1
|
Miciak JJ, Petrova L, Sajwan R, Pandya A, Deckard M, Munoz AJ, Bunz F. Robust p53 phenotypes and prospective downstream targets in telomerase-immortalized human cells. Oncotarget 2025; 16:79-100. [PMID: 39969205 PMCID: PMC11837864 DOI: 10.18632/oncotarget.28690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Cancers that retain wild type TP53 presumably harbor other clonal alterations that permitted their precursors to bypass p53-mediated growth suppression. Consequently, studies that employ TP53-wild type cancer cells and their isogenic derivatives may systematically fail to appreciate the full scope of p53 functionality. Several TP53 phenotypes are known to be absent in the widely used isogenic HCT116 colorectal cancer (CRC) model, which originated from a tumor that had retained wild type TP53. In contrast, we show that restoration of p53 in the TP53-mutant CRC cell line DLD-1 impeded cell proliferation, increased levels of senescence and sensitized cells to ionizing radiation (IR). To study p53 in a non-cancer context, we disrupted TP53 in hTERT-RPE1 cells. Derived from primary cells that were immortalized in vitro, hTERT-RPE1 expressed striking p53-dependent phenotypes and appeared to select for p53 loss during routine culture. hTERT-RPE1 expressed a p53-responsive transcriptome that was highly representative of diverse experimental systems. We discovered several novel downstream p53 targets of potential clinical relevance including ALDH3A1, which is involved in the detoxification of aldehydes and the metabolism of reactive oxygen species, and nectin cell adhesion molecule 4 (NECTIN4) which encodes a secreted surface protein that is overexpressed in many tumors.
Collapse
Affiliation(s)
- Jessica J. Miciak
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
- Cellular and Molecular Medicine Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- These authors contributed equally to this work
| | - Lucy Petrova
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
- These authors contributed equally to this work
| | - Rhythm Sajwan
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
| | - Aditya Pandya
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
| | - Mikayla Deckard
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
| | - Andrew J. Munoz
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
| | - Fred Bunz
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
- Cellular and Molecular Medicine Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Tseng YH, Tran TTM, Tsai Chang J, Huang YT, Nguyen AT, Chang IYF, Chen YT, Hsieh HW, Juang YL, Chang PMH, Huang TY, Chang YC, Chen YM, Liu H, Huang CYF. Utilizing TP53 hotspot mutations as effective predictors of gemcitabine treatment outcome in non-small-cell lung cancer. Cell Death Discov 2025; 11:26. [PMID: 39870629 PMCID: PMC11772833 DOI: 10.1038/s41420-025-02300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 12/11/2024] [Accepted: 01/14/2025] [Indexed: 01/29/2025] Open
Abstract
TP53 mutations are recognized to correlate with a worse prognosis in individuals with non-small cell lung cancer (NSCLC). There exists an immediate necessity to pinpoint selective treatment for patients carrying TP53 mutations. Potential drugs were identified by comparing drug sensitivity differences, represented by the half-maximal inhibitory concentration (IC50), between TP53 mutant and wild-type NSCLC cell lines using database analysis. In addition, clinical data from NSCLC patients were collected to evaluate both their TP53 status and their response to gemcitabine, thereby facilitating further validation. Subsequently, NSCLC cell lines with different TP53 status (A549 and H1299) were subjected to gemcitabine treatment to investigate the association between TP53 mutations and gemcitabine response. According to the dataset, NSCLC cell lines carrying TP53 mutations displayed heightened sensitivity to gemcitabine. From a clinical standpoint, patients exhibiting TP53 hotspot mutations demonstrated prolonged overall survival upon gemcitabine treatment. In vitro, overexpressing various hotspot TP53 mutations significantly sensitized H1299 cells to gemcitabine. Moreover, the knockdown of TP53 in A549 cells notably augmented sensitivity to gemcitabine treatment, as evidenced by cell viability and reproductive cell death assays. Conversely, the overexpression of wild-type TP53 in H1299 cells led to an increased resistance against gemcitabine. Gemcitabine is a treatment option for patients with non-small cell lung cancer (NSCLC) who carry TP53 hotspot mutations. This potential effectiveness might arise from its ability to disrupt DNA damage repair processes, leading to G2/M phase cell cycle arrest or an augmentation of mitotic abnormalities, eventually cause cell death. As a result, when planning treatment strategies for NSCLC patients possessing TP53 hotspot mutations, gemcitabine should be considered to incorporate into the indication.
Collapse
Affiliation(s)
- Yen-Han Tseng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Trieu Thi My Tran
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jinghua Tsai Chang
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| | - Yu-Tang Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Biomedical Industry Ph.D. Program, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Anh Thuc Nguyen
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Tung Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Wen Hsieh
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yue-Li Juang
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Peter Mu-Hsin Chang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Yi Huang
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ying-Chih Chang
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Hsuan Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Chong Hin Loon Memorial Cancer and Biotherapy Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Geng K, Merino LG, Veiga RG, Sommerauer C, Epperlein J, Brinkman EK, Kutter C. Intrinsic deletion at 10q23.31, including the PTEN gene locus, is aggravated upon CRISPR-Cas9-mediated genome engineering in HAP1 cells mimicking cancer profiles. Life Sci Alliance 2024; 7:e202302128. [PMID: 37984988 PMCID: PMC10662290 DOI: 10.26508/lsa.202302128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
The CRISPR-Cas9 system is a powerful tool for studying gene functions and holds potential for disease treatment. However, precise genome editing requires thorough assessments to minimize unintended on- and off-target effects. Here, we report an unexpected 283-kb deletion on Chromosome 10 (10q23.31) in chronic myelogenous leukemia-derived HAP1 cells, which are frequently used in CRISPR screens. The deleted region encodes regulatory genes, including PAPSS2, ATAD1, KLLN, and PTEN We found that this deletion was not a direct consequence of CRISPR-Cas9 off-targeting but rather occurred frequently during the generation of CRISPR-Cas9-modified cells. The deletion was associated with global changes in histone acetylation and gene expression, affecting fundamental cellular processes such as cell cycle and DNA replication. We detected this deletion in cancer patient genomes. As in HAP1 cells, the deletion contributed to similar gene expression patterns among cancer patients despite interindividual differences. Our findings suggest that the unintended deletion of 10q23.31 can confound CRISPR-Cas9 studies and underscore the importance to assess unintended genomic changes in CRISPR-Cas9-modified cells, which could impact cancer research.
Collapse
Affiliation(s)
- Keyi Geng
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Lara G Merino
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Raül G Veiga
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Christian Sommerauer
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Janine Epperlein
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Eva K Brinkman
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| |
Collapse
|
4
|
Yao B, Xing M, Meng S, Li S, Zhou J, Zhang M, Yang C, Qu S, Jin Y, Yuan H, Zen K, Ma C. EBF2 Links KMT2D-Mediated H3K4me1 to Suppress Pancreatic Cancer Progression via Upregulating KLLN. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302037. [PMID: 38015024 PMCID: PMC10787067 DOI: 10.1002/advs.202302037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/09/2023] [Indexed: 11/29/2023]
Abstract
Mono-methylation of histone H3 on Lys 4 (H3K4me1), which is catalyzed by histone-lysine N-methyltransferase 2D (KMT2D), serves as an important epigenetic regulator in transcriptional control. In this study, the authors identify early B-cell factor 2 (EBF2) as a binding protein of H3K4me1. Combining analyses of RNA-seq and ChIP-seq data, the authors further identify killin (KLLN) as a transcriptional target of KMT2D and EBF2 in pancreatic ductal adenocarcinoma (PDAC) cells. KMT2D-dependent H3K4me1 and EBF2 are predominantly over-lapped proximal to the transcription start site (TSS) of KLLN gene. Comprehensive functional assays show that KMT2D and EBF2 cooperatively inhibit PDAC cells proliferation, migration, and invasion through upregulating KLLN. Such inhibition on PDAC progression is also achieved through increasing H3K4me1 level by GSK-LSD1, a selective inhibitor of lysine-specific demethylase 1 (LSD1). Taken together, these findings reveal a new mechanism underlying PDAC progression and provide potential therapeutic targets for PDAC treatment.
Collapse
Affiliation(s)
- Bing Yao
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Mengying Xing
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Shixin Meng
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Shang Li
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Jingwan Zhou
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Ming Zhang
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Chen Yang
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Shuang Qu
- School of Life Science and TechnologyChina Pharmaceutical University639 Longmian AvenueNanjingJiangsu211198China
| | - Yucui Jin
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDC20007USA
| | - Ke Zen
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Changyan Ma
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
- Jiangsu Key Laboratory of XenotransplantationNanjing Medical University101 Longmian AvenueNanjing211166China
| |
Collapse
|
5
|
Panahipour L, Botta S, Abbasabadi AO, Afradi Z, Gruber R. Enamel Matrix Derivative Suppresses Chemokine Expression in Oral Epithelial Cells. Int J Mol Sci 2023; 24:13991. [PMID: 37762294 PMCID: PMC10530986 DOI: 10.3390/ijms241813991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Epithelial cells in periodontitis patients increasingly express chemokines, suggesting their active involvement in the inflammatory process. Enamel matrix derivative (EMD) is an extract of porcine fetal tooth germs clinically applied to support the regrowth of periodontal tissues. Periodontal regeneration might benefit from the potential anti-inflammatory activity of EMD for epithelial cells. Our aim was, therefore, to set up a bioassay where chemokine expression is initiated in the HSC2 oral squamous carcinoma cell line and then test EMD for its capacity to lower the inflammatory response. To establish the bioassay, HSC2 cells being exposed to TNFα and LPS from E. coli (Escherichia coli) or P. gingivalis (Porphyromonas gingivalis) were subjected to RNAseq. Here, TNFα but not LPS caused a robust increase of chemokines, including CXCL1, CXCL2, CXCL8, CCL5, and CCL20 in HSC2 cells. Polymerase chain reaction confirmed the increased expression of the respective chemokines in cells exposed to TNFα and IL-1β. Under these conditions, EMD reduced the expression of all chemokines at the transcriptional level and CXCL8 by immunoassay. The TGF-β receptor type I kinase-inhibitor SB431542 reversed the anti-inflammatory activity. Moreover, EMD-activated TGF-β-canonical signaling was visualized by phosphorylation of smad3 and nuclear translocation of smad2/3 in HSC2 cells and blocked by SB431542. This observation was confirmed with primary oral epithelial cells where EMD significantly lowered the SB431542-dependent expression of CXCL8. In summary, our findings suggest that TGF-β signaling mediates the effects of EMD to lower the forced expression of chemokines in oral epithelial cells.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
| | - Sara Botta
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
| | - Azarakhsh Oladzad Abbasabadi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
| | - Zohreh Afradi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
6
|
Sarver AL, Mills LJ, Makielski KM, Temiz NA, Wang J, Spector LG, Subramanian S, Modiano JF. Distinct mechanisms of PTEN inactivation in dogs and humans highlight convergent molecular events that drive cell division in the pathogenesis of osteosarcoma. Cancer Genet 2023; 276-277:1-11. [PMID: 37267683 PMCID: PMC11694714 DOI: 10.1016/j.cancergen.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/02/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023]
Abstract
A hallmark of osteosarcoma in both human and canine tumors is somatic fragmentation and rearrangement of chromosome structure which leads to recurrent increases and decreases in DNA copy number. The PTEN gene has been implicated as an important tumor suppressor in osteosarcoma via forward genetic screens. Here, we analyzed copy number changes, promoter methylation and transcriptomes to better understand the role of PTEN in canine and human osteosarcoma. Reduction in PTEN copy number was observed in 23 of 95 (25%) of the canine tumors examined leading to corresponding decreases in PTEN transcript levels from RNA-Seq samples. Unexpectedly, canine tumors with an intact PTEN locus had higher levels of PTEN transcripts than human tumors. This variation in transcript abundance was used to evaluate the role of PTEN in osteosarcoma biology. Decreased PTEN copy number and transcript level was observed in - and likely an important driver of - increases in cell cycle transcripts in four independent canine transcriptional datasets. In human osteosarcoma, homozygous copy number loss was not observed, instead increased methylation of the PTEN promoter was associated with increased cell cycle transcripts. Somatic modification of PTEN, either by homozygous deletion in dogs or by promoter methylation in humans, is clinically relevant to osteosarcoma, because the cell cycle related transcripts are associated with patient outcomes. The PTEN gene is part of a syntenic rearrangement unique to the canine genome, making it susceptible to somatic loss of both copies of distal chromosome 26 which also includes the FAS death receptor. SIGNIFICANCE STATEMENT: PTEN function is abrogated by different mechanisms in canine and human osteosarcoma tumors leading to uncontrolled cell cycling. Somatic loss of this canine specific syntenic region may help explain why the canine genome appears to be uniquely susceptible to osteosarcoma. Syntenic arrangement, in the context of copy number change, may lead to synergistic interactions that in turn modify species specific cancer risk. Comparative models of tumorigenesis may utilize different driver mechanisms.
