1
|
Adhikari P, Xu H. Dissecting SNARE-Mediated Exocytosis in RBL-2H3 Mast Cells. Methods Mol Biol 2025; 2887:149-166. [PMID: 39806152 DOI: 10.1007/978-1-0716-4314-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
SNARE-dependent mast cell (MC) exocytosis causes the release of a wide variety of mediators with important physiological/pathological consequences. Unlike synaptic transmission in the brain, which relies primarily on one set of exocytic SNAREs (i.e., Syntaxin1, SNAP-25, and VAMP2), MCs produce a multitude of exocytic SNAREs that can form a minimum of 8 distinct sets of fusogenic trans-SNARE complexes. Here we describe the genetic approaches we have developed to dissect the specific roles of these SNAREs in RBL-2H3 cells, a widely utilized model for studying MC signaling and exocytosis.
Collapse
Affiliation(s)
- Pratikshya Adhikari
- Gene Therapy Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Hao Xu
- Center for Molecular and Cellular Biosciences, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, USA.
| |
Collapse
|
2
|
Zanirati G, dos Santos PG, Alcará AM, Bruzzo F, Ghilardi IM, Wietholter V, Xavier FAC, Gonçalves JIB, Marinowic D, Shetty AK, da Costa JC. Extracellular Vesicles: The Next Generation of Biomarkers and Treatment for Central Nervous System Diseases. Int J Mol Sci 2024; 25:7371. [PMID: 39000479 PMCID: PMC11242541 DOI: 10.3390/ijms25137371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024] Open
Abstract
It has been widely established that the characterization of extracellular vesicles (EVs), particularly small EVs (sEVs), shed by different cell types into biofluids, helps to identify biomarkers and therapeutic targets in neurological and neurodegenerative diseases. Recent studies are also exploring the efficacy of mesenchymal stem cell-derived extracellular vesicles naturally enriched with therapeutic microRNAs and proteins for treating various diseases. In addition, EVs released by various neural cells play a crucial function in the modulation of signal transmission in the brain in physiological conditions. However, in pathological conditions, such EVs can facilitate the spread of pathological proteins from one brain region to the other. On the other hand, the analysis of EVs in biofluids can identify sensitive biomarkers for diagnosis, prognosis, and disease progression. This review discusses the potential therapeutic use of stem cell-derived EVs in several central nervous system diseases. It lists their differences and similarities and confers various studies exploring EVs as biomarkers. Further advances in EV research in the coming years will likely lead to the routine use of EVs in therapeutic settings.
Collapse
Affiliation(s)
- Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Paula Gabrielli dos Santos
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Allan Marinho Alcará
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Fernanda Bruzzo
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Isadora Machado Ghilardi
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Vinicius Wietholter
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Fernando Antônio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Daniel Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX 77807, USA;
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| |
Collapse
|
3
|
Wetten PA, Arismendi Sosa AC, Mariani ML, Vargas PM, Michaut MA, Penissi AB. Dehydroleucodine and xanthatin, two natural anti-inflammatory lactones, inhibit mast cell degranulation by affecting the actin cytoskeleton. Cytoskeleton (Hoboken) 2024; 81:215-226. [PMID: 37929805 DOI: 10.1002/cm.21805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Actin remodeling is a critical regulator of mast cell secretion. In previous work, we have shown that dehydroleucodine and xanthatin, two natural α,β-unsaturated lactones, exhibit anti-inflammatory and mast cell stabilizing properties. Based on this background, this study aimed to determine whether the mast cell stabilizing action of these lactones is associated with changes in the actin cytoskeleton. Rat peritoneal mast cells were preincubated in the presence of dehydroleucodine or xanthatin before incubation with compound 48/80. Comparative studies with sodium cromoglycate and latrunculin B were also made. After treatments, different assays were performed on mast cell samples: β-hexosaminidase release, cell viability studies, quantification of mast cells and their state of degranulation by light microscopy, transmission electron microscopy, and actin staining for microscopy observation. Results showed that dehydroleucodine and xanthatin inhibited mast cell degranulation, evidenced by the inhibition of β-hexosaminidase release and decreased degranulated mast cell percentage. At the same time, both lactones altered the F-actin cytoskeleton in mast cells resulting, similarly to Latrunculin B, in a higher concentration of nuclear F-actin when activated by compound 48/80. For the first time, this study describes the biological properties of dehydroleucodine and xanthatin concerning to the rearrangement of actin filaments during stimulated exocytosis in mast cells. These data have important implications for developing new anti-inflammatory and mast cell stabilizing drugs and for designing new small molecules that may interact with the actin cytoskeleton.
Collapse
Affiliation(s)
- Paula A Wetten
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | - María Laura Mariani
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Patricia M Vargas
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Marcela Alejandra Michaut
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Alicia Beatriz Penissi
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
4
|
Sakamoto M, Nagata Y, Furukawa A, Kusada T, Inamoto S, Senda T, Hirashima N, Suzuki R. VAMP7 knockdown in secretory granules impairs CCL2 secretion in mast cells. Biochem Biophys Res Commun 2024; 691:149258. [PMID: 38029541 DOI: 10.1016/j.bbrc.2023.149258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Mast cells (MCs) possess numerous potent inflammatory mediators and undergo differential regulation in response to antigen (Ag) stimulation. Among the regulatory systems governing secretory responses, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) play a pivotal role in facilitating granule-plasma membrane fusion and subsequent secretion. Our previous investigation documented the involvement of vesicle-associated membrane protein 3 (VAMP3) in regulating cytokine secretions in RBL-2H3 cells, a model for MC IgE-mediated responses. In addition to VAMP3, VAMP7 is expressed in MCs, but its functional role remains elusive. The present study seeks to explore VAMP7-specific regulatory mechanisms in MCs, shedding light on one of the mechanisms governing heterogeneous secretory responses in these cells. Murine bone marrow-derived mast cells (BMMCs) were examined to analyze the subcellular distribution of inflammatory mediators, specifically TNFα, CCL2, and histamine, and VAMPs (i.e., VAMP3, VAMP7, and VAMP8). Immunocytochemistry and the transient expression of fluorescent protein-conjugated target proteins were used to discern the distribution of various inflammatory mediators and VAMP7 through confocal laser scanning microscopy. Each inflammatory mediator (TNFα, CCL2, and histamine) was found in secretory granules of different sizes within BMMCs. VAMP7 exhibited a distinct distribution compared to VAMP3 in these granules. Notably, an overlapping distribution was observed between VAMP7 and CCL2, but not between VAMP7 and TNFα or VAMP7 and histamine. This suggests that CCL2 resides within VAMP7-expressing granules and is subject to VAMP7-dependent secretory regulation. Consistently, BMMCs with VAMP7 knockdown showed markedly reduced CCL2 secretion after Ag stimulation. These observations underscore the heterogeneity of MC secretory responses and unveil a novel VAMP7-dependent CCL2 secretion mechanism within MCs. This discovery might pave the way for the development of more precise therapeutic strategies to modulate MC secretion in allergic conditions.
Collapse
Affiliation(s)
- Marin Sakamoto
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuka Nagata
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Atsushi Furukawa
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tomoyuki Kusada
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Japan
| | - Shohei Inamoto
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Japan
| | - Tomomi Senda
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Japan
| | - Naohide Hirashima
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Japan
| | - Ryo Suzuki
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
5
|
Martínez M, Mariani ML, García C, Ceñal JP, Penissi AB. A one-pot and eco-friendly synthesis of novel β-substituted-α-halomethyl acrylates and the bioactivity of these compounds in an in vitro model of mast cell degranulation induced by pro-inflammatory stimuli. Biomed Pharmacother 2024; 170:116009. [PMID: 38134632 DOI: 10.1016/j.biopha.2023.116009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The goal of the present work was to develop novel β-substituted-α-halomethyl acrylates from a methodology in an aqueous phase and to evaluate their bioactivity as potential inhibitors of mast cell activation. Eleven β-substituted-α-halomethyl acrylates were synthesized through a modified Horner-Wadsworth-Emmons reaction. Compound 48/80 and the calcium ionophore A23187 stimulated the release of β-hexosaminidase from mast cells. The effect induced by compound 48/80 was inhibited by compound 5 (320 µM) and compound 9 (160 and 320 µM) without causing cytotoxic effects. The effect induced by A23187 was inhibited by compound 5 (40, 80, 160, and 320 µM) without affecting cell viability. The inhibitory effects exhibited by compounds 5 and 9 were more potent than those of the reference compound sodium cromoglycate at the same concentrations. The biochemical results were consistent with the morphological findings obtained by light and transmission electron microscopy. This study reports, for the first time, that the new synthetic compounds methyl (Z)- 2-bromo-3-(furan-3-yl)acrylate (compound 5) and methyl (E)- 2-bromo-3-(3-bromophenyl)acrylate (compound 9) strongly inhibit mast cell degranulation, without affecting cell viability. The implications of these results are relevant as a basis for developing new anti-inflammatory and mast cell stabilizing drugs.
Collapse
Affiliation(s)
- Maricel Martínez
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM, UNCUYO-CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Universidad Nacional de San Luis, San Luis, Argentina
| | - María Laura Mariani
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM, UNCUYO-CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Celina García
- Instituto Universitario de Bio-Organica "Antonio Gonzalez", Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Juan Pedro Ceñal
- Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Universidad Nacional de San Luis, San Luis, Argentina; Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Alicia Beatriz Penissi
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM, UNCUYO-CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
6
|
Joshi S, Prakhya KS, Smith AN, Chanzu H, Zhang M, Whiteheart SW. The complementary roles of VAMP-2, -3, and -7 in platelet secretion and function. Platelets 2023; 34:2237114. [PMID: 37545110 PMCID: PMC10564522 DOI: 10.1080/09537104.2023.2237114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023]
Abstract
Platelet secretion requires Soluble N-ethylmaleimide Sensitive Attachment Protein Receptors (SNAREs). Vesicle SNAREs/Vesicle-Associated Membrane Proteins (v-SNAREs/VAMPs) on granules and t-SNAREs in plasma membranes mediate granule release. Platelet VAMP heterogeneity has complicated the assessment of how/if each is used and affects hemostasis. To address the importance of VAMP-7 (V7), we analyzed mice with global deletions of V3 and V7 together or platelet-specific deletions of V2, V3, and global deletion of V7. We measured the kinetics of cargo release, and its effects on three injury models to define the context-specific roles of these VAMPs. Loss of V7 minimally affected dense and α granule release but did affect lysosomal release. V3-/-7-/- and V2Δ3Δ7-/- platelets showed partial defects in α and lysosomal release; dense granule secretion was unaffected. In vivo assays showed that loss of V2, V3, and V7 caused no bleeding or occlusive thrombosis. These data indicate a role for V7 in lysosome release that is partially compensated by V3. V7 and V3, together, contribute to α granule release, however none of these deletions affected hemostasis/thrombosis. Our results confirm the dominance of V8. When it is present, deletion of V2, V3, or V7 alone or in combination minimally affects platelet secretion and hemostasis.
