1
|
Laveneziana P, Fossé Q, Bret M, Patout M, Dudoignon B, Llontop C, Morélot-Panzini C, Cayetanot F, Bodineau L, Straus C, Similowski T. Defective exercise-related expiratory muscle recruitment in patients with PHOX2B mutations: A clue to neural determinants of the congenital central hypoventilation syndrome. Pulmonology 2025; 31:2416790. [PMID: 38403573 DOI: 10.1016/j.pulmoe.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/28/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION AND OBJECTIVES The human congenital central hypoventilation syndrome (CCHS) is caused by mutations in the PHOX2B (paired-like homeobox 2B) gene. Genetically engineered PHOX2B rodents exhibit defective development of the brainstem retrotrapezoid nucleus (RTN), a carbon dioxide sensitive structure that critically controls expiratory muscle recruitment. This has been linked to a blunted exercise ventilatory response. Whether this can be extrapolated to human CCHS is unknown and represents the objective of this study. MATERIALS AND METHODS Thirteen adult CCHS patients and 13 healthy participants performed an incremental symptom-limited cycle cardiopulmonary exercise test. Responses were analyzed using guideline approaches (ventilation V'E, tidal volume VT, breathing frequency, oxygen consumption, carbon dioxide production) complemented by a breathing pattern analysis (i.e. expiratory and inspiratory reserve volume, ERV and IRV). RESULTS A ventilatory response occurred in both study groups, as follows: V'E and VT increased in CCHS patients until 40 W and then decreased, which was not observed in the healthy participants (p<0.001). In the latter, exercise-related ERV and IRV decreases attested to concomitant expiratory and inspiratory recruitment. In the CCHS patients, inspiratory recruitment occurred but there was no evidence of expiratory recruitment (absence of any ERV decrease, p<0.001). CONCLUSIONS Assuming a similar organization of respiratory rhythmogenesis in humans and rodents, the lack of exercise-related expiratory recruitment observed in our CCHS patients is compatible with a PHOX2B-related defect of a neural structure that would be analogous to the rodents' RTN. Provided corroboration, ERV recruitment could serve as a physiological outcome in studies aiming at correcting breathing control in CCHS.
Collapse
Affiliation(s)
- P Laveneziana
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpitaux Pitié-Salpêtrière, Saint-Antoine et Tenon, Service des Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée (Département R3S), F-75013 Paris, France
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre de Référence Maladies Rares "Syndrome d'Ondine" (Département R3S), F-75013 Paris, France
| | - Q Fossé
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpitaux Pitié-Salpêtrière, Saint-Antoine et Tenon, Service des Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée (Département R3S), F-75013 Paris, France
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France
| | - M Bret
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Service de Pneumologie (Département R3S), F-75013 Paris, France
| | - M Patout
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre de Référence Maladies Rares "Syndrome d'Ondine" (Département R3S), F-75013 Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Service des Pathologies du Sommeil (Département R3S), F-75013 Paris, France
| | - B Dudoignon
- Université de Paris, AP-HP, Hôpital Robert Debré, Service de Physiologie Pédiatrique Centre du Sommeil-CRMR Hypoventilations alvéolaires rares, INSERM NeuroDiderot, F-75019 Paris, France
| | - C Llontop
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Service de Pneumologie (Département R3S), F-75013 Paris, France
| | - C Morélot-Panzini
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre de Référence Maladies Rares "Syndrome d'Ondine" (Département R3S), F-75013 Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Service de Pneumologie (Département R3S), F-75013 Paris, France
| | - F Cayetanot
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France
| | - L Bodineau
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France
| | - C Straus
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpitaux Pitié-Salpêtrière, Saint-Antoine et Tenon, Service des Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée (Département R3S), F-75013 Paris, France
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre de Référence Maladies Rares "Syndrome d'Ondine" (Département R3S), F-75013 Paris, France
| | - T Similowski
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre de Référence Maladies Rares "Syndrome d'Ondine" (Département R3S), F-75013 Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Département R3S, F-75013 Paris, France
| |
Collapse
|
2
|
Benkeder S, Dinh SM, Marchal P, De Gea P, Thoby-Brisson M, Hubert V, Hristovska I, Pitollat G, Combet K, Cardoit L, Pillot B, Leon C, Wiart M, Marthy S, Honnorat J, Pascual O, Comte JC. MorphoCellSorter is an Andrews plot-based sorting approach to rank microglia according to their morphological features. eLife 2025; 13:RP101630. [PMID: 40387080 PMCID: PMC12088675 DOI: 10.7554/elife.101630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025] Open
Abstract
Microglia exhibit diverse morphologies reflecting environmental conditions, maturity, or functional states. Thus, morphological characterization provides important information to understand microglial roles and functions. Most recent morphological analysis relies on classifying cells based on morphological parameters. However, this classification may lack biological relevance, as microglial morphologies represent a continuum rather than distinct, separate groups, and do not correspond to mathematically defined clusters irrelevant of microglial cells function. Instead, we propose a new open-source tool, MorphoCellSorter, which assesses microglial morphology by automatically computing morphological criteria, using principal component analysis and Andrews plots to score cells. MorphoCellSorter properly ranked cells from various microglia datasets in mice and rats of different ages, from in vivo, in vitro, and ex vivo models, that were acquired using diverse imaging techniques. This approach allowed for the discrimination of cell populations in various pathophysiological conditions. Finally, MorphoCellSorter offers a versatile, easy, and ready-to-use method to evaluate microglial morphological diversity that could easily be generalized to standardize practices across laboratories.
Collapse
Affiliation(s)
- Sarah Benkeder
- Claude Bernard Lyon 1 UniversityLyonFrance
- Institut MeLiS, INSERM U1314 CNRS UMR5284LyonFrance
| | - Son-Michel Dinh
- Institut MeLiS, INSERM U1314 CNRS UMR5284LyonFrance
- Institut National des Sciences Appliquées (INSA)LyonFrance
| | - Paul Marchal
- Claude Bernard Lyon 1 UniversityLyonFrance
- Institut MeLiS, INSERM U1314 CNRS UMR5284LyonFrance
| | - Priscille De Gea
- Claude Bernard Lyon 1 UniversityLyonFrance
- Institut MeLiS, INSERM U1314 CNRS UMR5284LyonFrance
| | - Muriel Thoby-Brisson
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de BordeauxBordeauxFrance
| | - Violaine Hubert
- Claude Bernard Lyon 1 UniversityLyonFrance
- CarMeN Laboratory, INRAE U1397, INSERM U1060, Claude Bernard Lyon 1 UniversityLyonFrance
| | - Ines Hristovska
- Claude Bernard Lyon 1 UniversityLyonFrance
- Institut MeLiS, INSERM U1314 CNRS UMR5284LyonFrance
| | - Gabriel Pitollat
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de BordeauxBordeauxFrance
| | - Kassandre Combet
- Claude Bernard Lyon 1 UniversityLyonFrance
- Institut MeLiS, INSERM U1314 CNRS UMR5284LyonFrance
| | - Laura Cardoit
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de BordeauxBordeauxFrance
| | - Bruno Pillot
- Claude Bernard Lyon 1 UniversityLyonFrance
- CarMeN Laboratory, INRAE U1397, INSERM U1060, Claude Bernard Lyon 1 UniversityLyonFrance
| | - Christelle Leon
- Claude Bernard Lyon 1 UniversityLyonFrance
- CarMeN Laboratory, INRAE U1397, INSERM U1060, Claude Bernard Lyon 1 UniversityLyonFrance
| | - Marlene Wiart
- CarMeN Laboratory, INRAE U1397, INSERM U1060, Claude Bernard Lyon 1 UniversityLyonFrance
- CNRSLyonFrance
| | - Serge Marthy
- Sorbonne Université, Institut du Cerveau – Paris Brain Institute – ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
| | - Jérôme Honnorat
- Claude Bernard Lyon 1 UniversityLyonFrance
- Institut MeLiS, INSERM U1314 CNRS UMR5284LyonFrance
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de LyonLyonFrance
| | - Olivier Pascual
- Claude Bernard Lyon 1 UniversityLyonFrance
- Institut MeLiS, INSERM U1314 CNRS UMR5284LyonFrance
| | - Jean-Christophe Comte
- Claude Bernard Lyon 1 UniversityLyonFrance
- Centre de Recherche en Neurosciences de Lyon (CNRL), INSERM 1028 CNRS UMR5292BronFrance
| |
Collapse
|
3
|
Onimaru H, Koyanagi Y, Iigaya K, Ikeda K, Izumizaki M. Intrinsic responses to hypoxia and hypercapnia of neurons in the cardiorespiratory center of the ventral medulla of newborn rats. Pflugers Arch 2025; 477:685-705. [PMID: 40119920 DOI: 10.1007/s00424-025-03077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/21/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
The rostral ventrolateral medulla (RVLM) includes a variety of neurons essential for cardiorespiratory control. Although some of these neurons are thought to be intrinsically sensitive to hypercapnia and/or hypoxia, relationships between types of neurons and responses to hypoxia and/or hypercapnia are not well understood. Tyrosine hydroxylase (TH) is one of the cell-type markers of the RVLM neurons. Here, we report effects of hypoxia and hypercapnia on TH-positive or -negative neurons in the RVLM of newborn rats. Brainstem-spinal cord preparations were isolated from 0-3-day-old Wistar rats and superfused with artificial cerebrospinal fluid equilibrated with 95% O2 and 5% CO2, pH 7.4 at 25-26 °C. Membrane potential responses to hypoxia (95% → 0% O2) and/or hypercapnia (2% → 8% CO2) were examined in the presence of tetrodotoxin (TTX) after identification of the firing pattern. We found that TH-positive C1 neurons in the RVLM were sensitive to hypoxia with membrane depolarization but less sensitive to hypercapnia. TH-negative neurons in the C1 area showed responses similar to those of C1 neurons. Moreover, C1 area neurons remained depolarized by hypoxia in the presence of TTX plus gliotransmitter blockers. In contrast, Phox2b-positive and TH-negative neurons in the parafacial respiratory group were intrinsically sensitive to CO2 but not sensitive to hypoxia. Respiratory-related neurons (Phox2b and TH negative) showed a variable response to hypoxia: unchanging, depolarizing, or hyperpolarizing. Our findings suggest that C1 area neurons in the RVLM are intrinsically sensitive to hypoxia and belong to one of the elements constituting central hypoxic sensors.
Collapse
Affiliation(s)
- Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| | - Yui Koyanagi
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Kamon Iigaya
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Keiko Ikeda
- Department of Oral Physiology, Showa University School of Dentistry, Tokyo, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| |
Collapse
|
4
|
Deng T, Jing X, Shao L, Wang Y, Fu C, Yu H, Wang X, Zhao X, Kong F, Ji Y, Tian X, He W, Bi S, Shi L, Wang H, Yuan F, Wang S. A Molecularly Defined Medullary Network for Control of Respiratory Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412822. [PMID: 40089863 PMCID: PMC12079440 DOI: 10.1002/advs.202412822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/18/2025] [Indexed: 03/17/2025]
Abstract
The dynamic interaction between central respiratory chemoreceptors and the respiratory central pattern generator constitutes a critical homeostatic axis for stabilizing breathing rhythm and pattern, yet its circuit-level organization remains poorly characterized. Here, the functional connectivity between two key medullary hubs: the nucleus tractus solitarius (NTS) and the preBötzinger complex (preBötC) are systematically investigated. These findings delineate a medullary network primarily comprising Phox2b-expressing NTS neurons (NTSPhox2b), GABAergic NTS neurons (NTSGABA), and somatostatin (SST)-expressing preBötC neurons (preBötCSST). Photostimulation of NTSPhox2b neurons projecting to the preBötC potently amplifies baseline ventilation, whereas genetic ablation of these neurons or knockout of their transient receptor potential channel 5 (TRPC5) significantly blunts the CO2-stimulated ventilatory responses. Conversely, NTSGABA neuron stimulation inhibits or halts breathing partially via monosynaptic inhibition of NTSPhox2b neurons projecting to the preBötC. Additionally, photostimulation of preBötCSST neurons projecting to the NTS drives deep and slow breathing through coordinated modulation of NTSGABA and NTSPhox2b neurons. These findings collectively identify an important medullary network that integrates chemosensory feedback with respiratory motor output, enabling dynamic tuning of breathing patterns to metabolic demands.