Collapse
Affiliation(s)
- Aaron L Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA.
| | - Lauren J Mills
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kelly M Makielski
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA; Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jinhua Wang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Logan G Spector
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA
| | - Subbaya Subramanian
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA; Department of Surgery, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Jaime F Modiano
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA; Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Center for Engineering and Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Luo D, Yu C, Yu J, Su C, Li S, Liang P. p53-mediated G1 arrest requires the induction of both p21 and Killin in human colon cancer cells. Cell Cycle 2021; 21:140-151. [PMID: 34878965 DOI: 10.1080/15384101.2021.2014249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The main biological function of the tumor suppressor p53 is to control cell cycle arrest and apoptosis. Among the p53 target genes, p21 has been identified as a key player in p53-mediated G1 arrest, while Killin, via its high DNA binding affinity, has been implicated in S and G2/M arrest. However, whether Killin is involved in G1 arrest remains unclear. This research aimed to explore the role of Killin in p53-mediated G1 arrest. Knockout of killin in human colorectal cells led to a dramatic decrease in p53-mediated G1 arrest upon DNA damage. Moreover, double knockout of killin and p21 completely abolished G1 arrest, similar to that of p53 knockout cells. We further showed that Killin could upregulate p21 protein expression independent of p53 via ubiquitination pathways. Immunoprecipitation studies indicated that Killin may directly bind to proteasome subunits, thereby disrupting proteasomal degradation of p21. Together, these results demonstrate that Killin is involved in multiple cell cycle checkpoint controls, including p53-mediated G1 arrest.
Collapse
Affiliation(s)
- Dan Luo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Chune Yu
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yu
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao Su
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Peng Liang
- Clover Biopharmaceuticals, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Gao L, Shao X, Yue Q, Wu W, Yang X, He X, Li L, Hou F, Zhang R. circAMOTL1L Suppresses Renal Cell Carcinoma Growth by Modulating the miR-92a-2-5p/KLLN Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9970272. [PMID: 34646428 PMCID: PMC8505055 DOI: 10.1155/2021/9970272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/28/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022]
Abstract
Accumulating evidence indicates that the dysregulation of circular RNAs (circRNAs) contributes to tumor progression; however, the regulatory functions of circRNAs in renal cell carcinoma (RCC) remain largely unknown. In this study, the function and underlying mechanism of circAMOTL1L in RCC progression were explored. qRT-PCR showed the downregulation of circAMOTL1L in RCC tissues and cell lines. The decrease in circAMOTL1L expression correlated with the tumor stage, metastasis, and poor prognosis in patients with RCC. Functional experiments revealed that circAMOTL1L inhibited cell proliferation and increased apoptosis in RCC cells. Subcutaneous implantation with circAMOTL1L-overexpressing cells in nude mice decreased the growth ability of the xenograft tumors. Mechanistically, circAMOTL1L served as a sponge for miR-92a-2-5p in upregulating KLLN (killin, p53-regulated DNA replication inhibitor) expression validated by bioinformatics analysis, oligo pull-down, and luciferase assays. Further, reinforcing the circAMOTL1L-miR-92a-2-5p-KLLN axis greatly reduced the growth of RCC in vivo. Conclusively, our findings demonstrate that circAMOTL1L has an antioncogenic role in RCC growth by modulating the miR-92a-2-5p-KLLN pathway. Thus, targeting the novel circAMOTL1L-miR-92a-2-5p-KLLN regulatory axis might provide a therapeutic strategy for RCC.
Collapse
Affiliation(s)
- Ling Gao
- Department of Oncology, Kaifeng Central Hospital, Kaifeng, Henan, China
| | - Xian Shao
- Department of Anesthesiology, The No. 4 Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Qingqing Yue
- School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Weifei Wu
- School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xuejuan Yang
- School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaolei He
- School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Limin Li
- Clinical Laboratory, Handan First Hospital, Handan, Hebei, China
| | - Fujun Hou
- Department of Foreign Nursing, Chengde Nursing Vocational College, Chengde, Hebei, China
| | - Ruonan Zhang
- School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
9
|
Yehia L, Eng C. PTEN hamartoma tumour syndrome: what happens when there is no PTEN germline mutation? Hum Mol Genet 2021; 29:R150-R157. [PMID: 32568377 DOI: 10.1093/hmg/ddaa127] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Hereditary cancer syndromes represent ~10% of all incident cancers. It is important to identify individuals having these disorders because, unlike patients with sporadic cancer, these patients require specialised life-long care, with implications for their families. Importantly, the identification of alterations in cancer-predisposing genes facilitates gene-informed molecular diagnosis, cancer risk assessment and gene-specific clinical management. Moreover, knowledge about gene function in the inherited cancers offers insights towards biological processes pertinent to the more common sporadic cancers. Conversely, without a known gene, clinical management is less precise, and it is impossible to offer predictive testing of family members. PTEN hamartoma tumour syndrome (PHTS) is an umbrella term encompassing four overgrowth and cancer predisposition disorders associated with germline PTEN mutations. With time, it became evident that only a finite subset of individuals with PHTS-associated phenotypes harbour germline PTEN mutations. Therefore, non-PTEN aetiologies exist in PTEN wildtype patients. Indeed, gene discovery efforts over the last decade elucidated multiple candidate cancer predisposition genes. While a subset of genes (e.g. AKT1, PIK3CA) are biologically plausible as being key effectors within the PTEN signalling cascade, other genes required meticulous functional interrogation to explain their contribution to PHTS-related phenotypes. Collectively, the extensive phenotypic heterogeneity of the clinical syndromes typically united by PTEN is reflected by the genetic heterogeneity revealed through gene discovery. Validating these gene discoveries is critical because, while PTEN wildtype patients can be diagnosed clinically, they do not have the benefit of specific gene-informed risk assessment and subsequent management.
Collapse
Affiliation(s)
- Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
10
|
Razavi SA, Salehipour P, Gholami H, Sheikholeslami S, Zarif-Yeganeh M, Yaghmaei P, Modarressi MH, Hedayati M. New evidence on tumor suppressor activity of PTEN and KLLN in papillary thyroid carcinoma. Pathol Res Pract 2021; 225:153586. [PMID: 34425332 DOI: 10.1016/j.prp.2021.153586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
This study aimed to address the hypothesis that the expression of PTEN and KLLN tumor suppressor genes could diminish in papillary thyroid cancer (PTC) compared to paired normal tissue (PNT) and multinodular goiter (MNG). PTEN and KLLN expressions were assessed at both mRNA and protein levels in 82 tissue samples, including 30 PTC, 30 PNT, and 26 MNG using SYBR-Green Real-Time PCR and enzyme-linked immunosorbent assay (ELISA), respectively. Bioinformatics studies were performed to evaluate the genomic location and the genes promoter region. The mRNA expression of PTEN and KLLN in PTC was significantly lower than PNT (PTEN, P = 0.0033; KLLN, P = 0.0005). A significant decrease in the mRNA level of KLLN was also observed in PTC than MNG (P = 0.0304). Decreased level of PTEN mRNA (odds ratio=0.391; P = 0.013) or KLLN mRNA (odds ratio=0.023; P = 0.025) was associated with an increased risk of PTC tumorigenesis. Areas under the ROC curve for PTEN and KLLN were 0.69 and 0.78, respectively. PTEN and KLLN protein expressions in PTC compared to PNT or MNG were not significantly different. The bioinformatics studies revealed the sequence near the promoter region is lowly conserved across species. Four GC boxes were found upstream of the PTEN transcription start site (TSS), and one TATA box and one GC box were found upstream of KLLN TSS. The results suggest PTEN and KLLN are the two tumor suppressor genes that decreasing or loss of both of them occurs in sporadic PTC tumorigenesis. It appears they could have a promising application in both diagnostic and therapeutic areas.
Collapse
Affiliation(s)
- S Adeleh Razavi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 23, Shahid Arabi St. Yemen St. Velenjak, PO Box: 19395-4763, Tehran, Iran
| | - Pouya Salehipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Gholami
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 23, Shahid Arabi St. Yemen St. Velenjak, PO Box: 19395-4763, Tehran, Iran
| | - Sara Sheikholeslami
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 23, Shahid Arabi St. Yemen St. Velenjak, PO Box: 19395-4763, Tehran, Iran
| | - Marjan Zarif-Yeganeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 23, Shahid Arabi St. Yemen St. Velenjak, PO Box: 19395-4763, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 23, Shahid Arabi St. Yemen St. Velenjak, PO Box: 19395-4763, Tehran, Iran.
| |
Collapse
|
11
|
Grencewicz DJ, Romigh T, Thacker S, Abbas A, Jaini R, Luse D, Eng C. Redefining the PTEN promoter: Identification of novel upstream transcription start regions. Hum Mol Genet 2021; 30:2135-2148. [PMID: 34218272 DOI: 10.1093/hmg/ddab175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 11/14/2022] Open
Abstract
Germline mutation of PTEN is causally observed in Cowden syndrome (CS) and is one of the most common, penetrant risk genes for autism spectrum disorder (ASD). However, the majority of individuals who present with CS-like clinical features are PTEN-mutation negative. Reassessment of PTEN promoter regulation may help explain abnormal PTEN dosage, as only the minimal promoter and coding regions are currently included in diagnostic PTEN mutation analysis. Therefore, we reanalyzed the architecture of the PTEN promoter using next-generation sequencing datasets. Specifically, run-on sequencing assays identified two additional transcription start regions (TSRs) at -2053 and - 1906 basepairs from the canonical start of PTEN, thus extending the PTEN 5'UTR and redefining the PTEN promoter. We show that these novel upstream TSRs are active in cancer cell lines, human cancer, and normal tissue. Further, these TSRs can produce novel PTEN transcripts due to the introduction of new splice donors at -2041, -1826, and - 1355, which may allow for splicing out of the PTEN 5'UTR or the first and second exon in upstream-initiated transcripts. Combining ENCODE ChIP-seq and pertinent literature, we also compile and analyze all transcription factors (TFs) binding at the redefined PTEN locus. Enrichment analyses suggest that TFs bind specifically to the upstream TSRs may be implicated in inflammatory processes. Together, these data redefine the architecture of the PTEN promoter, an important step toward a comprehensive model of PTEN transcription regulation, a basis for future investigations into the new promoters' role in disease pathogenesis.
Collapse
Affiliation(s)
- Dennis J Grencewicz
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Todd Romigh
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Stetson Thacker
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ata Abbas
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Developmental Therapeutics Program, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ritika Jaini
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Developmental Therapeutics Program, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Donal Luse
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Center for Personalized Genetic Healthcare, Cleveland Clinic Community Care and Population Health, Cleveland, OH 44195, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
Sankunny M, Eng C. Identification of nuclear export signal in KLLN suggests potential role in proteasomal degradation in cancer cells. Oncotarget 2020; 11:4625-4636. [PMID: 33400740 PMCID: PMC7747863 DOI: 10.18632/oncotarget.27833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/20/2020] [Indexed: 11/25/2022] Open
Abstract
Germline and somatic promoter hypermethylation of KLLN has been found in diverse heritable and sporadic cancers, respectively. KLLN has many identified tumor suppressor functions, and when first reported, was thought to be exclusively nuclear. Here, we report on KLLN localization in both the nucleus and cytoplasm and the identification of a putative nuclear export signal (NES) sequence. KLLN overexpression in colon and breast cancer cells showed both nuclear and cytoplasmic presence. Inhibition of the CRM1 export pathway increased nuclear sequestration of KLLN, confirming the prediction of an NES sequence. Point mutations introduced in the predicted NES sequence decreased the strength of the NES and increased the nuclear sequestration of KLLN. Contrary to expectations, the transcription regulation and cellular proliferation functions of KLLN were unaffected by increased KLLN nuclear sequestration. Instead, increased nuclear KLLN correlated with increased nuclear sequestration of TRIM25 and decreased inhibitory phosphorylation of MDM2. Computational analysis of The Cancer Genome Atlas (TCGA) dataset showed positive correlation among KLLN, TRIM25 and MDM2 expression; pathway analysis of the common genes downstream of these three genes revealed protein degradation as one of the top canonical pathways. Together, our observations suggest that CRM1 pathway-based nuclear export of KLLN may impact proteasomal degradation.
