1
|
Ma Y, Mao Y, Luo S, Zuo W, Gao P, Ying B. Development and characterization of a miRNA-responsive circular RNA expression system with cell type specificity. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102450. [PMID: 39967851 PMCID: PMC11834102 DOI: 10.1016/j.omtn.2025.102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
Although microRNAs (miRNAs) binding to messenger RNAs (mRNAs) generally results in mRNA degradation and reduced protein expression, their interaction with the internal ribosome entry sites (IRES) of certain RNA viruses enhances viral amplification and expression. In this study, we utilized the natural hepatitis C cirus (HCV) 5' UTR region, which contains miR-122 binding sites, as the IRES of circular RNA (circRNAs) constructs. These circRNAs allowed inducible expression of downstream genes with high specificity in response to both exogenous and endogenous miR-122. Substituting the miR-122 binding sites with those for other miRNAs also resulted in the translational activation of circRNAs by their respective miRNAs in transfected cells. Furthermore, mouse models administered intravenously with lipid nanoparticle-formulated circRNAs containing miRNA binding sites (circRNA-LNP) exhibited higher expression in targeted tissues compared to those with mutated binding sites. Our research introduces a novel strategy for tissue-specific regulation of circRNA expression, potentially broadening the therapeutic applications of circRNAs and paving the way for more precise and effective treatments in gene therapy.
Collapse
Affiliation(s)
- Yu Ma
- Suzhou Abogen Biosciences Company, Suzhou 215123, China
| | - Yuqiao Mao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Shirui Luo
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Wenjie Zuo
- Suzhou Abogen Biosciences Company, Suzhou 215123, China
| | - Peng Gao
- Suzhou Abogen Biosciences Company, Suzhou 215123, China
| | - Bo Ying
- Suzhou Abogen Biosciences Company, Suzhou 215123, China
| |
Collapse
|
2
|
Downie Ruiz Velasco A, Parsons A, Heatley M, Martin AG, Smart A, Shah N, Jopling C. MicroRNA biogenesis is broadly disrupted by inhibition of the splicing factor SF3B1. Nucleic Acids Res 2024; 52:9210-9229. [PMID: 38884273 PMCID: PMC11347158 DOI: 10.1093/nar/gkae505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/03/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
In animals, microRNA (miRNA) biogenesis begins with cotranscriptional cleavage of the primary (pri-)miRNA by the Microprocessor complex. Cotranscriptional splicing has been shown to influence Microprocessor cleavage when miRNAs are hosted in introns of protein-coding pri-miRNAs, but the impact of splicing on production of miRNAs hosted in long non-coding (lnc)RNAs is largely unknown. Here, we investigated the role of splicing in the biogenesis of miR-122, an lncRNA-hosted, highly expressed, medically important, liver-specific miRNA. We found that splicing inhibition by the SF3B1 inhibitor pladienolide B (PlaB) led to strong and rapid reduction in transcription of endogenous, but not plasmid-encoded, pri-miR-122, resulting in reduced production of mature miR-122. To allow detection of rapid changes in miRNA biogenesis despite the high stability of mature miRNAs, we used SLAMseq to globally quantify the effects of short-term splicing inhibition on miRNA synthesis. We observed an overall decrease in biogenesis of mature miRNAs following PlaB treatment. Surprisingly, miRNAs hosted in exons and introns were similarly affected. Together, this study provides new insights into the emerging role of splicing in transcription, demonstrating novel biological importance in promotion of miR-122 biogenesis from an lncRNA, and shows that SF3B1 is important for global miRNA biogenesis.
Collapse
Affiliation(s)
| | - Aimee L Parsons
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Matthew C Heatley
- The Digital Research Service, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Athena R G Martin
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alfredo D Smart
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Niraj Shah
- The Digital Research Service, University of Nottingham, Nottingham, NG7 2RD, UK
| | | |
Collapse
|
3
|
Cousineau SE, Camargo C, Sagan SM. Poly(rC)-Binding Protein 2 Does Not Directly Participate in HCV Translation or Replication, but Rather Modulates Genome Packaging. Viruses 2024; 16:1220. [PMID: 39205194 PMCID: PMC11359930 DOI: 10.3390/v16081220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The hepatitis C virus (HCV) co-opts many cellular factors-including proteins and microRNAs-to complete its life cycle. A cellular RNA-binding protein, poly(rC)-binding protein 2 (PCBP2), was previously shown to bind to the hepatitis C virus (HCV) genome; however, its precise role in the viral life cycle remained unclear. Herein, using the HCV cell culture (HCVcc) system and assays that isolate each step of the viral life cycle, we found that PCBP2 does not have a direct role in viral entry, translation, genome stability, or HCV RNA replication. Rather, our data suggest that PCBP2 depletion only impacts viral RNAs that can undergo genome packaging. Taken together, our data suggest that endogenous PCBP2 modulates the early steps of genome packaging, and therefore only has an indirect effect on viral translation and RNA replication, likely by increasing the translating/replicating pool of viral RNAs to the detriment of virion assembly.
Collapse
Affiliation(s)
- Sophie E. Cousineau
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Carolina Camargo
- Department of Microbiology & Immunology, University of British Columbia, 2350 Health Science Mall, Room 4.520, Vancouver, BC V6T 1Z3, Canada
| | - Selena M. Sagan
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Microbiology & Immunology, University of British Columbia, 2350 Health Science Mall, Room 4.520, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Fernández-Ruiz M, López-García Á, Valverde-Manso A, Parra P, Rodríguez-Goncer I, Ruiz-Merlo T, López-Medrano F, González E, Polanco N, San Juan R, Andrés A, Aguado JM, Redondo N. Human microRNA sequencing and cytomegalovirus infection risk after kidney transplantation. Am J Transplant 2024; 24:1180-1192. [PMID: 38311311 DOI: 10.1016/j.ajt.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Cytomegalovirus (CMV)-seropositive kidney transplant recipients (KTRs) with detectable CMV-specific cell-mediated immunity according to the QuantiFERON-CMV assay (QTF-CMV) are expected to have adequate immune protection. Nevertheless, a proportion of patients still develop CMV infection. Human microRNAs (hsa-miRNAs) are promising biomarkers owing to their high stability and easy detection. We performed whole blood miRNA sequencing in samples coincident with the first reactive QTF-CMV after transplantation or cessation of antiviral prophylaxis to investigate hsa-miRNAs differentially expressed according to the occurrence of CMV infection. One-year incidence of CMV viremia was 55.0% (median interval from miRNA sequencing sampling of 29 days). After qPCR validation, we found that hsa-miR-125a-5p was downregulated in KTRs developing CMV viremia within the next 90 days (ΔCt: 7.9 ± 0.9 versus 7.3 ± 1.0; P = .011). This difference was more evident among KTRs preemptively managed (8.2 ± 0.9 versus 6.9 ± 0.8; P < .001), with an area under the receiver operating characteristic curve of 0.865. Functional enrichment analysis identified hsa-miR-125a-5p targets involved in cell cycle regulation and apoptosis, including the BAK1 gene, which was significantly downregulated in KTRs developing CMV viremia. In conclusion, hsa-miR-125a-5p may serve as biomarker to identify CMV-seropositive KTRs at risk of CMV reactivation despite detectable CMV-CMI.
Collapse
Affiliation(s)
- Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Ángela López-García
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Andrea Valverde-Manso
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Patricia Parra
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Isabel Rodríguez-Goncer
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Tamara Ruiz-Merlo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Esther González
- Department of Nephrology, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Natalia Polanco
- Department of Nephrology, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Rafael San Juan
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Amado Andrés
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain; Department of Nephrology, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Natalia Redondo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
5
|
So CW, Sourisseau M, Sarwar S, Evans MJ, Randall G. Roles of epidermal growth factor receptor, claudin-1 and occludin in multi-step entry of hepatitis C virus into polarized hepatoma spheroids. PLoS Pathog 2023; 19:e1011887. [PMID: 38157366 PMCID: PMC10756512 DOI: 10.1371/journal.ppat.1011887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
The multi-step process of hepatitis C virus (HCV) entry is facilitated by various host factors, including epidermal growth factor receptor (EGFR) and the tight junction proteins claudin-1 (CLDN1) and occludin (OCLN), which are thought to function at later stages of the HCV entry process. Using single particle imaging of HCV infection of polarized hepatoma spheroids, we observed that EGFR performs multiple functions in HCV entry, both phosphorylation-dependent and -independent. We previously observed, and in this study confirmed, that EGFR is not required for HCV migration to the tight junction. EGFR is required for the recruitment of clathrin to HCV in a phosphorylation-independent manner. EGFR phosphorylation is required for virion internalization at a stage following the recruitment of clathrin. HCV entry activates the RAF-MEK-ERK signaling pathway downstream of EGFR phosphorylation. This signaling pathway regulates the sorting and maturation of internalized HCV into APPL1- and EEA1-associated early endosomes, which form the site of virion uncoating. The tight junction proteins, CLDN1 and OCLN, function at two distinct stages of HCV entry. Despite its appreciated function as a "late receptor" in HCV entry, CLDN1 is required for efficient HCV virion accumulation at the tight junction. Huh-7.5 cells lacking CLDN1 accumulate HCV virions primarily at the initial basolateral surface. OCLN is required for the late stages of virion internalization. This study produced further insight into the unusually complex HCV endocytic process.
Collapse
Affiliation(s)
- Chui-Wa So
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Marion Sourisseau
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Shamila Sarwar
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Matthew J. Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
6
|
Mirzaei R, Karampoor S, Korotkova NL. The emerging role of miRNA-122 in infectious diseases: Mechanisms and potential biomarkers. Pathol Res Pract 2023; 249:154725. [PMID: 37544130 DOI: 10.1016/j.prp.2023.154725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
microRNAs (miRNAs) are small, non-coding RNA molecules that play crucial regulatory roles in numerous cellular processes. Recent investigations have highlighted the significant involvement of miRNA-122 (miR-122) in the pathogenesis of infectious diseases caused by diverse pathogens, encompassing viral, bacterial, and parasitic infections. In the context of viral infections, miR-122 exerts regulatory control over viral replication by binding to the viral genome and modulating the host's antiviral response. For instance, in hepatitis B virus (HBV) infection, miR-122 restricts viral replication, while HBV, in turn, suppresses miR-122 expression. Conversely, miR-122 interacts with the hepatitis C virus (HCV) genome, facilitating viral replication. Regarding bacterial infections, miR-122 has been found to regulate host immune responses by influencing inflammatory cytokine production and phagocytosis. In Vibrio anguillarum infections, there is a significant reduction in miR-122 expression, contributing to the pathophysiology of bacterial infections. Toll-like receptor 14 (TLR14) has been identified as a novel target gene of miR-122, affecting inflammatory and immune responses. In the context of parasitic infections, miR-122 plays a crucial role in regulating host lipid metabolism and immune responses. For example, during Leishmania infection, miR-122-containing extracellular vesicles from liver cells are unable to enter infected macrophages, leading to a suppression of the inflammatory response. Furthermore, miR-122 exhibits promise as a potential biomarker for various infectious diseases. Its expression level in body fluids, particularly in serum and plasma, correlates with disease severity and treatment response in patients affected by HCV, HBV, and tuberculosis. This paper also discusses the potential of miR-122 as a biomarker in infectious diseases. In summary, this review provides a comprehensive and insightful overview of the emerging role of miR-122 in infectious diseases, detailing its mechanism of action and potential implications for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Nadezhda Lenoktovna Korotkova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia; Federal State Budgetary Educational Institution of Higher Education "Privolzhsky Research Medical University" of the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH Russia), Russia
| |
Collapse
|
7
|
Itell HL, Humes D, Overbaugh J. Several cell-intrinsic effectors drive type I interferon-mediated restriction of HIV-1 in primary CD4 + T cells. Cell Rep 2023; 42:112556. [PMID: 37227817 PMCID: PMC10592456 DOI: 10.1016/j.celrep.2023.112556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Type I interferon (IFN) upregulates proteins that inhibit HIV within infected cells. Prior studies have identified IFN-stimulated genes (ISGs) that impede lab-adapted HIV in cell lines, yet the ISG(s) that mediate IFN restriction in HIV target cells, primary CD4+ T cells, are unknown. Here, we interrogate ISG restriction of primary HIV in CD4+ T cells by performing CRISPR-knockout screens with a custom library that specifically targets ISGs expressed in CD4+ T cells. Our investigation identifies previously undescribed HIV-restricting ISGs (HM13, IGFBP2, LAP3) and finds that two factors characterized in other HIV infection models (IFI16 and UBE2L6) mediate IFN restriction in T cells. Inactivation of these five ISGs in combination further diminishes IFN's protective effect against diverse HIV strains. This work demonstrates that IFN restriction of HIV is multifaceted, resulting from several effectors functioning collectively, and establishes a primary cell ISG screening model to identify both single and combinations of HIV-restricting ISGs.
