1
|
Gauthier T, Lim YJ, Jin W, Liu N, Patiño LC, Chen W, Warren J, Martin D, Morell RJ, Dveksler G, Su GH, Chen W. Activin A activation of Smad3 mitigates innate inflammation in mouse models of psoriasis and sepsis. J Clin Invest 2025; 135:e187063. [PMID: 40067393 PMCID: PMC12043092 DOI: 10.1172/jci187063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/05/2025] [Indexed: 05/02/2025] Open
Abstract
Phosphorylation of Smad3 is a critical mediator of TGF-β signaling, which plays an important role in regulating innate immune responses. However, whether Smad3 activation can be regulated in innate immune cells in TGF-β-independent contexts remains poorly understood. Here, we show that Smad3 is activated through the phosphorylation of its C-terminal residues (pSmad3C) in murine and human macrophages in response to bacterial and viral ligands, and this activation is mediated by activin A in a TGF-β-independent manner. Specifically, infectious ligands, such as LPS, induced secretion of activin A through the transcription factor STAT5 in macrophages, and activin A signaling in turn activated pSmad3C. This activin A/Smad3 axis controlled mitochondrial ATP production and ATP conversion into adenosine by CD73 in macrophages, enforcing an antiinflammatory mechanism. Consequently, mice with a deletion of activin A receptor 1b specifically in macrophages (Acvr1bfl/fl-Lyz2cre) succumbed more to sepsis as a result of uncontrolled inflammation and exhibited exacerbated skin disease in a mouse model of imiquimod-induced psoriasis. Thus, we have revealed a previously unrecognized natural brake to inflammation in macrophages that occurs through the activation of Smad3 in an activin A-dependent manner.
Collapse
Affiliation(s)
- Thierry Gauthier
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Yun-Ji Lim
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Wenwen Jin
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Na Liu
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Liliana C. Patiño
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Weiwei Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - James Warren
- Department of Pathology, Uniformed Services University, Bethesda, Maryland, USA
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert J. Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University, Bethesda, Maryland, USA
| | - Gloria H. Su
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - WanJun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Nagayama I, Takei Y, Takahashi S, Okada M, Maeshima A. The activin-follistatin system: Key regulator of kidney development, regeneration, inflammation, and fibrosis. Cytokine Growth Factor Rev 2025; 81:1-8. [PMID: 39581798 DOI: 10.1016/j.cytogfr.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Activins, multifunctional cytokines of the transforming growth factor-beta superfamily, play critical roles in the regulation of growth and differentiation in multiple biological systems. Activin activity is finely regulated by the endogenous antagonist follistatin. Early studies reported that activins are involved in renal organogenesis, but subsequent research demonstrated that activins also play a significant role in kidney regeneration following injury. The results of more recent studies suggest activins play roles in both inflammatory kidney diseases and renal fibrosis, conditions that often culminate in end-stage renal disease. Given these findings, the inhibition of activin activity represents a promising therapeutic approach for treating a range of kidney disorders. This review discusses the latest discoveries concerning the role of the activin-follistatin system in renal development and pathophysiology and explores the potential therapeutic implications of targeting this system in the management of kidney diseases.
Collapse
Affiliation(s)
- Izumi Nagayama
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Japan
| | | | - Shunsuke Takahashi
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Japan
| | - Mari Okada
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Japan
| | - Akito Maeshima
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Japan.
| |
Collapse
|
3
|
Özden C, Afacan B, İlhan HA, Köse T, Emingil G. Oral biofluid levels of Activin-A and interleukin-1beta in stage III periodontitis. Clin Oral Investig 2024; 29:7. [PMID: 39656274 DOI: 10.1007/s00784-024-06088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 11/28/2024] [Indexed: 02/07/2025]
Abstract
OBJECTIVES Activin-A belongs to the transforming growth factor-beta superfamily and is a multifunctional cytokine that plays a role in inflammation, immune response, tissue repair and regeneration. Proinflammatory cytokine interleukin-1beta (IL-1β) can increase Activin-A expression in various cell types. This study aims to evaluate gingival crevicular fluid (GCF) and salivary Activin-A and IL-β levels in stage III periodontitis. MATERIALS AND METHODS 23 patients with stage III periodontitis, 26 with gingivitis and 26 periodontally healthy individuals were included. Full-mouth clinical periodontal indices were recorded, unstimulated whole saliva and GCF samples were obtained, Activin-A and IL-1β total amounts were determined by ELISA. Statistical comparisons were performed using non-parametric tests. Receiver operating characteristics curve was used for estimating the area under the curve (AUC). RESULTS Periodontitis group exhibited significantly lower GCF Activin-A levels but higher IL-1β levels than the periodontally healthy group (p < 0.05). Gingivitis group had similar GCF Activin-A and IL-1β levels to the periodontitis and periodontally healthy groups (p > 0.05). Salivary Activin-A and IL-1β concentrations were similar among study groups (p > 0.05). GCF Activin-A level showed an excellent diagnostic performance (an AUC value of 0.82 with 87% sensitivity) to discriminate periodontitis from periodontal health. CONCLUSIONS For the first time, this study demonstrated oral biofluid levels of Activin-A in periodontal health and diseases. Within the limits of the study, it might be suggested that diseased sites in periodontitis are associated with reduced Activin-A and increased IL-1β levels in GCF. CLINICAL RELEVANCE Reduced GCF Activin-A levels and the accompanying increase in IL-1β might be associated with diseased sites in stage III periodontitis.
Collapse
Affiliation(s)
- Can Özden
- Department of Periodontology, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Beral Afacan
- Department of Periodontology, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey.
| | - Harika Atmaca İlhan
- Section of Molecular Biology, Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Manisa, Turkey
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, İzmir Ege University, İzmir, Turkey
| | - Gülnur Emingil
- Department of Periodontology, Faculty of Dentistry, İstinye University, İstanbul, Turkey
| |
Collapse
|
4
|
Mukohda M, Kodama T, Mizuno R. Follistatin-mediated vascular protection via inhibition of activin A in essential and secondary hypertension. Hypertens Res 2024; 47:3494-3495. [PMID: 39420092 DOI: 10.1038/s41440-024-01960-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Affiliation(s)
- Masashi Mukohda
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan.
| | - Tomoko Kodama
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Risuke Mizuno
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| |
Collapse
|
5
|
Miao X, Alidadipour A, Saed V, Sayyadi F, Jadidi Y, Davoudi M, Amraee F, Jadidi N, Afrisham R. Hepatokines: unveiling the molecular and cellular mechanisms connecting hepatic tissue to insulin resistance and inflammation. Acta Diabetol 2024; 61:1339-1361. [PMID: 39031190 DOI: 10.1007/s00592-024-02335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/06/2024] [Indexed: 07/22/2024]
Abstract
Insulin resistance arising from Non-Alcoholic Fatty Liver Disease (NAFLD) stands as a prevalent global ailment, a manifestation within societies stemming from individuals' suboptimal dietary habits and lifestyles. This form of insulin resistance emerges as a pivotal factor in the development of type 2 diabetes mellitus (T2DM). Emerging evidence underscores the significant role of hepatokines, as hepatic-secreted hormone-like entities, in the genesis of insulin resistance and eventual onset of type 2 diabetes. Hepatokines exert influence over extrahepatic metabolism regulation. Their principal functions encompass impacting adipocytes, pancreatic cells, muscles, and the brain, thereby playing a crucial role in shaping body metabolism through signaling to target tissues. This review explores the most important hepatokines, each with distinct influences. Our review shows that Fetuin-A promotes lipid-induced insulin resistance by acting as an endogenous ligand for Toll-like receptor 4 (TLR-4). FGF21 reduces inflammation in diabetes by blocking the nuclear translocation of nuclear factor-κB (NF-κB) in adipocytes and adipose tissue, while also improving glucose metabolism. ANGPTL6 enhances AMPK and insulin signaling in muscle, and suppresses gluconeogenesis. Follistatin can influence insulin resistance and inflammation by interacting with members of the TGF-β family. Adropin show a positive correlation with phosphoenolpyruvate carboxykinase 1 (PCK1), a key regulator of gluconeogenesis. This article delves into hepatokines' impact on NAFLD, inflammation, and T2DM, with a specific focus on insulin resistance. The aim is to comprehend the influence of these recently identified hormones on disease development and their underlying physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Xiaolei Miao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Arian Alidadipour
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Vian Saed
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Firooze Sayyadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Davoudi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amraee
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Jiang BC, Ling YJ, Xu ML, Gu J, Wu XB, Sha WL, Tian T, Bai XH, Li N, Jiang CY, Chen O, Ma LJ, Zhang ZJ, Qin YB, Zhu M, Yuan HJ, Wu LJ, Ji RR, Gao YJ. Follistatin drives neuropathic pain in mice through IGF1R signaling in nociceptive neurons. Sci Transl Med 2024; 16:eadi1564. [PMID: 39413164 DOI: 10.1126/scitranslmed.adi1564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024]
Abstract
Neuropathic pain is a debilitating chronic condition that lacks effective treatment. The role of cytokine- and chemokine-mediated neuroinflammation in its pathogenesis has been well documented. Follistatin (FST) is a secreted protein known to antagonize the biological activity of cytokines in the transforming growth factor-β (TGF-β) superfamily. The involvement of FST in neuropathic pain and the underlying mechanism remain largely unknown. Here, we report that FST was up-regulated in A-fiber sensory neurons after spinal nerve ligation (SNL) in mice. Inhibition or deletion of FST alleviated neuropathic pain and reduced the nociceptive neuron hyperexcitability induced by SNL. Conversely, intrathecal or intraplantar injection of recombinant FST, or overexpression of FST in the dorsal root ganglion (DRG) neurons, induced pain hypersensitivity. Furthermore, exogenous FST increased neuronal excitability in nociceptive neurons. The biolayer interferometry (BLI) assay and coimmunoprecipitation (co-IP) demonstrated direct binding of FST to the insulin-like growth factor-1 receptor (IGF1R), and IGF1R inhibition reduced FST-induced activation of extracellular signal-regulated kinase (ERK) and protein kinase B (AKT), as well as neuronal hyperexcitability. Further co-IP analysis revealed that the N-terminal domain of FST exhibits the highest affinity for IGF1R, and blocking this interaction with a peptide derived from FST attenuated Nav1.7-mediated neuronal hyperexcitability and neuropathic pain after SNL. In addition, FST enhanced neuronal excitability in human DRG neurons through IGF1R. Collectively, our findings suggest that FST, released from A-fiber neurons, enhances Nav1.7-mediated hyperexcitability of nociceptive neurons by binding to IGF1R, making it a potential target for neuropathic pain treatment.
Collapse
Affiliation(s)
- Bao-Chun Jiang
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Yue-Juan Ling
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Meng-Lin Xu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Jun Gu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Xiao-Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Wei-Lin Sha
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Tian Tian
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Xue-Hui Bai
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Nan Li
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, China
| | - Chang-Yu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, China
| | - Ouyang Chen
- Center for Translational Pain Medicine, Departments of Anesthesiology, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ling-Jie Ma
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Zhi-Jun Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Yi-Bin Qin
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Meixuan Zhu
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hong-Jie Yuan
- Department of Pain Management, Nantong Hospital of Traditional Chinese Medicine, Jiangsu 226001, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Departments of Anesthesiology, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| |
Collapse
|
7
|
Wang M. Association and causality between diabetes and activin A: a two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1414585. [PMID: 39280004 PMCID: PMC11393405 DOI: 10.3389/fendo.2024.1414585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/15/2024] [Indexed: 09/18/2024] Open
Abstract
Activin A, a cytokine belonging to the transforming growth factor-beta (TGF-β) superfamily, mediates a multifunctional signaling pathway that is essential for embryonic development, cell differentiation, metabolic regulation, and physiological equilibrium. Biomedical research using diabetes-based model organisms and cellular cultures reports evidence of different activin A levels between diabetic and control groups. Activin A is highly conserved across species and universally expressed among disparate tissues. A systematic review of published literatures on human populations reveals association of plasma activin A levels with diabetic patients in some (7) but not in others (5) of the studies. With summarized data from publicly available genome-wide association studies (GWASs), a two-sample Mendelian randomization (TSMR) analysis is conducted on the causality between the exposure and the outcome. Wald ratio estimates from single instruments are predominantly non-significant. In contrast to positive controls between diabetes and plasma cholesterol levels, inverse-variance-weighted (IVW), Egger, weighted median, and weighted mode MR methods all lead to no observed causal link between diabetes (type 1 and type 2) and plasma activin A levels. Unavailability of strong instruments prevents the reversal MR analysis of activin A on diabetes. In summary, further research is needed to confirm or deny the potential association between diabetes and plasma activin A, and to elucidate the temporal incidence of these traits in human populations. At this stage, no causality has been found between diabetes and plasma activin A based on TSMR analysis.
