1
|
Akintola OA, Patterson MB, Smith JG, DeMartino GN, Mitra AK, Kisselev AF. Inhibition of proteolytic and ATPase activities of the proteasome by the BTK inhibitor CGI-1746. iScience 2024; 27:110961. [PMID: 39759071 PMCID: PMC11700655 DOI: 10.1016/j.isci.2024.110961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2024] [Accepted: 09/11/2024] [Indexed: 01/07/2025] Open
Abstract
Bruton's tyrosine kinase (BTK) inhibitor, ibrutinib, has been shown to synergize in vitro with proteasome inhibitors (PIs) in reducing the viability of cells derived from B cell malignancies, but the mechanism is not known. We report here that an off-target effect of ibrutinib causes synergy because not all BTK inhibitors exhibited the synergistic effect, and those that synergized did so even in cells that do not express BTK. The allosteric BTK inhibitor CGI-1746 showed the strongest synergy. Co-treatment of cells with CGI-1746 increased PI-induced accumulation of ubiquitin conjugates and expression of heat shock proteins and NOXA and decreased a ratio of reduced to oxidized glutathione. CGI-1746, but not other BTK inhibitors, inhibited ATPase activity and all three peptidase activities of the 26S proteasome. The effect demonstrates a conceptually novel mode of proteasome inhibition that may aid the development of more potent PIs.
Collapse
Affiliation(s)
- Olasubomi A. Akintola
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL, USA
| | - Mitchell B. Patterson
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL, USA
| | - John G. Smith
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL, USA
| | - George N. DeMartino
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amit K. Mitra
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL, USA
| | - Alexei F. Kisselev
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL, USA
| |
Collapse
|
2
|
Chougoni KK, Neely V, Ding B, Oduah E, Lam VT, Hu B, Koblinski JE, Windle BE, Palit Deb S, Deb S, Nieva JJ, Radhakrishnan SK, Harada H, Grossman SR. Oncogenic Mutant p53 Sensitizes Non-Small Cell Lung Cancer Cells to Proteasome Inhibition via Oxidative Stress-Dependent Induction of Mitochondrial Apoptosis. CANCER RESEARCH COMMUNICATIONS 2024; 4:2685-2698. [PMID: 39302104 PMCID: PMC11474859 DOI: 10.1158/2767-9764.crc-23-0637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/17/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
SIGNIFICANCE NSCLC is the leading cause of cancer death due, in part, to a lack of active therapies in advanced disease. We demonstrate that combination therapy with a proteasome inhibitor, BH3-mimetic, and chemotherapy is an active precision therapy in NSCLC cells and tumors expressing Onc-p53 alleles.
Collapse
Affiliation(s)
- Kranthi Kumar Chougoni
- Department of Medicine, Keck School of Medicine of USC, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California.
| | - Victoria Neely
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia.
| | - Boxiao Ding
- Department of Medicine, Keck School of Medicine of USC, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California.
| | - Eziafa Oduah
- Division of Medical Oncology, Department of Medicine, Duke University School of Medicine, Duke Cancer Institute, Duke University, Durham, North Carolina.
| | - Vianna T. Lam
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia.
| | - Bin Hu
- VCU Cancer Mouse Models Core, Virginia Commonwealth University, Richmond, Virginia.
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
| | - Jennifer E. Koblinski
- VCU Cancer Mouse Models Core, Virginia Commonwealth University, Richmond, Virginia.
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
- Department of Pathology, VCU School of Medicine, Virginia Commonwealth University, Richmond, Virginia.
| | - Bradford E. Windle
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia.
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
| | - Swati Palit Deb
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, VCU School of Medicine, Virginia Commonwealth University, Richmond, Virginia.
| | - Sumitra Deb
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, VCU School of Medicine, Virginia Commonwealth University, Richmond, Virginia.
| | - Jorge J. Nieva
- Department of Medicine, Keck School of Medicine of USC, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California.
| | - Senthil K. Radhakrishnan
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
- Department of Pathology, VCU School of Medicine, Virginia Commonwealth University, Richmond, Virginia.
| | - Hisashi Harada
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia.
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
| | - Steven R. Grossman
- Department of Medicine, Keck School of Medicine of USC, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California.
| |
Collapse
|
3
|
Pelon M, Krzeminski P, Tracz-Gaszewska Z, Misiewicz-Krzeminska I. Factors determining the sensitivity to proteasome inhibitors of multiple myeloma cells. Front Pharmacol 2024; 15:1351565. [PMID: 38500772 PMCID: PMC10944964 DOI: 10.3389/fphar.2024.1351565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Multiple myeloma is an incurable cancer that originates from antibody-producing plasma cells. It is characterized by an intrinsic ability to produce large amounts of immunoglobulin-like proteins. The high rate of synthesis makes myeloma cells dependent on protein processing mechanisms related to the proteasome. This dependence made proteasome inhibitors such as bortezomib and carfilzomib one of the most important classes of drugs used in multiple myeloma treatment. Inhibition of the proteasome is associated with alteration of a number of important biological processes leading, in consequence, to inhibition of angiogenesis. The effect of drugs in this group and the degree of patient response to the treatment used is itself an extremely complex process that depends on many factors. At cellular level the change in sensitivity to proteasome inhibitors may be related to differences in the expression level of proteasome subunits, the degree of proteasome loading, metabolic adaptation, transcriptional or epigenetic factors. These are just some of the possibilities that may influence differences in response to proteasome inhibitors. This review describes the main cellular factors that determine the degree of response to proteasome inhibitor drugs, as well as information on the key role of the proteasome and the performance characteristics of the inhibitors that are the mainstay of multiple myeloma treatment.
Collapse
Affiliation(s)
- Marta Pelon
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Patryk Krzeminski
- Department of Nanobiotechnology, Biology Institute, Warsaw University of Life Sciences, Warsaw, Poland
| | - Zuzanna Tracz-Gaszewska
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | |
Collapse
|
4
|
Sarkar A, Paul A, Banerjee T, Maji A, Saha S, Bishayee A, Maity TK. Therapeutic advancements in targeting BCL-2 family proteins by epigenetic regulators, natural, and synthetic agents in cancer. Eur J Pharmacol 2023; 944:175588. [PMID: 36791843 DOI: 10.1016/j.ejphar.2023.175588] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Cancer is amongst the deadliest and most disruptive disorders, having a much higher death rate than other diseases worldwide. Human cancer rates continue to rise, thereby posing the most significant concerns for medical health professionals. In the last two decades, researchers have gone past several milestones in tackling cancer while gaining insight into the role of apoptosis in cancer or targeting various biomarker tools for prognosis and diagnosis. Apoptosis which is still a topic full of complexities, can be controlled considerably by B-cell lymphoma 2 (BCL-2) and its family members. Therefore, targeting proteins of this family to prevent tumorigenesis, is essential to focus on the pharmacological features of the anti-apoptotic and pro-apoptotic members, which will help to develop and manage this disorder. This review deals with the advancements of various epigenetic regulators to target BCL-2 family proteins, including the mechanism of several microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Similarly, a rise in natural and synthetic molecules' research over the last two decades has allowed us to acquire insights into understanding and managing the transcriptional alterations that have led to apoptosis and treating various neoplastic diseases. Furthermore, several inhibitors targeting anti-apoptotic proteins and inducers or activators targeting pro-apoptotic proteins in preclinical and clinical stages have been summarized. Overall, agonistic and antagonistic mechanisms of BCL-2 family proteins conciliated by epigenetic regulators, natural and synthetic agents have proven to be an excellent choice in developing cancer therapeutics.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| |
Collapse
|
5
|
Asuzu DT, Alvarez R, Fletcher PA, Mandal D, Johnson K, Wu W, Elkahloun A, Clavijo P, Allen C, Maric D, Ray-Chaudhury A, Rajan S, Abdullaev Z, Nwokoye D, Aldape K, Nieman LK, Stratakis C, Stojilkovic SS, Chittiboina P. Pituitary adenomas evade apoptosis via noxa deregulation in Cushing's disease. Cell Rep 2022; 40:111223. [PMID: 36001971 PMCID: PMC9527711 DOI: 10.1016/j.celrep.2022.111223] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/03/2022] [Accepted: 07/26/2022] [Indexed: 12/13/2022] Open
Abstract
Sporadic pituitary adenomas occur in over 10% of the population. Hormone-secreting adenomas, including those causing Cushing’s disease (CD), cause severe morbidity and early mortality. Mechanistic studies of CD are hindered by a lack of in vitro models and control normal human pituitary glands. Here, we surgically annotate adenomas and adjacent normal glands in 25 of 34 patients. Using single-cell RNA sequencing (RNA-seq) analysis of 27594 cells, we identify CD adenoma transcriptomic signatures compared with adjacent normal cells, with validation by bulk RNA-seq, DNA methylation, qRT-PCR, and immunohistochemistry. CD adenoma cells include a subpopulation of proliferating, terminally differentiated corticotrophs. In CD adenomas, we find recurrent promoter hypomethylation and transcriptional upregulation of PMAIP1 (encoding pro-apoptotic BH3-only bcl-2 protein noxa) but paradoxical noxa downregulation. Using primary CD adenoma cell cultures and a corticotroph-enriched mouse cell line, we find that selective proteasomal inhibition with bortezomib stabilizes noxa and induces apoptosis, indicating its utility as an anti-tumor agent. Asuzu et al. perform single-cell transcriptomic profiling in Cushing’s disease (CD) adenomas and find overexpression and DNA hypomethylation of PMAIP1, which encodes the pro-apoptotic protein noxa. Noxa is degraded by the proteasome. Proteasomal inhibition rescues noxa and induces apoptosis in CD.
Collapse
Affiliation(s)
- David T Asuzu
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD 20892, USA; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | - Reinier Alvarez
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD 20892, USA; Florida International University Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Patrick A Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Debjani Mandal
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD 20892, USA
| | - Kory Johnson
- DIR Bioinformatics Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Weiwei Wu
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Abdel Elkahloun
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Paul Clavijo
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA
| | - Clint Allen
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Abhik Ray-Chaudhury
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Sharika Rajan
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Zied Abdullaev
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Diana Nwokoye
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD 20892, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Lynnette K Nieman
- Section on Translational Endocrinology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Constantine Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD 20892, USA; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
6
|
Roufayel R, Younes K, Al-Sabi A, Murshid N. BH3-Only Proteins Noxa and Puma Are Key Regulators of Induced Apoptosis. Life (Basel) 2022; 12:life12020256. [PMID: 35207544 PMCID: PMC8875537 DOI: 10.3390/life12020256] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/29/2022] Open
Abstract
Apoptosis is an evolutionarily conserved and tightly regulated cell death pathway. Physiological cell death is important for maintaining homeostasis and optimal biological conditions by continuous elimination of undesired or superfluous cells. The BH3-only pro-apoptotic members are strong inducers of apoptosis. The pro-apoptotic BH3-only protein Noxa activates multiple death pathways by inhibiting the anti-apoptotic Bcl-2 family protein, Mcl-1, and other protein members leading to Bax and Bak activation and MOMP. On the other hand, Puma is induced by p53-dependent and p53-independent apoptotic stimuli in several cancer cell lines. Moreover, this protein is involved in several physiological and pathological processes, such as immunity, cancer, and neurodegenerative diseases. Future heat shock research could disclose the effect of hyperthermia on both Noxa and BH3-only proteins. This suggests post-transcriptional mechanisms controlling the translation of both Puma and Noxa mRNA in heat-shocked cells. This study was also the chance to recapitulate the different reactional mechanisms investigated for caspases.
