1
|
Dong J, Brown S, Truong K. Nearby and non-nested genes in the human genome have more similar genotype tissue expression. PLoS One 2024; 19:e0307360. [PMID: 39292702 PMCID: PMC11410254 DOI: 10.1371/journal.pone.0307360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/03/2024] [Indexed: 09/20/2024] Open
Abstract
Neighboring genes within a shared promoter arrangement (i.e. opposite direction with the neighboring ends as the transcriptional start sites) are expected to have a high similarity in genotype tissue expression due to the potential overlap in the promoter region. This raises the question of whether similarity in expression profiles depends on orientation of the neighboring genes and whether there exist thresholds of locality where the similarity diminishes. Thus, in this work, we compared genotype tissue expression profiles at different genomic orientations and localities. Interestingly, there exist gene pairs in the human genome with very high or low expression similarity. Shorter chromosomes tend to have more similarly expressed genes. Also, a cluster of 3 adjacent genes within the average range of 20 to 60 kilobase pairs can have very similar expression profiles regardless of their orientations. However, when genes are nested and in opposite orientations, a lower than expected similarity was observed. Lastly, in cases where genotype tissue expression data does not exist or have low read counts (e.g. non-coding RNA), our identified influencing range can be a first estimate of the genotype tissue expression.
Collapse
Affiliation(s)
- Jiahong Dong
- Edward S. Rogers, Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Brown
- Edward S. Rogers, Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Kevin Truong
- Edward S. Rogers, Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Xu Z, Huang Y, Meese T, Van Nevel S, Holtappels G, Vanhee S, Bröker BM, Li Z, de Meester E, De Ruyck N, Van Zele T, Gevaert P, Van Nieuwerburgh F, Zhang L, Shamji MH, Wen W, Zhang N, Bachert C. The multi-omics single-cell landscape of sinus mucosa in uncontrolled severe chronic rhinosinusitis with nasal polyps. Clin Immunol 2023; 256:109791. [PMID: 37769787 DOI: 10.1016/j.clim.2023.109791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Uncontrolled severe chronic rhinosinusitis with nasal polyps (CRSwNP) is associated with elevated levels of type 2 inflammatory cytokines and raised immunoglobulin concentrations in nasal polyp tissue. By using single-cell RNA sequencing, transcriptomics, surface proteomics, and T cell and B cell receptor sequencing, we found the predominant cell types in nasal polyps were shifted from epithelial and mesenchymal cells to inflammatory cells compared to nasal mucosa from healthy controls. Broad expansions of CD4 T effector memory cells, CD4 tissue-resident memory T cells, CD8 T effector memory cells and all subtypes of B cells in nasal polyp tissues. The T and B cell receptor repertoires were skewed in NP. This study highlights the deviated immune response and remodeling mechanisms that contribute to the pathogenesis of uncontrolled severe CRSwNP. CLINICAL IMPLICATIONS: We identified differences in the cellular compositions, transcriptomes, proteomes, and deviations in the immune profiles of T cell and B cell receptors as well as alterations in the intercellular communications in uncontrolled severe CRSwNP patients versus healthy controls, which might help to define potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Zhaofeng Xu
- The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Department of Otorhinolaryngology, International Airway Research Center, Guangzhou, China; Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Yanran Huang
- The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Department of Otorhinolaryngology, International Airway Research Center, Guangzhou, China; Upper Airway Research Laboratory, Ghent University, Ghent, Belgium; Department of Allergy, Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, PR China; Beijing key laboratory of nasal diseases, Beijing Institute of Otolaryngology, Beijing, PR China
| | - Tim Meese
- NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Sharon Van Nevel
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | | | - Stijn Vanhee
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium; VIB-UGent, Center for Inflammation Research, Gent 9052, Belgium
| | - Barbara M Bröker
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Zhengqi Li
- The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Department of Otorhinolaryngology, International Airway Research Center, Guangzhou, China
| | - Ellen de Meester
- NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Natalie De Ruyck
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Thibaut Van Zele
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Philip Gevaert
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Luo Zhang
- Department of Allergy, Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, PR China; Beijing key laboratory of nasal diseases, Beijing Institute of Otolaryngology, Beijing, PR China
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, and NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Weiping Wen
- The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Department of Otorhinolaryngology, International Airway Research Center, Guangzhou, China; The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.
| | - Nan Zhang
- The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Department of Otorhinolaryngology, International Airway Research Center, Guangzhou, China; Upper Airway Research Laboratory, Ghent University, Ghent, Belgium.
| | - Claus Bachert
- The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Department of Otorhinolaryngology, International Airway Research Center, Guangzhou, China; Upper Airway Research Laboratory, Ghent University, Ghent, Belgium; Clinic for ENT diseases and head and neck surgery, University Clinic Münster, Münster, Germany; Division of ENT diseases, CLINTEC, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
3
|
Identification of Prognostic Markers of DNA Damage and Oxidative Stress in Diagnosing Papillary Renal Cell Carcinoma Based on High-Throughput Bioinformatics Screening. JOURNAL OF ONCOLOGY 2023; 2023:4640563. [PMID: 36785669 PMCID: PMC9922175 DOI: 10.1155/2023/4640563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 02/05/2023]
Abstract
Purpose Papillary renal cell carcinoma (pRCC) is the second most common histological subtype of adult kidney tumors, with a poor prognosis due to limited understanding of the disease mechanism. Herein, we have performed high-throughput bioinformatic screening to explore and identify potential biomarkers of DNA damage and oxidative stress for pRCC. Methods RNA sequencing data related to pRCC were downloaded from the TCGA database, and differentially expressed genes (DEG) were identified by a wide variety of clustering and classification algorithms, including self-organized maps (SOM), artificial neural networks (ANN), support vector machines (SVM), fuzzy logic, and hyphenated techniques such as neuro-fuzzy networks. Then DAVID and STRING online biological information tools were used to analyze functional enrichment of the regulatory networks of DEG and construct a protein-protein interaction (PPI) network, and then the Cytoscape software was used to identify hub genes. The importance of key genes was assessed by the analysis of the Kaplan-Meier survival curves using the R software. Lastly, we have analyzed the expression of hub genes of DNA damage and oxidative stress (BDKRB1, NMUR2, PMCH, and SAA1) in pRCC tissues and adjacent normal tissues, as well as the relationship between the expression of hub genes in pRCC tissues and pathological characteristics and prognosis of pRCC patients. Results A total of 1,992 DEGs for pRCC were identified, with 1,142 upregulated ones and 850 downregulated ones. The DEGs were significantly enriched in activities including DNA damage and oxidative stress, chemical synaptic transmission, an integral component of the membrane, calcium ion binding, and neuroactive ligand-receptor interaction. cytoHubba in the Cytoscape software was used to determine the top 10 hub genes in the PPI network as BDKRB2, NMUR2, NMU, BDKRB1, LPAR5, KNG1, LPAR3, SAA1, MCHR1, PMCH, and NCAPH. Furthermore, the expression level of hub genes BDKRB1, NMUR2, PMCH, and SAA1 in pRCC tissues was significantly higher than that in the adjacent normal tissues. Meanwhile, the expression level of hub genes BDKRB1, NMUR2, PMCH, and SAA1 in pRCC tissues was significantly positively correlated with tumor stage, lymph node metastasis, and the histopathology grade of pRCC. In addition, high expression levels of hub genes BDKRB1, NMUR2, PMCH, and SAA1 were associated with a poor prognosis for patients with pRCC. Univariate and multivariate analyses showed that the expression of hub genes BDKRB1, NMUR2, PMCH, and SAA1 were independent risk factors for the prognosis of patients with pRCC. Conclusion The results of this analysis suggested that BDKRB1, NMUR2, PMCH, and SAA1 might be potential prognostic biomarkers and novel therapeutic targets for pRCC.