Collapse
Affiliation(s)
- Tianjiao Deng
- Department of NeurobiologyHebei Medical UniversityShijiazhuang050017China
| | - Xinyi Jing
- Department of NeurobiologyHebei Medical UniversityShijiazhuang050017China
| | - Liuqi Shao
- Department of NeurobiologyHebei Medical UniversityShijiazhuang050017China
| | - Yakun Wang
- Department of Sleep MedicineThird Hospital of Hebei Medical UniversityShijiazhuang050051China
| | - Congrui Fu
- Nursing SchoolHebei Medical UniversityShijiazhuang050031China
| | - Hongxiao Yu
- Department of NeurobiologyHebei Medical UniversityShijiazhuang050017China
| | - Xiaoyi Wang
- Department of NeurobiologyHebei Medical UniversityShijiazhuang050017China
| | - Xue Zhao
- Department of NeurobiologyHebei Medical UniversityShijiazhuang050017China
| | - Fanrao Kong
- Department of NeurobiologyHebei Medical UniversityShijiazhuang050017China
| | - Yake Ji
- Department of NeurobiologyHebei Medical UniversityShijiazhuang050017China
| | - Xiaochen Tian
- Department of NeurobiologyHebei Medical UniversityShijiazhuang050017China
| | - Wei He
- Department of NeurobiologyHebei Medical UniversityShijiazhuang050017China
| | - Shangyu Bi
- Department of NeurobiologyHebei Medical UniversityShijiazhuang050017China
| | - Luo Shi
- Department of NeurobiologyHebei Medical UniversityShijiazhuang050017China
| | - Hanqiao Wang
- Department of Sleep MedicineThird Hospital of Hebei Medical UniversityShijiazhuang050051China
| | - Fang Yuan
- Department of NeurobiologyHebei Medical UniversityShijiazhuang050017China
- Hebei Key Laboratory of NeurophysiologyHebei Medical UniversityShijiazhuang050017China
- The Key Laboratory of Neural and Vascular BiologyMinistry of EducationHebei Medical UniversityShijiazhuang050017China
| | - Sheng Wang
- Department of NeurobiologyHebei Medical UniversityShijiazhuang050017China
- Hebei Key Laboratory of NeurophysiologyHebei Medical UniversityShijiazhuang050017China
- The Key Laboratory of Neural and Vascular BiologyMinistry of EducationHebei Medical UniversityShijiazhuang050017China
| |
Collapse
|
5
|
Wiegering A, Anselme I, Brunetti L, Metayer-Derout L, Calderon D, Thomas S, Nedelec S, Eschstruth A, Serpieri V, Catala M, Antoniewski C, Schneider-Maunoury S, Stedman A. A differential requirement for ciliary transition zone proteins in human and mouse neural progenitor fate specification. Nat Commun 2025; 16:3258. [PMID: 40188187 PMCID: PMC11972330 DOI: 10.1038/s41467-025-58554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
Studying ciliary genes in the context of the human central nervous system is crucial for understanding the underlying causes of neurodevelopmental ciliopathies. Here, we use pluripotent stem cell-derived spinal organoids to reveal distinct functions of the ciliopathy gene RPGRIP1L in humans and mice, and uncover an unexplored role for cilia in human axial patterning. Previous research has emphasized Rpgrip1l critical functions in mouse brain and spinal cord development through the regulation of SHH/GLI pathway. Here, we show that RPGRIP1L is not required for SHH activation or motoneuron lineage commitment in human spinal progenitors and that this feature is shared by another ciliopathy gene, TMEM67. Furthermore, human RPGRIP1L-mutant motoneurons adopt hindbrain and cervical identities instead of caudal brachial identity. Temporal transcriptome analysis reveals that this antero-posterior patterning defect originates in early axial progenitors and correlates with cilia loss. These findings provide important insights into the role of cilia in human neural development.
Collapse
Affiliation(s)
- Antonia Wiegering
- Sorbonne Université, CNRS, Inserm, Development, Adaptation and Aging, Dev2A, Paris, France.
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris Seine, Paris, France.
| | - Isabelle Anselme
- Sorbonne Université, CNRS, Inserm, Development, Adaptation and Aging, Dev2A, Paris, France
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris Seine, Paris, France
| | - Ludovica Brunetti
- Sorbonne Université, CNRS, Inserm, Development, Adaptation and Aging, Dev2A, Paris, France
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris Seine, Paris, France
| | - Laura Metayer-Derout
- Sorbonne Université, CNRS, Inserm, Development, Adaptation and Aging, Dev2A, Paris, France
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris Seine, Paris, France
| | - Damelys Calderon
- INSERM UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Sophie Thomas
- INSERM UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Stéphane Nedelec
- Sorbonne Université, Inserm, Institut du Fer à Moulin, UMR-S 1270, Paris, France
- Université Paris Cité, CNRS, Inserm U1340, Institut Jacques Monod, Paris, France
| | - Alexis Eschstruth
- Sorbonne Université, CNRS, Inserm, Development, Adaptation and Aging, Dev2A, Paris, France
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris Seine, Paris, France
| | | | - Martin Catala
- Sorbonne Université, CNRS, Inserm, Development, Adaptation and Aging, Dev2A, Paris, France
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris Seine, Paris, France
| | | | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS, Inserm, Development, Adaptation and Aging, Dev2A, Paris, France.
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris Seine, Paris, France.
| | - Aline Stedman
- Sorbonne Université, CNRS, Inserm, Development, Adaptation and Aging, Dev2A, Paris, France.
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris Seine, Paris, France.
| |
Collapse
|
6
|
Sato Y, Hayashi S, Oe S, Koike T, Nakano Y, Seki‐Omura R, Iwashita H, Hirahara Y, Kitada M. Chromosomal localization of PHOX2B during M-phase is disrupted in disease-associated mutants. Dev Growth Differ 2025; 67:136-148. [PMID: 39933489 PMCID: PMC11997733 DOI: 10.1111/dgd.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
In the M-phase, the nuclear membrane is broken down, nucleosomes are condensed as mitotic chromosomes, and transcription factors are generally known to be dislocated from their recognition sequences and dispersed to the cytoplasm. However, some transcription factors have recently been reported to remain on mitotic chromosomes and facilitate the rapid re-activation of the target genes in early G1-phase. Paired-like homeobox 2B (PHOX2B) is a transcription factor exhibiting chromosomal localization during M-phase. PHOX2B mutations are associated with congenital central hypoventilation syndrome, Hirschsprung disease, and neuroblastoma. In this study, we investigated PHOX2B chromosomal localization during M-phase through immunostaining and fluorescence recovery after photobleaching analysis to determine whether the chromosomal localization of disease-associated PHOX2B mutants is altered during M-phase. Missense mutations in the homeodomain and the frameshift mutation in the C-terminal domain disrupted the chromosomal localization of PHOX2B in M-phase, leading to its dispersion in the cell. Furthermore, a PHOX2B mutant with polyalanine expansion showed a line-shaped localization to the restricted region of mitotic chromosomes. Our findings suggest an association between the disease-associated mutations and defective chromosomal localization of transcription factors during M-phase. Further investigations of PHOX2B chromosomal localization during M-phase could reveal pathogenic mechanisms of such diseases.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityOsakaJapan
| | - Shinichi Hayashi
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityOsakaJapan
| | - Souichi Oe
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityOsakaJapan
| | - Taro Koike
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityOsakaJapan
| | - Yousuke Nakano
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityOsakaJapan
| | - Ryohei Seki‐Omura
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityOsakaJapan
| | - Hikaru Iwashita
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityOsakaJapan
| | - Yukie Hirahara
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityOsakaJapan
- Faculty of Nursing, Kansai Medical UniversityOsakaJapan
| | - Masaaki Kitada
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityOsakaJapan
| |
Collapse
|
7
|
Africano C, Bachetti T, Uva P, Pitollat G, Del Zotto G, Giacopelli F, Recchi G, Lenfant N, Madani A, Beckouche N, Thoby-Brisson M, Ceccherini I. Identification of a histone deacetylase inhibitor as a therapeutic candidate for congenital central hypoventilation syndrome. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102319. [PMID: 39329148 PMCID: PMC11426119 DOI: 10.1016/j.omtn.2024.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
Congenital central hypoventilation syndrome (CCHS), a rare genetic disease caused by heterozygous PHOX2B mutations, is characterized by life-threatening breathing deficiencies. PHOX2B is a transcription factor required for the specification of the autonomic nervous system, which contains, in particular, brainstem respiratory centers. In CCHS, PHOX2B mutations lead to cytoplasmic PHOX2B protein aggregations, thus compromising its transcriptional capability. Currently, the only available treatment for CCHS is assisted mechanical ventilation. Therefore, identifying molecules with alleviating effects on CCHS-related breathing impairments is of primary importance. A transcriptomic analysis of cells transfected with different PHOX2B constructs was used to identify compounds of interest with the CMap tool. Using fluorescence microscopy and luciferase assay, the selected molecules were further tested in vitro for their ability to restore the nuclear location and function of PHOX2B. Finally, an electrophysiological approach was used to investigate ex vivo the effects of the most promising molecule on respiratory activities of PHOX2B-mutant mouse isolated brainstem. The histone deacetylase inhibitor SAHA was found to have low toxicity in vitro, to restore the proper location and function of PHOX2B protein, and to improve respiratory rhythm-related parameters ex vivo. Thus, our results identify SAHA as a promising agent to treat CCHS-associated breathing deficiencies.