Collapse
Affiliation(s)
- Hannah L Itell
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA 98195, USA; Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Daryl Humes
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
8
|
Cubillas C, Sandoval Del Prado LE, Goldacker S, Fujii C, Pinski AN, Zielke J, Wang D. The alg-1 Gene Is Necessary for Orsay Virus Replication in Caenorhabditis elegans. J Virol 2023; 97:e0006523. [PMID: 37017532 PMCID: PMC10134801 DOI: 10.1128/jvi.00065-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/10/2023] [Indexed: 04/06/2023] Open
Abstract
The establishment of the Orsay virus-Caenorhabditis elegans infection model has enabled the identification of host factors essential for virus infection. Argonautes are RNA interacting proteins evolutionary conserved in the three domains of life that are key components of small RNA pathways. C. elegans encodes 27 argonautes or argonaute-like proteins. Here, we determined that mutation of the argonaute-like gene 1, alg-1, results in a greater than 10,000-fold reduction in Orsay viral RNA levels, which could be rescued by ectopic expression of alg-1. Mutation in ain-1, a known interactor of ALG-1 and component of the RNA-induced silencing complex, also resulted in a significant reduction in Orsay virus levels. Viral RNA replication from an endogenous transgene replicon system was impaired by the lack of ALG-1, suggesting that ALG-1 plays a role during the replication stage of the virus life cycle. Orsay virus RNA levels were unaffected by mutations in the ALG-1 RNase H-like motif that ablate the slicer activity of ALG-1. These findings demonstrate a novel function of ALG-1 in promoting Orsay virus replication in C. elegans. IMPORTANCE All viruses are obligate intracellular parasites that recruit the cellular machinery of the host they infect to support their own proliferation. We used Caenorhabditis elegans and its only known infecting virus, Orsay virus, to identify host proteins relevant for virus infection. We determined that ALG-1, a protein previously known to be important in influencing worm life span and the expression levels of thousands of genes, is required for Orsay virus infection of C. elegans. This is a new function attributed to ALG-1 that was not recognized before. In humans, it has been shown that AGO2, a close relative protein to ALG-1, is essential for hepatitis C virus replication. This demonstrates that through evolution from worms to humans, some proteins have maintained similar functions, and consequently, this suggests that studying virus infection in a simple worm model has the potential to provide novel insights into strategies used by viruses to proliferate.
Collapse
Affiliation(s)
- Ciro Cubillas
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Luis Enrique Sandoval Del Prado
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Sydney Goldacker
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Chika Fujii
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Amanda N. Pinski
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jon Zielke
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David Wang
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Ali FE, Abd El-Aziz MK, Sharab EI, Bakr AG. Therapeutic interventions of acute and chronic liver disorders: A comprehensive review. World J Hepatol 2023; 15:19-40. [PMID: 36744165 PMCID: PMC9896501 DOI: 10.4254/wjh.v15.i1.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/17/2022] [Accepted: 12/21/2022] [Indexed: 01/16/2023] Open
Abstract
Liver disorders are one of the most common pathological problems worldwide. It affects more than 1.5 billion worldwide. Many types of hepatic cells have been reported to be involved in the initiation and propagation of both acute and chronic liver diseases, including hepatocytes, Kupffer cells, sinusoidal endothelial cells, and hepatic stellate cells (HSCs). In addition, oxidative stress, cytokines, fibrogenic factors, microRNAs, and autophagy are also involved. Understanding the molecular mechanisms of liver diseases leads to discovering new therapeutic interventions that can be used in clinics. Recently, antioxidant, anti-inflammatory, anti-HSCs therapy, gene therapy, cell therapy, gut microbiota, and nanoparticles have great potential for preventing and treating liver diseases. Here, we explored the recent possible molecular mechanisms involved in the pathogenesis of acute and chronic liver diseases. Besides, we overviewed the recent therapeutic interventions that targeted liver diseases and summarized the recent studies concerning liver disorders therapy.
Collapse
Affiliation(s)
- Fares Em Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | | | - Elham I Sharab
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Adel G Bakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
10
|
Megahed F, Tabll A, Atta S, Ragheb A, Smolic R, Petrovic A, Smolic M. MicroRNAs: Small Molecules with Significant Functions, Particularly in the Context of Viral Hepatitis B and C Infection. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:173. [PMID: 36676797 PMCID: PMC9862007 DOI: 10.3390/medicina59010173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
A MicroRNA (miRNA) is defined as a small molecule of non-coding RNA (ncRNA). Its molecular size is about 20 nucleotides (nt), and it acts on gene expression's regulation at the post-transcription level through binding to the 3'untranslated regions (UTR), coding sequences, or 5'UTR of the target messenger RNAs (mRNAs), which leads to the suppression or degradation of the mRNA. In recent years, a huge evolution has identified the origin and function of miRNAs, focusing on their important effects in research and clinical applications. For example, microRNAs are key players in HCV infection and have important host cellular factors required for HCV replication and cell growth. Altered expression of miRNAs affects the pathogenicity associated with HCV infection through regulating different signaling pathways that control HCV/immunity interactions, proliferation, and cell death. On the other hand, circulating miRNAs can be used as novel biomarkers and diagnostic tools for HCV pathogenesis and early therapeutic response. Moreover, microRNAs (miRNA) have been involved in hepatitis B virus (HBV) gene expression and advanced antiviral discovery. They regulate HBV/HCV replication and pathogenesis with different pathways involving facilitation, inhibition, activation of the immune system (innate and adaptive), and epigenetic modifications. In this short review, we will discuss how microRNAs can be used as prognostic, diagnostic, and therapeutic tools, especially for chronic hepatitis viruses (HBV and HCV), as well as how they could be used as new biomarkers during infection and advanced treatment.
Collapse
Affiliation(s)
- Fayed Megahed
- Nucleic Acid Research Department, Genetic Engineering and Biotechnological Research Institute (GEBRI), City for Scientific Researches and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Ashraf Tabll
- Microbial Biotechnology Department, National Research Centre, Giza 12622, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Shimaa Atta
- Department of Immunology, Theodor Bilharz Research Institute, Cairo 12411, Egypt
| | - Ameera Ragheb
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| |
Collapse
|
11
|
Emanuelson C, Ankenbruck N, Kumbhare R, Thomas M, Connelly C, Baktash Y, Randall G, Deiters A. Transcriptional Inhibition of MicroRNA miR-122 by Small Molecules Reduces Hepatitis C Virus Replication in Liver Cells. J Med Chem 2022; 65:16338-16352. [PMID: 36449366 PMCID: PMC9942140 DOI: 10.1021/acs.jmedchem.2c01141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
MicroRNAs (miRNAs) are noncoding RNA molecules of 22-24 nucleotides that are estimated to regulate thousands of genes in humans, and their dysregulation has been implicated in many diseases. MicroRNA-122 (miR-122) is the most abundant miRNA in the liver and has been linked to the development of hepatocellular carcinoma and hepatitis C virus (HCV) infection. Its role in these diseases renders miR-122 a potential target for small-molecule therapeutics. Here, we report the discovery of a new sulfonamide class of small-molecule miR-122 inhibitors from a high-throughput screen using a luciferase-based reporter assay. Structure-activity relationship (SAR) studies and secondary assays led to the development of potent and selective miR-122 inhibitors. Preliminary mechanism-of-action studies suggest a role in the promoter-specific transcriptional inhibition of miR-122 expression through direct binding to the liver-enriched transcription factor hepatocyte nuclear factor 4α. Importantly, the developed inhibitors significantly reduce HCV replication in human liver cells.
Collapse
Affiliation(s)
- Cole Emanuelson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nicholas Ankenbruck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Rohan Kumbhare
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Meryl Thomas
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Colleen Connelly
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yasmine Baktash
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
12
|
Generation of PCBP1-deficient pigs using CRISPR/Cas9-mediated gene editing. iScience 2022; 25:105268. [PMID: 36274935 PMCID: PMC9579030 DOI: 10.1016/j.isci.2022.105268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/16/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Classical swine fever virus (CSFV), a classic swine fever pathogen, causes severe economic losses worldwide. Poly (rC)-binding protein 1 (PCBP1), which interacts with Npro of CSFV, plays a vital role in CSFV growth. We are the first to report the generation of PCBP1-deficient pigs via gene-editing technology. The PCBP1-deficient pigs exhibited normal birth weight and reproductive-performance traits and developed normally. Viral challenge experiments indicated that primary cells isolated from F0- and F1-generation pigs exhibited significantly reduced CSFV infection. Additional mechanistic exploration further confirmed that the PCBP1 deficiency-mediated antiviral effect is related to the activation of type I interferon (IFN). Besides showing that a gene-editing strategy could be used to generate PCBP1-deficient pigs, our study introduces a valuable animal model for further investigating the infection mechanisms of CSFV that will help to develop better antiviral solutions. Reduced CSFV infection in PCBP1-deficient cells is related to activated ISGs expression PCBP1-deficient pigs were successfully generated via gene-editing technology Primary cells isolated from PCBP1-deficient pigs exhibited reduced CSFV infection
Collapse
|
13
|
Panigrahi M, Palmer MA, Wilson JA. MicroRNA-122 Regulation of HCV Infections: Insights from Studies of miR-122-Independent Replication. Pathogens 2022; 11:1005. [PMID: 36145436 PMCID: PMC9504723 DOI: 10.3390/pathogens11091005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Despite the advancement in antiviral therapy, Hepatitis C remains a global health challenge and one of the leading causes of hepatitis related deaths worldwide. Hepatitis C virus, the causative agent, is a positive strand RNA virus that requires a liver specific microRNA called miR-122 for its replication. Unconventional to the canonical role of miRNAs in translation suppression by binding to 3'Untranslated Region (UTR) of messenger RNAs, miR-122 binds to two sites on the 5'UTR of viral genome and promotes viral propagation. In this review, we describe the unique relationship between the liver specific microRNA and HCV, the current knowledge on the mechanisms by which the virus uses miR-122 to promote the virus life cycle, and how miR-122 impacts viral tropism and pathogenesis. We will also discuss the use of anti-miR-122 therapy and its impact on viral evolution of miR-122-independent replication. This review further provides insight into how viruses manipulate host factors at the initial stage of infection to establish a successful infection.