Collapse
Affiliation(s)
- Smita Joshi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | | | - Alexis N. Smith
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Harry Chanzu
- GenScript USA Inc., 860 Centennial Ave. Piscataway, NJ 08854, USA
| | - Ming Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Sidney W. Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
7
|
Kondo D, Suzuki R, Matsumura A, Meguri H, Tanaka M, Itakura M, Hirashima N. Methiothepin downregulates SNAP-23 and inhibits degranulation of rat basophilic leukemia cells and mouse bone marrow-derived mast cells. Eur J Immunol 2023; 53:e2250360. [PMID: 37736882 DOI: 10.1002/eji.202250360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/19/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
In the present study, we found that methiothepin (a nonselective 5-hydroxytryptamine [5-HT] receptor antagonist) inhibited antigen-induced degranulation in rat basophilic leukemia cells and mouse bone marrow-derived mast cells. Although antigen stimulation induces release of histamine and serotonin (5-HT) by exocytosis and mast cells express several types of 5-HT receptor, the detailed role of these receptors remains unclear. Here, pretreatment of cells with methiothepin attenuated increased intracellular Ca2+ concentration, phosphorylated critical upstream signaling components (Src family tyrosine kinases, Syk, and PLCγ1), and suppressed TNF-α secretion via inhibition of Akt (a Ser/Thr kinase activated by PI3K)and ERK phosphorylation. Furthermore, it inhibited PMA/ionomycin-induced degranulation; this finding suggested that methiothepin affected downstream signaling. IκB kinase β phosphorylates synaptosomal associated protein 23, which regulates the fusion events of the secretory granule/plasma membrane after mast cell activation, resulting in degranulation. We showed that methiothepin blocked PMA/ionomycin-induced phosphorylation of synaptosomal associated protein 23 by inhibiting its interaction with IκB kinase β. Together with the results of selective 5-HT antagonists, it is suggested that methiothepin inhibits mast cell degranulation by downregulating upstream signaling pathways and exocytotic fusion machinery through mainly 5-HT1A receptor. Our findings provide that 5-HT antagonists may be used to relieve allergic reactions.
Collapse
Affiliation(s)
- Daisuke Kondo
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Ruriko Suzuki
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Ayako Matsumura
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hitomi Meguri
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Masahiko Tanaka
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Naohide Hirashima
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
8
|
Theoharides TC, Kempuraj D. Potential Role of Moesin in Regulating Mast Cell Secretion. Int J Mol Sci 2023; 24:12081. [PMID: 37569454 PMCID: PMC10418457 DOI: 10.3390/ijms241512081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Mast cells have existed for millions of years in species that never suffer from allergic reactions. Hence, in addition to allergies, mast cells can play a critical role in homeostasis and inflammation via secretion of numerous vasoactive, pro-inflammatory and neuro-sensitizing mediators. Secretion may utilize different modes that involve the cytoskeleton, but our understanding of the molecular mechanisms regulating secretion is still not well understood. The Ezrin/Radixin/Moesin (ERM) family of proteins is involved in linking cell surface-initiated signaling to the actin cytoskeleton. However, how ERMs may regulate secretion from mast cells is still poorly understood. ERMs contain two functional domains connected through a long α-helix region, the N-terminal FERM (band 4.1 protein-ERM) domain and the C-terminal ERM association domain (C-ERMAD). The FERM domain and the C-ERMAD can bind to each other in a head-to-tail manner, leading to a closed/inactive conformation. Typically, phosphorylation on the C-terminus Thr has been associated with the activation of ERMs, including secretion from macrophages and platelets. It has previously been shown that the ability of the so-called mast cell "stabilizer" disodium cromoglycate (cromolyn) to inhibit secretion from rat mast cells closely paralleled the phosphorylation of a 78 kDa protein, which was subsequently shown to be moesin, a member of ERMs. Interestingly, the phosphorylation of moesin during the inhibition of mast cell secretion was on the N-terminal Ser56/74 and Thr66 residues. This phosphorylation pattern could lock moesin in its inactive state and render it inaccessible to binding to the Soluble NSF attachment protein receptors (SNAREs) and synaptosomal-associated proteins (SNAPs) critical for exocytosis. Using confocal microscopic imaging, we showed moesin was found to colocalize with actin and cluster around secretory granules during inhibition of secretion. In conclusion, the phosphorylation pattern and localization of moesin may be important in the regulation of mast cell secretion and could be targeted for the development of effective inhibitors of secretion of allergic and inflammatory mediators from mast cells.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| |
Collapse
|
9
|
Atiakshin D, Kostin A, Volodkin A, Nazarova A, Shishkina V, Esaulenko D, Buchwalow I, Tiemann M, Noda M. Mast Cells as a Potential Target of Molecular Hydrogen in Regulating the Local Tissue Microenvironment. Pharmaceuticals (Basel) 2023; 16:817. [PMID: 37375765 DOI: 10.3390/ph16060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Knowledge of the biological effects of molecular hydrogen (H2), hydrogen gas, is constantly advancing, giving a reason for the optimism in several healthcare practitioners regarding the management of multiple diseases, including socially significant ones (malignant neoplasms, diabetes mellitus, viral hepatitis, mental and behavioral disorders). However, mechanisms underlying the biological effects of H2 are still being actively debated. In this review, we focus on mast cells as a potential target for H2 at the specific tissue microenvironment level. H2 regulates the processing of pro-inflammatory components of the mast cell secretome and their entry into the extracellular matrix; this can significantly affect the capacity of the integrated-buffer metabolism and the structure of the immune landscape of the local tissue microenvironment. The analysis performed highlights several potential mechanisms for developing the biological effects of H2 and offers great opportunities for translating the obtained findings into clinical practice.
Collapse
Affiliation(s)
- Dmitri Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Andrey Kostin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Artem Volodkin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Anna Nazarova
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Viktoriya Shishkina
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Dmitry Esaulenko
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany
| | - Markus Tiemann
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 816-0811, Japan
| |
Collapse
|
10
|
Ayo TE, Adhikari P, Xu H. TNFR1 links TNF exocytosis to TNF production in allergen-activated RBL-2H3 cells. Cell Signal 2023; 105:110607. [PMID: 36690134 PMCID: PMC10122983 DOI: 10.1016/j.cellsig.2023.110607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
We previously reported that the maximal production of Tumor Necrosis Factor (TNF or TNFα) in antigen-activated RBL-2H3 cells (a tumor analog of mucosal mast cells) requires Munc13-4, a regulator of exocytic fusion. In this study, we investigated the involvement of various fusion catalysts in TNF production. We observed a strong correlation between the total TNF level and TNF exocytosis in RBL-2H3 cells. RT-qPCR shows that TNFR1 (TNF receptor 1) is the sole TNFR expressed in these cells, and that its transcription is upregulated upon allergen-mediated activation. Importantly, the addition of soluble TNFR1 inhibits antigen-elicited TNF production in a dosage-dependent fashion. Likewise, TNF production is diminished in the presence of TACE (TNFα Converting Enzyme) inhibitor KP-457, which prevents the generation of soluble TNF (sTNF). Together, these findings indicate that sTNF and TNFR1 function as autocrine agent and receptor respectively at the mast cell surface to boost TNF proliferation during allergic inflammation.
Collapse
Affiliation(s)
- Tolulope E Ayo
- Center for Molecular and Cellular Biosciences, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, United States of America
| | - Pratikshya Adhikari
- Center for Molecular and Cellular Biosciences, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, United States of America
| | - Hao Xu
- Center for Molecular and Cellular Biosciences, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, United States of America.
| |
Collapse
|
11
|
Adhikari P, Ayo TE, Vines JC, Sugita S, Xu H. Exocytic machineries differentially control mediator release from allergen-triggered RBL-2H3 cells. Inflamm Res 2023; 72:639-649. [PMID: 36725743 DOI: 10.1007/s00011-023-01698-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/06/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Mast cells utilize SNAREs (soluble-N-ethyl-maleimide sensitive factor attachment protein receptors) and SM (Sec1/Munc18) proteins to secrete/exocytose a variety of proinflammatory mediators. However, whether a common SNARE-SM machinery is responsible remains unclear. METHODS Four vesicle/granule-anchored SNAREs (VAMP2, VAMP3, VAMP7, and VAMP8) and two Munc18 homologs (Munc18a and Munc18b) were systematically knocked down or knocked out in RBL-2H3 mast cells and antigen-induced release of β-hexosaminidase, histamine, serotonin, and TNF was examined. Phenotypes were validated by rescue experiments. Immunofluorescence studies were performed to determine the subcellular distribution of key players. RESULTS The reduction of VAMP8 expression inhibited the exocytosis of β-hexosaminidase, histamine, and serotonin but not TNF. Unexpectedly, however, confocal microscopy revealed substantial co-localization between VAMP8 and TNF, and between TNF and serotonin. Meanwhile, the depletion of other VAMPs, including knockout of VAMP3, had no impact on the release of any of the mediators examined. On the other hand, TNF exocytosis was diminished specifically in stable Munc18bknockdown cells, in a fashion that was rescued by exogenous, RNAi-resistant Munc18b. In line with this, TNF was co-localized with Munc18b (47%) to a much greater extent than with Munc18a (13%). CONCLUSION Distinct exocytic pathways exist in mast cells for the release of different mediators.
Collapse
Affiliation(s)
- Pratikshya Adhikari
- Center for Molecular and Cellular Biosciences, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Tolulope E Ayo
- Center for Molecular and Cellular Biosciences, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - John C Vines
- Center for Molecular and Cellular Biosciences, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Shuzo Sugita
- Division of Fundamental Neurobiology, University Health Network, Toronto, ON, M5T 2S8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hao Xu
- Center for Molecular and Cellular Biosciences, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
| |
Collapse
|
12
|
Weimershaus M, Carvalho C, Rignault R, Waeckel-Enee E, Dussiot M, van Endert P, Maciel TT, Hermine O. Mast cell-mediated inflammation relies on insulin-regulated aminopeptidase controlling cytokine export from the Golgi. J Allergy Clin Immunol 2023:S0091-6749(23)00090-8. [PMID: 36708814 DOI: 10.1016/j.jaci.2023.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND On activation, mast cells rapidly release preformed inflammatory mediators from large cytoplasmic granules via regulated exocytosis. This acute degranulation is followed by a late activation phase involving synthesis and secretion of cytokines, growth factors, and other inflammatory molecules via the constitutive pathway that remains ill defined. OBJECTIVE We investigated the role for an insulin-responsive vesicle-like endosomal compartment, marked by insulin-regulated aminopeptidase (IRAP), in the secretion of TNF-α and IL-6 in mast cells and macrophages. METHODS Murine knockout (KO) mouse models (IRAP-KO and kit-Wsh/sh) were used to study inflammatory disease models and to measure and mechanistically investigate cytokine secretion and degranulation in bone marrow-derived mast cells in vitro. RESULTS IRAP-KO mice are protected from TNF-α-dependent kidney injury and inflammatory arthritis. In the absence of IRAP, TNF-α and IL-6 but not IL-10 fail to be efficiently secreted. Moreover, chemical targeting of IRAP endosomes reduced proinflammatory cytokine secretion. Mechanistically, impaired TNF-α export from the Golgi and reduced colocalization of vesicle-associated membrane protein (VAMP) 3-positive TNF-α transport vesicles with syntaxin 4 (aka Stx4) was observed in IRAP-KO mast cells, while VAMP8-dependent exocytosis of secretory granules was facilitated. CONCLUSION IRAP plays a novel role in mast cell-mediated inflammation through the regulation of exocytic trafficking of cytokines.