Collapse
Affiliation(s)
- Chiara Africano
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Sciences (DINOGMI), University of Genova, 16132 Genova, Italy
| | - Tiziana Bachetti
- OU Proteomics and Mass Spectrometry, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Paolo Uva
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Gabriel Pitollat
- University of Bordeaux, CNRS, INCIA, UMR 5287, 33000 Bordeaux, France
| | - Genny Del Zotto
- Core Facilities, Department of Research and Diagnostics, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Francesca Giacopelli
- Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Giada Recchi
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Nicolas Lenfant
- Aix Marseille University, INSERM, MMG, U1251, Marseille, France
| | - Amélia Madani
- Université Paris Cité, INSERM, NeuroDiderot, 75019 Paris, France
| | | | | | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| |
Collapse
|
8
|
Furdui A, da Silveira Scarpellini C, Montandon G. Anatomical distribution of µ-opioid receptors, neurokinin-1 receptors, and vesicular glutamate transporter 2 in the mouse brainstem respiratory network. J Neurophysiol 2024; 132:108-129. [PMID: 38748514 DOI: 10.1152/jn.00478.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 07/03/2024] Open
Abstract
µ-Opioid receptors (MORs) are responsible for mediating both the analgesic and respiratory effects of opioid drugs. By binding to MORs in brainstem regions involved in controlling breathing, opioids produce respiratory depressive effects characterized by slow and shallow breathing, with potential cardiorespiratory arrest and death during overdose. To better understand the mechanisms underlying opioid-induced respiratory depression, thorough knowledge of the regions and cellular subpopulations that may be vulnerable to modulation by opioid drugs is needed. Using in situ hybridization, we determined the distribution and coexpression of Oprm1 (gene encoding MORs) mRNA with glutamatergic (Vglut2) and neurokinin-1 receptor (Tacr1) mRNA in medullary and pontine regions involved in breathing control and modulation. We found that >50% of cells expressed Oprm1 mRNA in the preBötzinger complex (preBötC), nucleus tractus solitarius (NTS), nucleus ambiguus (NA), postinspiratory complex (PiCo), locus coeruleus (LC), Kölliker-Fuse nucleus (KF), and the lateral and medial parabrachial nuclei (LBPN and MPBN, respectively). Among Tacr1 mRNA-expressing cells, >50% coexpressed Oprm1 mRNA in the preBötC, NTS, NA, Bötzinger complex (BötC), PiCo, LC, raphe magnus nucleus, KF, LPBN, and MPBN, whereas among Vglut2 mRNA-expressing cells, >50% coexpressed Oprm1 mRNA in the preBötC, NTS, NA, BötC, PiCo, LC, KF, LPBN, and MPBN. Taken together, our study provides a comprehensive map of the distribution and coexpression of Oprm1, Tacr1, and Vglut2 mRNA in brainstem regions that control and modulate breathing and identifies Tacr1 and Vglut2 mRNA-expressing cells as subpopulations with potential vulnerability to modulation by opioid drugs.NEW & NOTEWORTHY Opioid drugs can cause serious respiratory side-effects by binding to µ-opioid receptors (MORs) in brainstem regions that control breathing. To better understand the regions and their cellular subpopulations that may be vulnerable to modulation by opioids, we provide a comprehensive map of Oprm1 (gene encoding MORs) mRNA expression throughout brainstem regions that control and modulate breathing. Notably, we identify glutamatergic and neurokinin-1 receptor-expressing cells as potentially vulnerable to modulation by opioid drugs and worthy of further investigation using targeted approaches.
Collapse
Affiliation(s)
- Andreea Furdui
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Gaspard Montandon
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Cui K, Xia Y, Patnaik A, Salivara A, Lowenstein ED, Isik EG, Knorz AL, Airaghi L, Crotti M, Garratt AN, Meng F, Schmitz D, Studer M, Rijli FM, Nothwang HG, Rost BR, Strauß U, Hernandez-Miranda LR. Genetic identification of medullary neurons underlying congenital hypoventilation. SCIENCE ADVANCES 2024; 10:eadj0720. [PMID: 38896627 PMCID: PMC11186509 DOI: 10.1126/sciadv.adj0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Mutations in the transcription factors encoded by PHOX2B or LBX1 correlate with congenital central hypoventilation disorders. These conditions are typically characterized by pronounced hypoventilation, central apnea, and diminished chemoreflexes, particularly to abnormally high levels of arterial PCO2. The dysfunctional neurons causing these respiratory disorders are largely unknown. Here, we show that distinct, and previously undescribed, sets of medullary neurons coexpressing both transcription factors (dB2 neurons) account for specific respiratory functions and phenotypes seen in congenital hypoventilation. By combining intersectional chemogenetics, intersectional labeling, lineage tracing, and conditional mutagenesis, we uncovered subgroups of dB2 neurons with key functions in (i) respiratory tidal volumes, (ii) the hypercarbic reflex, (iii) neonatal respiratory stability, and (iv) neonatal survival. These data provide functional evidence for the critical role of distinct medullary dB2 neurons in neonatal respiratory physiology. In summary, our work identifies distinct subgroups of dB2 neurons regulating breathing homeostasis, dysfunction of which causes respiratory phenotypes associated with congenital hypoventilation.
Collapse
Affiliation(s)
- Ke Cui
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yiling Xia
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Abhisarika Patnaik
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Aikaterini Salivara
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Eser G. Isik
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adrian L. Knorz
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura Airaghi
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michela Crotti
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alistair N. Garratt
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fanqi Meng
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michèle Studer
- Université Côte d'Azur (UCA), CNRS, Inserm, Institute of Biology Valrose (iBV), Nice, France
| | - Filippo M. Rijli
- Laboratory of Developmental Neuroepigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hans G. Nothwang
- Division of Neurogenetics, Cluster of Excellence Hearing4all, Carl von Ossietzky University, Oldenburg, Germany
| | - Benjamin R. Rost
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulf Strauß
- Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Luis R. Hernandez-Miranda
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
10
|
Shao L, Kong F, Tian X, Deng T, Wang Y, Ji Y, Wang X, Yu H, Yuan F, Fu C, Wang S. Whole-brain inputs and outputs of Phox2b and GABAergic neurons in the nucleus tractus solitarii. Front Neurosci 2024; 18:1427384. [PMID: 38948926 PMCID: PMC11211284 DOI: 10.3389/fnins.2024.1427384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
The nucleus tractus solitarii (NTS) plays a critical role in the homeostatic regulation of respiration, blood pressure, sodium consumption and metabolic processes. Despite their significance, the circuitry mechanisms facilitating these diverse physiological functions remain incompletely understood. In this study, we present a whole-brain mapping of both the afferent and efferent connections of Phox2b-expressing and GABAergic neurons within the NTS. Our findings reveal that these neuronal populations not only receive monosynaptic inputs primarily from the medulla oblongata, pons, midbrain, supra-midbrain and cortical areas, but also mutually project their axons to these same locales. Moreover, intense monosynaptic inputs are received from the central amygdala, the paraventricular nucleus of the hypothalamus, the parasubthalamic nucleus and the intermediate reticular nucleus, along with brainstem nuclei explicitly engaged in respiratory regulation. In contrast, both neuronal groups extensively innervate brainstem nuclei associated with respiratory functions, although their projections to regions above the midbrain are comparatively limited. These anatomical findings provide a foundational platform for delineating an anatomical framework essential for dissecting the specific functional mechanisms of these circuits.
Collapse
Affiliation(s)
- Liuqi Shao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fanrao Kong
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaochen Tian
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tianjiao Deng
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yakun Wang
- Department of Sleep Medicine, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yake Ji
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoyi Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongxiao Yu
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fang Yuan
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Congrui Fu
- Nursing School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sheng Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, Hebei, China
| |
Collapse
|
11
|
Cardani S, Janes TA, Betzner W, Pagliardini S. Knockdown of PHOX2B in the retrotrapezoid nucleus reduces the central CO 2 chemoreflex in rats. eLife 2024; 13:RP94653. [PMID: 38727716 PMCID: PMC11087052 DOI: 10.7554/elife.94653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
PHOX2B is a transcription factor essential for the development of different classes of neurons in the central and peripheral nervous system. Heterozygous mutations in the PHOX2B coding region are responsible for the occurrence of Congenital Central Hypoventilation Syndrome (CCHS), a rare neurological disorder characterised by inadequate chemosensitivity and life-threatening sleep-related hypoventilation. Animal studies suggest that chemoreflex defects are caused in part by the improper development or function of PHOX2B expressing neurons in the retrotrapezoid nucleus (RTN), a central hub for CO2 chemosensitivity. Although the function of PHOX2B in rodents during development is well established, its role in the adult respiratory network remains unknown. In this study, we investigated whether reduction in PHOX2B expression in chemosensitive neuromedin-B (NMB) expressing neurons in the RTN altered respiratory function. Four weeks following local RTN injection of a lentiviral vector expressing the short hairpin RNA (shRNA) targeting Phox2b mRNA, a reduction of PHOX2B expression was observed in Nmb neurons compared to both naive rats and rats injected with the non-target shRNA. PHOX2B knockdown did not affect breathing in room air or under hypoxia, but ventilation was significantly impaired during hypercapnia. PHOX2B knockdown did not alter Nmb expression but it was associated with reduced expression of both Task2 and Gpr4, two CO2/pH sensors in the RTN. We conclude that PHOX2B in the adult brain has an important role in CO2 chemoreception and reduced PHOX2B expression in CCHS beyond the developmental period may contribute to the impaired central chemoreflex function.
Collapse
Affiliation(s)
- Silvia Cardani
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
- Women and Children’s Health Research Institute, University of AlbertaEdmontonCanada
| | - Tara A Janes
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
- Women and Children’s Health Research Institute, University of AlbertaEdmontonCanada
| | - William Betzner
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
| | - Silvia Pagliardini
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
- Women and Children’s Health Research Institute, University of AlbertaEdmontonCanada
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
| |
Collapse
|
12
|
Janes TA, Cardani S, Saini JK, Pagliardini S. Etonogestrel promotes respiratory recovery in an in vivo rat model of central chemoreflex impairment. Acta Physiol (Oxf) 2024; 240:e14093. [PMID: 38258900 DOI: 10.1111/apha.14093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024]
Abstract
AIM The central CO2 chemoreflex is a vital component of respiratory control networks, providing excitatory drive during resting conditions and challenges to blood gas homeostasis. The retrotrapezoid nucleus is a crucial hub for CO2 chemosensitivity; its ablation or inhibition attenuates CO2 chemoreflexes and diminishes restful breathing. Similar phenotypes characterize certain hypoventilation syndromes, suggesting underlying retrotrapezoid nucleus impairment in these disorders. Progesterone stimulates restful breathing and CO2 chemoreflexes. However, its mechanisms and sites of actions remain unknown and the experimental use of synthetic progestins in patients and animal models have been met with mixed respiratory outcomes. METHODS We investigated whether acute or chronic administration of the progestinic drug, etonogestrel, could rescue respiratory chemoreflexes following selective lesion of the retrotrapezoid nucleus with saporin toxin. Adult female Sprague Dawley rats were grouped based on lesion size determined by the number of surviving chemosensitive neurons, and ventilatory responses were measured by whole body plethysmography. RESULTS Ventilatory responses to hypercapnia (but not hypoxia) were compromised in a lesion-dependent manner. Chronic etonogestrel treatment improved CO2 chemosensitivity selectively in rats with moderate lesion, suggesting that a residual number of chemosensitive neurons are required for etonogestrel-induced CO2 chemoreflex recovery. CONCLUSION This study provides new evidence for the use of progestins as respiratory stimulants under conditions of central hypoventilation and provides a new testable model for assessing the mechanism of action of progestins in the respiratory network.
Collapse
Affiliation(s)
- Tara A Janes
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Silvia Cardani
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jasmeen K Saini
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Silvia Pagliardini
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Souza GMPR, Abbott SBG. Loss-of-function of chemoreceptor neurons in the retrotrapezoid nucleus: What have we learned from it? Respir Physiol Neurobiol 2024; 322:104217. [PMID: 38237884 PMCID: PMC10922619 DOI: 10.1016/j.resp.2024.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Central respiratory chemoreceptors are cells in the brain that regulate breathing in relation to arterial pH and PCO2. Neurons located at the retrotrapezoid nucleus (RTN) have been hypothesized to be central chemoreceptors and/or to be part of the neural network that drives the central respiratory chemoreflex. The inhibition or ablation of RTN chemoreceptor neurons has offered important insights into the role of these cells on central respiratory chemoreception and the neural control of breathing over almost 60 years since the original identification of acid-sensitive properties of this ventral medullary site. Here, we discuss the current definition of chemoreceptor neurons in the RTN and describe how this definition has evolved over time. We then summarize the results of studies that use loss-of-function approaches to evaluate the effects of disrupting the function of RTN neurons on respiration. These studies offer evidence that RTN neurons are indispensable for the central respiratory chemoreflex in mammals and exert a tonic drive to breathe at rest. Moreover, RTN has an interdependent relationship with oxygen sensing mechanisms for the maintenance of the neural drive to breathe and blood gas homeostasis. Collectively, RTN neurons are a genetically-defined group of putative central respiratory chemoreceptors that generate CO2-dependent drive that supports eupneic breathing and stimulates the hypercapnic ventilatory reflex.