Collapse
|
4
|
Lin C, Yang H, Zhao W, Wang W. CTSB+ macrophage repress memory immune hub in the liver metastasis site of colorectal cancer patient revealed by multi-omics analysis. Biochem Biophys Res Commun 2022; 626:8-14. [DOI: 10.1016/j.bbrc.2022.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022]
|
5
|
Battagello DS, Lorenzon AR, Diniz GB, Motta-Teixeira LC, Klein MO, Ferreira JGP, Arias CM, Adamantidis A, Sita LV, Cipolla-Neto J, Bevilacqua EMAF, Sawchenko PE, Bittencourt JC. The Rat Mammary Gland as a Novel Site of Expression of Melanin-Concentrating Hormone Receptor 1 mRNA and Its Protein Immunoreactivity. Front Endocrinol (Lausanne) 2020; 11:463. [PMID: 32849267 PMCID: PMC7411258 DOI: 10.3389/fendo.2020.00463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/12/2020] [Indexed: 11/24/2022] Open
Abstract
Lactation is a complex physiological process, depending on orchestrated central and peripheral events, including substantial brain plasticity. Among these events is a novel expression of pro-melanin-concentrating hormone (Pmch) mRNA in the rodent hypothalamus, such as the ventral part of the medial preoptic area (vmMPOA). This expression reaches its highest levels around postpartum day 19 (PPD19), when dams transition from lactation to the weaning period. The appearance of this lactation-related Pmch expression occurs simultaneously with the presence of one of the Pmch products, melanin-concentrating hormone (MCH), in the serum. Given the relevance of the MPOA to maternal physiology and the contemporaneity between Pmch expression in this structure and the weaning period, we hypothesized that MCH has a role in the termination of lactation, acting as a mediator between central and peripheral changes. To test this, we investigated the presence of the MCH receptor 1 (MCHR1) and its gene expression in the mammary gland of female rats in different stages of the reproductive cycle. To that end, in situ hybridization, RT-PCR, RT-qPCR, nucleotide sequencing, immunohistochemistry, and Western blotting were employed. Although Mchr1 expression was detected in the epidermis and dermis of both diestrus and lactating rats, parenchymal expression was exclusively found in the functional mammary gland of lactating rats. The expression of Mchr1 mRNA oscillated through the lactation period and reached its maximum in PPD19 dams. Presence of MCHR1 was confirmed with immunohistochemistry with preferential location of MCHR1 immunoreactive cells in the alveolar secretory cells. As was the case for gene expression, the MCHR1 protein levels were significantly higher in PPD19 than in other groups. Our data demonstrate the presence of an anatomical basis for the participation of MCH peptidergic system on the control of lactation through the mammary gland, suggesting that MCH could modulate a prolactation action in early postpartum days and the opposite role at the end of the lactation.
Collapse
Affiliation(s)
- Daniella S. Battagello
- Instituto de Psicologia, Nucleo de Neurociencias e Comportamento, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - Aline R. Lorenzon
- Departmento de Biologia Celular e Do Desenvolvimento, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Giovanne B. Diniz
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - Lívia C. Motta-Teixeira
- Departmento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Marianne O. Klein
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - Jozélia G. P. Ferreira
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - Carlos M. Arias
- Laboratory of Neuronal Structure and Function, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | | | - Luciane V. Sita
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - José Cipolla-Neto
- Departmento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Estela M. A. F. Bevilacqua
- Departmento de Biologia Celular e Do Desenvolvimento, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Paul E. Sawchenko
- Laboratory of Neuronal Structure and Function, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Jackson C. Bittencourt
- Instituto de Psicologia, Nucleo de Neurociencias e Comportamento, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
An obstructive sleep apnea primer: What the practicing allergist needs to know. Ann Allergy Asthma Immunol 2017; 118:259-268. [PMID: 28284532 DOI: 10.1016/j.anai.2016.07.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022]
|
7
|
Naufahu J, Alzaid F, Fiuza Brito M, Doslikova B, Valencia T, Cunliffe A, Murray JF. Melanin-concentrating hormone in peripheral circulation in the human. J Endocrinol 2017; 232:513-523. [PMID: 28053003 DOI: 10.1530/joe-16-0240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022]
Abstract
Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide with a well-characterised role in energy homeostasis and emergent roles in diverse physiologic functions such as arousal, mood and reproduction. Work to date has predominantly focused on its hypothalamic functions using animal models; however, little attention has been paid to its role in circulation in humans. The aims of this study were to (a) develop a radioimmunoassay for the detection of MCH in human plasma; (b) establish reference ranges for circulating MCH and (c) characterise the pattern of expression of circulating MCH in humans. A sensitive and specific RIA was developed and cross-validated by RP-HPLC and MS. The effective range was 19.5-1248 pg MCH/mL. Blood samples from 231 subjects were taken to establish a reference range of 19.5-55.4 pg/mL for fasting MCH concentrations. There were no significant differences between male and female fasting MCH concentrations; however, there were correlations between MCH concentrations and BMI in males and females with excess fat (P < 0.001 and P = 0.020) and between MCH concentrations and fat mass in females with excess fat (P = 0.038). Plasma MCH concentrations rose significantly after feeding in a group of older individuals (n = 50, males P = 0.006, females P = 0.023). There were no robust significant correlations between fasting or post-prandial MCH and resting metabolic rate, plasma glucose, insulin or leptin concentrations although there were correlations between circulating MCH and leptin concentrations in older individuals (P = 0.029). These results indicate that the role of circulating MCH may not be reflective of its regulatory hypothalamic role.