Collapse
Affiliation(s)
| | | | - Joyce A. Wilson
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
14
|
Harris J, Borg NA. The multifaceted roles of NLRP3-modulating proteins in virus infection. Front Immunol 2022; 13:987453. [PMID: 36110852 PMCID: PMC9468583 DOI: 10.3389/fimmu.2022.987453] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022] Open
Abstract
The innate immune response to viruses is critical for the correct establishment of protective adaptive immunity. Amongst the many pathways involved, the NLRP3 [nucleotide-binding oligomerisation domain (NOD)-like receptor protein 3 (NLRP3)] inflammasome has received considerable attention, particularly in the context of immunity and pathogenesis during infection with influenza A (IAV) and SARS-CoV-2, the causative agent of COVID-19. Activation of the NLRP3 inflammasome results in the secretion of the proinflammatory cytokines IL-1β and IL-18, commonly coupled with pyroptotic cell death. While this mechanism is protective and key to host defense, aberrant NLRP3 inflammasome activation causes a hyperinflammatory response and excessive release of cytokines, both locally and systemically. Here, we discuss key molecules in the NLRP3 pathway that have also been shown to have significant roles in innate and adaptive immunity to viruses, including DEAD box helicase X-linked (DDX3X), vimentin and macrophage migration inhibitory factor (MIF). We also discuss the clinical opportunities to suppress NLRP3-mediated inflammation and reduce disease severity.
Collapse
Affiliation(s)
- James Harris
- Cell Biology Assays Team, Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia
- Centre for Inflammatory diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Natalie A. Borg
- Immunity and Immune Evasion Laboratory, Chronic Infectious and Inflammatory Diseases Research, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
15
|
Brai A, Trivisani CI, Poggialini F, Pasqualini C, Vagaggini C, Dreassi E. DEAD-Box Helicase DDX3X as a Host Target against Emerging Viruses: New Insights for Medicinal Chemical Approaches. J Med Chem 2022; 65:10195-10216. [PMID: 35899912 DOI: 10.1021/acs.jmedchem.2c00755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years, globalization, global warming, and population aging have contributed to the spread of emerging viruses, such as coronaviruses (COVs), West Nile (WNV), Dengue (DENV), and Zika (ZIKV). The number of reported infections is increasing, and considering the high viral mutation rate, it is conceivable that it will increase significantly in the coming years. The risk caused by viruses is now more evident due to the COVID-19 pandemic, which highlighted the need to find new broad-spectrum antiviral agents able to tackle the present pandemic and future epidemics. DDX3X helicase is a host factor required for viral replication. Selective inhibitors have been identified and developed into broad-spectrum antivirals active against emerging pathogens, including SARS-CoV-2 and most importantly against drug-resistant strains. This perspective describes the inhibitors identified in the last years, highlighting their therapeutic potential as innovative broad-spectrum antivirals.
Collapse
Affiliation(s)
- Annalaura Brai
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, I-53100 Siena Italy
| | | | - Federica Poggialini
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, I-53100 Siena Italy
| | - Claudia Pasqualini
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, I-53100 Siena Italy
| | - Chiara Vagaggini
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, I-53100 Siena Italy
| | - Elena Dreassi
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, I-53100 Siena Italy
| |
Collapse
|
16
|
Lal A, Galvao Ferrarini M, Gruber AJ. Investigating the Human Host-ssRNA Virus Interaction Landscape Using the SMEAGOL Toolbox. Viruses 2022; 14:1436. [PMID: 35891416 PMCID: PMC9317827 DOI: 10.3390/v14071436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022] Open
Abstract
Viruses have evolved numerous mechanisms to exploit the molecular machinery of their host cells, including the broad spectrum of host RNA-binding proteins (RBPs). However, the RBP interactomes of most viruses are largely unknown. To shed light on the interaction landscape of RNA viruses with human host cell RBPs, we have analysed 197 single-stranded RNA (ssRNA) viral genome sequences and found that the majority of ssRNA virus genomes are significantly enriched or depleted in motifs for specific human RBPs, suggesting selection pressure on these interactions. To facilitate tailored investigations and the analysis of genomes sequenced in future, we have released our methodology as a fast and user-friendly computational toolbox named SMEAGOL. Our resources will contribute to future studies of specific ssRNA virus-host cell interactions and support the identification of antiviral drug targets.
Collapse
Affiliation(s)
| | - Mariana Galvao Ferrarini
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France;
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, 69622 Villeurbanne, France
| | - Andreas J. Gruber
- Department of Biology, University of Konstanz, Universitaetsstrasse 10, D-78464 Konstanz, Germany
| |
Collapse
|
17
|
Branyan TE, Selvamani A, Park MJ, Korula KE, Kosel KF, Srinivasan R, Sohrabji F. Functional Assessment of Stroke-Induced Regulation of miR-20a-3p and Its Role as a Neuroprotectant. Transl Stroke Res 2022; 13:432-448. [PMID: 34570349 PMCID: PMC9046320 DOI: 10.1007/s12975-021-00945-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/12/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022]
Abstract
MicroRNAs have gained popularity as a potential treatment for many diseases, including stroke. This study identifies and characterizes a specific member of the miR-17-92 cluster, miR-20a-3p, as a possible stroke therapeutic. A comprehensive microRNA screening showed that miR-20a-3p was significantly upregulated in astrocytes of adult female rats, which typically have better stroke outcomes, while it was profoundly downregulated in astrocytes of middle-aged females and adult and middle-aged males, groups that typically have more severe stroke outcomes. Assays using primary human astrocytes and neurons show that miR-20a-3p treatment alters mitochondrial dynamics in both cell types. To assess whether stroke outcomes could be improved by elevating astrocytic miR-20a-3p, we created a tetracycline (Tet)-induced recombinant adeno-associated virus (rAAV) construct where miR-20a-3p was located downstream a glial fibrillary acidic protein promoter. Treatment with doxycycline induced miR-20-3p expression in astrocytes, reducing mortality and modestly improving sensory motor behavior. A second Tet-induced rAAV construct was created in which miR-20a-3p was located downstream of a neuron-specific enolase (NSE) promoter. These experiments demonstrate that neuronal expression of miR-20a-3p is vastly more neuroprotective than astrocytic expression, with animals receiving the miR-20a-3p vector showing reduced infarction and sensory motor improvement. Intravenous injections, which are a therapeutically tractable treatment route, with miR-20a-3p mimic 4 h after middle cerebral artery occlusion (MCAo) significantly improved stroke outcomes including infarct volume and sensory motor performance. Improvement was not observed when miR-20a-3p was given immediately or 24 h after MCAo, identifying a unique delayed therapeutic window. Overall, this study identifies a novel neuroprotective microRNA and characterizes several key pathways by which it can improve stroke outcomes.
Collapse
Affiliation(s)
- Taylor E Branyan
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA
| | - Amutha Selvamani
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Min Jung Park
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Kriti E Korula
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Kelby F Kosel
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Rahul Srinivasan
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA.
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA.
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
| |
Collapse
|
18
|
Poly(rC)-Binding Protein 1 Limits Hepatitis C Virus Virion Assembly and Secretion. Viruses 2022; 14:v14020291. [PMID: 35215884 PMCID: PMC8877974 DOI: 10.3390/v14020291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/16/2022] Open
Abstract
The hepatitis C virus (HCV) co-opts numerous cellular elements, including proteins, lipids, and microRNAs, to complete its viral life cycle. The cellular RNA-binding protein, poly(rC)-binding protein 1 (PCBP1), was previously reported to bind to the 5′ untranslated region (UTR) of the HCV genome; however, its importance in the viral life cycle has remained unclear. Herein, we sought to clarify the role of PCBP1 in the HCV life cycle. Using the HCV cell culture (HCVcc) system, we found that knockdown of endogenous PCBP1 resulted in an overall decrease in viral RNA accumulation, yet resulted in an increase in extracellular viral titers. To dissect PCBP1’s specific role in the HCV life cycle, we carried out assays for viral entry, translation, genome stability, RNA replication, as well as virion assembly and secretion. We found that PCBP1 knockdown did not directly affect viral entry, translation, RNA stability, or RNA replication, but resulted in an overall increase in infectious particle secretion. This increase in virion secretion was evident even when viral RNA synthesis was inhibited, and blocking virus secretion could partially restore the viral RNA accumulation decreased by PCBP1 knockdown. We therefore propose a model where endogenous PCBP1 normally limits virion assembly and secretion, which increases viral RNA accumulation in infected cells by preventing the departure of viral genomes packaged into virions. Overall, our findings improve our understanding of how cellular RNA-binding proteins influence viral genomic RNA utilization during the HCV life cycle.
Collapse
|
19
|
A Novel Small Molecule Inhibits Hepatitis C Virus Propagation in Cell Culture. Microbiol Spectr 2021; 9:e0043921. [PMID: 34319169 PMCID: PMC8552720 DOI: 10.1128/spectrum.00439-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Hepatitis C virus (HCV) can cause acute and chronic infection that is associated with considerable liver-related morbidity and mortality. In recent years, there has been a shift in the treatment paradigm with the discovery and approval of agents that target specific proteins vital for viral replication. We employed a cell culture-adapted strain of HCV and human hepatoma-derived cells lines to test the effects of our novel small-molecule compound (AO13) on HCV. Virus inhibition was tested by analyzing RNA replication, protein expression, and virus production in virus-infected cells treated with AO13. Treatment with AO13 inhibited virus spread in cell culture and showed a 100-fold reduction in the levels of infectious virus production. AO13 significantly reduced the level of viral RNA contained within cell culture fluids and reduced the cellular levels of HCV core protein, suggesting that the compound might act on a late step in the viral life cycle. Finally, we observed that AO13 did not affect the release of infectious virus from infected cells. Docking studies and molecular dynamics analyses suggested that AO13 might target the NS5B RNA polymerase, however, real-time RT-PCR analyses of cellular levels of HCV RNA showed only an ∼2-fold reduction in viral RNA levels in the presence of AO13. Taken together, this study revealed that AO13 showed consistent, but low-level antiviral effect against HCV, although the mechanism of action remains unclear. IMPORTANCE The discovery of curative antiviral drugs for a chronic disease such as HCV infection has encouraged drug discovery in the context of other viruses for which no curative drugs currently exist. Since we currently face a novel virus that has caused a pandemic, the need for new antiviral agents is more apparent than ever. We describe here a novel compound that shows a modest antiviral effect against HCV that could serve as a lead compound for future drug development against other important viruses such as SARS-CoV-2.
Collapse
|
20
|
Bastami M, Masotti A, Saadatian Z, Daraei A, Farjam M, Ghanbariasad A, Vahed SZ, Eyvazi S, Mansoori Y, Nariman-Saleh-Fam Z. Critical roles of microRNA-196 in normal physiology and non-malignant diseases: Diagnostic and therapeutic implications. Exp Mol Pathol 2021; 122:104664. [PMID: 34166682 DOI: 10.1016/j.yexmp.2021.104664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/26/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) have emerged as a critical component of regulatory networks that modulate and fine-tune gene expression in a post-transcriptional manner. The microRNA-196 family is encoded by three loci in the human genome, namely hsa-mir-196a-1, hsa-mir-196a-2, and hsa-mir-196b. Increasing evidence supports the roles of different components of this miRNA family in regulating key cellular processes during differentiation and development, ranging from inflammation and differentiation of stem cells to limb development and remodeling and structure of adipose tissue. This review first discusses about the genomic context and regulation of this miRNA family and then take a bird's eye view on the updated list of its target genes and their biological processes to obtain insights about various functions played by members of the microRNA-196 family. We then describe evidence supporting the involvement of the human microRNA-196 family in regulating critical cellular processes both in physiological and non-malignant inflammatory conditions, highlighting recent seminal findings that carry implications for developing novel therapeutic or diagnostic strategies.
Collapse
Affiliation(s)
- Milad Bastami
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome 00146, Italy
| | - Zahra Saadatian
- Department of Genetics, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mojtaba Farjam
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Ghanbariasad
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Yaser Mansoori
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Medical Genetics Department, Fasa University of Medical Sciences, Fasa, Iran.