Collapse
Affiliation(s)
- Mirjana Weimershaus
- Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM U1163, F-75015, Paris, France.
| | - Caroline Carvalho
- Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM U1163, F-75015, Paris, France
| | - Rachel Rignault
- Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM U1163, F-75015, Paris, France; Université de Paris Cité, Paris, France
| | | | - Michael Dussiot
- Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM U1163, F-75015, Paris, France; Université de Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Peter van Endert
- INSERM UMR 1151, CNRS UMR 8253, Paris, France; Université de Paris Cité, Paris, France
| | - Thiago Trovati Maciel
- Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM U1163, F-75015, Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Olivier Hermine
- Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM U1163, F-75015, Paris, France; Université de Paris Cité, Paris, France; Hôpital Necker Enfants Malades, Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
13
|
Fu H, Li J, Du P, Jin W, Gao G, Cui D. Senile plaques in Alzheimer's disease arise from Aβ- and Cathepsin D-enriched mixtures leaking out during intravascular haemolysis and microaneurysm rupture. FEBS Lett 2022; 597:1007-1040. [PMID: 36448495 DOI: 10.1002/1873-3468.14549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
Abstract
Senile plaques are a pathological hallmark of Alzheimer's disease (AD), yet the mechanism underlying their generation remains unknown. Beta-amyloid peptide (Aβ) is a major component of senile plaques. We analysed AD brain tissues with histochemistry, immunohistochemistry and fluorescence imaging to examine the neural, vascular or blood Aβ contribution to senile plaque development. We found little neural marker co-expression with plaque Aβ, while co-expression of blood markers, such as Haemin and ApoE, was abundant. The plaque cores were structured with vascular and glial proteins outside and blood metabolites inside, co-localizing with a characteristic of Hoechst staining-independent blue autofluorescence. Erythrocyte-interacting Aβ is linked to coagulation, elevated calcium and blue autofluorescence, and it is associated with intravascular haemolysis, atherosclerosis, cerebral amyloid angiopathy, microaneurysm, and often with Cathepsin D co-expression. We identified microaneurysms as major sites of amyloid formation. Our data suggest that senile plaques arise from Aβ- and Cathepsin D-enriched mixtures leaking out during intravascular haemolysis and microaneurysm rupture.
Collapse
Affiliation(s)
- Hualin Fu
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China.,National Center for Translational Medicine, Shanghai Jiao Tong University, China
| | - Jilong Li
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China
| | - Peng Du
- Department of Colorectal Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, China
| | - Weilin Jin
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China.,National Center for Translational Medicine, Shanghai Jiao Tong University, China
| | - Guo Gao
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China.,National Center for Translational Medicine, Shanghai Jiao Tong University, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China.,National Center for Translational Medicine, Shanghai Jiao Tong University, China
| |
Collapse
|
14
|
Mishima S, Sakamoto M, Kioka H, Nagata Y, Suzuki R. Multifunctional regulation of VAMP3 in exocytic and endocytic pathways of RBL-2H3 cells. Front Immunol 2022; 13:885868. [PMID: 35990647 PMCID: PMC9388853 DOI: 10.3389/fimmu.2022.885868] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Mast cells (MCs) are inflammatory cells involved in allergic reactions. Crosslinking of the high-affinity receptor for IgE (FcϵRI) with multivalent antigens (Ags) induces secretory responses to release various inflammatory mediators. These responses are largely mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Vesicle-associated membrane protein 3 (VAMP3) is a vesicular-SNARE that interacts with targeted SNARE counterparts, driving the fusion of MC secretory granules with the membrane and affecting subsequent assembly of the plasma membrane. However, the role of VAMP3 in FcϵRI-mediated MC function remains unclear. In this study, we comprehensively examined the role of VAMP3 and the molecular mechanisms underlying VAMP3-mediated MC function upon FcϵRI activation. VAMP3 shRNA transduction considerably decreased VAMP3 expression compared with non-target shRNA-transduced (NT) cells. VAMP3 knockdown (KD) cells were sensitized with an anti-DNP IgE antibody and subsequently stimulated with Ag. The VAMP3 KD cells showed decreased degranulation response upon Ag stimulation. Next, we observed intracellular granule formation using CD63-GFP fluorescence. The VAMP3 KD cells were considerably impaired in their capacity to increase the size of granules when compared to NT cells, suggesting that VAMP3 mediates granule fusion and therefore promotes granule exocytosis in MCs. Analysis of FcϵRI-mediated activation of signaling events (FcϵRI, Lyn, Syk, and intracellular Ca2+ response) revealed that signaling molecule activation was enhanced in VAMP3 KD cells. We also found that FcϵRI expression on the cell surface decreased considerably in VAMP3 KD cells, although the amount of total protein did not vary. VAMP3 KD cells also showed dysregulation of plasma membrane homeostasis, such as endocytosis and lipid raft formation. The difference in the plasma membrane environment in VAMP3 KD cells might affect FcϵRI membrane dynamics and the subsequent signalosome formation. Furthermore, IgE/Ag-mediated secretion of TNF-α and IL-6 is oppositely regulated in the absence of VAMP3, which appears to be attributed to both the activation of FcϵRI and defects in VAMP3-mediated membrane fusion. Taken together, these results suggest that enhanced FcϵRI-mediated signal transduction in VAMP3 KD cells occurs due to the disruption of plasma membrane homeostasis. Hence, a multifunctional regulation of VAMP3 is involved in complex secretory responses in MCs.
Collapse
|
15
|
West PW, Bulfone-Paus S. Mast cell tissue heterogeneity and specificity of immune cell recruitment. Front Immunol 2022; 13:932090. [PMID: 35967445 PMCID: PMC9374002 DOI: 10.3389/fimmu.2022.932090] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Mast cells occupy a unique niche within tissues as long lived perpetrators of IgE mediated hypersensitivity and anaphylaxis, as well as other immune responses. However, mast cells are not identical in different tissues and the impact of this tissue heterogeneity on the interaction with other immune cells and on defined immune responses is still unclear. In this review, we synthesize the characteristics of mast cell heterogeneity in the gut and the skin. Furthermore, we attempt to connect mast cell heterogeneity with functional diversity by exploring differences in mast cell-induced immune cell recruitment in these two model organs. The differential expression of certain receptors on mast cells of different tissues, notably tissue-specific expression patterns of integrins, complement receptors and MRGPRX2, could indicate that tissue environment-dependent factors skew mast cell-immune cell interactions, for example by regulating the expression of these receptors.
Collapse
Affiliation(s)
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
16
|
Rezaie J, Akbari A, Rahbarghazi R. Inhibition of extracellular vesicle biogenesis in tumor cells: A possible way to reduce tumorigenesis. Cell Biochem Funct 2022; 40:248-262. [PMID: 35285964 DOI: 10.1002/cbf.3695] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
Most eukaryotic cells secrete extracellular vesicles (EVs), which contribute to intracellular communication through transferring different biomolecules such as proteins, RNAs, and lipids to cells. Two main types of EVs are exosomes and microvesicles. Exosomes originate from multivesicular bodies, while microvesicles are shed from the plasma membrane. Mechanisms of exosomes and microvesicle biogenesis/trafficking are complex and many molecules are involved in their biogenesis and secretion. Tumor-derived EVs contain oncogenic molecules that promote tumor growth, metastasis, immune surveillance, angiogenesis, and chemoresistance. A growing body of evidence indicates various compounds can inhibit biogenesis and secretion of EVs from cells and several experiments were conducted to use EVs-inhibitors for understanding the biology of the cells or for understanding the pathology of several diseases like cancer. However, the nontargeting effects of drugs/inhibitors remain a concern. Our current knowledge of EVs biogenesis and their inhibition from tumor cells may provide an avenue for cancer management. In this review, we shed light on exosomes and microvesicles biogenesis, key roles of tumor-derived EVs, and discuss methods used to inhibition of EVs by different inhibitors.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Kim DY, Won KJ, Hwang DI, Kim NY, Kim B, Lee HM. 1-Iodohexadecane Alleviates 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis in Mice: Possible Involvements of the Skin Barrier and Mast Cell SNARE Proteins. Molecules 2022; 27:1560. [PMID: 35268661 PMCID: PMC8911872 DOI: 10.3390/molecules27051560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/27/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory dermal disease with symptoms that include inflammation, itching, and dry skin. 1-Iodohexadecane is known as a component of Chrysanthemum boreale essential oil that has an inhibitory effect on AD-like lesions. However, its effects on AD-related pathological events have not been investigated. Here, we explored the effects of 1-iodohexadecane on AD lesion-related in vitro and in vivo responses and the mechanism involved using human keratinocytes (HaCaT cells), mast cells (RBL-2H3 cells), and a 2,4-dinitrochlorobenzene (DNCB)-induced mouse model (male BALB/c) of AD. Protein analyses were performed by immunoblotting or immunohistochemistry. In RBL-2H3 cells, 1-iodohexadecane inhibited immunoglobulin E-induced releases of histamine and β-hexosaminidase and the expression of VAMP8 protein (vesicle-associated membrane proteins 8; a soluble N-ethylmaleimide-sensitive factor attachment protein receptor [SNARE] protein). In HaCaT cells, 1-iodohexadecane enhanced filaggrin and loricrin expressions; in DNCB-treated mice, it improved AD-like skin lesions, reduced epidermal thickness, mast cell infiltration, and increased filaggrin and loricrin expressions (skin barrier proteins). In addition, 1-iodohexadecane reduced the β-hexosaminidase level in the serum of DNCB-applied mice. These results suggest that 1-iodohexadecane may ameliorate AD lesion severity by disrupting SNARE protein-linked degranulation and/or by enhancing the expressions of skin barrier-related proteins, and that 1-iodohexadecane has therapeutic potential for the treatment of AD.
Collapse
Affiliation(s)
- Do Yoon Kim
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan 31499, Korea; (D.Y.K.); (D.I.H.); (N.Y.K.)
| | - Kyung-Jong Won
- Department of Physiology and Medical Science, School of Medicine, Konkuk University, Seoul 05029, Korea; (K.-J.W.); (B.K.)
| | - Dae Il Hwang
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan 31499, Korea; (D.Y.K.); (D.I.H.); (N.Y.K.)
| | - Nan Young Kim
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan 31499, Korea; (D.Y.K.); (D.I.H.); (N.Y.K.)
| | - Bokyung Kim
- Department of Physiology and Medical Science, School of Medicine, Konkuk University, Seoul 05029, Korea; (K.-J.W.); (B.K.)
| | - Hwan Myung Lee
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan 31499, Korea; (D.Y.K.); (D.I.H.); (N.Y.K.)
| |
Collapse
|
18
|
Wong LW, Goh CBS, Tan JBL. A Systemic Review for Ethnopharmacological Studies on Isatis indigotica Fortune: Bioactive Compounds and their Therapeutic Insights. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:161-207. [PMID: 35139772 DOI: 10.1142/s0192415x22500069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Isatis indigotica Fortune is a biennial Chinese woad of the Cruciferae family. It is primarily cultivated in China, where it was a staple in indigo dye manufacture till the end of the 17th century. Today, I. indigotica is used primarily as a therapeutic herb in traditional Chinese medicine (TCM). The medicinal use of the plant is separated into its leaves (Da-Qing-Ye) and roots (Ban-Lan-Gen), whereas its aerial components can be processed into a dried bluish-spruce powder (Qing-Dai), following dehydration for long-term preservation. Over the past several decades, I. indigotica has been generally utilized for its heat-clearing effects and bodily detoxification in TCM, attributed to the presence of several classes of bioactive compounds, including organic acids, alkaloids, terpenoids, and flavonoids, as well as lignans, anthraquinones, glucosides, glucosinolates, sphingolipids, tetrapyrroles, and polysaccharides. This paper aims to delineate I. indigotica from its closely-related species (Isatis tinctoria and Isatis glauca) while highlighting the ethnomedicinal uses of I. indigotica from the perspectives of modern and traditional medicine. A systematic search of PubMed, Embase, PMC, Web of Science, and Google Scholar databases was done for articles on all aspects of the plant, emphasizing those analyzing the bioactivity of constituents of the plant. The various key bioactive compounds of I. indigotica that have been found to exhibit anti-inflammatory, antimicrobial, anticancer, and anti-allergic properties, along with the protective effects against neuronal injury and bone fracture, will be discussed. Collectively, the review hopes to draw attention to the therapeutic potential of I. indigotica not only as a TCM, but also as a potential source of bioactive compounds for disease management and treatment.