Collapse
Affiliation(s)
- J Naufahu
- Faculty of Science and TechnologyUniversity of Westminster, London, UK
| | - F Alzaid
- Faculty of Science and TechnologyUniversity of Westminster, London, UK
| | - M Fiuza Brito
- Faculty of Science and TechnologyUniversity of Westminster, London, UK
| | - B Doslikova
- Faculty of Science and TechnologyUniversity of Westminster, London, UK
| | - T Valencia
- Faculty of Science and TechnologyUniversity of Westminster, London, UK
| | - A Cunliffe
- Faculty of Science and TechnologyUniversity of Westminster, London, UK
| | - J F Murray
- Faculty of Science and TechnologyUniversity of Westminster, London, UK
| |
Collapse
|
8
|
Pace M, Adamantidis A, Facchin L, Bassetti C. Role of REM Sleep, Melanin Concentrating Hormone and Orexin/Hypocretin Systems in the Sleep Deprivation Pre-Ischemia. PLoS One 2017; 12:e0168430. [PMID: 28061506 PMCID: PMC5218733 DOI: 10.1371/journal.pone.0168430] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022] Open
Abstract
STUDY OBJECTIVES Sleep reduction after stroke is linked to poor recovery in patients. Conversely, a neuroprotective effect is observed in animals subjected to acute sleep deprivation (SD) before ischemia. This neuroprotection is associated with an increase of the sleep, melanin concentrating hormone (MCH) and orexin/hypocretin (OX) systems. This study aims to 1) assess the relationship between sleep and recovery; 2) test the association between MCH and OX systems with the pathological mechanisms of stroke. METHODS Sprague-Dawley rats were assigned to four experimental groups: (i) SD_IS: SD performed before ischemia; (ii) IS: ischemia; (iii) SD_Sham: SD performed before sham surgery; (iv) Sham: sham surgery. EEG and EMG were recorded. The time-course of the MCH and OX gene expression was measured at 4, 12, 24 hours and 3, 4, 7 days following ischemic surgery by qRT-PCR. RESULTS A reduction of infarct volume was observed in the SD_IS group, which correlated with an increase of REM sleep observed during the acute phase of stroke. Conversely, the IS group showed a reduction of REM sleep. Furthermore, ischemia induces an increase of MCH and OX systems during the acute phase of stroke, although, both systems were still increased for a long period of time only in the SD_IS group. CONCLUSIONS Our data indicates that REM sleep may be involved in the neuroprotective effect of SD pre-ischemia, and that both MCH and OX systems were increased during the acute phase of stroke. Future studies should assess the role of REM sleep as a prognostic marker, and test MCH and OXA agonists as new treatment options in the acute phase of stroke.
Collapse
Affiliation(s)
- Marta Pace
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), Genova, Italy
- * E-mail:
| | - Antoine Adamantidis
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Laura Facchin
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Claudio Bassetti
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Bern University Hospital, Bern, Switzerland
- Division of Cognitive and Restorative Neurology, Department of Neurology, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
9
|
Skaria T, Burgener J, Bachli E, Schoedon G. IL-4 Causes Hyperpermeability of Vascular Endothelial Cells through Wnt5A Signaling. PLoS One 2016; 11:e0156002. [PMID: 27214384 PMCID: PMC4877093 DOI: 10.1371/journal.pone.0156002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 05/06/2016] [Indexed: 11/18/2022] Open
Abstract
Microvascular leakage due to endothelial barrier dysfunction is a prominent feature of T helper 2 (Th2) cytokine mediated allergic inflammation. Interleukin-4 (IL-4) is a potent Th2 cytokine, known to impair the barrier function of endothelial cells. However, the effectors mediating IL-4 induced cytoskeleton remodeling and consequent endothelial barrier dysfunction remain poorly defined. Here we have used whole genome transcriptome profiling and gene ontology analyses to identify the genes and processes regulated by IL-4 signaling in human coronary artery endothelial cells (HCAEC). The study revealed Wnt5A as an effector that can mediate actin cytoskeleton remodeling in IL-4 activated HCAEC through the regulation of LIM kinase (LIMK) and Cofilin (CFL). Following IL-4 treatment, LIMK and CFL were phosphorylated, thereby indicating the possibility of actin stress fiber formation. Imaging of actin showed the formation of stress fibers in IL-4 treated live HCAEC. Stress fiber formation was notably decreased in the presence of Wnt inhibitory factor 1 (WIF1). Non-invasive impedance measurements demonstrated that IL-4 increased the permeability and impaired the barrier function of HCAEC monolayers. Silencing Wnt5A significantly reduced permeability and improved the barrier function of HCAEC monolayers upon IL-4 treatment. Our study identifies Wnt5A as a novel marker of IL-4 activated vascular endothelium and demonstrates a critical role for Wnt5A in mediating IL-4 induced endothelial barrier dysfunction. Wnt5A could be a potential therapeutic target for reducing microvascular leakage and edema formation in Th2 driven inflammatory diseases.
Collapse
Affiliation(s)
- Tom Skaria
- Inflammation Research Unit, Department of Medicine, Division of Internal Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Julia Burgener
- Inflammation Research Unit, Department of Medicine, Division of Internal Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Esther Bachli
- Department of Medicine, Uster Hospital, Uster, Switzerland
| | - Gabriele Schoedon
- Inflammation Research Unit, Department of Medicine, Division of Internal Medicine, University Hospital Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
10
|
Identification of a prostaglandin D2 metabolite as a neuritogenesis enhancer targeting the TRPV1 ion channel. Sci Rep 2016; 6:21261. [PMID: 26879669 PMCID: PMC4754695 DOI: 10.1038/srep21261] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/20/2016] [Indexed: 12/11/2022] Open
Abstract
Mast cells play important roles in allergic inflammation by secreting various mediators. In the present study, based on the finding that the medium conditioned by activated RBL-2H3 mast cells enhanced the nerve growth factor (NGF)-induced neuritogenesis of PC12 cells, we attempted to isolate an active compound from the mast cell conditioned culture medium. Our experiment identified 15-deoxy-Δ(12,14)-PGJ2 (15d-PGJ2), one of the PGD2 metabolites, as a potential enhancer of neuritogenesis. 15d-PGJ2 strongly enhanced the neuritogenesis elicited by a low-concentration of NGF that alone was insufficient to induce the neuronal differentiation. This 15d-PGJ2 effect was exerted in a Ca(2+)-dependent manner, but independently of the NGF receptor TrkA. Importantly, 15d-PGJ2 activated the transient receptor potential vanilloid-type 1 (TRPV1), a non-selective cation channel, leading to the Ca(2+) influx. In addition, we observed that (i) NGF promoted the insertion of TRPV1 into the cell surface membrane and (ii) 15d-PGJ2 covalently bound to TRPV1. These findings suggest that the NGF/15d-PGJ2-induced neuritogenesis may be regulated by two sets of mechanisms, one for the translocation of TRPV1 into the cell surface by NGF and one for the activation of TRPV1 by 15d-PGJ2. Thus, there is most likely a link between allergic inflammation and activation of the neuronal differentiation.