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Jeong S, Lee YS, Kim K, Yoon JS, Kim S, Ha J, Kang I, Choe W. 2-O-Methylhonokiol Suppresses HCV Replication via TRAF6-Mediated NF-kB Activation. Int J Mol Sci 2021; 22:ijms22126499. [PMID: 34204438 PMCID: PMC8234778 DOI: 10.3390/ijms22126499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023] Open
Abstract
Hepatitis C virus (HCV) is associated with various liver diseases. Chronic HCV infection is characterized by an abnormal host immune response. Therefore, it is speculated that to suppress HCV, a well-regulated host immune response is necessary. 2-O-methylhonokiol was identified by the screening of anti-HCV compounds using Renilla luciferase assay in Huh 7.5/Con 1 genotype 1b replicon cells. Here, we investigated the mechanism by which 2-O-methylhonokiol treatment inhibits HCV replication using real-time PCR. Our data shows that treatment with 2-O-methylhonokiol activated innate immune responses via nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathway. Additionally, the immunoprecipitation result shows that treatment with 2-O-methylhonokiol augmented tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) by preventing p62 from binding to TRAF6, resulting in reduced autophagy caused by HCV. Finally, we reproduced our data with the conditioned media from 2-O-methylhonokiol-treated cells. These findings strongly suggest that 2-O-methylhonokiol enhances the host immune response and suppresses HCV replication via TRAF6-mediated NF-kB activation.
Collapse
Affiliation(s)
- Suyun Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.J.); (Y.-s.L.); (J.-s.Y.); (S.K.); (J.H.); (I.K.)
| | - Young-seok Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.J.); (Y.-s.L.); (J.-s.Y.); (S.K.); (J.H.); (I.K.)
| | - Kiyoon Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Ji-su Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.J.); (Y.-s.L.); (J.-s.Y.); (S.K.); (J.H.); (I.K.)
| | - Sungsoo Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.J.); (Y.-s.L.); (J.-s.Y.); (S.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.J.); (Y.-s.L.); (J.-s.Y.); (S.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.J.); (Y.-s.L.); (J.-s.Y.); (S.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.J.); (Y.-s.L.); (J.-s.Y.); (S.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Correspondence: ; Tel.: +82-2-961-0940
| |
Collapse
|
22
|
Abstract
DEAD (Glu-Asp-Ala-Glu) box RNA helicases have been proven to contribute to antiviral innate immunity. The DDX21 RNA helicase was identified as a nuclear protein involved in rRNA processing and RNA unwinding. DDX21 was also proven to be the scaffold protein in the complex of DDX1-DDX21-DHX36, which senses double-strand RNA and initiates downstream innate immunity. Here, we identified that DDX21 undergoes caspase-dependent cleavage after virus infection and treatment with RNA/DNA ligands, especially for RNA virus and ligands. Caspase-3/6 cleaves DDX21 at D126 and promotes its translocation from the nucleus to the cytoplasm in response to virus infection. The cytoplasmic cleaved DDX21 negatively regulates the interferon beta (IFN-β) signaling pathway by suppressing the formation of the DDX1-DDX21-DHX36 complex. Thus, our data identify DDX21 as a regulator of immune balance and most importantly uncover a potential role of DDX21 cleavage in the innate immune response to virus.
Collapse
|
23
|
HCV Proteins Modulate the Host Cell miRNA Expression Contributing to Hepatitis C Pathogenesis and Hepatocellular Carcinoma Development. Cancers (Basel) 2021; 13:cancers13102485. [PMID: 34069740 PMCID: PMC8161081 DOI: 10.3390/cancers13102485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary According to the last estimate by the World Health Organization (WHO), more than 71 million individuals have chronic hepatitis C worldwide. The persistence of HCV infection leads to chronic hepatitis, which can evolve into liver cirrhosis and ultimately into hepatocellular carcinoma (HCC). Although the pathogenic mechanisms are not fully understood, it is well established that an interplay between host cell factors, including microRNAs (miRNA), and viral components exist in all the phases of the viral infection and replication. Those interactions establish a complex equilibrium between host cells and HCV and participate in multiple mechanisms characterizing hepatitis C pathogenesis. The present review aims to describe the role of HCV structural and non-structural proteins in the modulation of cellular miRNA during HCV infection and pathogenesis. Abstract Hepatitis C virus (HCV) genome encodes for one long polyprotein that is processed by cellular and viral proteases to generate 10 polypeptides. The viral structural proteins include the core protein, and the envelope glycoproteins E1 and E2, present at the surface of HCV particles. Non-structural (NS) proteins consist of NS1, NS2, NS3, NS4A, NS4B, NS5a, and NS5b and have a variable function in HCV RNA replication and particle assembly. Recent findings evidenced the capacity of HCV virus to modulate host cell factors to create a favorable environment for replication. Indeed, increasing evidence has indicated that the presence of HCV is significantly associated with aberrant miRNA expression in host cells, and HCV structural and non-structural proteins may be responsible for these alterations. In this review, we summarize the recent findings on the role of HCV structural and non-structural proteins in the modulation of host cell miRNAs, with a focus on the molecular mechanisms responsible for the cell re-programming involved in viral replication, immune system escape, as well as the oncogenic process. In this regard, structural and non-structural proteins have been shown to modulate the expression of several onco-miRNAs or tumor suppressor miRNAs.
Collapse
|
24
|
Yoneyama H, Morishita A, Iwama H, Fujita K, Masaki T, Tani J, Tadokoro T, Nomura T, Sakamoto T, Oura K, Takuma K, Nakahara M, Mimura S, Deguchi A, Oryu M, Tsutsui K, Himoto T, Shimotohno K, Wakita T, Kobara H, Masaki T. Identification of microRNA associated with the elimination of hepatitis C virus genotype 1b by direct-acting antiviral therapies. J Gastroenterol Hepatol 2021; 36:1126-1135. [PMID: 32839985 DOI: 10.1111/jgh.15224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Direct-acting antiviral (DAA) therapies have been proven to be highly effective for the eradication of hepatitis C virus (HCV) without resistance-associated substitutions (RASs). However, even in cases with no detected RASs, treatment sometimes fails, suggestive of the existence of some host-related factors involved in HCV eradication by DAAs. To explore such factors, we analyzed the serum microRNAs (miRNAs) of patients who received DAA treatment. METHODS The serum miRNA expression levels of 39 patients with chronic HCV infection without any detectable RASs, who achieved sustained virological response with asunaprevir/daclatasvir or grazoprevir/elbasvir therapy, were investigated cyclopedically, using oligonucleotide microarrays. The effects of specific miRNAs on the replication of HCV were measured in the HCV genomic replicon containing Huh-7 hepatoma cells. RESULTS Along with the disappearance of HCV, the expression quantiles of 16 miRNAs in the asunaprevir/daclatasvir group and 18 miRNAs in the grazoprevir/elbasvir group showed a tendency to increase or decrease. Among these molecules, adjustments for multiple testing yielded a significant differential expression at a false discovery rate of less than 5% for only one molecule, hsa-miR-762. Its expression quantile increased after HCV exclusion in all patients who had achieved sustained virological response. Quantitative polymerase chain reaction analysis validated a significant increase in the serum hsa-miR-762 after disappearance of HCV. On the contrary, hsa-miR-762 was decreased in the relapse and breakthrough of HCV in DAA failures. Transfection of hsa-miR-762 into cultured HCV-infected hepatocytes significantly decreased HCV-RNA replication. CONCLUSION These data suggest that hsa-miR-762 is one of the host factors participating in HCV exclusion by DAA therapy.
Collapse
Affiliation(s)
- Hirohito Yoneyama
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, Miki, Kagawa, Japan
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Takahiro Masaki
- Department of Laboratory Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Takako Nomura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Teppei Sakamoto
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Kyoko Oura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Kei Takuma
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Mai Nakahara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Shima Mimura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Akihiro Deguchi
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Makoto Oryu
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Kunihiko Tsutsui
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Kagawa, Japan
| | - Kunitada Shimotohno
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Toyama, Tokyo, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| |
Collapse
|
25
|
miR-484 is associated with disease recurrence and promotes migration in prostate cancer. Biosci Rep 2021; 40:222772. [PMID: 32338277 PMCID: PMC7953493 DOI: 10.1042/bsr20191028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 03/20/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND: microRNAs (miRs) regulate the expression of protein-coding genes and play key roles in various biological processes, including development and immunity. However, dysregulation of miR expression is also involved in disease biology, including cancer. METHODS: We utilized The Cancer Genome Atlas (TCGA) and other publicly available databases for miRs and mRNA expression in prostate cancer, selected miR-484 and investigated its role in prostate cancer biology and disease progression using in vitro studies. RESULTS: Our data mining efforts revealed that increased miR-484 in prostate tumors associates with early disease recurrence, while miR-484 expression in human prostate cancer cells enhances cancer cell mobility. Using RNAseq and bioinformatics, we identified candidate target genes of miR-484 and generated a list of potential tumor suppressors. One candidate in this list was PSMG1. We applied luciferase assays and immunoblotting to confirm that miR-484 directly targets PSMG1. Additional in vitro assays with cancer cell lines showed that PSMG1 knockdown rescued the reduction in mobility brought on by miR-484 inhibition, pointing toward the existence of a miR-484–PSMG1 axis in prostate cancer. CONCLUSIONS: We hypothesize that miR-484 is an oncogene in the prostate that increases cancer cell mobility, with PSMG1 being a mir-484 target in this process.
Collapse
|
26
|
Gu W, Ueda Y, Dansako H, Satoh S, Kato N. Antiviral mechanism of preclinical antimalarial compounds possessing multiple antiviral activities. FASEB Bioadv 2021; 3:356-373. [PMID: 33977235 PMCID: PMC8103717 DOI: 10.1096/fba.2020-00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/18/2021] [Accepted: 02/09/2021] [Indexed: 11/15/2022] Open
Abstract
We previously found that N‐89 and its derivative, N‐251, which are being developed as antimalarial compounds, showed multiple antiviral activities including hepatitis C virus (HCV). In this study, we focused on the most characterized anti‐HCV activity of N‐89(N‐251) to clarify their antiviral mechanisms. We first prepared cells exhibiting resistance to N‐89(N‐251) than the parental cells by serial treatment of HCV–RNA‐replicating parental cells with N‐89(N‐251). Then, we newly generated HCV–RNA‐replicating cells with the replacement of HCV–RNAs derived from N‐89(N‐251)‐resistant cells and parental cells. Using these cells, we examined the degree of inhibition of HCV–RNA replication by N‐89(N‐251) and found that the host and viral factors contributed almost equally to the resistance to N‐89(N‐251). To further examine the contribution of the host factors, we selected several candidate genes by cDNA microarray analysis and found that the upregulated expression of at least RAC2 and CKMT1B genes independently and differently contributed to the acquisition of an N‐89(N‐251)‐resistant phenotype. For the viral factors, we selected several mutation candidates by the genetic comparative analysis of HCV–RNAs and showed that at least one M414I mutation in the HCV NS5B contributed to the resistance to N‐89. Moreover, we demonstrated that the combination of host factors (RAC2 and/or CKMT1B) and a viral factor (M414I mutation) additively increased the resistance to N‐89. In summary, we identified the host and viral factors contributing to the acquisition of N‐89(N‐251)‐resistance in HCV–RNA replication. These findings will be useful for clarification of the antiviral mechanism of N‐89(N‐251).