Collapse
Affiliation(s)
- Mengqiao Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Moqaddam MA, Nemati M, Dara MM, Hoteit M, Sadek Z, Ramezani A, Rand MK, Abbassi-Daloii A, Pashaei Z, Almaqhawi A, Razi O, Escobar KA, Supriya R, Saeidi A, Zouhal H. Exploring the Impact of Astaxanthin Supplementation in Conjunction with a 12-Week CrossFit Training Regimen on Selected Adipo-Myokines Levels in Obese Males. Nutrients 2024; 16:2857. [PMID: 39275173 PMCID: PMC11397083 DOI: 10.3390/nu16172857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 08/14/2024] [Indexed: 09/16/2024] Open
Abstract
OBJECTIVE Obesity is associated with an exacerbated metabolic condition that is mediated through impairing balance in the secretion of some adipo-myokines. Therefore, the objective of the present study was to explore the impact of astaxanthin supplementation in conjunction with a 12-week CrossFit training regimen on some selected adipo-myokines, insulin insensitivity, and serum lipid levels in obese males. MATERIAL AND METHODS This study is a randomized control trial design; 60 obese males were randomly divided into four groups of 15, including the control group (CG), supplement group (SG), training group (TG), and combined training and supplement group (TSG). The participants were subjected to 12 weeks of astaxanthin (AST) supplementation [20 mg/d capsule, once/d] or CrossFit training or a combination of both interventions. The training regimen comprised 36 sessions of CrossFit, each lasting 60 min, conducted three times per week. The metabolic indices, body composition, anthropometrical, cardio-respiratory, and also some plasma adipo-myokine factors, including decorin (DCN), activin A, myostatin (MST), transforming growth factor (TGF)-β1, and follistatin (FST), were examined 12 and 72 h before the initiation of the main interventional protocols, and then 72 h after the final session of the training protocol. RESULTS There was no significant difference in the baseline data between the groups (p > 0.05). There were significant interactions between group x time for DCN (η2 = 0.82), activin A (η2 = 0.50), FST (η2 = 0.92), MST (η2 = 0.75), and TGFB-1 (η2 = 0.67) (p < 0.001 for all the variables). Significantly changes showed for DCN in TSG compared to TG and SG and also TG compared to SG (p = 0.0001); for activin A in SG compared to TG (p = 0.01) and TSG (p = 0.002); for FST in SG compared to TG and TSG (p = 0.0001), also in TSG compared to TG (p = 0.0001); for MST in SG, TG, and TSG compared to CG (p = 0.0001) and also in TSG compared to SG (p = 0.0001) and TG (p = 0.001); for TGFB-1 in SG, TG, and TSG compared to CG (p = 0.0001) and also TSG compared to SG (p = 0.0001) and TG (p = 0.001). CONCLUSIONS The 12-week CrossFit training concurrent with AST supplementation reduced anthropometric and metabolic factors and also serum lipid levels while producing positive changes in body composition and cardiovascular factors. Increased FST and DCN and reduced activin A, MST, and TGF-β1 were other affirmative responses to both interventions.
Collapse
Affiliation(s)
- Mohammad Ahmadi Moqaddam
- Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (M.A.M.); (M.M.D.)
| | - Morteza Nemati
- Department of Biomechanics and Sports Injuries, Faculty of Physical Education and Sports Sciences, Kharazmi University, Tehran 1571914911, Iran;
| | - Marjan Mansouri Dara
- Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (M.A.M.); (M.M.D.)
| | - Maha Hoteit
- Food Science Unit, National Council for Scientific Research of Lebanon (CNRS-L), Beirut 11-8281, Lebanon;
- Section 1, Faculty of Public Health, Lebanese University, Beirut 6573, Lebanon;
| | - Zahra Sadek
- Section 1, Faculty of Public Health, Lebanese University, Beirut 6573, Lebanon;
- Laboratory of Motor System, Handicap and Rehabilitation (MOHAR), Faculty of Public Health, Lebanese University, Beirut 6573, Lebanon
| | - Akbar Ramezani
- Ayatollah Amoli Branch, Department of Exercise Physiology, Islamic Azad University, Amol 6134937333, Iran; (A.R.); (M.K.R.); (A.A.-D.)
| | - Mahboubeh Khak Rand
- Ayatollah Amoli Branch, Department of Exercise Physiology, Islamic Azad University, Amol 6134937333, Iran; (A.R.); (M.K.R.); (A.A.-D.)
| | - Asieh Abbassi-Daloii
- Ayatollah Amoli Branch, Department of Exercise Physiology, Islamic Azad University, Amol 6134937333, Iran; (A.R.); (M.K.R.); (A.A.-D.)
| | - Zhaleh Pashaei
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz 5166616471, Iran;
| | - Abdullah Almaqhawi
- Department of Family Medicine and Community, College of Medicine, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Razi University, Kermanshah 6714414971, Iran;
| | - Kurt A. Escobar
- Department of Kinesiology, California State University, Long Beach, CA 90840, USA;
| | - Rashmi Supriya
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
- Academy of Wellness and Human Development, Faculty of Arts and Social Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Ayoub Saeidi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj 1517566177, Iran
| | - Hassane Zouhal
- M2S (Laboratoire Mouvement, Sport, Santé)—EA 1274, Université Rennes, 35044 Rennes, France;
- Institut International des Sciences du Sport (2I2S), 35850 Irodouer, France
| |
Collapse
|
9
|
Manohar-Sindhu S, Merfeld-Clauss S, March KL, Traktuev DO. Activin A Is a Master Regulator of Phenotypic Switch in Adipose Stromal Cells Initiated by Activated Immune Cell-Secreted Interleukin-1β. Stem Cells Dev 2024; 33:399-411. [PMID: 38877807 DOI: 10.1089/scd.2024.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
Prolonged tissue ischemia and inflammation lead to organ deterioration and are often accompanied by microvasculature rarefaction, fibrosis, and elevated systemic Activin A (ActA), the level of which frequently correlates with disease severity. Mesenchymal stromal cells are prevalent in the perivascular niche and are likely involved in tissue homeostasis and pathology. This study investigated the effects of inflammatory cells on modulation of phenotype of adipose mesenchymal stromal cells (ASC) and the role of ActA in this process. Peripheral blood mononuclear cells were activated with lipopolysaccharide (activated peripheral blood mononuclear cells [aPBMC]) and presented to ASC. Expression of smooth muscle/myofibroblast markers, ActA, transforming growth factors beta 1-3 (TGFβ1-3), and connective tissue growth factor (CTGF) was assessed in ASC. Silencing approaches were used to dissect the signaling cascade of aPBMC-induced acquisition of myofibroblast phenotype by ASC. ASC cocultured with aPBMC or exposed to the secretome of aPBMC upregulated smooth muscle cell markers alpha smooth muscle actin (αSMA), SM22α, and Calponin I; increased contractility; and initiated expression of ActA. Interleukin (IL)-1β was sufficient to replicate this response, whereas blocking IL-1β eliminated aPBMC effects. ASC-derived ActA stimulated CTGF and αSMA expression in ASC; the latter independent of CTGF. Induction of αSMA in ASC by IL-1β or ActA-enriched media relied on extracellular enzymatic activity. ActA upregulated mRNA levels of several extracellular matrix proteins in ASC, albeit to a lesser degree than TGFβ1, and marginally increased cell contractility. In conclusion, the study suggests that aPBMC induce myofibroblast phenotype with weak fibrotic activity in perivascular progenitors, such as ASC, through the IL-1β-ActA signaling axis, which also promotes CTGF secretion, and these effects require ActA extracellular enzymatic processing.
Collapse
Affiliation(s)
- Sahana Manohar-Sindhu
- Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
- Genetics and Genomics Graduate Program, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Stephanie Merfeld-Clauss
- Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
- University of Florida Center for Regenerative Medicine, Gainesville, Florida, USA
| | - Keith L March
- Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
- University of Florida Center for Regenerative Medicine, Gainesville, Florida, USA
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Dmitry O Traktuev
- Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
- University of Florida Center for Regenerative Medicine, Gainesville, Florida, USA
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
10
|
Wijayarathna R, Hedger MP. New aspects of activin biology in epididymal function and immunopathology. Andrology 2024; 12:964-972. [PMID: 37644728 DOI: 10.1111/andr.13523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
The activins (A and B) and their binding protein, follistatin, play crucial roles in development, immunoregulation and inflammation throughout the body. In the male reproductive tract of the mouse, activin A and B production is largely confined to the initial segment and proximal caput of the epididymis and the efferent ducts, under normal conditions, with very low expression in the corpus, cauda and vas deferens. However, activin A protein is present throughout the epididymis and vas deferens and is largely associated with the epithelium and interstitial macrophages. Conversely, the activin-binding protein follistatin is produced in the distal epididymis, with very high expression in the vas deferens. Activin activity in the distal tract is inhibited by follistatin, and the activin-follistatin balance is important for regulating coiling of the duct during epididymal development. In further experiments, as described in this report, in situ hybridisation was used to localise activin A mRNA principally to cells in the periductal zone and interstitium in the efferent ducts and proximal caput. Activin B mRNA, on the other hand, was localised to periductal cells in the efferent ducts and proximal epididymis and, most notably, to epithelial cells in the initial segment. Activin A is implicated in the regulation of mononuclear phagocyte function and immune responses in the caput and stimulates the expression of the key immunoregulatory protein, indoleamine 2,3-dioxygenase in this region. Activin A production in the corpus and cauda increases dramatically during bacterial epididymitis in mice, promoting inflammation and fibrosis and causing damage to the epithelium and obstruction of the epididymal duct. Consequently, it appears that the activin-follistatin axis is crucial for maintaining normal epididymal structure and function, but disruption of this balance during inflammation has deleterious effects on male fertility. Follistatin has therapeutic potential in ameliorating the proinflammatory and profibrotic effects of activins.
Collapse
Affiliation(s)
- Rukmali Wijayarathna
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Melbourne, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Melbourne, Australia
| | - Mark P Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Melbourne, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Melbourne, Australia
| |
Collapse
|
11
|
Nieuwenhuizen NE, Nouailles G, Sutherland JS, Zyla J, Pasternack AH, Heyckendorf J, Frye BC, Höhne K, Zedler U, Bandermann S, Abu Abed U, Brinkmann V, Gutbier B, Witzenrath M, Suttorp N, Zissel G, Lange C, Ritvos O, Kaufmann SHE, the CAPNETZ Study group, the DZIF TB study group. Activin A levels are raised during human tuberculosis and blockade of the activin signaling axis influences murine responses to M. tuberculosis infection. mBio 2024; 15:e0340823. [PMID: 38376260 PMCID: PMC10936190 DOI: 10.1128/mbio.03408-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Activin A strongly influences immune responses; yet, few studies have examined its role in infectious diseases. We measured serum activin A levels in two independent tuberculosis (TB) patient cohorts and in patients with pneumonia and sarcoidosis. Serum activin A levels were increased in TB patients compared to healthy controls, including those with positive tuberculin skin tests, and paralleled severity of disease, assessed by X-ray scores. In pneumonia patients, serum activin A levels were also raised, but in sarcoidosis patients, levels were lower. To determine whether blockade of the activin A signaling axis could play a functional role in TB, we harnessed a soluble activin type IIB receptor fused to human IgG1 Fc, ActRIIB-Fc, as a ligand trap in a murine TB model. The administration of ActRIIB-Fc to Mycobacterium tuberculosis-infected mice resulted in decreased bacterial loads and increased numbers of CD4 effector T cells and tissue-resident memory T cells in the lung. Increased frequencies of tissue-resident memory T cells corresponded with downregulated T-bet expression in lung CD4 and CD8 T cells. Altogether, the results suggest a disease-exacerbating role of ActRIIB signaling pathways. Serum activin A may be useful as a biomarker for diagnostic triage of active TB or monitoring of anti-tuberculosis therapy. IMPORTANCE Tuberculosis remains the leading cause of death by a bacterial pathogen. The etiologic agent of tuberculosis, Mycobacterium tuberculosis, can remain dormant in the infected host for years before causing disease. Significant effort has been made to identify biomarkers that can discriminate between latently infected and actively diseased individuals. We found that serum levels of the cytokine activin A were associated with increased lung pathology and could discriminate between active tuberculosis and tuberculin skin-test-positive healthy controls. Activin A signals through the ActRIIB receptor, which can be blocked by administration of the ligand trap ActRIIB-Fc, a soluble activin type IIB receptor fused to human IgG1 Fc. In a murine model of tuberculosis, we found that ActRIIB-Fc treatment reduced mycobacterial loads. Strikingly, ActRIIB-Fc treatment significantly increased the number of tissue-resident memory T cells. These results suggest a role for ActRIIB signaling pathways in host responses to Mycobacterium tuberculosis and activin A as a biomarker of ongoing disease.