Collapse
|
14
|
Antón R, Treviño MÁ, Pantoja-Uceda D, Félix S, Babu M, Cabrita EJ, Zweckstetter M, Tinnefeld P, Vera AM, Oroz J. Alternative low-populated conformations prompt phase transitions in polyalanine repeat expansions. Nat Commun 2024; 15:1925. [PMID: 38431667 PMCID: PMC10908835 DOI: 10.1038/s41467-024-46236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Abnormal trinucleotide repeat expansions alter protein conformation causing malfunction and contribute to a significant number of incurable human diseases. Scarce structural insights available on disease-related homorepeat expansions hinder the design of effective therapeutics. Here, we present the dynamic structure of human PHOX2B C-terminal fragment, which contains the longest polyalanine segment known in mammals. The major α-helical conformation of the polyalanine tract is solely extended by polyalanine expansions in PHOX2B, which are responsible for most congenital central hypoventilation syndrome cases. However, polyalanine expansions in PHOX2B additionally promote nascent homorepeat conformations that trigger length-dependent phase transitions into solid condensates that capture wild-type PHOX2B. Remarkably, HSP70 and HSP90 chaperones specifically seize PHOX2B alternative conformations preventing phase transitions. The precise observation of emerging polymorphs in expanded PHOX2B postulates unbalanced phase transitions as distinct pathophysiological mechanisms in homorepeat expansion diseases, paving the way towards the search of therapeutics modulating biomolecular condensates in central hypoventilation syndrome.
Collapse
Affiliation(s)
- Rosa Antón
- Instituto de Química Física Blas Cabrera (IQF), CSIC, E-28006, Madrid, Spain
| | - Miguel Á Treviño
- Instituto de Química Física Blas Cabrera (IQF), CSIC, E-28006, Madrid, Spain
| | - David Pantoja-Uceda
- Instituto de Química Física Blas Cabrera (IQF), CSIC, E-28006, Madrid, Spain
| | - Sara Félix
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - María Babu
- German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
| | - Eurico J Cabrita
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, München, 81377, Germany
| | - Andrés M Vera
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, München, 81377, Germany
| | - Javier Oroz
- Instituto de Química Física Blas Cabrera (IQF), CSIC, E-28006, Madrid, Spain.
| |
Collapse
|
15
|
Amer-Sarsour F, Falik D, Berdichevsky Y, Kordonsky A, Eid S, Rabinski T, Ishtayeh H, Cohen-Adiv S, Braverman I, Blumen SC, Laviv T, Prag G, Vatine GD, Ashkenazi A. Disease-associated polyalanine expansion mutations impair UBA6-dependent ubiquitination. EMBO J 2024; 43:250-276. [PMID: 38177505 PMCID: PMC10897158 DOI: 10.1038/s44318-023-00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Expansion mutations in polyalanine stretches are associated with a growing number of diseases sharing a high degree of genotypic and phenotypic commonality. These similarities prompted us to query the normal function of physiological polyalanine stretches and to investigate whether a common molecular mechanism is involved in these diseases. Here, we show that UBA6, an E1 ubiquitin-activating enzyme, recognizes a polyalanine stretch within its cognate E2 ubiquitin-conjugating enzyme USE1. Aberrations in this polyalanine stretch reduce ubiquitin transfer to USE1 and, subsequently, polyubiquitination and degradation of its target, the ubiquitin ligase E6AP. Furthermore, we identify competition for the UBA6-USE1 interaction by various proteins with polyalanine expansion mutations in the disease state. The deleterious interactions of expanded polyalanine tract proteins with UBA6 in mouse primary neurons alter the levels and ubiquitination-dependent degradation of E6AP, which in turn affects the levels of the synaptic protein Arc. These effects are also observed in induced pluripotent stem cell-derived autonomic neurons from patients with polyalanine expansion mutations, where UBA6 overexpression increases neuronal resilience to cell death. Our results suggest a shared mechanism for such mutations that may contribute to the congenital malformations seen in polyalanine tract diseases.
Collapse
Affiliation(s)
- Fatima Amer-Sarsour
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Daniel Falik
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel
- The Zelman Center for Neuroscience, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel
| | - Yevgeny Berdichevsky
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Alina Kordonsky
- School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Sharbel Eid
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Tatiana Rabinski
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel
| | - Hasan Ishtayeh
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Stav Cohen-Adiv
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Itzhak Braverman
- Department of Otolaryngology, Head and Neck Surgery, Hillel Yaffe Medical Center, Hadera, Israel
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Sergiu C Blumen
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
- Department of Neurology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Tal Laviv
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Gali Prag
- School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Gad D Vatine
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel.
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel.
- The Zelman Center for Neuroscience, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel.
| | - Avraham Ashkenazi
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
16
|
Thoby-Brisson M. Central respiratory command and microglia: An early-life partnership. Curr Opin Neurobiol 2023; 82:102756. [PMID: 37544078 DOI: 10.1016/j.conb.2023.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Microglia, brain-resident macrophages, are key players in brain development, regulating synapse density, shaping neural circuits, contributing to plasticity, and maintaining nervous tissue homeostasis. These functions are ensured from early prenatal development until maturity, in normal and pathological states of the central nervous system. Microglia dysfunction can be involved in several neurodevelopmental disorders, some of which are associated with respiratory deficits. Breathing is a rhythmic motor behavior generated and controlled by hindbrain neuronal networks. The operation of the central respiratory command relies on the proper development of these rhythmogenic networks, formation of their appropriate interactions, and their lifelong constant adaptation to physiological needs. This review, focusing exclusively on the perinatal period, outlines recent advances obtained in rodents in determining the roles of microglia in the establishment and functioning of the respiratory networks and their involvement in certain pathologies.
Collapse
Affiliation(s)
- Muriel Thoby-Brisson
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux, France. mailto:
| |
Collapse
|
17
|
Turk AZ, Millwater M, SheikhBahaei S. Whole-brain analysis of CO 2 chemosensitive regions and identification of the retrotrapezoid and medullary raphé nuclei in the common marmoset ( Callithrix jacchus). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.558361. [PMID: 37986845 PMCID: PMC10659419 DOI: 10.1101/2023.09.26.558361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Respiratory chemosensitivity is an important mechanism by which the brain senses changes in blood partial pressure of CO2 (PCO2). It is proposed that special neurons (and astrocytes) in various brainstem regions play key roles as CO2 central respiratory chemosensors in rodents. Although common marmosets (Callithrix jacchus), New-World non-human primates, show similar respiratory responses to elevated inspired CO2 as rodents, the chemosensitive regions in marmoset brain have not been defined yet. Here, we used c-fos immunostainings to identify brain-wide CO2-activated brain regions in common marmosets. In addition, we mapped the location of the retrotrapezoid nucleus (RTN) and raphé nuclei in the marmoset brainstem based on colocalization of CO2-induced c-fos immunoreactivity with Phox2b, and TPH immunostaining, respectively. Our data also indicated that, similar to rodents, marmoset RTN astrocytes express Phox2b and have complex processes that create a meshwork structure at the ventral surface of medulla. Our data highlight some cellular and structural regional similarities in brainstem of the common marmosets and rodents.
Collapse
Affiliation(s)
- Ariana Z. Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| | - Marissa Millwater
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| |
Collapse
|
18
|
Gonye EC, Bayliss DA. Criteria for central respiratory chemoreceptors: experimental evidence supporting current candidate cell groups. Front Physiol 2023; 14:1241662. [PMID: 37719465 PMCID: PMC10502317 DOI: 10.3389/fphys.2023.1241662] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
An interoceptive homeostatic system monitors levels of CO2/H+ and provides a proportionate drive to respiratory control networks that adjust lung ventilation to maintain physiologically appropriate levels of CO2 and rapidly regulate tissue acid-base balance. It has long been suspected that the sensory cells responsible for the major CNS contribution to this so-called respiratory CO2/H+ chemoreception are located in the brainstem-but there is still substantial debate in the field as to which specific cells subserve the sensory function. Indeed, at the present time, several cell types have been championed as potential respiratory chemoreceptors, including neurons and astrocytes. In this review, we advance a set of criteria that are necessary and sufficient for definitive acceptance of any cell type as a respiratory chemoreceptor. We examine the extant evidence supporting consideration of the different putative chemoreceptor candidate cell types in the context of these criteria and also note for each where the criteria have not yet been fulfilled. By enumerating these specific criteria we hope to provide a useful heuristic that can be employed both to evaluate the various existing respiratory chemoreceptor candidates, and also to focus effort on specific experimental tests that can satisfy the remaining requirements for definitive acceptance.
Collapse
Affiliation(s)
- Elizabeth C. Gonye
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| | | |
Collapse
|
19
|
Brady CT, Marshall A, Zhang C, Parker MD. NBCe1-B/C-knockout mice exhibit an impaired respiratory response and an enhanced renal response to metabolic acidosis. Front Physiol 2023; 14:1201034. [PMID: 37405134 PMCID: PMC10315466 DOI: 10.3389/fphys.2023.1201034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
The sodium-bicarbonate cotransporter (NBCe1) has three primary variants: NBCe1-A, -B and -C. NBCe1-A is expressed in renal proximal tubules in the cortical labyrinth, where it is essential for reclaiming filtered bicarbonate, such that NBCe1-A knockout mice are congenitally acidemic. NBCe1-B and -C variants are expressed in chemosensitive regions of the brainstem, while NBCe1-B is also expressed in renal proximal tubules located in the outer medulla. Although mice lacking NBCe1-B/C (KOb/c) exhibit a normal plasma pH at baseline, the distribution of NBCe1-B/C indicates that these variants could play a role in both the rapid respiratory and slower renal responses to metabolic acidosis (MAc). Therefore, in this study we used an integrative physiologic approach to investigate the response of KOb/c mice to MAc. By means of unanesthetized whole-body plethysmography and blood-gas analysis, we demonstrate that the respiratory response to MAc (increase in minute volume, decrease in pCO2) is impaired in KOb/c mice leading to a greater severity of acidemia after 1 day of MAc. Despite this respiratory impairment, the recovery of plasma pH after 3-days of MAc remained intact in KOb/c mice. Using data gathered from mice housed in metabolic cages we demonstrate a greater elevation of renal ammonium excretion and greater downregulation of the ammonia recycling enzyme glutamine synthetase in KOb/c mice on day 2 of MAc, consistent with greater renal acid-excretion. We conclude that KOb/c mice are ultimately able to defend plasma pH during MAc, but that the integrated response is disturbed such that the burden of work shifts from the respiratory system to the kidneys, delaying the recovery of pH.
