigations have profoundly informed our comprehension of breast cancer, enabling its categorization into six intrinsic molecular subtypes. Beyond genomics, transcriptomics has rendered deeper insights into the gene expression landscape of breast cancer cells. It has also facilitated the formulation of more precise predictive and prognostic models, thereby enriching the field of personalized medicine in breast cancer. The comparison between traditional and single-cell transcriptomics has identified unique gene expression patterns and facilitated the understanding of cell-to-cell variability. Proteomics provides further insights into breast cancer subtypes by illuminating intricate protein expression patterns and their post-translational modifications. The adoption of single-cell proteomics has been instrumental in this regard, revealing the complex dynamics of protein regulation and interaction. Despite these advancements, this review underscores the need for a holistic integration of multiple 'omics' strategies to fully decipher breast cancer heterogeneity. Such integration not only ensures a comprehensive understanding of breast cancer's molecular complexities, but also promotes the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Zijian Zhu
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200030, China;
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200025, China;
| |
Collapse
|
11
|
Eddy AC, Chiang CY, Rajakumar A, Spradley FT, Dauer P, Granger JP, Rana S. Bioflavonoid luteolin prevents sFlt-1 release via HIF-1α inhibition in cultured human placenta. FASEB J 2023; 37:e23078. [PMID: 37405762 PMCID: PMC10348062 DOI: 10.1096/fj.202300611r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/31/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Preeclampsia (PE) is a serious hypertensive complication of pregnancy and is a leading cause of maternal death and major contributor to maternal and perinatal morbidity, including establishment of long-term complications. The continued prevalence of PE stresses the need for identification of novel treatments which can target prohypertensive factors implicated in the disease pathophysiology, such as soluble fms-like tyrosine kinase 1 (sFlt-1). We set out to identify novel compounds to reduce placental sFlt-1 and determine whether this occurs via hypoxia-inducible factor (HIF)-1α inhibition. We utilized a commercially available library of natural compounds to assess their ability to reduce sFlt-1 release from primary human placental cytotrophoblast cells (CTBs). Human placental explants from normotensive (NT) and preeclamptic (PE) pregnancies were treated with varying concentrations of luteolin. Protein and mRNA expression of sFlt-1 and upstream mediators were evaluated using ELISA, western blot, and real-time PCR. Of the natural compounds examined, luteolin showed the most potent inhibition of sFlt-1 release, with >95% reduction compared to vehicle-treated. Luteolin significantly inhibited sFlt-1 in cultured placental explants compared to vehicle-treated in a dose- and time-dependent manner. Additionally, significant decreases in HIF-1α expression were observed in luteolin-treated explants, suggesting a mechanism for sFlt-1 downregulation. The ability of luteolin to inhibit HIF-1α may be mediated through the Akt pathway, as inhibitors to Akt and its upstream regulator phosphatidylinositol-3 kinase (PI3K) resulted in significant HIF-1α reduction. Luteolin reduces anti-angiogenic sFlt-1 through inhibition of HIF-1α, making it a novel candidate for the treatment of PE.
Collapse
Affiliation(s)
- Adrian C. Eddy
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Chicago, IL, USA
| | - Chun Yi Chiang
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Chicago, IL, USA
| | | | - Frank T. Spradley
- Department of Surgery and Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS USA
| | - Patricia Dauer
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Chicago, IL, USA
| | - Joey P. Granger
- Department of Physiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sarosh Rana
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Chicago, IL, USA
| |
Collapse
|
12
|
Polz A, Morshed K, Bibik R, Drop B, Drop A, Polz-Dacewicz M. Serum and Saliva Level of miR-31-5p and miR-let 7a in EBV Associated Oropharyngeal Cancer. Int J Mol Sci 2023; 24:11965. [PMID: 37569339 PMCID: PMC10418762 DOI: 10.3390/ijms241511965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Epstein-Barr virus (EBV) has a well-documented association with head and neck neoplasms, including nasopharyngeal carcinoma (NPC). In the last few years, research aimed at elucidating the role of the miRs in the pathogenesis of head and neck cancer (HNC) has gained importance. The study of miRs expression has set new directions in the search for biomarkers with diagnostic and prognostic value, and even in the search for new therapeutic targets for various tumors, including HNC. The aim of current study was to approximate the importance of miR-31-5p and miR-let 7a in the pathogenesis of EBV associated oropharyngeal cancer. For this purpose, experiments were carried out to determine the level of mentioned miRs in serum among patients diagnosed with oropharyngeal cancer linked to EBV infection, depending on histological differentiation-grading (G1-G3) and TNM classification. All clinical specimens stratified by HPV status were HPV negative. The level of antibodies EBNA and EBVCA was also assessed. The obtained results showed a significantly increased serum level of miR-31-5p but decreased level of miR-let 7a in EBV positive oropharyngeal cancer patients. We demonstrated association between the level of tested miRs and clinical stage. Our findings showed that miR-31-5p and miR-let-7a may be involved in development and progression of EBV associated oropharyngeal cancer. Therefore, it seems important to further study these molecules, as well as to determine whether they could be important biomarkers in the diagnosis of oropharyngeal cancer associated with EBV infection.
Collapse
Affiliation(s)
- Anna Polz
- Synevo Poland, 80-180 Gdańsk, Poland;
| | - Kamal Morshed
- Department of Otolaryngology Head and Neck Cancer, University of Technology and Humanities in Radom, 26-600 Radom, Poland;
| | - Robert Bibik
- Department of Radiation Oncology, Oncology Center of Radom, 26-600 Radom, Poland;
| | - Bartłomiej Drop
- Department of Computer Science and Medical Statistics with the e-Health Laboratory, 20-090 Lublin, Poland;
| | - Andrzej Drop
- 1st Department of Medical Radiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Małgorzata Polz-Dacewicz
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
13
|
Pulliero A, Mastracci L, Tarantini L, Khalid Z, Bollati V, Izzotti A. Let-7a Downregulation Accompanied by KRAS Mutation Is Predictive of Lung Cancer Onset in Cigarette Smoke-Exposed Mice. Int J Mol Sci 2023; 24:11778. [PMID: 37511536 PMCID: PMC10380304 DOI: 10.3390/ijms241411778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Let-7 is a tumor suppressor microRNA targeting the KRAS lung oncogene. Let-7a downregulation is reversible during the early stages of lung carcinogenesis but is irreversible in cancer cells. The aim of this study is to shed light on the relationship between oncogene (KRAS) mutation and let-7a downregulation in cigarette smoke (CS)-induced lung carcinogenesis. METHODS A total of 184 strain H Swiss albino mice were either unexposed (control) or exposed to CS for 2 weeks (short CS) or 8 months (long CS). After 8 months, the lungs were individually collected. The following end points have been evaluated: (a) DNA methylation of the let-7a gene promoter by bisulphite-PCR and pyrosequencing; (b) let-7a expression by qPCR; (c) KRAS mutation by DNA pyrosequencing; (d) cancer incidence by histopathological examination. RESULTS let-7a expression decreased by 8.3% in the mice exposed to CS for two weeks (CS short) and by 33.4% (p ≤ 0.01) in the mice exposed to CS for 8 months (CS long). No significant difference was detected in the rate of let-7a-promoter methylation between the Sham-exposed mice (55.1%) and the CS short-(53%) or CS long (51%)-exposed mice. The percentage of G/T transversions in KRAS codons 12 and 13 increased from 2.3% (Sham) to 6.4% in CS short- and to 11.5% in CS long-exposed mice. Cancer incidence increased significantly in the CS long-exposed mice (11%) as compared to both the Sham (4%) and the CS short-exposed (2%) mice. In the CS long-exposed mice, the correlation between let-7a expression and the number of KRAS mutations was positive (R = +0.5506) in the cancer-free mice and negative (R = -0.5568) in the cancer-bearing mice. CONCLUSIONS The effects of CS-induced mutations in KRAS are neutralized by the high expression of let-7a in cancer-free mice (positive correlation) but not in cancer-bearing mice where an irreversible let-7a downregulation occurs (negative correlation). This result provides evidence that both genetic (high load of KRAS mutation) and epigenetic alterations (let-7a irreversible downregulation) are required to produce lung cancer in CS-exposed organisms.