Collapse
Affiliation(s)
- Natalie E. Nieuwenhuizen
- Department of Immunology, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- Institute for Hygiene and Microbiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jayne S. Sutherland
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Joanna Zyla
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Arja H. Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jan Heyckendorf
- Department of Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Björn C. Frye
- Department of Pneumology, Clinic, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kerstin Höhne
- Department of Pneumology, Clinic, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrike Zedler
- Department of Immunology, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
| | - Silke Bandermann
- Department of Immunology, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
| | - Ulrike Abu Abed
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
| | - Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
| | - Birgitt Gutbier
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- CAPNETZ STIFTUNG, Hannover, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- CAPNETZ STIFTUNG, Hannover, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Gernot Zissel
- Department of Pneumology, Clinic, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Respiratory Medicine and International Health, University of Lübeck, Lübeck, Germany
- Baylor College of Medicine and Texas Children´s Hospital, Global TB Program, Houston, Texas, USA
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- Max Planck Institute for Multidisciplinary Sciences, Emeritus Group Systems Immunology, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, Texas, USA
| | - the CAPNETZ Study group
- Department of Immunology, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- Institute for Hygiene and Microbiology, Julius Maximilian University of Würzburg, Würzburg, Germany
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
- Department of Pneumology, Clinic, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- CAPNETZ STIFTUNG, Hannover, Germany
- German Center for Lung Research (DZL), Berlin, Germany
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Respiratory Medicine and International Health, University of Lübeck, Lübeck, Germany
- Baylor College of Medicine and Texas Children´s Hospital, Global TB Program, Houston, Texas, USA
- Max Planck Institute for Multidisciplinary Sciences, Emeritus Group Systems Immunology, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, Texas, USA
| | - the DZIF TB study group
- Department of Immunology, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- Institute for Hygiene and Microbiology, Julius Maximilian University of Würzburg, Würzburg, Germany
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
- Department of Pneumology, Clinic, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- CAPNETZ STIFTUNG, Hannover, Germany
- German Center for Lung Research (DZL), Berlin, Germany
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Respiratory Medicine and International Health, University of Lübeck, Lübeck, Germany
- Baylor College of Medicine and Texas Children´s Hospital, Global TB Program, Houston, Texas, USA
- Max Planck Institute for Multidisciplinary Sciences, Emeritus Group Systems Immunology, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
12
|
Elsheikh AA, Shalaby AM, Alabiad MA, Abd-Almotaleb NA, Alorini M, Alnasser SM, Elhasadi I, El-Nagdy SA. Trigonelline Chloride Ameliorated Triphenyltin-Induced Testicular Autophagy, Inflammation, and Apoptosis: Role of Recovery. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:133-150. [PMID: 38156731 DOI: 10.1093/micmic/ozad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Triphenyltin chloride (TPT-Cl) is an organometallic organotin. This study aimed to investigate the role of trigonelline (TG) along with the impact of TPT withdrawal on the testicular toxicity induced by TPT-Cl. Thirty-six adult male albino rats were divided into control, TG (40 mg/kg/day), TPT-Cl (0.5 mg/kg/day), TG + TPT-Cl, and recovery groups. Animals were daily gavaged for 12 weeks. Both TG and TPT-Cl withdrawal improved TPT-Cl-induced testicular toxicity features involving testis and relative testis weight reduction, luteinizing hormone, follicular stimulating hormone, and sex hormone-binding globulin elevation, reduction of inhibin B, free testosterone levels, and sperm count reduction with increased abnormal sperm forms. Moreover, both TG and TPT-Cl withdrawal reduced inflammatory activin A, follistatin, tumor necrosis factor α, interleukin-1β, and proapoptotic Bax and elevated antiapoptotic Bcl2 in testicular tissues mediated by TPT-Cl. TG and TPT-Cl withdrawal restored the excessive autophagy triggered by TPT-Cl via elevation of mTOR, AKT, PI3K, and P62/SQSTM1 and reduction of AMPK, ULK1, Beclin1, and LC3 mRNA gene expressions and regained the deteriorated testicular structure. In conclusion, TG and TPT-Cl withdrawal had an ameliorative role in partially reversing TPT-Cl-induced testicular toxicity. However, the findings indicated that the use of TG as an adjunctive factor is more favorable than TPT-Cl withdrawal, suggesting the capability of the testis for partial self-improvement.
Collapse
Affiliation(s)
- Arwa A Elsheikh
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Noha Ali Abd-Almotaleb
- Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed Alorini
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah 51911, Saudi Arabia
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah 51911, Saudi Arabia
| | - Ibtesam Elhasadi
- Department of Pathology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| | - Samah A El-Nagdy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
13
|
Tobolski D, Zwierzchowski G, Lukasik K, Skarżyński DJ, Pascottini OB, Opsomer G, Barański W. Progesterone-independent endometrial mRNA expression in dairy cows with clinical or subclinical endometritis. Theriogenology 2024; 216:146-154. [PMID: 38183931 DOI: 10.1016/j.theriogenology.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024]
Abstract
Up to 50 % of dairy cows fail to resolve uterine involution and develop chronic clinical (CE) or subclinical endometritis (SE) 21 days after calving. Clinical endometritis is associated with purulent discharge, while SE is not associated with overt clinical signs. Along with numerous knowledge gaps related to its pathogenesis, SE does not allow for a straightforward and effective therapy. Therefore, it is crucial to unravel differences in the expression of genes among healthy, CE, and SE cows. This might contribute to the discovery of new drug candidates and, in consequence, a potentially effective treatment. In the present study, cows between 21 and 28 days postpartum (PP) were examined using vaginoscopy for the presence of vaginal discharge and endometrial cytology for the determination of the endometrial polymorphonuclear cell (PMN) percentage. Next, an endometrial biopsy sample was taken to investigate the expression of 13 selected candidate genes by qPCR. Uterine health status was assigned to healthy (absence of abnormal vaginal discharge and ≤5 % PMN, n = 13), SE (absence of abnormal vaginal discharge and >5 % PMN, n = 30), and CE (mucopurulent or purulent vaginal discharge and >5 % PMN, n = 9). At the same time, a blood sample was collected to assess serum progesterone concentration and to categorize cows as low (≤1 ng/mL) or high (>1 ng/mL) in progesterone. High expression of IL1B, IL6, IL17A, CXCL8, PTGES, PTGS1, PTGS2, and INHBA genes and low expression of FST was noted in the endometrium of CE compared to healthy cows. Increased endometrial INHBA expression was observed in both SE and CE compared to healthy cows. Interestingly, greater expression of PTGES and PRXL2B genes and lower expression of PTGS2 were characteristic of SE versus CE or healthy. Among cows with no overt clinical symptoms of uterine disease (healthy and SE), the endometrial expression of IL1 B, CXCL8, and PTGES was greater in cows with high versus low serum progesterone. Several genes were differentially expressed among healthy, SE, and CE cows indicating different pathways for the development of different uterine diseases. In conclusion, we found progesterone-independent SE markers, which suggests that low endometrial PTGS2 expression may be indicative of an inadequate immune response and thus contribute to the pathogenesis of SE.
Collapse
Affiliation(s)
- Dawid Tobolski
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Oczapowskiego 14, Olsztyn, Poland.
| | - Grzegorz Zwierzchowski
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 1a Oczapowskiego Str., Olsztyn, 10-719, Poland
| | - Karolina Lukasik
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10 -748, Olsztyn, Poland
| | - Dariusz Jan Skarżyński
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10 -748, Olsztyn, Poland
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine at the Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Geert Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine at the Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Wojciech Barański
- Department of Animal Reproduction with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Oczapowskiego 14, Olsztyn, Poland
| |
Collapse
|
14
|
Romberg N, Le Coz C. Common variable immunodeficiency, cross currents, and prevailing winds. Immunol Rev 2024; 322:233-243. [PMID: 38014621 DOI: 10.1111/imr.13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Common variable immunodeficiency (CVID) is a heterogenous disease category created to distinguish late-onset antibody deficiencies from early-onset diseases like agammaglobulinemia or more expansively dysfunctional combined immunodeficiencies. Opinions vary on which affected patients should receive a CVID diagnosis which confuses clinicians and erects reproducibility barriers for researchers. Most experts agree that CVID's most indeliable feature is defective germinal center (GC) production of isotype-switched, affinity-maturated antibodies. Here, we review the biological factors contributing to CVID-associated GC dysfunction including genetic, epigenetic, tolerogenic, microbiome, and regulatory abnormalities. We also discuss the consequences of these biological phenomena to the development of non-infectious disease complications. Finally, we opine on topics and lines of investigation we think hold promise for expanding our mechanistic understanding of this protean condition and for improving the lives of affected patients.
Collapse
Affiliation(s)
- Neil Romberg
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carole Le Coz
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, CNRS, Inserm, Toulouse, France
| |
Collapse
|
15
|
Divolis G, Synolaki E, Doulou A, Gavriil A, Giannouli CC, Apostolidou A, Foster ML, Matzuk MM, Skendros P, Galani IE, Sideras P. Neutrophil-derived Activin-A moderates their pro-NETotic activity and attenuates collateral tissue damage caused by Influenza A virus infection. Front Immunol 2024; 15:1302489. [PMID: 38476229 PMCID: PMC10929267 DOI: 10.3389/fimmu.2024.1302489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Background Pre-neutrophils, while developing in the bone marrow, transcribe the Inhba gene and synthesize Activin-A protein, which they store and release at the earliest stage of their activation in the periphery. However, the role of neutrophil-derived Activin-A is not completely understood. Methods To address this issue, we developed a neutrophil-specific Activin-A-deficient animal model (S100a8-Cre/Inhba fl/fl mice) and analyzed the immune response to Influenza A virus (IAV) infection. More specifically, evaluation of body weight and lung mechanics, molecular and cellular analyses of bronchoalveolar lavage fluids, flow cytometry and cell sorting of lung cells, as well as histopathological analysis of lung tissues, were performed in PBS-treated and IAV-infected transgenic animals. Results We found that neutrophil-specific Activin-A deficiency led to exacerbated pulmonary inflammation and widespread hemorrhagic histopathology in the lungs of IAV-infected animals that was associated with an exuberant production of neutrophil extracellular traps (NETs). Moreover, deletion of the Activin-A receptor ALK4/ACVR1B in neutrophils exacerbated IAV-induced pathology as well, suggesting that neutrophils themselves are potential targets of Activin-A-mediated signaling. The pro-NETotic tendency of Activin-A-deficient neutrophils was further verified in the context of thioglycollate-induced peritonitis, a model characterized by robust peritoneal neutrophilia. Of importance, transcriptome analysis of Activin-A-deficient neutrophils revealed alterations consistent with a predisposition for NET release. Conclusion Collectively, our data demonstrate that Activin-A, secreted by neutrophils upon their activation in the periphery, acts as a feedback mechanism to moderate their pro-NETotic tendency and limit the collateral tissue damage caused by neutrophil excess activation during the inflammatory response.
Collapse
Affiliation(s)
- Georgios Divolis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Evgenia Synolaki
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Athanasia Doulou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Ariana Gavriil
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Christina C. Giannouli
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Anastasia Apostolidou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | | | - Martin M. Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
| | - Panagiotis Skendros
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioanna-Evdokia Galani
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Paschalis Sideras
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| |
Collapse
|
16
|
Pan J, Nilsson J, Engström G, De Marinis Y. Elevated circulating follistatin associates with increased risk of mortality and cardiometabolic disorders. Nutr Metab Cardiovasc Dis 2024; 34:418-425. [PMID: 38000997 DOI: 10.1016/j.numecd.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND AND AIMS Previous study showed that elevated circulating hepatokine follistatin (FST) associates with an increased risk of type 2 diabetes by inducing adipose tissue insulin resistance. Here we explore further the relationships between plasma FST levels with mortality and health outcomes. METHODS AND RESULTS The population-based Malmö Diet Cancer cardiovascular cohort (n = 4733, age 45-68 years) was used to study plasma FST in relation to incidence of health outcomes, by linkage with national patient registers. Cox regression analysis was used to assess the associations of plasma FST and outcomes, with adjustments for multiple potential confounding factors. During the mean follow-up time of 22.64 ± 5.84 years in 4,733 individuals, 526 had incident stroke, 432 had ischemic stroke, 530 had incident coronary events (CE), 339 had incident heart failure (HF), 320 had incident chronic kidney disease (CKD) and 1,843 individuals died. Hazard ratio (HR) per standard deviation increase in FST levels adjusted for multiple risk factors was 1.05 (95%CI: 1.00-1.11, p = 0.036) for mortality; 1.10 (95%CI: 1.00-1.20, p = 0.042) for stroke; 1.13 (95%CI: 1.03-1.25, p = 0.014) for ischemic stroke; 1.16 (95%CI: 1.03-1.30, p = 0.015) for HF; and 1.38 (95%CI: 1.12-1.70, p = 0.003) for a diagnosis of CKD. In MDC-CC individuals without prevalent or incident diabetes, the association between FST and stroke, CE and CKD remained significant; but not with mortality or HF. CONCLUSIONS Elevated circulating FST associates with an increased risk of mortality and HF, which partly may be mediated by diabetes. FST also associated with stroke, ischemic stroke, CE and CKD, independently of established risk factors including diabetes.
Collapse
Affiliation(s)
- Jingxue Pan
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Jan Nilsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Yang De Marinis
- Department of Clinical Sciences, Lund University, Malmö, Sweden; School of Control Science and Engineering, Shandong University, Jinan, Shandong, China; Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK.
| |
Collapse
|
17
|
Kizer JR, Patel S, Ganz P, Newman AB, Bhasin S, Lee SJ, Cawthon PM, LeBrasseur NK, Shah SJ, Psaty BM, Tracy RP, Cummings SR. Circulating Growth Differentiation Factors 11 and 8, Their Antagonists Follistatin and Follistatin-Like-3, and Risk of Heart Failure in Elders. J Gerontol A Biol Sci Med Sci 2024; 79:glad206. [PMID: 37624693 PMCID: PMC10733168 DOI: 10.1093/gerona/glad206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Heterochronic parabiosis has identified growth differentiation factor (GDF)-11 as a potential means of cardiac rejuvenation, but findings have been inconsistent. A major barrier has been lack of assay specificity for GDF-11 and its homolog GDF-8. METHODS We tested the hypothesis that GDF-11 and GDF-8, and their major antagonists follistatin and follistatin-like (FSTL)-3, are associated with incident heart failure (HF) and its subtypes in elders. Based on validation experiments, we used liquid chromatography-tandem mass spectrometry to measure total serum GDF-11 and GDF-8, along with follistatin and FSTL-3 by immunoassay, in 2 longitudinal cohorts of older adults. RESULTS In 2 599 participants (age 75.2 ± 4.3) followed for 10.8 ± 5.6 years, 721 HF events occurred. After adjustment, neither GDF-11 (HR per doubling: 0.93 [0.67, 1.30]) nor GDF-8 (HR: 1.02 per doubling [0.83, 1.27]) was associated with incident HF or its subtypes. Positive associations with HF were detected for follistatin (HR: 1.15 [1.00, 1.32]) and FLST-3 (HR: 1.38 [1.03, 1.85]), and with HF with preserved ejection fraction for FSTL-3 (HR: 1.77 [1.03, 3.02]). (All HRs per doubling of biomarker.) FSTL-3 associations with HF appeared stronger at higher follistatin levels and vice versa, and also for men, Blacks, and lower kidney function. CONCLUSIONS Among older adults, serum follistatin and FSTL-3, but not GDF-11 or GDF-8, were associated with incident HF. These findings do not support the concept that low serum levels of total GDF-11 or GDF-8 contribute to HF late in life, but do implicate transforming growth factor-β superfamily pathways as potential therapeutic targets.