Collapse
Affiliation(s)
- Li Wen Wong
- School of Science, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor, Malaysia
| | - Calvin Bok Sun Goh
- School of Science, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor, Malaysia
| | - Joash Ban Lee Tan
- School of Science, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor, Malaysia
| |
Collapse
|
19
|
Development of a High-Throughput Calcium Mobilization Assay for CCR6 Receptor Coupled to Hydrolase Activity Readout. Biomedicines 2022; 10:biomedicines10020422. [PMID: 35203631 PMCID: PMC8962412 DOI: 10.3390/biomedicines10020422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/17/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
CCR6 is a chemokine receptor highly implicated in inflammatory diseases and could be a potential therapeutic target; however, no therapeutic agents targeting CCR6 have progressed into clinical evaluation. Development of a high-throughput screening assay for CCR6 should facilitate the identification of novel compounds against CCR6. To develop a cell-based assay, RBL-2H3 cells were transfected with plasmids encoding β-hexosaminidase and CCR6. Intracellular calcium mobilization of transfected cells was measured with a fluorescent substrate using the activity of released hexosaminidase as readout of the assay. This stable, transfected cell showed a specific signal to the background ratio of 19.1 with low variability of the signal along the time. The assay was validated and optimized for high-throughput screening. The cell-based calcium mobilization assay responded to the specific CCR6 ligand, CCL20, in a dose-dependent manner with an EC50 value of 10.72 nM. Furthermore, the assay was deemed robust and reproducible with a Z’ factor of 0.63 and a signal window of 7.75. We have established a cell-based high-throughput calcium mobilization assay for CCR6 receptor. This assay monitors calcium mobilization, due to CCR6h activation by CCL20, using hexosaminidase activity as readout. This assay was proved to be robust, easy to automate and could be used as method for screening of CCR6 modulators.
Collapse
|
20
|
Atiakshin D, Kostin A, Trotsenko I, Samoilova V, Buchwalow I, Tiemann M. Carboxypeptidase A3—A Key Component of the Protease Phenotype of Mast Cells. Cells 2022; 11:cells11030570. [PMID: 35159379 PMCID: PMC8834431 DOI: 10.3390/cells11030570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
Carboxypeptidase A3 (CPA3) is a specific mast cell (MC) protease with variable expression. This protease is one of the preformed components of the secretome. During maturation of granules, CPA3 becomes an active enzyme with a characteristic localization determining the features of the cytological and ultrastructural phenotype of MC. CPA3 takes part in the regulation of a specific tissue microenvironment, affecting the implementation of innate immunity, the mechanisms of angiogenesis, the processes of remodeling of the extracellular matrix, etc. Characterization of CPA3 expression in MC can be used to refine the MC classification, help in a prognosis, and increase the effectiveness of targeted therapy.
Collapse
Affiliation(s)
- Dmitri Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, Miklukho-Maklaya Str. 6, 117198 Moscow, Russia; (D.A.); (A.K.); (I.T.)
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Studencheskaya Str. 10, 394036 Voronezh, Russia
| | - Andrey Kostin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, Miklukho-Maklaya Str. 6, 117198 Moscow, Russia; (D.A.); (A.K.); (I.T.)
| | - Ivan Trotsenko
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, Miklukho-Maklaya Str. 6, 117198 Moscow, Russia; (D.A.); (A.K.); (I.T.)
| | - Vera Samoilova
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany; (V.S.); (M.T.)
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, Miklukho-Maklaya Str. 6, 117198 Moscow, Russia; (D.A.); (A.K.); (I.T.)
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany; (V.S.); (M.T.)
- Correspondence: ; Tel.: +49-(040)-7070-85317; Fax: +49-(040)-7070-85110
| | - Markus Tiemann
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany; (V.S.); (M.T.)
| |
Collapse
|
21
|
Rungsa P, Peigneur S, Jangpromma N, Klaynongsruang S, Tytgat J, Daduang S. In Silico and In Vitro Structure-Activity Relationship of Mastoparan and Its Analogs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020561. [PMID: 35056876 PMCID: PMC8779355 DOI: 10.3390/molecules27020561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
Antimicrobial peptides are an important class of therapeutic agent used against a wide range of pathogens such as Gram-negative and Gram-positive bacteria, fungi, and viruses. Mastoparan (MpVT) is an α-helix and amphipathic tetradecapeptide obtained from Vespa tropica venom. This peptide exhibits antibacterial activity. In this work, we investigate the effect of amino acid substitutions and deletion of the first three C-terminal residues on the structure–activity relationship. In this in silico study, the predicted structure of MpVT and its analog have characteristic features of linear cationic peptides rich in hydrophobic and basic amino acids without disulfide bonds. The secondary structure and the biological activity of six designed analogs are studied. The biological activity assays show that the substitution of phenylalanine (MpVT1) results in a higher antibacterial activity than that of MpVT without increasing toxicity. The analogs with the first three deleted C-terminal residues showed decreased antibacterial and hemolytic activity. The CD (circular dichroism) spectra of these peptides show a high content α-helical conformation in the presence of 40% 2,2,2-trifluoroethanol (TFE). In conclusion, the first three C-terminal deletions reduced the length of the α-helix, explaining the decreased biological activity. MpVTs show that the hemolytic activity of mastoparan is correlated to mean hydrophobicity and mean hydrophobic moment. The position and spatial arrangement of specific hydrophobic residues on the non-polar face of α-helical AMPs may be crucial for the interaction of AMPs with cell membranes.
Collapse
Affiliation(s)
- Prapenpuksiri Rungsa
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand; (P.R.); (N.J.); (S.K.)
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Steve Peigneur
- Toxicology and Pharmacology, Campus Gasthuisberg, University of Leuven (KU Leuven), O&N 2, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium;
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand; (P.R.); (N.J.); (S.K.)
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand; (P.R.); (N.J.); (S.K.)
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jan Tytgat
- Toxicology and Pharmacology, Campus Gasthuisberg, University of Leuven (KU Leuven), O&N 2, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium;
- Correspondence: (J.T.); (S.D.)
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand; (P.R.); (N.J.); (S.K.)
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: (J.T.); (S.D.)
| |
Collapse
|
22
|
Luo L, Wu Z, Wang Y, Li H. Regulating the production and biological function of small extracellular vesicles: current strategies, applications and prospects. J Nanobiotechnology 2021; 19:422. [PMID: 34906146 PMCID: PMC8670141 DOI: 10.1186/s12951-021-01171-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023] Open
Abstract
Numerous studies have confirmed the great application potentials of small extracellular vesicles (sEVs) in biological medical field, especially in tissue repair and regeneration. However, the production capability of sEVs by noncancerous cells is very limited, while their dosage requirements in disease treatments are usually very high. Meanwhile, as cell aging, the sEV production capability of cells decreases and the biological function of sEVs changes accordingly. In addition, for special applications, sEVs carrying desired bioactive substances should be designed to perform their expected biological function. Therefore, improving the production of sEVs and precisely regulating their biological function are of great significance for promoting the clinical applications of sEVs. In this review, some of the current classic strategies in affecting the cellular behaviors of donor cells and subsequently regulating the production and biological function of their sEVs are summarized, including gene engineering methods, stress-inducing conditions, chemical regulators, physical methods, and biomaterial stimulations. Through applying these strategies, increased yield of sEVs with required biological function can be obtained for disease treatment and tissue repair, such as bone regeneration, wound healing, nerve function recovery and cancer treatment, which could not only reduce the harvest cost of sEV but promote the practical applications of sEVs in clinic.
Collapse
Affiliation(s)
- Lei Luo
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Zhi Wu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Haiyan Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
- Chemical and Environmental Engineering Department, School of Engineering, RMIT University, 124 La Trobe St, Melbourne, VIC, 3001, Australia.
| |
Collapse
|
23
|
Mehtani D, Puri N. Steering Mast Cells or Their Mediators as a Prospective Novel Therapeutic Approach for the Treatment of Hematological Malignancies. Front Oncol 2021; 11:731323. [PMID: 34631562 PMCID: PMC8497976 DOI: 10.3389/fonc.2021.731323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/09/2021] [Indexed: 01/09/2023] Open
Abstract
Tumor cells require signaling and close interaction with their microenvironment for their survival and proliferation. In the recent years, Mast cells have earned a greater importance for their presence and role in cancers. It is known that mast cells are attracted towards tumor microenvironment by secreted soluble chemotactic factors. Mast cells seem to exert a pro-tumorigenic role in hematological malignancies with a few exceptions where they showed anti-cancerous role. This dual role of mast cells in tumor growth and survival may be dependent on the intrinsic characteristics of the particular tumor, differences in tumor microenvironment according to tumor type, and the interactions and heterogeneity of mediators released by mast cells in the tumor microenvironment. In many studies, Mast cells and their mediators have been shown to affect tumor survival and growth, prognosis, inflammation, tumor vascularization and angiogenesis. Modulating mast cell accumulation, viability, activity and mediator release patterns may thus be important in controlling these malignancies. In this review, we emphasize on the role of mast cells in lymphoid malignancies and discuss strategies for targeting and steering mast cells or their mediators as a potential therapeutic approach for the treatment of these malignancies.