Collapse
|
7
|
Potent, p53-independent induction of NOXA sensitizes MLL-rearranged B-cell acute lymphoblastic leukemia cells to venetoclax. Oncogene 2022; 41:1600-1609. [PMID: 35091682 PMCID: PMC8913358 DOI: 10.1038/s41388-022-02196-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 01/02/2022] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
The prognosis for B-cell precursor acute lymphoblastic leukemia patients with Mixed-Lineage Leukemia (MLL) gene rearrangements (MLLr BCP-ALL) is still extremely poor. Inhibition of anti-apoptotic protein BCL-2 with venetoclax emerged as a promising strategy for this subtype of BCP-ALL, however, lack of sufficient responses in preclinical models and the possibility of developing resistance exclude using venetoclax as monotherapy. Herein, we aimed to uncover potential mechanisms responsible for limited venetoclax activity in MLLr BCP-ALL and to identify drugs that could be used in combination therapy. Using RNA-seq, we observed that long-term exposure to venetoclax in vivo in a patient-derived xenograft model leads to downregulation of several tumor protein 53 (TP53)-related genes. Interestingly, auranofin, a thioredoxin reductase inhibitor, sensitized MLLr BCP-ALL to venetoclax in various in vitro and in vivo models, independently of the p53 pathway functionality. Synergistic activity of these drugs resulted from auranofin-mediated upregulation of NOXA pro-apoptotic protein and potent induction of apoptotic cell death. More specifically, we observed that auranofin orchestrates upregulation of the NOXA-encoding gene Phorbol-12-Myristate-13-Acetate-Induced Protein 1 (PMAIP1) associated with chromatin remodeling and increased transcriptional accessibility. Altogether, these results present an efficacious drug combination that could be considered for the treatment of MLLr BCP-ALL patients, including those with TP53 mutations.
Collapse
|
8
|
Wang T, Zhang P, Chen L, Qi H, Chen H, Zhu Y, Zhang L, Zhong M, Shi X, Li Q. Ixazomib Induces Apoptosis and Suppresses Proliferation in Esophageal Squamous Cell Carcinoma through Activation of the c-Myc/NOXA Pathway. J Pharmacol Exp Ther 2022; 380:15-25. [PMID: 34740946 DOI: 10.1124/jpet.121.000837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the major subtypes of esophageal cancer. More than half of the patients with ESCC in the world are in China, and the 5-year survival rate is less than 10%. As a new oral proteasome inhibitor, ixazomib has shown strong therapeutic effect in many solid tumors. In this study, we aimed to investigate the effects of ixazomib on the proliferation inhibition and apoptosis of ESCC cells. We used four human ESCC cell lines, cell viability assay, cell cycle and apoptosis assay, reverse-transcription polymerase chain reaction (RT-PCR), Western blot, immunohistochemistry, and ESCC xenografts model to clarify the roles of the therapeutic effect and mechanism of ixazomib in ESCC. Ixazomib significantly inhibited the proliferation and induced apoptosis in ESCC cells. RT-PCR results showed that the expressions of endoplasmic reticulum stress-related gene phorbol-12-myristate-13-acetate-induced protein 1 (NOXA) and MYC proto-oncogene (c-Myc) significantly increase after treatment with ixazomib in ESCC cells. When we knocked down the NOXA and c-Myc by small interfering RNA, the therapeutic effect of ixazomib markedly decreased, which confirmed that c-Myc/NOXA pathway played a key role in the treatment of ESCC with ixazomib. In vivo, the xenograft ESCC model mice were given 10 mg/kg of ixazomib every other day for 30 days. The results showed that the tumor size in the treatment group was significantly smaller than the control group. These results suggested that ixazomib is known to suppress proliferation and induce apoptosis in ESCC cell lines, and this effect was likely mediated by increased activation of the c-Myc/NOXA signaling pathways. SIGNIFICANCE STATEMENT: Esophageal squamous cell carcinoma (ESCC) is the common worldwide malignant tumor, but conventional chemotherapeutics suffer from a number of limitations. In this study, the results suggested that ixazomib suppresses proliferation and induces apoptosis in ESCC cell lines. Therefore, ixazomib may be a potential new strategy for ESCC therapy.
Collapse
Affiliation(s)
- Tianxiao Wang
- Departments of Pharmacy (T.W., P.Z., L.C., H.Q., H.C., L.Z., M.Z., X.S., Q.L.) and Cardio-Thoracic Surgery (Y.Z.), Huashan Hospital, Fudan University, Shanghai, China
| | - Pengying Zhang
- Departments of Pharmacy (T.W., P.Z., L.C., H.Q., H.C., L.Z., M.Z., X.S., Q.L.) and Cardio-Thoracic Surgery (Y.Z.), Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Chen
- Departments of Pharmacy (T.W., P.Z., L.C., H.Q., H.C., L.Z., M.Z., X.S., Q.L.) and Cardio-Thoracic Surgery (Y.Z.), Huashan Hospital, Fudan University, Shanghai, China
| | - Huijie Qi
- Departments of Pharmacy (T.W., P.Z., L.C., H.Q., H.C., L.Z., M.Z., X.S., Q.L.) and Cardio-Thoracic Surgery (Y.Z.), Huashan Hospital, Fudan University, Shanghai, China
| | - Haifei Chen
- Departments of Pharmacy (T.W., P.Z., L.C., H.Q., H.C., L.Z., M.Z., X.S., Q.L.) and Cardio-Thoracic Surgery (Y.Z.), Huashan Hospital, Fudan University, Shanghai, China
| | - Yongjun Zhu
- Departments of Pharmacy (T.W., P.Z., L.C., H.Q., H.C., L.Z., M.Z., X.S., Q.L.) and Cardio-Thoracic Surgery (Y.Z.), Huashan Hospital, Fudan University, Shanghai, China
| | - Liudi Zhang
- Departments of Pharmacy (T.W., P.Z., L.C., H.Q., H.C., L.Z., M.Z., X.S., Q.L.) and Cardio-Thoracic Surgery (Y.Z.), Huashan Hospital, Fudan University, Shanghai, China
| | - Mingkang Zhong
- Departments of Pharmacy (T.W., P.Z., L.C., H.Q., H.C., L.Z., M.Z., X.S., Q.L.) and Cardio-Thoracic Surgery (Y.Z.), Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaojin Shi
- Departments of Pharmacy (T.W., P.Z., L.C., H.Q., H.C., L.Z., M.Z., X.S., Q.L.) and Cardio-Thoracic Surgery (Y.Z.), Huashan Hospital, Fudan University, Shanghai, China
| | - Qunyi Li
- Departments of Pharmacy (T.W., P.Z., L.C., H.Q., H.C., L.Z., M.Z., X.S., Q.L.) and Cardio-Thoracic Surgery (Y.Z.), Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Harrington CT, Sotillo E, Dang CV, Thomas-Tikhonenko A. Tilting MYC toward cancer cell death. Trends Cancer 2021; 7:982-994. [PMID: 34481764 PMCID: PMC8541926 DOI: 10.1016/j.trecan.2021.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
MYC oncoprotein promotes cell proliferation and serves as the key driver in many human cancers; therefore, considerable effort has been expended to develop reliable pharmacological methods to suppress its expression or function. Despite impressive progress, MYC-targeting drugs have not reached the clinic. Recent advances suggest that within a limited expression range unique to each tumor, MYC oncoprotein can have a paradoxical, proapoptotic function. Here we introduce a counterintuitive idea that modestly and transiently elevating MYC levels could aid chemotherapy-induced apoptosis and thus benefit the patients as much, if not more than MYC inhibition.
Collapse
Affiliation(s)
- Colleen T Harrington
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elena Sotillo
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chi V Dang
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA; Ludwig Institute for Cancer Research, New York, NY 10017, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Trejo-Solis C, Escamilla-Ramirez A, Jimenez-Farfan D, Castillo-Rodriguez RA, Flores-Najera A, Cruz-Salgado A. Crosstalk of the Wnt/β-Catenin Signaling Pathway in the Induction of Apoptosis on Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14090871. [PMID: 34577571 PMCID: PMC8465904 DOI: 10.3390/ph14090871] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays a major role in cell survival and proliferation, as well as in angiogenesis, migration, invasion, metastasis, and stem cell renewal in various cancer types. However, the modulation (either up- or downregulation) of this pathway can inhibit cell proliferation and apoptosis both through β-catenin-dependent and independent mechanisms, and by crosstalk with other signaling pathways in a wide range of malignant tumors. Existing studies have reported conflicting results, indicating that the Wnt signaling can have both oncogenic and tumor-suppressing roles, depending on the cellular context. This review summarizes the available information on the role of the Wnt/β-catenin pathway and its crosstalk with other signaling pathways in apoptosis induction in cancer cells and presents a modified dual-signal model for the function of β-catenin. Understanding the proapoptotic mechanisms induced by the Wnt/β-catenin pathway could open new therapeutic opportunities.
Collapse
Affiliation(s)
- Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (A.E.-R.); (A.C.-S.)
- Correspondence:
| | - Angel Escamilla-Ramirez
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (A.E.-R.); (A.C.-S.)
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | | | - Athenea Flores-Najera
- Centro Médico Nacional 20 de Noviembre, Departamento de Cirugía General, Ciudad de Mexico 03229, Mexico;
| | - Arturo Cruz-Salgado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (A.E.-R.); (A.C.-S.)
| |
Collapse
|
11
|
Dalton KM, Krytska K, Lochmann TL, Sano R, Casey C, D'Aulerio A, Khan QA, Crowther GS, Coon C, Cai J, Jacob S, Kurupi R, Hu B, Dozmorov M, Greninger P, Souers AJ, Benes CH, Mossé YP, Faber AC. Venetoclax-based Rational Combinations are Effective in Models of MYCN-amplified Neuroblastoma. Mol Cancer Ther 2021; 20:1400-1411. [PMID: 34088831 DOI: 10.1158/1535-7163.mct-20-0710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/17/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022]
Abstract
Venetoclax is a small molecule inhibitor of the prosurvival protein BCL-2 that has gained market approval in BCL-2-dependent hematologic cancers including chronic lymphocytic leukemia and acute myeloid leukemia. Neuroblastoma is a heterogenous pediatric cancer with a 5-year survival rate of less than 50% for high-risk patients, which includes nearly all cases with amplified MYCN We previously demonstrated that venetoclax is active in MYCN-amplified neuroblastoma but has limited single-agent activity in most models, presumably the result of other pro-survival BCL-2 family protein expression or insufficient prodeath protein mobilization. As the relative tolerability of venetoclax makes it amenable to combining with other therapies, we evaluated the sensitivity of MYCN-amplified neuroblastoma models to rational combinations of venetoclax with agents that have both mechanistic complementarity and active clinical programs. First, the MDM2 inhibitor NVP-CGM097 increases the prodeath BH3-only protein NOXA to sensitize p53-wild-type, MYCN-amplified neuroblastomas to venetoclax. Second, the MCL-1 inhibitor S63845 sensitizes MYCN-amplified neuroblastoma through neutralization of MCL-1, inducing synergistic cell killing when combined with venetoclax. Finally, the standard-of-care drug cocktail cyclophosphamide and topotecan reduces the apoptotic threshold of neuroblastoma, thus setting the stage for robust combination efficacy with venetoclax. In all cases, these rational combinations translated to in vivo tumor regressions in MYCN-amplified patient-derived xenograft models. Venetoclax is currently being evaluated in pediatric patients in the clinic, including neuroblastoma (NCT03236857). Although establishment of safety is still ongoing, the data disclosed herein indicate rational and clinically actionable combination strategies that could potentiate the activity of venetoclax in patients with amplified MYCN with neuroblastoma.
Collapse
Affiliation(s)
- Krista M Dalton
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Kateryna Krytska
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Timothy L Lochmann
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Renata Sano
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Pharmacyclics, an Abbvie company, Sunnyvale, California
| | - Colleen Casey
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Alessia D'Aulerio
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Qasim A Khan
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Giovanna Stein Crowther
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Colin Coon
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Jinyang Cai
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Sheeba Jacob
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Richard Kurupi
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Bin Hu
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
| | - Patricia Greninger
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | | | - Cyril H Benes
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Yael P Mossé
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Anthony C Faber
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
12
|
Nakajima W, Miyazaki K, Asano Y, Kubota S, Tanaka N. Krüppel-Like Factor 4 and Its Activator APTO-253 Induce NOXA-Mediated, p53-Independent Apoptosis in Triple-Negative Breast Cancer Cells. Genes (Basel) 2021; 12:genes12040539. [PMID: 33918002 PMCID: PMC8068402 DOI: 10.3390/genes12040539] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/19/2023] Open
Abstract
Inducing apoptosis is an effective treatment for cancer. Conventional cytotoxic anticancer agents induce apoptosis primarily through activation of tumor suppressor p53 by causing DNA damage and the resulting regulation of B-cell leukemia/lymphoma-2 (BCL-2) family proteins. Therefore, the effects of these agents are limited in cancers where p53 loss-of-function mutations are common, such as triple-negative breast cancer (TNBC). Here, we demonstrate that ultraviolet (UV) light-induced p53-independent transcriptional activation of NOXA, a proapoptotic factor in the BCL-2 family, results in apoptosis induction. This UV light-induced NOXA expression was triggered by extracellular signal-regulated kinase (ERK) activity. Moreover, we identified the specific UV light-inducible DNA element of the NOXA promoter and found that this sequence is responsible for transcription factor Krüppel-like factor 4 (KLF4)-mediated induction. In p53-mutated TNBC cells, inhibition of KLF4 by RNA interference reduced NOXA expression. Furthermore, treatment of TNBC cells with a KLF4-inducing small compound, APTO-253, resulted in the induction of NOXA expression and NOXA-mediated apoptosis. Therefore, our results help to clarify the molecular mechanism of DNA damage-induced apoptosis and provide support for a possible treatment method for p53-mutated cancers.
