1
|
Zimmerman CA, Bolkan SS, Pan-Vazquez A, Wu B, Keppler EF, Meares-Garcia JB, Guthman EM, Fetcho RN, McMannon B, Lee J, Hoag AT, Lynch LA, Janarthanan SR, López Luna JF, Bondy AG, Falkner AL, Wang SSH, Witten IB. A neural mechanism for learning from delayed postingestive feedback. Nature 2025:10.1038/s41586-025-08828-z. [PMID: 40175547 DOI: 10.1038/s41586-025-08828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/21/2025] [Indexed: 04/04/2025]
Abstract
Animals learn the value of foods on the basis of their postingestive effects and thereby develop aversions to foods that are toxic1-10 and preferences to those that are nutritious11-13. However, it remains unclear how the brain is able to assign credit to flavours experienced during a meal with postingestive feedback signals that can arise after a substantial delay. Here we reveal an unexpected role for the postingestive reactivation of neural flavour representations in this temporal credit-assignment process. To begin, we leverage the fact that mice learn to associate novel14,15, but not familiar, flavours with delayed gastrointestinal malaise signals to investigate how the brain represents flavours that support aversive postingestive learning. Analyses of brain-wide activation patterns reveal that a network of amygdala regions is unique in being preferentially activated by novel flavours across every stage of learning (consumption, delayed malaise and memory retrieval). By combining high-density recordings in the amygdala with optogenetic stimulation of malaise-coding hindbrain neurons, we show that delayed malaise signals selectively reactivate flavour representations in the amygdala from a recent meal. The degree of malaise-driven reactivation of individual neurons predicts the strengthening of flavour responses upon memory retrieval, which in turn leads to stabilization of the population-level representation of the recently consumed flavour. By contrast, flavour representations in the amygdala degrade in the absence of unexpected postingestive consequences. Thus, we demonstrate that postingestive reactivation and plasticity of neural flavour representations may support learning from delayed feedback.
Collapse
Affiliation(s)
| | - Scott S Bolkan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Bichan Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Emma F Keppler
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Eartha Mae Guthman
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Robert N Fetcho
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Brenna McMannon
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Junuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Austin T Hoag
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Laura A Lynch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Juan F López Luna
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Adrian G Bondy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Annegret L Falkner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Samuel S-H Wang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
Zheng CY, Blackwell JM, Fontanini A. Deficits in taste-guided behaviors and central processing of taste in the transgenic TDP-43 Q331K mouse model of frontotemporal dementia. Neurobiol Dis 2025; 207:106850. [PMID: 39978485 DOI: 10.1016/j.nbd.2025.106850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
Frontotemporal dementia (FTD) is the second most prevalent form of presenile dementia. Patients with FTD show prominent chemosensory symptoms such as abnormal detection and recognition thresholds for various gustatory stimuli. The chemosensory symptoms of FTD may be related to damage of the gustatory insular cortex (GC) as the insular cortex is one of the primary targets in FTD disease progression. Little is known about how circuitry changes in GC lead to deficits in taste processing in FTD. Here we tested the hypothesis that gustatory deficits are present in a mouse model of FTD, and that they are related to abnormal patterns of neural activity in GC. We behaviorally evaluated a transgenic FTD mouse model overexpressing human TDP-43 with a Q331K mutation (TDP-43Q331K) in a brief access test and a taste-based two alternative forced choice (2AFC) task probing the ability to discriminate sucrose/NaCl mixtures. TDP-43Q331K mice showed abnormal sucrose consumption and an impaired ability to discriminate taste mixtures compared to non-transgenic control mice. To assess deficits in GC taste processing, we relied on electrophysiological recordings using chronically implanted tetrodes in alert TDP-43Q331K and non-transgenic control mice. The proportion of taste-selective neurons in TDP-43Q331K mice decreased over time compared to control mice. Similarly, encoding of chemosensory information and processing of taste palatability were impaired in TDP-43Q331K mice compared to control mice. Overall, these results demonstrate taste-related symptoms in a mouse model of FTD and provide evidence for altered taste processing in GC of TDP-43Q331K mice compared to control mice.
Collapse
Affiliation(s)
- Camelia Yuejiao Zheng
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA; Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11794, USA; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Jennifer M Blackwell
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alfredo Fontanini
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA; Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11794, USA; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
3
|
Prilutski Y, Livneh Y. Physiological Needs: Sensations and Predictions in the Insular Cortex. Physiology (Bethesda) 2023; 38:0. [PMID: 36040864 DOI: 10.1152/physiol.00019.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Physiological needs create powerful motivations (e.g., thirst and hunger). Studies in humans and animal models have implicated the insular cortex in the neural regulation of physiological needs and need-driven behavior. We review prominent mechanistic models of how the insular cortex might achieve this regulation and present a conceptual and analytical framework for testing these models in healthy and pathological conditions.
Collapse
Affiliation(s)
- Yael Prilutski
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Livneh
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Staszko SM, Boughter JD, Fletcher ML. The impact of familiarity on cortical taste coding. Curr Biol 2022; 32:4914-4924.e4. [PMID: 36261035 PMCID: PMC9691541 DOI: 10.1016/j.cub.2022.09.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/08/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
The role of the gustatory region of the insular cortex in mediating associative taste learning, such as conditioned taste aversion, has been well studied. However, while associative learning plays a role in some taste behaviors, such as avoiding toxins, animals often encounter taste stimuli in their natural environment without explicit consequences. This type of inconsequential experience with sensory stimuli has been studied in other sensory systems, generally with the finding that neuronal responses habituate with repeated sensory exposure. This study sought to determine the effect of taste familiarity on population taste coding in the mouse gustatory cortex (GC). Using microendoscope calcium imaging, we studied the taste responses of visually identifiable neurons over 5 days of taste experience, during which animals could freely choose to consume taste stimuli. We found that the number of active cells in the insular cortex, as well as the number of cells characterized as taste-responsive, significantly decreased as animals became familiar with taste stimuli. Moreover, the magnitude of taste-evoked excited responses increased while inhibited responses decreased with experience. By tracking individual neurons over time, we identified a subpopulation of stable neurons present on all days of the taste familiarity paradigm and further characterized their taste coding properties. The population-level response across these stable cells was distinct for each taste quality when taste stimuli were novel, but population responses for readily consumed stimuli became more correlated as the stimuli became familiar. Overall, these results highlight the effects of familiarity on both taste-specific and non-taste responses in the gustatory cortex.
Collapse
Affiliation(s)
- Stephanie M Staszko
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - John D Boughter
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Max L Fletcher
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
5
|
Livneh Y, Andermann ML. Cellular activity in insular cortex across seconds to hours: Sensations and predictions of bodily states. Neuron 2021; 109:3576-3593. [PMID: 34582784 PMCID: PMC8602715 DOI: 10.1016/j.neuron.2021.08.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 02/09/2023]
Abstract
Our wellness relies on continuous interactions between our brain and body: different organs relay their current state to the brain and are regulated, in turn, by descending visceromotor commands from our brain and by actions such as eating, drinking, thermotaxis, and predator escape. Human neuroimaging and theoretical studies suggest a key role for predictive processing by insular cortex in guiding these efforts to maintain bodily homeostasis. Here, we review recent studies recording and manipulating cellular activity in rodent insular cortex at timescales from seconds to hours. We argue that consideration of these findings in the context of predictive processing of future bodily states may reconcile several apparent discrepancies and offer a unifying, heuristic model for guiding future work.
Collapse
Affiliation(s)
- Yoav Livneh
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
6
|
Yiannakas A, Kolatt Chandran S, Kayyal H, Gould N, Khamaisy M, Rosenblum K. Parvalbumin interneuron inhibition onto anterior insula neurons projecting to the basolateral amygdala drives aversive taste memory retrieval. Curr Biol 2021; 31:2770-2784.e6. [PMID: 33930301 DOI: 10.1016/j.cub.2021.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/08/2020] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Memory retrieval refers to the fundamental ability of organisms to make use of acquired, sometimes inconsistent, information about the world. Although memory acquisition has been studied extensively, the neurobiological mechanisms underlying memory retrieval remain largely unknown. Conditioned taste aversion (CTA) is a robust associative paradigm, through which animals can be trained to express aversion toward innately appetitive tastants. The anterior insula (aIC) is indispensable in the ability of mammals to retrieve associative information regarding tastants that have been previously linked with gastric malaise. Here, we show that CTA memory retrieval promotes cell-type-specific activation in the aIC. Using chemogenetic tools in the aIC, we found that CTA memory acquisition requires activation of excitatory neurons and inhibition of inhibitory neurons, whereas retrieval necessitates activation of both excitatory and inhibitory aIC circuits. CTA memory retrieval at the aIC activates parvalbumin (PV) interneurons and increases synaptic inhibition onto activated pyramidal neurons projecting to the basolateral amygdala (aIC-BLA). Unlike innately appetitive taste memory retrieval, CTA retrieval increases synaptic inhibition onto aIC-BLA-projecting neurons that is dependent on activity in aIC PV interneurons. PV aIC interneurons coordinate CTA memory retrieval and are necessary for its dominance when conflicting internal representations are encountered over time. The reinstatement of CTA memories following extinction is also dependent on activation of aIC PV interneurons, which increase the frequency of inhibition onto aIC-BLA-projecting neurons. This newly described interaction of PV and a subset of excitatory neurons can explain the coherency of aversive memory retrieval, an evolutionary pre-requisite for animal survival.
Collapse
Affiliation(s)
- Adonis Yiannakas
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Haifa, Israel.
| | | | - Haneen Kayyal
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Haifa, Israel
| | - Nathaniel Gould
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Haifa, Israel
| | - Mohammad Khamaisy
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Haifa, Israel; Center for Gene Manipulation in the Brain, University of Haifa, Mount Carmel, Haifa, Israel.
| |
Collapse
|
7
|
Avery JA. Against gustotopic representation in the human brain: There is no Cartesian Restaurant. CURRENT OPINION IN PHYSIOLOGY 2021; 20:23-28. [PMID: 33521413 PMCID: PMC7839947 DOI: 10.1016/j.cophys.2021.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The insular cortex is still one of the least understood cortical regions in the human brain. This review will highlight research on taste quality representation within the human insular cortex. Much of the controversy surrounding this topic is based in the ongoing debate over different theories of peripheral taste coding. When translated to the study of gustatory cortex, this has generated a distinct set of theoretical models, namely the topographic (or 'gustotopic') and population coding models of taste organization. Recent investigations into this topic have employed high-resolution functional neuroimaging methods and multivariate analytic approaches to examine taste quality coding in the human brain. Collectively, these recent studies do not support the topographic model of taste quality representation, but rather one where taste quality is represented by distributed patterns of activation within gustatory regions of the insula.