Collapse
|
11
|
Shoda T, Futamura K, Orihara K, Emi-Sugie M, Saito H, Matsumoto K, Matsuda A. Recent advances in understanding the roles of vascular endothelial cells in allergic inflammation. Allergol Int 2016; 65:21-9. [PMID: 26666487 DOI: 10.1016/j.alit.2015.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/30/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022] Open
Abstract
Allergic disorders commonly involve both chronic tissue inflammation and remodeling caused by immunological reactions to various antigens on tissue surfaces. Due to their anatomical location, vascular endothelial cells are the final responders to interact with various exogenous factors that come into contact with the epithelial surface, such as pathogen-associated molecular patterns (PAMPs) and antigens. Recent studies have shed light on the important roles of endothelial cells in the development and exacerbation of allergic disorders. For instance, endothelial cells have the greatest potential to produce several key molecules that are deeply involved in allergic inflammation, such as periostin and thymus and activation-regulated chemokine (TARC/CCL17). Additionally, endothelial cells were recently shown to be important functional targets for IL-33--an essential regulator of allergic inflammation. Notably, almost all endothelial cell responses and functions involved in allergic inflammation are not suppressed by corticosteroids. These corticosteroid-refractory endothelial cell responses and functions include TNF-α-associated angiogenesis, leukocyte adhesion, IL-33-mediated responses and periostin and TARC production. Therefore, these unique responses and functions of endothelial cells may be critically involved in the pathogenesis of various allergic disorders, especially their refractory processes. Here, we review recent studies, including ours, which have elucidated previously unknown pathophysiological roles of vascular endothelial cells in allergic inflammation and discuss the possibility of endothelium-targeted therapy for allergic disorders.
Collapse
Affiliation(s)
- Tetsuo Shoda
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| | - Kyoko Futamura
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kanami Orihara
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maiko Emi-Sugie
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akio Matsuda
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
12
|
Lam EPS, Kariyawasam HH, Rana BMJ, Durham SR, McKenzie ANJ, Powell N, Orban N, Lennartz-Walker M, Hopkins C, Ying S, Rimmer J, Lund VJ, Cousins DJ, Till SJ. IL-25/IL-33-responsive TH2 cells characterize nasal polyps with a default TH17 signature in nasal mucosa. J Allergy Clin Immunol 2015; 137:1514-24. [PMID: 26684290 PMCID: PMC4852988 DOI: 10.1016/j.jaci.2015.10.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 10/01/2015] [Accepted: 10/09/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyposis (CRSwNP) in Western countries is characterized by eosinophilia, IgE production, and TH2 cytokine expression. Type 2 innate lymphoid cells from polyps produce IL-5 and IL-13 in response to IL-25 and IL-33, although the relevance of this axis to local mucosal T-cell responses is unknown. OBJECTIVE We sought to investigate the role of the IL-25/IL-33 axis in local mucosal T-cell responses in patients with CRSwNP. METHODS Polyp tissue and blood were obtained from patients undergoing nasal polypectomy. Control nasal biopsy specimens and blood were obtained from healthy volunteers. Tissue was cultured in a short-term explant model. T-cell surface phenotype/intracellular cytokines were assessed by means of flow cytometry. T-cell receptor variable β-chain analysis was performed with the immunoSEQ assay. Microarrays were performed for gene expression analysis. RESULTS IL-25 receptor (IL-17RB)-expressing TH2 effector cells were identified in nasal polyp tissue but not the healthy nasal mucosa or periphery. IL-17RB(+)CD4(+) polyp-derived TH2 cells coexpressed ST2 (IL-33 receptor) and responded to IL-25 and IL-33 with enhanced IL-5 and IL-13 production. Within IL-17RB(+)CD4(+) T cells, several identical T-cell receptor variable β-chain complementarity-determining region 3 sequences were identified in different subjects, suggesting clonal expansion driven by a common antigen. Abundant IL-17-producing T cells were observed in both healthy nasal mucosal and polyp populations, with TH17-related genes the most overexpressed compared with peripheral blood T cells. CONCLUSION IL-25 and IL-33 can interact locally with IL-17RB(+)ST2(+) polyp T cells to augment TH2 responses in patients with CRSwNP. A local TH17 response might be important in healthy nasal mucosal immune homeostasis.
Collapse
Affiliation(s)
- Emily P S Lam
- Division of Asthma, Allergy and Lung Biology, Guy's Hospital, King's College London, London, United Kingdom; Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Harsha H Kariyawasam
- Allergy and Medical Rhinology Section, Royal National Throat Nose Ear Hospital, University College London, London, United Kingdom; Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Batika M J Rana
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom; Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Stephen R Durham
- Section of Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Andrew N J McKenzie
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Nicholas Powell
- Division of Transplantation Immunology and Mucosal Biology and Medical Research Council Centre for Transplantation, King's College London, London, United Kingdom
| | - Nara Orban
- Section of Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Melissa Lennartz-Walker
- Division of Asthma, Allergy and Lung Biology, Guy's Hospital, King's College London, London, United Kingdom; Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Claire Hopkins
- Department of ENT, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Sun Ying
- Division of Asthma, Allergy and Lung Biology, Guy's Hospital, King's College London, London, United Kingdom
| | - Joanne Rimmer
- Allergy and Medical Rhinology Section, Royal National Throat Nose Ear Hospital, University College London, London, United Kingdom
| | - Valerie J Lund
- Allergy and Medical Rhinology Section, Royal National Throat Nose Ear Hospital, University College London, London, United Kingdom
| | - David J Cousins
- Department of Infection, Immunity and Inflammation, NIHR Leicester Respiratory Biomedical Research Unit, Leicester Institute for Lung Health, University of Leicester, Leicester, United Kingdom; Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Stephen J Till
- Division of Asthma, Allergy and Lung Biology, Guy's Hospital, King's College London, London, United Kingdom; Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.
| |
Collapse
|
13
|
Ather JL, Poynter ME, Dixon AE. Immunological characteristics and management considerations in obese patients with asthma. Expert Rev Clin Immunol 2015; 11:793-803. [PMID: 25914932 DOI: 10.1586/1744666x.2015.1040394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is associated with severe, poorly controlled asthma that does not respond as well to therapy as asthma in leaner asthmatics. Important insights gained from animal models of obesity and asthma suggests that different forms of obesity may lead to different manifestations of airway disease: obesity is associated with both innate increased airway reactivity and altered responses to aeroallergen and pollutant challenges. In humans, at least two broad groups of obese asthmatics have been recognized: one that is likely unique to obesity and another that is likely lean allergic asthma much complicated by obesity. This article will discuss what we have learned about the immunological and pathophysiological basis of asthma in obesity from animal and human studies, and how this might guide therapy.