Collapse
|
13
|
Xin W, Gao X, Zhao P, Wang T, Ding X, Wu Q, Hua K. Long non-coding RNA RP11-379k17.4 derived microRNA-200c-3p modulates human endometrial cancer by targeting Noxa. J Cancer 2021; 12:2268-2274. [PMID: 33758604 PMCID: PMC7974877 DOI: 10.7150/jca.51023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/30/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: The research paid close attention to the function of lncRNA-related endogenous competitive RNAs (ceRNAs) network in endometrial cancer (EC). Methods: 45 primary endometrial cancer tissues (EC) and 45 normal endometrium (NE) were included in the research. The online software StarbaseV2.0 was made use of forecasting the lncRNA which most likely contained microRNA-200c-3p combining sites and could interact with microRNA-200c-3p. Subsequently, we chose lncRNAs which were consistent with the characteristics of polyadenylation of lncRNAs and lower expression in EC than that of NE. After that, lncRNAs, which were related with the microRNA-200c-3p-noxa network, were identified. Results: Rp11-379k17.4, a new gene related to endometrial cancer, was identified as noncoding RNA. It was a more effective ceRNA associated with the microRNA-200c-3p-noxa network. Conclusion: LncRNAs possess microRNA response elements (MREs) and give scope to significant roles in the post-transcriptional mechanism in EC.
Collapse
Affiliation(s)
- Weijuan Xin
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shen-Yang Road, Shanghai 200090, China
| | - Xiaodong Gao
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New Area, Shanghai 200120, China
| | - Peng Zhao
- Department of Internal Medicine, People's Hospital of Dezhou, 1751 Xinhu Street, Dezhou 253001, China
| | - Taiyong Wang
- Department of Oncology, People's Hospital of Dezhou, 1751 Xinhu Street, Dezhou 253001, China
| | - Xue Ding
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shen-Yang Road, Shanghai 200090, China
| | - Qianyu Wu
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New Area, Shanghai 200120, China
| | - Keqin Hua
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shen-Yang Road, Shanghai 200090, China
| |
Collapse
|
14
|
Nakhla S, Rahawy A, Salam MAE, Shalaby T, Zaghloul M, El-Abd E. Radiosensitizing and Phototherapeutic Effects of AuNPs are Mediated by Differential Noxa and Bim Gene Expression in MCF-7 Breast Cancer Cell Line. IEEE Trans Nanobioscience 2020; 20:20-27. [PMID: 33017288 DOI: 10.1109/tnb.2020.3028562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To compare the apoptotic efficiency of AuNPs, ionizing and non-ionizing radiotherapy, phototherapy, and AuNPs-ionizing-radiotherapy), MCF-7 cells were used as a model for luminal B subtypes of breast carcinoma. A mixture of AuNPs [66% of Au-nanospheres (AuNSs) and 34% of Au-nanorods (AuNRs)] was synthesized and characterized by optical spectroscopy, zeta potential, and transmission electron microscopy (TEM). MCF-7 were divided into six groups (triplicates); after each treatment, cell viability was tested by MTT assay and relative gene expression levels of Bim and Noxa proapoptotic markers were assayed by qRT-PCR. A dose-dependent significant reduction in cell viability of MCF-7 was detected by all examined treatment protocols. Lower viability detected at extended exposure (48 hours) to AuNPs ( [Formula: see text]/ml) was mediated by the upregulation of Noxa gene expression. AuNS and AuNR in vitro PTTs were mediated by differential expression of Bim and Noxa while AuNPs mixture had a combined effect on both Bim and Noxa. Cellular recovery was observed two days-post x-rays irradiation at does < 3 Gy. AuNPs showed dose enhancement factor (DEF) > 12 indicating a high radiosensitizing effect that was partially mediated by Noxa. In conclusion, AuNPs combined therapies exert better anti-proliferative effects via differential regulation of Noxa and Bim gene expressions.
Collapse
|
15
|
Janus P, Toma-Jonik A, Vydra N, Mrowiec K, Korfanty J, Chadalski M, Widłak P, Dudek K, Paszek A, Rusin M, Polańska J, Widłak W. Pro-death signaling of cytoprotective heat shock factor 1: upregulation of NOXA leading to apoptosis in heat-sensitive cells. Cell Death Differ 2020; 27:2280-2292. [PMID: 31996779 PMCID: PMC7308270 DOI: 10.1038/s41418-020-0501-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 01/15/2023] Open
Abstract
Heat shock can induce either cytoprotective mechanisms or cell death. We found that in certain human and mouse cells, including spermatocytes, activated heat shock factor 1 (HSF1) binds to sequences located in the intron(s) of the PMAIP1 (NOXA) gene and upregulates its expression which induces apoptosis. Such a mode of PMAIP1 activation is not dependent on p53. Therefore, HSF1 not only can activate the expression of genes encoding cytoprotective heat shock proteins, which prevents apoptosis, but it can also positively regulate the proapoptotic PMAIP1 gene, which facilitates cell death. This could be the primary cause of hyperthermia-induced elimination of heat-sensitive cells, yet other pro-death mechanisms might also be involved.
Collapse
Affiliation(s)
- Patryk Janus
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Agnieszka Toma-Jonik
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Natalia Vydra
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Katarzyna Mrowiec
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Joanna Korfanty
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Marek Chadalski
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Piotr Widłak
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Karolina Dudek
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Anna Paszek
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland.,Department of Data Science and Engineering, The Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Marek Rusin
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Joanna Polańska
- Department of Data Science and Engineering, The Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Wiesława Widłak
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland.
| |
Collapse
|
16
|
Ow TJ, Thomas C, Fulcher CD, Chen J, López A, Reyna DE, Prystowsky MB, Smith RV, Schiff BA, Rosenblatt G, Belbin TJ, Harris TM, Childs GC, Kawachi N, Schlecht NF, Gavathiotis E. Apoptosis signaling molecules as treatment targets in head and neck squamous cell carcinoma. Laryngoscope 2020; 130:2643-2649. [PMID: 31894587 DOI: 10.1002/lary.28441] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/10/2019] [Accepted: 11/08/2019] [Indexed: 01/20/2023]
Abstract
OBJECTIVES To evaluate BCL-2 family signaling molecules in head and neck squamous cell carcinoma (HNSCC) and examine the ability of therapeutic agents with variable mechanisms of action to induce apoptosis in HNSCC cells. METHODS messenger ribonculeic acid (mRNA) expression of BAK, BAX, B-cell lymphoma (Bcl-2), BCL2 Like 1 (BCL2L1), and MCL1 were measured in The Cancer Genome Atlas (TCGA) head and neck cancer dataset, as well as in a dataset from a cohort at Montefiore Medical Center (MMC). Protein expression was similarly evaluated in a panel of HNSCC cell lines (HN30, HN31, HN5, MDA686LN, UMSCC47). Cell viability and Annexin V assays were used to assess the efficacy and apoptotic potential of a variety of agents (ABT-263 [navitoclax], A-1210477, and bortezomib. RESULTS Expression of BAK, BAX, BCL2L1, and MCL1 were each significantly higher than expression of BCL2 in the TCGA and MMC datasets. Protein expression demonstrated the same pattern of expression when examined in HNSCC cell lines. Treatment with combined ABT-263 (navitoclax)/A-1210477 or with bortezomib demonstrated apoptosis responses that approached or exceeded treatment with staurospaurine control. CONCLUSION HNSCC cells rely on inhibition of apoptosis via BCL-xL and MCL-1 overexpression, and induction of apoptosis remains a potential therapeutic option as long as strategies overcome redundant anti-apoptotic signals. LEVEL OF EVIDENCE NA Laryngoscope, 130:2643-2649, 2020.
Collapse
Affiliation(s)
- Thomas J Ow
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, U.S.A.,Department of Pathology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, U.S.A
| | - Carlos Thomas
- Department of Pathology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, U.S.A
| | - Cory D Fulcher
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, U.S.A
| | - Jianhong Chen
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York, U.S.A
| | - Andrea López
- Department of Biochemistry, Department of Medicine, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York, U.S.A
| | - Denis E Reyna
- Department of Biochemistry, Department of Medicine, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York, U.S.A
| | - Michael B Prystowsky
- Department of Pathology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, U.S.A
| | - Richard V Smith
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, U.S.A.,Department of Pathology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, U.S.A.,Department of Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, U.S.A
| | - Bradley A Schiff
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, U.S.A
| | - Gregory Rosenblatt
- Department of Pathology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, U.S.A
| | - Thomas J Belbin
- Department of Pathology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, U.S.A.,Department of Oncology, Memorial University of Newfoundland, Newfoundland and Labrador, Canada
| | - Thomas M Harris
- Department of Pathology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, U.S.A
| | - Geoffrey C Childs
- Department of Pathology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, U.S.A
| | - Nicole Kawachi
- Department of Pathology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, U.S.A
| | - Nicolas F Schlecht
- Department of Pathology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, U.S.A.,Department of Epidemiology & Population Health, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, U.S.A.,Department of Medicine (Oncology), Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, U.S.A.,Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York, U.S.A
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York, U.S.A
| |
Collapse
|
17
|
Bahjat M, de Wilde G, van Dam T, Maas C, Bloedjes T, Bende RJ, van Noesel CJM, Luijks DM, Eldering E, Kersten MJ, Guikema JEJ. The NEDD8-activating enzyme inhibitor MLN4924 induces DNA damage in Ph+ leukemia and sensitizes for ABL kinase inhibitors. Cell Cycle 2019; 18:2307-2322. [PMID: 31349760 PMCID: PMC6738521 DOI: 10.1080/15384101.2019.1646068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The BCR-ABL1 fusion gene is the driver oncogene in chronic myeloid leukemia (CML) and Philadelphia-chromosome positive (Ph+) acute lymphoblastic leukemia (ALL). The introduction of tyrosine kinase inhibitors (TKIs) targeting the ABL kinase (such as imatinib) has dramatically improved survival of CML and Ph+ ALL patients. However, primary and acquired resistance to TKIs remains a clinical challenge. Ph+ leukemia patients who achieve a complete cytogenetic (CCR) or deep molecular response (MR) (≥4.5log reduction in BCR-ABL1 transcripts) represent long-term survivors. Thus, the fast and early eradication of leukemic cells predicts MR and is the prime clinical goal for these patients. We show here that the first-in-class inhibitor of the Nedd8-activating enzyme (NAE1) MLN4924 effectively induced caspase-dependent apoptosis in Ph+ leukemia cells, and sensitized leukemic cells for ABL tyrosine kinase inhibitors (TKI) and hydroxyurea (HU). We demonstrate that MLN4924 induced DNA damage in Ph+ leukemia cells by provoking the activation of an intra S-phase checkpoint, which was enhanced by imatinib co-treatment. The combination of MLN4924 and imatinib furthermore triggered a dramatic shift in the expression of MCL1 and NOXA. Our data offers a clear rationale to explore the clinical activity of MLN4924 (alone and in combination with ABL TKI) in Ph+ leukemia patients
Collapse
Affiliation(s)
- Mahnoush Bahjat
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| | - Guus de Wilde
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| | - Tijmen van Dam
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| | - Chiel Maas
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| | - Timon Bloedjes
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| | - Richard J Bende
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| | - Dieuwertje M Luijks
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands
| | - Eric Eldering
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands
| | - Marie José Kersten
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands.,Department of Hematology, Amsterdam University Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| |
Collapse
|
18
|
Cole DW, Svider PF, Shenouda KG, Lee PB, Yoo NG, McLeod TM, Mutchnick SA, Yoo GH, Kaufman RJ, Callaghan MU, Fribley AM. Targeting the unfolded protein response in head and neck and oral cavity cancers. Exp Cell Res 2019; 382:111386. [PMID: 31075256 DOI: 10.1016/j.yexcr.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 12/18/2022]
Abstract
Many FDA-approved anti-cancer therapies, targeted toward a wide array of molecular targets and signaling networks, have been demonstrated to activate the unfolded protein response (UPR). Despite a critical role for UPR signaling in the apoptotic execution of cancer cells by many of these compounds, the authors are currently unaware of any instance whereby a cancer drug was developed with the UPR as the intended target. With the essential role of the UPR as a driving force in the genesis and maintenance of the malignant phenotype, a great number of pre-clinical studies have surged into the medical literature describing the ability of dozens of compounds to induce UPR signaling in a myriad of cancer models. The focus of the current work is to review the literature and explore the role of the UPR as a mediator of chemotherapy-induced cell death in squamous cell carcinomas of the head and neck (HNSCC) and oral cavity (OCSCC), with an emphasis on preclinical studies.