Collapse
Affiliation(s)
- Jorge R Kizer
- Cardiology Section, San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Sheena Patel
- Research Institute, California Pacific Medical Center, San Francisco, California, USA
| | - Peter Ganz
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- Cardiology Division, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shalender Bhasin
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Se-Jin Lee
- The Jackson Laboratory and University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Peggy M Cawthon
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
- Research Institute, California Pacific Medical Center, San Francisco, California, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, and Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, Illinois, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, Washington, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Steven R Cummings
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
- Research Institute, California Pacific Medical Center, San Francisco, California, USA
| |
Collapse
|
18
|
Ogihara R, Kurumi H, Kanda T, Yashima K, Isomoto H, Yamaguchi N. Serum Activin A Is a Novel Biomarker of Endoscopic Activity in Ulcerative Colitis. Gastroenterology Res 2023; 16:334-341. [PMID: 38186584 PMCID: PMC10769608 DOI: 10.14740/gr1677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/16/2023] [Indexed: 01/09/2024] Open
Abstract
Background Endoscopic healing (EH) is the long-term therapeutic goal for ulcerative colitis (UC). Since repeated colonoscopies are inconvenient and invasive, a surrogate biomarker for endoscopic activity is needed. Activin A is one of the transforming growth factor-β superfamily of proteins and has been shown to be associated with intestinal inflammation. Methods This single-center observational study included 27 Japanese patients with UC in clinical remission who underwent colonoscopy and blood sampling. We investigated the correlations between laboratory parameters, including serum activin A levels, and endoscopic activity, classified by the Mayo endoscopic subscore (MES) in these patients. Results This study included 15 males and 12 females. The median age was 44.0 years. In terms of endoscopic activity, five patients were diagnosed with MES 0, 14 patients with MES 1, seven patients with MES 2, and one patient with MES 3. The median serum activin level was 134.8 pg/mL (interquartile range (IQR), 105.3 - 188.1). Serum activin A levels were significantly correlated with the MES (Spearman's rank correlation coefficient r = 0.591, P = 0.001), which was better than that of C-reactive protein (CRP) (r = 0.487, P = 0.010). In the comparison between the EH group (MES 0) and non-EH group (MES 1-3), patients without EH had significantly higher serum activin A levels (Mann-Whitney U test, P = 0.047). A cutoff value of 133.6 pg/mL indicated non-EH with a sensitivity and specificity of 0.682 and 1.000, respectively. The area under the curve (AUC) of serum activin A for detecting non-EH was 0.791 (95% confidence interval (CI), 0.618 - 0.964), while that of CRP was 0.723 (95% CI, 0.504 - 0.941). Conclusions The serum activin A level is a potential novel biomarker of endoscopic activity in UC.
Collapse
Affiliation(s)
- Ryohei Ogihara
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Hiroki Kurumi
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Tsutomu Kanda
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kazuo Yashima
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Naoyuki Yamaguchi
- Department of Endoscopy, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
19
|
Hu C, Huang C, Hsu M, Chien H, Wu P, Chen Y, Jeng Y, Tang S, Chung M, Shen C, Chang M, Chang Y, Tien Y, Lee W. Oncogenic KRAS, Mucin 4, and Activin A-Mediated Fibroblast Activation Cooperate for PanIN Initiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301240. [PMID: 37964407 PMCID: PMC10754145 DOI: 10.1002/advs.202301240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/22/2023] [Indexed: 11/16/2023]
Abstract
Over 90% of patients with pancreatic ductal adenocarcinoma (PDAC) have oncogenic KRAS mutations. Nevertheless, mutated KRAS alone is insufficient to initiate pancreatic intraepithelial neoplasia (PanIN), the precursor of PDAC. The identities of the other factors/events required to drive PanIN formation remain elusive. Here, optic-clear 3D histology is used to analyze entire pancreases of 2-week-old Pdx1-Cre; LSL-KrasG12D/+ (KC) mice to detect the earliest emergence of PanIN and observed that the occurrence is independent of physical location. Instead, it is found that the earliest PanINs overexpress Muc4 and associate with αSMA+ fibroblasts in both transgenic mice and human specimens. Mechanistically, KrasG12D/+ pancreatic cells upregulate Muc4 through genetic alterations to increase proliferation and fibroblast recruitments via Activin A secretion and consequently enhance cell transformation for PanIN formation. Inhibition of Activin A signaling using Follistatin (FST) diminishes early PanIN-associated fibroblast recruitment, effectively curtailing PanIN initiation and growth in KC mice. These findings emphasize the vital role of interactions between oncogenic KrasG12D/+ -driven genetic alterations and induced microenvironmental changes in PanIN initiation, suggesting potential avenues for early PDAC diagnostic and management approaches.
Collapse
Affiliation(s)
- Chun‐Mei Hu
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Chien‐Chang Huang
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
- Biomedical Translation Research CenterAcademia SinicaTaipei11529Taiwan
| | - Min‐Fen Hsu
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Hung‐Jen Chien
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Pei‐Jung Wu
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Yi‐Ing Chen
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Yung‐Ming Jeng
- Department of PathologyNational Taiwan University HospitalTaipei10041Taiwan
- Graduate Institute of Pathology, College of MedicineNational Taiwan UniversityTaipei10041Taiwan
| | - Shiue‐Cheng Tang
- Department of Medical ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Mei‐Hsin Chung
- Department of PathologyNational Taiwan University Hospital−Hsinchu BranchHsinchu30331Taiwan
| | - Chia‐Ning Shen
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
- Biomedical Translation Research CenterAcademia SinicaTaipei11529Taiwan
| | - Ming‐Chu Chang
- Department of Internal MedicineNational Taiwan University HospitalTaipei10041Taiwan
| | - Yu‐Ting Chang
- Department of Internal MedicineNational Taiwan University HospitalTaipei10041Taiwan
| | - Yu‐Wen Tien
- Department of SurgeryNational Taiwan University HospitalTaipei10041Taiwan
| | - Wen‐Hwa Lee
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
- Drug Development CenterChina Medical UniversityTaichung40402Taiwan
- Department of Biological ChemistryUniversity of CaliforniaIrvineCA92697USA
| |
Collapse
|
20
|
Nappi F, Alzamil A, Avtaar Singh SS, Spadaccio C, Bonnet N. Current Knowledge on the Interaction of Human Cytomegalovirus Infection, Encoded miRNAs, and Acute Aortic Syndrome. Viruses 2023; 15:2027. [PMID: 37896804 PMCID: PMC10611417 DOI: 10.3390/v15102027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Aortic dissection is a clinicopathological entity caused by rupture of the intima, leading to a high mortality if not treated. Over time, diagnostic and investigative methods, antihypertensive therapy, and early referrals have resulted in improved outcomes according to registry data. Some data have also emerged from recent studies suggesting a link between Human Cytomegalovirus (HCMV) infection and aortic dissection. Furthermore, the use of microRNAs has also become increasingly widespread in the literature. These have been noted to play a role in aortic dissections with elevated levels noted in studies as early as 2017. This review aims to provide a broad and holistic overview of the role of miRNAs, while studying the role of HCMV infection in the context of aortic dissections. The roles of long non-coding RNAs, circular RNAs, and microRNAs are explored to identify changes in expression during aortic dissections. The use of such biomarkers may one day be translated into clinical practice to allow early detection and prognostication of outcomes and drive preventative and therapeutic options in the future.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (N.B.)
| | - Almothana Alzamil
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (N.B.)
| | | | - Cristiano Spadaccio
- Department of Cardiothoracic Surgery, Mayo Clinic, Rochester, Rochester, MN 55905, USA;
| | - Nicolas Bonnet
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (N.B.)
| |
Collapse
|
21
|
Wang J, Zhao X, Wan YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology. Cell Mol Immunol 2023; 20:1002-1022. [PMID: 37217798 PMCID: PMC10468540 DOI: 10.1038/s41423-023-01036-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Balanced immunity is pivotal for health and homeostasis. CD4+ helper T (Th) cells are central to the balance between immune tolerance and immune rejection. Th cells adopt distinct functions to maintain tolerance and clear pathogens. Dysregulation of Th cell function often leads to maladies, including autoimmunity, inflammatory disease, cancer, and infection. Regulatory T (Treg) and Th17 cells are critical Th cell types involved in immune tolerance, homeostasis, pathogenicity, and pathogen clearance. It is therefore critical to understand how Treg and Th17 cells are regulated in health and disease. Cytokines are instrumental in directing Treg and Th17 cell function. The evolutionarily conserved TGF-β (transforming growth factor-β) cytokine superfamily is of particular interest because it is central to the biology of both Treg cells that are predominantly immunosuppressive and Th17 cells that can be proinflammatory, pathogenic, and immune regulatory. How TGF-β superfamily members and their intricate signaling pathways regulate Treg and Th17 cell function is a question that has been intensely investigated for two decades. Here, we introduce the fundamental biology of TGF-β superfamily signaling, Treg cells, and Th17 cells and discuss in detail how the TGF-β superfamily contributes to Treg and Th17 cell biology through complex yet ordered and cooperative signaling networks.
Collapse
Affiliation(s)
- Junying Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xingqi Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
22
|
Manohar-Sindhu S, Merfeld-Clauss S, Goddard Y, March KL, Traktuev DO. Diminished vasculogenesis under inflammatory conditions is mediated by Activin A. Angiogenesis 2023; 26:423-436. [PMID: 36977946 DOI: 10.1007/s10456-023-09873-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023]
Abstract
Severe inflammatory stress often leads to vessel rarefaction and fibrosis, resulting in limited tissue recovery. However, signaling pathways mediating these processes are not completely understood. Patients with ischemic and inflammatory conditions have increased systemic Activin A level, which frequently correlates with the severity of pathology. Yet, Activin A's contribution to disease progression, specifically to vascular homeostasis and remodeling, is not well defined. This study investigated vasculogenesis in an inflammatory environment with an emphasis on Activin A's role. Exposure of endothelial cells (EC) and perivascular cells (adipose stromal cells, ASC) to inflammatory stimuli (represented by blood mononuclear cells from healthy donors activated with lipopolysaccharide, aPBMC) dramatically decreased EC tubulogenesis or caused vessel rarefaction compared to control co-cultures, concurrent with increased Activin A secretion. Both EC and ASC upregulated Inhibin Ba mRNA and Activin A secretion in response to aPBMC or their secretome. We identified TNFα (in EC) and IL-1β (in EC and ASC) as the exclusive inflammatory factors, present in aPBMC secretome, responsible for induction of Activin A. Similar to ASC, brain and placental pericytes upregulated Activin A in response to aPBMC and IL-1β, but not TNFα. Both these cytokines individually diminished EC tubulogenesis. Blocking Activin A with neutralizing IgG mitigated detrimental effects of aPBMC or TNFα/IL-1β on tubulogenesis in vitro and vessel formation in vivo. This study delineates the signaling pathway through which inflammatory cells have a detrimental effect on vessel formation and homeostasis, and highlights the central role of Activin A in this process. Transitory interference with Activin A during early phases of inflammatory or ischemic insult, with neutralizing antibodies or scavengers, may benefit vasculature preservation and overall tissue recovery.
Collapse
Affiliation(s)
- Sahana Manohar-Sindhu
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, UF College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100277, Gainesville, FL, 32610, USA
| | - Stephanie Merfeld-Clauss
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, UF College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100277, Gainesville, FL, 32610, USA
| | - Yana Goddard
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, UF College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100277, Gainesville, FL, 32610, USA
| | - Keith L March
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, UF College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100277, Gainesville, FL, 32610, USA
| | - Dmitry O Traktuev
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, UF College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100277, Gainesville, FL, 32610, USA.
| |
Collapse
|
23
|
Wiley MB, Mehrotra K, Bauer J, Yazici C, Bialkowska AB, Jung B. Acute Pancreatitis: Current Clinical Approaches, Molecular Pathophysiology, and Potential Therapeutics. Pancreas 2023; 52:e335-e343. [PMID: 38127317 PMCID: PMC11913250 DOI: 10.1097/mpa.0000000000002259] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/28/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Severe acute pancreatitis (SAP), pancreatic inflammation leading to multiorgan failure, is associated with high morbidity and mortality. There is a critical need to identify novel therapeutic strategies to improve clinical outcomes for SAP patients. MATERIALS AND METHODS A comprehensive literature review was performed to identify current clinical strategies, known molecular pathophysiology, and potential therapeutic targets for SAP. RESULTS Current clinical approaches focus on determining which patients will likely develop SAP. However, therapeutic options are limited to supportive care and fluid resuscitation. The application of a novel 5-cytokine panel accurately predicting disease outcomes in SAP suggests that molecular approaches will improve impact of future clinical trials in AP. CONCLUSIONS Inflammatory outcomes in acute pancreatitis are driven by several unique molecular signals, which compound to promote both local and systemic inflammation. The identification of master cytokine regulators is critical to developing therapeutics, which reduce inflammation through several mechanisms.