Collapse
Affiliation(s)
| | - Niti Puri
- Cellular and Molecular Immunology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
24
|
Su Z, Gu Y. Identification of key genes and pathways involved in abdominal aortic aneurysm initiation and progression. Vascular 2021; 30:639-649. [PMID: 34139912 DOI: 10.1177/17085381211026474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The study aimed to assess the gene expression profile of biopsies obtained from the neck of human abdominal aortic aneurysm (AAA) and the main site of AAA dilatation and to investigate the molecular mechanism underlying the development of AAA. METHODS The microarray profile of GSE47472 and GSE57691 were obtained from the Gene Expression Omnibus (GEO) database. The GSE47472 was a microarray dataset of tissues from the aortic neck of AAA patients versus normal controls. The GSE57691 was a microarray dataset including the tissues from main site of AAA dilatation versus normal controls. Differentially expressed genes (DEGs) were chosen using the R package and annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomics (KEGG). The hub genes were identified in the protein-protein interaction (PPI) network. RESULTS 342 upregulated DEGs and 949 downregulated DEGs were obtained from GSE47472. The upregulated DEGs were mainly enriched in biological regulation (ontology: BP), the membrane (ontology: CC), and protein binding (ontology: MF), and the downregulated genes were mainly enriched in biological regulation (ontology: BP), the membrane (ontology: CC), and protein blinding (ontology: MF). In the KEGG enrichment analysis, the DEGs mainly involved glycosaminoglycan degradation, vasopressin-regulated water reabsorption, and pyruvate metabolism. The hub genes in GSE47472 mainly include VAMP8, PTPRC, DYNLL1, RPL38, RPS4X, HNRNPA1, PRMT1, TGOLN2, PA2G4, and CUL2. From GSE57691, 248 upregulated DEGs and 1120 downregulated DEGs were selected. The upregulated DEGs of GSE57691 were mainly enriched in biological regulation (ontology: BP), the membrane (ontology: CC), and protein binding (ontology: MF), and the downregulated genes were mainly enriched in metabolic process (ontology: BP), the membrane (ontology: CC), and protein blinding (ontology: MF). In the KEGG enrichment analysis, the DEGs mainly involved the mitochondrial respiratory, respiratory chain complex, and respiratory chain. RPS15A, RPS5, RPL23, RPL27A, RPS24, RPL35A, RPS4X, RPL7, RPS25, and RPL21 were identified as the hub genes. CONCLUSION At the early stage of AAA, the current study indicated the importance of glycosaminoglycan degradation and anaerobic metabolism. We also identified several hub genes closely related to AAA (VAMP8, PTPRC, DYNLL1, etc.). At the progression of the AAA, the dysfunctional mitochondria played a critical role in AAA formation and the RPS15A, RPS5, RPL23, etc., were identified as the hub genes.
Collapse
Affiliation(s)
- Zhixiang Su
- Department of Vascular Surgery, 71044Xuanwu Hospital, Capital Medical University, Beijing,China
| | - Yongquan Gu
- Department of Vascular Surgery, 71044Xuanwu Hospital, Capital Medical University, Beijing,China
| |
Collapse
|
25
|
Mast cells modulate early responses to Mycobacterium bovis Bacillus Calmette-Guerin by phagocytosis and formation of extracellular traps. Cell Immunol 2021; 365:104380. [PMID: 34049012 DOI: 10.1016/j.cellimm.2021.104380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022]
Abstract
The early interactions between the vaccine Mycobacterium bovis Bacillus Calmette Guerin (BCG) and host peripheral innate immune cells like Mast cells (MCs) may pave the way for generating appropriate protective innate and adaptive immune responses. Mice on administration of BCG by intratracheal instillation showed a massive increase in MC numbers in the infected lung. In vitro co-culture of BCG and rodent Rat Basophilic Leukaemia (RBL-2H3) MCs led to significant killing of BCG. RBL-2H3 MCs were able to phagocytose BCG, take up BCG-derived antigens by macropinocytosis, generate Reactive Oxygen Species (ROS) and degranulate. Further, a few MCs died and released MC extracellular traps (MCETs) having DNA, histones and tryptase to trap BCG. This study highlights the multi-pronged effector responses of MCs on encountering BCG. These responses or their evasion may lead to success or failure of BCG vaccine to provide long term immunity to infections.
Collapse
|
26
|
Blank U, Huang H, Kawakami T. The high affinity IgE receptor: a signaling update. Curr Opin Immunol 2021; 72:51-58. [PMID: 33838574 DOI: 10.1016/j.coi.2021.03.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023]
Abstract
Here we update receptor proximal and distant signaling events of the mast cell high affinity IgE receptor (FcεRI) launching immediate type I hypersensitivity and an inflammatory cytokine-chemokine cascade. Different physiologic antigen concentrations, their affinity, and valency for the IgE ligand produce distinct intracellular signaling events with different outcomes. Investigating mast cell degranulation has revealed a complex molecular machinery that relays proximal signaling to cytoskeletal reorganization, granule transport and membrane fusion. Several new phosphorylation- and calcium-responsive effectors have been described. FcεRI signaling also promotes de novo gene transcription. Recent progress has identified enhancers at genes that are upregulated in mast cells after stimulation through FcεRI using next generation sequencing methods. Enhancers at genes that respond to antigenic stimulation in human mast cells revealed Ca2+-dependency. Stimulation-responsive super enhancers in mouse mast cells have also been identified. Mast cell lineage-determining transcription factor GATA2 primes these enhancers to respond to antigenic stimulation.
Collapse
Affiliation(s)
- Ulrich Blank
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Laboratoire d'Excellence Inflamex, Paris, France.
| | - Hua Huang
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Toshiaki Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
27
|
Ménasché G, Longé C, Bratti M, Blank U. Cytoskeletal Transport, Reorganization, and Fusion Regulation in Mast Cell-Stimulus Secretion Coupling. Front Cell Dev Biol 2021; 9:652077. [PMID: 33796537 PMCID: PMC8007931 DOI: 10.3389/fcell.2021.652077] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/03/2021] [Indexed: 01/16/2023] Open
Abstract
Mast cells are well known for their role in allergies and many chronic inflammatory diseases. They release upon stimulation, e.g., via the IgE receptor, numerous bioactive compounds from cytoplasmic secretory granules. The regulation of granule secretion and its interaction with the cytoskeleton and transport mechanisms has only recently begun to be understood. These studies have provided new insight into the interaction between the secretory machinery and cytoskeletal elements in the regulation of the degranulation process. They suggest a tight coupling of these two systems, implying a series of specific signaling effectors and adaptor molecules. Here we review recent knowledge describing the signaling events regulating cytoskeletal reorganization and secretory granule transport machinery in conjunction with the membrane fusion machinery that occur during mast cell degranulation. The new insight into MC biology offers novel strategies to treat human allergic and inflammatory diseases targeting the late steps that affect harmful release from granular stores leaving regulatory cytokine secretion intact.
Collapse
Affiliation(s)
- Gaël Ménasché
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Cyril Longé
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Manuela Bratti
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Ulrich Blank
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| |
Collapse
|
28
|
Harcha PA, Garcés P, Arredondo C, Fernández G, Sáez JC, van Zundert B. Mast Cell and Astrocyte Hemichannels and Their Role in Alzheimer's Disease, ALS, and Harmful Stress Conditions. Int J Mol Sci 2021; 22:ijms22041924. [PMID: 33672031 PMCID: PMC7919494 DOI: 10.3390/ijms22041924] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Considered relevant during allergy responses, numerous observations have also identified mast cells (MCs) as critical effectors during the progression and modulation of several neuroinflammatory conditions, including Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). MC granules contain a plethora of constituents, including growth factors, cytokines, chemokines, and mitogen factors. The release of these bioactive substances from MCs occurs through distinct pathways that are initiated by the activation of specific plasma membrane receptors/channels. Here, we focus on hemichannels (HCs) formed by connexins (Cxs) and pannexins (Panxs) proteins, and we described their contribution to MC degranulation in AD, ALS, and harmful stress conditions. Cx/Panx HCs are also expressed by astrocytes and are likely involved in the release of critical toxic amounts of soluble factors—such as glutamate, adenosine triphosphate (ATP), complement component 3 derivate C3a, tumor necrosis factor (TNFα), apoliprotein E (ApoE), and certain miRNAs—known to play a role in the pathogenesis of AD, ALS, and other neurodegenerative disorders. We propose that blocking HCs on MCs and glial cells offers a promising novel strategy for ameliorating the progression of neurodegenerative diseases by reducing the release of cytokines and other pro-inflammatory compounds.
Collapse
Affiliation(s)
- Paloma A. Harcha
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Valparaíso 2381850, Chile
- Correspondence: (P.A.H.); (J.C.S.); (B.v.Z.)
| | - Polett Garcés
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Cristian Arredondo
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Germán Fernández
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Juan C. Sáez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Valparaíso 2381850, Chile
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (P.A.H.); (J.C.S.); (B.v.Z.)
| | - Brigitte van Zundert
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Correspondence: (P.A.H.); (J.C.S.); (B.v.Z.)
| |
Collapse
|
29
|
Ayo TE, Adhikari P, Sugita S, Xu H. TNF Production in Activated RBL-2H3 Cells Requires Munc13-4. Inflammation 2021; 43:744-751. [PMID: 31897916 DOI: 10.1007/s10753-019-01161-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mast cell activation triggers intricate signaling pathways that promote the expression and/or release of a wide range of mediators including tumor necrosis factor (TNF; also known as TNFα). In this study, we investigated the connection between TNF secretion and TNF production, exploiting RBL-2H3 cells (a tumor analog of mucosal mast cells) that are depleted of Munc13-4, a crucial component of the mast cell exocytic machinery. We showed that antigen/IgE elicited robust TNF production in RBL-2H3 cells, but not in Munc13-4 knockout cells. The production defect was corrected when Munc13-4 was reintroduced into the knockout cell line, suggesting that the phenotype was not caused by any secondary effect derived from the knockout approach. Furthermore, pre-incubation of RBL-2H3 cells with R-7050, an antagonist of TNF receptor-dependent signaling, was shown to block TNF production without inhibiting TNF release. These observations provide fresh evidence for a robust feed-back loop to boost TNF production in activated mast cells.
Collapse
Affiliation(s)
- Tolulope E Ayo
- Department of Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Pratikshya Adhikari
- Department of Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Shuzo Sugita
- Division of Fundamental Neurobiology, University Health Network, Toronto, ON, M5T 2S8, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hao Xu
- Department of Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
| |
Collapse
|
30
|
Willows S, Kulka M. Harnessing the Power of Mast Cells in unconventional Immunotherapy Strategies and Vaccine Adjuvants. Cells 2020; 9:cells9122713. [PMID: 33352850 PMCID: PMC7766453 DOI: 10.3390/cells9122713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Mast cells are long-lived, granular, myeloid-derived leukocytes that have significant protective and repair functions in tissues. Mast cells sense disruptions in the local microenvironment and are first responders to physical, chemical and biological insults. When activated, mast cells release growth factors, proteases, chemotactic proteins and cytokines thereby mobilizing and amplifying the reactions of the innate and adaptive immune system. Mast cells are therefore significant regulators of homeostatic functions and may be essential in microenvironmental changes during pathogen invasion and disease. During infection by helminths, bacteria and viruses, mast cells release antimicrobial factors to facilitate pathogen expulsion and eradication. Mast cell-derived proteases and growth factors protect tissues from insect/snake bites and exposure to ultraviolet radiation. Finally, mast cells release mediators that promote wound healing in the inflammatory, proliferative and remodelling stages. Since mast cells have such a powerful repertoire of functions, targeting mast cells may be an effective new strategy for immunotherapy of disease and design of novel vaccine adjuvants. In this review, we will examine how certain strategies that specifically target and activate mast cells can be used to treat and resolve infections, augment vaccines and heal wounds. Although these strategies may be protective in certain circumstances, mast cells activation may be deleterious if not carefully controlled and any therapeutic strategy using mast cell activators must be carefully explored.