Collapse
Affiliation(s)
- Daniel W Cole
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Peter F Svider
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kerolos G Shenouda
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Paul B Lee
- Oakland University William Beaumont School of Medicine, Rochester Hills, Michigan, USA
| | - Nicholas G Yoo
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Thomas M McLeod
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sean A Mutchnick
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - George H Yoo
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA; Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael U Callaghan
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA; Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, USA
| | - Andrew M Fribley
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA; Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA; Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA; Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
19
|
Activation of the Extrinsic and Intrinsic Apoptotic Pathways in Cerebellum of Kindled Rats. THE CEREBELLUM 2019; 18:750-760. [DOI: 10.1007/s12311-019-01030-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Zhang W, Liang Y, Li L, Wang X, Yan Z, Dong C, Zeng M, Zhong Q, Liu X, Yu J, Sun S, Liu X, Kang J, Zhao H, Jeong LS, Zhang Y, Jia L. The Nedd8-activating enzyme inhibitor MLN4924 (TAK-924/Pevonedistat) induces apoptosis via c-Myc-Noxa axis in head and neck squamous cell carcinoma. Cell Prolif 2019; 52:e12536. [PMID: 30341788 PMCID: PMC6496207 DOI: 10.1111/cpr.12536] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/08/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES The present study aimed to reveal expression status of the neddylation enzymes in HNSCC and to elucidate the anticancer efficacy and the underlying mechanisms of inhibiting neddylation pathway. MATERIALS AND METHODS The expression levels of neddylation enzymes were estimated by Western blotting in human HNSCC specimens and bioinformatics analysis of the cancer genome atlas (TCGA) database. Cell apoptosis was evaluated by Annexin V fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) stain and fluorescence-activated cell sorting (FACS). Small interfering RNA (siRNA) and the CRISPR-Cas9 system were used to elucidate the underlying molecular mechanism of MLN4924-induced HNSCC apoptosis. RESULTS Expression levels of NAE1 and UBC12 were prominently higher in HNSCC tissues than that in normal tissues. Inactivation of the neddylation pathway significantly inhibited malignant phenotypes of HNSCC cells. Mechanistic studies revealed that MLN4924 induced the accumulation of CRL ligase substrate c-Myc that transcriptionally activated pro-apoptotic protein Noxa, which triggered apoptosis in HNSCC. CONCLUSIONS These findings determined the over-expression levels of neddylation enzymes in HNSCC and revealed novel mechanisms underlying neddylation inhibition induced growth suppression in HNSCC cells, which provided preclinical evidence for further clinical evaluation of neddylation inhibitors (eg, MLN4924) for the treatment of HNSCC.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yupei Liang
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Lihui Li
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Xiaofang Wang
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Zi Yan
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Changsheng Dong
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mu‐Sheng Zeng
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Qian Zhong
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Xue‐Kui Liu
- Department of Head & Neck CancerSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Jinha Yu
- College of PharmacySeoul National UniversitySeoulKorea
| | - Shuyang Sun
- Department of Oral and Maxillofacial‐Head Neck OncologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaojun Liu
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Jihui Kang
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hu Zhao
- Department of Clinical LaboratoryHuadong HospitalShanghai Key Laboratory of Clinical Geriatric MedicineResearch Center on Aging and MedicineFudan UniversityShanghaiChina
| | | | - Yanmei Zhang
- Department of Clinical LaboratoryHuadong HospitalShanghai Key Laboratory of Clinical Geriatric MedicineResearch Center on Aging and MedicineFudan UniversityShanghaiChina
| | - Lijun Jia
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
21
|
Contreras L, Calderon RI, Varela-Ramirez A, Zhang HY, Quan Y, Das U, Dimmock JR, Skouta R, Aguilera RJ. Induction of apoptosis via proteasome inhibition in leukemia/lymphoma cells by two potent piperidones. Cell Oncol (Dordr) 2018; 41:623-636. [PMID: 30088262 PMCID: PMC6241245 DOI: 10.1007/s13402-018-0397-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2018] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Previously, compounds containing a piperidone structure have been shown to be highly cytotoxic to cancer cells. Recently, we found that the piperidone compound P2 exhibits a potent anti-neoplastic activity against human breast cancer-derived cells. Here, we aimed to evaluate two piperidone compounds, P1 and P2, for their potential anti-neoplastic activity against human leukemia/lymphoma-derived cells. METHODS Cytotoxicity and apoptosis induction were evaluated using MTS, annexin V-FITC/PI and mitochondrial membrane potential polychromatic assays to confirm the mode of action of the piperidone compounds. The effects of compound P1 and P2 treatment on gene expression were assessed using AmpliSeq analysis and, subsequently, confirmed by RT-qPCR and Western blotting. RESULTS We found that the two related piperidone compounds P1 and P2 selectively killed the leukemia/lymphoma cells tested at nanomolar concentrations through induction of the intrinsic apoptotic pathway, as demonstrated by mitochondrial depolarization and caspase-3 activation. AmpliSeq-based transcriptome analyses of the effects of compounds P1 and P2 on HL-60 acute leukemia cells revealed a differential expression of hundreds of genes, 358 of which were found to be affected by both. Additional pathway analyses revealed that a significant number of the common genes were related to the unfolded protein response, implying a possible role of the two compounds in the induction of proteotoxic stress. Subsequent analyses of the transcriptome data revealed that P1 and P2 induced similar gene expression alterations as other well-known proteasome inhibitors. Finally, we found that Noxa, an important mediator of the activity of proteasome inhibitors, was significantly upregulated at both the mRNA and protein levels, indicating a possible role in the cytotoxic mechanism induced by P1 and P2. CONCLUSIONS Our data indicate that the cytotoxic activity of P1 and P2 on leukemia/lymphoma cells is mediated by proteasome inhibition, leading to activation of pro-apoptotic pathways.
Collapse
Affiliation(s)
- Lisett Contreras
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA
| | - Ruben I Calderon
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA
| | - Armando Varela-Ramirez
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuan Quan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Umashankar Das
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, S7N 5E5, Canada
| | - Jonathan R Dimmock
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, S7N 5E5, Canada
| | - Rachid Skouta
- Department of Chemistry, Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA
- Department of Biology, University of Massachusetts, Amherst, MA, 01003-9297, USA
| | - Renato J Aguilera
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA.
| |
Collapse
|
22
|
Li W, Yu X, Xia Z, Yu X, Xie L, Ma X, Zhou H, Liu L, Wang J, Yang Y, Liu H. Repression of Noxa by Bmi1 contributes to deguelin-induced apoptosis in non-small cell lung cancer cells. J Cell Mol Med 2018; 22:6213-6227. [PMID: 30255595 PMCID: PMC6237602 DOI: 10.1111/jcmm.13908] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/21/2018] [Indexed: 01/07/2023] Open
Abstract
Deguelin, a natural rotenoid isolated from several plants, has been reported to exert anti‐tumour effects in various cancers. However, the molecular mechanism of this regulation remains to be fully elucidated. Here, we found that deguelin inhibited the growth of non‐small cell lung cancer (NSCLC) cells both in vitro and in vivo by downregulation of Bmi1 expression. Our data showed that Bmi1 is highly expressed in human NSCLC tissues and cell lines. Knockdown of Bmi1 significantly suppressed NSCLC cell proliferation and colony formation. Deguelin treatment attenuated the binding activity of Bmi1 to the Noxa promoter, thus resulting in Noxa transcription and apoptosis activation. Knockdown of Bmi1 promoted Noxa expression and enhanced deguelin‐induced apoptosis, whereas overexpression of Bmi1 down‐regulated Noxa protein level and deguelin‐induced apoptosis. Overall, our study demonstrated a novel apoptotic mechanism for deguelin to exert its anti‐tumour activity in NSCLC cells.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinfang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinyou Yu
- Shangdong Lvdu Bio-Industry Co., Ltd., Binzhou, Shangdong, China
| | - Li Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaolong Ma
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jian Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
Yoshida GJ. Emerging roles of Myc in stem cell biology and novel tumor therapies. J Exp Clin Cancer Res 2018; 37:173. [PMID: 30053872 PMCID: PMC6062976 DOI: 10.1186/s13046-018-0835-y] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/06/2018] [Indexed: 02/08/2023] Open
Abstract
The pathophysiological roles and the therapeutic potentials of Myc family are reviewed in this article. The physiological functions and molecular machineries in stem cells, including embryonic stem (ES) cells and induced pluripotent stem (iPS) cells, are clearly described. The c-Myc/Max complex inhibits the ectopic differentiation of both types of artificial stem cells. Whereas c-Myc plays a fundamental role as a "double-edged sword" promoting both iPS cells generation and malignant transformation, L-Myc contributes to the nuclear reprogramming with the significant down-regulation of differentiation-associated genetic expression. Furthermore, given the therapeutic resistance of neuroendocrine tumors such as small-cell lung cancer and neuroblastoma, the roles of N-Myc in difficult-to-treat tumors are discussed. N-Myc and p53 exhibit the co-localization in the nucleus and alter p53-dependent transcriptional responses which are necessary for DNA repair, anti-apoptosis, and lipid metabolic reprogramming. NCYM protein stabilizes N-Myc, resulting in the stimulation of Oct4 expression, while Oct4 induces both N-Myc and NCYM via direct transcriptional activation of N-Myc, [corrected] thereby leading to the enhanced metastatic potential. Importantly enough, accumulating evidence strongly suggests that c-Myc can be a promising therapeutic target molecule among Myc family in terms of the biological characteristics of cancer stem-like cells (CSCs). The presence of CSCs leads to the intra-tumoral heterogeneity, which is mainly responsible for the therapeutic resistance. Mechanistically, it has been shown that Myc-induced epigenetic reprogramming enhances the CSC phenotypes. In this review article, the author describes two major therapeutic strategies of CSCs by targeting c-Myc; Firstly, Myc-dependent metabolic reprogramming is closely related to CD44 variant-dependent redox stress regulation in CSCs. It has been shown that c-Myc increases NADPH production via enhanced glutaminolysis with a finely-regulated mechanism. Secondly, the dormancy of CSCs due to FBW7-depedent c-Myc degradation pathway is also responsible for the therapeutic resistance to the conventional anti-tumor agents, the action points of which are largely dependent on the operation of the cell cycle. That is why the loss-of-functional mutations of FBW7 gene are expected to trigger "awakening" of dormant CSCs in the niche with c-Myc up-regulation. Collectively, although the further research is warranted to develop the effective anti-tumor therapeutic strategy targeting Myc family, we cancer researchers should always catch up with the current advances in the complex functions of Myc family in highly-malignant and heterogeneous tumor cells to realize the precision medicine.