Collapse
Affiliation(s)
- Jason A Avery
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, United States, 20892
| |
Collapse
|
8
|
Duchamp-Viret P, Boyer J, La Villa F, Coureaud G. Brief olfactory learning drives perceptive sensitivity in newborn rabbits: New insights in peripheral processing of odor mixtures and induction. Physiol Behav 2021; 229:113217. [PMID: 33098882 DOI: 10.1016/j.physbeh.2020.113217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/29/2020] [Accepted: 10/20/2020] [Indexed: 11/19/2022]
Abstract
Perception of the wide, complex and moving odor world requires that the olfactory system engages processing mechanisms ensuring detection, discrimination and environment adaptation, as early as the peripheral stages. Odor items are mainly elicited by odorant mixtures which give rise to either elemental or configural perceptions. Here, we first explored the contribution of the peripheral olfactory system to configural and elemental perception through odorant interactions at the olfactory receptor (OR) level. This was done in newborn rabbits, which offer the opportunity to pair peripheral electrophysiology and well characterized behavioral responses to two binary mixtures, AB and A'B', which differ in their component ratio (A: ethyl isobutyrate, B: ethyl maltol), and that rabbit pups respectively perceived configurally and elementally. Second, we studied the influence on peripheral reactivity of the brief but powerful learning of one mixture component (odorant B), conditioned by association with the mammary pheromone (MP), which allowed us to assess the possible implication of the phenomenon called induction in neonatal odor learning. Induction is a plasticity mechanism expected to alter both the peripheral electrophysiological responses to, and perceptual detection threshold of, the conditioned stimulus. The results reveal that perceptual modes are partly rooted in differential peripheral processes, the AB configurally perceived mixture mirroring odorant antagonist interactions at OR level to a lesser extent than the A'B' elementally perceived mixture. Further, the results highlight that a single and brief MP-induced odor learning episode is sufficient to alter peripheral responses to the conditioned stimulus and mixtures including it, and shifts the conditioned stimulus detection threshold towards lower concentrations. Thus, MP-induced odor learning relies on induction phenomenon in newborn rabbits.
Collapse
Affiliation(s)
- Patricia Duchamp-Viret
- Lyon Neuroscience Research Center, CNRS UMR 5292 - INSERM U 1028 - Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier - Bâtiment 462 - Neurocampus, 95 Boulevard Pinel, 69675 Bron Cedex, FRANCE.
| | - Jiasmine Boyer
- Lyon Neuroscience Research Center, CNRS UMR 5292 - INSERM U 1028 - Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier - Bâtiment 462 - Neurocampus, 95 Boulevard Pinel, 69675 Bron Cedex, FRANCE
| | - Florian La Villa
- Lyon Neuroscience Research Center, CNRS UMR 5292 - INSERM U 1028 - Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier - Bâtiment 462 - Neurocampus, 95 Boulevard Pinel, 69675 Bron Cedex, FRANCE
| | - Gérard Coureaud
- Lyon Neuroscience Research Center, CNRS UMR 5292 - INSERM U 1028 - Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier - Bâtiment 462 - Neurocampus, 95 Boulevard Pinel, 69675 Bron Cedex, FRANCE.
| |
Collapse
|
9
|
Jensterle M, Rizzo M, Janez A. Glucagon-Like Peptide 1 and Taste Perception: From Molecular Mechanisms to Potential Clinical Implications. Int J Mol Sci 2021; 22:ijms22020902. [PMID: 33477478 PMCID: PMC7830704 DOI: 10.3390/ijms22020902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/03/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Preclinical studies provided some important insights into the action of glucagon-like peptide 1 (GLP-1) in taste perception. This review examines the literature to uncover some molecular mechanisms and connections between GLP-1 and the gustatory coding. Local GLP-1 production in the taste bud cells, the expression of GLP-1 receptor on the adjacent nerves, a functional continuum in the perception of sweet chemicals from the gut to the tongue and an identification of GLP-1 induced signaling pathways in peripheral and central gustatory coding all strongly suggest that GLP-1 is involved in the taste perception, especially sweet. However, the impact of GLP-1 based therapies on gustatory coding in humans remains largely unaddressed. Based on the molecular background we encourage further exploration of the tongue as a new treatment target for GLP-1 receptor agonists in clinical studies. Given that pharmacological manipulation of gustatory coding may represent a new potential strategy against obesity and diabetes, the topic is of utmost clinical relevance.
Collapse
Affiliation(s)
- Mojca Jensterle
- Diabetes and Metabolic Diseases, Division of Internal Medicine, Department of Endocrinology, University Medical Centre Ljubljana, Zaloška Cesta 7, 1000 Ljubljana, Slovenia;
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 7, 1000 Ljubljana, Slovenia
| | - Manfredi Rizzo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of South Carolina, Columbia, SC 29208, USA;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy
| | - Andrej Janez
- Diabetes and Metabolic Diseases, Division of Internal Medicine, Department of Endocrinology, University Medical Centre Ljubljana, Zaloška Cesta 7, 1000 Ljubljana, Slovenia;
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 7, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-522-3114; Fax: +386-1-522-9359
| |
Collapse
|
10
|
Haley MS, Bruno S, Fontanini A, Maffei A. LTD at amygdalocortical synapses as a novel mechanism for hedonic learning. eLife 2020; 9:e55175. [PMID: 33169666 PMCID: PMC7655100 DOI: 10.7554/elife.55175] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/23/2020] [Indexed: 01/28/2023] Open
Abstract
A novel, pleasant taste stimulus becomes aversive if associated with gastric malaise, a form of learning known as conditioned taste aversion (CTA). CTA is common to vertebrates and invertebrates and is an important survival response: eating the wrong food may be deadly. CTA depends on the gustatory portion of the insular cortex (GC) and the basolateral nucleus of the amygdala (BLA) however, its synaptic underpinnings are unknown. Here we report that CTA was associated with decreased expression of immediate early genes in rat GC of both sexes, and with reduced amplitude of BLA-GC synaptic responses, pointing to long-term depression (LTD) as a mechanism for learning. Indeed, association of a novel tastant with induction of LTD at the BLA-GC input in vivo was sufficient to change the hedonic value of a taste stimulus. Our results demonstrate a direct role for amygdalocortical LTD in taste aversion learning.
Collapse
Affiliation(s)
- Melissa S Haley
- Department of Neurobiology and Behavior, SUNY – Stony BrookStony BrookUnited States
| | - Stephen Bruno
- Department of Neurobiology and Behavior, SUNY – Stony BrookStony BrookUnited States
| | - Alfredo Fontanini
- Department of Neurobiology and Behavior, SUNY – Stony BrookStony BrookUnited States
| | - Arianna Maffei
- Department of Neurobiology and Behavior, SUNY – Stony BrookStony BrookUnited States
| |
Collapse
|
11
|
Grijalva LE, Miranda MI, Paredes RG. Differential changes in GAP-43 or synaptophysin during appetitive and aversive taste memory formation. Behav Brain Res 2020; 397:112937. [PMID: 32991926 DOI: 10.1016/j.bbr.2020.112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Association between events in time and space is a major mechanism for all animals, including humans, which allows them to learn about the world and potentially change their behavior in the future to adapt to different environments. Conditioning taste aversion (CTA) is a single-trial learning paradigm where animals are trained to avoid a novel flavor which is associated with malaise. Many variables can be analyzed with this model and the circuits involved are well described. Thus, the amygdala and the gustatory cortex (GC) are some of the most relevant structures involved in CTA. In the present study we focused in plastic changes that occur during appetitive and/or aversive taste memory formation. Previous studies have demonstrated that memory consolidation, in hippocampal dependent paradigms, induces plastic changes like increase in the concentration of proteins considered as markers of neuronal plasticity, such as the growth associated protein 43 (GAP-43) and synaptophysin (SYN). In the present experiment in male rats we evaluated changes in GAP-43 and SYN expression, using immunofluorescence, induce by the formation of aversive and appetitive taste memory. We found that taste aversive memory formation can induce an increase in GAP-43 in the granular layer of the GC. Furthermore, we also found an increase in SYN expression in both layers of the GC, the basolateral amygdala (BLA) and the central amygdala (CeA). These results suggest that aversive memory representation induces a new circuitry (inferred from an increase in GAP 43). On the other hand, an appetitive taste learning increased SYN expression in the GC (both layers), the BLA and the CeA without any changes in GAP 43. Together these results indicate that aversive memory formation induces structural and synaptic changes, while appetitive memory formation induces synaptic changes; suggesting that aversive and appetitive memories require a different set of cortical and amygdala plastic changes.
Collapse
Affiliation(s)
- Lucia E Grijalva
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, 76230, Mexico
| | - María I Miranda
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, 76230, Mexico
| | - Raúl G Paredes
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, 76230, Mexico; Escuela Nacional de Estudios Superiores, Unidad Juriquilla, UNAM, Querétaro, 76230 Mexico.
| |
Collapse
|
12
|
Abe K, Kuroda M, Narumi Y, Kobayashi Y, Itohara S, Furuichi T, Sano Y. Cortico-amygdala interaction determines the insular cortical neurons involved in taste memory retrieval. Mol Brain 2020; 13:107. [PMID: 32723372 PMCID: PMC7385890 DOI: 10.1186/s13041-020-00646-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022] Open
Abstract
The insular cortex (IC) is the primary gustatory cortex, and it is a critical structure for encoding and retrieving the conditioned taste aversion (CTA) memory. In the CTA, consumption of an appetitive tastant is associated with aversive experience such as visceral malaise, which results in avoidance of consuming a learned tastant. Previously, we showed that levels of the cyclic-AMP-response-element-binding protein (CREB) determine the insular cortical neurons that proceed to encode a conditioned taste memory. In the amygdala and hippocampus, it is shown that CREB and neuronal activity regulate memory allocation and the neuronal mechanism that determines the specific neurons in a neural network that will store a given memory. However, cellular mechanism of memory allocation in the insular cortex is not fully understood. In the current study, we manipulated the neuronal activity in a subset of insular cortical and/or basolateral amygdala (BLA) neurons in mice, at the time of learning; for this purpose, we used an hM3Dq designer receptor exclusively activated by a designer drug system (DREADD). Subsequently, we examined whether the neuronal population whose activity is increased during learning, is reactivated by memory retrieval, using the expression of immediate early gene c-fos. When an hM3Dq receptor was activated only in a subset of IC neurons, c-fos expression following memory retrieval was not significantly observed in hM3Dq-positive neurons. Interestingly, the probability of c-fos expression in hM3Dq-positive IC neurons after retrieval was significantly increased when the IC and BLA were co-activated during conditioning. Our findings suggest that functional interactions between the IC and BLA regulates CTA memory allocation in the insular cortex, which shed light on understanding the mechanism of memory allocation regulated by interaction between relevant brain areas.