Collapse
Affiliation(s)
- Madhav Sankunny
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.,Center for Personalized Genetic Healthcare, Cleveland Clinic Community Care and Population Health, Cleveland, Ohio 44195, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA.,Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
13
|
Pecce V, Verrienti A, Abballe L, Carletti R, Grani G, Falcone R, Ramundo V, Durante C, Di Gioia C, Russo D, Filetti S, Sponziello M. Loss of Function SETD2 Mutations in Poorly Differentiated Metastases from Two Hürthle Cell Carcinomas of the Thyroid. Cancers (Basel) 2020; 12:cancers12071892. [PMID: 32674319 PMCID: PMC7409075 DOI: 10.3390/cancers12071892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 02/06/2023] Open
Abstract
Hürthle cell carcinomas (HCC) are rare differentiated thyroid cancers that display low avidity for radioactive iodine and respond poorly to kinase inhibitors. Here, using next-generation sequencing, we analyzed the mutational status of primary tissue and poorly differentiated metastatic tissue from two HCC patients. In both cases, metastatic tissues harbored a mutation of SETD2, each resulting in loss of the SRI and WW domains of SETD2, a methyltransferase that trimethylates H3K36 (H3K36me3) and also interacts with p53 to promote its stability. Functional studies of the novel p.D1890fs6* mutation (case 1) revealed significantly reduced H3K36me3 levels in SETD2-mutated tissue and primary cell cultures and decreased levels of the active form of p53. Restoration of SETD2-wildtype expression in the SETD2-mutant cells significantly reduced the expression of four well-known stemness markers (OCT-4, SOX2, IPF1, Goosecoid). These findings suggest potential roles for SETD2 loss-of-function mutations in HCC progression, possibly involving p53 destabilization and promotion of stemness. Their prevalence and potential treatment implications in thyroid cancer, especially HCC, require further study.
Collapse
Affiliation(s)
- Valeria Pecce
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.P.); (A.V.); (L.A.); (G.G.); (R.F.); (V.R.); (C.D.); (S.F.)
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.P.); (A.V.); (L.A.); (G.G.); (R.F.); (V.R.); (C.D.); (S.F.)
| | - Luana Abballe
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.P.); (A.V.); (L.A.); (G.G.); (R.F.); (V.R.); (C.D.); (S.F.)
| | - Raffaella Carletti
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (R.C.); (C.D.G.)
| | - Giorgio Grani
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.P.); (A.V.); (L.A.); (G.G.); (R.F.); (V.R.); (C.D.); (S.F.)
| | - Rosa Falcone
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.P.); (A.V.); (L.A.); (G.G.); (R.F.); (V.R.); (C.D.); (S.F.)
| | - Valeria Ramundo
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.P.); (A.V.); (L.A.); (G.G.); (R.F.); (V.R.); (C.D.); (S.F.)
| | - Cosimo Durante
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.P.); (A.V.); (L.A.); (G.G.); (R.F.); (V.R.); (C.D.); (S.F.)
| | - Cira Di Gioia
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (R.C.); (C.D.G.)
| | - Diego Russo
- Department of Health Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy;
| | - Sebastiano Filetti
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.P.); (A.V.); (L.A.); (G.G.); (R.F.); (V.R.); (C.D.); (S.F.)
| | - Marialuisa Sponziello
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.P.); (A.V.); (L.A.); (G.G.); (R.F.); (V.R.); (C.D.); (S.F.)
- Correspondence:
| |
Collapse
|
14
|
Chen R, Wang M, Fu S, Cao F, Duan P, Lu J. MicroRNA-204 may participate in the pathogenesis of hypoxic-ischemic encephalopathy through targeting KLLN. Exp Ther Med 2019; 18:3299-3306. [PMID: 31602202 PMCID: PMC6777329 DOI: 10.3892/etm.2019.7936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/14/2018] [Indexed: 01/04/2023] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a common neonatal disease that can lead to high neonatal mortality rates. Previous studies have indicated that microRNAs (miRs) may be involved in the pathogenesis of HIE; however, the specific mechanisms underlying their involvement require further investigation. The aim of the present study was to investigate the roles of miR-204 and its target gene killin p53 regulated DNA replication inhibitor (KLLN) in HIE using rat HIE models. Brain injury was induced by surgery and incubation of hypoxic incubator brain using 10-day-old pup rats. On day 3, rats were sacrificed, and the infarct size of the brain was determined using a tetrazolium chloride assay. Terminal deoxynucleotidyl transferase UTP nick-end labeling staining was performed to detect the cell death rate in the brain tissue. Following this, the brain tissues were collected, and reverse transcription-quantitative polymerase chain reaction, western blot analysis and immunohistochemistry assays were performed to examine the expression levels of miR-204 and KLLN. Furthermore, neurons were cultured and transfected with miR-204 inhibitors or mimics, and the effect of miR-204 on the proliferation and apoptosis of neurons was examined using MTT and flow cytometric assays. Finally, a dual-luciferase reporter assay was performed to confirm whether KLLN is a direct target of miR-204. The expression of miR-204 was significantly downregulated and the expression of KLLN was significantly increased in the brain tissue of HIE rats (P<0.001). In addition, the transfection with miR-204 inhibitors significantly decreased the proliferation rates and significantly increased the apoptosis rate of neurons; however, transfection with miR-204 mimics prompted the opposite results. The dual-luciferase reporter assay also confirmed that KLLN is a direct target of miR-204. Taken together, the results of the present study demonstrated that miR-204 was downregulated in HIE and that miR-204 may serve important roles in the pathogenesis of HIE through targeting KLLN.
Collapse
Affiliation(s)
- Ronglin Chen
- Department of Critical Care Medicine, Longgang District Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Meixia Wang
- Department of Critical Care Medicine, Longgang District Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Shaopin Fu
- Department of Critical Care Medicine, Longgang District Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Feng Cao
- Department of Critical Care Medicine, Longgang District Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Pengkai Duan
- Department of Intensive Care Unit, Affiliated General Hospital of Guangzhou Military Command of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jiefu Lu
- Department of Intensive Care Unit, Affiliated General Hospital of Guangzhou Military Command of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
15
|
Liu W, Chou CF, Liu S, Crossman D, Yusuf N, Wu Y, Chen CY. KSRP modulates melanoma growth and efficacy of vemurafenib. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:759-770. [PMID: 31269460 DOI: 10.1016/j.bbagrm.2019.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/30/2019] [Accepted: 06/12/2019] [Indexed: 01/15/2023]
Abstract
The majority of melanomas carry an oncogenic BRAF mutation (BRAFV600E), which results in constitutive kinase activity driving melanoma proliferation. While inhibitors of BRAFV600E (BRAFi) effectively lead to rapid tumor shrinkage, most patients treated with BRAFi develop acquired resistance. Identification of factors as regulators of melanoma growth and as potential sources of resistance is thus crucial for the design of improved therapies to treat advanced melanoma with more durable responses. Here, we show that KH-type splicing regulatory protein (KSRP) is critical for proliferation of melanoma cells without and with acquired resistance to vemurafenib. Silencing KSRP reduces cell proliferation and augments the growth suppressive effects of vemurafenib. We identify killin (KLLN), a p53-regulated DNA replication inhibitor, as a downstream effector of growth inhibition by KSRP silencing and demonstrate that KSRP promotes decay of KLLN mRNA through an RNA-protein interaction. Using heterologous mRNA reporters, we show that a U-rich element within the 3' untranslated region of KLLN is responsible for KSRP-dependent mRNA decay. These findings implicate that KSRP is an important regulator of melanoma cell growth in part through controlling KLLN mRNA stability.
Collapse
Affiliation(s)
- Wenwen Liu
- State Key Laboratory of Structured Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Chu-Fang Chou
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Shanrun Liu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - David Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Yunkun Wu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350119, China.
| | - Ching-Yi Chen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America.
| |
Collapse
|
16
|
Liu H, Xiong W, Liu F, Lin F, He J, Liu C, Lin Y, Dong S. Significant role and mechanism of microRNA-143-3p/KLLN axis in the development of coronary heart disease. Am J Transl Res 2019; 11:3610-3619. [PMID: 31312371 PMCID: PMC6614641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/11/2019] [Indexed: 06/10/2023]
Abstract
Cardiovascular disease predominantly includes coronary heart disease (CHD) and stroke, results in high morbidity and mortality. MicroRNA-143-3p (miR-143-3p) is a tumor suppressor and is involved in many cancers. However, the role and mechanism of miR-143-3p in coronary heart disease is still unclear. In this study, we identified that miR-143-3p was up-regulated in rabbit CHD model. The results of TargetScan and the dual luciferase reporter assay indicated that KLLN (killin, p53 regulated DNA replication inhibitor) was a direct target of miR-143-3p. Besides, we revealed that KLLN was down-regulated in rabbit coronary heart disease model. In addition, we found that the related-markers of CHD such as TC (total cholesterol), TG (triglyceride), and LDLC (low-density lipoprotein cholesterol) in the model group were significantly increased than that in the control group. And compared with the model group, miR-143-3p inhibitor significantly reduced TC, TG, LDLC expression, while miR-143-3p mimic further increased the expression of TC, TG, and LDLC. We next found that miR-143-3p mimic promoted cell viability and migration of vascular smooth muscle cells, inhibited apoptosis; and these changes were reversed by KLLN-plasmid. And miR-143-3p inhibitor had the counter effects. Our study provided a new target for the treatment of CHD and deserves further study.
Collapse
Affiliation(s)
- Huadong Liu
- Department of Cardiovascular, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen Cardiovascular Minimal Invasive Engineering Center Shenzhen 518000, China
| | - Wei Xiong
- Department of Cardiovascular, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen Cardiovascular Minimal Invasive Engineering Center Shenzhen 518000, China
| | - Feng Liu
- Department of Cardiovascular, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen Cardiovascular Minimal Invasive Engineering Center Shenzhen 518000, China
| | - Feng Lin
- Department of Cardiovascular, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen Cardiovascular Minimal Invasive Engineering Center Shenzhen 518000, China
| | - Junbo He
- Department of Cardiovascular, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen Cardiovascular Minimal Invasive Engineering Center Shenzhen 518000, China
| | - Cheng Liu
- Department of Cardiovascular, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen Cardiovascular Minimal Invasive Engineering Center Shenzhen 518000, China
| | - Yaowang Lin
- Department of Cardiovascular, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen Cardiovascular Minimal Invasive Engineering Center Shenzhen 518000, China
| | - Shaohong Dong
- Department of Cardiovascular, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen Cardiovascular Minimal Invasive Engineering Center Shenzhen 518000, China
| |
Collapse
|
17
|
Wang C, Zong J, Li Y, Wang X, Du W, Li L. MiR-744-3p regulates keratinocyte proliferation and differentiation via targeting KLLN in psoriasis. Exp Dermatol 2019; 28:283-291. [PMID: 30664260 DOI: 10.1111/exd.13888] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Changyuan Wang
- Department of Dermatology; Beijing Friendship Hospital; Capital Medical University; Beijing China
- Department of Dermatology; Qingdao Municipal Hospital; Qingdao Shandong China
| | - Jinbao Zong
- Department of Clinical Laboratory; the Affiliated Hospital of Qingdao University; Qingdao Shandong China
| | - Yongxi Li
- Department of Dermatology; Qingdao Municipal Hospital; Qingdao Shandong China
| | - Xiaoyan Wang
- Department of Dermatology; Qingdao Municipal Hospital; Qingdao Shandong China
| | - Weihua Du
- Department of Clinical Laboratory; the Affiliated Hospital of Qingdao University; Qingdao Shandong China
| | - Linfeng Li
- Department of Dermatology; Beijing Friendship Hospital; Capital Medical University; Beijing China
| |
Collapse
|
18
|
Sankunny M, Eng C. KLLN-mediated DNA damage-induced apoptosis is associated with regulation of p53 phosphorylation and acetylation in breast cancer cells. Cell Death Discov 2018; 4:31. [PMID: 30245854 PMCID: PMC6134104 DOI: 10.1038/s41420-018-0094-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/26/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022] Open
Abstract
KLLN is a target of p53 involved in S-phase cell cycle regulation deemed necessary and sufficient for p53-mediated apoptosis. Germline promoter hypermethylation of KLLN is associated with a cancer-predisposition syndrome, Cowden syndrome. KLLN’s DNA-binding ability is associated with transcription regulation and maintenance of genomic stability. Here, we report on KLLN’s role in DNA damage response (DDR) mediated through apoptosis in breast cells with and without a cancer phenotype. KLLN expression was upregulated after doxorubicin-induced DNA damage and this upregulation can be abrogated using RNAi-mediated gene silencing. Silencing KLLN after doxorubicin treatment effected DDR shown by decreased γ-H2AX foci and expression, and apoptosis assessed by decreased frequency of apoptotic nuclei and decreased expression of definitive markers of apoptosis. Contrary to expectations, there was no change in cell cycle regulation after KLLN silencing. These results were observed in breast cells with wildtype and mutant p53. At early timepoints after doxorubicin treatment, knocking down KLLN resulted in decreased Ser15-phosphorylation of p53 but not Thr68-phosphorylation of CHK2 or the phosphorylation of upstream regulators such as ATM and ATR. Interestingly, a second pathway for p53 activation was also affected by knockdown of KLLN. After doxorubicin treatment, Thr454-phosphorylation of DBC1, required to inhibit deacetylation of p53 by SIRT1, was decreased and therefore acetylation of p53 was also decreased with KLLN knockdown. Therefore, our observations suggest that KLLN’s role in DNA damage-induced apoptosis is likely independent of p53 and is associated with a two-pronged regulation of p53 activation.