Collapse
Affiliation(s)
- Steven Willows
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Dr, Edmonton, AB T6G 2M9, Canada;
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Dr, Edmonton, AB T6G 2M9, Canada;
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: ; Tel.: +1-780-641-1687
| |
Collapse
|
31
|
AhYoung AP, Eckard SC, Gogineni A, Xi H, Lin SJ, Gerhardy S, Cox C, Phung QT, Hackney JA, Katakam AK, Reichelt M, Caplazi P, Manzanillo P, Zhang J, Roose-Girma M, Tam LW, Newman RJ, Murthy A, Weimer RM, Lill JR, Lee WP, Grimbaldeston M, Kirchhofer D, van Lookeren Campagne M. Neutrophil serine protease 4 is required for mast cell-dependent vascular leakage. Commun Biol 2020; 3:687. [PMID: 33214666 PMCID: PMC7677402 DOI: 10.1038/s42003-020-01407-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023] Open
Abstract
Vascular leakage, or edema, is a serious complication of acute allergic reactions. Vascular leakage is triggered by the release of histamine and serotonin from granules within tissue-resident mast cells. Here, we show that expression of Neutrophil Serine Protease 4 (NSP4) during the early stages of mast cell development regulates mast cell-mediated vascular leakage. In myeloid precursors, the granulocyte-macrophage progenitors (GMPs), loss of NSP4 results in the decrease of cellular levels of histamine, serotonin and heparin/heparan sulfate. Mast cells that are derived from NSP4-deficient GMPs have abnormal secretory granule morphology and a sustained reduction in histamine and serotonin levels. Consequently, in passive cutaneous anaphylaxis and acute arthritis models, mast cell-mediated vascular leakage in the skin and joints is substantially reduced in NSP4-deficient mice. Our findings reveal that NSP4 is required for the proper storage of vasoactive amines in mast cell granules, which impacts mast cell-dependent vascular leakage in mouse models of immune complex-mediated diseases.
Collapse
Affiliation(s)
- Andrew P AhYoung
- Department of Early Discovery Biochemistry, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Sterling C Eckard
- Department of Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Alvin Gogineni
- Department of Biomedical Imaging, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Hongkang Xi
- Department of Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - S Jack Lin
- Department of Early Discovery Biochemistry, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Stefan Gerhardy
- Department of Early Discovery Biochemistry, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Christian Cox
- Department of Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Qui T Phung
- Department of Microchemistry, Proteomics, Lipidomics, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jason A Hackney
- Department of Bioinformatics, 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Mike Reichelt
- Department of Pathology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Patrick Caplazi
- Department of Pathology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Paolo Manzanillo
- Department of Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA
- Department of Inflammation and Oncology, Amgen Research, Amgen, 1120 Veterans Boulevard, South San Francisco, CA, 94080, USA
| | - Juan Zhang
- Department of Translational Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Merone Roose-Girma
- Department of Molecular Biology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Lucinda W Tam
- Department of Molecular Biology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Robert J Newman
- Department of Molecular Biology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Aditya Murthy
- Department of Cancer Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Robby M Weimer
- Department of Biomedical Imaging, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jennie R Lill
- Department of Microchemistry, Proteomics, Lipidomics, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Wyne P Lee
- Department of Translational Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Michele Grimbaldeston
- OMNI-Biomarker Development, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Menno van Lookeren Campagne
- Department of Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA.
- Department of Inflammation and Oncology, Amgen Research, Amgen, 1120 Veterans Boulevard, South San Francisco, CA, 94080, USA.
| |
Collapse
|
32
|
Negahdaripour M, Owji H, Eskandari S, Zamani M, Vakili B, Nezafat N. Small extracellular vesicles (sEVs): discovery, functions, applications, detection methods and various engineered forms. Expert Opin Biol Ther 2020; 21:371-394. [PMID: 32945228 DOI: 10.1080/14712598.2021.1825677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Extracellular vesicles (EVs) are cell-created delivery systems of proteins, lipids, or nucleic acids, and means of extracellular communication. Though sEVs were initially considered to be the waste disposal mechanism, today they are at the forefront of research with different biological and pathological functions. Such EVs play a key role in the immunoregulation, CNS development, nervous system physiology, mammary gland development, induction of immunosuppression in pregnancy, the developmental signaling pathways, regeneration of different tissues, inflammation, angiogenesis, coagulation, apoptosis, stem cell differentiation, and extracellular matrix turnover. AREAS COVERED SEVs contribute to the pathogenesis of different cancers and the progression of various neurodegenerative diseases, infections, as well as metabolic and cardiovascular diseases. Expert Opinion: There is no exact classification for EVs; however, according to size, density, morphological features, content, and biogenesis, they can be categorized into three major classes: microvesicles (ectosomes or microparticles), apoptotic bodies, and sEVs. SEVs, as an important class of EVs, have a crucial role in distinct biological functions. Moreover, shedding light on different structural and molecular aspects of sEV has led to their application in various therapeutic, diagnostic, and drug delivery fields. In this review, we have endeavored to elaborate on different aspects of EVs, especially sEVs.
Collapse
Affiliation(s)
- Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Hajar Owji
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Sedigheh Eskandari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mozhdeh Zamani
- Colorectal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Vakili
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
33
|
Orinska Z, Hagemann PM, Halova I, Draber P. Tetraspanins in the regulation of mast cell function. Med Microbiol Immunol 2020; 209:531-543. [PMID: 32507938 PMCID: PMC7395004 DOI: 10.1007/s00430-020-00679-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022]
Abstract
Mast cells (MCs) are long-living immune cells highly specialized in the storage and release of different biologically active compounds and are involved in the regulation of innate and adaptive immunity. MC degranulation and replacement of MC granules are accompanied by active membrane remodelling. Tetraspanins represent an evolutionary conserved family of transmembrane proteins. By interacting with lipids and other membrane and intracellular proteins, they are involved in organisation of membrane protein complexes and act as "molecular facilitators" connecting extracellular and cytoplasmic signaling elements. MCs express different tetraspanins and MC degranulation is accompanied by changes in membrane organisation. Therefore, tetraspanins are very likely involved in the regulation of MC exocytosis and membrane reorganisation after degranulation. Antiviral response and production of exosomes are further aspects of MC function characterized by dynamic changes of membrane organization. In this review, we pay a particular attention to tetraspanin gene expression in different human and murine MC populations, discuss tetraspanin involvement in regulation of key MC signaling complexes, and analyze the potential contribution of tetraspanins to MC antiviral response and exosome production. In-depth knowledge of tetraspanin-mediated molecular mechanisms involved in different aspects of the regulation of MC response will be beneficial for patients with allergies, characterized by overwhelming MC reactions.
Collapse
Affiliation(s)
- Zane Orinska
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Lungenzentrum, Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.
| | - Philipp M Hagemann
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Lungenzentrum, Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
34
|
Abstract
Mast cells (MCs) are well known for their role in allergic conditions. This cell can be activated by various types of secretagogues, ranging from a small chemical to a huge protein. Mast cell activation by secretagogues triggers the increase in intracellular calcium (iCa2+) concentration, granule trafficking, and exocytosis. Activated mast cells release their intra-granular pre-stored mediator or the newly synthesized mediator in the exocytosis process, in the form of degranulation or secretion. There are at least three types of exocytosis in mast cells, which are suggested to contribute to the release of different mediators, i.e.,, piecemeal, kiss-and-run, and compound exocytosis. The status of mast cells, i.e., activated or resting, is often determined by measuring the concentration of the released mediator such as histamine or β-hexosaminidase. This review summarizes several mast cell components that have been and are generally used as mast cell activation indicator, from the classical histamine and β-hexosaminidase measurement, to eicosanoid and granule trafficking observation. Basic principle of the component determination is also explained with their specified research application and purpose. The information will help to predict the experiment results with a certain study design.
Collapse
Affiliation(s)
- Muhammad Novrizal Abdi Sahid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada , Yogyakarta, Indonesia.,Curcumin Research Center, Faculty of Pharmacy, Univeristas Gadjah Mada , Yogyakarta, Indonesia
| | - Takeshi Kiyoi
- Division of Analytical Bio-medicine, Advanced Research Support Center, Ehime University , Toon, Ehime, Japan
| |
Collapse
|
35
|
Elieh Ali Komi D, Wöhrl S, Bielory L. Mast Cell Biology at Molecular Level: a Comprehensive Review. Clin Rev Allergy Immunol 2020; 58:342-365. [PMID: 31828527 DOI: 10.1007/s12016-019-08769-2] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mast cells (MCs) are portions of the innate and adaptive immune system derived from bone marrow (BM) progenitors that are rich in cytoplasmic granules. MC maturation, phenotype, and function are determined by their microenvironment. MCs accumulate at inflammatory sites associated with atopy, wound healing, and malignancies. They interact with the external environment and are predominantly located in close proximity of blood vessels and sensory nerves. MCs are key initiators and modulators of allergic, anaphylactic, and other inflammatory reactions, by induction of vasodilation, promoting of vascular permeability, recruitment of inflammatory cells, facilitation of adaptive immune responses, and modulation of angiogenesis, and fibrosis. They express a wide range of receptors, e.g., for IgE (FcεRI), IgG (FcγR), stem cell factor (SCF) (KIT receptor or CD117), complement (including C5aR), and cytokines, that upon activation trigger various signaling pathways. The final consequence of such ligand receptor-based activation of MCs is the release of a broad array of mediators which are classified in three categories. While some mediators are preformed and remain stored in granules such as heparin, histamine, and enzymes mainly chymase and tryptase, others are de novo synthesized only after activation including LTB4, LTD4, PDG2, and PAF, and the cytokines IL-10, IL-8, IL-5, IL-3, IL-1, GM-CSF, TGF-β, VEGF, and TNF-α. Depending on the stimulus, MCs calibrate their pattern of mediator release, modulate the amplification of allergic inflammation, and are involved in the resolution of the immune responses. Here, we review recent findings and reports that help to understand the MC biology, pathology, and physiology of diseases with MC involvement.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Stefan Wöhrl
- Floridsdorf Allergy Center (FAZ), Vienna, Austria
| | - Leonard Bielory
- Department of Medicine and Ophthalmology, Hackensack Meridian School of Medicine at Seton Hall University, 400 Mountain Avenue, Springfield, NJ, 07081-2515, USA.
- Department of Medicine, Thomas Jefferson Universi ty Sidney Kimmel School of Medicine, Philadelphia, PA, USA.
- Rutgers University Center of Environmental Prediction, New Brunswick, NJ, USA.
| |
Collapse
|
36
|
Jadli AS, Ballasy N, Edalat P, Patel VB. Inside(sight) of tiny communicator: exosome biogenesis, secretion, and uptake. Mol Cell Biochem 2020; 467:77-94. [PMID: 32088833 DOI: 10.1007/s11010-020-03703-z] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/14/2020] [Indexed: 01/07/2023]
Abstract
Discovered in the late 1980s as an extracellular vesicle of endosomal origin secreted from reticulocytes, exosomes recently gained scientific attention due to its role in intercellular communication. Exosomes have now been identified to carry cell-specific cargo of nucleic acids, proteins, lipids, and other biologically active molecules. Exosomes can be selectively taken up by neighboring or distant cells, which has shown to result in structural and functional responses in the recipient cells. Recent advances indicate the regulation of exosomes at various steps, including their biogenesis, selection of their cargo, as well as cell-specific uptake. This review will shed light on the differences between the type of extracellular vesicles. In this review, we discuss the recent progress in our understanding of the regulation of exosome biogenesis, secretion, and uptake.