Collapse
Affiliation(s)
- Jennifer L Ather
- Pulmonary and Critical Care Medicine, University of Vermont College of Medicine, Given D208, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | | | | |
Collapse
|
14
|
Ziogas DC, Karagiannis AKA, Geiger BM, Gras-Miralles B, Najarian R, Reizes O, Fitzpatrick LR, Kokkotou E. Inflammation-induced functional connectivity of melanin-concentrating hormone and IL-10. Peptides 2014; 55:58-64. [PMID: 24556508 PMCID: PMC4004662 DOI: 10.1016/j.peptides.2014.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 12/15/2022]
Abstract
Melanin-concentrating hormone (MCH) was identified in mammals as a hypothalamic neuropeptide regulating appetite and energy balance. However, similarly to most of the brain peptides, MCH is also produced in the gastrointestinal system and can act locally as an immunomodulator. We have previously reported high expression of MCH and its receptor MCHR1 in the affected mucosa of patients with inflammatory bowel disease. Furthermore, MCH deficiency in mice attenuated experimental colitis, pointing to MCH as a mediator of intestinal inflammation. In the present study, in order to gain further insights into the underlying mechanisms of such effects of MCH, we treated mice with established experimental colitis due to IL-10 deficiency with a MCHR1 antagonist (DABA-822). While treatment with the same drug was successful in attenuating TNBS-induced colitis in previous studies, it offered no benefit to the IL-10 knockout mouse model, suggesting that perhaps IL-10 is a downstream target of MCH. Indeed, in experiments focusing on monocytes, we found that treatment with MCH inhibited LPS-mediated IL-10 upregulation. Conversely, in the same cells, exogenous IL-10 prevented LPS-induced MCHR1 expression. Taken together, these findings indicate a functional cross-talk between MCH and IL-10 which prevents resolution of inflammation.
Collapse
Affiliation(s)
- Dimitrios C Ziogas
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Apostolos K A Karagiannis
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Brenda M Geiger
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Beatriz Gras-Miralles
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Robert Najarian
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Ofer Reizes
- Cleveland Clinic Foundation Lerner Research Institute, Cleveland, OH 44195, United States
| | | | - Efi Kokkotou
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
15
|
|
16
|
Kiaii S, Clear AJ, Ramsay AG, Davies D, Sangaralingam A, Lee A, Calaminici M, Neuberg DS, Gribben JG. Follicular lymphoma cells induce changes in T-cell gene expression and function: potential impact on survival and risk of transformation. J Clin Oncol 2013; 31:2654-61. [PMID: 23775959 DOI: 10.1200/jco.2012.44.2137] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Previous studies have demonstrated the prognostic importance of the immune microenvironment in follicular lymphoma (FL). To investigate the molecular mechanisms during which tumor-infiltrating T cells (TILs) are altered in the FL microenvironment, we studied highly purified CD4 and CD8 TILs from lymph node biopsies at diagnosis in treatment-naive patients with FL compared with reactive tonsils and the peripheral blood of healthy donors. PATIENTS AND METHODS Gene expression profiling of highly purified CD4 and CD8 TILs was performed on the Affymetrix platform. Diagnostic tissue microarrays from an independent patient set (n = 172) were used to verify protein expression and analyze any impact of TIL-expressed genes on outcome. Time-lapse imaging was used to assess T-cell motility. RESULTS The most upregulated genes in both CD4 and CD8 TILs were PMCH, ETV1, and TNFRSF9. PMCH is not expressed in peripheral blood T cells, but expression is highly induced on culture with FL. Both CD4 and CD8 TILs from patients with FL have significantly impaired motility compared with those of healthy TILs from reactive tonsils and this can be induced on healthy T cells by FL cells. During multivariate analysis, a model incorporating the number and location of T cells expressing PMCH, NAMPT, and ETV1 showed prognostic significance for overall survival and for time to transformation. CONCLUSION We showed altered gene expression in TILs in FL and demonstrated that altering the immune microenvironment in FL affects overall survival and time to transformation in this disease.
Collapse
Affiliation(s)
- Shahryar Kiaii
- Barts Cancer Institute, The London School of Medicine, Queen Mary, University of London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ziogas DC, Gras-Miralles B, Mustafa S, Geiger BM, Najarian RM, Nagel JM, Flier SN, Popov Y, Tseng YH, Kokkotou E. Anti-melanin-concentrating hormone treatment attenuates chronic experimental colitis and fibrosis. Am J Physiol Gastrointest Liver Physiol 2013; 304:G876-84. [PMID: 23538494 PMCID: PMC3652072 DOI: 10.1152/ajpgi.00305.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibrosis represents a major complication of several chronic diseases, including inflammatory bowel disease (IBD). Treatment of IBD remains a clinical challenge despite several recent therapeutic advances. Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide shown to regulate appetite and energy balance. However, accumulating evidence suggests that MCH has additional biological effects, including modulation of inflammation. In the present study, we examined the efficacy of an MCH-blocking antibody in treating established, dextran sodium sulfate-induced experimental colitis. Histological and molecular analysis of mouse tissues revealed that mice receiving anti-MCH had accelerated mucosal restitution and lower colonic expression of several proinflammatory cytokines, as well as fibrogenic genes, including COL1A1. In parallel, they spared collagen deposits seen in the untreated mice, suggesting attenuated fibrosis. These findings raised the possibility of perhaps direct effects of MCH on myofibroblasts. Indeed, in biopsies from patients with IBD, we demonstrate expression of the MCH receptor MCHR1 in α-smooth muscle actin(+) subepithelial cells. CCD-18Co cells, a primary human colonic myofibroblast cell line, were also positive for MCHR1. In these cells, MCH acted as a profibrotic modulator by potentiating the effects of IGF-1 and TGF-β on proliferation and collagen production. Thus, by virtue of combined anti-inflammatory and anti-fibrotic effects, blocking MCH might represent a compelling approach for treating IBD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yury Popov
- 1Beth Israel Deaconess Medical Center and
| | - Yu-Hua Tseng
- 2Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
18
|
Conductier G, Martin AO, Risold PY, Jego S, Lavoie R, Lafont C, Mollard P, Adamantidis A, Nahon JL. Control of ventricular ciliary beating by the melanin concentrating hormone-expressing neurons of the lateral hypothalamus: a functional imaging survey. Front Endocrinol (Lausanne) 2013; 4:182. [PMID: 24324458 PMCID: PMC3839296 DOI: 10.3389/fendo.2013.00182] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/07/2013] [Indexed: 12/26/2022] Open
Abstract
The cyclic peptide Melanin Concentrating Hormone (MCH) is known to control a large number of brain functions in mammals such as food intake and metabolism, stress response, anxiety, sleep/wake cycle, memory, and reward. Based on neuro-anatomical and electrophysiological studies these functions were attributed to neuronal circuits expressing MCHR1, the single MCH receptor in rodents. In complement to our recently published work (1) we provided here new data regarding the action of MCH on ependymocytes in the mouse brain. First, we establish that MCHR1 mRNA is expressed in the ependymal cells of the third ventricle epithelium. Second, we demonstrated a tonic control of MCH-expressing neurons on ependymal cilia beat frequency using in vitro optogenics. Finally, we performed in vivo measurements of CSF flow using fluorescent micro-beads in wild-type and MCHR1-knockout mice. Collectively, our results demonstrated that MCH-expressing neurons modulate ciliary beating of ependymal cells at the third ventricle and could contribute to maintain cerebro-spinal fluid homeostasis.