Collapse
Affiliation(s)
- Madhav Sankunny
- 1Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195 USA.,2Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Charis Eng
- 1Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195 USA.,2Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA.,3Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195 USA.,4Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106 USA.,5Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
19
|
Yehia L, Eng C. 65 YEARS OF THE DOUBLE HELIX: One gene, many endocrine and metabolic syndromes: PTEN-opathies and precision medicine. Endocr Relat Cancer 2018; 25:T121-T140. [PMID: 29792313 DOI: 10.1530/erc-18-0162] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022]
Abstract
An average of 10% of all cancers (range 1-40%) are caused by heritable mutations and over the years have become powerful models for precision medicine practice. Furthermore, such cancer predisposition genes for seemingly rare syndromes have turned out to help explain mechanisms of sporadic carcinogenesis and often inform normal development. The tumor suppressor PTEN encodes a ubiquitously expressed phosphatase that counteracts the PI3K/AKT/mTOR cascade - one of the most critical growth-promoting signaling pathways. Clinically, individuals with germline PTEN mutations have diverse phenotypes and fall under the umbrella term PTEN hamartoma tumor syndrome (PHTS). PHTS encompasses four clinically distinct allelic overgrowth syndromes, namely Cowden, Bannayan-Riley-Ruvalcaba, Proteus and Proteus-like syndromes. Relatedly, mutations in other genes encoding components of the PI3K/AKT/mTOR pathway downstream of PTEN also predispose patients to partially overlapping clinical manifestations, with similar effects as PTEN malfunction. We refer to these syndromes as 'PTEN-opathies.' As a tumor suppressor and key regulator of normal development, PTEN dysfunction can cause a spectrum of phenotypes including benign overgrowths, malignancies, metabolic and neurodevelopmental disorders. Relevant to clinical practice, the identification of PTEN mutations in patients not only establishes a PHTS molecular diagnosis, but also informs on more accurate cancer risk assessment and medical management of those patients and affected family members. Importantly, timely diagnosis is key, as early recognition allows for preventative measures such as high-risk screening and surveillance even prior to cancer onset. This review highlights the translational impact that the discovery of PTEN has had on the diagnosis, management and treatment of PHTS.
Collapse
Affiliation(s)
- Lamis Yehia
- Genomic Medicine InstituteLerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Charis Eng
- Genomic Medicine InstituteLerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Taussig Cancer InstituteCleveland Clinic, Cleveland, Ohio, USA
- Department of Genetics and Genome SciencesCase Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Germline High Risk Cancer Focus GroupCASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
20
|
Poluri RTK, Audet-Walsh É. Genomic Deletion at 10q23 in Prostate Cancer: More Than PTEN Loss? Front Oncol 2018; 8:246. [PMID: 30009155 PMCID: PMC6033966 DOI: 10.3389/fonc.2018.00246] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/18/2018] [Indexed: 12/19/2022] Open
Abstract
The PTEN gene encodes for the phosphatase and tensin homolog; it is a tumor suppressor gene that is among the most frequently inactivated genes throughout the human cancer spectrum. The most recent sequencing approaches have allowed the identification of PTEN genomic alterations, including deletion, mutation, or rearrangement in about 50% of prostate cancer (PCa) cases. It appears that mechanisms leading to PTEN inactivation are cancer-specific, comprising gene mutations, small insertions/deletions, copy number alterations (CNAs), promoter hypermethylation, and RNA interference. The examination of publicly available results from deep-sequencing studies of various cancers showed that PCa appears to be the only cancer in which PTEN is lost mostly through CNA. Instead of inactivating mutations, which are seen in other cancers, deletion of the 10q23 locus is the most common form of PTEN inactivation in PCa. By investigating the minimal deleted region at 10q23, several other genes appear to be lost simultaneously with PTEN. Expression data indicate that, like PTEN, these genes are also downregulated upon loss of 10q23. These analyses raise the possibility that 10q23 is lost upon selective pressure not only to inactivate PTEN but also to impair the expression of surrounding genes. As such, several genes from this deleted region, which represents about 500 kb, may also act as tumor suppressors in PCa, requiring further studies on their respective functions in that context.
Collapse
Affiliation(s)
- Raghavendra Tejo Karthik Poluri
- Department of Molecular Medicine, Axe Endocrinologie – Néphrologie du Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Étienne Audet-Walsh
- Department of Molecular Medicine, Axe Endocrinologie – Néphrologie du Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec, QC, Canada
| |
Collapse
|
21
|
Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R. Target delivery of doxorubicin tethered with PVP stabilized gold nanoparticles for effective treatment of lung cancer. Sci Rep 2018; 8:3815. [PMID: 29491463 PMCID: PMC5830607 DOI: 10.1038/s41598-018-22172-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/15/2018] [Indexed: 02/06/2023] Open
Abstract
Development of drug delivery system conjugated with doxorubicin (dox) on the surface of AuNPs with polyvinylpyrrolidone (Dox@PVP-AuNPs), we have demonstrated that human lung cancer cells can significantly overcome by the combination of highly effective cellular entry and responsive intracellular release of doxorubicin from Dox@PVP-AuNPs complex. Previously drug release from doxorubicin-conjugated AuNPs was confirmed by the recovered fluorescence of doxorubicin from quenching due to the nanosurface energy transfer between doxorubicinyl groups and AuNPs. Dox@PVP-AuNPs achieved enhanced inhibition of lung cancer cells growth than free Doxorubicin and PVP-AuNPs. The in vitro cytotoxic effect of PVP-AuNPs, free Dox and Dox@PVP-AuNPs inhibited the proliferation of human lung cancer cells with IC50 concentration. Compared with control cells, PVP-AuNPs and free Dox, Dox@PVP-AuNPs can increases ROS generation, sensitize mitochondrial membrane potential and induces both early and late apoptosis in lung cancer cells. Moreover, Dox@PVP-AuNPs highly upregulates the expression of tumor suppressor genes than free Dox and PVP-AuNPs and induces intrinsic apoptosis in lung cancer cells. From the results, Dox@PVP-AuNPs can be considered as an potential drug delivery system for effective treatment of human lung cancer.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- DNA Barcoding and Marine Genomics lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Krishnamoorthy Varunkumar
- Cancer Biology Lab, Department of Biochemistry, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Vilwanathan Ravikumar
- Cancer Biology Lab, Department of Biochemistry, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Rajendran Rajaram
- DNA Barcoding and Marine Genomics lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
22
|
Tang L, Zhao B, Zhang H, Du Q, Zhu J, Zhao Z, Chen C, Luo C, Kang Q, Yuan W, Bian S, Bi H, Sun H, Li Y. Regulation of nonylphenol-induced reproductive toxicity in mouse spermatogonia cells by miR-361-3p. Mol Reprod Dev 2017; 84:1257-1270. [PMID: 29024157 DOI: 10.1002/mrd.22923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/20/2017] [Accepted: 10/05/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Liyan Tang
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Bo Zhao
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Hui Zhang
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Qiao Du
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Jiang Zhu
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Zhijiang Zhao
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Ce Chen
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Cheng Luo
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Qiyuan Kang
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Wenbing Yuan
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Shaohua Bian
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Hang Bi
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Huimin Sun
- Department of Urology, Xijing Hospital; the Fourth Military Medical University; Xi'an Shananxi China
| | - Yingyi Li
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| |
Collapse
|
23
|
Razavi SA, Modarressi MH, Yaghmaei P, Tavangar SM, Hedayati M. Circulating levels of PTEN and KLLN in papillary thyroid carcinoma: can they be considered as novel diagnostic biomarkers? Endocrine 2017; 57:428-435. [PMID: 28755140 DOI: 10.1007/s12020-017-1368-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE PTEN and KLLN are two tumor suppressor genes located in 10q23, share a bidirectional promoter and have roles in carcinogenesis. Formerly, the role of PTEN mutations and KLLN epimutations were identified in incidence of thyroid lesions in individuals with Cowden syndrome, a rare autosomal dominant inherited disorder. This study is the first of its type to assess PTEN and KLLN circulating levels in patients with sporadic papillary thyroid carcinoma (PTC) and compare to patients with multinodular goiter (MNG) and healthy individuals. METHODS Plasma levels of PTEN and KLLN were determined by enzyme-linked immunosorbent assay in three groups consisted of PTC (n = 33), MNG (n = 26) and healthy persons (n = 30). The association of demographic/pathological characteristics with the levels of PTEN and KLLN were evaluated. RESULTS A significant lower plasma levels of PTEN and KLLN were observed in PTC patients compared with those of healthy persons (PTEN, 9.43 ± 3.20 vs. 16.96 ± 1.28 ng/ml, P = 0.000; KLLN, 1.81 ± 0.83 vs. 2.57 ± 1.09 ng/ml, P = 0.005), while no statistical difference was found between PTC and MNG groups. Patients with MNG lesion had significantly lower levels of PTEN/KLLN (PTEN, 9.62 ± 2.97 vs. 16.96 ± 1.28 ng/ml, P = 0.000; KLLN, 1.34 ± 0.86 vs. 2.57 ± 1.09 ng/ml, P = 0.000) compared to the healthy controls. The demographic/pathological characteristics did not demonstrate an association with the levels of PTEN and KLLN. CONCLUSIONS The study suggests that the lowered levels of PTEN and KLLN are associated with both sporadic PTC and MNG tumorigenesis, but they cannot be considered as circulating biomarkers for differential diagnosis between malignancy and benignity in indeterminate thyroid nodules.
Collapse
Affiliation(s)
- S Adeleh Razavi
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Modarressi
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parichehr Yaghmaei
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - S Mohammad Tavangar
- Department of Pathology, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Peiling Yang S, Ngeow J. Familial non-medullary thyroid cancer: unraveling the genetic maze. Endocr Relat Cancer 2016; 23:R577-R595. [PMID: 27807061 DOI: 10.1530/erc-16-0067] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
Familial non-medullary thyroid cancer (FNMTC) constitutes 3-9% of all thyroid cancers. Out of all FNMTC cases, only 5% in the syndromic form has well-studied driver germline mutations. These associated syndromes include Cowden syndrome, familial adenomatous polyposis, Gardner syndrome, Carney complex type 1, Werner syndrome and DICER1 syndrome. It is important for the clinician to recognize these phenotypes so that genetic counseling and testing can be initiated to enable surveillance for associated malignancies and genetic testing of family members. The susceptibility chromosomal loci and genes of 95% of FNMTC cases remain to be characterized. To date, 4 susceptibility genes have been identified (SRGAP1 gene (12q14), TITF-1/NKX2.1 gene (14q13), FOXE1 gene (9q22.33) and HABP2 gene (10q25.3)), out of which only the FOXE1 and the HABP2 genes have been validated by separate study groups. The causal genes located at the other 7 FNMTC-associated chromosomal loci (TCO (19q13.2), fPTC/ PRN (1q21), FTEN (8p23.1-p22), NMTC1 (2q21), MNG1 (14q32), 6q22, 8q24) have yet to be identified. Increasingly, gene regulatory mechanisms (miRNA and enhancer elements) are recognized to affect gene expression and FNMTC tumorigenesis. With newer sequencing technique, along with functional studies, there has been progress in the understanding of the genetic basis of FNMTC. In our review, we summarize the FNMTC studies to date and provide an update on the recently reported susceptibility genes including novel germline SEC23B variant in Cowden syndrome, SRGAP1 gene, FOXE1 gene and HABP2 genes in non-syndromic FNMTC.