Collapse
Affiliation(s)
- Clayton T. Brady
- Jacobs School of Medicine and Biomedical Sciences, Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, NY, United States
| | - Aniko Marshall
- Jacobs School of Medicine and Biomedical Sciences, Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, NY, United States
| | - Chen Zhang
- Jacobs School of Medicine and Biomedical Sciences, Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, NY, United States
- Department of Biological Sciences, The State University of New York: The University at Buffalo, Buffalo, NY, United States
| | - Mark D. Parker
- Jacobs School of Medicine and Biomedical Sciences, Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, NY, United States
- Jacobs School of Medicine and Biomedical Sciences, Department of Ophthalmology, The State University of New York: The University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
20
|
Lui KNC, Li Z, Lai FPL, Lau ST, Ngan ESW. Organoid models of breathing disorders reveal patterning defect of hindbrain neurons caused by PHOX2B-PARMs. Stem Cell Reports 2023:S2213-6711(23)00199-6. [PMID: 37352849 PMCID: PMC10362500 DOI: 10.1016/j.stemcr.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/25/2023] Open
Abstract
Retrotrapezoid nucleus (RTN) neurons in the brainstem regulate the ventilatory response to hypercarbia. It is unclear how PHOX2B-polyalanine repeat mutations (PHOX2B-PARMs) alter the function of PHOX2B and perturb the formation of RTN neurons. Here, we generated human brainstem organoids (HBSOs) with RTN-like neurons from human pluripotent stem cells. Single-cell transcriptomics revealed that expression of PHOX2B+7Ala PARM alters the differentiation trajectories of the hindbrain neurons and hampers the formation of the RTN-like neurons in HBSOs. With the unguided cerebral organoids (HCOs), PHOX2B+7Ala PARM interrupted the patterning of PHOX2B+ neurons with dysregulation of Hedgehog pathway and HOX genes. With complementary use of HBSOs and HCOs with a patient and two mutant induced pluripotent stem cell lines carrying different polyalanine repetition in PHOX2B, we further defined the association between the length of polyalanine repetition and malformation of RTN-respiratory center and demonstrated the potential toxic gain of function of PHOX2B-PARMs, highlighting the uniqueness of these organoid models for disease modeling.
Collapse
Affiliation(s)
- Kathy Nga-Chu Lui
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Zhixin Li
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Frank Pui-Ling Lai
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Sin-Ting Lau
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Elly Sau-Wai Ngan
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR.
| |
Collapse
|
21
|
Slattery SM, Perez IA, Ceccherini I, Chen ML, Kurek KC, Yap KL, Keens TG, Khaytin I, Ballard HA, Sokol EA, Mittal A, Rand CM, Weese-Mayer DE. Transitional care and clinical management of adolescents, young adults, and suspected new adult patients with congenital central hypoventilation syndrome. Clin Auton Res 2023; 33:231-249. [PMID: 36403185 DOI: 10.1007/s10286-022-00908-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE With contemporaneous advances in congenital central hypoventilation syndrome (CCHS), recognition, confirmatory diagnostics with PHOX2B genetic testing, and conservative management to reduce the risk of early morbidity and mortality, the prevalence of identified adolescents and young adults with CCHS and later-onset (LO-) CCHS has increased. Accordingly, there is heightened awareness and need for transitional care of these patients from pediatric medicine into a multidisciplinary adult medical team. Hence, this review summarizes key clinical and management considerations for patients with CCHS and LO-CCHS and emphasizes topics of particular importance for this demographic. METHODS We performed a systematic review of literature on diagnostics, pathophysiology, and clinical management in CCHS and LO-CCHS, and supplemented the review with anecdotal but extensive experiences from large academic pediatric centers with expertise in CCHS. RESULTS We summarized our findings topically for an overview of the medical care in CCHS and LO-CCHS specifically applicable to adolescents and adults. Care topics include genetic and embryologic basis of the disease, clinical presentation, management, variability in autonomic nervous system dysfunction, and clarity regarding transitional care with unique considerations such as living independently, family planning, exposure to anesthesia, and alcohol and drug use. CONCLUSIONS While a lack of experience and evidence exists in the care of adults with CCHS and LO-CCHS, a review of the relevant literature and expert consensus provides guidance for transitional care areas.
Collapse
Affiliation(s)
- Susan M Slattery
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA.
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Iris A Perez
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maida L Chen
- Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Kyle C Kurek
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Kai Lee Yap
- Molecular Diagnostics Laboratory, Department of Pathology & Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Thomas G Keens
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Ilya Khaytin
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Heather A Ballard
- Department of Pediatric Anesthesiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Anesthesia, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elizabeth A Sokol
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Hematology/Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Angeli Mittal
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA
| | - Casey M Rand
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA
| | - Debra E Weese-Mayer
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
22
|
Jones AA, Marino GM, Spears AR, Arble DM. The Molecular Circadian Clock of Phox2b-expressing Cells Drives Daily Variation of the Hypoxic but Not Hypercapnic Ventilatory Response in Mice. FUNCTION 2023; 4:zqad023. [PMID: 37342417 PMCID: PMC10278984 DOI: 10.1093/function/zqad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/22/2023] Open
Abstract
While the suprachiasmatic nucleus (SCN) controls 24-h rhythms in breathing, including minute ventilation (VE), the mechanisms by which the SCN drives these daily changes are not well understood. Moreover, the extent to which the circadian clock regulates hypercapnic and hypoxic ventilatory chemoreflexes is unknown. We hypothesized that the SCN regulates daily breathing and chemoreflex rhythms by synchronizing the molecular circadian clock of cells. We used whole-body plethysmography to assess ventilatory function in transgenic BMAL1 knockout (KO) mice to determine the role of the molecular clock in regulating daily rhythms in ventilation and chemoreflex. Unlike their wild-type littermates, BMAL1 KO mice exhibited a blunted daily rhythm in VE and failed to demonstrate daily variation in the hypoxic ventilatory response (HVR) or hypercapnic ventilatory response (HCVR). To determine if the observed phenotype was mediated by the molecular clock of key respiratory cells, we then assessed ventilatory rhythms in BMAL1fl/fl; Phox2bCre/+ mice, which lack BMAL1 in all Phox2b-expressing chemoreceptor cells (hereafter called BKOP). BKOP mice lacked daily variation in HVR, similar to BMAL1 KO mice. However, unlike BMAL1 KO mice, BKOP mice exhibited circadian variations in VE and HCVR comparable to controls. These data indicate that the SCN regulates daily rhythms in VE, HVR, and HCVR, in part, through the synchronization of the molecular clock. Moreover, the molecular clock of Phox2b-expressing cells is specifically necessary for daily variation in the hypoxic chemoreflex. These findings suggest that disruption of circadian biology may undermine respiratory homeostasis, which, in turn, may have clinical implications for respiratory disease.
Collapse
Affiliation(s)
- Aaron A Jones
- Department of Biological Sciences, Marquette University, WI 53233, USA
| | | | - Allison R Spears
- Department of Biological Sciences, Marquette University, WI 53233, USA
| | | |
Collapse
|
23
|
Taytard J, Niérat MC, Gand C, Lavault S, Morélot-Panzini C, Patout M, Serresse L, Wattiez N, Bodineau L, Straus C, Similowski T. Short-term cognitive loading deteriorates breathing pattern and gas exchange in adult patients with congenital central hypoventilation syndrome. ERJ Open Res 2023; 9:00408-2022. [PMID: 36923564 PMCID: PMC10009700 DOI: 10.1183/23120541.00408-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022] Open
Abstract
Question Human PHOX2B mutations result in life-threatening sleep-related hypoventilation (congenital central hypoventilation syndrome, CCHS). Most patients retain ventilatory activity when awake through a respiratory-related cortical network. We hypothesised that this need to mobilise cortical resources to breathe would lead to breathing-cognition interferences during cognitive loading. Patients and methods Seven adult CCHS patients (five women; median age 21) performed standard neuropsychological tests (paced auditory serial addition test - calculation capacity, working memory, sustained and divided attention; trail making test - visuospatial exploration capacity, cognitive processing speed, attentional flexibility; Corsi block-tapping test - visuospatial memory, short-term memory, working memory) during unassisted breathing and under ventilatory support. Ventilatory variables and transcutaneous haemoglobin oxygen saturation were recorded. Cortical connectivity changes between unassisted breathing and ventilatory support were assessed using electroencephalographic recordings (EEG). Results Baseline performances were lower than expected in individuals of this age. During unassisted breathing, cognitive loading coincided with increased breathing variability, and decreases in oxygen saturation inversely correlated with an increasing number of apnoeic cycles per minute (rho -0.46, 95% CI -0.76 to -0.06, p=0.01). During ventilatory support, cognitive tasks did not disrupt breathing pattern and were not associated with decreased oxygen saturation. Ventilatory support was associated with changes in EEG cortical connectivity but not with improved test performances. Conclusions Acute cognitive loads induce oxygen desaturation in adult CCHS patients during unassisted breathing, but not under ventilatory support. This justifies considering the use of ventilatory support during mental tasks in CCHS patients to avoid repeated episodes of hypoxia.
Collapse
Affiliation(s)
- Jessica Taytard
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Armand-Trousseau, Service de Pneumologie Pédiatrique, Paris, France
| | - Marie-Cécile Niérat
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Camille Gand
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Sophie Lavault
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Département R3S, Paris, France
| | - Capucine Morélot-Panzini
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Département R3S, Paris, France
| | - Maxime Patout
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Service des Pathologies du Sommeil (Département R3S), Paris, France.,AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Centre de référence maladie rare "hypoventilations centrales congénitales" (Département R3S), Paris, France
| | - Laure Serresse
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Paris, France
| | - Nicolas Wattiez
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Laurence Bodineau
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Christian Straus
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Service d'Exploration Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée (Département R3S), Paris, France.,These authors contributed equally
| | - Thomas Similowski
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Département R3S, Paris, France.,These authors contributed equally
| |
Collapse
|
24
|
Casciato A, Bianchi L, Reverdy M, Joubert F, Delucenay-Clarke R, Parrot S, Ramanantsoa N, Sizun E, Matrot B, Straus C, Similowski T, Cayetanot F, Bodineau L. Serotonin and the ventilatory effects of etonogestrel, a gonane progestin, in a murine model of congenital central hypoventilation syndrome. Front Endocrinol (Lausanne) 2023; 14:1077798. [PMID: 36896185 PMCID: PMC9989262 DOI: 10.3389/fendo.2023.1077798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
INTRODUCTION Congenital Central Hypoventilation Syndrome, a rare disease caused by PHOX2B mutation, is associated with absent or blunted CO2/H+ chemosensitivity due to the dysfunction of PHOX2B neurons of the retrotrapezoid nucleus. No pharmacological treatment is available. Clinical observations have reported non-systematic CO2/H+ chemosensitivity recovery under desogestrel. METHODS Here, we used a preclinical model of Congenital Central Hypoventilation Syndrome, the retrotrapezoid nucleus conditional Phox2b mutant mouse, to investigate whether etonogestrel, the active metabolite of desogestrel, led to a restoration of chemosensitivity by acting on serotonin neurons known to be sensitive to etonogestrel, or retrotrapezoid nucleus PHOX2B residual cells that persist despite the mutation. The influence of etonogestrel on respiratory variables under hypercapnia was investigated using whole-body plethysmographic recording. The effect of etonogestrel, alone or combined with serotonin drugs, on the respiratory rhythm of medullary-spinal cord preparations from Phox2b mutants and wildtype mice was analyzed under metabolic acidosis. c-FOS, serotonin and PHOX2B were immunodetected. Serotonin metabolic pathways were characterized in the medulla oblongata by ultra-high-performance liquid chromatography. RESULTS We observed etonogestrel restored chemosensitivity in Phox2b mutants in a non-systematic way. Histological differences between Phox2b mutants with restored chemosensitivity and Phox2b mutant without restored chemosensitivity indicated greater activation of serotonin neurons of the raphe obscurus nucleus but no effect on retrotrapezoid nucleus PHOX2B residual cells. Finally, the increase in serotonergic signaling by the fluoxetine application modulated the respiratory effect of etonogestrel differently between Phox2b mutant mice and their WT littermates or WT OF1 mice, a result which parallels with differences in the functional state of serotonergic metabolic pathways between these different mice. DISCUSSION Our work thus highlights that serotonin systems were critically important for the occurrence of an etonogestrel-restoration, an element to consider in potential therapeutic intervention in Congenital Central Hypoventilation Syndrome patients.