Collapse
Affiliation(s)
| | - Luca Mastracci
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Anatomic Pathology, University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Letizia Tarantini
- Epiget Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (L.T.); (V.B.)
| | - Zumama Khalid
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Valentina Bollati
- Epiget Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (L.T.); (V.B.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Alberto Izzotti
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
14
|
Chen QQ, Liu QY, Wang P, Qian TM, Wang XH, Yi S, Li SY. Potential application of let-7a antagomir in injured peripheral nerve regeneration. Neural Regen Res 2023; 18:1584-1590. [PMID: 36571366 PMCID: PMC10075095 DOI: 10.4103/1673-5374.357914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neurotrophic factors, particularly nerve growth factor, enhance neuronal regeneration. However, the in vivo applications of nerve growth factor are largely limited by its intrinsic disadvantages, such as its short biological half-life, its contribution to pain response, and its inability to cross the blood-brain barrier. Considering that let-7 (human miRNA) targets and regulates nerve growth factor, and that let-7 is a core regulator in peripheral nerve regeneration, we evaluated the possibilities of let-7 application in nerve repair. In this study, anti-let-7a was identified as the most suitable let-7 family molecule by analyses of endogenous expression and regulatory relationship, and functional screening. Let-7a antagomir demonstrated biosafety based on the results of in vivo safety assessments and it entered into the main cell types of the sciatic nerve, including Schwann cells, fibroblasts and macrophages. Use of hydrogel effectively achieved controlled, localized, and sustained delivery of let-7a antagomir. Finally, let-7a antagomir was integrated into chitosan conduit to construct a chitosan-hydrogel scaffold tissue-engineered nerve graft, which promoted nerve regeneration and functional recovery in a rat model of sciatic nerve transection. Our study provides an experimental basis for potential in vivo application of let-7a.
Collapse
Affiliation(s)
- Qian-Qian Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Qian-Yan Liu
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Pan Wang
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Tian-Mei Qian
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xing-Hui Wang
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Sheng Yi
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Shi-Ying Li
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
15
|
Hu Q, Huang T. Regulation of the Cell Cycle by ncRNAs Affects the Efficiency of CDK4/6 Inhibition. Int J Mol Sci 2023; 24:ijms24108939. [PMID: 37240281 DOI: 10.3390/ijms24108939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) regulate cell division at multiple levels. Aberrant proliferation induced by abnormal cell cycle is a hallmark of cancer. Over the past few decades, several drugs that inhibit CDK activity have been created to stop the development of cancer cells. The third generation of selective CDK4/6 inhibition has proceeded into clinical trials for a range of cancers and is quickly becoming the backbone of contemporary cancer therapy. Non-coding RNAs, or ncRNAs, do not encode proteins. Many studies have demonstrated the involvement of ncRNAs in the regulation of the cell cycle and their abnormal expression in cancer. By interacting with important cell cycle regulators, preclinical studies have demonstrated that ncRNAs may decrease or increase the treatment outcome of CDK4/6 inhibition. As a result, cell cycle-associated ncRNAs may act as predictors of CDK4/6 inhibition efficacy and perhaps present novel candidates for tumor therapy and diagnosis.
Collapse
Affiliation(s)
- Qingyi Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
16
|
Palma-Flores C, Zárate-Segura PB, Hernández-Hernández JM, de los Santos S, Tejeda-Gómez AS, Cano-Martínez LJ, Canto P, Garcia-Rebollar JO, Coral-Vázquez RM. (−)-Epicatechin modulates the expression of myomiRs implicated in exercise response in mouse skeletal muscle. Gene X 2023; 849:146907. [DOI: 10.1016/j.gene.2022.146907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
|
17
|
Song Z, Liao C, Yao L, Xu X, Shen X, Tian S, Wang S, Xing F. miR-219-5p attenuates cisplatin resistance of ovarian cancer by inactivating Wnt/β-catenin signaling and autophagy via targeting HMGA2. Cancer Gene Ther 2022; 30:596-607. [PMID: 36494581 DOI: 10.1038/s41417-022-00574-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Our previous study confirmed that miR-219-5p inhibits the progression of ovarian cancer (OC) by targeting high mobility group AT-hook 2 (HMGA2), while the role of miR-219-5p on the chemoresistance of OC is unclear. HMGA2 and miR-219-5p expression in OC tumors and various types of OC cells were determined by reverse transcription-quantitative PCR (RT-qPCR) and western blotting. The miRNA profiles in A2780 and cisplatin-resistant A2780 cells were investigated via bulk miRNA sequencing, and the interactions of miR-219-5p and HMGA2 were determined by luciferase reporter activity assay. Cell function was verified through Cell Counting Kit-8, invasion assay, wound-healing, and TUNEL assays. HMGA2 level is highly expressed in cisplatin-resistant OC cell lines compared to normal OC cells, while the expression trend of miR-219-5p is the opposite. In addition, we found that miR-219-5p is one of the miRNAs that have the most significant reduction in levels in the cisplatin-resistant A2780/DDP cell line compared to A2780 cells. Then, we reveal that miR-219-5p directly targets HMGA2 in cisplatin-resistant OC cells, and upregulation of miR-219-5p significantly reduces the resistance of OC cells to cisplatin both in vitro and in vivo. Finally, our results suggest that Wnt/β-catenin signaling and autophagy pathway is involved in the role of miR-219-5p/HMGA2 on resistance of OC cells to cisplatin via gain-of-function experiments. Collectively, the present study shows that miR-219-5p decreases the resistance of OC cells to cisplatin via Wnt/β-catenin signaling and autophagy by regulating HMGA2, which provides a feasible solution for the resistance of OC to chemotherapy.
Collapse
|
18
|
Bozgeyik E, Bozgeyik İ. Non-coding RNA variations in oral cancers: a comprehensive review. Gene 2022; 851:147012. [PMID: 36349577 DOI: 10.1016/j.gene.2022.147012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2022]
|
19
|
Zhang L, Wang C, Lu X, Xu X, Shi T, Chen J. Transcriptome sequencing of hepatocellular carcinoma uncovers multiple types of dysregulated ncRNAs. Front Oncol 2022; 12:927524. [PMID: 36132143 PMCID: PMC9484539 DOI: 10.3389/fonc.2022.927524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Transcriptome profiling of hepatocellular carcinoma (HCC) by next-generation sequencing (NGS) technology has been broadly performed by previous studies, which facilitate our understanding of the molecular mechanisms of HCC formation, progression, and metastasis. However, few studies jointly analyze multiple types of noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and micro-RNAs (miRNAs), and further uncover their implications in HCC. In this study, we observed that the circRNA cZRANB1 and lncRNA DUXAP10 were not only significantly upregulated in tumor tissues, but also higher expressed in blood exosomes of HCC as compared with healthy donors. From the analysis of subclass-associated dysregulated ncRNAs, we observed that DLX6-AS1, an antisense RNA of DLX6, and the sense gene DLX6 were highly expressed in S1, a subclass with a more invasive/disseminative phenotype. High correlation between DLX6-AS1 and DLX6 suggested that DLX6-AS1 may function via promoting the transcription of DLX6. Integrative analysis uncovers circRNA–miRNA, lncRNA–miRNA, and competing endogenous RNA networks (ceRNAs). Specifically, cZRANB1, LINC00501, CTD-2008L17.2, and SLC7A11-AS1 may function as ceRNAs that regulate mRNAs by competing the shared miRNAs. Further prognostic analysis demonstrated that the dysregulated ncRNAs had the potential to predict HCC patients’ overall survival. In summary, we identified some novel circRNAs and miRNAs, and dysregulated ncRNAs that could participate in HCC tumorigenesis and progression by inducing transcription of their neighboring genes, increasing their derived miRNAs, or acting as miRNA sponges. Moreover, our systematic analysis provides not only rich data resources for related researchers, but also new insights into the molecular basis of how different ncRNAs coordinately or antagonistically participate in the pathogenesis process of diseases.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gastroenterology, Affiliated Sixth People’s Hospital South Campus of Shanghai Jiaotong University, Shanghai, China
- Center for Bioinformatics and Computational Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Chunmei Wang
- Department of Gastroenterology, Affiliated Sixth People’s Hospital South Campus of Shanghai Jiaotong University, Shanghai, China
- Department of Gastroenterology, Affiliated Fengxian Hospital of Southern Medical University, Shanghai, China
| | - Xiaojie Lu
- Department of Gastroenterology, Affiliated Sixth People’s Hospital South Campus of Shanghai Jiaotong University, Shanghai, China
| | - Xiao Xu
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- *Correspondence: Jinlian Chen, ; Tieliu Shi, ; Xiao Xu,
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
- *Correspondence: Jinlian Chen, ; Tieliu Shi, ; Xiao Xu,
| | - Jinlian Chen
- Department of Gastroenterology, Affiliated Sixth People’s Hospital South Campus of Shanghai Jiaotong University, Shanghai, China
- Department of Gastroenterology, Affiliated Fengxian Hospital of Southern Medical University, Shanghai, China
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Jinlian Chen, ; Tieliu Shi, ; Xiao Xu,
| |
Collapse
|
20
|
Parayath NN, Gandham SK, Amiji MM. Tumor-targeted miRNA nanomedicine for overcoming challenges in immunity and therapeutic resistance. Nanomedicine (Lond) 2022; 17:1355-1373. [PMID: 36255330 PMCID: PMC9706370 DOI: 10.2217/nnm-2022-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
miRNA are critical messengers in the tumor microenvironment (TME) that influence various processes leading to immune suppression, tumor progression, metastasis and resistance. Strategies to modulate miRNAs in the TME have important implications in overcoming these challenges. However, miR delivery to specific cells in the TME has been challenging. This review discusses nanomedicine strategies to achieve cell-specific delivery of miRNAs. The key goal of delivery is to activate the tumor immune landscape as well as to prevent chemotherapy resistance. Specifically, the use of hyaluronic acid-based nanoparticle miRNA delivery to the TME is discussed. The discussion is focused on miRNA-125b for reprogramming tumor-associated macrophages to overcome immunosuppression and miRNA-let-7b to overcome resistance to anticancer chemotherapeutics because both these miRNAs have been extensively evaluated for delivery with hyaluronic acid-based delivery systems.