Collapse
Affiliation(s)
- Samantha Peiling Yang
- Endocrinology DivisionDepartment of Medicine, National University Hospital of Singapore, Singapore, Singapore
- Yong Loo Lin School of MedicineNational University of Singapore, Singapore, Singapore
| | - Joanne Ngeow
- Cancer Genetics ServiceDivision of Medical Oncology, National Cancer Centre, Singapore, Singapore
- Oncology Academic Clinical ProgramDuke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
25
|
Upregulated microRNA-224 promotes ovarian cancer cell proliferation by targeting KLLN. In Vitro Cell Dev Biol Anim 2016; 53:149-156. [PMID: 27663866 DOI: 10.1007/s11626-016-0093-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
Abstract
Human epithelial ovarian cancer is a complex disease, with low 5-yr survival rate largely due to the terminal stage at diagnosis in most patients. MicroRNAs play critical roles during epithelial ovarian cancer progression in vivo and have also been shown to regulate characteristic of ovarian cancer cell line in vitro. Alterative microRNA-224 (microRNA-224) expression affects human epithelial ovarian cancer cell survival, apoptosis, and metastasis. However, people know little about the effects of microRNA-224 on epithelial ovarian cancer cell proliferation. In the current study, we found that the microRNA-224 expression level of human syngeneic epithelial ovarian cancer cells HO8910 (low metastatic ability) was lower than that of HO8910PM (high metastatic ability). Furthermore, microRNA-224 was confirmed to target KLLN in HO8910 and HO8910PM. The known KLLN downstream target cyclin A was regulated by microRNA-224 in HO8910 and HO8910PM. In addition, overexpression of microRNA-224 enhanced the proliferation abilities of HO8910 and knockdown of microRNA-224 suppressed the proliferation abilities of HO8910PM by KLLN-cyclin A pathway. Our results provide new data about microRNAs and their targets involved in proliferation of epithelial ovarian cancer cells by modulating the downstream signaling.
Collapse
|
26
|
Abstract
While most colorectal cancers (CRCs) originate from nonhereditary spontaneous mutations, one-third of cases are familial or hereditary. Hereditary CRCs, which account for < 5% of all CRCs, have identifiable germline mutations and phenotypes, such as Lynch syndrome and familial adenomatous polyposis (FAP). Familial CRCs, which account for up to 30% of CRCs, have no identifiable germline mutation or specific pattern of inheritance, but higher-than-expected incidence within a family. Since the discovery that certain genotypes can lead to development of CRC, thousands of mutations have now been implicated in CRC. These new findings have enhanced our ability to identify at-risk patients, initiate better surveillance, and take preventative measures. Given the large number of genes now associated with hereditary and familial CRCs, clinicians should be familiar with the alphabet soup of genes to provide the highest quality of care for patients and families.
Collapse
Affiliation(s)
- Matthew D Giglia
- Division of Gastrointestinal Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel I Chu
- Division of Gastrointestinal Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
27
|
XTEN as Biological Alternative to PEGylation Allows Complete Expression of a Protease-Activatable Killin-Based Cytostatic. PLoS One 2016; 11:e0157193. [PMID: 27295081 PMCID: PMC4905650 DOI: 10.1371/journal.pone.0157193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/25/2016] [Indexed: 12/31/2022] Open
Abstract
Increased effectiveness and reduced side effects are general goals in drug research, especially important in cancer therapy. The aim of this study was to design a long-circulating, activatable cytostatic drug that is completely producible in E. coli. Crucial for this goal was the novel unstructured polypeptide XTEN, which acts like polyethylene glycol (PEG) but has many important advantages. Most importantly, it can be produced in E. coli, is less immunogenic, and is biodegradable. We tested constructs containing a fragment of Killin as cytostatic/cytotoxic element, a cell-penetrating peptide, an MMP-2 cleavage site for specific activation, and XTEN for long blood circulation and deactivation of Killin. One of three sequence variants was efficiently expressed in E. coli. As typical for XTEN, it allowed efficient purification of the E. coli lysate by a heat step (10 min 75°C) and subsequent anion exchange chromatography using XTEN as purification tag. After 24 h XTEN-Killin reduced the number of viable cells of HT-1080 tumor cell line to 3.8 ±2.0% (p<0.001) compared to untreated controls. In contrast, liver derived non-tumor cells (BRL3A) did not show significant changes in viability. Our results demonstrate the feasibility of completely producing a complex protease-activatable, potentially long-circulating cytostatic/cytotoxic prodrug in E. coli—a concept that could lead to efficient production of highly multifunctional drugs in the future.
Collapse
|
28
|
Nizialek EA, Sankunny M, Niazi F, Eng C. Cancer-predisposition gene KLLN maintains pericentric H3K9 trimethylation protecting genomic stability. Nucleic Acids Res 2015; 44:3586-94. [PMID: 26673699 PMCID: PMC4856962 DOI: 10.1093/nar/gkv1481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 12/08/2015] [Indexed: 12/13/2022] Open
Abstract
Maintenance of proper chromatin states and genomic stability is vital for normal development and health across a range of organisms. Here, we report on the role of KLLN in maintenance of pericentric H3K9 trimethylation (H3K9me3) and genomic stability. Germline hypermethylation of KLLN, a gene uncovered well after the human genome project, has been linked to Cowden cancer-predisposition syndrome (CS) in PTEN wild-type cases. KLLN first identified as a p53-dependent tumor suppressor gene, was believed to bind randomly to DNA and cause S-phase arrest. Using chromatin immunoprecipitation-based sequencing (ChIP-seq), we demonstrated that KLLN binds to DNA regions enriched with H3K9me3. KLLN overexpression correlated with increased H3K9 methyltransferase activity and increased global H3K9me3, while knockdown of KLLN had an opposite effect. We also found KLLN to localize to pericentric regions, with loss of KLLN resulting in dysregulation of pericentric heterochromatin, with consequent chromosomal instability manifested by increased micronuclei formation and numerical chromosomal aberrations. Interestingly, we show that KLLN interacts with DBC1, with consequent abrogation of DBC1 inhibition of SUV39H1, a H3K9 methyltransferase, suggesting the mode of KLLN regulating H3K9me3. These results suggest a critical role for KLLN as a potential regulator of pericentric heterochromatin formation, genomic stability and gene expression.
Collapse
Affiliation(s)
- Emily A Nizialek
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Madhav Sankunny
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Farshad Niazi
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
29
|
Nizialek EA, Mester JL, Dhiman VK, Smiraglia DJ, Eng C. KLLN epigenotype-phenotype associations in Cowden syndrome. Eur J Hum Genet 2015; 23:1538-43. [PMID: 25669429 PMCID: PMC4613489 DOI: 10.1038/ejhg.2015.8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 12/12/2022] Open
Abstract
Germline KLLN promoter hypermethylation was recently identified as a potential genetic etiology of the cancer predisposition syndrome, Cowden syndrome (CS), when no causal PTEN gene mutation was found. We screened for KLLN promoter methylation in a large prospective series of CS patients and determined the risk of benign and malignant CS features in patients with increased methylation both with and without a PTEN mutation/variant of unknown significance. In all, 1012 CS patients meeting relaxed International Cowden Consortium criteria including 261 PTEN mutation-positive CS patients, 187 PTEN variant-positive CS patients and 564 PTEN mutation-negative CS patients, as well as 111 population controls were assessed for germline KLLN promoter methylation by MassARRAY EpiTYPER analysis. KLLN promoter methylation was analyzed both as a continuous and a dichotomous variable in the calculation of phenotypic risks by stepwise logistic regression and Kaplan-Meier/standardized incidence ratio methods, respectively. Significantly increased KLLN promoter methylation was seen in CS individuals with and without a PTEN mutation/VUS compared with controls (P<0.001). Patients with high KLLN promoter methylation have increased risks of all CS-associated malignancies compared with the general population. Interestingly, KLLN-associated risk of thyroid cancer appears to be gender and PTEN status dependent. KLLN promoter methylation associated with different benign phenotypes dependent on PTEN status. Furthermore, increasing KLLN promoter methylation is associated with a greater phenotype burden in mutation-negative CS patients. Germline promoter hypermethylation of KLLN is associated with particular malignant and benign CS features, which is dependent on the PTEN mutation status.
Collapse
Affiliation(s)
- Emily A Nizialek
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jessica L Mester
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vineet K Dhiman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Dominic J Smiraglia
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
30
|
Shenoy N, Vallumsetla N, Zou Y, Galeas JN, Shrivastava M, Hu C, Susztak K, Verma A. Role of DNA methylation in renal cell carcinoma. J Hematol Oncol 2015. [PMID: 26198328 PMCID: PMC4511443 DOI: 10.1186/s13045-015-0180-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alterations in DNA methylation are seen in cancers and have also been examined in clear cell renal cell carcinoma (ccRCC). Numerous tumor suppressor genes have been reported to be partially or completely silenced due to hypermethylation of their promoters in single-locus studies, and the use of hypomethylating agents has been shown to restore the expression of many of these genes in vitro. In particular, members of the Wnt and TGF-beta pathways, pro-apoptotic genes such as APAF-1 and negative cell-cycle regulators such as KILLIN have been shown to be epigenetically silenced in numerous studies in ccRCC. Recently, TCGA analysis of a large cohort of ccRCC samples demonstrated that aberrant hypermethylation correlated with the stage and grade in kidney cancer. Our genome-wide studies also revealed aberrant widespread hypermethylation that affected regulatory regions of the kidney genome in ccRCC. We also observed that aberrant enhancer hypermethylation was predictive of adverse prognosis in ccRCC. Recent discovery of mutations affecting epigenetic regulators reinforces the importance of these changes in the pathophysiology of ccRCC and points to the potential of epigenetic modulators in the treatment of this malignancy.
Collapse
Affiliation(s)
- Niraj Shenoy
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10467, USA.
| | - Nishanth Vallumsetla
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10467, USA.
| | - Yiyu Zou
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10467, USA.
| | - Jose Nahun Galeas
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10467, USA.
| | | | - Caroline Hu
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10467, USA.
| | - Katalin Susztak
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Amit Verma
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10467, USA.
| |
Collapse
|
31
|
Bonnet E, Calzone L, Michoel T. Integrative multi-omics module network inference with Lemon-Tree. PLoS Comput Biol 2015; 11:e1003983. [PMID: 25679508 PMCID: PMC4332478 DOI: 10.1371/journal.pcbi.1003983] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/14/2014] [Indexed: 01/05/2023] Open
Abstract
Module network inference is an established statistical method to reconstruct co-expression modules and their upstream regulatory programs from integrated multi-omics datasets measuring the activity levels of various cellular components across different individuals, experimental conditions or time points of a dynamic process. We have developed Lemon-Tree, an open-source, platform-independent, modular, extensible software package implementing state-of-the-art ensemble methods for module network inference. We benchmarked Lemon-Tree using large-scale tumor datasets and showed that Lemon-Tree algorithms compare favorably with state-of-the-art module network inference software. We also analyzed a large dataset of somatic copy-number alterations and gene expression levels measured in glioblastoma samples from The Cancer Genome Atlas and found that Lemon-Tree correctly identifies known glioblastoma oncogenes and tumor suppressors as master regulators in the inferred module network. Novel candidate driver genes predicted by Lemon-Tree were validated using tumor pathway and survival analyses. Lemon-Tree is available from http://lemon-tree.googlecode.com under the GNU General Public License version 2.0.
Collapse
Affiliation(s)
- Eric Bonnet
- Institut Curie, Paris, France
- INSERM U900, Paris, France
- Mines ParisTech, Fontainebleau, France
- * E-mail: (EB); (TM)
| | - Laurence Calzone
- Institut Curie, Paris, France
- INSERM U900, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - Tom Michoel
- Division of Genetics & Genomics, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
- * E-mail: (EB); (TM)
| |
Collapse
|
32
|
Abstract
The importance of PTEN in cellular function is underscored by the frequency of its deregulation in cancer. PTEN tumor-suppressor activity depends largely on its lipid phosphatase activity, which opposes PI3K/AKT activation. As such, PTEN regulates many cellular processes, including proliferation, survival, energy metabolism, cellular architecture, and motility. More than a decade of research has expanded our knowledge about how PTEN is controlled at the transcriptional level as well as by numerous posttranscriptional modifications that regulate its enzymatic activity, protein stability, and cellular location. Although the role of PTEN in cancers has long been appreciated, it is also emerging as an important factor in other diseases, such as diabetes and autism spectrum disorders. Our understanding of PTEN function and regulation will hopefully translate into improved prognosis and treatment for patients suffering from these ailments.