Collapse
Affiliation(s)
- Konami Abe
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510 Japan
| | - Marin Kuroda
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510 Japan
| | - Yosuke Narumi
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510 Japan
| | - Yuki Kobayashi
- Laboratory for Behavioral Genetics, Center for Brain Science, Wako, Saitama 351-0198 Japan
- Present Address: Brain/MINDS, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, Center for Brain Science, Wako, Saitama 351-0198 Japan
- Present Address: Brain/MINDS, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510 Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510 Japan
| |
Collapse
|
13
|
Muscarinic-Dependent miR-182 and QR2 Expression Regulation in the Anterior Insula Enables Novel Taste Learning. eNeuro 2020; 7:ENEURO.0067-20.2020. [PMID: 32217627 PMCID: PMC7266141 DOI: 10.1523/eneuro.0067-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
In a similar manner to other learning paradigms, intact muscarinic acetylcholine receptor (mAChR) neurotransmission or protein synthesis regulation in the anterior insular cortex (aIC) is necessary for appetitive taste learning. Here we describe a parallel local molecular pathway, where GABAA receptor control of mAChR activation causes upregulation of miRNA-182 and quinone reductase 2 (QR2) mRNA destabilization in the rodent aIC. Damage to long-term memory by prevention of this process, with the use of mAChR antagonist scopolamine before novel taste learning, can be rescued by local QR2 inhibition, demonstrating that QR2 acts downstream of local muscarinic activation. Furthermore, we prove for the first time the presence of endogenous QR2 cofactors in the brain, establishing QR2 as a functional reductase there. In turn, we show that QR2 activity causes the generation of reactive oxygen species, leading to modulation in Kv2.1 redox state. QR2 expression reduction therefore is a previously unaccounted mode of mAChR-mediated inflammation reduction, and thus adds QR2 to the cadre of redox modulators in the brain. The concomitant reduction in QR2 activity during memory consolidation suggests a complementary mechanism to the well established molecular processes of this phase, by which the cortex gleans important information from general sensory stimuli. This places QR2 as a promising new target to tackle neurodegenerative inflammation and the associated impediment of novel memory formation in diseases such as Alzheimer’s disease.
Collapse
|
14
|
Bouaichi CG, Vincis R. Cortical processing of chemosensory and hedonic features of taste in active licking mice. J Neurophysiol 2020; 123:1995-2009. [PMID: 32319839 DOI: 10.1152/jn.00069.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In the last two decades, a considerable amount of work has been devoted to investigating the neural processing and dynamics of the primary taste cortex of rats. Surprisingly, much less information is available on cortical taste electrophysiology in awake mice, an animal model that is taking on a more prominent role in taste research. Here we present electrophysiological evidence demonstrating how the gustatory cortex (GC) encodes the basic taste qualities (sweet, salty, sour, and bitter) and water when stimuli are actively sampled through licking, the stereotyped behavior by which mice control the access of fluids in the mouth. Mice were trained to receive each stimulus on a fixed ratio schedule in which they had to lick a dry spout six times to receive a tastant on the seventh lick. Electrophysiological recordings confirmed that GC neurons encode both chemosensory and hedonic aspects of actively sampled tastants. In addition, our data revealed two other main findings: GC neurons rapidly encode information about taste qualities in as little as 120 ms, and nearly half of the recorded neurons exhibit spiking activity entrained to licking at rates up to 8 Hz. Overall, our results highlight how the GC of active licking mice rapidly encodes information about taste qualities as well as ongoing sampling behavior, expanding our knowledge on cortical taste processing.NEW & NOTEWORTHY Relatively little information is available on the neural dynamics of taste processing in the mouse gustatory cortex (GC). In this study we investigate how the GC encodes chemosensory and palatability features of a wide panel of gustatory stimuli when actively sampled through licking. Our results show that GC neurons broadly encode basic taste qualities but also process taste hedonics and licking information in a temporally dynamic manner.
Collapse
Affiliation(s)
- Cecilia G Bouaichi
- Department of Biological Science, Florida State University, Tallahassee, Florida.,Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Roberto Vincis
- Department of Biological Science, Florida State University, Tallahassee, Florida.,Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
15
|
Zhang-Molina C, Schmit MB, Cai H. Neural Circuit Mechanism Underlying the Feeding Controlled by Insula-Central Amygdala Pathway. iScience 2020; 23:101033. [PMID: 32311583 PMCID: PMC7168768 DOI: 10.1016/j.isci.2020.101033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/02/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
The Central nucleus of amygdala (CeA) contains distinct populations of neurons that play opposing roles in feeding. The circuit mechanism of how CeA neurons process information sent from their upstream inputs to regulate feeding is still unclear. Here we show that activation of the neural pathway projecting from insular cortex neurons to the CeA suppresses food intake. Surprisingly, we find that the inputs from insular cortex form excitatory connections with similar strength to all types of CeA neurons. To reconcile this puzzling result, and previous findings, we developed a conductance-based dynamical systems model for the CeA neuronal network. Computer simulations showed that both the intrinsic electrophysiological properties of individual CeA neurons and the overall synaptic organization of the CeA circuit play a functionally significant role in shaping CeA neural dynamics. We successfully identified a specific CeA circuit structure that reproduces the desired circuit output consistent with existing experimentally observed feeding behaviors. Activation of the insular cortex→central amygdala (CeA) pathway suppresses feeding Insular cortex neurons send similar excitatory inputs to different types of CeA neurons Model suggests a required circuit with both late firing and regular spiking cells The circuit model can explain current and previous CeA-mediated feeding behaviors
Collapse
Affiliation(s)
| | - Matthew B Schmit
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA; Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | - Haijiang Cai
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA; Bio5 Institute and Department of Neurology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
16
|
Livneh Y, Sugden AU, Madara JC, Essner RA, Flores VI, Sugden LA, Resch JM, Lowell BB, Andermann ML. Estimation of Current and Future Physiological States in Insular Cortex. Neuron 2020; 105:1094-1111.e10. [PMID: 31955944 PMCID: PMC7083695 DOI: 10.1016/j.neuron.2019.12.027] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/18/2019] [Accepted: 12/20/2019] [Indexed: 01/31/2023]
Abstract
Interoception, the sense of internal bodily signals, is essential for physiological homeostasis, cognition, and emotions. While human insular cortex (InsCtx) is implicated in interoception, the cellular and circuit mechanisms remain unclear. We imaged mouse InsCtx neurons during two physiological deficiency states: hunger and thirst. InsCtx ongoing activity patterns reliably tracked the gradual return to homeostasis but not changes in behavior. Accordingly, while artificial induction of hunger or thirst in sated mice via activation of specific hypothalamic neurons (AgRP or SFOGLUT) restored cue-evoked food- or water-seeking, InsCtx ongoing activity continued to reflect physiological satiety. During natural hunger or thirst, food or water cues rapidly and transiently shifted InsCtx population activity to the future satiety-related pattern. During artificial hunger or thirst, food or water cues further shifted activity beyond the current satiety-related pattern. Together with circuit-mapping experiments, these findings suggest that InsCtx integrates visceral-sensory signals of current physiological state with hypothalamus-gated amygdala inputs that signal upcoming ingestion of food or water to compute a prediction of future physiological state.
Collapse
Affiliation(s)
- Yoav Livneh
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Arthur U Sugden
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rachel A Essner
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Vanessa I Flores
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lauren A Sugden
- Department of Mathematics and Computer Science, Duquesne University, Pittsburgh, PA 15232, USA
| | - Jon M Resch
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Macroscopic information-based taste representations in insular cortex are shaped by stimulus concentration. Proc Natl Acad Sci U S A 2020; 117:7409-7417. [PMID: 32179687 DOI: 10.1073/pnas.1916329117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Taste processing is an essential ability in all animals signaling potential harm or benefit of ingestive behavior. However, current evidence for cortical taste representations remains contradictory. To address this issue, high-resolution functional MRI (fMRI) and multivariate pattern analysis were used to characterize taste-related informational content in human insular cortex, which contains primary gustatory cortex. Human participants judged pleasantness and intensity of low- and high-concentration tastes (salty, sweet, sour, and bitter) in two fMRI experiments on two different days to test for task- and concentration-invariant taste representations. We observed patterns of fMRI activity within insular cortex narrowly tuned to specific tastants consistently across tasks in all participants. Fewer patterns responded to more than one taste category. Importantly, changes in taste concentration altered the spatial layout of putative taste-specific patterns with distinct, almost nonoverlapping patterns for each taste category at different concentration levels. Together, our results point at macroscopic representations in human insular cortex as a complex function of taste category and concentration rather than representations based solely on taste identity.
Collapse
|
18
|
Staszko SM, Boughter JD, Fletcher ML. Taste coding strategies in insular cortex. Exp Biol Med (Maywood) 2020; 245:448-455. [PMID: 32106700 DOI: 10.1177/1535370220909096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While the cortical representation of sensory stimuli is well described for some sensory systems, a clear understanding of the cortical representation of taste stimuli remains elusive. Recent investigations have focused on both spatial and temporal organization of taste responses in the putative taste region of insular cortex. This review highlights recent literature focused on spatiotemporal coding strategies in insular cortex. These studies are examined in the context of the organization and function of the entire insular cortex, rather than a specific gustatory region of insular cortex. In regard to a taste quality-specific map, imaging studies have reported conflicting results, whereas electrophysiology studies have described a broad distribution of taste-responsive neurons found throughout insular cortex with no spatial organization. The current collection of evidence suggests that insular cortex may be organized into a hedonic or “viscerotopic” map, rather than one ordered according to taste quality. Further, it has been proposed that cortical taste responses can be separated into temporal “epochs” representing stimulus identity and palatability. This coding strategy presents a potential framework, whereby the coordinated activity of a population of neurons allows for the same neurons to respond to multiple taste stimuli or even other sensory modalities, a well-documented phenomenon in insular cortex neurons. However, these representations may not be static, as several studies have demonstrated that both spatial representation and temporal dynamics of taste coding change with experience. Collectively, these studies suggest that cortical taste representation is not organized in a spatially discrete map, but rather is plastic and spatially dispersed, using temporal information to encode multiple types of information about ingested stimuli. Impact statement The organization of taste coding in insular cortex is widely debated. While early work has focused on whether taste quality is encoded via labeled line or ensemble mechanisms, recent work has attempted to delineate the spatial organization and temporal components of taste processing in insular cortex. Recent imaging and electrophysiology studies have reported conflicting results in regard to the spatial organization of cortical taste responses, and many studies ignore potentially important temporal dynamics when investigating taste processing. This review highlights the latest research in these areas and examines them in the context of the anatomy and physiology of the insular cortex in general to provide a more comprehensive description of taste coding in insular cortex.