Collapse
Affiliation(s)
- Weilin Gu
- Department of Tumor Virology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Youki Ueda
- Department of Tumor Virology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Hiromichi Dansako
- Department of Tumor Virology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Shinya Satoh
- Department of Tumor Virology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Nobuyuki Kato
- Department of Tumor Virology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| |
Collapse
|
27
|
Dual Effects of Let-7b in the Early Stage of Hepatitis C Virus Infection. J Virol 2021; 95:JVI.01800-20. [PMID: 33208444 DOI: 10.1128/jvi.01800-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNA let-7b expression is induced by infection of hepatitis C virus (HCV) and is involved in the regulation of HCV replication by directly targeting the HCV genome. The current study demonstrated that let-7b directly targets negative regulators of type I interferon (IFN) signaling thereby limiting HCV replication in the early stage of HCV infection. Let-7b-regulated genes which are involved in host cellular responses to HCV infection were unveiled by microarray profiling and bioinformatic analyses, followed by various molecular and cellular assays using Huh7 cells expressing wild-type (WT) or the seed region-mutated let-7b. Let-7b targeted the cytokine signaling 1 (SOCS1) protein, a negative regulator of JAK/STAT signaling, which then enhanced STAT1-Y701 phosphorylation leading to increased expression of the downstream interferon-stimulated genes (ISGs). Let-7b augmented retinoic acid-inducible gene I (RIG-I) signaling, but not MDA5, to phosphorylate and nuclear translocate IRF3 leading to increased expression of IFN-β. Let-7b directly targeted the ATG12 and IκB kinase alpha (IKKα) transcripts and reduced the interaction of the ATG5-ATG12 conjugate and RIG-I leading to increased expression of IFN, which may further stimulate JAK/STAT signaling. Let-7b induced by HCV infection elicits dual effects on IFN expression and signaling, along with targeting the coding sequences of NS5B and 5' UTR of the HCV genome, and limits HCV RNA accumulation in the early stage of HCV infection. Controlling let-7b expression is thereby crucial in the intervention of HCV infection.IMPORTANCE HCV is a leading cause of liver disease, with an estimated 71 million people infected worldwide. During HCV infection, type I interferon (IFN) signaling displays potent antiviral and immunomodulatory effects. Host factors, including microRNAs (miRNAs), play a role in upregulating IFN signaling to limit HCV replication. Let-7b is a liver-abundant miRNA that is induced by HCV infection and targets the HCV genome to suppress HCV RNA accumulation. In this study, we demonstrated that let-7b, as a positive regulator of type I IFN signaling, plays dual roles against HCV replication by increasing the expression of IFN and interferon-sensitive response element (ISRE)-driven interferon-stimulated genes (ISGs) in the early stage of HCV infection. This study sheds new insight into understanding the role of let-7b in combatting HCV infection. Clarifying IFN signaling regulated by miRNA during the early phase of HCV infection may help researchers understand the initial defense mechanisms to other RNA viruses.
Collapse
|
28
|
Zitzmann C, Kaderali L, Perelson AS. Mathematical modeling of hepatitis C RNA replication, exosome secretion and virus release. PLoS Comput Biol 2020; 16:e1008421. [PMID: 33151933 PMCID: PMC7671504 DOI: 10.1371/journal.pcbi.1008421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/17/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023] Open
Abstract
Hepatitis C virus (HCV) causes acute hepatitis C and can lead to life-threatening complications if it becomes chronic. The HCV genome is a single plus strand of RNA. Its intracellular replication is a spatiotemporally coordinated process of RNA translation upon cell infection, RNA synthesis within a replication compartment, and virus particle production. While HCV is mainly transmitted via mature infectious virus particles, it has also been suggested that HCV-infected cells can secrete HCV RNA carrying exosomes that can infect cells in a receptor independent manner. In order to gain insight into these two routes of transmission, we developed a series of intracellular HCV replication models that include HCV RNA secretion and/or virus assembly and release. Fitting our models to in vitro data, in which cells were infected with HCV, suggests that initially most secreted HCV RNA derives from intracellular cytosolic plus-strand RNA, but subsequently secreted HCV RNA derives equally from the cytoplasm and the replication compartments. Furthermore, our model fits to the data suggest that the rate of virus assembly and release is limited by host cell resources. Including the effects of direct acting antivirals in our models, we found that in spite of decreasing intracellular HCV RNA and extracellular virus concentration, low level HCV RNA secretion may continue as long as intracellular RNA is available. This may possibly explain the presence of detectable levels of plasma HCV RNA at the end of treatment even in patients that ultimately attain a sustained virologic response. Approximately 70 million people are chronically infected with hepatitis C virus (HCV), which if left untreated may lead to cirrhosis and liver cancer. However, modern drug therapy is highly effective and hepatitis C is the first chronic virus infection that can be cured with short-term therapy in almost all infected individuals. The within-host transmission of HCV occurs mainly via infectious virus particles, but experimental studies suggest that there may be additional receptor-independent cell-to-cell transmission by exosomes that carry the HCV genome. In order to understand the intracellular HCV lifecycle and HCV RNA spread, we developed a series of mathematical models that take both exosomal secretion and viral secretion into account. By fitting these models to in vitro data, we found that secretion of both HCV RNA as well as virus probably occurs and that the rate of virus assembly is likely limited by cellular co-factors on which the virus strongly depends for its own replication. Furthermore, our modeling predicted that the parameters governing the processes in the viral lifecycle that are targeted by direct acting antivirals are the most sensitive to perturbations, which may help explain their ability to cure this infection.
Collapse
Affiliation(s)
- Carolin Zitzmann
- University Medicine Greifswald, Institute of Bioinformatics and Center for Functional Genomics of Microbes, Greifswald, Germany
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Lars Kaderali
- University Medicine Greifswald, Institute of Bioinformatics and Center for Functional Genomics of Microbes, Greifswald, Germany
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
29
|
Elbadawy HM, Mohammed Abdul MI, Aljuhani N, Vitiello A, Ciccarese F, Shaker MA, Eltahir HM, Palù G, Di Antonio V, Ghassabian H, Del Vecchio C, Salata C, Franchin E, Ponterio E, Bahashwan S, Thabet K, Abouzied MM, Shehata AM, Parolin C, Calistri A, Alvisi G. Generation of Combinatorial Lentiviral Vectors Expressing Multiple Anti-Hepatitis C Virus shRNAs and Their Validation on a Novel HCV Replicon Double Reporter Cell Line. Viruses 2020; 12:v12091044. [PMID: 32962117 PMCID: PMC7551853 DOI: 10.3390/v12091044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the introduction of directly acting antivirals (DAAs), for the treatment of hepatitis C virus (HCV) infection, their cost, patient compliance, and viral resistance are still important issues to be considered. Here, we describe the generation of a novel JFH1-based HCV subgenomic replicon double reporter cell line suitable for testing different antiviral drugs and therapeutic interventions. This cells line allowed a rapid and accurate quantification of cell growth/viability and HCV RNA replication, thus discriminating specific from unspecific antiviral effects caused by DAAs or cytotoxic compounds, respectively. By correlating cell number and virus replication, we could confirm the inhibitory effect on the latter of cell over confluency and characterize an array of lentiviral vectors expressing single, double, or triple cassettes containing different combinations of short hairpin (sh)RNAs, targeting both highly conserved viral genome sequences and cellular factors crucial for HCV replication. While all vectors were effective in reducing HCV replication, the ones targeting viral sequences displayed a stronger antiviral effect, without significant cytopathic effects. Such combinatorial platforms as well as the developed double reporter cell line might find application both in setting-up anti-HCV gene therapy approaches and in studies aimed at further dissecting the viral biology/pathogenesis of infection.
Collapse
Affiliation(s)
- Hossein M. Elbadawy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Almadinah Almunawwarah 41477, Saudi Arabia; (H.M.E.); (N.A.); (H.M.E.); (S.B.); (M.M.A.); (A.M.S.)
| | - Mohi I. Mohammed Abdul
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Almadinah Almunawwarah 41477, Saudi Arabia; (H.M.E.); (N.A.); (H.M.E.); (S.B.); (M.M.A.); (A.M.S.)
- Correspondence: (M.I.M.A.); (A.C.); (G.A.)
| | - Naif Aljuhani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Almadinah Almunawwarah 41477, Saudi Arabia; (H.M.E.); (N.A.); (H.M.E.); (S.B.); (M.M.A.); (A.M.S.)
| | - Adriana Vitiello
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
| | - Francesco Ciccarese
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Mohamed A. Shaker
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Almadinah Almunawwarah 41477, Saudi Arabia;
- Pharmaceutics Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Heba M. Eltahir
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Almadinah Almunawwarah 41477, Saudi Arabia; (H.M.E.); (N.A.); (H.M.E.); (S.B.); (M.M.A.); (A.M.S.)
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
| | - Veronica Di Antonio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Hanieh Ghassabian
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
| | - Claudia Del Vecchio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
| | - Elisa Franchin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
| | - Eleonora Ponterio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
- Fondazione Policlinico Universitario "A. Gemelli"—I.R.C.C.S., 00168 Rome, Italy
| | - Saleh Bahashwan
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Almadinah Almunawwarah 41477, Saudi Arabia; (H.M.E.); (N.A.); (H.M.E.); (S.B.); (M.M.A.); (A.M.S.)
| | - Khaled Thabet
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Mekky M. Abouzied
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Almadinah Almunawwarah 41477, Saudi Arabia; (H.M.E.); (N.A.); (H.M.E.); (S.B.); (M.M.A.); (A.M.S.)
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Ahmed M. Shehata
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Almadinah Almunawwarah 41477, Saudi Arabia; (H.M.E.); (N.A.); (H.M.E.); (S.B.); (M.M.A.); (A.M.S.)
- Department of Pharmacology and toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
- Correspondence: (M.I.M.A.); (A.C.); (G.A.)
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
- Correspondence: (M.I.M.A.); (A.C.); (G.A.)
| |
Collapse
|
30
|
Rzeszutek I, Singh A. Small RNAs, Big Diseases. Int J Mol Sci 2020; 21:E5699. [PMID: 32784829 PMCID: PMC7460979 DOI: 10.3390/ijms21165699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023] Open
Abstract
The past two decades have seen extensive research done to pinpoint the role of microRNAs (miRNAs) that have led to discovering thousands of miRNAs in humans. It is not, therefore, surprising to see many of them implicated in a number of common as well as rare human diseases. In this review article, we summarize the progress in our understanding of miRNA-related research in conjunction with different types of cancers and neurodegenerative diseases, as well as their potential in generating more reliable diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Iwona Rzeszutek
- Institute of Biology and Biotechnology, Department of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Aditi Singh
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| |
Collapse
|
31
|
Ghosh S, Chakraborty J, Goswami A, Bhowmik S, Roy S, Ghosh A, Dokania S, Kumari P, Datta S, Chowdhury A, Bhattacharyya SN, Chatterjee R, Banerjee S. A novel microRNA boosts hyper-β-oxidation of fatty acids in liver by impeding CEP350-mediated sequestration of PPARα and thus restricts chronic hepatitis C. RNA Biol 2020; 17:1352-1363. [PMID: 32507013 DOI: 10.1080/15476286.2020.1768353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Imbalance in lipid metabolism induces steatosis in liver during Chronic hepatitis C (CHC). Contribution of microRNAs in regulating lipid homoeostasis and liver disease progression is well established using small RNA-transcriptome data. Owing to the complexity in the development of liver diseases, the existence and functional importance of yet undiscovered regulatory miRNAs in disease pathogenesis was explored in this study using the unmapped sequences of the transcriptome data of HCV-HCC liver tissues following miRDeep2.pl pipeline. MicroRNA-c12 derived from the first intron of LGR5 of chromosome 12 was identified as one of the miRNA like sequences retrieved in this analysis that showed human specific origin. Northern blot hybridization has proved its existence in the hepatic cell line. Enrichment of premiR-c12 in dicer-deficient cells and miR-c12 in Ago2-RISC complex clearly suggested that it followed canonical miRNA biogenesis pathway and accomplished its regulatory function. Expression of this miRNA was quite low in CHC tissues than normal liver implying HCV-proteins might be regulating its biogenesis. Promoter scanning and ChIP analysis further revealed that under expression of p53 and hyper-methylation of STAT3 binding site upon HCV infection restricted its expression in CHC tissues. Centrosomal protein 350 (CEP350), which sequestered PPARα, was identified as one of the targets of miR-c12 using Miranda and validated by luciferase assay/western blot analysis. Furthermore, reduced triglyceride accumulation and enhanced PPARα mediated transcription of β-oxidation genes upon restoration of miR-c12 in liver cells suggested its role in lipid catabolism. Thus this study is reporting miR-c12 for the first time and showed its' protective role during chronic HCV infection.