Collapse
Affiliation(s)
- Carolyn A Worby
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721;
| | | |
Collapse
|
33
|
Qiao M, Luo D, Kuang Y, Feng H, Luo G, Liang P. Cell cycle specific distribution of killin: evidence for negative regulation of both DNA and RNA synthesis. Cell Cycle 2015; 14:1823-9. [PMID: 25945611 PMCID: PMC4614363 DOI: 10.1080/15384101.2015.1038686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/28/2015] [Accepted: 04/02/2015] [Indexed: 12/13/2022] Open
Abstract
p53 tumor-suppressor gene is a master transcription factor which controls cell cycle progression and apoptosis. killin was discovered as one of the p53 target genes implicated in S-phase control coupled to cell death. Due to its extreme proximity to pten tumor-suppressor gene on human chromosome 10, changes in epigenetic modification of killin have also been linked to Cowden syndrome as well as other human cancers. Previous studies revealed that Killin is a high-affinity DNA-binding protein with preference to single-stranded DNA, and it inhibits DNA synthesis in vitro and in vivo. Here, co-localization studies of RFP-Killin with either GFP-PCNA or endogenous single-stranded DNA binding protein RPA during S-phase show that Killin always adopts a mutually exclusive punctuated nuclear expression pattern with the 2 accessory proteins in DNA replication. In contrast, when cells are not in S-phase, RFP-Killin largely congregates in the nucleolus where rRNA transcription normally occurs. Both of these cell cycle specific localization patterns of RFP-Killin are stable under high salt condition, consistent with Killin being tightly associated with nucleic acids within cell nuclei. Together, these cell biological results provide a molecular basis for Killin in competitively inhibiting the formation of DNA replication forks during S-phase, as well as potentially negatively regulate RNA synthesis during other cell cycle phases.
Collapse
Affiliation(s)
- Man Qiao
- Center for Growth, Metabolism and Aging; Department of Biochemistry & Molecular Biology; School of Life Sciences; Sichuan University; Chengdu, China
| | - Dan Luo
- Center for Growth, Metabolism and Aging; Department of Biochemistry & Molecular Biology; School of Life Sciences; Sichuan University; Chengdu, China
| | - Yi Kuang
- Center for Growth, Metabolism and Aging; Department of Biochemistry & Molecular Biology; School of Life Sciences; Sichuan University; Chengdu, China
| | - Haiyan Feng
- Center for Growth, Metabolism and Aging; Department of Biochemistry & Molecular Biology; School of Life Sciences; Sichuan University; Chengdu, China
| | - Guangping Luo
- State Key Laboratory for Gene and Cell Therapy; Sichuan University; Chengdu, China
| | - Peng Liang
- Center for Growth, Metabolism and Aging; Department of Biochemistry & Molecular Biology; School of Life Sciences; Sichuan University; Chengdu, China
- Clover Biopharmaceuticals; Chengdu, China
- State Key Laboratory for Gene and Cell Therapy; Sichuan University; Chengdu, China
| |
Collapse
|
34
|
Krohn A, Freudenthaler F, Harasimowicz S, Kluth M, Fuchs S, Burkhardt L, Stahl P, C Tsourlakis M, Bauer M, Tennstedt P, Graefen M, Steurer S, Sirma H, Sauter G, Schlomm T, Simon R, Minner S. Heterogeneity and chronology of PTEN deletion and ERG fusion in prostate cancer. Mod Pathol 2014; 27:1612-20. [PMID: 24762546 DOI: 10.1038/modpathol.2014.70] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 12/11/2022]
Abstract
TMPRSS2:ERG fusions, in combination with deletion of the phosphatase and tensin homolog (PTEN) tumor suppressor, have been suggested to cooperatively drive tumor progression in prostate cancer. We utilized a novel heterogeneity tissue microarray containing samples from 10 different tumor blocks of 189 prostatectomy specimens to study heterogeneity of genomic PTEN alterations in individual foci. PTEN alterations were found in 48/123 (39%) analyzable individual tumor foci, including 40 foci with deletions, 7 with deletion and rearrangement, and 1 focus with rearrangement only. PTEN was homogeneously aberrant in only 4 (8%) and heterogeneously in 44 (92%) of the foci. We found a specific sequence of molecular events from PTEN breakage followed by deletion of DNA sequences flanking the breakpoint, resulting in homozygous deletion. The observation that 16 of 19 foci with homogeneous ERG positivity had focal PTEN alterations but none of 10 foci with PTEN alterations had focal ERG positivity (P<0.0001) suggests that PTEN alterations typically develop subsequent to ERG fusions. We demonstrate a high level of intratumoral heterogeneity of PTEN alterations with deletions and rearrangements that challenges potential PTEN routine diagnosis testing in biopsies. The observation that PTEN alterations develop subsequent to ERG fusion strongly suggests that ERG expression may directly drive development of PTEN aberrations.
Collapse
Affiliation(s)
- Antje Krohn
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Freudenthaler
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silvia Harasimowicz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Fuchs
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lia Burkhardt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Phillip Stahl
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria C Tsourlakis
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Bauer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pierre Tennstedt
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hueseyin Sirma
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- 1] Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany [2] Department of Urology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
35
|
Ng EK, Shin VY, Leung CP, Chan VW, Law FB, Siu MT, Lang BH, Ma ES, Kwong A. Elevation of methylated DNA in KILLIN/PTEN in the plasma of patients with thyroid and/or breast cancer. Onco Targets Ther 2014; 7:2085-92. [PMID: 25419146 PMCID: PMC4234161 DOI: 10.2147/ott.s53597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Around 80% of mutations in the PTEN gene have been reported to be associated with diseases such as Cowden syndrome, which is an autosomal dominant disorder associated with an increased risk of developing breast, thyroid, and endometrial neoplasms. Recent studies have also demonstrated that KILLIN, which is located proximally to PTEN, shares the same transcription start site, and is assumed to be regulated by the same promoter, but is transcribed in the opposite direction. In this regard, we postulate that there may be a connection between KILLIN/PTEN genes and breast and thyroid cancers. Using real-time quantitative polymerase chain reaction (qPCR), we found that expression of KILLIN, but not PTEN, was significantly decreased in 23 Chinese women with a personal history of breast and thyroid cancer or a personal history of breast cancer and a family history of thyroid cancer, or vice versa, and at least two persons in the family with thyroid cancer or at a young age <40 years, when compared with healthy controls (P<0.0001). No PTEN mutations were found in these 23 patients. We then developed a simple methylation-sensitive restriction enzyme digestion followed by real-time quantitative assay to quantify plasma methylated KILLIN/PTEN DNA in these patients. Plasma levels of methylated KILLIN/PTEN DNA were significantly increased in these patients when compared with healthy controls (P<0.05). This study shows that plasma methylated KILLIN/PTEN DNA was significantly elevated, suggesting hypermethylation of the KILLIN/PTEN promoter in breast and thyroid cancer patients.
Collapse
Affiliation(s)
- Enders K Ng
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Vivian Y Shin
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Candy P Leung
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Vivian W Chan
- Department of Molecular Pathology and Department of Surgery, Hong Kong Sanatorium and Hospital, Hong Kong
| | - Fian B Law
- Department of Molecular Pathology and Department of Surgery, Hong Kong Sanatorium and Hospital, Hong Kong ; Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong
| | - Man T Siu
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Brian H Lang
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Edmond S Ma
- Department of Molecular Pathology and Department of Surgery, Hong Kong Sanatorium and Hospital, Hong Kong ; Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong
| | - Ava Kwong
- Department of Surgery, The University of Hong Kong, Hong Kong ; Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong
| |
Collapse
|
36
|
Differential S-phase progression after irradiation of p53 functional versus non-functional tumour cells. Radiol Oncol 2014; 48:354-60. [PMID: 25435848 PMCID: PMC4230555 DOI: 10.2478/raon-2014-0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/24/2014] [Indexed: 11/20/2022] Open
Abstract
Background Many pathways seem to be involved in the regulation of the intra-S-phase checkpoint after exposure to ionizing radiation, but the role of p53 has proven to be rather elusive. Here we have a closer look at the progression of irradiated cells through S-phase in dependence of their p53 status. Materials and methods. Three pairs of tumour cell lines were used, each consisting of one p53 functional and one p53 non-functional line. Cells were labelled with bromodeoxyuridine(BrdU) immediately after irradiation, they were then incubated in label-free medium, and at different times afterwards their position within the S-phase was determined by means of flow cytometry. Results While in the p53 deficient cells progression through S-phase was slowed significantly over at least a few hours, it was halted for just about an hour in the p53 proficient cells and then proceeded without further delay or even at a slightly accelerated pace. Conclusions It is clear from the experiments presented here that p53 does play a role for the progress of cells through the S-phase after X-ray exposure, but the exact mechanisms by which replicon initiation and elongation is controlled in irradiated cells remain to be elucidated.
Collapse
|
37
|
Stadler ZK, Robson ME. Inherited predisposition to endometrial cancer: Moving beyond Lynch syndrome. Cancer 2014; 121:644-7. [DOI: 10.1002/cncr.29107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Zsofia K. Stadler
- Clinical Genetics Service, Department of Medicine; Memorial Sloan-Kettering Cancer Center; New York New York
- Department of Medicine, Weill Cornell Medical College; New York New York
| | - Mark E. Robson
- Clinical Genetics Service, Department of Medicine; Memorial Sloan-Kettering Cancer Center; New York New York
- Department of Medicine, Weill Cornell Medical College; New York New York
| |
Collapse
|
38
|
Kraft S, Granter SR. Molecular pathology of skin neoplasms of the head and neck. Arch Pathol Lab Med 2014; 138:759-87. [PMID: 24878016 DOI: 10.5858/arpa.2013-0157-ra] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Skin neoplasms include the most common malignancies affecting humans. Many show an ultraviolet (UV)-induced pathogenesis and often affect the head and neck region. OBJECTIVE To review literature on cutaneous neoplasms that show a predilection for the head and neck region and that are associated with molecular alterations. DATA SOURCES Literature review. CONCLUSIONS Common nonmelanoma skin cancers, such as basal and squamous cell carcinomas, show a UV-induced pathogenesis. Basal cell carcinomas are characterized by molecular alterations of the Hedgehog pathway, affecting patched and smoothened genes. While squamous cell carcinomas show UV-induced mutations in several genes, driver mutations are only beginning to be identified. In addition, certain adnexal neoplasms also predominantly affect the head and neck region and show interesting, recently discovered molecular abnormalities, or are associated with hereditary conditions whose molecular genetic pathogenesis is well understood. Furthermore, recent advances have led to an increased understanding of the molecular pathogenesis of melanoma. Certain melanoma subtypes, such as lentigo maligna melanoma and desmoplastic melanoma, which are more often seen on the chronically sun-damaged skin of the head and neck, show differences in their molecular signature when compared to the other more common subtypes, such as superficial spreading melanoma, which are more prone to occur at sites with acute intermittent sun damage. In summary, molecular alterations in cutaneous neoplasms of the head and neck are often related to UV exposure. Their molecular footprint often reflects the histologic tumor type, and familiarity with these changes will be increasingly necessary for diagnostic and therapeutic considerations.
Collapse
Affiliation(s)
- Stefan Kraft
- From the Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (Dr Kraft); and the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts (Dr Granter)
| | | |
Collapse
|
39
|
Wang Y, Roma A, Nolley R, Abdul-Karim F, Peehl DM, Eng C. Nuclear KLLN expression associates with improved relapse-free survival for prostate carcinoma. Endocr Relat Cancer 2014; 21:579-86. [PMID: 24972837 DOI: 10.1530/erc-14-0148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Men with organ-confined prostate cancer (CaP) are often treated with radical prostatectomy. Despite similar postoperative characteristics, a significant proportion of men with an intermediate risk of progression experience prostate-specific antigen (PSA)-defined failure, while others have relapse-free survival (RFS). Additional prognostic markers are needed to predict the outcome of these patients. KLLN is a transcription factor that regulates the cell cycle and induces apoptosis in cancer cells. We have shown that KLLN is an androgen-regulated gene and that loss of KLLN expression in primary CaP is associated with high Gleason score. In this retrospective study, we evaluated KLLN expression in the high-grade malignancy components from 109 men with intermediate risk CaP. Patients with nuclear KLLN-negative tumors had significantly higher preoperative serum PSA levels (12.24±2.37 ng/ml) and larger tumor volumes (4.61±0.71 cm(3)) compared with nuclear KLLN-positive patients (8.35±2.45 ng/ml, P=0.03, and 2.66±0.51 cm(3), P<0.0001, respectively). None of the nuclear KLLN-positive tumors had capsular penetration, whereas 34% of nuclear KLLN-negative tumors (P=0.004) had capsular penetration. Maintaining KLLN expression in tumor nuclei, but not in cytoplasm or stroma, associated with improved RFS after surgery (P=0.002). Only 7% of patients with nuclear KLLN-positive tumors had tumor recurrence, while 60% of patients in the KLLN-negative group developed PSA-defined failure with median relapse time of 6.6 months (P=0.0003). Our data suggest that KLLN expression may be used as a prognostic marker to predict outcome for intermediate risk patients, which could provide useful information for postoperative management.