Collapse
Affiliation(s)
- Neha N Parayath
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Srujan K Gandham
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA,Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA,Author for correspondence: Tel.: +1 617 373 3137;
| |
Collapse
|
21
|
Choi PW, Liu TL, Wong CW, Liu SK, Lum YL, Ming WK. The Dysregulation of MicroRNAs in the Development of Cervical Pre-Cancer—An Update. Int J Mol Sci 2022; 23:ijms23137126. [PMID: 35806128 PMCID: PMC9266862 DOI: 10.3390/ijms23137126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Globally in 2020, an estimated ~600,000 women were diagnosed with and 340,000 women died from cervical cancer. Compared to 2012, the number of cases increased by 7.5% and the number of deaths increased by 17%. MiRNAs are involved in multiple processes in the pathogenesis of cervical cancer. Dysregulation of miRNAs in the pre-stage of cervical cancer is the focus of this review. Here we summarize the dysregulated miRNAs in clinical samples from cervical pre-cancer patients and relate them to the early transformation process owing to human papillomavirus (HPV) infection in the cervical cells. When HPV infects the normal cervical cells, the DNA damage response is initiated with the involvement of HPV’s E1 and E2 proteins. Later, cell proliferation and cell death are affected by the E6 and E7 proteins. We find that the expressions of miRNAs in cervical pre-cancerous tissue revealed by different studies seldom agreed with each other. The discrepancy in sample types, samples’ HPV status, expression measurement, and methods for analysis contributed to the non-aligned results across studies. However, several miRNAs (miR-34a, miR-9, miR-21, miR-145, and miR-375) were found to be dysregulated across multiple studies. In addition, there are hints that the DNA damage response and cell growth response induced by HPV during the early transformation of the cervical cells are related to these miRNAs. Currently, no review articles analyse the relationship between the dysregulated miRNAs in cervical pre-cancerous tissue and their possible roles in the early processes involving HPV’s protein encoded by the early genes and DNA damage response during normal cell transformation. Our review provides insight on spotting miRNAs involved in the early pathogenic processes and pointing out their potential as biomarker targets of cervical pre-cancer.
Collapse
Affiliation(s)
- Pui-Wah Choi
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Tin Lun Liu
- International School, Jinan University, Guangzhou 510632, China;
| | - Chun Wai Wong
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Sze Kei Liu
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Yick-Liang Lum
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Wai-Kit Ming
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
- Correspondence: ; Tel.: +852-3442-6956
| |
Collapse
|
22
|
Gandham SK, Rao M, Shah A, Trivedi MS, Amiji MM. Combination microRNA-based cellular reprogramming with paclitaxel enhances therapeutic efficacy in a relapsed and multidrug-resistant model of epithelial ovarian cancer. Mol Ther Oncolytics 2022; 25:57-68. [PMID: 35399604 PMCID: PMC8971728 DOI: 10.1016/j.omto.2022.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/13/2022] [Indexed: 12/21/2022] Open
Abstract
Most advanced-stage ovarian cancer patients, including those with epithelial ovarian cancer (EOC), develop recurrent disease and acquisition of resistance to chemotherapy, leading to limited treatment options. Decrease in Let7b miRNA levels in clinical ovarian cancer has been associated with chemoresistance, increased proliferation, invasion, and relapse in EOC. We have established a murine EOC relapsed model by administering paclitaxel (PTX) and stopping therapy to allow for tumor regrowth. Global microRNA profiling in the relapsed tumor showed significant downregulation of Let7b relative to untreated tumors. Here, we report the use of hyaluronic acid (HA)-based nanoparticle formulation that can deliver Let7b miRNA mimic to tumor cells and achieve cellular programming both in vitro and in vivo. We demonstrate that a therapeutic combination of Let7b miRNA and PTX leads to significant improvement in anti-tumor efficacy in the relapsed model of EOC. We further demonstrate that the combination therapy is safe for repeated administration. This novel approach of cellular reprogramming of tumor cells using clinically relevant miRNA mimic in combination with chemotherapy could enable more effective therapeutic outcomes for patients with advanced-stage relapsed EOC.
Collapse
Affiliation(s)
- Srujan K. Gandham
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Mounika Rao
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Aayushi Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Malav S. Trivedi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - Mansoor M. Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
23
|
Context-Dependent Regulation of Gene Expression by Non-Canonical Small RNAs. Noncoding RNA 2022; 8:ncrna8030029. [PMID: 35645336 PMCID: PMC9149963 DOI: 10.3390/ncrna8030029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
In recent functional genomics studies, a large number of non-coding RNAs have been identified. It has become increasingly apparent that noncoding RNAs are crucial players in a wide range of cellular and physiological functions. They have been shown to modulate gene expression on different levels, including transcription, post-transcriptional processing, and translation. This review aims to highlight the diverse mechanisms of the regulation of gene expression by small noncoding RNAs in different conditions and different types of human cells. For this purpose, various cellular functions of microRNAs (miRNAs), circular RNAs (circRNAs), snoRNA-derived small RNAs (sdRNAs) and tRNA-derived fragments (tRFs) will be exemplified, with particular emphasis on the diversity of their occurrence and on the effects on gene expression in different stress conditions and diseased cell types. The synthesis and effect on gene expression of these noncoding RNAs varies in different cell types and may depend on environmental conditions such as different stresses. Moreover, noncoding RNAs play important roles in many diseases, including cancer, neurodegenerative disorders, and viral infections.
Collapse
|
24
|
Xu G, Reboud J, Guo Y, Yang H, Gu H, Fan C, Qian X, Cooper JM. Programmable design of isothermal nucleic acid diagnostic assays through abstraction-based models. Nat Commun 2022; 13:1635. [PMID: 35347157 PMCID: PMC8960814 DOI: 10.1038/s41467-022-29101-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Accelerating the design of nucleic acid amplification methods remains a critical challenge in the development of molecular tools to identify biomarkers to diagnose both infectious and non-communicable diseases. Many of the principles that underpin these mechanisms are often complex and can require iterative optimisation. Here we focus on creating a generalisable isothermal nucleic acid amplification methodology, describing the systematic implementation of abstraction-based models for the algorithmic design and application of assays. We demonstrate the simplicity, ease and flexibility of our approach using a software tool that provides amplification schemes de novo, based upon a user-input target sequence. The abstraction of reaction network predicts multiple reaction pathways across different strategies, facilitating assay optimisation for specific applications, including the ready design of multiplexed tests for short nucleic acid sequence miRNAs or for difficult pathogenic targets, such as highly mutating viruses.
Collapse
Affiliation(s)
- Gaolian Xu
- Nano Biomedical Research Centre, Nano Biomedical Research Centre, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Julien Reboud
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow, G12 8LT, UK
| | - Yunfei Guo
- Nano Biomedical Research Centre, Nano Biomedical Research Centre, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Hao Yang
- Nano Biomedical Research Centre, Nano Biomedical Research Centre, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Hongchen Gu
- Nano Biomedical Research Centre, Nano Biomedical Research Centre, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xiaohua Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jonathan M Cooper
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow, G12 8LT, UK.
| |
Collapse
|
25
|
Zhou H, Liu Z, Wang Y, Wen X, Amador EH, Yuan L, Ran X, Xiong L, Ran Y, Chen W, Wen Y. Colorectal liver metastasis: molecular mechanism and interventional therapy. Signal Transduct Target Ther 2022; 7:70. [PMID: 35246503 PMCID: PMC8897452 DOI: 10.1038/s41392-022-00922-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring malignancy tumors with a high morbidity additionally, CRC patients may develop liver metastasis, which is the major cause of death. Despite significant advances in diagnostic and therapeutic techniques, the survival rate of colorectal liver metastasis (CRLM) patients remains very low. CRLM, as a complex cascade reaction process involving multiple factors and procedures, has complex and diverse molecular mechanisms. In this review, we summarize the mechanisms/pathophysiology, diagnosis, treatment of CRLM. We also focus on an overview of the recent advances in understanding the molecular basis of CRLM with a special emphasis on tumor microenvironment and promise of newer targeted therapies for CRLM, further improving the prognosis of CRLM patients.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Zhongtao Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Yongxiang Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xiaoyong Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Eric H Amador
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA
| | - Liqin Yuan
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xin Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Chen
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA.
- Medical Technology Research Centre, Chelmsford Campus, Anglia Ruskin University, Chelmsford, CM1 1SQ, UK.