Collapse
Affiliation(s)
- Stephanie M Staszko
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - John D Boughter
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Max L Fletcher
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
19
|
Lavi K, Jacobson GA, Rosenblum K, Lüthi A. Encoding of Conditioned Taste Aversion in Cortico-Amygdala Circuits. Cell Rep 2019; 24:278-283. [PMID: 29996089 DOI: 10.1016/j.celrep.2018.06.053] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/22/2018] [Accepted: 06/11/2018] [Indexed: 12/19/2022] Open
Abstract
Avoidance of potentially toxic food by means of conditioned taste aversion is critical for survival of many animals. However, the underlying neuronal mechanisms are poorly understood. Here, using two-photon calcium imaging of defined gustatory cortex neurons in vivo, we show that conditioned taste aversion dynamically shifts neuronal population coding by stimulus-specific recruitment of neurons that project to the basolateral amygdala.
Collapse
Affiliation(s)
- Karen Lavi
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel; Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel
| | - Gilad A Jacobson
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel; Center for Gene Manipulation in the Brain, University of Haifa, Haifa 3498838, Israel
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland; Biozentrum, University of Basel, Basel 4056, Switzerland.
| |
Collapse
|
20
|
Activity of Insula to Basolateral Amygdala Projecting Neurons is Necessary and Sufficient for Taste Valence Representation. J Neurosci 2019; 39:9369-9382. [PMID: 31597726 DOI: 10.1523/jneurosci.0752-19.2019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Conditioned taste aversion (CTA) is an associative learning paradigm, wherein consumption of an appetitive tastant (e.g., saccharin) is paired to the administration of a malaise-inducing agent, such as intraperitoneal injection of LiCl. Aversive taste learning and retrieval require neuronal activity within the anterior insula (aIC) and the basolateral amygdala (BLA). Here, we labeled neurons of the aIC projecting to the BLA in adult male mice using a retro-AAV construct and assessed their necessity in aversive and appetitive taste learning. By restricting the expression of chemogenetic receptors in aIC-to-BLA neurons, we demonstrate that activity within the aIC-to-BLA projection is necessary for both aversive taste memory acquisition and retrieval, but not for its maintenance, nor its extinction. Moreover, inhibition of the projection did not affect incidental taste learning per se, but effectively suppressed aversive taste memory retrieval when applied either during or before the encoding of the unconditioned stimulus for CTA (i.e., malaise). Remarkably, activation of the projection after novel taste consumption, without experiencing any internal discomfort, was sufficient to form an artificial aversive taste memory, resulting in strong aversive behavior upon retrieval. Our results indicate that aIC-to-BLA projecting neurons are an essential component in the ability of the brain to associate taste sensory stimuli with body states of negative valence and guide the expression of valence-specific behavior upon taste memory retrieval.SIGNIFICANCE STATEMENT In the present study we subjected mice to the conditioned taste aversion paradigm, where animals learn to associate novel taste with malaise (i.e., assign it negative valence). We show that activation of neurons in the anterior insular cortex (aIC) that project into the basolateral amygdala (BLA) in response to conditioned taste aversion is necessary to form a memory for a taste of negative valence. Moreover, artificial activation of this pathway (without any feeling of pain) after the sampling of a taste can also lead to such associative memory. Thus, activation of aIC-to-BLA projecting neurons is necessary and sufficient to form and retrieve aversive taste memory.
Collapse
|
21
|
Tanaka DH, Li S, Mukae S, Tanabe T. Genetic Access to Gustatory Disgust-Associated Neurons in the Interstitial Nucleus of the Posterior Limb of the Anterior Commissure in Male Mice. Neuroscience 2019; 413:45-63. [PMID: 31229633 DOI: 10.1016/j.neuroscience.2019.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022]
Abstract
Orofacial and somatic disgust reactions are observed in rats following intraoral infusion of not only bitter quinine (innate disgust) but also sweet saccharin previously paired with illness (learned disgust). It remains unclear, however, whether these innate and learned disgust reactions share a common neural basis and which brain regions, if any, host it. In addition, there is no established method to genetically access neurons whose firing is associated with disgust (disgust-associated neurons). Here, we examined the expression of cFos and Arc, two markers of neuronal activity, in the interstitial nucleus of the posterior limb of the anterior commissure (IPAC) of male mice that showed innate disgust and mice that showed learned disgust. Furthermore, we used a targeted recombination in active populations (TRAP) method to genetically label the disgust-associated neurons in the IPAC with YFP. We found a significant increase of both cFos-positive neurons and Arc-positive neurons in the IPAC of mice that showed innate disgust and mice that showed learned disgust. In addition, TRAP following quinine infusion (Quinine-TRAP) resulted in significantly more YFP-positive neurons in the IPAC, compared to TRAP following water infusion. A significant number of the YFP-positive neurons following Quinine-TRAP were co-labeled with Arc following the second quinine infusion, confirming that Quinine-TRAP preferentially labeled quinine-activated neurons in the IPAC. Our results suggest that the IPAC activity is associated with both innate and learned disgust and that disgust-associated neurons in the IPAC are genetically accessible by TRAP.
Collapse
Affiliation(s)
- Daisuke H Tanaka
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Shusheng Li
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Shiori Mukae
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Tsutomu Tanabe
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
22
|
Canna A, Prinster A, Cantone E, Ponticorvo S, Russo AG, Di Salle F, Esposito F. Intensity-related distribution of sweet and bitter taste fMRI responses in the insular cortex. Hum Brain Mapp 2019; 40:3631-3646. [PMID: 31066980 DOI: 10.1002/hbm.24621] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/30/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
The human gustatory cortex analyzes the chemosensory properties of tastants, particularly the quality, intensity, and affective valence, to determine whether a perceived substance should be ingested or rejected. Among previous studies, the spatial distribution of taste intensity-related activations within the human insula has been scarcely addressed. To spatially characterize a specialized or distributed nature of the cortical responses to taste intensities, a functional magnetic resonance imaging study was performed at 3 T in 44 healthy subjects where sweet and bitter tastants were administered at five increasing concentrations and cortex-based factorial and parametric analyses were performed. Two clusters in the right middle-posterior and left middle insula were found specialized for taste intensity processing, exhibiting a highly nonlinear profile across concentrations. Multiple clusters were found activated by sweet and bitter taste stimuli at most concentrations, in the anterior, middle-posterior, and inferior portion of the bilateral insula. Across these clusters, respectively, for the right and left insula, a superior-to-inferior and an anterior-to-posterior spatial gradient for high-to-low concentrations were observed for the most responsive intensity of both tastes. These findings may gather new insights regarding how the gustatory cortex is spatially organized during the perceptual processing of taste intensity for two basic tastants.
Collapse
Affiliation(s)
- Antonietta Canna
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Anna Prinster
- Biostructure and Bioimaging Institute, National Research Council, Naples, Italy
| | - Elena Cantone
- Section of ENT, Department of Neuroscience, Federico II University, Naples, Italy
| | - Sara Ponticorvo
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Andrea Gerardo Russo
- Department of Political, Social and Communication Sciences, University of Salerno, Salerno, Italy
| | - Francesco Di Salle
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy.,Department of Diagnostic Imaging, University Hospital San Giovanni di Dio e Ruggi D'Aragona, Salerno, Italy
| | - Fabrizio Esposito
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy.,Department of Diagnostic Imaging, University Hospital San Giovanni di Dio e Ruggi D'Aragona, Salerno, Italy
| |
Collapse
|
23
|
Interaction of Taste and Place Coding in the Hippocampus. J Neurosci 2019; 39:3057-3069. [PMID: 30777885 DOI: 10.1523/jneurosci.2478-18.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 01/20/2023] Open
Abstract
An animal's survival depends on finding food and the memory of food and contexts are often linked. Given that the hippocampus is required for spatial and contextual memory, it is reasonable to expect related coding of space and food stimuli in hippocampal neurons. However, relatively little is known about how the hippocampus responds to tastes, the most central sensory property of food. In this study, we examined the taste-evoked responses and spatial firing properties of single units in the dorsal CA1 hippocampal region as male rats received a battery of taste stimuli differing in both chemical composition and palatability within a specific spatial context. We identified a subset of hippocampal neurons that responded to tastes, some of which were place cells. These taste and place responses had a distinct interaction: taste-responsive cells tended to have less spatially specific firing fields and place cells only responded to tastes delivered inside their place field. Like neurons in the amygdala and lateral hypothalamus, hippocampal neurons discriminated between tastes predominantly on the basis of palatability, with taste selectivity emerging concurrently with palatability-relatedness; these responses did not reflect movement or arousal. However, hippocampal taste responses emerged several hundred milliseconds later than responses in other parts of the taste system, suggesting that the hippocampus does not influence real-time taste decisions, instead associating the hedonic value of tastes with a particular context. This incorporation of taste responses into existing hippocampal maps could be one way that animals use past experience to locate food sources.SIGNIFICANCE STATEMENT Finding food is essential for animals' survival and taste and context memory are often linked. Although hippocampal responses to space and contexts have been well characterized, little is known about how the hippocampus responds to tastes. Here, we identified a subset of hippocampal neurons that discriminated between tastes based on palatability. Cells with stronger taste responses typically had weaker spatial responses and taste responses were confined to place cells' firing fields. Hippocampal taste responses emerged later than in other parts of the taste system, suggesting that the hippocampus does not influence taste decisions, but rather associates the hedonic value of tastes consumed within a particular context. This could be one way that animals use past experience to locate food sources.