Collapse
Affiliation(s)
- Suchandrima Ghosh
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | - Joyeeta Chakraborty
- Human Genetics Unit, Indian Statistical Institute , Kolkata, Human Genetics Unit, India
| | - Avijit Goswami
- Department of Molecular Genetics, Indian Institute of Chemical Biology , Kolkata, India
| | - Sayantani Bhowmik
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | - Susree Roy
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | - Amit Ghosh
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | - Sakshi Dokania
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | - Priyanka Kumari
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | - Simanti Datta
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | | | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute , Kolkata, Human Genetics Unit, India
| | - Soma Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| |
Collapse
|
32
|
Sasvari Z, Lin W, Inaba JI, Xu K, Kovalev N, Nagy PD. Co-opted Cellular Sac1 Lipid Phosphatase and PI(4)P Phosphoinositide Are Key Host Factors during the Biogenesis of the Tombusvirus Replication Compartment. J Virol 2020; 94:e01979-19. [PMID: 32269127 PMCID: PMC7307105 DOI: 10.1128/jvi.01979-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/02/2020] [Indexed: 12/19/2022] Open
Abstract
Positive-strand RNA [(+)RNA] viruses assemble numerous membrane-bound viral replicase complexes (VRCs) with the help of viral replication proteins and co-opted host proteins within large viral replication compartments in the cytosol of infected cells. In this study, we found that deletion or depletion of Sac1 phosphatidylinositol 4-phosphate [PI(4)P] phosphatase reduced tomato bushy stunt virus (TBSV) replication in yeast (Saccharomyces cerevisiae) and plants. We demonstrate a critical role for Sac1 in TBSV replicase assembly in a cell-free replicase reconstitution assay. The effect of Sac1 seems to be direct, based on its interaction with the TBSV p33 replication protein, its copurification with the tombusvirus replicase, and its presence in the virus-induced membrane contact sites and within the TBSV replication compartment. The proviral functions of Sac1 include manipulation of lipid composition, sterol enrichment within the VRCs, and recruitment of additional host factors into VRCs. Depletion of Sac1 inhibited the recruitment of Rab5 GTPase-positive endosomes and enrichment of phosphatidylethanolamine in the viral replication compartment. We propose that Sac1 might be a component of the assembly hub for VRCs, likely in collaboration with the co-opted the syntaxin18-like Ufe1 SNARE protein within the TBSV replication compartments. This work also led to demonstration of the enrichment of PI(4)P phosphoinositide within the replication compartment. Reduction in the PI(4)P level due to chemical inhibition in plant protoplasts; depletion of two PI(4)P kinases, Stt4p and Pik1p; or sequestration of free PI(4)P via expression of a PI(4)P-binding protein in yeast strongly inhibited TBSV replication. Altogether, Sac1 and PI(4)P play important proviral roles during TBSV replication.IMPORTANCE Replication of positive-strand RNA viruses depends on recruitment of host components into viral replication compartments or organelles. Using TBSV, we uncovered the critical roles of Sac1 PI(4)P phosphatase and its substrate, PI(4)P phosphoinositide, in promoting viral replication. Both Sac1 and PI(4)P are recruited to the site of viral replication to facilitate the assembly of the viral replicase complexes, which perform viral RNA replication. We found that Sac1 affects the recruitment of other host factors and enrichment of phosphatidylethanolamine and sterol lipids within the subverted host membranes to promote optimal viral replication. In summary, this work demonstrates the novel functions of Sac1 and PI(4)P in TBSV replication in the model host yeast and in plants.
Collapse
Affiliation(s)
- Zsuzsanna Sasvari
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Wenwu Lin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Jun-Ichi Inaba
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Kai Xu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
33
|
Romero-López C, Berzal-Herranz A. The Role of the RNA-RNA Interactome in the Hepatitis C Virus Life Cycle. Int J Mol Sci 2020; 21:1479. [PMID: 32098260 PMCID: PMC7073135 DOI: 10.3390/ijms21041479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/05/2023] Open
Abstract
RNA virus genomes are multifunctional entities endowed with conserved structural elements that control translation, replication and encapsidation, among other processes. The preservation of these structural RNA elements constraints the genomic sequence variability. The hepatitis C virus (HCV) genome is a positive, single-stranded RNA molecule with numerous conserved structural elements that manage different steps during the infection cycle. Their function is ensured by the association of protein factors, but also by the establishment of complex, active, long-range RNA-RNA interaction networks-the so-called HCV RNA interactome. This review describes the RNA genome functions mediated via RNA-RNA contacts, and revisits some canonical ideas regarding the role of functional high-order structures during the HCV infective cycle. By outlining the roles of long-range RNA-RNA interactions from translation to virion budding, and the functional domains involved, this work provides an overview of the HCV genome as a dynamic device that manages the course of viral infection.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, Armilla, 18016 Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, Armilla, 18016 Granada, Spain
| |
Collapse
|
34
|
RK-33 Is a Broad-Spectrum Antiviral Agent That Targets DEAD-Box RNA Helicase DDX3X. Cells 2020; 9:cells9010170. [PMID: 31936642 PMCID: PMC7016805 DOI: 10.3390/cells9010170] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 01/17/2023] Open
Abstract
Viral disease is one of the greatest burdens for human health worldwide, with an urgent need for efficacious antiviral strategies. While antiviral drugs are available, in many cases, they are prone to the development of drug resistance. A way to overcome drug resistance associated with common antiviral therapies is to develop antivirals targeting host cellular co-factors critical to viral replication, such as DEAD-box helicase 3 X-linked (DDX3X), which plays key roles in RNA metabolism and the antiviral response. Here, we use biochemical/biophysical approaches and infectious assays to show for the first time that the small molecule RK-33 has broad-spectrum antiviral action by inhibiting the enzymatic activities of DDX3X. Importantly, we show that RK-33 is efficacious at low micromolar concentrations in limiting infection by human parainfluenza virus type 3 (hPIV-3), respiratory syncytial virus (RSV), dengue virus (DENV), Zika virus (ZIKV) or West Nile virus (WNV)—for all of which, no Food and Drug Administration (FDA)-approved therapeutic is widely available. These findings establish for the first time that RK-33 is a broad-spectrum antiviral agent that blocks DDX3X’s catalytic activities in vitro and limits viral replication in cells.
Collapse
|
35
|
Dächert C, Gladilin E, Binder M. Gene Expression Profiling of Different Huh7 Variants Reveals Novel Hepatitis C Virus Host Factors. Viruses 2019; 12:v12010036. [PMID: 31905685 PMCID: PMC7019296 DOI: 10.3390/v12010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic Hepatitis C virus (HCV) infection still constitutes a major global health problem with almost half a million deaths per year. To date, the human hepatoma cell line Huh7 and its derivatives is the only cell line that robustly replicates HCV. However, even different subclones and passages of this single cell line exhibit tremendous differences in HCV replication efficiency. By comparative gene expression profiling using a multi-pronged correlation analysis across eight different Huh7 variants, we identified 34 candidate host factors possibly affecting HCV permissiveness. For seven of the candidates, we could show by knock-down studies their implication in HCV replication. Notably, for at least four of them, we furthermore found that overexpression boosted HCV replication in lowly permissive Huh7 cells, most prominently for the histone-binding transcriptional repressor THAP7 and the nuclear receptor NR0B2. For NR0B2, our results suggest a finely balanced expression optimum reached in highly permissive Huh7 cells, with even higher levels leading to a nearly complete breakdown of HCV replication, likely due to a dysregulation of bile acid and cholesterol metabolism. Our unbiased expression-profiling approach, hence, led to the identification of four host cellular genes that contribute to HCV permissiveness in Huh7 cells. These findings add to an improved understanding of the molecular underpinnings of the strict host cell tropism of HCV.
Collapse
Affiliation(s)
- Christopher Dächert
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Evgeny Gladilin
- Division Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Marco Binder
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Correspondence: ; Tel.: +49-622-142-4974
| |
Collapse
|
36
|
He G, Zhang Z, Sathanantham P, Zhang X, Wu Z, Xie L, Wang X. An engineered mutant of a host phospholipid synthesis gene inhibits viral replication without compromising host fitness. J Biol Chem 2019; 294:13973-13982. [PMID: 31362985 DOI: 10.1074/jbc.ra118.007051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
Viral infections universally rely on numerous hijacked host factors to be successful. It is therefore possible to control viral infections by manipulating host factors that are critical for viral replication. Given that host genes may play essential roles in certain cellular processes, any successful manipulations for virus control should cause no or mild effects on host fitness. We previously showed that a group of positive-strand RNA viruses enrich phosphatidylcholine (PC) at the sites of viral replication. Specifically, brome mosaic virus (BMV) replication protein 1a interacts with and recruits a PC synthesis enzyme, phosphatidylethanolamine methyltransferase, Cho2p, to the viral replication sites that are assembled on the perinuclear endoplasmic reticulum (ER) membrane. Deletion of the CHO2 gene inhibited BMV replication by 5-fold; however, it slowed down host cell growth as well. Here, we show that an engineered Cho2p mutant supports general PC synthesis and normal cell growth but blocks BMV replication. This mutant interacts and colocalizes with BMV 1a but prevents BMV 1a from localizing to the perinuclear ER membrane. The mislocalized BMV 1a fails to induce the formation of viral replication complexes. Our study demonstrates an effective antiviral strategy in which a host lipid synthesis gene is engineered to control viral replication without comprising host growth.
Collapse
Affiliation(s)
- Guijuan He
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.,School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Zhenlu Zhang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.,School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061.,National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Preethi Sathanantham
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Xin Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Zujian Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lianhui Xie
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaofeng Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061
| |
Collapse
|
37
|
Amador-Cañizares Y, Panigrahi M, Huys A, Kunden RD, Adams HM, Schinold MJ, Wilson JA. miR-122, small RNA annealing and sequence mutations alter the predicted structure of the Hepatitis C virus 5' UTR RNA to stabilize and promote viral RNA accumulation. Nucleic Acids Res 2019; 46:9776-9792. [PMID: 30053137 PMCID: PMC6182169 DOI: 10.1093/nar/gky662] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 07/11/2018] [Indexed: 01/01/2023] Open
Abstract
Annealing of the liver-specific microRNA, miR-122, to the Hepatitis C virus (HCV) 5′ UTR is required for efficient virus replication. By using siRNAs to pressure escape mutations, 30 replication-competent HCV genomes having nucleotide changes in the conserved 5′ untranslated region (UTR) were identified. In silico analysis predicted that miR-122 annealing induces canonical HCV genomic 5′ UTR RNA folding, and mutant 5′ UTR sequences that promoted miR-122-independent HCV replication favored the formation of the canonical RNA structure, even in the absence of miR-122. Additionally, some mutant viruses adapted to use the siRNA as a miR-122-mimic. We further demonstrate that small RNAs that anneal with perfect complementarity to the 5′ UTR stabilize and promote HCV genome accumulation. Thus, HCV genome stabilization and life-cycle promotion does not require the specific annealing pattern demonstrated for miR-122 nor 5′ end annealing or 3′ overhanging nucleotides. Replication promotion by perfect-match siRNAs was observed in Ago2 knockout cells revealing that other Ago isoforms can support HCV replication. At last, we present a model for miR-122 promotion of the HCV life cycle in which miRNA annealing to the 5′ UTR, in conjunction with any Ago isoform, modifies the 5′ UTR structure to stabilize the viral genome and promote HCV RNA accumulation.