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| |
Collapse
|
26
|
The Biological Function of MicroRNAs in Bone Tumors. Int J Mol Sci 2022; 23:ijms23042348. [PMID: 35216464 PMCID: PMC8876091 DOI: 10.3390/ijms23042348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
Micro ribonucleic acids (miRNAs) are small endogenous noncoding RNAs molecules that regulate gene expression post-transcriptionally. A single miRNA is able to target hundreds of specific messenger RNA (mRNAs) by binding to the 3′-untranslated regions. miRNAs regulate different biological processes such as cell proliferation, differentiation and apoptosis. Altered miRNA expression is certainly related to the development of the most common human diseases, including tumors. Osteosarcoma (OS), Ewing’s Sarcoma (ES), and Chondrosarcoma (CS) are the most common primary bone tumors which affect mainly children and adolescents. A significant dysregulation of miRNA expression, in particular of mir-34, mir-21, mir-106, mir-143, and miR-100, has been revealed in OS, ES and CS. In this context, miRNAs can act as either tumor suppressor genes or oncogenes, contributing to the initiation and progression of bone tumors. The in-depth study of these small molecules can thus help to better understand their biological functions in bone tumors. Therefore, this review aims to examine the potential role of miRNAs in bone tumors, especially OS, ES and CS, and to suggest their possible use as potential therapeutic targets for the treatment of bone tumors and as biomarkers for early diagnosis.
Collapse
|
27
|
Letafati A, Najafi S, Mottahedi M, Karimzadeh M, Shahini A, Garousi S, Abbasi-Kolli M, Sadri Nahand J, Tamehri Zadeh SS, Hamblin MR, Rahimian N, Taghizadieh M, Mirzaei H. MicroRNA let-7 and viral infections: focus on mechanisms of action. Cell Mol Biol Lett 2022; 27:14. [PMID: 35164678 PMCID: PMC8853298 DOI: 10.1186/s11658-022-00317-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are fundamental post-transcriptional modulators of several critical cellular processes, a number of which are involved in host defense mechanisms. In particular, miRNA let-7 functions as an essential regulator of the function and differentiation of both innate and adaptive immune cells. Let-7 is involved in several human diseases, including cancer and viral infections. Several viral infections have found ways to dysregulate the expression of miRNAs. Extracellular vesicles (EV) are membrane-bound lipid structures released from many types of human cells that can transport proteins, lipids, mRNAs, and miRNAs, including let-7. After their release, EVs are taken up by the recipient cells and their contents released into the cytoplasm. Let-7-loaded EVs have been suggested to affect cellular pathways and biological targets in the recipient cells, and can modulate viral replication, the host antiviral response, and the action of cancer-related viruses. In the present review, we summarize the available knowledge concerning the expression of let-7 family members, functions, target genes, and mechanistic involvement in viral pathogenesis and host defense. This may provide insight into the development of new therapeutic strategies to manage viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
28
|
Abstract
High Mobility Group A2 gene (HMGA2), an oncofetal protein, is normally expressed in fetal development and completely shuts down in almost all organs and tissue types during adulthood. It is upregulated or overexpressed again in certain mesenchymal neoplasms due to chromosomal translocations and in malignant epithelial tumors through transcription regulation. HMGA2 overexpression can either drive tumor development or promote the aggressiveness of tumor growth. Many gynecologic neoplasms, including uterine smooth muscle tumors and ovarian cancer, are associated with HMGA2 overexpression. In this article, we review recent developments in the study of HMGA2 and its expression as a potential biomarker for gynecologic neoplasms and clinic application.
Collapse
Affiliation(s)
- Jian-Jun Wei
- Correspondence to: Jian-Jun Wei, Department of Pathology, Northwestern University, School of Medicine, Feinberg 7-334, 251 East Huron Street, Chicago, IL 60611, USA. Tel: +1-312-926-1815, Fax: +1-312-926-3127,
| |
Collapse
|
29
|
Nuñez-Olvera SI, Puente-Rivera J, Ramos-Payán R, Pérez-Plasencia C, Salinas-Vera YM, Aguilar-Arnal L, López-Camarillo C. Three-Dimensional Genome Organization in Breast and Gynecological Cancers: How Chromatin Folding Influences Tumorigenic Transcriptional Programs. Cells 2021; 11:75. [PMID: 35011637 PMCID: PMC8750285 DOI: 10.3390/cells11010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
A growing body of research on the transcriptome and cancer genome has demonstrated that many gynecological tumor-specific gene mutations are located in cis-regulatory elements. Through chromosomal looping, cis-regulatory elements interact which each other to control gene expression by bringing distant regulatory elements, such as enhancers and insulators, into close proximity with promoters. It is well known that chromatin connections may be disrupted in cancer cells, promoting transcriptional dysregulation and the expression of abnormal tumor suppressor genes and oncogenes. In this review, we examine the roles of alterations in 3D chromatin interactions. This includes changes in CTCF protein function, cancer-risk single nucleotide polymorphisms, viral integration, and hormonal response as part of the mechanisms that lead to the acquisition of enhancers or super-enhancers. The translocation of existing enhancers, as well as enhancer loss or acquisition of insulator elements that interact with gene promoters, is also revised. Remarkably, similar processes that modify 3D chromatin contacts in gene promoters may also influence the expression of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), which have emerged as key regulators of gene expression in a variety of cancers, including gynecological malignancies.
Collapse
Affiliation(s)
- Stephanie I. Nuñez-Olvera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Jonathan Puente-Rivera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 03100, Mexico;
| | - Rosalio Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacan City 80030, Mexico;
| | | | - Yarely M. Salinas-Vera
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados, Mexico City 07360, Mexico;
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 03100, Mexico;
| |
Collapse
|
30
|
Haluck-Kangas A, Patel M, Paudel B, Vaidyanathan A, Murmann AE, Peter ME. DISE/6mer seed toxicity-a powerful anti-cancer mechanism with implications for other diseases. J Exp Clin Cancer Res 2021; 40:389. [PMID: 34893072 PMCID: PMC8662895 DOI: 10.1186/s13046-021-02177-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023] Open
Abstract
micro(mi)RNAs are short noncoding RNAs that through their seed sequence (pos. 2-7/8 of the guide strand) regulate cell function by targeting complementary sequences (seed matches) located mostly in the 3' untranslated region (3' UTR) of mRNAs. Any short RNA that enters the RNA induced silencing complex (RISC) can kill cells through miRNA-like RNA interference when its 6mer seed sequence (pos. 2-7 of the guide strand) has a G-rich nucleotide composition. G-rich seeds mediate 6mer Seed Toxicity by targeting C-rich seed matches in the 3' UTR of genes critical for cell survival. The resulting Death Induced by Survival gene Elimination (DISE) predominantly affects cancer cells but may contribute to cell death in other disease contexts. This review summarizes recent findings on the role of DISE/6mer Seed Tox in cancer; its therapeutic potential; its contribution to therapy resistance; its selectivity, and why normal cells are protected. In addition, we explore the connection between 6mer Seed Toxicity and aging in relation to cancer and certain neurodegenerative diseases.
Collapse
Affiliation(s)
- Ashley Haluck-Kangas
- Division Hematology/Oncology and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Lurie 6-123, Chicago, IL 60611 USA
| | - Monal Patel
- Division Hematology/Oncology and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Lurie 6-123, Chicago, IL 60611 USA
| | - Bidur Paudel
- Division Hematology/Oncology and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Lurie 6-123, Chicago, IL 60611 USA
| | - Aparajitha Vaidyanathan
- Division Hematology/Oncology and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Lurie 6-123, Chicago, IL 60611 USA
| | - Andrea E. Murmann
- Division Hematology/Oncology and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Lurie 6-123, Chicago, IL 60611 USA
| | - Marcus E. Peter
- Division Hematology/Oncology and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Lurie 6-123, Chicago, IL 60611 USA
| |
Collapse
|
31
|
miRNA profiling in adult T-cell leukemia lymphoma (ATLL), a systems virology study. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Mirahmadi Y, Nabavi R, Taheri F, Samadian MM, Ghale-Noie ZN, Farjami M, Samadi-khouzani A, Yousefi M, Azhdari S, Salmaninejad A, Sahebkar A. MicroRNAs as Biomarkers for Early Diagnosis, Prognosis, and Therapeutic Targeting of Ovarian Cancer. JOURNAL OF ONCOLOGY 2021; 2021:3408937. [PMID: 34721577 PMCID: PMC8553480 DOI: 10.1155/2021/3408937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Ovarian cancer is the major cause of gynecologic cancer-related mortality. Regardless of outstanding advances, which have been made for improving the prognosis, diagnosis, and treatment of ovarian cancer, the majority of the patients will die of the disease. Late-stage diagnosis and the occurrence of recurrent cancer after treatment are the most important causes of the high mortality rate observed in ovarian cancer patients. Unraveling the molecular mechanisms involved in the pathogenesis of ovarian cancer may help find new biomarkers and therapeutic targets for ovarian cancer. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression, mostly at the posttranscriptional stage, through binding to mRNA targets and inducing translational repression or degradation of target via the RNA-induced silencing complex. Over the last two decades, the role of miRNAs in the pathogenesis of various human cancers, including ovarian cancer, has been documented in multiple studies. Consequently, these small RNAs could be considered as reliable markers for prognosis and early diagnosis. Furthermore, given the function of miRNAs in various cellular pathways, including cell survival and differentiation, targeting miRNAs could be an interesting approach for the treatment of human cancers. Here, we review our current understanding of the most updated role of the important dysregulation of miRNAs and their roles in the progression and metastasis of ovarian cancer. Furthermore, we meticulously discuss the significance of miRNAs as prognostic and diagnostic markers. Lastly, we mention the opportunities and the efforts made for targeting ovarian cancer through inhibition and/or stimulation of the miRNAs.