Collapse
Affiliation(s)
- Yu Wang
- Genomic Medicine InstituteDepartment of Anatomic PathologyCleveland Clinic, Cleveland, Ohio 44195, USADepartment of UrologyStanford University School of Medicine, Stanford, California 94305, USATaussig Cancer InstituteStanley Shalom Zielony Institute for Nursing ExcellenceCleveland Clinic, Cleveland, Ohio 44195, USADepartment of Genetics and Genome SciencesCASE Comprehensive Cancer CenterCase Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Andres Roma
- Genomic Medicine InstituteDepartment of Anatomic PathologyCleveland Clinic, Cleveland, Ohio 44195, USADepartment of UrologyStanford University School of Medicine, Stanford, California 94305, USATaussig Cancer InstituteStanley Shalom Zielony Institute for Nursing ExcellenceCleveland Clinic, Cleveland, Ohio 44195, USADepartment of Genetics and Genome SciencesCASE Comprehensive Cancer CenterCase Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Rosalie Nolley
- Genomic Medicine InstituteDepartment of Anatomic PathologyCleveland Clinic, Cleveland, Ohio 44195, USADepartment of UrologyStanford University School of Medicine, Stanford, California 94305, USATaussig Cancer InstituteStanley Shalom Zielony Institute for Nursing ExcellenceCleveland Clinic, Cleveland, Ohio 44195, USADepartment of Genetics and Genome SciencesCASE Comprehensive Cancer CenterCase Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Fadi Abdul-Karim
- Genomic Medicine InstituteDepartment of Anatomic PathologyCleveland Clinic, Cleveland, Ohio 44195, USADepartment of UrologyStanford University School of Medicine, Stanford, California 94305, USATaussig Cancer InstituteStanley Shalom Zielony Institute for Nursing ExcellenceCleveland Clinic, Cleveland, Ohio 44195, USADepartment of Genetics and Genome SciencesCASE Comprehensive Cancer CenterCase Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Donna M Peehl
- Genomic Medicine InstituteDepartment of Anatomic PathologyCleveland Clinic, Cleveland, Ohio 44195, USADepartment of UrologyStanford University School of Medicine, Stanford, California 94305, USATaussig Cancer InstituteStanley Shalom Zielony Institute for Nursing ExcellenceCleveland Clinic, Cleveland, Ohio 44195, USADepartment of Genetics and Genome SciencesCASE Comprehensive Cancer CenterCase Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Charis Eng
- Genomic Medicine InstituteDepartment of Anatomic PathologyCleveland Clinic, Cleveland, Ohio 44195, USADepartment of UrologyStanford University School of Medicine, Stanford, California 94305, USATaussig Cancer InstituteStanley Shalom Zielony Institute for Nursing ExcellenceCleveland Clinic, Cleveland, Ohio 44195, USADepartment of Genetics and Genome SciencesCASE Comprehensive Cancer CenterCase Western Reserve University School of Medicine, Cleveland, Ohio 44106, USAGenomic Medicine InstituteDepartment of Anatomic PathologyCleveland Clinic, Cleveland, Ohio 44195, USADepartment of UrologyStanford University School of Medicine, Stanford, California 94305, USATaussig Cancer InstituteStanley Shalom Zielony Institute for Nursing ExcellenceCleveland Clinic, Cleveland, Ohio 44195, USADepartment of Genetics and Genome SciencesCASE Comprehensive Cancer CenterCase Western Reserve University School of Medicine, Cleveland, Ohio 44106, USAGenomic Medicine InstituteDepartment of Anatomic PathologyCleveland Clinic, Cleveland, Ohio 44195, USADepartment of UrologyStanford University School of Medicine, Stanford, California 94305, USATaussig Cancer InstituteStanley Shalom Zielony Institute for Nursing ExcellenceCleveland Clinic, Cleveland, Ohio 44195, USADepartment of Genetics and Genome SciencesCASE Comprehensive Cancer CenterCase Western Reserve University School of Medicine, Cleveland, Ohio 44106, USAGenomic Medicine InstituteDepartment of Anatomic PathologyCleveland Clinic, Cleveland, Ohio 44195, USADepartment of UrologyStanford University School of Medicine, Stanford, California 94305, USATaussig Cancer InstituteStanley Shalom Zielony Institute for Nursing ExcellenceCleveland Clinic, Cleveland, Ohio 44195, USADepartment of Genetics and Genome SciencesCASE Comprehensive Cancer CenterCase Western Reserve University School of Medicine, Cleveland, Ohio 44106, USAGenomic Medicine InstituteDepartment of Anatomic PathologyCleveland Clinic, Cleveland, Ohio 44195, USADepartment of UrologyS
| |
Collapse
|
40
|
Ma Z, Luo D, Huang A, Xu Y, Wang Y, Wei Y, Liang P. pKILLIN: a versatile positive-selection cloning vector based on the toxicity of Killin in Escherichia coli. Gene 2014; 544:228-35. [PMID: 24768186 DOI: 10.1016/j.gene.2014.04.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/16/2014] [Accepted: 04/19/2014] [Indexed: 11/26/2022]
Abstract
The invention of DNA cloning over 40 years ago marked the advent of molecular biology. The technique has now become a routine practice in any modern biomedical laboratory. Although positive-selection of recombinants in DNA cloning seems to be superior to blue/white selection based on the disruption of the lacZ gene, it is rarely practiced due to its high background, lack of multiple cloning sites, and inability to express the genes of interest or purify the protein products. Here we report the creation of a new positive-selection cloning vector dubbed pKILLIN, which overcomes all of the above pitfalls. The essence behind its high cloning efficiency is the extreme toxicity and small size of the toxic domain of killin, a recently discovered p53 target gene. Insertion inactivation of killin within the multiple cloning site via either blunt- or sticky-end ligation not only serves as a highly efficient cloning trap, but also may allow any cloned genes to be expressed as His-tagged fusion proteins for subsequent purification. Thus, pKILLIN is a versatile positive-selection vector ideal for cloning PCR products, making DNA libraries, as well as routine cloning and bacterial expression of genes.
Collapse
Affiliation(s)
- Zelong Ma
- Center for Growth, Metabolism and Aging, School of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Dan Luo
- Center for Growth, Metabolism and Aging, School of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Anliang Huang
- State Key Laboratory for Gene and Cell Therapy, Sichuan University, Chengdu, China
| | - Yang Xu
- Center for Growth, Metabolism and Aging, School of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yunxiao Wang
- Clover Biopharmaceuticals, Chengdu, China; State Key Laboratory for Gene and Cell Therapy, Sichuan University, Chengdu, China
| | - Yuquan Wei
- State Key Laboratory for Gene and Cell Therapy, Sichuan University, Chengdu, China
| | - Peng Liang
- Center for Growth, Metabolism and Aging, School of Life Sciences, Sichuan University, Chengdu 610064, China; Clover Biopharmaceuticals, Chengdu, China; State Key Laboratory for Gene and Cell Therapy, Sichuan University, Chengdu, China; GenHunter Corporation, 624 Grassmere Park, Nashville, TN 37211, USA.
| |
Collapse
|
41
|
Wang Y, Yu Q, He X, Romigh T, Altemus J, Eng C. Activation of AR sensitizes breast carcinomas to NVP-BEZ235's therapeutic effect mediated by PTEN and KLLN upregulation. Mol Cancer Ther 2013; 13:517-27. [PMID: 24356815 DOI: 10.1158/1535-7163.mct-13-0655] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
NVP-BEZ235 is a newly developed dual PI3K/mTOR inhibitor, being tested in multiple clinical trials, including breast cancer. NVP-BEZ235 selectively induces cell growth inhibition in a subset, but not all, breast cancer cell lines. However, it remains a challenge to distinguish between sensitive and resistant tumors, particularly in the pretreatment setting. Here, we used ten breast cancer cell lines to compare NVP-BEZ235 sensitivity and in the context of androgen receptor (AR) activation during NVP-BEZ235 treatment. We also used female SCID mice bearing breast tumor xenografts to investigate the beneficial effect of dihydrotestosterone/NVP-BEZ235 combination treatment compared with each alone. We found that AR-positive breast cancer cell lines are much more sensitive to NVP-BEZ235 compared with AR-negative cells, regardless of PTEN or PI3KCA status. Reintroducing AR expression in NVP-BEZ235 nonresponsive AR-negative cells restored the response. DHT/NVP-BEZ235 combination not only resulted in a more significant growth inhibition than either drug alone, but also achieved tumor regression and complete responses for AR(+)/ER(+) tumors. This beneficial effect was mediated by dihydrotestosterone (DHT)-induced PTEN and KLLN expression. Furthermore, DHT could also reverse NVP-BEZ235-induced side effects such as skin rash and weight loss. Our data suggest that AR expression may be an independent predictive biomarker for response to NVP-BEZ235. AR induction could add benefit during NVP-BEZ235 treatment in patients, especially with AR(+)/ER(+) breast carcinomas.
Collapse
Affiliation(s)
- Yu Wang
- Corresponding Author: Charis Eng, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, OH 44195.
| | | | | | | | | | | |
Collapse
|
42
|
Wang Y, Radhakrishnan D, He X, Peehl DM, Eng C. Transcription factor KLLN inhibits tumor growth by AR suppression, induces apoptosis by TP53/TP73 stimulation in prostate carcinomas, and correlates with cellular differentiation. J Clin Endocrinol Metab 2013; 98:E586-94. [PMID: 23386643 PMCID: PMC3678149 DOI: 10.1210/jc.2012-3490] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT KLLN is a newly identified gene with unknown function and shares a bidirectional promoter with PTEN. OBJECTIVE The objective of the study was to analyze the relationship between KILLIN (KLLN) expression and prostate cancer and the potential tumor suppressive effect. DESIGN We conducted an in silico analysis to compare KLLN expression in normal prostate and matched primary carcinoma tissues. We subsequently used immunohistochemistry to examine KLLN expression and association with Gleason grade and score in 109 prostatectomy samples. KLLN's tumor-suppressive effect was studied in androgen-dependent and androgen-independent cell models. PATIENTS Patients were diagnosed with peripheral zone prostate carcinomas without metastasis at the time of prostatectomy. Each patient's primary tumor comprised at least 2 tumoral regions with different Gleason grades. RESULTS KLLN expression decreased from normal prostate tissue to primary carcinomas (P < .0001). The loss of epithelial and stromal KLLN expression is associated with poor differentiation and high Gleason scores (P < .0001), consistent with our in vitro observation that KLLN inhibits tumor cell proliferation and invasiveness. KLLN decreases prostate-specific antigen levels and suppresses androgen-mediated cell growth by inhibiting androgen receptor (AR) transcription. As an androgen receptor-regulated target, KLLN also functions as a transcriptional activator, directly promoting the expression of TP53 and TP73, with consequent elevated apoptosis, regardless of AR status. CONCLUSIONS Our observations suggest that KLLN is a transcription factor directly regulating AR, TP53, and TP73 expression, with a role in prostate carcinogenesis. Loss of KLLN associates with high Gleason scores, suggesting that KLLN might be used as a potential prognostic marker for risk management and as a novel therapy target for advanced prostate carcinomas.
Collapse
Affiliation(s)
- Yu Wang
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
43
|
Nizialek EA, Peterson C, Mester JL, Downes-Kelly E, Eng C. Germline and somatic KLLN alterations in breast cancer dysregulate G2 arrest. Hum Mol Genet 2013; 22:2451-61. [PMID: 23446638 DOI: 10.1093/hmg/ddt097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PTEN is a well-described predisposition gene for Cowden syndrome (CS), a familial cancer syndrome characterized by a high risk of breast and other cancers. KLLN, which shares a bidirectional promoter with PTEN, causes cell cycle arrest and apoptosis. We previously identified germline hypermethylation of the KLLN promoter in 37% of PTEN mutation-negative CS/CS-like (CSL) patients. Patients with germline KLLN hypermethylation have an increased prevalence of breast and renal cancers when compared with PTEN mutation carriers. We have consequently sought to identify and characterize germline KLLN variants/mutations in CS/CSL and in apparently sporadic breast cancer patients. KLLN variants in CS/CSL patients are rare (1 of 136, 0.007%). Interestingly, among 438 breast cancer patients, 13 (3%) have germline KLLN variants when compared with none in 128 controls (P = 0.049). Patients with KLLN variants have a family history of breast cancer when compared with those without (P = 0.02). We demonstrate that germline KLLN variants dysregulate the cell cycle at G2. Of 24 breast carcinomas analyzed, 3 (13%) have somatic KLLN hemizygous deletions, with somatic loss of the wild-type allele in a patient with germline KLLN p.Leu119Leu. Of 452 breast carcinomas in The Cancer Genome Atlas project, 93 (21%) have KLLN hemizygous or homozygous deletions. This is the first study to associate germline KLLN variants with sporadic breast cancer and to recognize somatic KLLN deletions in breast carcinomas. Our observations suggest that KLLN may be a low penetrance susceptibility factor for apparently sporadic breast cancer.