Collapse
Affiliation(s)
- Yalena Amador-Cañizares
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Mamata Panigrahi
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Adam Huys
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Rasika D Kunden
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Halim M Adams
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Michael J Schinold
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Joyce A Wilson
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
38
|
Rana MA, Ijaz B, Daud M, Tariq S, Nadeem T, Husnain T. Interplay of Wnt β-catenin pathway and miRNAs in HBV pathogenesis leading to HCC. Clin Res Hepatol Gastroenterol 2019; 43:373-386. [PMID: 30377095 DOI: 10.1016/j.clinre.2018.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/05/2018] [Accepted: 09/24/2018] [Indexed: 02/04/2023]
Abstract
The prevalence of Hepatocellular carcinoma (HCC) has been identified world-wide. Plethora of factors including chronic infection of HBV/HCV has been characterized for the development of HCC. Although the onset and progression of HCC has been linked with awry of various signaling pathways but precise mechanism, still lies under the multitude layers of curiosity. HBV is spreading with insane speed throughout the world and has been found a main culprit in HCC development after regulating the several cellular pathways including Wnt/β-catenin, Raf/MAPK, Akt and affecting cell multiplication to genomic instability. The role of Wnt/FZD/β-catenin signaling pathway is centralized in liver functions and its anomalous activation leads to HCC development. β-catenin mainly plays a pivotal role in canonical pathway of the system. Altered mainly overexpression of β-catenin along its nuclear localization tunes the aberrations in liver functions and set disease progression. In the development of HCC, modulation of Wnt/FZD/β-catenin signaling pathway by HBV has been established. As HBV infects the cell it affects the miRNAs, the master regulators of cell. Previous studies showed the connection between HBV and cellular miRNAs. In the present review, we unveiled how HBV is deciphering the cellular miRNAs like miR-26a, miR-15a, miR-16-1, miR-148a, miR-132, miR-122, miR-34a, miR-21, miR-29a, miR-222 and miR-199a/b-3p to modulate the Wnt/FZD/β-catenin signaling pathway and develop HCC. These HBV mediated miRNAs may prove future therapeutic options to treat HBV-Wnt/FZD/β-catenin associated HCC.
Collapse
Affiliation(s)
- Muhammad Adeel Rana
- Department of microbiology, Quaid-i-Azam University, Islamabad, Pakistan; Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan.
| | - Muhammad Daud
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Sommyya Tariq
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Tariq Nadeem
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| |
Collapse
|
39
|
Wang M, Wang Y, Liu Y, Wang H, Xin X, Li J, Hao Y, Han L, Yu F, Zheng C, Shen C. SPSB2 inhibits hepatitis C virus replication by targeting NS5A for ubiquitination and degradation. PLoS One 2019; 14:e0219989. [PMID: 31344133 PMCID: PMC6657855 DOI: 10.1371/journal.pone.0219989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) replication involves many viral and host factors. Host factor SPRY domain- and SOCS box-containing protein 2(SPSB2) belongs to SPSB family, and it recruits target proteins by the SPRY domain and forms E3 ubiquitin ligase complexes by the SOCS box. As an adaptor protein, it can regulate the host’s response to infection, but little is known about whether SPSB2 plays a role in HCV replication. In the present study, we found that HCV infection significantly upregulated the mRNA and protein levels of SPSB2 in HCVcc-infected cells. Exogenous expression of SPSB2 in hepatoma cells decreased HCV RNA and protein levels which depended on the SOCS box, while knockdown of endogenous SPSB2 increased HCV RNA and protein levels. Additionally, we demonstrated that SPSB2 interacted with HCV structural protein E1 and nonstructural protein protein 5A (NS5A) via the C-terminal portion of the SPSB2 SPRY domain. Furthermore, SPSB2 induced NS5A ubiquitination and mediated NS5A degradation. Collectively, this study discovered host factor SPSB2 significantly inhibits HCV replication by interacting and degrading NS5A.
Collapse
Affiliation(s)
- Mingzhen Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuehong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hailong Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiu Xin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiadai Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yao Hao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lingling Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Yu
- Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Congyi Zheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Chao Shen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
40
|
Chahal J, Gebert LF, Gan HH, Camacho E, Gunsalus KC, MacRae IJ, Sagan SM. miR-122 and Ago interactions with the HCV genome alter the structure of the viral 5' terminus. Nucleic Acids Res 2019; 47:5307-5324. [PMID: 30941417 PMCID: PMC6547439 DOI: 10.1093/nar/gkz194] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is a positive-sense RNA virus that interacts with the liver-specific microRNA, miR-122. miR-122 binds to two sites in the 5' untranslated region (UTR) and this interaction promotes HCV RNA accumulation, although the precise role of miR-122 in the HCV life cycle remains unclear. Using biophysical analyses and Selective 2' Hydroxyl Acylation analyzed by Primer Extension (SHAPE) we investigated miR-122 interactions with the 5' UTR. Our data suggests that miR-122 binding results in alteration of nucleotides 1-117 to suppress an alternative secondary structure and promote functional internal ribosomal entry site (IRES) formation. Furthermore, we demonstrate that two hAgo2:miR-122 complexes are able to bind to the HCV 5' terminus simultaneously and SHAPE analyses revealed further alterations to the structure of the 5' UTR to accommodate these complexes. Finally, we present a computational model of the hAgo2:miR-122:HCV RNA complex at the 5' terminus of the viral genome as well as hAgo2:miR-122 interactions with the IRES-40S complex that suggest hAgo2 is likely to form additional interactions with SLII which may further stabilize the HCV IRES. Taken together, our results support a model whereby hAgo2:miR-122 complexes alter the structure of the viral 5' terminus and promote formation of the HCV IRES.
Collapse
Affiliation(s)
- Jasmin Chahal
- Department of Microbiology & Immunology, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Luca F R Gebert
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hin Hark Gan
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Edna Camacho
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
- Division of Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montréal, QC H3G 1Y6, Canada
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| |
Collapse
|
41
|
Wu CY, Nagy PD. Blocking tombusvirus replication through the antiviral functions of DDX17-like RH30 DEAD-box helicase. PLoS Pathog 2019; 15:e1007771. [PMID: 31136641 PMCID: PMC6555533 DOI: 10.1371/journal.ppat.1007771] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/07/2019] [Accepted: 04/20/2019] [Indexed: 01/07/2023] Open
Abstract
Positive-stranded RNA viruses replicate inside cells and depend on many co-opted cellular factors to complete their infection cycles. To combat viruses, the hosts use conserved restriction factors, such as DEAD-box RNA helicases, which can function as viral RNA sensors or as effectors by blocking RNA virus replication. In this paper, we have established that the plant DDX17-like RH30 DEAD-box helicase conducts strong inhibitory function on tombusvirus replication when expressed in plants and yeast surrogate host. The helicase function of RH30 was required for restriction of tomato bushy stunt virus (TBSV) replication. Knock-down of RH30 levels in Nicotiana benthamiana led to increased TBSV accumulation and RH30 knockout lines of Arabidopsis supported higher level accumulation of turnip crinkle virus. We show that RH30 DEAD-box helicase interacts with p33 and p92pol replication proteins of TBSV, which facilitates targeting of RH30 from the nucleus to the large TBSV replication compartment consisting of aggregated peroxisomes. Enrichment of RH30 in the nucleus via fusion with a nuclear retention signal at the expense of the cytosolic pool of RH30 prevented the re-localization of RH30 into the replication compartment and canceled out the antiviral effect of RH30. In vitro replicase reconstitution assay was used to demonstrate that RH30 helicase blocks the assembly of viral replicase complex, the activation of the RNA-dependent RNA polymerase function of p92pol and binding of p33 replication protein to critical cis-acting element in the TBSV RNA. Altogether, these results firmly establish that the plant DDX17-like RH30 DEAD-box helicase is a potent, effector-type, restriction factor of tombusviruses and related viruses. The discovery of the antiviral role of RH30 DEAD-box helicase illustrates the likely ancient roles of RNA helicases in plant innate immunity.
Collapse
Affiliation(s)
- Cheng-Yu Wu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
42
|
Luna JM, Saeed M, Rice CM. Taming a beast: lessons from the domestication of hepatitis C virus. Curr Opin Virol 2019; 35:27-34. [PMID: 30875640 PMCID: PMC6556422 DOI: 10.1016/j.coviro.2019.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
"What I cannot create, I do not understand." Richard Feynman may have championed reasoning from first principles in his famous blackboard missive, but he could just as well have been referring to the plight of a molecular virologist. What cannot be grown in a controlled laboratory setting, we cannot fully understand. The story of the laboratory domestication of hepatitis C virus (HCV) is now a classic example of virologists applying all manner of inventive skill to create cell-based models of infection in order to clarify prospective drug targets. In this review, we highlight key successes and failures that were instructive in achieving cell-based models for HCV studies and drug development. We also emphasize the lessons learned from the ∼40 year saga that may be applicable to viruses yet unknown and uncultured.
Collapse
Affiliation(s)
- Joseph M Luna
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States
| | - Mohsan Saeed
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States
| | - Charles M Rice
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
43
|
Takahashi RU, Prieto-Vila M, Kohama I, Ochiya T. Development of miRNA-based therapeutic approaches for cancer patients. Cancer Sci 2019; 110:1140-1147. [PMID: 30729639 PMCID: PMC6447849 DOI: 10.1111/cas.13965] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Abstract
Over the past few decades, siRNA and miRNA have attracted a great deal of attention from researchers and clinicians. These molecules have been extensively studied from the standpoint of developing biopharmaceuticals against various diseases, including heart disease, diabetes and cancers. siRNA suppresses only a single target, whereas each miRNA regulates the expression of multiple target genes. More importantly, because miRNA are also secreted from cancer cells, and their aberrant expression is associated with tumor development and progression, they represent not only therapeutic targets but also promising biomarkers for diagnosis and prognosis. Therefore, miRNA may be more effective tools against cancers, in which multiple signal pathways are dysregulated. In this review, we summarize recent progress in the development of miRNA therapeutics for the treatment of cancer patients, and describe delivery systems for oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Ryou-U Takahashi
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Marta Prieto-Vila
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Isaku Kohama
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
44
|
Xu H, Xu SJ, Xie SJ, Zhang Y, Yang JH, Zhang WQ, Zheng MN, Zhou H, Qu LH. MicroRNA-122 supports robust innate immunity in hepatocytes by targeting the RTKs/STAT3 signaling pathway. eLife 2019; 8:41159. [PMID: 30735121 PMCID: PMC6389286 DOI: 10.7554/elife.41159] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNA-122 (miR-122) is the most abundant microRNA in hepatocytes and a central player in liver biology and disease. Herein, we report a previously unknown role for miR-122 in hepatocyte intrinsic innate immunity. Restoration of miR-122 levels in hepatoma cells markedly enhanced the activation of interferons (IFNs) in response to a variety of viral nucleic acids or simulations, especially in response to hepatitis C virus RNA and poly (I:C). Mechanistically, miR-122 downregulated the phosphorylation (Tyr705) of STAT3, thereby removing the negative regulation of STAT3 on IFN-signaling. STAT3 represses IFN expression by inhibiting interferon regulatory factor 1 (IRF1), whereas miR-122 targets MERTK, FGFR1 and IGF1R, three receptor tyrosine kinases (RTKs) that directly promote STAT3 phosphorylation. This work identifies a miR-122–RTKs/STAT3–IRF1–IFNs regulatory circuitry, which may play a pivotal role in regulating hepatocyte innate immunity. These findings renewed our knowledge of miR-122’s function and have important implications for the treatment of hepatitis viruses.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shi-Jun Xu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shu-Juan Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yin Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Hua Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei-Qi Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Man-Ni Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
45
|
V'kovski P, Gerber M, Kelly J, Pfaender S, Ebert N, Braga Lagache S, Simillion C, Portmann J, Stalder H, Gaschen V, Bruggmann R, Stoffel MH, Heller M, Dijkman R, Thiel V. Determination of host proteins composing the microenvironment of coronavirus replicase complexes by proximity-labeling. eLife 2019; 8:42037. [PMID: 30632963 PMCID: PMC6372286 DOI: 10.7554/elife.42037] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/11/2019] [Indexed: 12/31/2022] Open
Abstract
Positive-sense RNA viruses hijack intracellular membranes that provide niches for viral RNA synthesis and a platform for interactions with host proteins. However, little is known about host factors at the interface between replicase complexes and the host cytoplasm. We engineered a biotin ligase into a coronaviral replication/transcription complex (RTC) and identified >500 host proteins constituting the RTC microenvironment. siRNA-silencing of each RTC-proximal host factor demonstrated importance of vesicular trafficking pathways, ubiquitin-dependent and autophagy-related processes, and translation initiation factors. Notably, detection of translation initiation factors at the RTC was instrumental to visualize and demonstrate active translation proximal to replication complexes of several coronaviruses. Collectively, we establish a spatial link between viral RNA synthesis and diverse host factors of unprecedented breadth. Our data may serve as a paradigm for other positive-strand RNA viruses and provide a starting point for a comprehensive analysis of critical virus-host interactions that represent targets for therapeutic intervention. Coronaviruses can infect the nose and throat and are a main cause of the common cold. Infections are usually mild and short-lived, but sometimes they can turn nasty. In 2002 and 2012, two dangerous new coronaviruses emerged and caused diseases known as SARS and MERS. These viruses caused much more serious symptoms and in some cases proved deadly. The question is, why are some coronaviruses more dangerous than others? Scientists know that the body's response to virus infection can make a difference to whether someone had mild or severe disease. So, to understand why some coronaviruses cause a cold and others kill, they also need to learn how people react to virus infection. Coronaviruses hijack membranes inside cells and turn them into virus factories. Within these factories, the viruses build molecular machinery called replicase complexes to copy their genetic code, which is needed for the next generation of virus particles. The viruses steal and repurpose proteins from their host cell that will assist in the copying process. However, scientists do not yet know which host proteins are essential for the virus to multiply. So, to find out, V’kovski et al. developed a way to tag any host protein that came near the virus factories. The new technique involved attaching an enzyme called a biotin ligase to the replicase complex. This enzyme acts as a molecular label gun, attaching a chemical tag to any protein that comes within ten nanometres. The label gun revealed that more than 500 different proteins come into contact with the replicase complex. To find out what these proteins were doing, the next step was to switch off their genes one by one. This revealed the key cell machinery that coronaviruses hijack when they are replicating. It included the cell's cargo transport system, the waste disposal system, and the protein production system. Using these systems allows the viruses to copy their genetic code next to machines that can turn it straight into viral proteins. These new results provide clues about which proteins viruses actually need from their host cells. They also do not just apply to coronaviruses. Other viruses use similar strategies to complete their infection cycle. These findings could help researchers to understand more generally about how viruses multiply. In the future, this knowledge could lead to new ways to combat virus infections.