Collapse
Affiliation(s)
- Yegane Mirahmadi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fourough Taheri
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Mahdi Samadian
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Farjami
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Samadi-khouzani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Guilan University of Medical Sciences, Guilan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Yang L, He X, Jing G, Wang H, Niu J, Qian Y, Wang S. Layered Double Hydroxide Nanoparticles with Osteogenic Effects as miRNA Carriers to Synergistically Promote Osteogenesis of MSCs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48386-48402. [PMID: 34618442 DOI: 10.1021/acsami.1c14382] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inefficient differentiation and poor engraftment hinder the clinical applications of mesenchymal stem cell (MSC)-based cell therapies in regenerative medicine. Layered double hydroxide (LDH) nanoparticles are sheet-like materials with desirable biocompatibility and anion-exchange properties and have been widely applied as drug and nucleotide carriers in the field of tissue repair. However, few studies have focused on the biological effects of LDH itself. In this study, we demonstrated the novel function of LDH in stimulating osteogenic differentiation of bone marrow-derived MSCs (BMSCs). The expression of osteogenic-related genes, alkaline phosphatase (ALP) activity, and calcium deposits were significantly increased after LDH treatment. Mechanistic analysis performed with RNA sequencing revealed that LDH promoted osteogenesis by targeting the LGR5/β-catenin axis. LDH also inactivated IKK/NF-κB signaling under LPS-triggered inflamed conditions, suggesting the dual benefits of LDH in enhancing bone regeneration and alleviating the inflammatory response. Furthermore, we utilized LDH as the transport vehicle of the osteoinductive miRNA let-7d to synergistically regulate BMSCs toward the osteoblastic lineage. The LDH/let-7d complex resulted in a better induction of osteogenesis than LDH alone. For cell transplantation, BMSCs were seeded in LDH/let-7d-incorporated fibrin scaffolds, which proved enhanced osteoinduction capability in the subcutaneous ectopic osteogenesis model in nude mice. Taken together, this study provides a novel strategy for effective and synergistic improvement of osteogenesis via LDH-mediated delivery of miRNA let-7d, thus shedding light on the future application of LDH in regenerative medicine.
Collapse
Affiliation(s)
- Li Yang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolie He
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guoxin Jing
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jintong Niu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yechang Qian
- Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201900, China
| | - Shilong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
34
|
Otmani K, Lewalle P. Tumor Suppressor miRNA in Cancer Cells and the Tumor Microenvironment: Mechanism of Deregulation and Clinical Implications. Front Oncol 2021; 11:708765. [PMID: 34722255 PMCID: PMC8554338 DOI: 10.3389/fonc.2021.708765] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/27/2021] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that have been identified as important posttranscriptional regulators of gene expression. miRNAs production is controlled at multiple levels, including transcriptional and posttranscriptional regulation. Extensive profiling studies have shown that the regulation of mature miRNAs expression plays a causal role in cancer development and progression. miRNAs have been identified to act as tumor suppressors (TS) or as oncogenes based on their modulating effect on the expression of their target genes. Upregulation of oncogenic miRNAs blocks TS genes and leads to tumor formation. In contrast, downregulation of miRNAs with TS function increases the translation of oncogenes. Several miRNAs exhibiting TS properties have been studied. In this review we focus on recent studies on the role of TS miRNAs in cancer cells and the tumor microenvironment (TME). Furthermore, we discuss how TS miRNA impacts the aggressiveness of cancer cells, with focus of the mechanism that regulate its expression. The study of the mechanisms of miRNA regulation in cancer cells and the TME may paved the way to understand its critical role in the development and progression of cancer and is likely to have important clinical implications in a near future. Finally, the potential roles of miRNAs as specific biomarkers for the diagnosis and the prognosis of cancer and the replacement of tumor suppressive miRNAs using miRNA mimics could be promising approaches for cancer therapy.
Collapse
Affiliation(s)
- Khalid Otmani
- Experimental Hematology Laboratory, Jules Bordet Institute, Université libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
35
|
Li C, Chen L, Song W, Peng B, Zhu J, Fang L. DICER activates autophagy and promotes cisplatin resistance in non-small cell lung cancer by binding with let-7i-5p. Acta Histochem 2021; 123:151788. [PMID: 34543777 DOI: 10.1016/j.acthis.2021.151788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/24/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Drug resistance is the main obstacle in the treatment of non-small cell lung cancer (NSCLC). This study aimed to explore the mechanism of DICER in NSCLC resistance and its downstream signaling pathways. METHODS The A549 cisplatin (DDP)-resistant strain A549/DDP was established. A549/DDP cells were transfected with DICER- and let-7i-5p-related vectors, and treated with autophagy activator rapamycin. The cell viability and apoptosis were tested by CCK-8 assay and flow cytometry, respectively. The formation of autophagosomes was observed with a transmission electron microscopy. RT-qPCR and Western blot assay were conducted to detect expression levels of DICER, let-7i-5p, autophagy-related proteins, and the PI3K/AKT/mTOR pathway-related proteins. The dual luciferase reporter gene assay was implemented to confirm the targeted binding of DICER and let-7i-5p. RESULTS DICER was highly expressed in DDP-resistant NSCLC tissues and cells, and DICER could target and negatively regulate the expression of let-7i-5p. DDP treatment could inhibit the viability and promote cell apoptosis of A549/DDP cells. Downregulation of DICER in A549/DDP cells exhibited a decrease of cell viability, a decreased ratio of LC3-II/LC3-I and autophagosomes, together with an elevation of cell apoptosis rate and the phosphorylation levels of PI3K/AKT/mTOR. Treatment of rapamycin and let-7i-5p inhibitor reversed the effects of downregulated DICER in cell viability, ratio of LC3-II/LC3-I, autophagosomes, cell apoptosis rate and the phosphorylation levels of PI3K/AKT/mTOR in A549/DDP cells. CONCLUSION Our research suggests that DICER promotes autophagy and DDP resistance in NSCLC through downregulating let-7i-5p, and inhibits the activation of PI3K/AKT/mTOR pathway.
Collapse
|
36
|
Zare A, Fardid R, Tamadon GH, Mosleh-Shirazi MA. miR-155, miR-21, and let-7a Expressions in MCF-10A and MCF-7 Cell Lines after Low to High Dose Irradiation. CELL JOURNAL 2021; 23:532-537. [PMID: 34837680 PMCID: PMC8588820 DOI: 10.22074/cellj.2021.7411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/08/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Ionizing radiation is a tremendous risk factor for cancer development. MicroRNAs (miRNAs) are regulators that utilize cell pathways, which are implicated in human cancer prognosis. In addition, miRNAs respond to anti-cancer therapy and proliferation after irradiation. However, the changes in miRNA expression profiles in response to irradiation have not been comprehensively analysed. The present study was designed to assess potential changes that occur in miRNA expression following irradiation. MATERIALS AND METHODS In this experimental study, we used quantitative real-time polymerase chain reaction (qRTPCR) to measure the expressions of miR-155, miR-21, and let-7a in MCF-10A (normal breast cells) and MCF-7 (breast cancer cells) six hours after the cells were exposed to five different irradiation doses (50, 100, 400, 2000, and 4000 mGY). RESULTS After irradiation from the low to high doses, we observed an upsurge in miR-155 (more than 100%) expression and reduction in let-7a (more than 87%) expression. However, there was an increase and a reduction in miR-21 expression (more than 100%). CONCLUSION Irradiation can play an important role in cancer development in normal breast cells (MCF-10A) at low dose irradiation. However, the results showed little difference at high doses of radiation.
Collapse
Affiliation(s)
- Afsaneh Zare
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fardid
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran,Ionizing and Non-Ionizing Radiation Protection Research Centre, School of Paramedical Sciences, Shiraz University of Medical
Sciences, Shiraz, Iran,P.O.Box: 71348-14336Department of RadiologySchool of Paramedical SciencesShiraz University of
Medical SciencesShirazIran
| | - Gholam Hossein Tamadon
- Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran,Diagnostic Laboratory Sciences and Technology Research Centre, School of Paramedical Sciences, Shiraz University of Medical
Sciences, Shiraz, Iran
| | - Mohammad Amin Mosleh-Shirazi
- Ionizing and Non-Ionizing Radiation Protection Research Centre, School of Paramedical Sciences, Shiraz University of Medical
Sciences, Shiraz, Iran,Physics Unit, Department of Radio-Oncology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
37
|
Anelli L, Zagaria A, Specchia G, Musto P, Albano F. Dysregulation of miRNA in Leukemia: Exploiting miRNA Expression Profiles as Biomarkers. Int J Mol Sci 2021; 22:ijms22137156. [PMID: 34281210 PMCID: PMC8269043 DOI: 10.3390/ijms22137156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Micro RNAs (miRNAs) are a class of small non-coding RNAs that have a crucial role in cellular processes such as differentiation, proliferation, migration, and apoptosis. miRNAs may act as oncogenes or tumor suppressors; therefore, they prevent or promote tumorigenesis, and abnormal expression has been reported in many malignancies. The role of miRNA in leukemia pathogenesis is still emerging, but several studies have suggested using miRNA expression profiles as biomarkers for diagnosis, prognosis, and response to therapy in leukemia. In this review, the role of miRNAs most frequently involved in leukemia pathogenesis is discussed, focusing on the class of circulating miRNAs, consisting of cell-free RNA molecules detected in several body fluids. Circulating miRNAs could represent new potential non-invasive diagnostic and prognostic biomarkers of leukemia that are easy to isolate and characterize. The dysregulation of some miRNAs involved in both myeloid and lymphoid leukemia, such as miR-155, miR-29, let-7, and miR-15a/miR-16-1 clusters is discussed, showing their possible employment as therapeutic targets.