Collapse
Affiliation(s)
- Mark B Wiley
- From the Department of Medicine, University of Washington, Seattle, WA
| | - Kunaal Mehrotra
- From the Department of Medicine, University of Washington, Seattle, WA
| | - Jessica Bauer
- From the Department of Medicine, University of Washington, Seattle, WA
| | - Cemal Yazici
- Department of Medicine, University of Illinois Chicago, Chicago, IL
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY
| | - Barbara Jung
- From the Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
24
|
Qin G, Zhao Y, Gan Y, Yu X, Zhao Y, Peng H, Fang S. Alterations in gene expressions of Caco-2 cell responses to LPS and ploy(I:C) stimulation. PeerJ 2023; 11:e15459. [PMID: 37304876 PMCID: PMC10257391 DOI: 10.7717/peerj.15459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Abstract
The intestinal epithelium barrier serves as a highly dynamic immunologic frontier in the defense against invading pathogenic bacteria and viruses. Hence, understanding of the complicated underlying relationship between enteric pathogens and the intestinal epithelium barrier is vital for developing strategies to improve the intestinal health of farm animals. To this end, Caco-2 cells were stimulated by 1 µg/ml lipopolysaccharide (LPS) for 24 h and 5 µg/ml polyinosinic-polycytidylic acid (ploy(I:C)) for 4 h to imitate bacterial and viral infection processes, respectively. The specific alterations in gene expression of Caco-2 cells after stimulation were characterized by transcriptome sequencing. Seventy differentially expressed genes (DEGs) were identified under LPS exposure, and 17 DEGs were observed under ploy(I:C) exposure. We found that most DEGs were specific, and only one common DEG SPAG7 was observed. Gene Ontology (GO) annotation analysis indicated that all DEGs identified in the different treatments were mainly derived from GO terms related to the maintenance of cellular homeostasis. Moreover, specific DEGs such as SLC39A10, MT2A, and MT1E regulated by LPS treatment, while IFIT2 and RUNX2 mediated by ploy(I:C) treatment, which are derived from immune function modulation related GO terms, were confirmed by both transcriptome sequencing and qRT-PCR. In addition, both transcriptome sequencing and qRT-PCR results verified that LPS specifically down-regulated the DEGs INHBE and ARF6, which are involved in inflammation responses related to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway including the TGF-beta signaling pathways and the Ras signaling pathway. Ploy(I:C) uniquely suppressed the DEGs GABARAP and LAMTOR3, which participated in viral replication-associated pathways including autophagy and mTOR signaling pathway.
Collapse
Affiliation(s)
- Ge Qin
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanjie Zhao
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yating Gan
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomei Yu
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yifan Zhao
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Peng
- Hainan University, Haikou, China
| | - Shaoming Fang
- Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
25
|
Ye Z, Wang S, Shan C, Zhu Q, Xue Y, Zhang K. The serum levels of activin A and bone morphogenetic protein-4 and -6 in patients with fibrodysplasia ossificans progressiva. Orphanet J Rare Dis 2023; 18:111. [PMID: 37165433 PMCID: PMC10170814 DOI: 10.1186/s13023-023-02708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/30/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Fibrodysplasia ossificans progressiva (FOP) is an ultrarare and disabling genetic disorder of connective tissue characterized by congenital malformation of the great toes, and progressive heterotopic ossification (HO) in soft connective tissues. A gain-of-function mutation of activin A receptor type I (ACVR1) enables ACVR1 to recognize activin A as an agonist with bone morphogenetic protein (BMP) signalling that leads to HO. Previous studies confirmed that activin A stimulates BMP signalling in vitro and drives HO in mouse models of FOP. However, the roles for BMP4 and BMP6 in FOP are supported only by correlative evidence in vitro. Thus, it remains unclear whether the circulating levels of activin A, BMP4 and BMP6 correlate with flare-ups in FOP patients. Hence, we investigated the protein levels of activin A, BMP4 and BMP6 in the serum of FOP patients. RESULTS We recruited 16 untreated FOP patients and 16 age- and sex- matched healthy control subjects in this study. The 16 FOP patients were retrospectively divided into the flare-up group (n = 8) and remission group (n = 8) depending on whether they had flare-ups or worsening of any joint movement in the last 6 months. The serum activin A, BMP4 and BMP6 levels were detected by enzyme-linked immunosorbent assay. The serum activin A, BMP4 and BMP6 levels were slightly higher in FOP patients (median: 434.05 pg/mL, 459.48 pg/mL and 67.84 pg/mL) versus healthy control subjects (median: 364.14 pg/mL, 450.39 pg/mL and 55.36 pg/mL). However, there were no statistically significant differences between the two groups (p > 0.05 for all items), nor were there significant differences between the flare-up and remission groups of FOP (p > 0.05 for all items). Univariate and multivariate logistic regression analyses showed that age, sex, and serum activin A, BMP4 and BMP6 levels were not related to flare-up in FOP patients. CONCLUSIONS There were no significant differences in the serum levels of activin A, BMP4 and BMP6 in FOP patients compared with healthy control subjects. Serum activin A, BMP4 and BMP6 proteins might not be the stimulators for FOP flare-up, and may not be biomarkers for FOP diagnosis.
Collapse
Affiliation(s)
- Zhengqin Ye
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, No. 389, Xincun Road, Shanghai, 200065, China
| | - Siyi Wang
- Medical School of Nantong University, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, Jiangsu, China
| | - Chang Shan
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, No. 389, Xincun Road, Shanghai, 200065, China
| | - Qi Zhu
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, No. 389, Xincun Road, Shanghai, 200065, China
| | - Ying Xue
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, No. 389, Xincun Road, Shanghai, 200065, China
| | - Keqin Zhang
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, No. 389, Xincun Road, Shanghai, 200065, China.
- Institute of Osteoporosis and Metabolic Bone Diseases, School of Medicine, Tongji University, No. 389, Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
26
|
Richter MM, Svane MS, Kristiansen VB, Holst JJ, Madsbad S, Bojsen-Møller KN. Postprandial secretion of follistatin after gastric bypass surgery and sleeve gastrectomy. Peptides 2023; 163:170978. [PMID: 36842630 DOI: 10.1016/j.peptides.2023.170978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023]
Abstract
Follistatin is secreted from the liver and may regulate muscle growth and insulin sensitivity. Protein intake stimulates follistatin secretion, which may be mediated by increased glucagon in the context of low insulin concentrations. We investigated circulating follistatin after mixed-meals in two cohorts of patients who were part of previously published studies and had undergone bariatric surgery with either simultaneous assessment of amino acid absorption or administration of the GLP-1 receptor antagonist exendin-(9-39), which increased glucagon concentrations and impaired insulin secretion. Study 1 comprised obese matched subjects with previous Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) surgery and unoperated controls who underwent 6-hour mixed-meal tests with intravenous and oral tracers including intrinsically labelled caseinate in the meal. Study 2 comprised obese subjects with previous RYGB who underwent two 5-hour mixed-meal tests with concomitant exendin-(9-39) or saline infusion. In study 1, the secretion of follistatin as well as the amino acid absorption was accelerated after RYGB compared with SG and controls, but the glucagon-to-C-peptide ratios did not differ between the groups. In study 2, exendin-(9-39) administration increased postprandial glucagon concentrations and lowered insulin secretion, whereas the concentration of follistatin was unchanged. In conclusion, postprandial follistatin secretion is accelerated in patients after RYGB which might be explained by an accelerated protein absorption rate rather than the glucagon-to-insulin ratio.
Collapse
Affiliation(s)
| | - Maria S Svane
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark; Department of Gastrointestinal Surgery, Hvidovre Hospital, Hvidovre, Denmark
| | - Viggo B Kristiansen
- Department of Gastrointestinal Surgery, Hvidovre Hospital, Hvidovre, Denmark
| | - Jens J Holst
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
| | | |
Collapse
|
27
|
Hatamzade Esfahani N, Day AS. The Role of TGF-β, Activin and Follistatin in Inflammatory Bowel Disease. GASTROINTESTINAL DISORDERS 2023; 5:167-186. [DOI: 10.3390/gidisord5020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated inflammatory condition predominantly affecting the gastrointestinal (GI) tract. An increasing prevalence of IBD has been observed globally. The pathogenesis of IBD includes a complex interplay between the intestinal microbiome, diet, genetic factors and immune responses. The consequent imbalance of inflammatory mediators ultimately leads to intestinal mucosal damage and defective repair. Growth factors, given their specific roles in maintaining the homeostasis and integrity of the intestinal epithelium, are of particular interest in the setting of IBD. Furthermore, direct targeting of growth factor signalling pathways involved in the regeneration of the damaged epithelium and the regulation of inflammation could be considered as therapeutic options for individuals with IBD. Several members of the transforming growth factor (TGF)-β superfamily, particularly TGF-β, activin and follistatin, are key candidates as they exhibit various roles in inflammatory processes and contribute to maintenance and homeostasis in the GI tract. This article aimed firstly to review the events involved in the pathogenesis of IBD with particular emphasis on TGF-β, activin and follistatin and secondly to outline the potential role of therapeutic manipulation of these pathways.
Collapse
Affiliation(s)
| | - Andrew S. Day
- Paediatric Department, University of Otago Christchurch, Christchurch 8140, New Zealand
| |
Collapse
|
28
|
McMinn PH, Ahmed A, Huttenlocher A, Beebe DJ, Kerr SC. The lymphatic endothelium-derived follistatin: activin A axis regulates neutrophil motility in response to Pseudomonas aeruginosa. Integr Biol (Camb) 2023; 15:zyad003. [PMID: 36781971 PMCID: PMC10101905 DOI: 10.1093/intbio/zyad003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/02/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
The lymphatic system plays an active role during infection, however the role of lymphatic-neutrophil interactions in host-defense responses is not well understood. During infection with pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus and Yersinia pestis, neutrophils traffic from sites of infection through the lymphatic vasculature, to draining lymph nodes to interact with resident lymphocytes. This process is poorly understood, in part, due to the lack of in vitro models of the lymphatic system. Here we use a 3D microscale lymphatic vessel model to examine neutrophil-lymphatic cell interactions during host defense responses to pathogens. In previous work, we have shown that follistatin is secreted at high concentrations by lymphatic endothelial cells during inflammation. Follistatin inhibits activin A, a member of the TGF-β superfamily, and, together, these molecules form a signaling pathway that plays a role in regulating both innate and adaptive immune responses. Although follistatin and activin A are constitutively produced in the pituitary, gonads and skin, their major source in the serum and their effects on neutrophils are poorly understood. Here we report a microfluidic model that includes both blood and lymphatic endothelial vessels, and neutrophils to investigate neutrophil-lymphatic trafficking during infection with P. aeruginosa. We found that lymphatic endothelial cells produce secreted factors that increase neutrophil migration toward P. aeruginosa, and are a significant source of both follistatin and activin A during Pseudomonas infection. We determined that follistatin produced by lymphatic endothelial cells inhibits activin A, resulting in increased neutrophil migration. These data suggest that the follistatin:activin A ratio influences neutrophil trafficking during infection with higher ratios increasing neutrophil migration.
Collapse
Affiliation(s)
- Patrick H McMinn
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Adeel Ahmed
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Beebe
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sheena C Kerr
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
29
|
Schoenmaker T, Zwaak J, Loos BG, Volckmann R, Koster J, Eekhoff EMW, de Vries TJ. Transcriptomic Differences Underlying the Activin-A Induced Large Osteoclast Formation in Both Healthy Control and Fibrodysplasia Ossificans Progressiva Osteoclasts. Int J Mol Sci 2023; 24:ijms24076822. [PMID: 37047804 PMCID: PMC10095588 DOI: 10.3390/ijms24076822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
Fibrodysplasia Ossificans Progressiva (FOP) is a very rare genetic disease characterized by progressive heterotopic ossification (HO) of soft tissues, leading to immobility and premature death. FOP is caused by a mutation in the Activin receptor Type 1 (ACVR1) gene, resulting in altered responsiveness to Activin-A. We recently revealed that Activin-A induces fewer, but larger and more active, osteoclasts regardless of the presence of the mutated ACVR1 receptor. The underlying mechanism of Activin-A-induced changes in osteoclastogenesis at the gene expression level remains unknown. Transcriptomic changes induced by Activin-A during osteoclast formation from healthy controls and patient-derived CD14-positive monocytes were studied using RNA sequencing. CD14-positive monocytes from six FOP patients and six age- and sex-matched healthy controls were differentiated into osteoclasts in the absence or presence of Activin-A. RNA samples were isolated after 14 days of culturing and analyzed by RNA sequencing. Non-supervised principal component analysis (PCA) showed that samples from the same culture conditions (e.g., without or with Activin-A) tended to cluster, indicating that the variability induced by Activin-A treatment was larger than the variability between the control and FOP samples. RNA sequencing analysis revealed 1480 differentially expressed genes induced by Activin-A in healthy control and FOP osteoclasts with p(adj) < 0.01 and a Log2 fold change of ≥±2. Pathway and gene ontology enrichment analysis revealed several significantly enriched pathways for genes upregulated by Activin-A that could be linked to the differentiation or function of osteoclasts, cell fusion or inflammation. Our data showed that Activin-A has a substantial effect on gene expression during osteoclast formation and that this effect occurred regardless of the presence of the mutated ACVR1 receptor causing FOP.