Collapse
Affiliation(s)
- Emily A Nizialek
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
44
|
Wang Y, He X, Yu Q, Eng C. Androgen receptor-induced tumor suppressor, KLLN, inhibits breast cancer growth and transcriptionally activates p53/p73-mediated apoptosis in breast carcinomas. Hum Mol Genet 2013; 22:2263-72. [PMID: 23418309 DOI: 10.1093/hmg/ddt077] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Androgen receptor (AR) expression by immunohistochemistry correlates with better prognosis and survival among breast cancer patients. We and others have shown that AR inhibits proliferation and induces apoptosis in breast cancer cells. However, the mechanism of AR's anti-tumor effect in breast cancer is still not fully understood. Our recent study indicates that AR upregulates expression of tumor suppressor gene PTEN by promoter activation in breast cancer. KLLN, encoding KLLN protein, is a newly identified gene, which shares a bidirectional promoter with PTEN and is transcribed in the opposite direction. So far, the function of KLLN has never been studied in tumorigenesis. Here, we define KLLN as a tumor suppressor in breast carcinomas, which inhibits tumor growth and invasiveness. After analyzing 188 normal breast and 1247 malignant breast cancer tissues, we observed the loss of KLLN in multiple breast cancer subtypes and this decreased KLLN expression associates with tumor progression and increasing histological grade in invasive carcinomas. We characterize KLLN, for the first time, as a transcription factor, directly promoting the expression of TP53 and TP73, with consequent elevated apoptosis and cell cycle arrest in breast cancer cells. We demonstrate, in vitro and in murine xenograph models, that both KLLN and PTEN are AR-target genes, mediating androgen-induced growth inhibition and apoptosis in breast cancer cells. Our observations suggest that KLLN might be used as a potential prognostic marker and novel therapy target for breast carcinomas.
Collapse
Affiliation(s)
- Yu Wang
- Genomic Medicine Institute, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
45
|
Analysis of KLLN as a high-penetrance breast cancer predisposition gene. Breast Cancer Res Treat 2012; 134:543-7. [PMID: 22580995 DOI: 10.1007/s10549-012-2088-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/30/2012] [Indexed: 01/24/2023]
Abstract
KLLN is a p53 target gene with DNA binding function and represents a highly plausible candidate breast cancer predisposition gene. We screened for predisposing variants in 860 high-risk breast cancer families using high resolution melt analysis. A germline c.339_340delAG variant predicted to cause premature termination of the protein after 57 alternative amino acid residues was identified in 3/860 families who tested negative for BRCA1 and BRCA2 mutations and in 1/84 sporadic breast cancer cases. However, the variant was also detected in 2/182 families with known BRCA1 or BRCA2 mutations and in 2/464 non-cancer controls. Furthermore, loss of the mutant allele was detected in 2/2 breast tumors. Our data suggest that pathogenic mutations in KLLN are rare in breast cancer families and the c.339_340delAG variant does not represent a high-penetrance breast cancer risk allele.
Collapse
|
46
|
Hesson LB, Packham D, Pontzer E, Funchain P, Eng C, Ward RL. A reinvestigation of somatic hypermethylation at the PTEN CpG island in cancer cell lines. Biol Proced Online 2012; 14:5. [PMID: 22490388 PMCID: PMC3342897 DOI: 10.1186/1480-9222-14-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/10/2012] [Indexed: 12/15/2022] Open
Abstract
Background PTEN is an important tumour suppressor gene that is mutated in Cowden syndrome as well as various sporadic cancers. CpG island hypermethylation is another route to tumour suppressor gene inactivation, however, the literature regarding PTEN hypermethylation in cancer is controversial. Furthermore, investigation of the methylation status of the PTEN CpG island is challenging due to sequence homology with the PTEN pseudogene, PTENP1. PTEN shares a CpG island promoter with another gene known as KLLN. Here we present a thorough reinvestigation of the methylation status of the PTEN CpG island in DNA from colorectal, breast, ovarian, glioma, lung and haematological cancer cell lines. Results Using a range of bisulphite-based PCR assays we investigated 6 regions across the PTEN CpG island. We found that regions 1-4 were not methylated in cancer cell lines (0/36). By allelic bisulphite sequencing and pyrosequencing methylation was detected in regions 5 and 6 in colorectal, breast and haematological cancer cell lines. However, methylation detected in this region was associated with the PTENP1 promoter and not the PTEN CpG island. Conclusions We show that methylation of the PTEN CpG island is a rare event in cancer cell lines and that apparent methylation most likely originates from homologous regions of the PTENP1 pseudogene promoter. Future studies should utilize assays that reliably discriminate between PTEN and PTENP1 to avoid data misinterpretation.
Collapse
Affiliation(s)
- Luke B Hesson
- Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | | | |
Collapse
|
47
|
Botcheva K, McCorkle SR, McCombie WR, Dunn JJ, Anderson CW. Distinct p53 genomic binding patterns in normal and cancer-derived human cells. Cell Cycle 2011; 10:4237-49. [PMID: 22127205 DOI: 10.4161/cc.10.24.18383] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We report here genome-wide analysis of the tumor suppressor p53 binding sites in normal human cells. 743 high-confidence ChIP-seq peaks representing putative genomic binding sites were identified in normal IMR90 fibroblasts using a reference chromatin sample. More than 40% were located within 2 kb of a transcription start site (TSS), a distribution similar to that documented for individually studied, functional p53 binding sites and, to date, not observed by previous p53 genome-wide studies. Nearly half of the high-confidence binding sites in the IMR90 cells reside in CpG islands, in marked contrast to sites reported in cancer-derived cells. The distinct genomic features of the IMR90 binding sites do not reflect a distinct preference for specific sequences, since the de novo developed p53 motif based on our study is similar to those reported by genome-wide studies of cancer cells. More likely, the different chromatin landscape in normal, compared with cancer-derived cells, influences p53 binding via modulating availability of the sites. We compared the IMR90 ChIPseq peaks to the recently published IMR90 methylome and demonstrated that they are enriched at hypomethylated DNA. Our study represents the first genome-wide, de novo mapping of p53 binding sites in normal human cells and reveals that p53 binding sites reside in distinct genomic landscapes in normal and cancer-derived human cells.
Collapse
|
48
|
Ngeow J, Mester J, Rybicki LA, Ni Y, Milas M, Eng C. Incidence and clinical characteristics of thyroid cancer in prospective series of individuals with Cowden and Cowden-like syndrome characterized by germline PTEN, SDH, or KLLN alterations. J Clin Endocrinol Metab 2011; 96:E2063-71. [PMID: 21956414 PMCID: PMC3232626 DOI: 10.1210/jc.2011-1616] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CONTEXT Thyroid cancer is believed to be an important component of Cowden syndrome (CS). Germline PTEN and SDHx mutations and KLLN epimutation cause CS and CS-like phenotypes. Despite the established association, little is known about the incidence and clinical features of thyroid cancer found in CS/CS-like patients. OBJECTIVE The aim of the study was to compare incidence, clinical, and histological characteristics of epithelial thyroid cancers in CS/CS-like individuals, in the context of PTEN, SDHx, and KLLN status. DESIGN AND PARTICIPANTS The study encompassed a 5-yr, multicenter, prospective accrual of 2723 CS and CS-like patients, all of whom had comprehensive PTEN analysis. SDHx mutation analysis occurred in those without PTEN mutations/variations and elevated manganese superoxide dismutase (MnSOD) levels. KLLN epimutation analysis was performed in the subset without any PTEN or SDHx mutation/deletion/ variant/polymorphism. MAIN OUTCOME MEASURES Gene-specific thyroid cancer histologies, demographic and clinical information, and adjusted standardized incidence rates were studied. RESULTS Of 2723 CS/CS-like patients, 664 had thyroid cancer. Standardized incidence rates for thyroid cancer were 72 [95% confidence interval (CI), 51-99; P < 0.001] for pathogenic PTEN mutations, 63 (95% CI, 42-92; P < 0.001) for SDHx variants, and 45 (95% CI, 26-73; P < 0.001) for KLLN epimutations. All six (16.7%) diagnosed under age 18 yr carried pathogenic PTEN mutations. Follicular thyroid cancer was overrepresented in PTEN mutation-positive cases compared to those with SDHx and KLLN alterations. PTEN frameshift mutations were found in 31% of patients with thyroid cancer compared to 17% in those without thyroid cancer. CONCLUSIONS CS/CS-like patients have elevated risks of follicular thyroid cancer due to PTEN pathogenic mutations and of papillary thyroid cancer from SDHx and KLLN alterations. Children presenting with thyroid cancer should be tested for PTEN mutations.
Collapse
Affiliation(s)
- Joanne Ngeow
- Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
49
|
Pyatt RE, Astbury C. Interpretation of copy number alterations identified through clinical microarray-comparative genomic hybridization. Clin Lab Med 2011; 31:565-80, viii. [PMID: 22118737 DOI: 10.1016/j.cll.2011.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many copy number alterations (CNA) currently interpreted as variants of unknown significance (VUS) will ultimately be determined to be benign; however, their classification requires a more extensive characterization of the human genome than currently exists. There is no definitive set of rules or level of evidence required to define a CNA as benign. The information needed to accurately assess the pathogenic impact of CNA is beginning to be assembled. Although the lack of understanding of the human genome can make clinical array-comparative genomic hybridization interpretation frustrating, it is precisely why clinical human genetics is an exciting arena in which to work.
Collapse
Affiliation(s)
- Robert E Pyatt
- Cytogenetics and Molecular Genetics Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA.
| | | |
Collapse
|
50
|
Bennett KL, Campbell R, Ganapathi S, Zhou M, Rini B, Ganapathi R, Neumann HP, Eng C. Germline and somatic DNA methylation and epigenetic regulation of KILLIN in renal cell carcinoma. Genes Chromosomes Cancer 2011; 50:654-61. [PMID: 21584899 PMCID: PMC3110575 DOI: 10.1002/gcc.20887] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 04/04/2011] [Indexed: 01/28/2023] Open
Abstract
We recently identified germline methylation of KILLIN, a novel p53-regulated tumor suppressor proximal to PTEN, in >1/3 Cowden or Cowden syndrome-like (CS/CSL) individuals who are PTEN mutation negative. Individuals with germline KILLIN methylation had increased risks of renal cell carcinoma (RCC) over those with PTEN mutations. Therefore, we tested the hypothesis that KILLIN may be a RCC susceptibility gene, silenced by germline methylation. We found germline hypermethylation by combined bisulfite restriction analysis in at least one of the four CpG-rich regions in 23/41 (56%) RCC patients compared to 0/50 controls (P < 0.0001). Of the 23, 11 (48%) demonstrated methylation in the -598 to -890 bp region in respect to the KILLIN transcription start site. Furthermore, 19 of 20 advanced RCC showed somatic hypermethylation upstream of KILLIN, with the majority hypermethylated at more than one CpG island (13/19 vs. 3/23 with germline methylation, P < 0.0001). qRT-PCR revealed that methylation significantly downregulates KILLIN expression (P = 0.05), and demethylation treatment by 5-aza-2'deoxycytidine significantly increased KILLIN expression in all RCC cell lines while only increasing PTEN expression in one line. Furthermore, targeted in vitro methylation revealed a significant decrease in KILLIN promoter activity only. These data reveal differential epigenetic regulation by DNA promoter methylation of this bidirectional promoter. In summary, we have identified KILLIN as a potential novel cancer predisposition gene for nonsyndromic clear-cell RCC, and the epigenetic mechanism of KILLIN inactivation in both the germline and somatic setting suggests the potential for treatment with demethylating agents.
Collapse
Affiliation(s)
- Kristi L. Bennett
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rebecca Campbell
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shireen Ganapathi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ming Zhou
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Anatomic Pathology, Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Brian Rini
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
- CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Ram Ganapathi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
- CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Hartmut P.H. Neumann
- Section of Preventive Medicine, Department of Internal Medicine, Alberts-Ludwigs-Universität Freiburg, Freiburg-im-Bresgau, Germany
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Stanley Shalom Zielony Institute for Nursing Excellence, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|