Collapse
Affiliation(s)
- Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
| | - Giorgina Specchia
- School of Medicine, University of Bari ‘Aldo Moro’, 70100 Bari, Italy;
| | - Pellegrino Musto
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
- Correspondence: ; Tel.: +39(0)-80-547-8031; Fax: +39-(0)80-559-3471
| |
Collapse
|
38
|
Bonner MA, Morales-Hernández A, Zhou S, Ma Z, Condori J, Wang YD, Fatima S, Palmer LE, Janke LJ, Fowler S, Sorrentino BP, McKinney-Freeman S. 3' UTR-truncated HMGA2 overexpression induces non-malignant in vivo expansion of hematopoietic stem cells in non-human primates. Mol Ther Methods Clin Dev 2021; 21:693-701. [PMID: 34141824 PMCID: PMC8181581 DOI: 10.1016/j.omtm.2021.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
Vector-mediated mutagenesis remains a major safety concern for many gene therapy clinical protocols. Indeed, lentiviral-based gene therapy treatments of hematologic disease can result in oligoclonal blood reconstitution in the transduced cell graft. Specifically, clonal expansion of hematopoietic stem cells (HSCs) highly expressing HMGA2, a chromatin architectural factor found in many human cancers, is reported in patients undergoing gene therapy for hematologic diseases, raising concerns about the safety of these integrations. Here, we show for the first time in vivo multilineage and multiclonal expansion of non-human primate HSCs expressing a 3' UTR-truncated version of HMGA2 without evidence of any hematologic malignancy >7 years post-transplantation, which is significantly longer than most non-human gene therapy pre-clinical studies. This expansion is accompanied by an increase in HSC survival, cell cycle activation of downstream progenitors, and changes in gene expression led by the upregulation of IGF2BP2, a mRNA binding regulator of survival and proliferation. Thus, we conclude that prolonged ectopic expression of HMGA2 in hematopoietic progenitors is not sufficient to drive hematologic malignancy and is not an acute safety concern in lentiviral-based gene therapy clinical protocols.
Collapse
Affiliation(s)
- Melissa A. Bonner
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | | - Sheng Zhou
- Experimental Cell Therapeutics Lab, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zhijun Ma
- Department of Bone Marrow Transplant and Cell Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jose Condori
- Experimental Cell Therapeutics Lab, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Soghra Fatima
- Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Lance E. Palmer
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Laura J. Janke
- Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stephanie Fowler
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Brian P. Sorrentino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
39
|
Yoshida K, Yamamoto Y, Ochiya T. miRNA signaling networks in cancer stem cells. Regen Ther 2021; 17:1-7. [PMID: 33598508 PMCID: PMC7848775 DOI: 10.1016/j.reth.2021.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs) are a small cell subpopulation in many cancer types and are involved in various processes of tumor progression, such as initiation, metastasis and recurrence. The distinguished features of CSCs include a variety of biological properties, including self-renewal, multidifferentiation, stemness marker expression, and resistance to chemotherapy and radiotherapy. Despite their great potential of clinical importance, the CSC signaling pathways are not well understood at the molecular level. MicroRNAs (miRNAs) are a class of endogenous noncoding RNAs that play an important role in the regulation of several cellular, physiological, and developmental processes. Aberrant miRNA expression is associated with many human diseases, including cancer. miRNAs have been implicated in the regulation of CSC properties; therefore, a better understanding of miRNA-induced modulation of CSC gene expression could aid in the identification of promising biomarkers and therapeutic targets. In the present review, we summarize the major findings of the impacts of miRNAs on CSC signaling networks; we then discuss the recent advances that have improved our understanding of CSC regulation by miRNA-mediated signaling networks and that may lead to the development of miRNA therapeutics specifically targeting CSCs.
Collapse
Affiliation(s)
- Kosuke Yoshida
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
40
|
Javadi M, Rad JS, Farashah MSG, Roshangar L. An Insight on the Role of Altered Function and Expression of Exosomes and MicroRNAs in Female Reproductive Diseases. Reprod Sci 2021; 29:1395-1407. [PMID: 33825167 DOI: 10.1007/s43032-021-00556-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Exosomes are small bilayer-lipid membrane vesicles secreted by living cells that are able to transfer regulatory molecules and genetic information from one cell to another. These vesicles are enriched with several nucleic acids including mRNAs, microRNAs (miRNAs), other non-coding RNAs, as well as proteins and lipids. Alterations in the exosomal content and functions are observed in numerous reproductive diseases in both animals and human cases. MicroRNAs, a class of small endogenous RNA molecules, can negatively regulate gene expression at the post-transcription level. Aberrant microRNA expression has been reported in multiple human reproductive diseases such as polycystic ovary syndrome, preeclampsia, uterine leiomyomata, ovarian cancer, endometriosis, and Asherman's syndrome. This study focuses to review recent research on alterations of microRNA expression and the role of exosomes in female reproductive diseases. It has been demonstrated that exosomes may be a potential therapeutic approach in various female reproductive diseases. In addition, changes in expression of microRNAs act as molecular biomarkers for diagnosis of several reproductive diseases in women, and regulation of their expression can potentially reduce infertility.
Collapse
Affiliation(s)
- Maryam Javadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Gholami Farashah
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
41
|
Wang H, Chirshev E, Hojo N, Suzuki T, Bertucci A, Pierce M, Perry C, Wang R, Zink J, Glackin CA, Ioffe YJ, Unternaehrer JJ. The Epithelial-Mesenchymal Transcription Factor SNAI1 Represses Transcription of the Tumor Suppressor miRNA let-7 in Cancer. Cancers (Basel) 2021; 13:cancers13061469. [PMID: 33806868 PMCID: PMC8004805 DOI: 10.3390/cancers13061469] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary When cells undergo epithelial–mesenchymal transition (EMT) they gain characteristics of stem cells. We investigated the mechanism by which the EMT transcription factor SNAI1 induces stem cell features. In these studies, we observed that SNAI1 represses a microRNA that maintains differentiation, let-7. This microRNA is lost in cancer, and its loss correlates with poor prognosis. In breast, pancreatic, and ovarian cancer cell lines the cell stemness in increased by SNAI1 overexpression and reduced by SNAI1 knockdown. We extended the ovarian cancer results to patient-derived cells, and to a mouse xenograft model. In mice, we used nanoparticles to deliver small RNAs (RNAi) targeting SNAI1, resulting in restoration of let-7 levels, inhibition of stemness, and reduced tumor burden. Our studies validate nanoparticle-delivered RNAi targeting SNAI1 as a clinically relevant approach. Abstract We aimed to determine the mechanism of epithelial–mesenchymal transition (EMT)-induced stemness in cancer cells. Cancer relapse and metastasis are caused by rare stem-like cells within tumors. Studies of stem cell reprogramming have linked let-7 repression and acquisition of stemness with the EMT factor, SNAI1. The mechanisms for the loss of let-7 in cancer cells are incompletely understood. In four carcinoma cell lines from breast cancer, pancreatic cancer, and ovarian cancer and in ovarian cancer patient-derived cells, we analyzed stem cell phenotype and tumor growth via mRNA, miRNA, and protein expression, spheroid formation, and growth in patient-derived xenografts. We show that treatment with EMT-promoting growth factors or SNAI1 overexpression increased stemness and reduced let-7 expression, while SNAI1 knockdown reduced stemness and restored let-7 expression. Rescue experiments demonstrate that the pro-stemness effects of SNAI1 are mediated via let-7. In vivo, nanoparticle-delivered siRNA successfully knocked down SNAI1 in orthotopic patient-derived xenografts, accompanied by reduced stemness and increased let-7 expression, and reduced tumor burden. Chromatin immunoprecipitation demonstrated that SNAI1 binds the promoters of various let-7 family members, and luciferase assays revealed that SNAI1 represses let-7 transcription. In conclusion, the SNAI1/let-7 axis is an important component of stemness pathways in cancer cells, and this study provides a rationale for future work examining this axis as a potential target for cancer stem cell-specific therapies.