Collapse
Affiliation(s)
- Go J Yoshida
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
24
|
Tsvetkov P, Adler J, Myers N, Biran A, Reuven N, Shaul Y. Oncogenic addiction to high 26S proteasome level. Cell Death Dis 2018; 9:773. [PMID: 29991718 PMCID: PMC6039477 DOI: 10.1038/s41419-018-0806-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/15/2022]
Abstract
Proteasomes are large intracellular complexes responsible for the degradation of cellular proteins. The altered protein homeostasis of cancer cells results in increased dependency on proteasome function. The cellular proteasome composition comprises the 20S catalytic complex that is frequently capped with the 19S regulatory particle in forming the 26S proteasome. Proteasome inhibitors target the catalytic barrel (20S) and thus this inhibition does not allow the deconvolution of the distinct roles of 20S versus 26S proteasomes in cancer progression. We examined the degree of dependency of cancer cells specifically to the level of the 26S proteasome complex. Oncogenic transformation of human and mouse immortalized cells with mutant Ras induced a strong posttranscriptional increase of the 26S proteasome subunits, giving rise to high 26S complex levels. Depletion of a single subunit of the 19S RP was sufficient to reduce the 26S proteasome level and lower the cellular 26S/20S ratio. Under this condition the viability of the Ras-transformed MCF10A cells was severely compromised. This observation led us to hypothesize that cancer cell survival is dependent on maximal utilization of its 26S proteasomes. We validated this possibility in a large number of cancer cell lines and found that partial reduction of the 26S proteasome level impairs viability in all cancer cells examined and was not correlated with cell doubling time or reduction efficiency. Interstingly, normal human fibroblasts are refractory to the same type of 26S proteasome reduction. The suppression of 26S proteasomes in cancer cells activated the UPR and caspase-3 and cells stained positive with Annexin V. In addition, suppression of the 26S proteasome resulted in cellular proteasome redistribution, cytoplasm shrinkage, and nuclear deformation, the hallmarks of apoptosis. The observed tumor cell-specific addiction to the 26S proteasome levels sets the stage for future strategies in exploiting this dependency in cancer therapy.
Collapse
Affiliation(s)
- Peter Tsvetkov
- Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel.,Broad Institute of MIT and Harvard, 415 Main St., Cambridge, MA, 02142, USA
| | - Julia Adler
- Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Nadav Myers
- Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Assaf Biran
- Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Nina Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
25
|
Kim EY, Sudini K, Singh AK, Haque M, Leaman D, Khuder S, Ahmed S. Ursolic acid facilitates apoptosis in rheumatoid arthritis synovial fibroblasts by inducing SP1-mediated Noxa expression and proteasomal degradation of Mcl-1. FASEB J 2018; 32:fj201800425R. [PMID: 29799788 PMCID: PMC6181629 DOI: 10.1096/fj.201800425r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by hyperplastic pannus formation mediated by activated synovial fibroblasts (RASFs) that cause joint destruction. We have shown earlier that RASFs exhibit resistance to apoptosis, primarily as a result of enhanced expression of myeloid cell leukemia-1 (Mcl-1). In this study, we discovered that ursolic acid (UA), a plant-derived pentacyclic triterpenoid, selectively induces B-cell lymphoma 2 homology 3-only protein Noxa in human RASFs. We observed that UA-induced Noxa expression was followed by a consequent decrease in Mcl-1 expression in a dose-dependent manner. Subsequent evaluation of the signaling pathways showed that UA-induced Noxa is primarily mediated by the JNK pathway in human RASFs. Chromatin immunoprecipitation (IP) studies into the promoter region of Noxa indicated the role of transcription factor specificity protein 1 in JNK-mediated Noxa expression. Furthermore, the results from IP studies and proximity ligation assays indicated that UA-induced Noxa colocalizes and associates with Mcl-1 to prime it for proteasomal degradation through K48-linked ubiquitination by the selective recruitment of Mcl-1 ubiquitin ligase E3, a homologous to E6-associated protein C terminus domain-containing E3 ubiquitin ligase. These findings unveil a novel mechanism of inducing apoptosis in RASFs and a potential adjunct therapeutic strategy of regulating synovial hyperplasia in RA.-Kim, E. Y., Sudini, K., Singh, A. K., Haque, M., Leaman, D., Khuder, S., Ahmed, S. Ursolic acid facilitates apoptosis in rheumatoid arthritis synovial fibroblasts by inducing SP1-mediated Noxa expression and proteasomal degradation of Mcl-1.
Collapse
Affiliation(s)
- Eugene Y. Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, USA
| | - Kuladeep Sudini
- Department of Pharmacology, University of Toledo, Toledo, Ohio, USA
| | - Anil K. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, USA
| | - Mahamudul Haque
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, USA
| | - Douglas Leaman
- Department of Pharmacology, University of Toledo, Toledo, Ohio, USA
| | - Sadik Khuder
- Department of Medicine, University of Toledo, Toledo, Ohio, USA
- Department of Public Health, University of Toledo, Toledo, Ohio, USA
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, USA
- Division of Rheumatology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
26
|
Song X, Lee DH, Dilly AK, Lee YS, Choudry HA, Kwon YT, Bartlett DL, Lee YJ. Crosstalk Between Apoptosis and Autophagy Is Regulated by the Arginylated BiP/Beclin-1/p62 Complex. Mol Cancer Res 2018; 16:1077-1091. [PMID: 29669822 DOI: 10.1158/1541-7786.mcr-17-0685] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/23/2018] [Accepted: 04/13/2018] [Indexed: 01/21/2023]
Abstract
Emerging evidence demonstrates that autophagy and apoptosis are interconnected and their interplay greatly affects cell death. However, the key regulators in this crosstalk remain elusive. Therefore, the role of N-terminal arginylated BiP (R-BiP)/Beclin-1/p62 complex was examined in the crosstalk between apoptosis and autophagy during combination chemotherapy with mitomycin C and bortezomib using immunoblot, immunoprecipitation, and cellular imaging assays in wild-type (WT) and genetically engineered colorectal cancer cells. In addition, the tumoricidal efficacy of the combinatorial treatment in a nude mouse tumor xenograft model of colorectal cancer was assessed. Bortezomib combined with mitomycin C synergistically induced cytotoxicity and apoptosis rather than autophagy. Mechanistically, this combination inactivated Akt and subsequently induced Beclin-1 (BECN1) dephosphorylation at Ser 234/295. Dephosphorylation of Beclin-1 resulted in increased cleavage of Beclin-1 and disruption of the R-BiP/Beclin-1/p62 complex, which led to switching autophagy to the synergistic induction of apoptosis. Importantly, the combination significantly suppressed LS174T intraperitoneal xenograft tumor growth, induced Akt inactivation and Beclin-1 cleavage, and decreased autophagy in vivo Moreover, the tumoricidal efficacy of the combinatorial treatment was less effective, in vitro and in vivo, in HCT116 tumors harboring a Beclin-1 caspase 8 cleavage site mutant knock-in.Implications: This study uncovers that the R-BiP/Beclin-1/p62 complex has an important role in the crosstalk between apoptosis and autophagy. The results also propose how mono-drug resistance can be overcome using potent combinations to improve anticancer therapy. Mol Cancer Res; 16(7); 1077-91. ©2018 AACR.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dae-Hee Lee
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, Republic of Korea.,Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - Ashok-Kumar Dilly
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Young-Sun Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Haroon Asif Choudry
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - David L Bartlett
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yong J Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
27
|
McHugh A, Fernandes K, South AP, Mellerio JE, Salas-Alanís JC, Proby CM, Leigh IM, Saville MK. Preclinical comparison of proteasome and ubiquitin E1 enzyme inhibitors in cutaneous squamous cell carcinoma: the identification of mechanisms of differential sensitivity. Oncotarget 2018; 9:20265-20281. [PMID: 29755650 PMCID: PMC5945540 DOI: 10.18632/oncotarget.24750] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/02/2018] [Indexed: 11/25/2022] Open
Abstract
Proteasome inhibitors have distinct properties and the biochemical consequences of suppressing ubiquitin E1 enzymes and the proteasome differ. We compared the effects of the proteasome inhibitors bortezomib, ixazomib and carfilzomib and the ubiquitin E1 enzyme inhibitor MLN7243/TAK-243 on cell viability and cell death in normal keratinocytes and cutaneous squamous cell carcinoma (cSCC) cell lines. The effects of both a pulse of treatment and more extended incubation were investigated. This is relevant to directly-delivered therapy (topical treatment/intratumoral injection) where the time of exposure can be controlled and a short exposure may better reflect systemically-delivered inhibitor pharmacokinetics. These agents can selectively kill cSCC cells but there are variations in the pattern of cSCC cell line sensitivity/resistance. Variations in the responses to proteasome inhibitors are associated with differences in the specificity of the inhibitors for the three proteolytic activities of the proteasome. There is greater selectivity for killing cSCC cells compared to normal keratinocytes with a pulse of proteasome inhibitor treatment than with a more extended exposure. We provide evidence that c-MYC-dependent NOXA upregulation confers susceptibility to a short incubation with proteasome inhibitors by priming cSCC cells for rapid BAK-dependent death. We observed that bortezomib-resistant cSCC cells can be sensitive to MLN7243-induced death. Low expression of the ubiquitin E1 UBA1/UBE1 participates in conferring susceptibility to MLN7243 by increasing sensitivity to MLN7243-mediated attenuation of ubiquitination. This study supports further investigation of the potential of proteasome and ubiquitin E1 inhibition for cSCC therapy. Direct delivery of inhibitors could facilitate adequate exposure of skin cancers.
Collapse
Affiliation(s)
- Angela McHugh
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Kenneth Fernandes
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jemima E Mellerio
- St. John's Institute of Dermatology, King's College London, Guy's Campus, London, SE1 7EH, UK
| | - Julio C Salas-Alanís
- DEBRA Mexico, Azteca Guadalupe, Nuevo Leon, 67150 Mexico.,Hospital Regional "Lic. Adolfo Lopez Mateos", Colonia Florida, Del Alvaro Obregon, 01030 Ciudad de Mexico
| | - Charlotte M Proby
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Irene M Leigh
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK.,Centre for Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Mark K Saville
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
28
|
Abstract
Maintenance of protein homeostasis is a crucial process for the normal functioning of the cell. The regulated degradation of proteins is primarily facilitated by the ubiquitin proteasome system (UPS), a system of selective tagging of proteins with ubiquitin followed by proteasome-mediated proteolysis. The UPS is highly dynamic consisting of both ubiquitination and deubiquitination steps that modulate protein stabilization and degradation. Deregulation of protein stability is a common feature in the development and progression of numerous cancer types. Simultaneously, the elevated protein synthesis rate of cancer cells and consequential accumulation of misfolded proteins drives UPS addiction, thus sensitizing them to UPS inhibitors. This sensitivity along with the potential of stabilizing pro-apoptotic signaling pathways makes the proteasome an attractive clinical target for the development of novel therapies. Targeting of the catalytic 20S subunit of the proteasome is already a clinically validated strategy in multiple myeloma and other cancers. Spurred on by this success, promising novel inhibitors of the UPS have entered development, targeting the 20S as well as regulatory 19S subunit and inhibitors of deubiquitinating and ubiquitin ligase enzymes. In this review, we outline the manner in which deregulation of the UPS can cause cancer to develop, current clinical application of proteasome inhibitors, and the (pre-)clinical development of novel inhibitors of the UPS.
Collapse
Affiliation(s)
- Arjan Mofers
- Department of Medical and Health Sciences, Linköping University, SE-581 83, Linköping, Sweden
| | - Paola Pellegrini
- Department of Medical and Health Sciences, Linköping University, SE-581 83, Linköping, Sweden
| | - Stig Linder
- Department of Medical and Health Sciences, Linköping University, SE-581 83, Linköping, Sweden. .,Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institute, SE-171 76, Stockholm, Sweden.
| | - Pádraig D'Arcy
- Department of Medical and Health Sciences, Linköping University, SE-581 83, Linköping, Sweden.
| |
Collapse
|
29
|
Mihalyova J, Jelinek T, Growkova K, Hrdinka M, Simicek M, Hajek R. Venetoclax: A new wave in hematooncology. Exp Hematol 2018; 61:10-25. [PMID: 29477371 DOI: 10.1016/j.exphem.2018.02.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
Abstract
Inhibitors of antiapoptotic proteins of the BCL2 family can successfully restart the deregulated process of apoptosis in malignant cells. Whereas nonselective agents have been limited by their affinity to different BCL2 members, thus inducing excessive toxicity, the highly selective BCL2 inhibitor venetoclax (ABT-199, Venclexta™) has an acceptable safety profile. To date, it has been approved in monotherapy for the treatment of relapsed or refractory chronic lymphocytic leukemia (CLL) with 17p deletion. Extension of indications can be expected in monotherapy and in combination regimens. Sensitivity to venetoclax is not common in lymphomas, but promising outcomes have been achieved in the mantle cell lymphoma group. Venetoclax is also active in multiple myeloma patients, especially in those with translocation t(11;14), even if high-risk features such as del17p are also present. Surprisingly, positive results are being obtained in elderly acute myeloid leukemia patients, in whom inhibition of BCL2 is able to substantially increase the efficacy of low-dose cytarabine or hypomethylating agents. Here, we provide a summary of available results from clinical trials and describe a specific mechanism of action that stands behind the efficacy of venetoclax in hematological malignancies.