Collapse
Affiliation(s)
- Grégory Conductier
- UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Valbonne, France
- University of Nice Sophia Antipolis, Nice, France
| | - Agnès O. Martin
- UMR5203, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Montpellier, France
- U661, INSERM, Montpellier, France
- UMR-5203, Universités de Montpellier 1 & 2, Montpellier, France
| | - Pierre-Yves Risold
- Laboratoire d’Histologie, IFR 133, Faculté de Médecine et de Pharmacie, Besançon, France
| | - Sonia Jego
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Raphaël Lavoie
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Chrystel Lafont
- UMR5203, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Montpellier, France
- U661, INSERM, Montpellier, France
- UMR-5203, Universités de Montpellier 1 & 2, Montpellier, France
| | - Patrice Mollard
- UMR5203, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Montpellier, France
- U661, INSERM, Montpellier, France
- UMR-5203, Universités de Montpellier 1 & 2, Montpellier, France
| | | | - Jean-Louis Nahon
- UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Valbonne, France
- University of Nice Sophia Antipolis, Nice, France
- Station de Primatologie, UPS 846, Centre National de la Recherche Scientifique, Rousset sur Arc, France
- *Correspondence: Jean-Louis Nahon, UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, 660 Route des Lucioles, Sophia Antipolis, Valbonne, France e-mail:
| |
Collapse
|
19
|
Seumois G, Vijayanand P, Eisley CJ, Omran N, Kalinke L, North M, Ganesan AP, Simpson LJ, Hunkapiller N, Moltzahn F, Woodruff PG, Fahy JV, Erle DJ, Djukanovic R, Blelloch R, Ansel KM. An integrated nano-scale approach to profile miRNAs in limited clinical samples. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2012; 1:70-89. [PMID: 23304658 PMCID: PMC3538381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 09/26/2012] [Indexed: 06/01/2023]
Abstract
Profiling miRNA expression in cells that directly contribute to human disease pathogenesis is likely to aid the discovery of novel drug targets and biomarkers. However, tissue heterogeneity and the limited amount of human diseased tissue available for research purposes present fundamental difficulties that often constrain the scope and potential of such studies. We established a flow cytometry-based method for isolating pure populations of pathogenic T cells from bronchial biopsy samples of asthma patients, and optimized a high-throughput nano-scale qRT-PCR method capable of accurately measuring 96 miRNAs in as little as 100 cells. Comparison of circulating and airway T cells from healthy and asthmatic subjects revealed asthma-associated and tissue-specific miRNA expression patterns. These results establish the feasibility and utility of investigating miRNA expression in small populations of cells involved in asthma pathogenesis, and set a precedent for application of our nano-scale approach in other human diseases. The microarray data from this study (Figure 7) has been submitted to the NCBI Gene Expression Omnibus (GEO; http://ncbi.nlm.nih.gov/geo) under accession no. GSE31030.
Collapse
Affiliation(s)
- Grégory Seumois
- Sandler Asthma Basic Research Center, University of California San FranciscoSan Francisco, CA, USA
- Division of Infection, Inflammation and Immunity, University of outhampton, School of Medicine, Southampton NIHR Respiratory Biomedical Research Unit, Sir Henry Wellcome Laboratories, Southampton General HospitalSouthampton, UK
- Pulmonary and Critical Care Division, Department of Medicine, University of California San FranciscoSan Francisco, CA, USA
- Current address: Division of Cell Signaling and Gene Expression, La Jolla Institute for Allergy and ImmunologySan Diego, USA
| | - Pandurangan Vijayanand
- Sandler Asthma Basic Research Center, University of California San FranciscoSan Francisco, CA, USA
- Division of Infection, Inflammation and Immunity, University of outhampton, School of Medicine, Southampton NIHR Respiratory Biomedical Research Unit, Sir Henry Wellcome Laboratories, Southampton General HospitalSouthampton, UK
- Pulmonary and Critical Care Division, Department of Medicine, University of California San FranciscoSan Francisco, CA, USA
- Current address: Division of Cell Signaling and Gene Expression, La Jolla Institute for Allergy and ImmunologySan Diego, USA
| | - Christopher J Eisley
- Lung Biology Center, University of California San FranciscoSan Francisco, CA, USA
| | - Nada Omran
- Division of Infection, Inflammation and Immunity, University of outhampton, School of Medicine, Southampton NIHR Respiratory Biomedical Research Unit, Sir Henry Wellcome Laboratories, Southampton General HospitalSouthampton, UK
| | - Lukas Kalinke
- Division of Infection, Inflammation and Immunity, University of outhampton, School of Medicine, Southampton NIHR Respiratory Biomedical Research Unit, Sir Henry Wellcome Laboratories, Southampton General HospitalSouthampton, UK
| | - Mal North
- Division of Infection, Inflammation and Immunity, University of outhampton, School of Medicine, Southampton NIHR Respiratory Biomedical Research Unit, Sir Henry Wellcome Laboratories, Southampton General HospitalSouthampton, UK
| | - Asha P Ganesan
- Division of Infection, Inflammation and Immunity, University of outhampton, School of Medicine, Southampton NIHR Respiratory Biomedical Research Unit, Sir Henry Wellcome Laboratories, Southampton General HospitalSouthampton, UK
| | - Laura J Simpson
- Sandler Asthma Basic Research Center, University of California San FranciscoSan Francisco, CA, USA
- Department of Microbiology & Immunology, University of California San FranciscoSan Francisco, CA, USA
| | - Nathan Hunkapiller
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San FranciscoSan Francisco, CA, USA
| | - Felix Moltzahn
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, and Department of Urology, University of California San FranciscoSan Francisco, CA, USA
| | - Prescott G Woodruff
- Pulmonary and Critical Care Division, Department of Medicine, University of California San FranciscoSan Francisco, CA, USA
| | - John V Fahy
- Pulmonary and Critical Care Division, Department of Medicine, University of California San FranciscoSan Francisco, CA, USA
| | - David J Erle
- Pulmonary and Critical Care Division, Department of Medicine, University of California San FranciscoSan Francisco, CA, USA
- Lung Biology Center, University of California San FranciscoSan Francisco, CA, USA
| | - Ratko Djukanovic
- Division of Infection, Inflammation and Immunity, University of outhampton, School of Medicine, Southampton NIHR Respiratory Biomedical Research Unit, Sir Henry Wellcome Laboratories, Southampton General HospitalSouthampton, UK
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, and Department of Urology, University of California San FranciscoSan Francisco, CA, USA
| | - K Mark Ansel
- Sandler Asthma Basic Research Center, University of California San FranciscoSan Francisco, CA, USA
- Department of Microbiology & Immunology, University of California San FranciscoSan Francisco, CA, USA
| |
Collapse
|
20
|
Increased susceptibility of melanin-concentrating hormone-deficient mice to infection with Salmonella enterica serovar Typhimurium. Infect Immun 2012; 81:166-72. [PMID: 23115043 DOI: 10.1128/iai.00572-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Melanin-concentrating hormone (MCH) was initially identified in mammals as a hypothalamic neuropeptide regulating appetite and energy balance. However, the wide distribution of MCH receptors in peripheral tissues suggests additional functions for MCH which remain largely unknown. We have previously reported that mice lacking MCH develop attenuated intestinal inflammation when exposed to Clostridium difficile toxin A. To further characterize the role of MCH in host defense mechanisms against intestinal pathogens, Salmonella enterocolitis (using Salmonella enterica serovar Typhimurium) was induced in MCH-deficient mice and their wild-type littermates. In the absence of MCH, infected mice had increased mortality associated with higher bacterial loads in blood, liver, and spleen. Moreover, the knockout mice developed more-severe intestinal inflammation, based on epithelial damage, immune cell infiltrates, and local and systemic cytokine levels. Paradoxically, these enhanced inflammatory responses in the MCH knockout mice were associated with disproportionally lower levels of macrophages infiltrating the intestine. Hence, we investigated potential direct effects of MCH on monocyte/macrophage functions critical for defense against intestinal pathogens. Using RAW 264.7 mouse monocytic cells, which express endogenous MCH receptor, we found that treatment with MCH enhanced the phagocytic capacity of these cells. Taken together, these findings reveal a previously unappreciated role for MCH in host-bacterial interactions.