Collapse
|
24
|
Hervey-Jumper SL, Berger MS. Insular glioma surgery: an evolution of thought and practice. J Neurosurg 2019; 130:9-16. [PMID: 30611160 DOI: 10.3171/2018.10.jns181519] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVEThe goal of this article is to review the history of surgery for low- and high-grade gliomas located within the insula with particular focus on microsurgical technique, anatomical considerations, survival, and postoperative morbidity.METHODSThe authors reviewed the literature for published reports focused on insular region anatomy, neurophysiology, surgical approaches, and outcomes for adults with World Health Organization grade II-IV gliomas.RESULTSWhile originally considered to pose too great a risk, insular glioma surgery can be performed safely due to the collective efforts of many individuals. Similar to resection of gliomas located within other cortical regions, maximal resection of gliomas within the insula offers patients greater survival time and superior seizure control for both newly diagnosed and recurrent tumors in this region. The identification and the preservation of M2 perforating and lateral lenticulostriate arteries are critical steps to preventing internal capsule stroke and hemiparesis. The transcortical approach and intraoperative mapping are useful tools to maximize safety.CONCLUSIONSThe insula's proximity to middle cerebral and lenticulostriate arteries, primary motor areas, and perisylvian language areas makes accessing and resecting gliomas in this region challenging. Maximal safe resection of insular gliomas not only is possible but also is associated with excellent outcomes and should be considered for all patients with low- and high-grade gliomas in this area.
Collapse
|
25
|
Liu DW, Ma L, Zhang XH, Wang YY. Conditioned taste aversion memory extinction temporally induces insular cortical BDNF release and inhibits neuronal apoptosis. Neuropsychiatr Dis Treat 2019; 15:2403-2414. [PMID: 31933521 PMCID: PMC6709797 DOI: 10.2147/ndt.s215289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/05/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Memory extinction has been reported to be related to psychiatric disorders, such as post-traumatic stress disorder (PTSD). Secretion and synthesis of brain-derived neurotrophic factor (BDNF) have been shown to temporally regulate various memory processes via activation of tropomyosin-related kinase B (TrkB) receptors. However, whether memory extinction induces the synthesis and secretion of BDNF on the basis of its localization is not understood. In this study, we aim to investigate activity-dependent BDNF secretion and synthesis in the insular cortex (IC) in the setting of conditioned taste aversion (CTA) memory extinction. MATERIALS AND METHODS Rats were subjected to CTA memory extinction and BDNF antibody (or the equal volume of vehicle) was microinjected into the IC immediately after the extinction testing. Real-time polymerase chain reaction and in situ hybridization were used to detect the gene expression of BDNF, NGF and NT4. The protein levels of BDNF were determined through the enzyme-linked immunosorbent assay. In addition, the levels of phosphorylated TrkB normalized to total TrkB were evaluated using immunoprecipitation and immunoblotting. c-Fos, total extracellular signal-regulated kinase (Erk), phosphorylated Erk, and apoptosis-related protein (caspase-3), were detected by Western blotting. RESULTS We found that blocking BDNF signaling within the IC disrupts CTA extinction, suggesting that BDNF signaling in the IC is necessary for CTA extinction. Increased expression levels of c-Fos indicate the induced neuronal activity in the IC during CTA extinction. In addition, temporal changes in the gene expression and protein levels of BDNF in the IC were noted during extinction. Moreover, we found that phosphorylation of TrkB increased prior to the enhanced BDNF expression, suggesting that CTA extinction induces rapid activity-dependent BDNF secretion in the IC. Finally, we found decreased expression of caspase-3 in the IC after CTA extinction. CONCLUSION These results demonstrate that CTA memory extinction temporally induces the release and synthesis of BDNF in the IC and inhibits neuronal apoptosis.
Collapse
Affiliation(s)
- Dian-Wei Liu
- Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, People's Republic of China
| | - Ling Ma
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, People's Republic of China
| | - Xu-Hua Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, People's Republic of China
| | - Yun-Yan Wang
- Department of Neurosurgery, QiLu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China
| |
Collapse
|
26
|
Abstract
The gustatory system contributes to the flavor of foods and beverages and communicates information about nutrients and poisons. This system has evolved to detect and ultimately respond to hydrophilic molecules dissolved in saliva. Taste receptor cells, located in taste buds and distributed throughout the oral cavity, activate nerve afferents that project to the brainstem. From here, information propagates to thalamic, subcortical, and cortical areas, where it is integrated with information from other sensory systems and with homeostatic, visceral, and affective processes. There is considerable divergence, as well as convergence, of information between multiple regions of the central nervous system that interact with the taste pathways, with reciprocal connections occurring between the involved regions. These widespread interactions among multiple systems are crucial for the perception of food. For example, memory, hunger, satiety, and visceral changes can directly affect and can be affected by the experience of tasting. In this chapter, we review the literature on the central processing of taste with a specific focus on the anatomic and physiologic responses of single neurons. Emphasis is placed on how information is distributed along multiple systems with the goal of better understanding how the rich and complex sensations associated with flavor emerge from large-scale, systems-wide, interactions.
Collapse
|
27
|
Schier LA, Spector AC. The Functional and Neurobiological Properties of Bad Taste. Physiol Rev 2019; 99:605-663. [PMID: 30475657 PMCID: PMC6442928 DOI: 10.1152/physrev.00044.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/18/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022] Open
Abstract
The gustatory system serves as a critical line of defense against ingesting harmful substances. Technological advances have fostered the characterization of peripheral receptors and have created opportunities for more selective manipulations of the nervous system, yet the neurobiological mechanisms underlying taste-based avoidance and aversion remain poorly understood. One conceptual obstacle stems from a lack of recognition that taste signals subserve several behavioral and physiological functions which likely engage partially segregated neural circuits. Moreover, although the gustatory system evolved to respond expediently to broad classes of biologically relevant chemicals, innate repertoires are often not in register with the actual consequences of a food. The mammalian brain exhibits tremendous flexibility; responses to taste can be modified in a specific manner according to bodily needs and the learned consequences of ingestion. Therefore, experimental strategies that distinguish between the functional properties of various taste-guided behaviors and link them to specific neural circuits need to be applied. Given the close relationship between the gustatory and visceroceptive systems, a full reckoning of the neural architecture of bad taste requires an understanding of how these respective sensory signals are integrated in the brain.
Collapse
Affiliation(s)
- Lindsey A Schier
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Alan C Spector
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
28
|
Extinction of aversive taste memory homeostatically prevents the maintenance of in vivo insular cortex LTP: Calcineurin participation. Neurobiol Learn Mem 2018; 154:54-61. [DOI: 10.1016/j.nlm.2018.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/14/2018] [Accepted: 04/05/2018] [Indexed: 12/27/2022]
|
29
|
Augustine V, Gokce SK, Oka Y. Peripheral and Central Nutrient Sensing Underlying Appetite Regulation. Trends Neurosci 2018; 41:526-539. [PMID: 29914721 DOI: 10.1016/j.tins.2018.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/11/2022]
Abstract
The precise regulation of fluid and energy homeostasis is essential for survival. It is well appreciated that ingestive behaviors are tightly regulated by both peripheral sensory inputs and central appetite signals. With recent neurogenetic technologies, considerable progress has been made in our understanding of basic taste qualities, the molecular and/or cellular basis of taste sensing, and the central circuits for thirst and hunger. In this review, we first highlight the functional similarities and differences between mammalian and invertebrate taste processing. We then discuss how central thirst and hunger signals interact with peripheral sensory signals to regulate ingestive behaviors. We finally indicate some of the directions for future research.
Collapse
Affiliation(s)
- Vineet Augustine
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sertan Kutal Gokce
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
30
|
Guzmán-Ramos K, Venkataraman A, Morin JP, Osorio-Gómez D, Bermúdez-Rattoni F. Differential requirement of de novo Arc protein synthesis in the insular cortex and the amygdala for safe and aversive taste long-term memory formation. Behav Brain Res 2018; 342:89-93. [DOI: 10.1016/j.bbr.2018.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 01/08/2023]
|
31
|
King MS. Distribution of Fos-immunoreactive neurons in the gustatory cortex elicited by intra-oral infusion of taste solutions in conscious rats. Brain Res 2018; 1683:67-77. [PMID: 29371098 PMCID: PMC5818300 DOI: 10.1016/j.brainres.2018.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 10/18/2022]
Abstract
The location of neurons in the gustatory cortex (GC) activated by intra-oral infusion of solutions in conscious rats was mapped using Fos immunohistochemistry. Groups of adult male Wistar rats (N's = 5) received an infusion of one of the following: dH2O, 0.1 or 1.0 M NaCl, 0.1 or 1.0 M sucrose, 0.32 M MSG (with 100 µM amiloride and 2.5 M inosine 5'-monophosphate), 0.03 M HCl, or 0.003 M QHCl delivered via an intra-oral cannula (0.233 ml/min for 5 min). Unstimulated control rats received no infusion. Taste reactivity (TR) behaviors were videotaped and scored. The number of Fos-immunoreactive (Fos-IR) neurons was counted in eight sections throughout the anterior-posterior extent of the GC in the medial and lateral halves of the granular (GI), dysgranular (DI), and dorsal (AID) and ventral (AIV) agranular insular cortices. Intra-oral infusion of dH2O, NaCl, or sucrose altered the number of Fos-IR neurons in only specific subareas of the GC and the effects of these tastants were concentration-dependent. For example, 1.0 M NaCl increased Fos-IR neurons in the posterior lateral AID and DI and elicited more aversive TR responses than 0.1 M NaCl. Compared to dH2O, infusions of HCl or QHCl increased the total number of Fos-IR neurons in many subareas of the GC throughout its anterior-posterior extent and increased aversive TR behaviors. Linear regression analyses suggested that neurons in the medial AID of the posterior GC may influence aversive behavioral responses to HCl and QHCl while neurons in the posterior lateral AID and DI may play a role in aversive TR responses to 1.0 M NaCl.