Collapse
Affiliation(s)
- Jana Mihalyova
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Tomas Jelinek
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic; Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | - Katerina Growkova
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic; Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Matous Hrdinka
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic; Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Michal Simicek
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic; Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Roman Hajek
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
30
|
Dai H, Ding H, Peterson KL, Meng XW, Schneider PA, Knorr KLB, Kaufmann SH. Measurement of BH3-only protein tolerance. Cell Death Differ 2018; 25:282-293. [PMID: 29053140 PMCID: PMC5762843 DOI: 10.1038/cdd.2017.156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/17/2017] [Accepted: 08/23/2017] [Indexed: 12/25/2022] Open
Abstract
The BCL2 family of proteins regulates cellular life and death decisions. Among BCL2 family members, BH3-only proteins have critical roles by neutralizing antiapoptotic family members, as well as directly activating BAX and BAK. Despite widespread occurrence of BH3-only protein upregulation in response to various stresses, this process is rarely quantified. Moreover, it is unclear whether all BH3-only proteins are equipotent at inducing cell death. Here we show that BH3-only proteins increase as much as 15- to 20-fold after various treatments and define a parameter, termed BH3-only tolerance, which measures how many copies of a particular BH3-only protein can be expressed before the majority of cells in a population undergo apoptosis. We not only assess the relative contributions of anti- and proapoptotic BCL2 family members to BH3-only tolerance, but also illustrate how the study of this parameter can be used to understand cellular sensitivity to anticancer drugs and new combinations. These observations provide a new quantitative framework for assessing apoptotic susceptibility under various conditions.
Collapse
Affiliation(s)
- Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Chinese Academy of Sciences, Hefei,China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Husheng Ding
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Kevin L Peterson
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - X Wei Meng
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Paula A Schneider
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Katherine L B Knorr
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Scott H Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
31
|
Gallagher SJ, Gunatilake D, Beaumont KA, Sharp DM, Tiffen JC, Heinemann A, Weninger W, Haass NK, Wilmott JS, Madore J, Ferguson PM, Rizos H, Hersey P. HDAC inhibitors restore BRAF-inhibitor sensitivity by altering PI3K and survival signalling in a subset of melanoma. Int J Cancer 2017; 142:1926-1937. [PMID: 29210065 DOI: 10.1002/ijc.31199] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/14/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023]
Abstract
Mutations in BRAF activate oncogenic MAPK signalling in almost half of cutaneous melanomas. Inhibitors of BRAF (BRAFi) and its target MEK are widely used to treat melanoma patients with BRAF mutations but unfortunately acquired resistance occurs in the majority of patients. Resistance results from mutations or non-genomic changes that either reactivate MAPK signalling or activate other pathways that provide alternate survival and growth signalling. Here, we show the histone deacetylase inhibitor (HDACi) panobinostat overcomes BRAFi resistance in melanoma, but this is dependent on the resistant cells showing a partial response to BRAFi treatment. Using patient- and in vivo-derived melanoma cell lines with acquired BRAFi resistance, we show that combined treatment with the BRAFi encorafenib and HDACi panobinostat in 2D and 3D culture systems synergistically induced caspase-dependent apoptotic cell death. Key changes induced by HDAC inhibition included decreased PI3K pathway activity associated with a reduction in the protein level of a number of receptor tyrosine kinases, and cell line dependent upregulation of pro-apoptotic BIM or NOXA together with reduced expression of anti-apoptotic proteins. Independent of these changes, panobinostat reduced c-Myc and pre-treatment of cells with siRNA against c-Myc reduced BRAFi/HDACi drug-induced cell death. These results suggest that a combination of HDAC and MAPK inhibitors may play a role in treatment of melanoma where the resistance mechanisms are due to activation of MAPK-independent pathways.
Collapse
Affiliation(s)
- Stuart J Gallagher
- The Centenary Institute, University of Sydney, Newtown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Dilini Gunatilake
- The Centenary Institute, University of Sydney, Newtown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | | | - Danae M Sharp
- The Centenary Institute, University of Sydney, Newtown, NSW, Australia
| | - Jessamy C Tiffen
- The Centenary Institute, University of Sydney, Newtown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Anja Heinemann
- The Centenary Institute, University of Sydney, Newtown, NSW, Australia
| | - Wolfgang Weninger
- The Centenary Institute, University of Sydney, Newtown, NSW, Australia
| | - Nikolas K Haass
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia.,Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Jason Madore
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Peter M Ferguson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Helen Rizos
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Peter Hersey
- The Centenary Institute, University of Sydney, Newtown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
32
|
Abstract
The approval of venetoclax, a 'BH3-mimetic' antagonist of the BCL-2 anti-apoptotic protein, for chronic lymphocytic leukemia represents a major milestone in translational apoptosis research. Venetoclax has already received 'breakthrough' designation for acute myeloid leukemia, and is being studied in many other tumor types. However, resistance to BCL-2 inhibitor monotherapy may rapidly ensue. Several studies have shown that the other two major anti-apoptotic BCL-2 family proteins, BCL-XL and MCL-1, are the main determinants of resistance to venetoclax. This opens up possibilities for rationally combining venetoclax with other targeted agents to circumvent resistance. Here, we summarize the most promising combinations, and highlight those already in clinical trials. There is also increasing recognition that different tumors display different degrees of addiction to individual BCL-2 family proteins, and of the need to refine current 'BH3 profiling' techniques. Finally, the successful clinical development of potent and selective antagonists of BCL-XL and MCL-1 is eagerly awaited.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Apoptosis/drug effects
- Apoptosis/genetics
- Biomimetics
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Clinical Trials as Topic
- Drug Discovery
- Drug Resistance, Neoplasm/genetics
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/metabolism
- Peptide Fragments/pharmacology
- Peptide Fragments/therapeutic use
- Proto-Oncogene Proteins/pharmacology
- Proto-Oncogene Proteins/therapeutic use
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/chemistry
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- bcl-X Protein/antagonists & inhibitors
- bcl-X Protein/genetics
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Prithviraj Bose
- a Department of Leukemia , University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Varsha Gandhi
- a Department of Leukemia , University of Texas MD Anderson Cancer Center , Houston , TX , USA
- b Department of Experimental Therapeutics , University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Marina Konopleva
- a Department of Leukemia , University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
33
|
Zhang J, Li S, Shang Z, Lin S, Gao P, Zhang Y, Hou S, Mo S, Cao W, Dong Z, Hu T, Chen P. Targeting the overexpressed ROC1 induces G2 cell cycle arrest and apoptosis in esophageal cancer cells. Oncotarget 2017; 8:29125-29137. [PMID: 28418860 PMCID: PMC5438718 DOI: 10.18632/oncotarget.16250] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 02/20/2017] [Indexed: 01/17/2023] Open
Abstract
Recent reports showed that regulator of Cullins-1 (ROC1) play an important role in tumor progression in a tumor-specific manner. However, the role and mechanism of ROC1 in esophageal cancer remains elusive. Here we demonstrated that ROC1 was overexpressed in esophageal squamous cell carcinomas, which was positive associated with poor prognosis of esophageal cancer patients. ROC1 knockdown significantly inhibited the growth of esophageal cancer cells in vitro and in vivo. Mechanistically, ROC1 silencing induced G2 cell cycle arrest and triggered apoptosis by accumulating the pro-apoptotic protein NOXA. Consistently, the downregulation of NOXA expression via siRNA substantially attenuated apoptosis induced by ROC1 silencing. These findings suggest that ROC1 is an appealing drug target for esophageal cancer.
Collapse
Affiliation(s)
- Jingyang Zhang
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Shuo Li
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Zhaoyang Shang
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Shan Lin
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Peng Gao
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Yi Zhang
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Shuaiheng Hou
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Saijun Mo
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Wenbo Cao
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Ziming Dong
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Tao Hu
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Ping Chen
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| |
Collapse
|
34
|
Liu X, Jiang Y, Wu J, Zhang W, Liang Y, Jia L, Yu J, Jeong LS, Li L. NEDD8-activating enzyme inhibitor, MLN4924 (Pevonedistat) induces NOXA-dependent apoptosis through up-regulation of ATF-4. Biochem Biophys Res Commun 2017; 488:1-5. [PMID: 28450112 DOI: 10.1016/j.bbrc.2017.04.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/22/2017] [Indexed: 11/29/2022]
Abstract
It has been reported that MLN4924 can inhibit cell growth and metastasis in various kinds of cancer. We have reported that MLN4924 is able to inhibit angiogenesis through the induction of cell apoptosis both in vitro and in vivo models. Moreover, Neddylation inhibition using MLN4924 triggered the accumulation of pro-apoptotic protein NOXA in Human umbilical vein endothelial cells (HUVECs). However, the mechanism of MLN4924-induced NOXA up-regulation has not been addressed in HUVECs yet. In this study, we investigated how MLN4924 induced NOXA expression and cellular apoptosis in HUVECs treated with MLN4924 at indicated concentrations. MLN4924-induced apoptosis was evaluated by Annexin V-FITC/PI analysis and expression of genes associated with apoptosis was assessed by Quantitative RT-PCR and western blotting. As a result, MLN4924 triggered NOXA-dependent apoptosis in a dose-dependent manner in HUVECs. Mechanistically, inactivation of Neddylation pathway caused up-regulation of activating transcription factor 4 (ATF-4), a substrate of Cullin-Ring E3 ubiquitin ligases (CRL). NOXA was subsequently transactivated by ATF-4 and further induced apoptosis. More importantly, knockdown of ATF-4 by siRNA significantly decreased NOXA expression and apoptotic induction in HUVECs. In summary, our study reveals a new mechanism underlying MLN4924-induced NOXA accumulation in HUVECs, which may help extend further study of MLN4924 for angiogenesis inhibition treatment.
Collapse
Affiliation(s)
- Xiaojun Liu
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanan Jiang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jianfu Wu
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenjuan Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yupei Liang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lijun Jia
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jinha Yu
- College of Pharmacy, Seoul National University, Seoul, Korea Department of Pharmacy, South Korea
| | - L S Jeong
- College of Pharmacy, Seoul National University, Seoul, Korea Department of Pharmacy, South Korea.
| | - Lihui Li
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
35
|
ROCK1/p53/NOXA signaling mediates cardiomyocyte apoptosis in response to high glucose in vitro and vivo. Biochim Biophys Acta Mol Basis Dis 2017; 1863:936-946. [DOI: 10.1016/j.bbadis.2017.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/04/2017] [Accepted: 01/24/2017] [Indexed: 01/02/2023]
|
36
|
Knorr KL, Finn LE, Smith BD, Hess AD, Foran JM, Karp JE, Kaufmann SH. Assessment of Drug Sensitivity in Hematopoietic Stem and Progenitor Cells from Acute Myelogenous Leukemia and Myelodysplastic Syndrome Ex Vivo. Stem Cells Transl Med 2017; 6:840-850. [PMID: 28297583 PMCID: PMC5442784 DOI: 10.5966/sctm.2016-0034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 09/19/2016] [Indexed: 01/24/2023] Open
Abstract
Current understanding suggests that malignant stem and progenitor cells must be reduced or eliminated for prolonged remissions in myeloid neoplasms such as acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS). Multicolor flow cytometry has been widely used to distinguish stem and myeloid progenitor cells from other populations in normal and malignant bone marrow. In this study, we present a method for assessing drug sensitivity in MDS and AML patient hematopoietic stem and myeloid progenitor cell populations ex vivo using the investigational Nedd8‐activating enzyme inhibitor MLN4924 and standard‐of‐care agent cytarabine as examples. Utilizing a multicolor flow cytometry antibody panel for identification of hematopoietic stem cells, multipotent progenitors, common myeloid progenitors, granulocyte‐monocyte progenitors, and megakaryocyte‐erythroid progenitors present in mononuclear cell fractions isolated from bone marrow aspirates, we compare stem and progenitor cell counts after treatment for 24 hours with drug versus diluent. We demonstrate that MLN4924 exerts a cytotoxic effect on MDS and AML stem and progenitor cell populations, whereas cytarabine has more limited effects. Further application of this method for evaluating drug effects on these populations ex vivo and in vivo may inform rational design and selection of therapies in the clinical setting. Stem Cells Translational Medicine2017;6:840–850
Collapse
Affiliation(s)
- Katherine L.B. Knorr
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura E. Finn
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - B. Douglas Smith
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Allan D. Hess
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - James M. Foran
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - Judith E. Karp
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott H. Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
- Division of Hematological Malignancies, Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Impact of loss of BH3-only proteins on the development and treatment of MLL-fusion gene-driven AML in mice. Cell Death Dis 2016; 7:e2351. [PMID: 27584789 PMCID: PMC5059861 DOI: 10.1038/cddis.2016.258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/25/2016] [Indexed: 12/26/2022]
Abstract
Inhibition of the apoptosis pathway controlled by opposing members of the Bcl-2 protein family plays a central role in cancer development and resistance to therapy. To investigate how pro-apoptotic Bcl-2 homology domain 3 (BH3)-only proteins impact on acute myeloid leukemia (AML), we generated mixed lineage leukemia (MLL)-AF9 and MLL-ENL AMLs from BH3-only gene knockout mice. Disease development was not accelerated by loss of Bim, Puma, Noxa, Bmf, or combinations thereof; hence these BH3-only proteins are apparently ineffectual as tumor suppressors in this model. We tested the sensitivity of MLL-AF9 AMLs of each genotype in vitro to standard chemotherapeutic drugs and to the proteasome inhibitor bortezomib, with or without the BH3 mimetic ABT-737. Loss of Puma and/or Noxa increased resistance to cytarabine, daunorubicin and etoposide, while loss of Bim protected against cytarabine and loss of Bmf had no impact. ABT-737 increased sensitivity to the genotoxic drugs but was not dependent on any BH3-only protein tested. The AML lines were very sensitive to bortezomib and loss of Noxa conveyed significant resistance. In vivo, several MLL-AF9 AMLs responded well to daunorubicin and this response was highly dependent on Puma and Noxa but not Bim. Combination therapy with ABT-737 provided little added benefit at the daunorubicin dose trialed. Bortezomib also extended survival of AML-bearing mice, albeit less than daunorubicin. In summary, our genetic studies reveal the importance of Puma and Noxa for the action of genotoxics currently used to treat MLL-driven AML and suggest that, while addition of ABT-737-like BH3 mimetics might enhance their efficacy, new Noxa-like BH3 mimetics targeting Mcl-1 might have greater potential.