Collapse
Affiliation(s)
- Alexis Casciato
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Lola Bianchi
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Manon Reverdy
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Fanny Joubert
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Roman Delucenay-Clarke
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Sandrine Parrot
- Centre de Recherche en Neurosciences, NeuroDialyTics, Bron, France
| | | | - Eléonore Sizun
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Boris Matrot
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Christian Straus
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Thomas Similowski
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Florence Cayetanot
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Laurence Bodineau
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- *Correspondence: Laurence Bodineau,
| |
Collapse
|
25
|
Xia Y, Cui K, Alonso A, Lowenstein ED, Hernandez-Miranda LR. Transcription factors regulating the specification of brainstem respiratory neurons. Front Mol Neurosci 2022; 15:1072475. [PMID: 36523603 PMCID: PMC9745097 DOI: 10.3389/fnmol.2022.1072475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/14/2022] [Indexed: 11/12/2023] Open
Abstract
Breathing (or respiration) is an unconscious and complex motor behavior which neuronal drive emerges from the brainstem. In simplistic terms, respiratory motor activity comprises two phases, inspiration (uptake of oxygen, O2) and expiration (release of carbon dioxide, CO2). Breathing is not rigid, but instead highly adaptable to external and internal physiological demands of the organism. The neurons that generate, monitor, and adjust breathing patterns locate to two major brainstem structures, the pons and medulla oblongata. Extensive research over the last three decades has begun to identify the developmental origins of most brainstem neurons that control different aspects of breathing. This research has also elucidated the transcriptional control that secures the specification of brainstem respiratory neurons. In this review, we aim to summarize our current knowledge on the transcriptional regulation that operates during the specification of respiratory neurons, and we will highlight the cell lineages that contribute to the central respiratory circuit. Lastly, we will discuss on genetic disturbances altering transcription factor regulation and their impact in hypoventilation disorders in humans.
Collapse
Affiliation(s)
- Yiling Xia
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ke Cui
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Antonia Alonso
- Functional Genoarchitecture and Neurobiology Groups, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Elijah D. Lowenstein
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Luis R. Hernandez-Miranda
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
26
|
Cabirol MJ, Cardoit L, Courtand G, Mayeur ME, Simmers J, Pascual O, Thoby-Brisson M. Microglia shape the embryonic development of mammalian respiratory networks. eLife 2022; 11:80352. [PMID: 36321865 PMCID: PMC9629827 DOI: 10.7554/elife.80352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Microglia, brain-resident macrophages, play key roles during prenatal development in defining neural circuitry function, including ensuring proper synaptic wiring and maintaining homeostasis. Mammalian breathing rhythmogenesis arises from interacting brainstem neural networks that are assembled during embryonic development, but the specific role of microglia in this process remains unknown. Here, we investigated the anatomical and functional consequences of respiratory circuit formation in the absence of microglia. We first established the normal distribution of microglia within the wild-type (WT, Spi1+/+ (Pu.1 WT)) mouse (Mus musculus) brainstem at embryonic ages when the respiratory networks are known to emerge (embryonic day (E) 14.5 for the parafacial respiratory group (epF) and E16.5 for the preBötzinger complex (preBötC)). In transgenic mice depleted of microglia (Spi1−/− (Pu.1 KO) mutant), we performed anatomical staining, calcium imaging, and electrophysiological recordings of neuronal activities in vitro to assess the status of these circuits at their respective times of functional emergence. Spontaneous respiratory-related activity recorded from reduced in vitro preparations showed an abnormally slow rhythm frequency expressed by the epF at E14.5, the preBötC at E16.5, and in the phrenic motor nerves from E16.5 onwards. These deficits were associated with a reduced number of active epF neurons, defects in commissural projections that couple the bilateral preBötC half-centers, and an accompanying decrease in their functional coordination. These abnormalities probably contribute to eventual neonatal death, since plethysmography revealed that E18.5 Spi1−/− embryos are unable to sustain breathing activity ex utero. Our results thus point to a crucial contribution of microglia in the proper establishment of the central respiratory command during embryonic development.
Collapse
Affiliation(s)
- Marie-Jeanne Cabirol
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Université de Bordeaux, Bordeaux, France
| | - Laura Cardoit
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Université de Bordeaux, Bordeaux, France
| | - Gilles Courtand
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Université de Bordeaux, Bordeaux, France
| | - Marie-Eve Mayeur
- MeLis INSERM U1314-CNRS UMR 5284, Faculté Rockefeller, Lyon, France
| | - John Simmers
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Université de Bordeaux, Bordeaux, France
| | - Olivier Pascual
- MeLis INSERM U1314-CNRS UMR 5284, Faculté Rockefeller, Lyon, France
| | - Muriel Thoby-Brisson
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
27
|
Molecular Organization and Patterning of the Medulla Oblongata in Health and Disease. Int J Mol Sci 2022; 23:ijms23169260. [PMID: 36012524 PMCID: PMC9409237 DOI: 10.3390/ijms23169260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The medulla oblongata, located in the hindbrain between the pons and the spinal cord, is an important relay center for critical sensory, proprioceptive, and motoric information. It is an evolutionarily highly conserved brain region, both structural and functional, and consists of a multitude of nuclei all involved in different aspects of basic but vital functions. Understanding the functional anatomy and developmental program of this structure can help elucidate potential role(s) of the medulla in neurological disorders. Here, we have described the early molecular patterning of the medulla during murine development, from the fundamental units that structure the very early medullary region into 5 rhombomeres (r7–r11) and 13 different longitudinal progenitor domains, to the neuronal clusters derived from these progenitors that ultimately make-up the different medullary nuclei. By doing so, we developed a schematic overview that can be used to predict the cell-fate of a progenitor group, or pinpoint the progenitor domain of origin of medullary nuclei. This schematic overview can further be used to help in the explanation of medulla-related symptoms of neurodevelopmental disorders, e.g., congenital central hypoventilation syndrome, Wold–Hirschhorn syndrome, Rett syndrome, and Pitt–Hopkins syndrome. Based on the genetic defects seen in these syndromes, we can use our model to predict which medullary nuclei might be affected, which can be used to quickly direct the research into these diseases to the likely affected nuclei.
Collapse
|
28
|
Jeton F, Perrin-Terrin AS, Yegen CH, Marchant D, Richalet JP, Pichon A, Boncoeur E, Bodineau L, Voituron N. In Transgenic Erythropoietin Deficient Mice, an Increase in Respiratory Response to Hypercapnia Parallels Abnormal Distribution of CO 2/H +-Activated Cells in the Medulla Oblongata. Front Physiol 2022; 13:850418. [PMID: 35514353 PMCID: PMC9061944 DOI: 10.3389/fphys.2022.850418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Erythropoietin (Epo) and its receptor are expressed in central respiratory areas. We hypothesized that chronic Epo deficiency alters functioning of central respiratory areas and thus the respiratory adaptation to hypercapnia. The hypercapnic ventilatory response (HcVR) was evaluated by whole body plethysmography in wild type (WT) and Epo deficient (Epo-TAgh) adult male mice under 4%CO2. Epo-TAgh mice showed a larger HcVR than WT mice because of an increase in both respiratory frequency and tidal volume, whereas WT mice only increased their tidal volume. A functional histological approach revealed changes in CO2/H+-activated cells between Epo-TAgh and WT mice. First, Epo-TAgh mice showed a smaller increase under hypercapnia in c-FOS-positive number of cells in the retrotrapezoid nucleus/parafacial respiratory group than WT, and this, independently of changes in the number of PHOX2B-expressing cells. Second, we did not observe in Epo-TAgh mice the hypercapnic increase in c-FOS-positive number of cells in the nucleus of the solitary tract present in WT mice. Finally, whereas hypercapnia did not induce an increase in the c-FOS-positive number of cells in medullary raphe nuclei in WT mice, chronic Epo deficiency leads to raphe pallidus and magnus nuclei activation by hyperacpnia, with a significant part of c-FOS positive cells displaying an immunoreactivity for serotonin in the raphe pallidus nucleus. All of these results suggest that chronic Epo-deficiency affects both the pattern of ventilatory response to hypercapnia and associated medullary respiratory network at adult stage with an increase in the sensitivity of 5-HT and non-5-HT neurons of the raphe medullary nuclei leading to stimulation of fR for moderate level of CO2.
Collapse
Affiliation(s)
- Florine Jeton
- Laboratoire "Hypoxie et Poumons", UMR INSERM U1272, Université Paris 13, UFR SMBH, Bobigny, France.,Laboratory of Excellence (Labex) GR-Ex, PRES Sorbonne Paris Cité, Paris, France
| | - Anne-Sophie Perrin-Terrin
- Laboratoire "Hypoxie et Poumons", UMR INSERM U1272, Université Paris 13, UFR SMBH, Bobigny, France.,Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
| | - Celine-Hivda Yegen
- Laboratoire "Hypoxie et Poumons", UMR INSERM U1272, Université Paris 13, UFR SMBH, Bobigny, France
| | - Dominique Marchant
- Laboratoire "Hypoxie et Poumons", UMR INSERM U1272, Université Paris 13, UFR SMBH, Bobigny, France
| | - Jean-Paul Richalet
- Laboratoire "Hypoxie et Poumons", UMR INSERM U1272, Université Paris 13, UFR SMBH, Bobigny, France.,Laboratory of Excellence (Labex) GR-Ex, PRES Sorbonne Paris Cité, Paris, France
| | - Aurélien Pichon
- Laboratoire "Hypoxie et Poumons", UMR INSERM U1272, Université Paris 13, UFR SMBH, Bobigny, France.,Laboratory of Excellence (Labex) GR-Ex, PRES Sorbonne Paris Cité, Paris, France
| | - Emilie Boncoeur
- Laboratoire "Hypoxie et Poumons", UMR INSERM U1272, Université Paris 13, UFR SMBH, Bobigny, France
| | - Laurence Bodineau
- Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
| | - Nicolas Voituron
- Laboratoire "Hypoxie et Poumons", UMR INSERM U1272, Université Paris 13, UFR SMBH, Bobigny, France.,Laboratory of Excellence (Labex) GR-Ex, PRES Sorbonne Paris Cité, Paris, France
| |
Collapse
|
29
|
Etonogestrel Administration Reduces the Expression of PHOX2B and Its Target Genes in the Solitary Tract Nucleus. Int J Mol Sci 2022; 23:ijms23094816. [PMID: 35563209 PMCID: PMC9101578 DOI: 10.3390/ijms23094816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Heterozygous mutations of the transcription factor PHOX2B are responsible for Congenital Central Hypoventilation Syndrome, a neurological disorder characterized by inadequate respiratory response to hypercapnia and life-threatening hypoventilation during sleep. Although no cure is currently available, it was suggested that a potent progestin drug provides partial recovery of chemoreflex response. Previous in vitro data show a direct molecular link between progestins and PHOX2B expression. However, the mechanism through which these drugs ameliorate breathing in vivo remains unknown. Here, we investigated the effects of chronic administration of the potent progestin drug Etonogestrel (ETO) on respiratory function and transcriptional activity in adult female rats. We assessed respiratory function with whole-body plethysmography and measured genomic changes in brain regions important for respiratory control. Our results show that ETO reduced metabolic activity, leading to an enhanced chemoreflex response and concurrent increased breathing cycle variability at rest. Furthermore, ETO-treated brains showed reduced mRNA and protein expression of PHOX2B and its target genes selectively in the dorsal vagal complex, while other areas were unaffected. Histological analysis suggests that changes occurred in the solitary tract nucleus (NTS). Thus, we propose that the NTS, rich in both progesterone receptors and PHOX2B, is a good candidate for ETO-induced respiratory modulation.