Collapse
Affiliation(s)
- Michael S King
- Biology Department, Stetson University, 421 N. Woodland Blvd., DeLand, FL 32723, United States.
| |
Collapse
|
32
|
An Insula-Central Amygdala Circuit for Guiding Tastant-Reinforced Choice Behavior. J Neurosci 2018; 38:1418-1429. [PMID: 29305535 DOI: 10.1523/jneurosci.1773-17.2017] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 11/21/2022] Open
Abstract
For animals to survive, they must reliably predict during foraging which substances are suitable for consumption. Despite extensive study, the neural circuit mechanisms underlying such adaptive behavior remain poorly understood. Here, using a tastant (sucrose/quinine)-reinforced "go/no-go" task in male and female mice, we examined the anatomical and functional connectivity of the circuit linking the insular cortex (IC) to the central amygdala (CeA) and the role of this circuit in the establishment of appropriate behavioral responses. Using anatomic tracing approaches combined with optogenetics-assisted circuit mapping, we found that the gustatory region of the IC sends direct excitatory projections to the lateral division of the CeA (CeL), making monosynaptic excitatory connections with distinct populations of CeL neurons. Specific inhibition of neurotransmitter release from the CeL-projecting IC neurons prevented mice from acquiring the "no-go" response, and impaired the "go" responses in the go/no-go task. Furthermore, selective activation of the IC-CeL pathway with optogenetics drove unconditioned lick suppression in thirsty animals, induced aversive responses, and was sufficient to instruct conditioned action suppression in response to a cue predicting the optogenetic activation. These results indicate that activities in the IC-CeL circuit are critical for establishing taste-reinforced behavioral responses, including avoidance responses to an aversive tastant, and are sufficient to drive learning of anticipatory avoidance. Our findings suggest that the IC-CeL circuit plays an important role in guiding appropriate choices during foraging.SIGNIFICANCE STATEMENT An animal's ability to predict which substances are suitable for consumption and then produce an appropriate action to those substances is critical for survival. Here we found that activity in the circuit that links the insular cortex (IC) to the central amygdala (CeA) is necessary for establishing appropriate behavioral responses to taste-predicting cues. This neural circuit seems to be particularly tuned to avoid an unpleasant tastant, and is also sufficient to drive learning of such avoidance responses. These results suggest that the IC-CeA circuit is critical for generating appropriate behavioral responses during foraging when facing different choices.
Collapse
|
33
|
Miskovic V, Anderson AK. Modality general and modality specific coding of hedonic valence. Curr Opin Behav Sci 2018; 19:91-97. [PMID: 29967806 DOI: 10.1016/j.cobeha.2017.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The pleasant or unpleasant qualities that attach to our perceptions help to determine whether we approach or avoid environmental stimuli, shaping their affordances. How do brains create this affective perceptual dimension? The traditional answer is that sensory areas serve only as conduits for external impressions that are then modulated by heteromodal limbic structures in subsequent phases. Here we raise the possibility that, in addition to these well established gain control effects, sensory systems might also have a more direct role in representing the pleasantness component of perception, as supported by several strands of recent brain imaging evidence. In conjunction with a shared valence code that is independent of its sensory origins, valence representations interleaved within sensory brain areas may support finer grained experiential distinctions between how things look, sound, feel, taste and smell good or bad to us, offering a higher dimensional space of evaluative discriminations.
Collapse
Affiliation(s)
- V Miskovic
- Department of Psychology, State University of New York at Binghamton, United States.,Center for Affective Science, State University of New York at Binghamton, United States
| | - A K Anderson
- Department of Human Development and Human Neuroscience Institute, Cornell University, United States
| |
Collapse
|
34
|
Yiannakas A, Rosenblum K. The Insula and Taste Learning. Front Mol Neurosci 2017; 10:335. [PMID: 29163022 PMCID: PMC5676397 DOI: 10.3389/fnmol.2017.00335] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/03/2017] [Indexed: 12/29/2022] Open
Abstract
The sense of taste is a key component of the sensory machinery, enabling the evaluation of both the safety as well as forming associations regarding the nutritional value of ingestible substances. Indicative of the salience of the modality, taste conditioning can be achieved in rodents upon a single pairing of a tastant with a chemical stimulus inducing malaise. This robust associative learning paradigm has been heavily linked with activity within the insular cortex (IC), among other regions, such as the amygdala and medial prefrontal cortex. A number of studies have demonstrated taste memory formation to be dependent on protein synthesis at the IC and to correlate with the induction of signaling cascades involved in synaptic plasticity. Taste learning has been shown to require the differential involvement of dopaminergic GABAergic, glutamatergic, muscarinic neurotransmission across an extended taste learning circuit. The subsequent activation of downstream protein kinases (ERK, CaMKII), transcription factors (CREB, Elk-1) and immediate early genes (c-fos, Arc), has been implicated in the regulation of the different phases of taste learning. This review discusses the relevant neurotransmission, molecular signaling pathways and genetic markers involved in novel and aversive taste learning, with a particular focus on the IC. Imaging and other studies in humans have implicated the IC in the pathophysiology of a number of cognitive disorders. We conclude that the IC participates in circuit-wide computations that modulate the interception and encoding of sensory information, as well as the formation of subjective internal representations that control the expression of motivated behaviors.
Collapse
Affiliation(s)
- Adonis Yiannakas
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
35
|
Abstract
Both physiological and imaging approaches have led to often-disparate conclusions about the organization of taste information in gustatory cortex (GC). In this study, we used neuroanatomical and imaging approaches to delineate the likely area of insular cortex given to gustatory function and to characterize taste responses within this delineated area in female and male C57BL/6J mice. Anterograde tracers were injected into the taste thalamus (the medial parvicellular portion of the ventral posterior medial division, VPMpc) of mice and the thalamic terminal field was investigated across the cortex. Working within the delineated area, we used two-photon imaging to measure basic taste responses in >780 neurons in layer 2/3 located just posterior to the middle cerebral artery. A nonbiased, hierarchical cluster analysis revealed multiple clusters of cells responding best to either individual or combinations of taste stimuli. Taste quality was represented in the activity of taste-responsive cells; however, there was no apparent spatial organization of primary taste qualities in this region.SIGNIFICANCE STATEMENT Recent studies investigating taste coding within the gustatory cortex have reported highly segregated, taste-specific regions containing only narrowly tuned cells responding to a single taste separated by large non-taste-coding areas. However, focusing on the center of this area, we found a large number of taste responsive cells ranging from narrowly to broadly responsive with no apparent local spatial organization. Further, population analysis reveals that activity in the neuronal population in this area appears to be related to measures of taste quality or hedonics.
Collapse
|
36
|
Overlapping Representation of Primary Tastes in a Defined Region of the Gustatory Cortex. J Neurosci 2017; 37:7595-7605. [PMID: 28674169 DOI: 10.1523/jneurosci.0649-17.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/25/2017] [Accepted: 06/23/2017] [Indexed: 01/01/2023] Open
Abstract
Both physiological and imaging approaches have led to often-disparate conclusions about the organization of taste information in gustatory cortex (GC). In this study, we used neuroanatomical and imaging approaches to delineate the likely area of insular cortex given to gustatory function and to characterize taste responses within this delineated area in female and male C57BL/6J mice. Anterograde tracers were injected into the taste thalamus (the medial parvicellular portion of the ventral posterior medial division, VPMpc) of mice and the thalamic terminal field was investigated across the cortex. Working within the delineated area, we used two-photon imaging to measure basic taste responses in >780 neurons in layer 2/3 located just posterior to the middle cerebral artery. A nonbiased, hierarchical cluster analysis revealed multiple clusters of cells responding best to either individual or combinations of taste stimuli. Taste quality was represented in the activity of taste-responsive cells; however, there was no apparent spatial organization of primary taste qualities in this region.SIGNIFICANCE STATEMENT Recent studies investigating taste coding within the gustatory cortex have reported highly segregated, taste-specific regions containing only narrowly tuned cells responding to a single taste separated by large non-taste-coding areas. However, focusing on the center of this area, we found a large number of taste responsive cells ranging from narrowly to broadly responsive with no apparent local spatial organization. Further, population analysis reveals that activity in the neuronal population in this area appears to be related to measures of taste quality or hedonics.
Collapse
|
37
|
Livneh Y, Ramesh RN, Burgess CR, Levandowski KM, Madara JC, Fenselau H, Goldey GJ, Diaz VE, Jikomes N, Resch JM, Lowell BB, Andermann ML. Homeostatic circuits selectively gate food cue responses in insular cortex. Nature 2017; 546:611-616. [PMID: 28614299 PMCID: PMC5577930 DOI: 10.1038/nature22375] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 04/10/2017] [Indexed: 12/17/2022]
Abstract
Physiological needs bias perception and attention to relevant sensory cues. This process is 'hijacked' by drug addiction, causing cue-induced cravings and relapse. Similarly, its dysregulation contributes to failed diets, obesity, and eating disorders. Neuroimaging studies in humans have implicated insular cortex in these phenomena. However, it remains unclear how 'cognitive' cortical representations of motivationally relevant cues are biased by subcortical circuits that drive specific motivational states. Here we develop a microprism-based cellular imaging approach to monitor visual cue responses in the insular cortex of behaving mice across hunger states. Insular cortex neurons demonstrate food-cue-biased responses that are abolished during satiety. Unexpectedly, while multiple satiety-related visceral signals converge in insular cortex, chemogenetic activation of hypothalamic 'hunger neurons' (expressing agouti-related peptide (AgRP)) bypasses these signals to restore hunger-like response patterns in insular cortex. Circuit mapping and pathway-specific manipulations uncover a pathway from AgRP neurons to insular cortex via the paraventricular thalamus and basolateral amygdala. These results reveal a neural basis for state-specific biased processing of motivationally relevant cues.
Collapse
Affiliation(s)
- Yoav Livneh
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Rohan N Ramesh
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Christian R Burgess
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Kirsten M Levandowski
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Henning Fenselau
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Glenn J Goldey
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Veronica E Diaz
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Nick Jikomes
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jon M Resch
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
38
|
|
39
|
Stratford JM, Larson ED, Yang R, Salcedo E, Finger TE. 5-HT 3A -driven green fluorescent protein delineates gustatory fibers innervating sour-responsive taste cells: A labeled line for sour taste? J Comp Neurol 2017; 525:2358-2375. [PMID: 28316078 DOI: 10.1002/cne.24209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 12/29/2022]
Abstract
Taste buds contain multiple cell types with each type expressing receptors and transduction components for a subset of taste qualities. The sour sensing cells, Type III cells, release serotonin (5-HT) in response to the presence of sour (acidic) tastants and this released 5-HT activates 5-HT3 receptors on the gustatory nerves. We show here, using 5-HT3A GFP mice, that 5-HT3 -expressing nerve fibers preferentially contact and receive synaptic contact from Type III taste cells. Further, these 5-HT3 -expressing nerve fibers terminate in a restricted central-lateral portion of the nucleus of the solitary tract (nTS)-the same area that shows increased c-Fos expression upon presentation of a sour tastant (30 mM citric acid). This acid stimulation also evokes c-Fos in the laterally adjacent mediodorsal spinal trigeminal nucleus (DMSp5), but this trigeminal activation is not associated with the presence of 5-HT3 -expressing nerve fibers as it is in the nTS. Rather, the neuronal activation in the trigeminal complex likely is attributable to direct depolarization of acid-sensitive trigeminal nerve fibers, for example, polymodal nociceptors, rather than through taste buds. Taken together, these findings suggest that transmission of sour taste information involves communication between Type III taste cells and 5-HT3 -expressing afferent nerve fibers that project to a restricted portion of the nTS consistent with a crude mapping of taste quality information in the primary gustatory nucleus.