Collapse
|
38
|
S Soderquist R, Eastman A. BCL2 Inhibitors as Anticancer Drugs: A Plethora of Misleading BH3 Mimetics. Mol Cancer Ther 2016; 15:2011-7. [PMID: 27535975 DOI: 10.1158/1535-7163.mct-16-0031] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/18/2016] [Indexed: 11/16/2022]
Abstract
Antiapoptotic BCL2 proteins play a major role in tumor cell survival. Hence, BCL2 inhibitors have been developed as direct inducers of apoptosis. ABT-199 (venetoclax) received breakthrough therapy designation from the FDA due to its apparent efficacy in CLL and AML. However, resistance to ABT-199 is mediated by other BCL2 proteins including BCLXL and MCL1. Considerable effort has been expended seeking novel "BH3 mimetics" that inhibit all of these BCL2 proteins. While many BH3 mimetics inhibit BCL2 proteins in vitro, they fail to directly inhibit them in intact cells. Many BH3 mimetics induce the unfolded protein response culminating in induction of the proapoptotic protein NOXA, which in turn inhibits MCL1. We propose simple experiments to validate BH3 mimetics in cells. A true BCL2 inhibitor will rapidly induce apoptosis in chronic lymphocytic leukemia cells ex vivo A BCLXL inhibitor will rapidly induce apoptosis in platelets. Finally, a BH3 mimetic targeting MCL1 will inhibit its degradation thereby inducing rapid MCL1 accumulation. Compounds that fail these tests should no longer be called BH3 mimetics. We now have a toolbox of selective inhibitors for most of the BCL2 proteins, and we hope these new tools will lead to effective treatment options for many cancers. Mol Cancer Ther; 15(9); 2011-7. ©2016 AACR.
Collapse
Affiliation(s)
- Ryan S Soderquist
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Alan Eastman
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.
| |
Collapse
|
39
|
Siegel MB, Liu SQ, Davare MA, Spurgeon SE, Loriaux MM, Druker BJ, Scott EC, Tyner JW. Small molecule inhibitor screen identifies synergistic activity of the bromodomain inhibitor CPI203 and bortezomib in drug resistant myeloma. Oncotarget 2016; 6:18921-32. [PMID: 26254279 PMCID: PMC4662464 DOI: 10.18632/oncotarget.4214] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/12/2015] [Indexed: 11/25/2022] Open
Abstract
Purpose Despite significant therapeutic progress in multiple myeloma, drug resistance is uniformly inevitable and new treatments are needed. Our aim was to identify novel, efficacious small-molecule combinations for use in drug resistant multiple myeloma. Experimental Design A panel of 116 small molecule inhibitors was used to screen resistant myeloma cell lines for potential therapeutic targets. Agents found to have enhanced activity in the bortezomib or melphalan resistant myeloma cell lines were investigated further in combination. Synergistic combinations of interest were evaluated in primary patient cells. Results The overall single-agent drug sensitivity profiles were dramatically different between melphalan and bortezomib resistant cells, however, the bromodomain inhibitor, CPI203, was observed to have enhanced activity in both the bortezomib and melphalan resistant lines compared to their wild-type counterparts. The combination of bortezomib and CPI203 was found to be synergistic in both the bortezomib and melphalan resistant cell lines as well as in a primary multiple myeloma sample from a patient refractory to recent proteasome inhibitor treatment. The CPI203-bortezomib combination led to enhanced apoptosis and anti-proliferative effects. Finally, in contrast to prior reports of synergy between bortezomib and other epigenetic modifying agents, which implicated MYC downregulation or NOXA induction, our analyses suggest that CPI203-bortezomib synergy is independent of these events. Conclusion Our preclinical data supports a role for the clinical investigation of the bromodomain inhibitor CPI203 combined with bortezomib or alkylating agents in resistant multiple myeloma.
Collapse
Affiliation(s)
| | | | - Monika A Davare
- Knight Cancer Institute, Portland, Oregon, USA.,Department of Pediatrics at Oregon Health and Science University, Portland, Oregon, USA
| | | | | | - Brian J Druker
- Knight Cancer Institute, Portland, Oregon, USA.,Howard Hughes Medical Institute, Portland, Oregon, USA
| | | | | |
Collapse
|
40
|
Gargini R, García-Escudero V, Izquierdo M, Wandosell F. Oncogene-mediated tumor transformation sensitizes cells to autophagy induction. Oncol Rep 2016; 35:3689-95. [PMID: 27035659 DOI: 10.3892/or.2016.4699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/18/2015] [Indexed: 11/06/2022] Open
Abstract
The process of tumorigenesis induces alterations in numerous cellular pathways including the main eukaryotic metabolic routes. It has been recently demonstrated that autophagy is part of the oncogene-induced senescence phenotype although its role in tumor establishment has not been completely clarified. In the present study, we showed that non‑transformed cells are sensitized to mitochondrial stress and autophagy induction when they are transformed by oncogenes such as c-Myc or Ras. We observed that overexpression of c-Myc or Ras increased AMP-activated protein kinase (AMPK) phosphorylation and the expression of p62, a known partner for degradation by autophagy. The activation of AMPK was found to favor the activation of FoxO3 which was prevented by the inhibition of AMPK. The transcriptional activation mediated by FoxO3 upregulated genes such as BNIP3 and LC3. Finally, the transformation by oncogenes such as c-Myc and Ras predisposes tumor cells to autophagy induction as a consequence of mitochondrial stress and impairs tumor growth in vitro and in vivo, which may have therapeutic implications.
Collapse
Affiliation(s)
- Ricardo Gargini
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Vega García-Escudero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Marta Izquierdo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autonoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
41
|
RAB7 counteracts PI3K-driven macropinocytosis activated at early stages of melanoma development. Oncotarget 2016; 6:11848-62. [PMID: 26008978 PMCID: PMC4494909 DOI: 10.18632/oncotarget.4055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 04/20/2015] [Indexed: 12/28/2022] Open
Abstract
Derailed endolysosomal trafficking is emerging as a widespread feature of aggressive neoplasms. However, the oncogenic signals that alter membrane homeostasis and their specific contribution to cancer progression remain unclear. Understanding the upstream drivers and downstream regulators of aberrant vesicular trafficking is distinctly important in melanoma. This disease is notorious for its inter- and intra-tumoral heterogeneity. Nevertheless, melanomas uniformly overexpress a cluster of endolysosomal genes, being particularly addicted to the membrane traffic regulator RAB7. Still, the underlying mechanisms and temporal determinants of this dependency have yet to be defined. Here we addressed these questions by combining electron microscopy, real time imaging and mechanistic analyses of vesicular trafficking in normal and malignant human melanocytic cells. This strategy revealed Class I PI3K as the key trigger of a hyperactive influx of macropinosomes that melanoma cells counteract via RAB7-mediated lysosomal degradation. In addition, gain- and loss-of-function in vitro studies followed by histopathological validation in clinical biopsies and genetically-engineered mouse models, traced back the requirement of RAB7 to the suppression of premature cellular senescence traits elicited in melanocytes by PI3K-inducing oncogenes. Together, these results provide new insight into the regulators and modes of action of RAB7, broadening the impact of endosomal fitness on melanoma development.
Collapse
|
42
|
Neddylation Inhibition Activates the Extrinsic Apoptosis Pathway through ATF4–CHOP–DR5 Axis in Human Esophageal Cancer Cells. Clin Cancer Res 2016; 22:4145-57. [DOI: 10.1158/1078-0432.ccr-15-2254] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/07/2016] [Indexed: 11/16/2022]
|
43
|
Ham J, Costa C, Sano R, Lochmann TL, Sennott EM, Patel NU, Dastur A, Gomez-Caraballo M, Krytska K, Hata AN, Floros KV, Hughes MT, Jakubik CT, Heisey DAR, Ferrell JT, Bristol ML, March RJ, Yates C, Hicks MA, Nakajima W, Gowda M, Windle BE, Dozmorov MG, Garnett MJ, McDermott U, Harada H, Taylor SM, Morgan IM, Benes CH, Engelman JA, Mossé YP, Faber AC. Exploitation of the Apoptosis-Primed State of MYCN-Amplified Neuroblastoma to Develop a Potent and Specific Targeted Therapy Combination. Cancer Cell 2016; 29:159-72. [PMID: 26859456 PMCID: PMC4749542 DOI: 10.1016/j.ccell.2016.01.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/14/2015] [Accepted: 01/07/2016] [Indexed: 01/30/2023]
Abstract
Fewer than half of children with high-risk neuroblastoma survive. Many of these tumors harbor high-level amplification of MYCN, which correlates with poor disease outcome. Using data from our large drug screen we predicted, and subsequently demonstrated, that MYCN-amplified neuroblastomas are sensitive to the BCL-2 inhibitor ABT-199. This sensitivity occurs in part through low anti-apoptotic BCL-xL expression, high pro-apoptotic NOXA expression, and paradoxical, MYCN-driven upregulation of NOXA. Screening for enhancers of ABT-199 sensitivity in MYCN-amplified neuroblastomas, we demonstrate that the Aurora Kinase A inhibitor MLN8237 combines with ABT-199 to induce widespread apoptosis. In diverse models of MYCN-amplified neuroblastoma, including a patient-derived xenograft model, this combination uniformly induced tumor shrinkage, and in multiple instances led to complete tumor regression.