Collapse
Affiliation(s)
- Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Joy Zwaak
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Bruno G. Loos
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Richard Volckmann
- Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jan Koster
- Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - E. Marelise W. Eekhoff
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Rare Bone Disease Center Amsterdam, Bone Center, 1081 HV Amsterdam, The Netherlands
| | - Teun J. de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
30
|
In vivo induction of activin A-producing alveolar macrophages supports the progression of lung cell carcinoma. Nat Commun 2023; 14:143. [PMID: 36650150 PMCID: PMC9845242 DOI: 10.1038/s41467-022-35701-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023] Open
Abstract
Alveolar macrophages (AMs) are crucial for maintaining normal lung function. They are abundant in lung cancer tissues, but their pathophysiological significance remains unknown. Here we show, using an orthotopic murine lung cancer model and human carcinoma samples, that AMs support cancer cell proliferation and thus contribute to unfavourable outcome. Inhibin beta A (INHBA) expression is upregulated in AMs under tumor-bearing conditions, leading to the secretion of activin A, a homodimer of INHBA. Accordingly, follistatin, an antagonist of activin A is able to inhibit lung cancer cell proliferation. Single-cell RNA sequence analysis identifies a characteristic subset of AMs specifically induced in the tumor environment that are abundant in INHBA, and distinct from INHBA-expressing AMs in normal lungs. Moreover, postnatal deletion of INHBA/activin A could limit tumor growth in experimental models. Collectively, our findings demonstrate the critical pathological role of activin A-producing AMs in tumorigenesis, and provides means to clearly distinguish them from their healthy counterparts.
Collapse
|
31
|
Li X, Zhang H, Ma X, Wang Y, Han X, Yang Y, Yu H, Bao Y. FSTL3 is highly expressed in adipose tissue of individuals with overweight or obesity and is associated with inflammation. Obesity (Silver Spring) 2023; 31:171-183. [PMID: 36502285 PMCID: PMC10107713 DOI: 10.1002/oby.23598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/07/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aimed to investigate the expression of follistatin-like 3 (FSTL3) in adipose tissue in individuals with overweight or obesity and to explore the role of FSTL3 in human adipocytes, as well as the relationship between serum FSTL3 levels and fat distribution and inflammation. METHODS This study enrolled 236 individuals (171 with overweight or obesity; aged 18-67 years). Bulk transcriptome sequencing was performed on subcutaneous and visceral adipose tissue. The function of FSTL3 was studied in human adipocytes. Serum FSTL3 levels were measured using enzyme-linked immunosorbent assay. RESULTS Adipose FTSL3 expression was higher in individuals with overweight or obesity than in individuals with normal weight. FSTL3 was mainly expressed in mature adipocytes and stimulated by tumor necrosis factor alpha (TNFα). FSTL3 suppressed inflammatory responses in human adipocytes, whereas FSTL3 knockdown promoted inflammatory responses. Serum FSTL3 levels were correlated with adipose FTSL3 expression and obesity-related indicators (all p < 0.05). Multiple linear regression analysis showed that serum FSTL3 levels were independently associated with the visceral fat area and serum TNFα levels (both p < 0.05). CONCLUSIONS FSTL3 was highly expressed in adipose tissue in individuals with overweight or obesity and could suppress adipocyte inflammation. Serum FSTL3 levels might be considered as a biomarker of visceral obesity and inflammation.
Collapse
Affiliation(s)
- Xiaoya Li
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongwei Zhang
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Yufei Wang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaodong Han
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Haoyong Yu
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
32
|
Xiu G, Li X, Chen J, Li J, Chen K, Liu P, Ling B, Yang Y. Role of Serum Inflammatory Cytokines in Sepsis Rats Following BMSCs Transplantation: Protein Microarray Analysis. Cell Transplant 2023; 32:9636897231198175. [PMID: 37706441 PMCID: PMC10503277 DOI: 10.1177/09636897231198175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023] Open
Abstract
Bone marrow stromal cells (BMSCs) have emerged as a potential therapy for sepsis, yet the underlying mechanisms remain unclear. In this study, we investigated the effects of BMSCs on serum inflammatory cytokines in a rat model of lipopolysaccharide (LPS)-induced sepsis. Sepsis was induced by intravenous injection of LPS, followed by transplantation of BMSCs. We monitored survival rates for 72 h and evaluated organ functions, histopathological changes, and cytokines expression. Sepsis rats showed decreased levels of white blood cells, platelets, lymphocyte ratio, and oxygen partial pressure, along with increased levels of neutrophil ratio, carbon dioxide partial pressure, lactic acid, alanine aminotransferase, and aspartate aminotransferase. Histologically, lung, intestine, and liver tissues exhibited congestion, edema, and infiltration of inflammatory cells. However, after BMSCs treatment, there was improvement in organ functions, histopathological injuries, and survival rates. Protein microarray analysis revealed significant changes in the expression of 12 out of 34 inflammatory cytokines. These findings were confirmed by enzyme-linked immunosorbent assay. Pro-inflammatory factors, such as interleukin-1β (IL-1β), IL-1α, tumor necrosis factor-α (TNF-α), tissue inhibitor of metal protease 1 (TIMP-1), matrix metalloproteinase 8 (MMP-8), Leptin, and L-selectin were upregulated in sepsis, whereas anti-inflammatory and growth factors, including IL-4, β-nerve growth factor (β-NGF), ciliary neurotrophic factor (CNTF), interferon γ (IFN-γ), and Activin A were downregulated. BMSCs transplantation led to a decrease in pro-inflammatory cytokines and an increase in anti-inflammatory and growth factors. We summarized relevant molecular signaling pathways that resulted from cytokines in BMSCs for treating sepsis. Our results illustrated that BMSCs could promote tissue repair and improve organ functions and survival rates in sepsis through modulating cytokine networks.
Collapse
Affiliation(s)
- Guanghui Xiu
- Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), School of Medicine, Yunnan University, Kunming, China
| | - Xiuling Li
- Department of Obstetrics, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Juan Chen
- Department of Infectious Diseases, The First People’s Hospital of Fuzhou, Fuzhou, China
| | - Jintao Li
- Institute of Neuroscience, Kunming Medicine University, Kunming, China
| | - Kun Chen
- The Third Clinical School of Medicine, Jinzhou Medical University, Jinzhou, China
| | - Ping Liu
- Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), School of Medicine, Yunnan University, Kunming, China
| | - Bin Ling
- Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), School of Medicine, Yunnan University, Kunming, China
| | - Ying Yang
- Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), School of Medicine, Yunnan University, Kunming, China
| |
Collapse
|
33
|
Ham SY, Jun JH, Kim HB, Shim JK, Lee G, Kwak YL. Regulators impeding erythropoiesis following iron supplementation in a clinically relevant rat model of iron deficiency anemia with inflammation. Life Sci 2022; 310:121124. [DOI: 10.1016/j.lfs.2022.121124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
34
|
Staudacher JJ, Arnold A, Kühl AA, Pötzsch M, Daum S, Winterfeld M, Berg E, Hummel M, Rau B, Stein U, Treese C. Prognostic impact of activin subunit inhibin beta A in gastric and esophageal adenocarcinomas. BMC Cancer 2022; 22:953. [PMID: 36064338 PMCID: PMC9446826 DOI: 10.1186/s12885-022-10016-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 08/19/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Adenocarcinomas of the esophagus (AEG) and stomach (AS) are among the most common cancers worldwide. Novel markers for risk stratification and guiding treatment are strongly needed. Activin is a multi-functional cytokine with context specific pro- and anti-tumorigenic effects. We aimed to investigate the prognostic role of activin tumor protein expression in AEG/ASs. METHODS Tissue from a retrospective cohort of 277 patients with AEG/AS treated primarily by surgery at the Charité - Universitätsmedizin Berlin was collected and analyzed by immunohistochemistry using a specific antibody to the activin homodimer inhibin beta A. Additionally, we evaluated T-cell infiltration and PD1 expression as well as expression of PD-L1 by immunohistochemistry as possible confounding factors. Clinico-pathologic data were collected and correlated with activin protein expression. RESULTS Out of 277 tumor samples, 72 (26.0%) exhibited high activin subunit inhibin beta A protein expression. Higher expression was correlated with lower Union for International Cancer Control (UICC) stage and longer overall survival. Interestingly, activin subunit expression correlated with CD4+ T-cell infiltration, and the correlation with higher overall survival was exclusively seen in tumors with high CD4+ T-cell infiltration, pointing towards a role of activin in the tumor immune response in AEG/ASs. CONCLUSION In our cohort of AEG/AS, higher activin subunit levels were correlated with longer overall survival, an effect exclusively seen in tumors with high CD4+ cell infiltration. Further mechanistic research is warranted discerning the exact effect of this context specific cytokine.
Collapse
Affiliation(s)
- J J Staudacher
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.
- Berlin Institute of Health at Charité Universitätsmedizin Berlin, Charitéplatz1, 10117, Berlin, Germany.
| | - Alexander Arnold
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - A A Kühl
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, iPATH.Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - M Pötzsch
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - S Daum
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Berlin Institute of Health at Charité Universitätsmedizin Berlin, Charitéplatz1, 10117, Berlin, Germany
| | - M Winterfeld
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - E Berg
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - M Hummel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - B Rau
- Department of Surgery, Campus Virchow-Klinikum and Campus Mitte, Charité - Universitätsmedizin, Berlin, Germany
| | - U Stein
- Experimental and Clinical Research Center, Charité - Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - C Treese
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Berlin Institute of Health at Charité Universitätsmedizin Berlin, Charitéplatz1, 10117, Berlin, Germany
| |
Collapse
|
35
|
Al-Hourani K, Ramamurthy N, Marchi E, Eichinger R, Li L, Fabris P, Drakesmith AH, Klenerman P. Innate triggering and antiviral effector functions of Activin A. Wellcome Open Res 2022. [DOI: 10.12688/wellcomeopenres.17237.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: First-line defence against viral infection is contingent upon rapid detection of conserved viral structural and genomic motifs by pattern recognition receptors, followed by activation of the type I IFN response and establishment of an antiviral state. Novel antiviral functions of bone morphogenetic protein and related activin cytokines, acting in conjunction with, and independently of, type I IFN, have recently been described. How these antiviral effects are mediated and triggered by viral infection has not been defined. Methods: Microarray and RNAseq data from hepatoma-derived cell lines stimulated with Activin A in vitro were interrogated both by pathway analysis and for evidence of IFN-stimulated gene induction. Liver tissue obtained from patients with chronic HCV were examined by real-time quantitative polymerase chain reaction (RT-qPCR) for evidence of Activin A induction. Activin expression by peripheral blood mononuclear cells exposed to nucleic acid analogues was quantified by RT-qCR, whereas induction dynamics in acute infection was investigated in in vitro Sendai virus infection and a murine influenza A. Results: Transcriptomic analyses delineated strikingly congruent patterns of gene regulation in hepatocytes stimulated with recombinant Activin A and IFNα in vitro. Activin A mRNA, encoded by INHBA, is induced upon activation of RIG-I, MDA5 and TLR7/8 viral nucleic acid sensors in vitro, across multiple cell lines and in human peripheral blood mononuclear cells. In vivo, imurine influenza A also upregulated Inhba mRNA in the lung; this local upregulation of Inhba is retained in MAVS knockout mice, indicating roles for non-RIG-I-like receptors in its induction. Activin induction and signalling were also detectable in patients with chronic viral hepatitis. Conclusions: These data suggest Activin A is triggered in parallel with type I IFN responses and can trigger related antiviral effector functions, with implications for the development of targeted antiviral therapies and revealing novel facets of Activin biology.
Collapse
|
36
|
Hwang CD, Pagani CA, Nunez JH, Cherief M, Qin Q, Gomez-Salazar M, Kadaikal B, Kang H, Chowdary AR, Patel N, James AW, Levi B. Contemporary perspectives on heterotopic ossification. JCI Insight 2022; 7:158996. [PMID: 35866484 PMCID: PMC9431693 DOI: 10.1172/jci.insight.158996] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO) is the formation of ectopic bone that is primarily genetically driven (fibrodysplasia ossificans progressiva [FOP]) or acquired in the setting of trauma (tHO). HO has undergone intense investigation, especially over the last 50 years, as awareness has increased around improving clinical technologies and incidence, such as with ongoing wartime conflicts. Current treatments for tHO and FOP remain prophylactic and include NSAIDs and glucocorticoids, respectively, whereas other proposed therapeutic modalities exhibit prohibitive risk profiles. Contemporary studies have elucidated mechanisms behind tHO and FOP and have described new distinct niches independent of inflammation that regulate ectopic bone formation. These investigations have propagated a paradigm shift in the approach to treatment and management of a historically difficult surgical problem, with ongoing clinical trials and promising new targets.
Collapse
Affiliation(s)
- Charles D Hwang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Harvard University, Boston, Massachusetts, USA
| | - Chase A Pagani
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Johanna H Nunez
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Balram Kadaikal
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Heeseog Kang
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ashish R Chowdary
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nicole Patel
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Benjamin Levi
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
37
|
Xiao X, Zhang H, Ning W, Yang Z, Wang Y, Zhang T. Knockdown of FSTL1 inhibits microglia activation and alleviates depressive-like symptoms through modulating TLR4/MyD88/NF-κB pathway in CUMS mice. Exp Neurol 2022; 353:114060. [DOI: 10.1016/j.expneurol.2022.114060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/28/2022]
|
38
|
Fei ZY, Wang J, Liang J, Zhou X, Guo M. Analysis of bacterial spectrum, activin A, and CD64 in chronic obstructive pulmonary disease patients complicated with pulmonary infections. World J Clin Cases 2022; 10:2382-2392. [PMID: 35434072 PMCID: PMC8968607 DOI: 10.12998/wjcc.v10.i8.2382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/27/2021] [Accepted: 01/29/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pulmonary infections often lead to poor prognoses in patients with chronic obstructive pulmonary disease (COPD). Activin A and CD64 play crucial pathological roles in the development of COPD.
AIM To explore the bacterial spectrum via analysis of activing A levels, CD64 index, and related mechanisms in COPD patients complicated with pulmonary infection.