Collapse
Affiliation(s)
- J M Stratford
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado.,Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado
| | - E D Larson
- Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado.,Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - R Yang
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado.,Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado
| | - E Salcedo
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado.,Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado
| | - T E Finger
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado.,Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
40
|
Dense encoding of natural odorants by ensembles of sparsely activated neurons in the olfactory bulb. Sci Rep 2016; 6:36514. [PMID: 27824096 PMCID: PMC5099913 DOI: 10.1038/srep36514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/18/2016] [Indexed: 11/09/2022] Open
Abstract
Sensory information undergoes substantial transformation along sensory pathways, usually encompassing sparsening of activity. In the olfactory bulb, though natural odorants evoke dense glomerular input maps, mitral and tufted (M/T) cells tuning is considered to be sparse because of highly odor-specific firing rate change. However, experiments used to draw this conclusion were either based on recordings performed in anesthetized preparations or used monomolecular odorants presented at arbitrary concentrations. In this study, we evaluated the lifetime and population sparseness evoked by natural odorants by capturing spike temporal patterning of neuronal assemblies instead of individual M/T tonic activity. Using functional imaging and tetrode recordings in awake mice, we show that natural odorants at their native concentrations are encoded by broad assemblies of M/T cells. While reducing odorant concentrations, we observed a reduced number of activated glomeruli representations and consequently a narrowing of M/T tuning curves. We conclude that natural odorants at their native concentrations recruit M/T cells with phasic rather than tonic activity. When encoding odorants in assemblies, M/T cells carry information about a vast number of odorants (lifetime sparseness). In addition, each natural odorant activates a broad M/T cell assembly (population sparseness).
Collapse
|
41
|
A gustocentric perspective to understanding primary sensory cortices. Curr Opin Neurobiol 2016; 40:118-124. [PMID: 27455038 DOI: 10.1016/j.conb.2016.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/27/2022]
Abstract
Most of the general principles used to explain sensory cortical function have been inferred from experiments performed on neocortical, primary sensory areas. Attempts to apply a neocortical view to the study of the gustatory cortex (GC) have provided only a limited understanding of this area. Failures to conform GC to classical neocortical principles have been implicitly interpreted as a demonstration of GC's uniqueness. Here we propose to take the opposite perspective, dismissing GC's uniqueness and using principles extracted from its study as a lens for looking at neocortical sensory function. In this review, we describe three significant findings related to gustatory cortical function and advocate their relevance for understanding neocortical sensory areas.
Collapse
|
42
|
Abstract
UNLABELLED The parvicellular portion of the ventroposteromedial nucleus (VPMpc) is the part of the thalamus that processes gustatory information. Anatomical evidence shows that the VPMpc receives ascending gustatory inputs from the parabrachial nucleus (PbN) in the brainstem and sends projections to the gustatory cortex (GC). Although taste processing in PbN and GC has been the subject of intense investigation in behaving rodents, much less is known on how VPMpc neurons encode gustatory information. Here we present results from single-unit recordings in the VPMpc of alert rats receiving multiple tastants. Thalamic neurons respond to taste with time-varying modulations of firing rates, consistent with those observed in GC and PbN. These responses encode taste quality as well as palatability. Comparing responses to tastants either passively delivered, or self-administered after a cue, unveiled the effects of general expectation on taste processing in VPMpc. General expectation led to an improvement of taste coding by modulating response dynamics, and single neuron ability to encode multiple tastants. Our results demonstrate that the time course of taste coding as well as single neurons' ability to encode for multiple qualities are not fixed but rather can be altered by the state of the animal. Together, the data presented here provide the first description that taste coding in VPMpc is dynamic and state-dependent. SIGNIFICANCE STATEMENT Over the past years, a great deal of attention has been devoted to understanding taste coding in the brainstem and cortex of alert rodents. Thanks to this research, we now know that taste coding is dynamic, distributed, and context-dependent. Alas, virtually nothing is known on how the gustatory thalamus (VPMpc) processes gustatory information in behaving rats. This manuscript investigates taste processing in the VPMpc of behaving rats. Our results show that thalamic neurons encode taste and palatability with time-varying patterns of activity and that thalamic coding of taste is modulated by general expectation. Our data will appeal not only to researchers interested in taste, but also to a broader audience of sensory and systems neuroscientists interested in the thalamocortical system.
Collapse
|
43
|
Liu H, Fontanini A. State Dependency of Chemosensory Coding in the Gustatory Thalamus (VPMpc) of Alert Rats. J Neurosci 2015; 35:15479-91. [PMID: 26609147 PMCID: PMC4659819 DOI: 10.1523/jneurosci.0839-15.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 08/21/2015] [Accepted: 09/10/2015] [Indexed: 11/21/2022] Open
Abstract
The parvicellular portion of the ventroposteromedial nucleus (VPMpc) is the part of the thalamus that processes gustatory information. Anatomical evidence shows that the VPMpc receives ascending gustatory inputs from the parabrachial nucleus (PbN) in the brainstem and sends projections to the gustatory cortex (GC). Although taste processing in PbN and GC has been the subject of intense investigation in behaving rodents, much less is known on how VPMpc neurons encode gustatory information. Here we present results from single-unit recordings in the VPMpc of alert rats receiving multiple tastants. Thalamic neurons respond to taste with time-varying modulations of firing rates, consistent with those observed in GC and PbN. These responses encode taste quality as well as palatability. Comparing responses to tastants either passively delivered, or self-administered after a cue, unveiled the effects of general expectation on taste processing in VPMpc. General expectation led to an improvement of taste coding by modulating response dynamics, and single neuron ability to encode multiple tastants. Our results demonstrate that the time course of taste coding as well as single neurons' ability to encode for multiple qualities are not fixed but rather can be altered by the state of the animal. Together, the data presented here provide the first description that taste coding in VPMpc is dynamic and state-dependent. SIGNIFICANCE STATEMENT Over the past years, a great deal of attention has been devoted to understanding taste coding in the brainstem and cortex of alert rodents. Thanks to this research, we now know that taste coding is dynamic, distributed, and context-dependent. Alas, virtually nothing is known on how the gustatory thalamus (VPMpc) processes gustatory information in behaving rats. This manuscript investigates taste processing in the VPMpc of behaving rats. Our results show that thalamic neurons encode taste and palatability with time-varying patterns of activity and that thalamic coding of taste is modulated by general expectation. Our data will appeal not only to researchers interested in taste, but also to a broader audience of sensory and systems neuroscientists interested in the thalamocortical system.
Collapse
Affiliation(s)
- Haixin Liu
- Department of Neurobiology and Behavior and Graduate Program in Neuroscience, State University of New York at Stony Brook, Stony Brook, New York 11794
| | - Alfredo Fontanini
- Department of Neurobiology and Behavior and Graduate Program in Neuroscience, State University of New York at Stony Brook, Stony Brook, New York 11794
| |
Collapse
|
44
|
Schier LA, Blonde GD, Spector AC. Bilateral lesions in a specific subregion of posterior insular cortex impair conditioned taste aversion expression in rats. J Comp Neurol 2015; 524:54-73. [PMID: 26053891 DOI: 10.1002/cne.23822] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/27/2015] [Accepted: 05/27/2015] [Indexed: 11/09/2022]
Abstract
The gustatory cortex (GC) is widely regarded for its integral role in the acquisition and retention of conditioned taste aversions (CTAs) in rodents, but large lesions in this area do not always result in CTA impairment. Recently, using a new lesion mapping system, we found that severe CTA expression deficits were associated with damage to a critical zone that included the posterior half of GC in addition to the insular cortex (IC) that is just dorsal and caudal to this region (visceral cortex). Lesions in anterior GC were without effect. Here, neurotoxic bilateral lesions were placed in the anterior half of this critical damage zone, at the confluence of the posterior GC and the anterior visceral cortex (termed IC2 ), the posterior half of this critical damage zone that contains just VC (termed IC3), or both of these subregions (IC2 + IC3). Then, pre- and postsurgically acquired CTAs (to 0.1 M NaCl and 0.1 M sucrose, respectively) were assessed postsurgically in 15-minute one-bottle and 96-hour two-bottle tests. Li-injected rats with histologically confirmed bilateral lesions in IC2 exhibited the most severe CTA deficits, whereas those with bilateral lesions in IC3 were relatively normal, exhibiting transient disruptions in the one-bottle sessions. Groupwise lesion maps showed that CTA-impaired rats had more extensive damage to IC2 than did unimpaired rats. Some individual differences in CTA expression among rats with similar lesion profiles were observed, suggesting idiosyncrasies in the topographic representation of information in the IC. Nevertheless, this study implicates IC2 as the critical zone of the IC for normal CTA expression.
Collapse
Affiliation(s)
- Lindsey A Schier
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, 32306
| | - Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, 32306
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, 32306
| |
Collapse
|
45
|
Vincis R, Lagier S, Van De Ville D, Rodriguez I, Carleton A. Sensory-Evoked Intrinsic Imaging Signals in the Olfactory Bulb Are Independent of Neurovascular Coupling. Cell Rep 2015; 12:313-25. [PMID: 26146075 PMCID: PMC5066842 DOI: 10.1016/j.celrep.2015.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/12/2015] [Accepted: 06/03/2015] [Indexed: 11/19/2022] Open
Abstract
Functional brain-imaging techniques used in humans and animals, such as functional MRI and intrinsic optical signal (IOS) imaging, are thought to largely rely on neurovascular coupling and hemodynamic responses. Here, taking advantage of the well-described micro-architecture of the mouse olfactory bulb, we dissected the nature of odor-evoked IOSs. Using in vivo pharmacology in transgenic mouse lines reporting activity in different cell types, we show that parenchymal IOSs are largely independent of neurotransmitter release and neurovascular coupling. Furthermore, our results suggest that odor-evoked parenchymal IOSs originate from changes in light scattering of olfactory sensory neuron axons, mostly due to water movement following action potential propagation. Our study sheds light on a direct correlate of neuronal activity, which may be used for large-scale functional brain imaging.