Collapse
Affiliation(s)
- Jungoh Ham
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Carlotta Costa
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Renata Sano
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Timothy L Lochmann
- Department of Microbiology and Immunology, Massey Cancer Center, Richmond, VA 23298, USA
| | - Erin M Sennott
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Neha U Patel
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Anahita Dastur
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Maria Gomez-Caraballo
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kateryna Krytska
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Aaron N Hata
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Konstantinos V Floros
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Mark T Hughes
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Charles T Jakubik
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel A R Heisey
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Justin T Ferrell
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Molly L Bristol
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Ryan J March
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Craig Yates
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Mark A Hicks
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Wataru Nakajima
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki 211-8533, Japan
| | - Madhu Gowda
- Department of Pediatrics, Children's Hospital of Richmond, VCU, Richmond, VA 23298, USA
| | - Brad E Windle
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mathew J Garnett
- Cancer Genome Project, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Ultan McDermott
- Cancer Genome Project, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Hisashi Harada
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Shirley M Taylor
- Department of Microbiology and Immunology, Massey Cancer Center, Richmond, VA 23298, USA
| | - Iain M Morgan
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey A Engelman
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Yael P Mossé
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Anthony C Faber
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA.
| |
Collapse
|
44
|
Edwards SKE, Han Y, Liu Y, Kreider BZ, Liu Y, Grewal S, Desai A, Baron J, Moore CR, Luo C, Xie P. Signaling mechanisms of bortezomib in TRAF3-deficient mouse B lymphoma and human multiple myeloma cells. Leuk Res 2015; 41:85-95. [PMID: 26740054 DOI: 10.1016/j.leukres.2015.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 01/30/2023]
Abstract
Bortezomib, a clinical drug for multiple myeloma (MM) and mantle cell lymphoma, exhibits complex mechanisms of action, which vary depending on the cancer type and the critical genetic alterations of each cancer. Here we investigated the signaling mechanisms of bortezomib in mouse B lymphoma and human MM cells deficient in a new tumor suppressor gene, TRAF3. We found that bortezomib consistently induced up-regulation of the cell cycle inhibitor p21(WAF1) and the pro-apoptotic protein Noxa as well as cleavage of the anti-apoptotic protein Mcl-1. Interestingly, bortezomib induced the activation of NF-κB1 and the accumulation of the oncoprotein c-Myc, but inhibited the activation of NF-κB2. Furthermore, we demonstrated that oridonin (an inhibitor of NF-κB1 and NF-κB2) or AD 198 (a drug targeting c-Myc) drastically potentiated the anti-cancer effects of bortezomib in TRAF3-deficient malignant B cells. Taken together, our findings increase the understanding of the mechanisms of action of bortezomib, which would aid the design of novel bortezomib-based combination therapies. Our results also provide a rationale for clinical evaluation of the combinations of bortezomib and oridonin (or other inhibitors of NF-κB1/2) or AD 198 (or other drugs targeting c-Myc) in the treatment of lymphoma and MM, especially in patients containing TRAF3 deletions or relevant mutations.
Collapse
Affiliation(s)
- Shanique K E Edwards
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States; Graduate Program in Molecular Biosciences, Rutgers University, Piscataway, NJ 08854, United States
| | - Yeming Han
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Yingying Liu
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Benjamin Z Kreider
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Yan Liu
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Sukhdeep Grewal
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Anand Desai
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Jacqueline Baron
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Carissa R Moore
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Chang Luo
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States; Member, Rutgers Cancer Institute of New Jersey, United States.
| |
Collapse
|
45
|
Narita T, Ri M, Masaki A, Mori F, Ito A, Kusumoto S, Ishida T, Komatsu H, Iida S. Lower expression of activating transcription factors 3 and 4 correlates with shorter progression-free survival in multiple myeloma patients receiving bortezomib plus dexamethasone therapy. Blood Cancer J 2015; 5:e373. [PMID: 26636288 PMCID: PMC4735074 DOI: 10.1038/bcj.2015.98] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 09/18/2015] [Accepted: 10/13/2015] [Indexed: 11/13/2022] Open
Abstract
Bortezomib (BTZ), a proteasome inhibitor, is widely used in the treatment of multiple myeloma (MM), but a fraction of patients respond poorly to this agent. To identify factors predicting the duration of progression-free survival (PFS) of MM patients on BTZ treatment, the expression of proteasome and endoplasmic reticulum (ER) stress-related genes was quantified in primary samples from patients receiving a combination of BTZ and dexamethasone (BD). Fifty-six MM patients were stratified into a group with PFS<6 months (n=33) and a second group with PFS⩾6 months (n=23). Of the 15 genes analyzed, the expression of activating transcription factor 3 (ATF3) and ATF4 was significantly lower in patients with shorter PFS (P=0.0157 and P=0.0085, respectively). Chromatin immunoprecipitation analysis showed that these ATFs bind each other and transactivate genes encoding the pro-apoptotic transcription factors, CHOP and Noxa, which promote ER stress-associated apoptosis. When either ATF3 or ATF4 expression was silenced, MM cells partially lost sensitivity to BTZ treatment. This was accompanied by lower levels of Noxa, CHOP and DR5. Thus low basal expression of ATF3 and ATF4 may attenuate BTZ-induced apoptosis. Hence, ATF3 and ATF4 could potentially be used as biomarkers to predict efficacy of BD therapy in patients with MM.
Collapse
Affiliation(s)
- T Narita
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - M Ri
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - A Masaki
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - F Mori
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - A Ito
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - S Kusumoto
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - T Ishida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - H Komatsu
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - S Iida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| |
Collapse
|
46
|
Abstract
In multicellular organisms, cell death is a critical and active process that maintains tissue homeostasis and eliminates potentially harmful cells. There are three major types of morphologically distinct cell death: apoptosis (type I cell death), autophagic cell death (type II), and necrosis (type III). All three can be executed through distinct, and sometimes overlapping, signaling pathways that are engaged in response to specific stimuli. Apoptosis is triggered when cell-surface death receptors such as Fas are bound by their ligands (the extrinsic pathway) or when Bcl2-family proapoptotic proteins cause the permeabilization of the mitochondrial outer membrane (the intrinsic pathway). Both pathways converge on the activation of the caspase protease family, which is ultimately responsible for the dismantling of the cell. Autophagy defines a catabolic process in which parts of the cytosol and specific organelles are engulfed by a double-membrane structure, known as the autophagosome, and eventually degraded. Autophagy is mostly a survival mechanism; nevertheless, there are a few examples of autophagic cell death in which components of the autophagic signaling pathway actively promote cell death. Necrotic cell death is characterized by the rapid loss of plasma membrane integrity. This form of cell death can result from active signaling pathways, the best characterized of which is dependent on the activity of the protein kinase RIP3.
Collapse
Affiliation(s)
- Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Fabien Llambi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
47
|
Knorr KLB, Schneider PA, Meng XW, Dai H, Smith BD, Hess AD, Karp JE, Kaufmann SH. MLN4924 induces Noxa upregulation in acute myelogenous leukemia and synergizes with Bcl-2 inhibitors. Cell Death Differ 2015; 22:2133-42. [PMID: 26045051 PMCID: PMC4816118 DOI: 10.1038/cdd.2015.74] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/31/2022] Open
Abstract
MLN4924 (pevonedistat), an inhibitor of the Nedd8 activating enzyme (NAE), has exhibited promising clinical activity in acute myelogenous leukemia (AML). Here we demonstrate that MLN4924 induces apoptosis in AML cell lines and clinical samples via a mechanism distinct from those observed in other malignancies. Inactivation of E3 cullin ring ligases (CRLs) through NAE inhibition causes accumulation of the CRL substrate c-Myc, which transactivates the PMAIP1 gene encoding Noxa, leading to increased Noxa protein, Bax and Bak activation, and subsequent apoptotic changes. Importantly, c-Myc knockdown diminishes Noxa induction; and Noxa siRNA diminishes MLN4924-induced killing. Because Noxa also neutralizes Mcl-1, an anti-apoptotic Bcl-2 paralog often upregulated in resistant AML, further experiments have examined the effect of combining MLN4924 with BH3 mimetics that target other anti-apoptotic proteins. In combination with ABT-199 or ABT-263 (navitoclax), MLN4924 exerts a synergistic cytotoxic effect. Collectively, these results provide new insight into MLN4924-induced engagement of the apoptotic machinery that could help guide further exploration of MLN4924 for AML.
Collapse
Affiliation(s)
- K L B Knorr
- Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN, USA
| | - P A Schneider
- Division of Oncology Research, Mayo Clinic, Rochester, MN, USA
| | - X W Meng
- Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN, USA
- Division of Oncology Research, Mayo Clinic, Rochester, MN, USA
| | - H Dai
- Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN, USA
- Division of Oncology Research, Mayo Clinic, Rochester, MN, USA
| | - B D Smith
- Division of Hematological Malignancies, Sidney Kimmel Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - A D Hess
- Division of Hematological Malignancies, Sidney Kimmel Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - J E Karp
- Division of Hematological Malignancies, Sidney Kimmel Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - S H Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN, USA
- Division of Oncology Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
48
|
Abstract
Two opposing models have been proposed to describe the function of the MYC oncoprotein in shaping cellular transcriptomes: one posits that MYC amplifies transcription at all active loci; the other that MYC differentially controls discrete sets of genes, the products of which affect global transcript levels. Here, we argue that differential gene regulation by MYC is the sole unifying model that is consistent with all available data. Among other effects, MYC endows cells with physiological and metabolic changes that have the potential to feed back on global RNA production, processing and turnover. The field is progressing steadily towards a full characterization of the MYC-regulated genes and pathways that mediate these biological effects and - by the same token - endow MYC with its pervasive oncogenic potential.
Collapse
Affiliation(s)
- Theresia R Kress
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT) and Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy
| | - Arianna Sabò
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT) and Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy
| | - Bruno Amati
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT) and Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
49
|
Song X, Dilly AK, Choudry HA, Bartlett DL, Kwon YT, Lee YJ. Hypoxia Promotes Synergy between Mitomycin C and Bortezomib through a Coordinated Process of Bcl-xL Phosphorylation and Mitochondrial Translocation of p53. Mol Cancer Res 2015; 13:1533-43. [PMID: 26354682 DOI: 10.1158/1541-7786.mcr-15-0237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/24/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Colorectal peritoneal carcinomatosis (CPC) exhibits severe tumor hypoxia, leading to drug resistance and disease aggressiveness. This study demonstrates that the combination of the chemotherapeutic agent mitomycin C with the proteasome inhibitor bortezomib induced synergistic cytotoxicity and apoptosis, which was even more effective under hypoxia in colorectal cancer cells. The combination of mitomycin C and bortezomib at sublethal doses induced activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase and resulted in Bcl-xL phosphorylation at Serine 62, leading to dissociation of Bcl-xL from proapoptotic Bak. Interestingly, the intracellular level of p53 became elevated and p53 translocated to the mitochondria during the combinatorial treatment, in particular under hypoxia. The coordinated action of Bcl-xL phosphorylation and p53 translocation to the mitochondria resulted in conformational activation of Bak oligomerization, facilitating cytochrome c release and apoptosis induction. In addition, the combinatorial treatment with mitomycin C and bortezomib significantly inhibited intraperitoneal tumor growth in LS174T cells and increased apoptosis, especially under hypoxic conditions in vivo. This study provides a preclinical rationale for the use of combination therapies for CPC patients. IMPLICATIONS The combination of a chemotherapy agent and proteasome inhibitor at sublethal doses induced synergistic apoptosis, in particular under hypoxia, in vitro and in vivo through coordinated action of Bcl-xL and p53 on Bak activation.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ashok-Kumar Dilly
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Haroon Asif Choudry
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Korea
| | - Yong J Lee
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania. Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
50
|
Mitochondrial thioredoxin reductase regulates major cytotoxicity pathways of proteasome inhibitors in multiple myeloma cells. Leukemia 2015. [PMID: 26205085 DOI: 10.1038/leu.2015.190] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It is generally accepted that intracellular oxidative stress induced by proteasome inhibitors is a byproduct of endoplasmic reticulum (ER) stress. Here we report a mechanism underlying the ability of proteasome inhibitors bortezomib (BTZ) and carfilzomib (CFZ) to directly induce oxidative and ER stresses in multiple myeloma (MM) cells via transcriptional repression of a gene encoding mitochondrial thioredoxin reductase (TXNRD2). TXNRD2 is critical for maintenance of intracellular red-ox status and detoxification of reactive oxygen species. Depletion of TXNRD2 to the levels detected in BTZ- or CFZ-treated cells causes oxidative stress, ER stress and death similar to those induced by proteasome inhibitors. Reciprocally, restoration of near-wildtype TXNRD2 amounts in MM cells treated with proteasome inhibitors reduces oxidative stress, ER stress and cell death by ~46%, ~35% and ~50%, respectively, compared with cells with unrestored TXNRD2 levels. Moreover, cells from three MM cell lines selected for resistance to BTZ demonstrate elevated levels of TXNRD2, indirectly confirming its functional role in BTZ resistance. Accordingly, ectopic expression of TXNRD2 in MM cell xenografts in immunocompromised mice blunts therapeutic effects of BTZ. Our data identify TXNRD2 as a potentially clinically relevant target, inhibition of which is critical for proteasome inhibitor-dependent cytotoxicity, oxidative stress and ER stress.
Collapse
|