METHODS Between March 2015 and January 2018, a total of 85 patients with COPD, who also suffered from pulmonary infections, were enrolled in this study as the pulmonary infection group. In addition, a total of 96 COPD patients, without pulmonary infection, were selected as the control group. Sputum samples of patients in the pulmonary infection group were cultivated for bacterial identification prior to administration of antibiotics. The neutrophil CD64 index was measured using flow cytometry, serum activin A levels were detected via an enzyme-linked immunosorbent assay, and activin A, Smad3, TLR4, MyD88, and NFκB protein expression was analyzed by Western blotting.
RESULTS Gram-negative bacteria were identified in 57.65% of the sputum samples in the pulmonary infection group. The most prevalent Gram-negative species were Pseudomonas aeruginosa and Klebsiella pneumoniae. Conversely, Gram-positive bacteria were identified in 41.18% of the sputum samples in the pulmonary infection group. The most common Gram-positive species was Streptococcus pneumoniae. Fungi were identified in 1.17% of the sputum samples in the pulmonary infection group. The CD64 index was significantly higher in the pulmonary infection group (0.91 ± 0.38) than in the control group (0.23 ± 0.14, P < 0.001). The serum activin A levels were significantly higher in the pulmonary infection group (43.50 ± 5.22 ng/mL), compared to the control group (34.82 ± 4.16 ng/mL, P < 0.001). The relative expression levels of activin A, Smad3, TLR4, MyD88, and NFκB were all significantly higher in the pulmonary infection group, compared to the control group (all P < 0.001).
CONCLUSION Pulmonary infections in COPD patients are mainly caused by Streptococcus pneumoniae, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Pulmonary infections can significantly increase neutrophil CD64 index and serum levels of activin A, thereby activating the activin A/Smad3 signaling pathway, which may positively regulate the TLR4/MyD88/NFκB signaling pathway.
Collapse
Affiliation(s)
- Zhao-Yang Fei
- Experimental Research Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jiang Wang
- Experimental Research Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jie Liang
- Experimental Research Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xue Zhou
- Experimental Research Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Min Guo
- Department of Laboratory Medicine, Lianyungang Second People's Hospital, Lianyungang 222006, Jiangsu Province, China
| |
Collapse
|
39
|
Mierke CT. Editorial: Editor’s Pick 2021: Highlights in Cell Adhesion and Migration. Front Cell Dev Biol 2022; 10:852781. [PMID: 35321244 PMCID: PMC8934779 DOI: 10.3389/fcell.2022.852781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
|
40
|
microRNA, a Subtle Indicator of Human Cytomegalovirus against Host Immune Cells. Vaccines (Basel) 2022; 10:vaccines10020144. [PMID: 35214602 PMCID: PMC8874957 DOI: 10.3390/vaccines10020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a double-stranded DNA virus that belongs to the β-herpesvirus family and infects 40–90% of the adult population worldwide. HCMV infection is usually asymptomatic in healthy individuals but causes serious problems in immunocompromised people. We restricted this narrative review (PubMed, January 2022) to demonstrate the interaction and molecular mechanisms between the virus and host immune cells with a focus on HCMV-encoded miRNAs. We found a series of HCMV-encoded miRNAs (e.g., miR-UL112 and miR-UL148D) are explicitly involved in the regulation of viral DNA replication, immune evasion, as well as host cell fate. MiRNA-targeted therapies have been explored for the treatment of atherosclerosis, cardiovascular disease, cancer, diabetes, and hepatitis C virus infection. It is feasible to develop an alternative vaccine to restart peripheral immunity or to inhibit HCMV activity, which may contribute to the antiviral intervention for serious HCMV-related diseases.
Collapse
|
41
|
Zhou G, Liu K, Ji X, Fen Y, Gu Y, Ding H. Diagnosis of parapneumonic pleural effusion with serum and pleural fluid Activin A. Clinics (Sao Paulo) 2022; 77:100133. [PMID: 36375297 PMCID: PMC9661670 DOI: 10.1016/j.clinsp.2022.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The aim is to evaluate the diagnostic value of Activin A levels in serum and pleural fluid on Parapneumonic Pleural Effusion (PPE). METHODS The authors collected serum and pleural fluid from 86 PPE and 37 Non-PPE (NPPE) patients. Including Activin A, levels of biomarkers such as Lactate Dehydrogenase (LDH), Procalcitonin (PCT), and C-Reactive Protein (CRP) were measured. All factors were calculated for association with days after admission. The diagnostic potential of biomarkers on PPE was considered by Receiver Operating Characteristic (ROC) curve analysis. RESULTS Levels of Activin A in serum and pleural fluid of PPE patients were significantly higher than those of the NPPE patients. Moreover, concentrations of Activin A in pleural fluid showed a more obvious relevant days after admission. ROC curve analysis found that Activin A in pleural fluid had AUCs of 0.899 with 93% sensitivity and 84% specificity for PPE diagnosis. CONCLUSION Activin A in pleural fluid correlated with disease severity could act to diagnose PPE.
Collapse
Affiliation(s)
- Guanghui Zhou
- Department of Pulmonary & Critical Care Medicine, The Affiliated Yixing People's Hospital of Jiangsu University, Yixing, China
| | - Kan Liu
- Department of Pulmonary & Critical Care Medicine, The Affiliated Yixing People's Hospital of Jiangsu University, Yixing, China
| | - Xiuhai Ji
- Department of Oncology, Affiliated Taicang Hospital of Traditional Chinese Medicine, Taicang, China
| | - Yan Fen
- Department of Pulmonary & Critical Care Medicine, The Affiliated Yixing People's Hospital of Jiangsu University, Yixing, China
| | - Yinjie Gu
- Department of Oncology, Affiliated Taicang Hospital of Traditional Chinese Medicine, Taicang, China.
| | - Hui Ding
- Department of Pulmonary & Critical Care Medicine, The Affiliated Yixing People's Hospital of Jiangsu University, Yixing, China.
| |
Collapse
|
42
|
Wu C, Borné Y, Gao R, López Rodriguez M, Roell WC, Wilson JM, Regmi A, Luan C, Aly DM, Peter A, Machann J, Staiger H, Fritsche A, Birkenfeld AL, Tao R, Wagner R, Canouil M, Hong MG, Schwenk JM, Ahlqvist E, Kaikkonen MU, Nilsson P, Shore AC, Khan F, Natali A, Melander O, Orho-Melander M, Nilsson J, Häring HU, Renström E, Wollheim CB, Engström G, Weng J, Pearson ER, Franks PW, White MF, Duffin KL, Vaag AA, Laakso M, Stefan N, Groop L, De Marinis Y. Elevated circulating follistatin associates with an increased risk of type 2 diabetes. Nat Commun 2021; 12:6486. [PMID: 34759311 PMCID: PMC8580990 DOI: 10.1038/s41467-021-26536-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/05/2021] [Indexed: 12/23/2022] Open
Abstract
The hepatokine follistatin is elevated in patients with type 2 diabetes (T2D) and promotes hyperglycemia in mice. Here we explore the relationship of plasma follistatin levels with incident T2D and mechanisms involved. Adjusted hazard ratio (HR) per standard deviation (SD) increase in follistatin levels for T2D is 1.24 (CI: 1.04–1.47, p < 0.05) during 19-year follow-up (n = 4060, Sweden); and 1.31 (CI: 1.09–1.58, p < 0.01) during 4-year follow-up (n = 883, Finland). High circulating follistatin associates with adipose tissue insulin resistance and non-alcoholic fatty liver disease (n = 210, Germany). In human adipocytes, follistatin dose-dependently increases free fatty acid release. In genome-wide association study (GWAS), variation in the glucokinase regulatory protein gene (GCKR) associates with plasma follistatin levels (n = 4239, Sweden; n = 885, UK, Italy and Sweden) and GCKR regulates follistatin secretion in hepatocytes in vitro. Our findings suggest that GCKR regulates follistatin secretion and that elevated circulating follistatin associates with an increased risk of T2D by inducing adipose tissue insulin resistance. Follistatin promotes in type 2 diabetes (T2D) pathogenesis in model animals and is elevated in patients with T2D. Here the authors report that plasma follistatin associates with increased risk of incident T2D in two longitudinal cohorts, and show that follistatin regulates insulin-induced suppression lipolysis in cultured human adipocytes.
Collapse
Affiliation(s)
- Chuanyan Wu
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,School of Control Science and Engineering, Shandong University, Jinan, Shandong, China.,School of Intelligent Engineering, Shandong Management University, Jinan, Shandong, China
| | - Yan Borné
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Rui Gao
- School of Control Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Maykel López Rodriguez
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland.,A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - William C Roell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jonathan M Wilson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Ajit Regmi
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Cheng Luan
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | - Andreas Peter
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology; and Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, University of Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany.,German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Jürgen Machann
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany.,German Center for Diabetes Research (DZD), Tübingen, Germany.,Section of Experimental Radiology, Department of Radiology, University of Tübingen, Tübingen, Germany
| | - Harald Staiger
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology; and Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, University of Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany.,German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Andreas Fritsche
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology; and Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, University of Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany.,German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology; and Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, University of Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany.,German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Rongya Tao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Wagner
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology; and Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, University of Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany.,German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Mickaël Canouil
- Inserm U1283 / CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille; University of Lille, Lille University Hospital, Lille, France
| | - Mun-Gwan Hong
- Affinity Proteomics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jochen M Schwenk
- Affinity Proteomics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Emma Ahlqvist
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Minna U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Peter Nilsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Angela C Shore
- NIHR Exeter Clinical Research Facility, Royal Devon and Exeter Hospital and University of Exeter Medical School, Exeter, Devon, UK
| | - Faisel Khan
- Division of Systems Medicine, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | - Jan Nilsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Hans-Ulrich Häring
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology; and Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, University of Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany.,German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Erik Renström
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Claes B Wollheim
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Cell Physiology and Metabolism, University Medical Centre, Geneva, Switzerland
| | - Gunnar Engström
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Jianping Weng
- Department of Endocrinology and Metabolism, Division of Life Sciences of Medicine, University of Science and Technology of China, Hefei, China
| | - Ewan R Pearson
- Division of Population Health & Genomics, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Paul W Franks
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Morris F White
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kevin L Duffin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Norbert Stefan
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology; and Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, University of Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany.,German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Leif Groop
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Yang De Marinis
- Department of Clinical Sciences, Lund University, Malmö, Sweden. .,School of Control Science and Engineering, Shandong University, Jinan, Shandong, China. .,Department of Endocrinology and Metabolism, Division of Life Sciences of Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
43
|
TGF-β Pathway Inhibition Protects the Diaphragm From Sepsis-Induced Wasting and Weakness in Rat. Shock 2021; 53:772-778. [PMID: 32413000 DOI: 10.1097/shk.0000000000001393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sepsis is a frequent complication in patients in intensive care units (ICU). Diaphragm weakness, one of the most common symptoms observed, can lead to weaning problems during mechanical ventilation. Over the last couple of years, members of the transforming growth factor (TGF) β family, such as myostatin, activin A, and TGF-β1, have been reported to strongly trigger the activation of protein breakdown involved in muscle wasting. The aim of this study was to investigate the effect of TGF-β inhibitor LY364947 on the diaphragm during chronic sepsis.Rats were separated into four groups exposed to different experimental conditions: Control group, Septic group, Septic group with inhibitor from day 0 (LY D0), and Septic group with inhibitor from day 1 (LY D1). Sepsis was induced in rats by cecal ligation and puncture, and carried out for 7 days.Chronic sepsis was responsible for a decrease in body weight, food intake and diaphragm's mass. The inhibitor was able to abolish diaphragm wasting only in the LY D1 group. Similarly, LY364947 had a beneficial effect on the diaphragm contraction only for the LY D1 group. SMAD3 was over-expressed and phosphorylated within rats in the Septic group; however, this effect was reversed by LY364947. Calpain-1 and -2 as well as MAFbx were over-expressed within individuals in the Septic group. Yet, calpain-1 and MAFbx expressions were decreased by LY364947.With this work, we demonstrate for the first time that the inhibition of TGF-β pathway during chronic sepsis protects the diaphragm from wasting and weakness as early as one day post infection. This could lead to more efficient treatment and care for septic patients in ICU.
Collapse
|
44
|
Jiang L, Qi Y, Kong X, Wang R, Qi J, Lin F, Cui X, Liu Z. Activin A as a Novel Chemokine Induces Migration of L929 Fibroblasts by ERK Signaling in Microfluidic Devices. Front Cell Dev Biol 2021; 9:660316. [PMID: 34095123 PMCID: PMC8175620 DOI: 10.3389/fcell.2021.660316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/27/2021] [Indexed: 01/05/2023] Open
Abstract
Activin A, a member of the transforming growth factor-beta (TGF-β) superfamily, contributes to tissue healing and fibrosis. As the innate tissue cells, fibroblasts also play an important role in wound healing and fibrosis. Herein, this study was aimed to investigate how activin A exhibited regulatory effects on adhesion and migration of fibroblasts. We found that activin A induced the migration of fibroblast cell line L929 cells in transwell chamber and microfluidic device. Activin A also promoted L929 cells adhesion, but did not affect L929 cells viability or proliferation. In addition, activin A induced α-SMA expression and TGF-β1 release, which were factors closely related to tissue fibrosis, but had no effect on IL-6 production, a pro-inflammatory cytokine. Furthermore, activin A elevated calcium levels in L929 cells and increased p-ERK protein levels. Activin A-induced migration of L929 cells was attenuated by ERK inhibitor FR180204. To conclude, these data indicated that activin A as a novel chemokine induced the chemotactic migration of L929 cells via ERK signaling and possessed the pro-fibrosis role. These findings provide a new insight into understanding of activin A in tissue fibrosis.