Collapse
Affiliation(s)
- Hanmin Wang
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA; (H.W.); (E.C.); (N.H.); (T.S.); (A.B.); (C.P.)
| | - Evgeny Chirshev
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA; (H.W.); (E.C.); (N.H.); (T.S.); (A.B.); (C.P.)
| | - Nozomi Hojo
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA; (H.W.); (E.C.); (N.H.); (T.S.); (A.B.); (C.P.)
| | - Tise Suzuki
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA; (H.W.); (E.C.); (N.H.); (T.S.); (A.B.); (C.P.)
| | - Antonella Bertucci
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA; (H.W.); (E.C.); (N.H.); (T.S.); (A.B.); (C.P.)
| | - Michael Pierce
- Department of Biology, California State University San Bernardino, San Bernardino, CA 92407, USA;
| | - Christopher Perry
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA; (H.W.); (E.C.); (N.H.); (T.S.); (A.B.); (C.P.)
| | - Ruining Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; (R.W.); (J.Z.)
| | - Jeffrey Zink
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; (R.W.); (J.Z.)
| | | | - Yevgeniya J. Ioffe
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA;
| | - Juli J. Unternaehrer
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA; (H.W.); (E.C.); (N.H.); (T.S.); (A.B.); (C.P.)
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Correspondence: ; Tel.: +1-909-558-7691; Fax: +1-909-558-4887
| |
Collapse
|
42
|
Mills WT, Nassar NN, Ravindra D, Li X, Meffert MK. Multi-Level Regulatory Interactions between NF-κB and the Pluripotency Factor Lin28. Cells 2020; 9:E2710. [PMID: 33348917 PMCID: PMC7767241 DOI: 10.3390/cells9122710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022] Open
Abstract
An appreciation for the complex interactions between the NF-κB transcription factor and the Lin28 RNA binding protein/let-7 microRNA pathways has grown substantially over the past decade. Both the NF-κB and Lin28/let-7 pathways are master regulators impacting cell survival, growth and proliferation, and an understanding of how interfaces between these pathways participate in governing pluripotency, progenitor differentiation, and neuroplastic responses remains an emerging area of research. In this review, we provide a concise summary of the respective pathways and focus on the function of signaling interactions at both the transcriptional and post-transcriptional levels. Regulatory loops capable of providing both reinforcing and extinguishing feedback have been described. We highlight convergent findings in disparate biological systems and indicate future directions for investigation.
Collapse
Affiliation(s)
- William T. Mills
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Noor N. Nassar
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Deepa Ravindra
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Xinbei Li
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Mollie K. Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
43
|
Xu J, Fang X, Long L, Wang S, Qian S, Lyu J. HMGA2 promotes breast cancer metastasis by modulating Hippo-YAP signaling pathway. Cancer Biol Ther 2020; 22:5-11. [PMID: 33307962 DOI: 10.1080/15384047.2020.1832429] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Breast cancer is the most common cancer in women, and triple-negative breast cancer (TNBC) accounts for about 15-20% of all breast cancer. High mobility group AT-hook 2 (HMGA2) is overexpressed in some tumors and closely associated with patients' prognosis. However, the mechanisms involved in the regulation of HMGA2 in TNBC still remain unclear. METHODS In this study, HMGA2 level in TNBC cell lines was analyzed by western blot. After knockdown of HMGA2 expression by RNA interference in TNBC cell lines MDA-MB-231 and SUM149, wound healing and transwell assays were conducted to examine the effects of HMGA2 on migration and invasion. Tumor metastasis was assessed in amouse xenograft model invivo. Furthermore, expression levels of epithelial-mesenchymal transition (EMT) biomarkers and involvement of the Hippo-YAP pathway were detected by western blot. RESULTS Compared to normal breast epithelial cells, the expression levels of HMGA2 were significantly increased in TNBC cell lines (all P< .05). Downregulation of HMGA2 dramatically inhibited the migration and invasion of MDA-MB-231 and SUM149 cells (all P< .01) invitro, and suppressed the tumor metastasis of nude mice xenograft model invivo. Western blot analysis revealed alterations in EMT biomarkers: the expression of mesenchymal markers N-cadherin, Vimentin and Snail were decreased, while the expression of epithelial marker E-cadherin was increased. Downregulated expression of HMGA2 attenuated Hippo-YAP related protein expression and the stability of YAP. CONCLUSIONS HMGA2 is highly expressed in TNBC cells. Downregulation of HMGA2 inhibits the migration and invasion of TNBC and invivo tumor metastasis mediated through inhibition of EMT and Hippo-YAP pathway.
Collapse
Affiliation(s)
- Jianxin Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Xuejiao Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Luye Long
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Sixuan Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Shihan Qian
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| |
Collapse
|
44
|
Shen C, Li J, Che G. Prognostic value of let-7 in lung cancer: systematic review and meta-analysis. Transl Cancer Res 2020; 9:6354-6361. [PMID: 35117243 PMCID: PMC8799185 DOI: 10.21037/tcr-20-1240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/12/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide and the overall survival of patients with non-small cell lung cancer has not been improved. Let-7 family has been shown to act as tumor suppressors by inhibiting oncogenes and key regulators of mitogenic pathways, while far fewer clinical studies addressing the association between let-7 expression and the disease prognosis have been published up to date. Therefore, our meta-analysis aims to determine the prognostic significance of let-7 expression in lung cancer patients. METHODS PubMed, EMBASE, the Web of Science and China National Knowledge Infrastructure (CNKI) databases were searched for full-text literature citations. We applied the hazard ratio (HR) with 95% confidence interval (CI) as the appropriate summarized statistics. Q-test and I2 statistic were used to estimate the level of heterogeneity. The publication bias was detected by Begg's test and Egger's test. RESULTS Seven eligible studies involving 2,262 patients were selected for this meta-analysis. The combined HR for the seven eligible studies was 0.61 (95% CI: 0.53-0.70, P<0.00001) and heterogeneity of overall prognosis was relatively high (I2=76.4%, P=0.000). We conducted a further subgroup analysis, including an evaluation of the relationship between let-7 expression, lung cancer pathology, race, and sample size. All the results revealed that a significantly low let-7 expression in patients was an indicator of poor survival. Neither Begg's test nor Egger's test found publication bias in any analysis. CONCLUSIONS The present evidence indicates that the low let-7 expression can be considered as a significant predictor of worse prognosis in patients with lung cancer. The findings of our meta-analysis may be further confirmed in the future by the use of more updated review pooling and more relevant investigations.
Collapse
Affiliation(s)
- Cheng Shen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jue Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Sun Y, Chen H, Ye H, Liang W, Lam KK, Cheng B, Lu Y, Jiang C. Nudt21-mediated alternative polyadenylation of HMGA2 3'-UTR impairs stemness of human tendon stem cell. Aging (Albany NY) 2020; 12:18436-18452. [PMID: 32979259 PMCID: PMC7585117 DOI: 10.18632/aging.103771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/06/2020] [Indexed: 01/24/2023]
Abstract
Tendon-derived stem cells (TSCs) play a primary role in tendon physiology, pathology, as well as tendon repair and regeneration after injury. TSCs are often exposed to mechanical loading-related cellular stresses such as oxidative stress, resulting in loss of stemness and multipotent differentiation potential. Cytoprotective autophagy has previously been identified as an important mechanism to protect human TSCs (hTSCs) from oxidative stress induced impairments. In this study, we found that high-mobility AT-hook 2 (HMGA2) overexpression protects hTSCs against H2O2-induced loss of stemness through autophagy activation. Evidentially, H2O2 treatment increases the expression of Nudt21, a protein critical to polyadenylation site selection in alternative polyadenylation (APA) of mRNA transcripts. This leads to increased cleavage and polyadenylation of HMGA2 3'-UTR at the distal site, resulting in increased HMGA2 silencing by the microRNA let-7 and reduced HMGA2 expression. In conclusion, Nudt21-regulated APA of HMGA2 3'-UTR and subsequent HMGA2 downregulation mediates oxidative stress induced hTSC impairments.