Collapse
Affiliation(s)
- Anshul S Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, The University of Calgary, HMRB-53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Libin Cardiovascular Institute of Alberta, The University of Calgary, HMRB-71, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Noura Ballasy
- Department of Physiology and Pharmacology, Cumming School of Medicine, The University of Calgary, HMRB-53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Libin Cardiovascular Institute of Alberta, The University of Calgary, HMRB-71, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Pariya Edalat
- Department of Physiology and Pharmacology, Cumming School of Medicine, The University of Calgary, HMRB-53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Libin Cardiovascular Institute of Alberta, The University of Calgary, HMRB-71, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Vaibhav B Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, The University of Calgary, HMRB-53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada. .,Libin Cardiovascular Institute of Alberta, The University of Calgary, HMRB-71, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
37
|
Yu H, Sun T, An J, Wen L, Liu F, Bu Z, Cui Y, Feng J. Potential Roles of Exosomes in Parkinson's Disease: From Pathogenesis, Diagnosis, and Treatment to Prognosis. Front Cell Dev Biol 2020; 8:86. [PMID: 32154247 PMCID: PMC7047039 DOI: 10.3389/fcell.2020.00086] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease in the world, after Alzheimer's disease (AD), affecting approximately 1% of people over 65 years of age. Exosomes were once considered to be cellular waste and functionless. However, our understanding about exosome function has increased, and exosomes have been found to carry specific proteins, lipids, functional messenger RNAs (mRNAs), high amounts of non-coding RNAs (including microRNAs, lncRNAs, and circRNAs) and other bioactive substances. Exosomes have been shown to be involved in many physiological processes in vivo, including intercellular communication, cell migration, angiogenesis, and anti-tumor immunity. Moreover, exosomes may be pivotal in the occurrence and progression of various diseases. Therefore, exosomes have several diverse potential applications due to their unique structure and function. For instance, exosomes may be used as biological markers for the diagnosis and prognosis of various diseases, or as a natural carrier of drugs for clinical treatment. Here, we review the potential roles of exosomes in the pathogenesis, diagnosis, treatment, and prognosis of PD.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tong Sun
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing An
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fei Liu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongqi Bu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yueran Cui
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
38
|
Moriyama Y, Hatano R, Moriyama S, Uehara S. Vesicular polyamine transporter as a novel player in amine-mediated chemical transmission. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183208. [PMID: 32004521 DOI: 10.1016/j.bbamem.2020.183208] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023]
Abstract
The solute carrier 18B1 (SLC18B1) is the most recently identified gene of the vesicular amine transporter family and is conserved in the animal kingdom from insects to humans. Proteoliposomes containing the purified human SLC18B1 protein transport not only monoamines, but also polyamines, such as spermidine (Spd) and spermine (Spm), using an electrochemical gradient of H+ established by vacuolar H+-ATPase (V-ATPase) as the driving force. SLC18B1 gene knockdown abolished the exocytosis of polyamines from mast cells, which affected the secretion of histamine. SLC18B1 gene knockout decreased polyamine levels by ~20% in the brain, and impaired short- and long-term memory. Thus, the SLC18B1 protein is responsible for the vesicular storage and release of polyamines, and functions as a vesicular polyamine transporter (VPAT). VPAT may define when, where, and how polyamine-mediated chemical transmission occurs, providing insights into the more versatile and complex features of amine-mediated chemical transmission than currently considered.
Collapse
Affiliation(s)
- Yoshinori Moriyama
- Department of Biochemistry, Matsumoto Dental University, Shiojiri 399-0781, Japan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; CYRIC Tohoku University, Sendai 980-8578, Japan.
| | - Ryo Hatano
- Department of Medicinal Physiology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Satomi Moriyama
- Laboratory of Bio-Molecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara 634-8521, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, Shiojiri 399-0781, Japan
| |
Collapse
|
39
|
McCormack JJ, Harrison‐Lavoie KJ, Cutler DF. Human endothelial cells size-select their secretory granules for exocytosis to modulate their functional output. J Thromb Haemost 2020; 18:243-254. [PMID: 31519030 PMCID: PMC7155122 DOI: 10.1111/jth.14634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The secretory granules of endothelial cells, Weibel-Palade bodies, are released in response to numerous extracellular signals. Their cargo is critical to many vascular functions including hemostasis and inflammation. This presents a fundamental problem: how can these cells initiate tailor-made responses from the release of a single type of organelle, each with similar cargo? Each cell contains Weibel-Palade bodies in a wide range of sizes, and we have shown that experimentally shortening these organelles disproportionately reduces their ability to initiate hemostasis in vitro, leaving leukocyte recruitment unaffected. Could the production of this range of sizes underpin differential responses? OBJECTIVES To determine whether different agonists drive the exocytosis of different sizes of Weibel-Palade bodies. METHODS We used a high-throughput automated unbiased imaging workflow to analyze the sizes of Weibel-Palade bodies within human umbilical vein endothelial cells (HUVECs) before and after agonist activation to determine changes in organelle size distributions. RESULTS We found that a subset of agonists differentially evoke the release of the longest, most pro-hemostatic organelles. Inhibiting the release of these longest organelles by just 15% gives a fall of 60% in an assay of secreted von Willebrand factor (vWF) function. CONCLUSIONS The size-selection of granules for exocytosis represents a novel layer of control, allowing endothelial cells to provide diverse responses to different signals via the release of a single type of organelle.
Collapse
Affiliation(s)
| | | | - Daniel F. Cutler
- MRC Laboratory of Molecular Cell BiologyUniversity College LondonLondonUK
| |
Collapse
|
40
|
Paudel S, Mehtani D, Puri N. Mast Cells May Differentially Regulate Growth of Lymphoid Neoplasms by Opposite Modulation of Histamine Receptors. Front Oncol 2019; 9:1280. [PMID: 31824856 PMCID: PMC6881378 DOI: 10.3389/fonc.2019.01280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022] Open
Abstract
Cancer microenvironment is complex and consists of various immune cells. There is evidence for mast cell (MC) infiltration of tumors, but their role thereof is poorly understood. In this study, we explored the effects of mast cell and their mediators on the growth of hematological cancer cells. The affect is demonstrated using RBL-2H3 MCs, and YAC-1, EL4 and L1210 as hematological cancer cell lines. Direct contact with MCs or stimulation by their mediators caused growth inhibition of YAC-1 cells, growth enhancement of EL4 cells and no change in growth of L1210 cells. This effect was confirmed by cancer cell recovery, cell viability, mitochondrial health, and cell cycle analysis. MCs showed mediator release in direct contact with tumor cells. MC mediators' treatment to YAC-1 and EL4 yielded exactly opposite modulations of survival markers, Survivin and COX-2 and apoptosis markers, Caspase-3, Bcl-2, in the two cell lines. Histamine being an important MC mediator, effect of histamine on cell recovery, survival markers and expression of various histamine receptors and their modulation in cancer cells was studied. Again, YAC-1 and EL4 cells showed contrary histamine receptor expression modulation in response to MC mediators. Histamine receptor antagonist co-treatment with MC mediators to the cancer cells suggested a major involvement of H2 and H4 receptor in growth inhibition in YAC-1 cells, and contribution of H1, H2, and H4 receptors in cell growth enhancement in EL4 cells. L1210 showed changes in the histamine receptors' expression but no effect on treatment with receptor antagonists. It can be concluded that anti-cancerous action of MCs or their mediators may include direct growth inhibition, but their role may differ depending on the tumor.
Collapse
Affiliation(s)
- Sandeep Paudel
- Cellular and Molecular Immunology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Deeksha Mehtani
- Cellular and Molecular Immunology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Niti Puri
- Cellular and Molecular Immunology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
41
|
Emerging Role of Genetic Alterations Affecting Exosome Biology in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20174113. [PMID: 31450727 PMCID: PMC6747137 DOI: 10.3390/ijms20174113] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
The abnormal deposition of proteins in brain tissue is a common feature of neurodegenerative diseases (NDs) often accompanied by the spread of mutated proteins, causing neuronal toxicity. Exosomes play a fundamental role on their releasing in extracellular space after endosomal pathway activation, allowing to remove protein aggregates by lysosomal degradation or their inclusion into multivesicular bodies (MVBs), besides promoting cellular cross-talk. The emerging evidence of pathogenic mutations associated to ND susceptibility, leading to impairment of exosome production and secretion, opens a new perspective on the mechanisms involved in neurodegeneration. Recent findings suggest to investigate the genetic mechanisms regulating the different exosome functions in central nervous system (CNS), to understand their role in the pathogenesis of NDs, addressing the identification of diagnostic and pharmacological targets. This review aims to summarize the mechanisms underlying exosome biogenesis, their molecular composition and functions in CNS, with a specific focus on the recent findings invoking a defective exosome biogenesis as a common biological feature of the major NDs, caused by genetic alterations. Further definition of the consequences of specific genetic mutations on exosome biogenesis and release will improve diagnostic and pharmacological studies in NDs.
Collapse
|
42
|
Proteomic Analysis of Lipid Rafts from RBL-2H3 Mast Cells. Int J Mol Sci 2019; 20:ijms20163904. [PMID: 31405203 PMCID: PMC6720779 DOI: 10.3390/ijms20163904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
Lipid rafts are highly ordered membrane microdomains enriched in cholesterol, glycosphingolipids, and certain proteins. They are involved in the regulation of cellular processes in diverse cell types, including mast cells (MCs). The MC lipid raft protein composition was assessed using qualitative mass spectrometric characterization of the proteome from detergent-resistant membrane fractions from RBL-2H3 MCs. Using two different post-isolation treatment methods, a total of 949 lipid raft associated proteins were identified. The majority of these MC lipid raft proteins had already been described in the RaftProtV2 database and are among highest cited/experimentally validated lipid raft proteins. Additionally, more than half of the identified proteins had lipid modifications and/or transmembrane domains. Classification of identified proteins into functional categories showed that the proteins were associated with cellular membrane compartments, and with some biological and molecular functions, such as regulation, localization, binding, catalytic activity, and response to stimulus. Furthermore, functional enrichment analysis demonstrated an intimate involvement of identified proteins with various aspects of MC biological processes, especially those related to regulated secretion, organization/stabilization of macromolecules complexes, and signal transduction. This study represents the first comprehensive proteomic profile of MC lipid rafts and provides additional information to elucidate immunoregulatory functions coordinated by raft proteins in MCs.