Collapse
Affiliation(s)
- Roberto Vincis
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1211 Geneva, Switzerland; Geneva Neuroscience Center, University of Geneva, 1211 Geneva, Switzerland
| | - Samuel Lagier
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1211 Geneva, Switzerland; Geneva Neuroscience Center, University of Geneva, 1211 Geneva, Switzerland
| | - Dimitri Van De Ville
- Geneva Neuroscience Center, University of Geneva, 1211 Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, 1211 Geneva, Switzerland; Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ivan Rodriguez
- Geneva Neuroscience Center, University of Geneva, 1211 Geneva, Switzerland; Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland.
| | - Alan Carleton
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1211 Geneva, Switzerland; Geneva Neuroscience Center, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
46
|
King CT, Hashimoto K, Blonde GD, Spector AC. Unconditioned oromotor taste reactivity elicited by sucrose and quinine is unaffected by extensive bilateral damage to the gustatory zone of the insular cortex in rats. Brain Res 2014; 1599:9-19. [PMID: 25536305 DOI: 10.1016/j.brainres.2014.12.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/09/2014] [Accepted: 12/13/2014] [Indexed: 11/29/2022]
Abstract
Rats display stereotypical oromotor and somatic responses to small volumes of intraorally infused taste solutions. These behaviors, known as taste reactivity, are categorized by their association with ingestion or rejection and are thought to reflect the palatability of the stimulus. Because supracollicular decerebrate rats display normal taste reactivity responses, it would appear that forebrain structures are not necessary for generating them. However, because moving the plane of transection rostrally, or damaging or manipulating specific ventral forebrain sites disrupts normal taste reactivity behavior, lesions of the gustatory cortex, a region that has been suggested to be involved with palatability processing, may do the same. In the current study, rats received two injections of either ibotenic acid (N=12) or vehicle (N=8), targeting the conventionally defined gustatory cortex in each hemisphere, and were implanted with intraoral cannulae. Following recovery, their responses to intraoral infusions (0.23ml in 1min) of dH2O, sucrose (1.0M and 0.1M), and quinine hydrochloride (3mM and 0.3mM) were video recorded. Analysis of brains with sufficient bilateral lesions (N=10) revealed that, on average, approximately 94% of the gustatory cortex was destroyed. These extensive bilateral lesions had no significant effect on taste reactivity; the numbers of ingestive and aversive responses to sucrose and quinine were similar between groups. Though these findings do not rule out involvement of the gustatory cortex in palatability processing, they make evident that the region of insular cortex destroyed is not necessary for the normal expression of unconditioned affective behavioral responses to taste stimuli.
Collapse
Affiliation(s)
| | - Koji Hashimoto
- Department of Morphological and Physiological Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Department of Psychology & Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| | - Ginger D Blonde
- Department of Psychology & Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Alan C Spector
- Department of Psychology & Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
47
|
Kwak Y, Han J, Rhyu MR, Nam TS, Leem JW, Lee BH. Different spatial expressions of c-Fos in the nucleus of the solitary tract following taste stimulation with sodium, potassium, and ammonium ions in rats. J Neurosci Res 2014; 93:340-9. [PMID: 25243715 DOI: 10.1002/jnr.23485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 11/10/2022]
Abstract
Cation-specific epithelial receptors on the tongue have been well demonstrated. However, active regions along the nucleus of the solitary tract (NST) for cations Na(+), K(+), NH4(+) are still unclear, even though the best responses of NST neurons to taste stimuli vary depending on the cell. In the present study, the spatial distribution patterns of cation-specific active regions in the NST are investigated. The tongues of urethane-anesthetized Sprague-Dawley rats (n = 25) were stimulated with artificial saliva (control), 0.5 M NaCl, 1.0 M NaCl, 0.5 M KCl, and 0.3 M NH(4) Cl. Then, the three-dimensional positions of c-Fos-like-immunoreactive (cFLI) cells in the NST were generated. The spatial distributions of cFLI cells in the NST were compared among five taste stimulations. cFLI cells were observed throughout the NST, irrespective of the stimulus; however, the intermediate-medial central regions of the NST had higher numbers of cFLI cells than the other regions in all taste stimulations. Analysis of images revealed that the activated regions in the NST differed significantly depending on the cations. The intermediate-dorsal-central region and the caudal-ventral region were activated by a 0.5 M concentration of sodium, the rostral-ventral region and the intermediate-dorsal/ventral region were activated by a 1.0 M concentration of sodium, the intermediate-dorsal/ventral region was activated by potassium ions, and the rostral-ventral region and the intermediate-ventral central region were activated by ammonium ions. These results suggest that the responses of NST cells to cation salt ions are regulated differentially.
Collapse
Affiliation(s)
- Yongho Kwak
- Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
48
|
Jiang E, Yu D, Feng Z. Subdiaphragmatic vagotomy reduces intake of sweet-tasting solutions in rats. Neural Regen Res 2014; 8:1560-7. [PMID: 25206451 PMCID: PMC4145969 DOI: 10.3969/j.issn.1673-5374.2013.17.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/04/2013] [Indexed: 11/18/2022] Open
Abstract
Studies have shown that there are strong interactions between gustatory and visceral sensations in the central nervous system when rats ingest sweet foods or solutions. To investigate the role of the subdiaphragmatic vagi in transmitting general visceral information during the process of drinking sweet-tasting solutions, we examined the effects of subdiaphragmatic vagotomy on the intake of 0.5 mol/L sucrose, 0.005 mol/L saccharin or distilled water over the course of 1 hour in rats deprived of water. Results showed no significant difference in consumption of these three solutions in vagotomized rats. However, rats in the sham-surgery group drank more saccharin solution than sucrose solution or distilled water. Moreover, the intake of distilled water was similar between vagotomized rats and sham-surgery group rats, but significantly less sucrose and saccharin were consumed by vagotomized rats compared with rats in the sham-surgery group. These findings indicate that subdiaphragmatic vagotomy reduces intake of sweet-tasting solution in rats, and suggest that vagal and extravagal inputs play a balanced role in the control of the intake of sweet-tasting solutions. They also suggest that subdiaphragmatic vagotomy eliminates the difference in hedonic perception induced by sweet-tasting solutions compared with distilled water.
Collapse
Affiliation(s)
- Enshe Jiang
- Institute of Public Hygiene, School of Nursing, Henan University, Kaifeng 475004, Henan Province, China
| | - Dongming Yu
- Department of Anatomy, Medical College of Henan University, Kaifeng 475004, Henan Province, China
| | - Zhifen Feng
- Institute of Public Hygiene, School of Nursing, Henan University, Kaifeng 475004, Henan Province, China
| |
Collapse
|
49
|
Hayes DJ, Duncan NW, Xu J, Northoff G. A comparison of neural responses to appetitive and aversive stimuli in humans and other mammals. Neurosci Biobehav Rev 2014; 45:350-68. [PMID: 25010558 DOI: 10.1016/j.neubiorev.2014.06.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/29/2014] [Accepted: 06/27/2014] [Indexed: 11/30/2022]
Abstract
Distinguishing potentially harmful or beneficial stimuli is necessary for the self-preservation and well-being of all organisms. This assessment requires the ongoing valuation of environmental stimuli. Despite much work on the processing of aversive- and appetitive-related brain signals, it is not clear to what degree these two processes interact across the brain. To help clarify this issue, this report used a cross-species comparative approach in humans (i.e. meta-analysis of imaging data) and other mammals (i.e. targeted review of functional neuroanatomy in rodents and non-human primates). Human meta-analysis results suggest network components that appear selective for appetitive (e.g. ventromedial prefrontal cortex, ventral tegmental area) or aversive (e.g. cingulate/supplementary motor cortex, periaqueductal grey) processing, or that reflect overlapping (e.g. anterior insula, amygdala) or asymmetrical, i.e. apparently lateralized, activity (e.g. orbitofrontal cortex, ventral striatum). However, a closer look at the known value-related mechanisms from the animal literature suggests that all of these macroanatomical regions are involved in the processing of both appetitive and aversive stimuli. Differential spatiotemporal network dynamics may help explain similarities and differences in appetitive- and aversion-related activity.
Collapse
Affiliation(s)
- Dave J Hayes
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada; Toronto Western Research Institute, Brain, Imaging and Behaviour - Systems Neuroscience, University of Toronto, Division of Neurosurgery, 399 Bathurst Street, Toronto, Canada.
| | - Niall W Duncan
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada; Department of Biology, University of Carleton, 1125 Colonel By Drive, Ottawa, Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, 276 Lishui Lu, Hangzhou, China
| | - Jiameng Xu
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, 276 Lishui Lu, Hangzhou, China; Taipei Medical University, Shuang Ho Hospital, Brain and Consciousness Research Center, Graduate Institute of Humanities in Medicine, Taipei, Taiwan; National Chengchi University, Research Center for Mind, Brain and Learning, Taipei, Taiwan
| |
Collapse
|
50
|
Linster C, Fontanini A. Functional neuromodulation of chemosensation in vertebrates. Curr Opin Neurobiol 2014; 29:82-7. [PMID: 24971592 DOI: 10.1016/j.conb.2014.05.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
Abstract
Neuromodulation can be defined as a biophysical process that serves to modify-or modulate-the computation performed by a neuron or network as a function of task demands and behavioral state of the animal. These modulatory effects often involve substances extrinsic to the network under observation, such as acetylcholine (ACh), norepinephrine (NE), histamine, serotonin (5-HT), dopamine (DA), and a variety of neuropeptides. Olfactory and gustatory processes especially need to be adaptive and respond flexibly to changing environments, availability of resources and physiological needs. It is therefore crucial to understand the neuromodulatory processes that regulate the function of these systems.
Collapse
Affiliation(s)
- Christiane Linster
- Computational Physiology Lab, Department of Neurobiology and Behavior, Mudd Hall W249, Cornell University, Ithaca, NY 14853, USA.
| | - Alfredo Fontanini
- Dept. of Neurobiology and Behavior, Graduate Program in Neuroscience, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.
| |
Collapse
|