Collapse
Affiliation(s)
- Yangbai Sun
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hua Chen
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Hui Ye
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenqing Liang
- Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang, China
| | - Kun-kuan Lam
- Department of Orthopaedic Surgery and Sports Medicine, University Hospital of Macau University of Science and Technology, Macau 999078, China
| | - Biao Cheng
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, Shanghai 200072, China
| | - Yong Lu
- Department of Radiology, Rui Jin Hospital, Lu Wan Branch, School of Medicine, Shanghai Jiaotong University, Shanghai 200020, China
| | - Chaoyin Jiang
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai 200233, China,Department of Orthopedic Surgery, Haikou Orthopedic and Diabetes Hospital of Shanghai Sixth People's Hospital, Hainan 570300, China
| |
Collapse
|
46
|
Wu Y, Wang X, Xu F, Zhang L, Wang T, Fu X, Jin T, Zhang W, Ye L. The regulation of acetylation and stability of HMGA2 via the HBXIP-activated Akt-PCAF pathway in promotion of esophageal squamous cell carcinoma growth. Nucleic Acids Res 2020; 48:4858-4876. [PMID: 32313942 PMCID: PMC7229824 DOI: 10.1093/nar/gkaa232] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/02/2020] [Accepted: 04/12/2020] [Indexed: 12/16/2022] Open
Abstract
High-mobility group AT-hook 2 (HMGA2) is an architectural transcription factor that plays essential roles in embryonic development and cancer progression. However, the mechanism of HMGA2 regulation remains largely uncharacterized. Here, we demonstrate that HMGA2 can be modulated by hepatitis B X-interacting protein (HBXIP), an oncogenic transcriptional coactivator, in esophageal squamous cell carcinoma (ESCC). HMGA2 expression was positively associated with HBXIP expression in clinical ESCC tissues, and their high levels were associated with advanced tumor stage and reduced overall and disease-free survival. We found that oncogenic HBXIP could posttranslationally upregulate HMGA2 protein level in ESCC cells. HBXIP induced HMGA2 acetylation at the lysine 26 (K26), resulting in HMGA2 protein accumulation. In this process, HBXIP increased the acetyltransferase p300/CBP-associated factor (PCAF) phosphorylation and activation via the Akt pathway, then PCAF directly interacted with HMGA2, leading to HMGA2 acetylation in the cells. HMGA2 K26 acetylation enhanced its DNA binding capacity and blocked its ubiquitination and then inhibited proteasome-dependent degradation. Functionally, HBXIP-stabilized HMGA2 could promote ESCC cell growth in vitro and in vivo. Strikingly, aspirin suppressed ESCC growth by inhibiting HBXIP and HMGA2. Collectively, our findings disclose a new mechanism for the posttranslational regulation of HMGA2 mediated by HBXIP in ESCC.
Collapse
Affiliation(s)
- Yue Wu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Xue Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Feifei Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Lu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Tianjiao Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Xueli Fu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Tianzhi Jin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Weiying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Lihong Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
47
|
Chirshev E, Hojo N, Bertucci A, Sanderman L, Nguyen A, Wang H, Suzuki T, Brito E, Martinez SR, Castañón C, Mirshahidi S, Vazquez ME, Wat P, Oberg KC, Ioffe YJ, Unternaehrer JJ. Epithelial/mesenchymal heterogeneity of high-grade serous ovarian carcinoma samples correlates with miRNA let-7 levels and predicts tumor growth and metastasis. Mol Oncol 2020; 14:2796-2813. [PMID: 32652647 PMCID: PMC7607177 DOI: 10.1002/1878-0261.12762] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/16/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Patient‐derived samples present an advantage over current cell line models of high‐grade serous ovarian cancer (HGSOC) that are not always reliable and phenotypically faithful models of in vivo HGSOC. To improve upon cell line models of HGSOC, we set out to characterize a panel of patient‐derived cells and determine their epithelial and mesenchymal characteristics. We analyzed RNA and protein expression levels in patient‐derived xenograft (PDX) models of HGSOC, and functionally characterized these models using flow cytometry, wound healing assays, invasion assays, and spheroid cultures. Besides in vitro work, we also evaluated the growth characteristics of PDX in vivo (orthotopic PDX). We found that all samples had hybrid characteristics, covering a spectrum from an epithelial‐to‐mesenchymal state. Samples with a stronger epithelial phenotype were more active in self‐renewal assays and more tumorigenic in orthotopic xenograft models as compared to samples with a stronger mesenchymal phenotype, which were more migratory and invasive. Additionally, we observed an inverse association between microRNA let‐7 (lethal‐7) expression and stemness, consistent with the loss of let‐7 being an important component of the cancer stem cell phenotype. We observed that lower let‐7 levels were associated with the epithelial state and a lower epithelial mesenchymal transition (EMT) score, more efficient spheroid and tumor formation, and increased sensitivity to platinum‐based chemotherapy. Surprisingly, in these HGSOC cells, stemness could be dissociated from invasiveness: Cells with lower let‐7 levels were more tumorigenic, but less migratory, and with a lower EMT score, than those with higher let‐7 levels. We conclude that let‐7 expression and epithelial/mesenchymal state are valuable predictors of HGSOC proliferation, in vitro self‐renewal, and tumor burden in vivo.
Collapse
Affiliation(s)
- Evgeny Chirshev
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA.,Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nozomi Hojo
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Antonella Bertucci
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Linda Sanderman
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA.,Biology Department, California State University San Bernardino, San Bernardino, CA, USA
| | - Anthony Nguyen
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Hanmin Wang
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Tise Suzuki
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Emmanuel Brito
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA.,Biology Department, California State University San Bernardino, San Bernardino, CA, USA
| | - Shannalee R Martinez
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Christine Castañón
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA.,Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Saied Mirshahidi
- Biospecimen Laboratory, Division of Microbiology & Molecular Genetics, Department of Basic Sciences, Loma Linda University Cancer Center, Loma Linda University, Loma Linda, CA, USA
| | - Marcelo E Vazquez
- Department of Radiation Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Pamela Wat
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Kerby C Oberg
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Yevgeniya J Ioffe
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Juli J Unternaehrer
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA.,Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Gynecology and Obstetrics, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
48
|
Role of nitric oxide in the response to photooxidative stress in prostate cancer cells. Biochem Pharmacol 2020; 182:114205. [PMID: 32828802 DOI: 10.1016/j.bcp.2020.114205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
A continuous state of oxidative stress during inflammation contributes to the development of 25% of human cancers. Epithelial and inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) that can damage DNA. ROS/RNS have biological implications in both chemoresistance and tumor recurrence. As several clinically employed anticancer drugs can generate ROS/RNS, we have addressed herein how inducible nitric oxide synthase and nitric oxide (iNOS/•NO) affect the molecular pathways implicated in the tumor response to oxidative stress. To mimic the oxidative stress associated with chemotherapy, we used a photosensitizer (pheophorbide a) that can generate ROS/RNS in a controlled manner. We investigated how iNOS/•NO modulates the tumor response to oxidative stress by involving the NF-κB and Nrf2 molecular pathways. We found that low levels of iNOS induce the development of a more aggressive tumor population, leading to survival, recurrence and resistance. By contrast, high levels of iNOS/•NO sensitize tumor cells to oxidative treatment, causing cell growth arrest. Our analysis showed that NF-κB and Nrf2, which are activated in response to oxidative stress, communicate with each other through RKIP. For this critical role, RKIP could be an interesting target for anticancer drugs. Our study provides insight into the complex signaling response of cancer cells to oxidative treatments as well as new possibilities for the rational design of new therapeutic strategies.
Collapse
|
49
|
Alshamrani AA. Roles of microRNAs in Ovarian Cancer Tumorigenesis: Two Decades Later, What Have We Learned? Front Oncol 2020; 10:1084. [PMID: 32850313 PMCID: PMC7396563 DOI: 10.3389/fonc.2020.01084] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is one of the top gynecological malignancies that cause deaths among females in the United States. At the molecular level, significant progress has been made in our understanding of ovarian cancer development and progression. MicroRNAs (miRNAs) are short, single-stranded, highly conserved non-coding RNA molecules (19–25 nucleotides) that negatively regulate target genes post-transcriptionally. Over the last two decades, mounting evidence has demonstrated the aberrant expression of miRNAs in different human malignancies, including ovarian carcinomas. Deregulated miRNAs can have profound impacts on various cancer hallmarks by repressing tumor suppressor genes. This review will discuss up-to-date knowledge of how the aberrant expression of miRNAs and their targeted genes drives ovarian cancer initiation, proliferation, survival, and resistance to chemotherapies. Understanding the mechanisms by which these miRNAs affect these hallmarks should allow the development of novel therapeutic strategies to treat these lethal malignancies.
Collapse
Affiliation(s)
- Ali A Alshamrani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
50
|
Gao C, Wei J, Tang T, Huang Z. Role of microRNA-33a in malignant cells. Oncol Lett 2020; 20:2537-2556. [PMID: 32782572 PMCID: PMC7399786 DOI: 10.3892/ol.2020.11835] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/27/2020] [Indexed: 01/17/2023] Open
Abstract
Cancer causes most of the mortality and morbidity worldwide, with a significant increase in incidence during recent years. MicroRNAs (miRNAs/miRs) are non-coding small RNAs capable of regulating gene expression. They regulate crucial cellular processes, including proliferation, differentiation, metastasis and apoptosis. Therefore, abnormal miRNA expression is associated with multiple diseases, including cancer. There are two types of cancer-associated miRNAs, oncogenic and tumor suppressor miRNAs, depending on their roles and expression patterns in cancer. Accordingly, miRNAs are considered to be targets for cancer prevention and treatment. miR-33a controls cellular cholesterol uptake and synthesis, which are both closely associated with carcinogenesis. The present review thoroughly describes the roles of miR-33a in more than a dozen types of cancer and the underlying mechanisms. Accordingly, the present review may serve as a guide for researchers studying the involvement of miR-33a in diverse cancer settings.
Collapse
Affiliation(s)
- Chang Gao
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Jiaen Wei
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Tingting Tang
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Zunnan Huang
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|