Collapse
|
43
|
Theoharides TC, Kavalioti M, Tsilioni I. Mast Cells, Stress, Fear and Autism Spectrum Disorder. Int J Mol Sci 2019; 20:E3611. [PMID: 31344805 PMCID: PMC6696098 DOI: 10.3390/ijms20153611] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 02/07/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a developmental condition characterized by impaired communication and obsessive behavior that affects 1 in 59 children. ASD is expected to affect 1 in about 40 children by 2020, but there is still no distinct pathogenesis or effective treatments. Prenatal stress has been associated with higher risk of developing ASD in the offspring. Moreover, children with ASD cannot handle anxiety and respond disproportionately even to otherwise benign triggers. Stress and environmental stimuli trigger the unique immune cells, mast cells, which could then trigger microglia leading to abnormal synaptic pruning and dysfunctional neuronal connectivity. This process could alter the "fear threshold" in the amygdala and lead to an exaggerated "fight-or-flight" reaction. The combination of corticotropin-releasing hormone (CRH), secreted under stress, together with environmental stimuli could be major contributors to the pathogenesis of ASD. Recognizing these associations and preventing stimulation of mast cells and/or microglia could greatly benefit ASD patients.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA.
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA.
| | - Maria Kavalioti
- Graduate Program in Education, Lesley University, Cambridge, MA 02138, USA
| | - Irene Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
44
|
Wan M, Ning B, Spiegel S, Lyon CJ, Hu TY. Tumor-derived exosomes (TDEs): How to avoid the sting in the tail. Med Res Rev 2019; 40:385-412. [PMID: 31318078 PMCID: PMC6917833 DOI: 10.1002/med.21623] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/26/2019] [Accepted: 06/13/2019] [Indexed: 02/05/2023]
Abstract
Exosomes are abundantly secreted extracellular vesicles that accumulate in the circulation and are of great interest for disease diagnosis and evaluation since their contents reflects the phenotype of their cell of origin. Tumor‐derived exosomes (TDEs) are of particular interest for cancer diagnosis and therapy, since most tumor demonstrate highly elevated exosome secretion rates and provide specific information about the genotype of a tumor and its response to treatment. TDEs also contain regulatory factors that can alter the phenotypes of local and distant tissue sites and alter immune cell functions to promote tumor progression. The abundance, information content, regulatory potential, in vivo half‐life, and physical durability of exosomes suggest that TDEs may represent a superior source of diagnostic biomarkers and treatment targets than other materials currently under investigation. This review will summarize current information on mechanisms that may differentially regulate TDE biogenesis, TDE effects on the immune system that promote tumor survival, growth, and metastasis, and new approaches understudy to counteract or utilize TDE properties in cancer therapies.
Collapse
Affiliation(s)
- MeiHua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Bo Ning
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Sarah Spiegel
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona.,Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Christopher J Lyon
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona.,Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Tony Y Hu
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona.,Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona
| |
Collapse
|
45
|
Agarwal V, Naskar P, Agasti S, Khurana GK, Vishwakarma P, Lynn AM, Roche PA, Puri N. The cysteine-rich domain of synaptosomal-associated protein of 23 kDa (SNAP-23) regulates its membrane association and regulated exocytosis from mast cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1618-1633. [PMID: 31260699 DOI: 10.1016/j.bbamcr.2019.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 01/04/2023]
Abstract
Synaptosomal-associated protein of 23 kDa (SNAP-23) plays an important role during regulated exocytosis of various inflammatory mediators, stored in secretory granules, from mast cells in response to physiological triggers. It is however synthesized as a soluble protein, and the mechanisms by which free SNAP-23 gets peripherally associated with membrane for the regulation of exocytosis, are poorly defined. SNAP-23 contains a hydrophobic domain with five closely spaced cysteines which get palmitoylated, and we show that SNAP-23 cysteine mutants show differential membrane association when transfected in rat basophilic leukemia (RBL) mast cells. SNAP-23 Cys- mutant, devoid of all five cysteines, and SNAP-23 P119A (proline to alanine) mutant, that likely interferes with palmitoylation of SNAP-23 by palmitoyl transferases are completely cytosolic. Mutating specific cysteines (Cys; C) to leucine or phenylalanine (L or F; retains hydrophobicity but lacks palmitoylation) partially decreases the membrane association of SNAP-23 which is further hampered by alanine (A; has lesser hydrophobicity, and lacks palmitoylation) mutation at C79, C80 or C83 position. Cloning a transmembrane domain MDR31-145 from multidrug resistance protein into SNAP-23 Cys- mutant is able to partially restore its membrane association. Regulated exocytosis studies using co-transfected human growth hormone (hGH) secretion reporter plasmid revealed that overexpression of SNAP-23 Cys- and P119A mutants significantly inhibits the overall extent of exocytosis from RBL mast cells, whereas expression of SNAP-23 Cys--MDR31-145 fusion protein is able to restore exocytosis. These results establish that the cysteine-rich domain of SNAP-23 regulates its membrane association and thereby also regulates exocytosis from mast cells.
Collapse
Affiliation(s)
- Vasudha Agarwal
- Cellular and Molecular Immunology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pieu Naskar
- Cellular and Molecular Immunology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suchhanda Agasti
- Cellular and Molecular Immunology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Gagandeep K Khurana
- Cellular and Molecular Immunology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Poonam Vishwakarma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Andrew M Lynn
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Niti Puri
- Cellular and Molecular Immunology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
46
|
Dampening of mast cell secondary responses to allergen involves specific signalling and epigenetic changes. Cell Immunol 2019; 344:103944. [PMID: 31213284 DOI: 10.1016/j.cellimm.2019.103944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/14/2019] [Accepted: 06/07/2019] [Indexed: 11/23/2022]
Abstract
Allergic diseases are increasing worldwide. Allergen and IgE dependent mast cell (MC) activation is the major initiator of these clinical symptoms. During this study, the effect of multiple exposures to the same allergen, on MC degranulation was studied. First, MC recovery in terms of surface expression of high affinity receptor FcεRI, and granule content after a primary allergen challenge was confirmed. Overall, previous exposure of MCs to allergen challenge led to a significant reduction in pre-stored mediator release during the secondary challenge at various time points and with various doses of allergen in vitro. The dampened response was not due to any defects in very early steps in signalling involving FcεRI activation. Inhibition of dampening response during secondary challenge by various inhibitors like wortmannin, tranylcypromine and pargyline, indicated the involvement of PI3K signalling and chromatin modifications. Our study provides insight into new therapeutic avenues for treating allergic disorders targeting MCs.
Collapse
|
47
|
Zhang X, Huang Q, Wang X, Deng Z, Li J, Yan X, Jauhiainen M, Metso J, Libby P, Liu J, Shi GP. Dietary cholesterol is essential to mast cell activation and associated obesity and diabetes in mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1690-1700. [PMID: 30978390 DOI: 10.1016/j.bbadis.2019.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Mast cell (MC) deficiency in KitW-sh/W-sh mice and inhibition with disodium chromoglycate (DSCG) or ketotifen reduced obesity and diabetes in mice on a high-cholesterol (1.25%) Western diet. Yet, Kit-independent MC-deficient mice and mice treated with DSCG disproved MC function in obesity and diabetes when mice are fed a high-fat diet (HFD) that contains no cholesterol. This study reproduced the obesity and diabetes inhibitory activities of DSCG and ketotifen from mice on a Western diet. Yet, such inhibitory effects were diminished in mice on the HFD. DSCG and ketotifen MC inhibitory activities were recovered from mice on the HFD supplemented with the same amount of cholesterol (1.25%) as that in the Western diet. DSCG and ketotifen effectively blunted the high-cholesterol diet-induced elevations of blood histamine and adipose tissue MC degranulation. Pearson's correlation test demonstrated significant and positive correlations between plasma histamine and total cholesterol or low-density lipoprotein-cholesterol (LDL). In cultured bone marrow-derived MCs, plasma from mice following a Western diet or a cholesterol-supplemented HFD, but not those from HFD-fed mice, induced MC degranulation and the release of β-hexosaminidase, histamine, and serotonin. IgE, LDL, very low-density lipoprotein, and high-density lipoprotein also induced MC activation, which can be inhibited by DSCG and ketotifen depending on the doses and types of MC inhibitors and cholesterol, and also the MC granule molecules of interest. DSCG or ketotifen lost their activities in inhibiting LDL-induced activation of MCs from LDL receptor-deficient mice. These results indicate that dietary cholesterol critically influences the function of mouse MCs.
Collapse
Affiliation(s)
- Xian Zhang
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qin Huang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xin Wang
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhiyong Deng
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jie Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiang Yan
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, National Institute for Health and Welfare, Genomics and biomarkers unit, Biomedicum 2U, Helsinki, Finland
| | - Jari Metso
- Minerva Foundation Institute for Medical Research, National Institute for Health and Welfare, Genomics and biomarkers unit, Biomedicum 2U, Helsinki, Finland
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jian Liu
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Azam Z, Quillien V, Wang G, To SST. The potential diagnostic and prognostic role of extracellular vesicles in glioma: current status and future perspectives. Acta Oncol 2019; 58:353-362. [PMID: 30632857 DOI: 10.1080/0284186x.2018.1551621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lack of appropriate diagnostic/prognostic tools for glioblastoma (GB) is considered one of the major setbacks in the early diagnosis and treatment of this deadly brain tumor. The current gold standard for its diagnosis and staging still relies on invasive biopsy followed by histological examination as well as molecular profiling. Nevertheless, noninvasive approaches are being explored and one example is through the investigation of extracellular vesicles (EVs) in the biofluids of GB patients. EVs are known to carry molecular cargoes such as DNA, mRNA, miRNA, proteins and lipids in almost every type of body fluids. Thus, molecular signature of GB may be present in the EVs derived from these patients. This review focuses on the diagnostic/prognostic potential of EVs in GB, through presenting recent studies on (i) molecular components of EVs, (ii) links between EVs and GB tumor microenvironment, and (iii) clinical potential of EV biomarkers, together with the technical shortcomings researchers need to consider for future studies.
Collapse
Affiliation(s)
- Zulfikar Azam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Véronique Quillien
- Department of Biology, Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Shing-Shun Tony To
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
49
|
Wu H, Denna TH, Storkersen JN, Gerriets VA. Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacol Res 2019; 140:100-114. [DOI: 10.1016/j.phrs.2018.06.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/01/2018] [Accepted: 06/17/2018] [Indexed: 12/16/2022]
|
50
|
Dingjan I, Linders PTA, Verboogen DRJ, Revelo NH, Ter Beest M, van den Bogaart G. Endosomal and Phagosomal SNAREs. Physiol Rev 2018; 98:1465-1492. [PMID: 29790818 DOI: 10.1152/physrev.00037.2017] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein family is of vital importance for organelle communication. The complexing of cognate SNARE members present in both the donor and target organellar membranes drives the membrane fusion required for intracellular transport. In the endocytic route, SNARE proteins mediate trafficking between endosomes and phagosomes with other endosomes, lysosomes, the Golgi apparatus, the plasma membrane, and the endoplasmic reticulum. The goal of this review is to provide an overview of the SNAREs involved in endosomal and phagosomal trafficking. Of the 38 SNAREs present in humans, 30 have been identified at endosomes and/or phagosomes. Many of these SNAREs are targeted by viruses and intracellular pathogens, which thereby reroute intracellular transport for gaining access to nutrients, preventing their degradation, and avoiding their detection by the immune system. A fascinating picture is emerging of a complex transport network with multiple SNAREs being involved in consecutive trafficking routes.
Collapse
Affiliation(s)
- Ilse Dingjan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Peter T A Linders
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Danielle R J Verboogen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| |
Collapse
|