Collapse
|
30
|
Zoccal DB. Past questions, present results, future perspectives: interacting chemosensitive areas and the hypercapnic ventilatory response. J Physiol 2022; 600:2549-2550. [DOI: 10.1113/jp283142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/21/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Daniel B. Zoccal
- Department of Physiology and Pathology School of Dentistry of Araraquara São Paulo State University (UNESP)
| |
Collapse
|
31
|
Shi Y, Sobrinho CR, Soto-Perez J, Milla BM, Stornetta DS, Stornetta RL, Takakura AC, Mulkey DK, Moreira TS, Bayliss DA. 5-HT7 receptors expressed in the mouse parafacial region are not required for respiratory chemosensitivity. J Physiol 2022; 600:2789-2811. [PMID: 35385139 PMCID: PMC9167793 DOI: 10.1113/jp282279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract A brainstem homeostatic system senses CO2/H+ to regulate ventilation, blood gases and acid–base balance. Neurons of the retrotrapezoid nucleus (RTN) and medullary raphe are both implicated in this mechanism as respiratory chemosensors, but recent pharmacological work suggested that the CO2/H+ sensitivity of RTN neurons is mediated indirectly, by raphe‐derived serotonin acting on 5‐HT7 receptors. To investigate this further, we characterized Htr7 transcript expression in phenotypically identified RTN neurons using multiplex single cell qRT‐PCR and RNAscope. Although present in multiple neurons in the parafacial region of the ventrolateral medulla, Htr7 expression was undetectable in most RTN neurons (Nmb+/Phox2b+) concentrated in the densely packed cell group ventrolateral to the facial nucleus. Where detected, Htr7 expression was modest and often associated with RTN neurons that extend dorsolaterally to partially encircle the facial nucleus. These dorsolateral Nmb+/Htr7+ neurons tended to express Nmb at high levels and the intrinsic RTN proton detectors Gpr4 and Kcnk5 at low levels. In mouse brainstem slices, CO2‐stimulated firing in RTN neurons was mostly unaffected by a 5‐HT7 receptor antagonist, SB269970 (n = 11/13). At the whole animal level, microinjection of SB269970 into the RTN of conscious mice blocked respiratory stimulation by co‐injected LP‐44, a 5‐HT7 receptor agonist, but had no effect on CO2‐stimulated breathing in those same mice. We conclude that Htr7 is expressed by a minor subset of RTN neurons with a molecular profile distinct from the established chemoreceptors and that 5‐HT7 receptors have negligible effects on CO2‐evoked firing activity in RTN neurons or on CO2‐stimulated breathing in mice. Key points Neurons of the retrotrapezoid nucleus (RTN) are intrinsic CO2/H+ chemosensors and serve as an integrative excitatory hub for control of breathing. Serotonin can activate RTN neurons, in part via 5‐HT7 receptors, and those effects have been implicated in conferring an indirect CO2 sensitivity. Multiple single cell molecular approaches revealed low levels of 5‐HT7 receptor transcript expression restricted to a limited population of RTN neurons. Pharmacological experiments showed that 5‐HT7 receptors in RTN are not required for CO2/H+‐stimulation of RTN neuronal activity or CO2‐stimulated breathing. These data do not support a role for 5‐HT7 receptors in respiratory chemosensitivity mediated by RTN neurons.
Collapse
Affiliation(s)
- Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Jaseph Soto-Perez
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Brenda M Milla
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Daniel S Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
32
|
Casciato A, Cayetanot F, Bodineau L. Les progestatifs de la famille des gonanes, seuls ou associés à des agents sérotoninergiques, une éventuelle piste thérapeutique pour le syndrome d’Ondine. Rev Mal Respir 2022; 39:95-99. [DOI: 10.1016/j.rmr.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/24/2022]
|
33
|
Lusk SJ, McKinney A, Hunt PJ, Fahey PG, Patel J, Chang A, Sun JJ, Martinez VK, Zhu PJ, Egbert JR, Allen G, Jiang X, Arenkiel BR, Tolias AS, Costa-Mattioli M, Ray RS. A CRISPR toolbox for generating intersectional genetic mouse models for functional, molecular, and anatomical circuit mapping. BMC Biol 2022; 20:28. [PMID: 35086530 PMCID: PMC8796356 DOI: 10.1186/s12915-022-01227-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 01/06/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The functional understanding of genetic interaction networks and cellular mechanisms governing health and disease requires the dissection, and multifaceted study, of discrete cell subtypes in developing and adult animal models. Recombinase-driven expression of transgenic effector alleles represents a significant and powerful approach to delineate cell populations for functional, molecular, and anatomical studies. In addition to single recombinase systems, the expression of two recombinases in distinct, but partially overlapping, populations allows for more defined target expression. Although the application of this method is becoming increasingly popular, its experimental implementation has been broadly restricted to manipulations of a limited set of common alleles that are often commercially produced at great expense, with costs and technical challenges associated with production of intersectional mouse lines hindering customized approaches to many researchers. Here, we present a simplified CRISPR toolkit for rapid, inexpensive, and facile intersectional allele production. RESULTS Briefly, we produced 7 intersectional mouse lines using a dual recombinase system, one mouse line with a single recombinase system, and three embryonic stem (ES) cell lines that are designed to study the way functional, molecular, and anatomical features relate to each other in building circuits that underlie physiology and behavior. As a proof-of-principle, we applied three of these lines to different neuronal populations for anatomical mapping and functional in vivo investigation of respiratory control. We also generated a mouse line with a single recombinase-responsive allele that controls the expression of the calcium sensor Twitch-2B. This mouse line was applied globally to study the effects of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on calcium release in the ovarian follicle. CONCLUSIONS The lines presented here are representative examples of outcomes possible with the successful application of our genetic toolkit for the facile development of diverse, modifiable animal models. This toolkit will allow labs to create single or dual recombinase effector lines easily for any cell population or subpopulation of interest when paired with the appropriate Cre and FLP recombinase mouse lines or viral vectors. We have made our tools and derivative intersectional mouse and ES cell lines openly available for non-commercial use through publicly curated repositories for plasmid DNA, ES cells, and transgenic mouse lines.
Collapse
Affiliation(s)
- Savannah J Lusk
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Andrew McKinney
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Patrick J Hunt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Paul G Fahey
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jay Patel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Andersen Chang
- Department of Statistics, Rice University, Houston, TX, USA
| | - Jenny J Sun
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Vena K Martinez
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Ping Jun Zhu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jeremy R Egbert
- Department of Cell Biology, University of Connecticut, Farmington, CT, USA
| | - Genevera Allen
- Department of Statistics, Computer Science, and Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xiaolong Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Houston, TX, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Russell S Ray
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Houston, TX, USA.
| |
Collapse
|
34
|
Hirsch D, Kohl A, Wang Y, Sela-Donenfeld D. Axonal Projection Patterns of the Dorsal Interneuron Populations in the Embryonic Hindbrain. Front Neuroanat 2022; 15:793161. [PMID: 35002640 PMCID: PMC8738170 DOI: 10.3389/fnana.2021.793161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Unraveling the inner workings of neural circuits entails understanding the cellular origin and axonal pathfinding of various neuronal groups during development. In the embryonic hindbrain, different subtypes of dorsal interneurons (dINs) evolve along the dorsal-ventral (DV) axis of rhombomeres and are imperative for the assembly of central brainstem circuits. dINs are divided into two classes, class A and class B, each containing four neuronal subgroups (dA1-4 and dB1-4) that are born in well-defined DV positions. While all interneurons belonging to class A express the transcription factor Olig3 and become excitatory, all class B interneurons express the transcription factor Lbx1 but are diverse in their excitatory or inhibitory fate. Moreover, within every class, each interneuron subtype displays its own specification genes and axonal projection patterns which are required to govern the stage-by-stage assembly of their connectivity toward their target sites. Remarkably, despite the similar genetic landmark of each dINs subgroup along the anterior-posterior (AP) axis of the hindbrain, genetic fate maps of some dA/dB neuronal subtypes uncovered their contribution to different nuclei centers in relation to their rhombomeric origin. Thus, DV and AP positional information has to be orchestrated in each dA/dB subpopulation to form distinct neuronal circuits in the hindbrain. Over the span of several decades, different axonal routes have been well-documented to dynamically emerge and grow throughout the hindbrain DV and AP positions. Yet, the genetic link between these distinct axonal bundles and their neuronal origin is not fully clear. In this study, we reviewed the available data regarding the association between the specification of early-born dorsal interneuron subpopulations in the hindbrain and their axonal circuitry development and fate, as well as the present existing knowledge on molecular effectors underlying the process of axonal growth.
Collapse
Affiliation(s)
- Dana Hirsch
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
35
|
Abstract
Breathing (or respiration) is a complex motor behavior that originates in the brainstem. In minimalistic terms, breathing can be divided into two phases: inspiration (uptake of oxygen, O2) and expiration (release of carbon dioxide, CO2). The neurons that discharge in synchrony with these phases are arranged in three major groups along the brainstem: (i) pontine, (ii) dorsal medullary, and (iii) ventral medullary. These groups are formed by diverse neuron types that coalesce into heterogeneous nuclei or complexes, among which the preBötzinger complex in the ventral medullary group contains cells that generate the respiratory rhythm (Chapter 1). The respiratory rhythm is not rigid, but instead highly adaptable to the physic demands of the organism. In order to generate the appropriate respiratory rhythm, the preBötzinger complex receives direct and indirect chemosensory information from other brainstem respiratory nuclei (Chapter 2) and peripheral organs (Chapter 3). Even though breathing is a hard-wired unconscious behavior, it can be temporarily altered at will by other higher-order brain structures (Chapter 6), and by emotional states (Chapter 7). In this chapter, we focus on the development of brainstem respiratory groups and highlight the cell lineages that contribute to central and peripheral chemoreflexes.
Collapse
Affiliation(s)
- Eser Göksu Isik
- Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Luis R Hernandez-Miranda
- Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
36
|
Ceccherini I, Kurek KC, Weese-Mayer DE. Developmental disorders affecting the respiratory system: CCHS and ROHHAD. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:53-91. [PMID: 36031316 DOI: 10.1016/b978-0-323-91532-8.00005-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid-onset Obesity with Hypothalamic dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) and Congenital Central Hypoventilation Syndrome (CCHS) are ultra-rare distinct clinical disorders with overlapping symptoms including altered respiratory control and autonomic regulation. Although both disorders have been considered for decades to be on the same spectrum with necessity of artificial ventilation as life-support, recent acquisition of specific knowledge concerning the genetic basis of CCHS coupled with an elusive etiology for ROHHAD have definitely established that the two disorders are different. CCHS is an autosomal dominant neurocristopathy characterized by alveolar hypoventilation resulting in hypoxemia/hypercarbia and features of autonomic nervous system dysregulation (ANSD), with presentation typically in the newborn period. It is caused by paired-like homeobox 2B (PHOX2B) variants, with known genotype-phenotype correlation but pathogenic mechanism(s) are yet unknown. ROHHAD is characterized by rapid weight gain, followed by hypothalamic dysfunction, then hypoventilation followed by ANSD, in seemingly normal children ages 1.5-7 years. Postmortem neuroanatomical studies, thorough clinical characterization, pathophysiological assessment, and extensive genetic inquiry have failed to identify a cause attributable to a traditional genetic basis, somatic mosaicism, epigenetic mechanism, environmental trigger, or other. To find the key to the ROHHAD pathogenesis and to improve its clinical management, in the present chapter, we have carefully compared CCHS and ROHHAD.