Collapse
Affiliation(s)
- Lingling Jiang
- Department of Oral Comprehensive Therapy, School and Hospital of Stomatology, Jilin University, Changchun, China.,Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xianghan Kong
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Runnan Wang
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jianfei Qi
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | - Xueling Cui
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
45
|
Activin A Modulates Inflammation in Acute Pancreatitis and Strongly Predicts Severe Disease Independent of Body Mass Index. Clin Transl Gastroenterol 2021; 11:e00152. [PMID: 32358238 PMCID: PMC7263641 DOI: 10.14309/ctg.0000000000000152] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP) is a healthcare challenge with considerable mortality. Treatment is limited to supportive care, highlighting the need to investigate disease drivers and prognostic markers. Activin A is an established mediator of inflammatory responses, and its serum levels correlate with AP severity. We hypothesized that activin A is independent of body mass index (BMI) and is a targetable promoter of the AP inflammatory response.
Collapse
|
46
|
Synolaki E, Papadopoulos V, Divolis G, Tsahouridou O, Gavriilidis E, Loli G, Gavriil A, Tsigalou C, Tziolos NR, Sertaridou E, Kalra B, Kumar A, Rafailidis P, Pasternack A, Boumpas DT, Germanidis G, Ritvos O, Metallidis S, Skendros P, Sideras P. The Activin/Follistatin Axis Is Severely Deregulated in COVID-19 and Independently Associated With In-Hospital Mortality. J Infect Dis 2021; 223:1544-1554. [PMID: 33625513 PMCID: PMC7928794 DOI: 10.1093/infdis/jiab108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/18/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Activins are members of the transforming growth factor-β superfamily implicated in the pathogenesis of several immunoinflammatory disorders. Based on our previous studies demonstrating that overexpression of activin-A in murine lung causes pathology sharing key features of coronavirus disease 2019 (COVID-19), we hypothesized that activins and their natural inhibitor follistatin might be particularly relevant to COVID-19 pathophysiology. METHODS Activin-A, activin-B, and follistatin were retrospectively analyzed in 574 serum samples from 263 COVID-19 patients hospitalized in 3 independent centers, and compared with demographic, clinical, and laboratory parameters. Optimal scaling with ridge regression was used to screen variables and establish a prediction model. RESULT The activin/follistatin axis was significantly deregulated during the course of COVID-19, correlated with severity and independently associated with mortality. FACT-CLINYCoD, a scoring system incorporating follistatin, activin-A, activin-B, C-reactive protein, lactate dehydrogenase, intensive care unit admission, neutrophil/lymphocyte ratio, age, comorbidities, and D-dimers, efficiently predicted fatal outcome (area under the curve [AUC], 0.951; 95% confidence interval, .919-.983; P <10-6). Two validation cohorts indicated similar AUC values. CONCLUSIONS This study demonstrates a link between activin/follistatin axis and COVID-19 mortality and introduces FACT-CLINYCoD, a novel pathophysiology-based tool that allows dynamic prediction of disease outcome, supporting clinical decision making.
Collapse
Affiliation(s)
- Evgenia Synolaki
- Biomedical Research Foundation Academy of Athens, Center for Clinical, Experimental Surgery & Translational Research, Athens, Greece
| | - Vasileios Papadopoulos
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Georgios Divolis
- Biomedical Research Foundation Academy of Athens, Center for Clinical, Experimental Surgery & Translational Research, Athens, Greece
| | - Olga Tsahouridou
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efstratios Gavriilidis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Georgia Loli
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ariana Gavriil
- Biomedical Research Foundation Academy of Athens, Center for Clinical, Experimental Surgery & Translational Research, Athens, Greece
| | - Christina Tsigalou
- Laboratory of Microbiology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikolaos R Tziolos
- Fourth Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Eleni Sertaridou
- Intensive Care Unit, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | | | | | - Petros Rafailidis
- Second Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Dimitrios T Boumpas
- Fourth Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Simeon Metallidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Skendros
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Paschalis Sideras
- Biomedical Research Foundation Academy of Athens, Center for Clinical, Experimental Surgery & Translational Research, Athens, Greece
| |
Collapse
|
47
|
Aldahhan RA, Stanton PG, Ludlow H, de Kretser DM, Hedger MP. Experimental Cryptorchidism Causes Chronic Inflammation and a Progressive Decline in Sertoli Cell and Leydig Cell Function in the Adult Rat Testis. Reprod Sci 2021; 28:2916-2928. [PMID: 34008157 DOI: 10.1007/s43032-021-00616-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 05/10/2021] [Indexed: 11/30/2022]
Abstract
Cryptorchidism causes spermatogenic failure and reduced serum androgen levels, as well as testicular oedema and fibrosis, which are hallmarks of inflammation. However, the role of inflammation and the effects of cryptorchidism on Sertoli cell and Leydig cell function at the molecular level remain ill-defined. Bilateral cryptorchidism was surgically induced in adult rats for 7 and 14 weeks. Testis weights decreased to 40% of normal within 7 weeks, due to loss of all developing spermatogenic cells except spermatogonia, but did not decrease further at 14 weeks. Serum FSH and LH were increased at both time points, consistent with a loss of feedback by inhibin and testosterone. This damage was accompanied by progressive accumulation of interstitial fluid and peritubular fibrosis, and a progressive decline of several critical Sertoli cell genes (Sox9, Inha (inhbin α-subunit), Cldn11 (claudin 11), Gja1 (connexin 43), and Il1a (interleukin-1α)) and the Leydig cell steroidogenic enzymes, Cyp11a1, Hsd3b1, and Hs17b3. Activin B and the activin-binding protein, follistatin, also declined, but the intratesticular concentration of activin A, which is a regulator of inflammatory responses, was largely unaffected at either time point. Expression of genes involved in inflammation (Tnf, Il10, Il1b, Mcp1) and fibrosis (Acta2, Col1a1) were considerably elevated at both time points. These data indicate that induction of experimental cryptorchidism, which causes complete failure of spermatogenesis in the adult rat, also induces chronic testicular inflammation, manifesting in oedema and fibrosis, and a progressive decline of Sertoli and Leydig cell gene expression and function.
Collapse
Affiliation(s)
- Rashid A Aldahhan
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia. .,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia. .,Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 2114, Dammam, 31541, Saudi Arabia.
| | - Peter G Stanton
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | | | - David M de Kretser
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Mark P Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
48
|
Zou DX, Meng XD, Xie Y, Liu R, Duan JL, Bao CJ, Liu YX, Du YF, Xu JR, Luo Q, Zhao CJ, Zhang Z, Ma S, Yang WP, Lin RC, Lu WL. Schisandrin B for the treatment of male infertility. Clin Transl Med 2021; 11:e333. [PMID: 33634998 PMCID: PMC7901724 DOI: 10.1002/ctm2.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 11/10/2022] Open
Affiliation(s)
- Di-Xin Zou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Xue-Dan Meng
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Ying Xie
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Maolecular Pharmaceutics and New Drug System, and Scool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Rui Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Maolecular Pharmaceutics and New Drug System, and Scool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jia-Lun Duan
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Maolecular Pharmaceutics and New Drug System, and Scool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chun-Jie Bao
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Maolecular Pharmaceutics and New Drug System, and Scool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yi-Xuan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Maolecular Pharmaceutics and New Drug System, and Scool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ya-Fei Du
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Maolecular Pharmaceutics and New Drug System, and Scool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jia-Rui Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Maolecular Pharmaceutics and New Drug System, and Scool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qian Luo
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Maolecular Pharmaceutics and New Drug System, and Scool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chong-Jun Zhao
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Zhan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Maolecular Pharmaceutics and New Drug System, and Scool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Shuang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Maolecular Pharmaceutics and New Drug System, and Scool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Wei-Peng Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Rui-Chao Lin
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Wan-Liang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Maolecular Pharmaceutics and New Drug System, and Scool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
49
|
Mundy C, Yao L, Sinha S, Chung J, Rux D, Catheline SE, Koyama E, Qin L, Pacifici M. Activin A promotes the development of acquired heterotopic ossification and is an effective target for disease attenuation in mice. Sci Signal 2021; 14:eabd0536. [PMID: 33563697 PMCID: PMC10508179 DOI: 10.1126/scisignal.abd0536] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heterotopic ossification (HO) is a common, potentially debilitating pathology that is instigated by inflammation caused by tissue damage or other insults, which is followed by chondrogenesis, osteogenesis, and extraskeletal bone accumulation. Current remedies are not very effective and have side effects, including the risk of triggering additional HO. The TGF-β family member activin A is produced by activated macrophages and other inflammatory cells and stimulates the intracellular effectors SMAD2 and SMAD3 (SMAD2/3). Because HO starts with inflammation and because SMAD2/3 activation is chondrogenic, we tested whether activin A stimulated HO development. Using mouse models of acquired intramuscular and subdermal HO, we found that blockage of endogenous activin A by a systemically administered neutralizing antibody reduced HO development and bone accumulation. Single-cell RNA-seq analysis and developmental trajectories showed that the antibody treatment reduced the recruitment of Sox9+ skeletal progenitors, many of which also expressed the gene encoding activin A (Inhba), to HO sites. Gain-of-function assays showed that activin A enhanced the chondrogenic differentiation of progenitor cells through SMAD2/3 signaling, and inclusion of activin A in HO-inducing implants enhanced HO development in vivo. Together, our data reveal that activin A is a critical upstream signaling stimulator of acquired HO in mice and could represent an effective therapeutic target against forms of this pathology in patients.
Collapse
Affiliation(s)
- Christina Mundy
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lutian Yao
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Orthopaedics, The First Hospital of China Medical University, Liaoning 110001, China
| | - Sayantani Sinha
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Juliet Chung
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Danielle Rux
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sarah E Catheline
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
McDonald CM, Ramirez‐Sanchez I, Oskarsson B, Joyce N, Aguilar C, Nicorici A, Dayan J, Goude E, Abresch RT, Villarreal F, Ceballos G, Perkins G, Dugar S, Schreiner G, Henricson EK. (-)-Epicatechin induces mitochondrial biogenesis and markers of muscle regeneration in adults with Becker muscular dystrophy. Muscle Nerve 2021; 63:239-249. [PMID: 33125736 PMCID: PMC7898288 DOI: 10.1002/mus.27108] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 12/31/2022]
Abstract
INTRODUCTION We conducted an open-label study to examine the effects of the flavonoid (-)-epicatechin in seven ambulatory adult patients with Becker muscular dystrophy (BMD). METHODS Seven participants received (-)-epicatechin 50 mg twice per day for 8 weeks. Pre- and postprocedures included biceps brachii biopsy to assess muscle structure and growth-relevant endpoints by western blotting, mitochondria volume measurement, and cristae abundance by electron microscopy, graded exercise testing, and muscle strength and function tests. RESULTS Western blotting showed significantly increased levels of enzymes modulating cellular bioenergetics (liver kinase B1 and 5'-adenosine monophosphate-activated protein kinase). Peroxisome proliferator-activated receptor gamma coactivator-1alpha, a transcriptional coactivator of genes involved in mitochondrial biogenesis and cristae-associated mitofilin levels, increased as did cristae abundance. Muscle and plasma follistatin increased significantly while myostatin decreased. Markers of skeletal muscle regeneration myogenin, myogenic regulatory factor-5, myoblast determination protein 1, myocyte enhancer factor-2, and structure-associated proteins, including dysferlin, utrophin, and intracellular creatine kinase, also increased. Exercise testing demonstrated decreased heart rate, maximal oxygen consumption per kilogram, and plasma lactate levels at defined workloads. Tissue saturation index improved in resting and postexercise states. DISCUSSION (-)-Epicatechin, an exercise mimetic, appears to have short-term positive effects on tissue biomarkers indicative of mitochondrial biogenesis and muscle regeneration, and produced improvements in graded exercise testing parameters in patients with BMD.
Collapse
Affiliation(s)
- Craig M. McDonald
- Department of Physical Medicine and RehabilitationUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Israel Ramirez‐Sanchez
- Division of Cardiology, Department of Internal MedicineUniversity of California at San DiegoSan DiegoCaliforniaUSA
- Escuela Superior de Medicina, Seccion de Posgrado e Investigacion, del Instituto Politécnico NacionalMexico CityMexico
| | | | - Nanette Joyce
- Department of Physical Medicine and RehabilitationUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Candace Aguilar
- Department of Physical Medicine and RehabilitationUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Alina Nicorici
- Department of Physical Medicine and RehabilitationUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Jonathan Dayan
- Department of Physical Medicine and RehabilitationUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Erica Goude
- Department of Physical Medicine and RehabilitationUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - R. Ted Abresch
- Department of Physical Medicine and RehabilitationUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Francisco Villarreal
- Division of Cardiology, Department of Internal MedicineUniversity of California at San DiegoSan DiegoCaliforniaUSA
| | - Guillermo Ceballos
- Escuela Superior de Medicina, Seccion de Posgrado e Investigacion, del Instituto Politécnico NacionalMexico CityMexico
| | - Guy Perkins
- Division of Cardiology, Department of Internal MedicineUniversity of California at San DiegoSan DiegoCaliforniaUSA
| | - Sundeep Dugar
- Epirium Bio, Inc (formerly Cardero Therapeutics, Inc)San DiegoCaliforniaUSA
| | - George Schreiner
- Epirium Bio, Inc (formerly Cardero Therapeutics, Inc)San DiegoCaliforniaUSA
| | - Erik K. Henricson
- Department of Physical Medicine and RehabilitationUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| |
Collapse
|