Collapse
|
21
|
Parmentier CN, Fuerst E, McDonald J, Bowen H, Lee TH, Pease JE, Woszczek G, Cousins DJ. Human T(H)2 cells respond to cysteinyl leukotrienes through selective expression of cysteinyl leukotriene receptor 1. J Allergy Clin Immunol 2012; 129:1136-42. [PMID: 22391114 DOI: 10.1016/j.jaci.2012.01.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/25/2012] [Accepted: 01/25/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Allergic asthma is characterized by reversible airway obstruction and bronchial hyperresponsiveness associated with T(H)2 cell-mediated inflammation. Cysteinyl leukotrienes (CysLTs) are potent lipid mediators involved in bronchoconstriction, mucus secretion, and cell trafficking in asthmatic patients. Recent data have implicated CysLTs in the establishment and amplification of T(H)2 responses in murine models, although the precise mechanisms are unresolved. OBJECTIVES Preliminary microarray studies suggested that human T(H)2 cells might selectively express cysteinyl leukotriene receptor 1 (CYSLTR1) mRNA. We sought to establish whether human T(H)2 cells are indeed a CysLT target cell type. METHODS We examined the expression of CYSLTR1 using real-time PCR in human T(H)1 and T(H)2 cells. We functionally assessed cysteinyl leukotriene receptor 1 protein (CysLT(1)) expression using calcium flux, cyclic AMP, and chemotaxis assays. RESULTS We show that human T(H)2 cells selectively express CYSLTR1 mRNA at high levels compared with T(H)1 cells after in vitro differentiation from naive precursors. Human T(H)2 cells are selectively responsive to CysLTs in a calcium flux assay when compared with T(H)1 cells with a rank order of potency similar to that described for CysLT(1) (leukotriene [LT] D(4) > LTC(4) > LTE(4)). We also show that LTD(4)-induced signaling in T(H)2 cells is mediated through CysLT(1) coupled to G(α)q and G(α)i proteins, and both pathways can be completely inhibited by selective CysLT(1) antagonists. LTD(4) is also found to possess potent chemotactic activity for T(H)2 cells at low nanomolar concentrations. CONCLUSIONS These findings suggest a novel mechanism of action for CysLTs in the pathogenesis of asthma and provide a potential explanation for the anti-inflammatory effects of CysLT(1) antagonists.
Collapse
|
22
|
Lakaye B, Coumans B, Harray S, Grisar T. Melanin-concentrating hormone and immune function. Peptides 2009; 30:2076-80. [PMID: 19450627 DOI: 10.1016/j.peptides.2009.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 10/20/2022]
Abstract
To date, melanin-concentrating hormone (MCH) has been generally considered as peptide acting almost exclusively in the central nervous system. In the present paper, we revise the experimental evidence, demonstrating that MCH and its receptors are expressed by cells of the immune system and directly influence the response of these cells in some circumstances. This therefore supports the idea that, as with other peptides, MCH could be considered as a modulator of the immune system. Moreover, we suggest that this could have important implications in several immune-mediated disorders and affirm that there is a clear need for further investigation.
Collapse
|
23
|
Orihara K, Morita H, Yagami A, Kajiwara N, Nakae S, Matsumoto K, Nagasaki H, Saito Y, Saito H, Matsuda A. TH2 cytokines potently induce an appetite-stimulating peptide, melanin-concentrating hormone, in human vascular endothelial cells. J Allergy Clin Immunol 2009; 124:612-4, 614.e1-2. [PMID: 19541358 DOI: 10.1016/j.jaci.2009.04.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 04/24/2009] [Accepted: 04/27/2009] [Indexed: 11/17/2022]
|
24
|
Kokkotou E, Espinoza DO, Torres D, Karagiannides I, Kosteletos S, Savidge T, O’Brien M, Pothoulakis C. Melanin-concentrating hormone (MCH) modulates C difficile toxin A-mediated enteritis in mice. Gut 2009; 58:34-40. [PMID: 18824554 PMCID: PMC3058236 DOI: 10.1136/gut.2008.155341] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Melanin-concentrating hormone (MCH) is a hypothalamic orexigenic neuropeptide that regulates energy balance. However, the distribution of MCH and its receptor MCHR1 in tissues other than brain suggested additional, as yet unappreciated, roles for this neuropeptide. Based on previous paradigms and the presence of MCH in the intestine as well as in immune cells, its potential role in gut innate immune responses was examined. METHODS In human intestinal xenografts grown in mice, changes in the expression of MCH and its receptors following treatment with Clostridium difficile toxin A, the causative agent of antibiotic-associated diarrhoea in hospitalised patients, were examined. In colonocytes, the effect of C difficile toxin A treatment on MCHR1 expression, and of MCH on interleukin 8 (IL8) expression was examined. MCH-deficient mice and immunoneutralisation approaches were used to examine the role of MCH in the pathogenesis of C difficile toxin A-mediated acute enteritis. RESULTS Upregulation of MCH and MCHR1 expression was found in the human intestinal xenograft model, and of MCHR1 in colonocytes following exposure to toxin A. Treatment of colonocytes with MCH resulted in IL8 transcriptional upregulation, implying a link between MCH and inflammatory pathways. In further support of this view, MCH-deficient mice developed attenuated toxin A-mediated intestinal inflammation and secretion, as did wild-type mice treated with an antibody against MCH or MCHR1. CONCLUSION These findings signify MCH as a mediator of C difficile-associated enteritis and possibly of additional gut pathogens. MCH may mediate its proinflammatory effects at least in part by acting on epithelial cells in the intestine.