Collapse
Affiliation(s)
- Philip V'kovski
- Institute of Virology and Immunology IVI, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Biomedical Science, University of Bern, Bern, Switzerland
| | - Markus Gerber
- Institute of Virology and Immunology IVI, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jenna Kelly
- Institute of Virology and Immunology IVI, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Interfaculty Bioinformatics Unit, SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Stephanie Pfaender
- Institute of Virology and Immunology IVI, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nadine Ebert
- Institute of Virology and Immunology IVI, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sophie Braga Lagache
- Mass Spectrometry and Proteomics Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Cedric Simillion
- Mass Spectrometry and Proteomics Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Jasmine Portmann
- Institute of Virology and Immunology IVI, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology IVI, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Véronique Gaschen
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Michael H Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Manfred Heller
- Mass Spectrometry and Proteomics Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Ronald Dijkman
- Institute of Virology and Immunology IVI, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology IVI, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
46
|
Feng Z, Xu K, Kovalev N, Nagy PD. Recruitment of Vps34 PI3K and enrichment of PI3P phosphoinositide in the viral replication compartment is crucial for replication of a positive-strand RNA virus. PLoS Pathog 2019; 15:e1007530. [PMID: 30625229 PMCID: PMC6342326 DOI: 10.1371/journal.ppat.1007530] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/22/2019] [Accepted: 12/16/2018] [Indexed: 12/12/2022] Open
Abstract
Tombusviruses depend on subversions of multiple host factors and retarget cellular pathways to support viral replication. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely-related carnation Italian ringspot virus (CIRV) recruit the cellular Vps34 phosphatidylinositol 3-kinase (PI3K) into the large viral replication compartment. The kinase function of Vps34 is critical for TBSV replication, suggesting that PI(3)P phosphoinositide is utilized by TBSV for building of the replication compartment. We also observed increased expression of Vps34 and the higher abundance of PI(3)P in the presence of the tombusviral replication proteins, which likely leads to more efficient tombusvirus replication. Accordingly, overexpression of PI(3)P phosphatase in yeast or plants inhibited TBSV replication on the peroxisomal membranes and CIRV replication on the mitochondrial membranes. Moreover, the purified PI(3)P phosphatase reduced TBSV replicase assembly in a cell-free system. Detection of PI(3)P with antibody or a bioprobe revealed the enrichment of PI(3)P in the replication compartment. Vps34 is directly recruited into the replication compartment through interaction with p33 replication protein. Gene deletion analysis in surrogate yeast host unraveled that TBSV replication requires the vesicle transport function of Vps34. In the absence of Vps34, TBSV cannot efficiently recruit the Rab5-positive early endosomes, which provide PE-rich membranes for membrane biogenesis of the TBSV replication compartment. We found that Vps34 and PI(3)P needed for the stability of the p33 replication protein, which is degraded by the 26S proteasome when PI(3)P abundance was decreased by an inhibitor of Vps34. In summary, Vps34 and PI(3)P are needed for providing the optimal microenvironment for the replication of the peroxisomal TBSV and the mitochondrial CIRV. Replication of RNA viruses infecting various eukaryotic organisms is the central step in the infection process that leads to generation of progeny viruses. The replication process requires the assembly of numerous viral replicase complexes within the large replication compartment, whose formation is not well understood. Using tombusviruses and the model host yeast, the authors discovered that a highly conserved cellular lipid kinase, Vps34 phosphatidylinositol 3-kinase (PI3K), is critical for the formation of the viral replication compartment. Expression of PI3K mutants and the PI(3)P phosphatase revealed that the PI(3)P phosphoinositide produced by Vps34 is crucial for tombusvirus replication. Tombusviruses co-opt Vps34 through interaction with the viral replication protein into the replication compartment. In vitro reconstitution of the tombusvirus replicase revealed the need for Vps34 and PI(3)P for the full-activity of the viral replicase. Chemical inhibition of Vps34 in yeast or plants showed that PI(3)P is important for the replication of several plant viruses within the Tombusviridae family and the insect-infecting Nodamuravirus. These results open up the possibility that the cellular Vps34 PI3K could be a target for new antiviral strategies.
Collapse
Affiliation(s)
- Zhike Feng
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kai Xu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
- * E-mail: (KX); (PDN)
| | - Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (KX); (PDN)
| |
Collapse
|
47
|
Abstract
Standard fixed cell confocal microscopy is inherently limited in visualizing dynamic processes involving two- and three-dimensional movement. To overcome these limitations, live cell imaging approaches have been developed to study hepatitis C virus (HCV) entry, replicase protein trafficking, virion assembly, and egress. These studies have relied on fluorescent labeling of viral proteins by epitope tag insertion, genome labeling via nucleophilic dyes, or using lipophilic dyes to label the virion envelope. In this method review, we describe two approaches to study HCV virion trafficking in live cells. Lipophilic labeling of the envelope allows for study of the early events (through virion uncoating/fusion) in the HCV lifecycle. Tetracysteine (TC) tag insertion into the capsid protein permits study of virion assembly and capsid trafficking via binding of a fluorogenic biarsenical dye.
Collapse
|
48
|
Assessment of serum level of MiRNAs before and after treatment with sofosbuvir in Egyptian patients with chronic HCV infection. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Fullam A, Gu L, Höhn Y, Schröder M. DDX3 directly facilitates IKKα activation and regulates downstream signalling pathways. Biochem J 2018; 475:3595-3607. [PMID: 30341167 DOI: 10.1042/bcj20180163] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023]
Abstract
DDX3 is a DEAD-box RNA helicase that we and others have previously implicated in antiviral immune signalling pathways leading to type I interferon (IFN) induction. We previously demonstrated that it directly interacts with the kinase IKKε (IκB kinase ε), enhances it activation, and then facilitates phosphorylation of the transcription factor IRF3 by IKKε. However, the TLR7/9 (Toll-like receptor 7/9)-mediated pathway, one of the most physiologically relevant IFN induction pathways, proceeds independently of IKKε or the related kinase TBK1 (TANK-binding kinase 1). This pathway induces type I IFN production via the kinases NIK (NF-κB-inducing kinase) and IKKα and is activated when plasmacytoid dendritic cells sense viral nucleic acids. In the present study, we demonstrate that DDX3 also directly interacts with IKKα and enhances its autophosphorylation and -activation. Modulation of DDX3 expression consequently affected NIK/IKKα-mediated IRF7 phosphorylation and induction of type I interferons. In addition, alternative NF-κB (nuclear factor-κB) activation, another pathway regulated by NIK and IKKα, was also down-regulated in DDX3 knockdown cells. This substantially broadens the effects of DDX3 in innate immune signalling to pathways beyond TBK1/IKKε and IFN induction. Dysregulation of these pathways is involved in disease states, and thus, our research might implicate DDX3 as a potential target for their therapeutic manipulation.
Collapse
Affiliation(s)
- Anthony Fullam
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Lili Gu
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Yvette Höhn
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Martina Schröder
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
50
|
Sodroski C, Lowey B, Hertz L, Jake Liang T, Li Q. MicroRNA-135a Modulates Hepatitis C Virus Genome Replication through Downregulation of Host Antiviral Factors. Virol Sin 2018; 34:197-210. [PMID: 30456659 PMCID: PMC6513812 DOI: 10.1007/s12250-018-0055-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022] Open
Abstract
Cellular microRNAs (miRNAs) have been shown to modulate HCV infection via directly acting on the viral genome or indirectly through targeting the virus-associated host factors. Recently we generated a comprehensive map of HCV–miRNA interactions through genome-wide miRNA functional screens and transcriptomics analyses. Many previously unappreciated cellular miRNAs were identified to be involved in HCV infection, including miR-135a, a human cancer-related miRNA. In the present study, we investigated the role of miR-135a in regulating HCV life cycle and showed that it preferentially enhances viral genome replication. Bioinformatics-based integrative analyses and subsequent functional assays revealed three antiviral host factors, including receptor interacting serine/threonine kinase 2 (RIPK2), myeloid differentiation primary response 88 (MYD88), and C-X-C motif chemokine ligand 12 (CXCL12), as bona fide targets of miR-135a. These genes have been shown to inhibit HCV infection at the RNA replication stage. Our data demonstrated that repression of key host restriction factors mediated the proviral effect of miR-135a on HCV propagation. In addition, miR-135a hepatic abundance is upregulated by HCV infection in both cultured hepatocytes and human liver, likely mediating a more favorable environment for viral replication and possibly contributing to HCV-induced liver malignancy. These results provide novel insights into HCV–host interactions and unveil molecular pathways linking miRNA biology to HCV pathogenesis.
Collapse
Affiliation(s)
- Catherine Sodroski
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, 20892, USA
| | - Brianna Lowey
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, 20892, USA
| | - Laura Hertz
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, 20892, USA
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, 20892, USA.
| | - Qisheng Li
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, 20892, USA.
| |
Collapse
|