Collapse
Affiliation(s)
- E Kokkotou
- Division of Gastroenterology, Dana 501, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | - D O Espinoza
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - D Torres
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - I Karagiannides
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - S Kosteletos
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - T Savidge
- Department of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - M O’Brien
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - C Pothoulakis
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA, Department of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Kokkotou E, Moss AC, Torres D, Karagiannides I, Cheifetz A, Liu S, O'Brien M, Maratos-Flier E, Pothoulakis C. Melanin-concentrating hormone as a mediator of intestinal inflammation. Proc Natl Acad Sci U S A 2008; 105:10613-10618. [PMID: 18650383 PMCID: PMC2492477 DOI: 10.1073/pnas.0804536105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Indexed: 12/23/2022] Open
Abstract
Melanin-concentrating hormone (MCH) is expressed primarily in the hypothalamus and has a positive impact on feeding behavior and energy balance. Although MCH is expressed in the gastrointestinal tract, its role in this system remains elusive. We demonstrate that, compared to wild type, mice genetically deficient in MCH had substantially reduced local inflammatory responses in a mouse model of experimental colitis induced by intracolonic administration of 2,4,6 trinitrobenzene sulfonic acid (TNBS). Likewise, mice receiving treatments with an anti-MCH antibody, either prophylactically or after the establishment of colitis, developed attenuated TNBS-associated colonic inflammation and survived longer. Consistent with a potential role of MCH in intestinal pathology, we detected increased colonic expression of MCH and its receptor in patients with inflammatory bowel disease. Moreover, we found that human colonic epithelial cells express functional MCH receptors, the activation of which induces IL-8 expression. Taken together, these results clearly implicate MCH in inflammatory processes in the intestine and perhaps elsewhere.
Collapse
Affiliation(s)
- Efi Kokkotou
- *Gastrointestinal Neuropeptide Center and Center for Inflammatory Bowel Disease
| | - Alan C. Moss
- *Gastrointestinal Neuropeptide Center and Center for Inflammatory Bowel Disease
| | - Daniel Torres
- *Gastrointestinal Neuropeptide Center and Center for Inflammatory Bowel Disease
| | | | - Adam Cheifetz
- *Gastrointestinal Neuropeptide Center and Center for Inflammatory Bowel Disease
| | - Sumei Liu
- Division of Digestive Health, Department of Internal Medicine, Ohio State University, Columbus, OH 43210; and
| | - Michael O'Brien
- Mallory Institute and Department of Pathology, Boston University School of Medicine, Boston, MA 02118
| | - Eleftheria Maratos-Flier
- Division of Gastroenterology, and Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | | |
Collapse
|
26
|
Varas M, Sánchez-Borzone M, Sánchez JM, Barioglio SRD, Perillo MA. Surface behavior and peptide-lipid interactions of the cyclic neuropeptide melanin concentrating hormone. J Phys Chem B 2008; 112:7330-7. [PMID: 18503269 DOI: 10.1021/jp7111236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The kinetics and the thermodynamics of melanin concentrating hormone (MCH) adsorption, penetration, and mixing with membrane components are reported. MCH behaved as a surface active peptide, forming stable monolayers at a lipid-free air-water interface, with an equilibrium spreading pressure, a collapse pressure, and a minimal molecular area of 11 mN/m, 13 mN/m, and 140 A (2), respectively. Additional peptide interfacial stabilization was achieved in the presence of lipids, as evidenced by the expansion observed at pi > pi sp in monolayers containing premixtures of MCH with zwitterionic or charged lipids. The MCH-monolayer association and dissociation rate constants were 9.52 x 10 (-4) microM (-1) min (-1) and 8.83 x 10 (-4) min (-1), respectively. The binding of MCH to the dpPC-water interface had a K d = 930 nM at 10 mN/m. MCH penetration in lipid monolayers occurred even up to pi cutoff = 29-32 mN/m. The interaction stability, binding orientation, and miscibility of MCH in monolayers depended on the lipid type, the MCH molar fraction in the mixture, and the molecular packing of the monolayer. This predicted its heterogeneous distribution between different self-separated membrane domains. Our results demonstrated the ability of MCH to incorporate itself into biomembranes and supports the possibility that MCH affects the activity of mechanosensitive membrane proteins through mechanisms unrelated with binding to specific receptors.
Collapse
Affiliation(s)
- Mariana Varas
- Biofísica-Química, Cátedra de Química Biológica, Departmento de Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
27
|
Abstract
Recent studies have begun to clarify the pathogenesis of sickness behavior. Cytokines released by macrophages, dendritic cells and mast cells act on the brain to trigger behavioral changes in infected animals. The major cytokines, interleukin-1, tumor necrosis factor alpha, and others, all act on the hypothalamus to provoke alterations in the normal homeostatic condition. These include elevated body temperature, increased sleep, and loss of appetite as well as major alterations in lipid and protein metabolism leading to significant weight loss. Some of these changes are clearly directed towards enhancing the normal immune responses. The benefits of others such as appetite loss are unclear. It is also important to recognize that other animals may recognize sickness behavior as a sign of weakness and mark the victim out for targeting by predators. As a result, some prey species may work very hard to mask their sickness, a response that serves to complicate veterinary diagnosis.
Collapse
|
28
|
Interleukin 4 receptor is associated with an increase in body mass index in Koreans. Life Sci 2008; 82:1040-3. [PMID: 18433792 DOI: 10.1016/j.lfs.2008.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 03/09/2008] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
Abstract
A body of evidence indicates obesity is an inflammatory state with chronic activation of the immune system. The interleukin 4 receptor (IL4R) single nucleotide polymorphism (SNP), rs 180275 (1902A>G) is well recognized for its association with atopy and other inflammatory diseases. We assessed the possible association of rs 180275 and rs 1805010 with obesity in Korean population. Study subject consisting of 876 Koreans were divided into three groups: subjects with 1) BMI<25, 2) BMI between 25 and 27, and 3) BMI>27. Analyses of genotype distributions and allele frequencies of study subjects revealed that rs 180275 polymorphism was associated with an increase in BMI in Korean population (P=0.009 and 0.011, respectively) while no association was found between rs 1805010 and obesity. We observed significantly lower percentage of rs 180275 G allele in subjects with BMI>27 than in subjects with BMI< or =27 (9.9% vs. 16.0%). Logistic regression analysis revealed that the odds ratio (OR) for an increase in BMI associated with the G vs. A allele was 0.57 [95% Confidence interval (CI)=0.39-0.85, p=0.002], which strongly implicates the protective role of rs 180275 G allele against an increase in BMI. Haplotype analysis revealed no association was present between rs 180275 and rs 1805010 polymorphisms. The frequency of rs 180275 G allele is significantly lower in subjects with BMI>27, suggesting the protective role of IL4R rs 180275 G allele against an increase in BMI in Korean population.
Collapse
|