Collapse
Affiliation(s)
- Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Kyle C Kurek
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Debra E Weese-Mayer
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute; and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
37
|
Abstract
Brain PCO2 is sensed primarily via changes in [H+]. Small pH changes are detected in the medulla oblongata and trigger breathing adjustments that help maintain arterial PCO2 constant. Larger perturbations of brain CO2/H+, possibly also sensed elsewhere in the CNS, elicit arousal, dyspnea, and stress, and cause additional breathing modifications. The retrotrapezoid nucleus (RTN), a rostral medullary cluster of glutamatergic neurons identified by coexpression of Phoxb and Nmb transcripts, is the lynchpin of the central respiratory chemoreflex. RTN regulates breathing frequency, inspiratory amplitude, and active expiration. It is exquisitely responsive to acidosis in vivo and maintains breathing autorhythmicity during quiet waking, slow-wave sleep, and anesthesia. The RTN response to [H+] is partly an intrinsic neuronal property mediated by proton sensors TASK-2 and GPR4 and partly a paracrine effect mediated by astrocytes and the vasculature. The RTN also receives myriad excitatory or inhibitory synaptic inputs including from [H+]-responsive neurons (e.g., serotonergic). RTN is silenced by moderate hypoxia. RTN inactivity (periodic or sustained) contributes to periodic breathing and, likely, to central sleep apnea. RTN development relies on transcription factors Egr2, Phox2b, Lbx1, and Atoh1. PHOX2B mutations cause congenital central hypoventilation syndrome; they impair RTN development and consequently the central respiratory chemoreflex.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States.
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
38
|
Adolescent Congenital Central Hypoventilation Syndrome: An Easily Overlooked Diagnosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413402. [PMID: 34949014 PMCID: PMC8703802 DOI: 10.3390/ijerph182413402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
Congenital central hypoventilation syndrome (CCHS), also known as Ondine’s curse, is a rare, potentially fatal genetic disease, manifesting as a lack of respiratory drive. Most diagnoses are made in pediatric patients, however late-onset cases have been rarely reported. Due to the milder symptoms at presentation that might easily go overlooked, these late-onset cases can result in serious health consequences later in life. Here, we present a case report of late-onset CCHS in an adolescent female patient. In this review we summarize the current knowledge about symptoms, as well as clinical management of CCHS, and describe in detail the molecular mechanism responsible for this disorder.
Collapse
|
39
|
Madani A, Pitollat G, Sizun E, Cardoit L, Ringot M, Bourgeois T, Ramanantsoa N, Delclaux C, Dauger S, d'Ortho MP, Thoby-Brisson M, Gallego J, Matrot B. Obstructive Apneas in a Mouse Model of Congenital Central Hypoventilation Syndrome. Am J Respir Crit Care Med 2021; 204:1200-1210. [PMID: 34478357 DOI: 10.1164/rccm.202104-0887oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Congenital central hypoventilation syndrome (CCHS) is characterized by life-threatening sleep hypoventilation and is caused by PHOX2B gene mutations, most frequently the PHOX2B27Ala/+ mutation, with patients requiring lifelong ventilatory support. It is unclear whether obstructive apneas are part of the syndrome. Objectives: To determine if Phox2b27Ala/+ mice, which present the main symptoms of CCHS and die within hours after birth, also express obstructive apneas, and to investigate potential underlying mechanisms. Methods: Apneas were classified as central, obstructive, or mixed by using a novel system combining pneumotachography and laser detection of abdominal movement immediately after birth. Several respiratory nuclei involved in airway patency were examined by immunohistochemistry and electrophysiology in brainstem-spinal cord preparations. Measurements and Main Results: The median (interquartile range) of obstructive apnea frequency was 2.3 (1.5-3.3)/min in Phox2b27Ala/+ pups versus 0.6 (0.4-1.0)/min in wild types (P < 0.0001). Obstructive apnea duration was 2.7 seconds (2.3-3.9) in Phox2b27Ala/+ pups versus 1.7 seconds (1.1-1.9) in wild types (P < 0.0001). Central and mixed apneas presented similar significant differences. In Phox2b27Ala/+ preparations, the hypoglossal nucleus had fewer (P < 0.05) and smaller (P < 0.01) neurons, compared with wild-type preparations. Importantly, coordination of phrenic and hypoglossal motor activities was disrupted, as evidenced by the longer and variable delay of hypoglossal activity with respect to phrenic activity onset (P < 0.001). Conclusions: The Phox2b27Ala/+ mutation predisposed pups not only to hypoventilation and central apneas, but also to obstructive and mixed apneas, likely because of hypoglossal dysgenesis. These results thus demand attention toward obstructive events in infants with CCHS.
Collapse
Affiliation(s)
- Amélia Madani
- NeuroDiderot, FHU I2-D2, Université de Paris, Inserm, Paris, France
| | - Gabriel Pitollat
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR5287, Université de Bordeaux, CNRS, Bordeaux, France
| | - Eléonore Sizun
- NeuroDiderot, FHU I2-D2, Université de Paris, Inserm, Paris, France
| | - Laura Cardoit
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR5287, Université de Bordeaux, CNRS, Bordeaux, France
| | - Maud Ringot
- NeuroDiderot, FHU I2-D2, Université de Paris, Inserm, Paris, France
| | - Thomas Bourgeois
- NeuroDiderot, FHU I2-D2, Université de Paris, Inserm, Paris, France
| | | | - Christophe Delclaux
- NeuroDiderot, FHU I2-D2, Université de Paris, Inserm, Paris, France.,Service d'Explorations Fonctionnelles Pédiatriques and
| | - Stéphane Dauger
- NeuroDiderot, FHU I2-D2, Université de Paris, Inserm, Paris, France.,Service de Médecine Intensive-Réanimation Pédiatriques, Hôpital Robert Debré, AP-HP, Paris, France; and
| | - Marie-Pia d'Ortho
- NeuroDiderot, FHU I2-D2, Université de Paris, Inserm, Paris, France.,Service de Physiologie-Explorations Fonctionnelles, Hôpital Bichat, AP-HP, Paris, France
| | - Muriel Thoby-Brisson
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR5287, Université de Bordeaux, CNRS, Bordeaux, France
| | - Jorge Gallego
- NeuroDiderot, FHU I2-D2, Université de Paris, Inserm, Paris, France
| | - Boris Matrot
- NeuroDiderot, FHU I2-D2, Université de Paris, Inserm, Paris, France
| |
Collapse
|
40
|
Amorim MR, Amin R, Polotsky VY. Of Mice and Babies: PHOX2B and Obstructive Apneas in Congenital Central Hypoventilation Syndrome. Am J Respir Crit Care Med 2021; 204:1128-1130. [PMID: 34634223 PMCID: PMC8759302 DOI: 10.1164/rccm.202108-1989ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Mateus Ramos Amorim
- Department of Medicine Johns Hopkins University School of Medicine Baltimore, Maryland
| | - Raouf Amin
- Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati, Ohio
- Department of Pediatrics University of Cincinnati College of Medicine Cincinnati, Ohio
| | - Vsevolod Y Polotsky
- Department of Medicine Johns Hopkins University School of Medicine Baltimore, Maryland
| |
Collapse
|
41
|
Onimaru H, Yazawa I, Takeda K, Fukushi I, Okada Y. Calcium Imaging Analysis of Cellular Responses to Hypercapnia and Hypoxia in the NTS of Newborn Rat Brainstem Preparation. Front Physiol 2021; 12:645904. [PMID: 33841182 PMCID: PMC8027497 DOI: 10.3389/fphys.2021.645904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/08/2021] [Indexed: 01/13/2023] Open
Abstract
It is supposed that the nucleus of the solitary tract (NTS) in the dorsal medulla includes gas sensor cells responsive to hypercapnia or hypoxia in the central nervous system. In the present study, we analyzed cellular responses to hypercapnia and hypoxia in the NTS region of newborn rat in vitro preparation. The brainstem and spinal cord were isolated from newborn rat (P0-P4) and were transversely cut at the level of the rostral area postrema. To detect cellular responses, calcium indicator Oregon Green was pressure-injected into the NTS just beneath the cut surface of either the caudal or rostral block of the medulla, and the preparation was superfused with artificial cerebrospinal fluid (25–26°C). We examined cellular responses initially to hypercapnic stimulation (to 8% CO2 from 2% CO2) and then to hypoxic stimulation (to 0% O2 from 95% O2 at 5% CO2). We tested these responses in standard solution and in two different synapse blockade solutions: (1) cocktail blockers solution including bicuculline, strychnine, NBQX and MK-801 or (2) TTX solution. At the end of the experiments, the superfusate potassium concentration was lowered to 0.2 from 3 mM to classify recorded cells into neurons and astrocytes. Excitation of cells was detected as changes of fluorescence intensity with a confocal calcium imaging system. In the synaptic blockade solutions (cocktail or TTX solution), 7.6 and 8% of the NTS cells responded to hypercapnic and hypoxic stimulation, respectively, and approximately 2% of them responded to both stimulations. Some of these cells responded to low K+, and they were classified into astrocytes comprising 43% hypercapnia-sensitive cells, 56% hypoxia-sensitive cells and 54% of both stimulation-sensitive cells. Of note, 49% of the putative astrocytes identified by low K+ stimulation were sensitive to hypercapnia, hypoxia or both. In the presence of a glia preferential blocker, 5 mM fluoroacetate (plus 0.5 μM TTX), the percentage of hypoxia-sensitive cells was significantly reduced compared to those of all other conditions. This is the first study to reveal that the NTS includes hypercapnia and hypoxia dual-sensitive cells. These results suggest that astrocytes in the NTS region could act as a central gas sensor.
Collapse
Affiliation(s)
- Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Itaru Yazawa
- Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Kotaro Takeda
- Faculty of Rehabilitation, School of Healthcare, Fujita Health University, Toyoake, Japan
| | - Isato Fukushi
- Faculty of Health Sciences, Uekusa Gakuen University, Chiba, Japan.,Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
| |
Collapse
|
42
|
Abbott SBG, Souza GMPR. Chemoreceptor mechanisms regulating CO 2 -induced arousal from sleep. J Physiol 2021; 599:2559-2571. [PMID: 33759184 DOI: 10.1113/jp281305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Arousal from sleep in response to CO2 is a life-preserving reflex that enhances ventilatory drive and facilitates behavioural adaptations to restore eupnoeic breathing. Recurrent activation of the CO2 -arousal reflex is associated with sleep disruption in obstructive sleep apnoea. In this review we examine the role of chemoreceptors in the carotid bodies, the retrotrapezoid nucleus and serotonergic neurons in the dorsal raphe in the CO2 -arousal reflex. We also provide an overview of the supra-medullary structures that mediate CO2 -induced arousal. We propose a framework for the CO2 -arousal reflex in which the activity of the chemoreceptors converges in the parabrachial nucleus to trigger cortical arousal.
Collapse
Affiliation(s)
- Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 29903, USA
| | - George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 29903, USA
| |
Collapse
|
43
|
Lei F, Wang W, Fu Y, Wang J, Zheng Y. Oxidative stress in retrotrapezoid nucleus/parafacial respiratory group and impairment of central chemoreception in rat offspring exposed to maternal cigarette smoke. Reprod Toxicol 2021; 100:35-41. [PMID: 33383163 DOI: 10.1016/j.reprotox.2020.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 02/05/2023]
Abstract
We have reported that smoking during pregnancy is associated with deficit in neonatal central chemoreception. However, the underlying mechanism is not well clarified. In this study, we developed a rat model of maternal cigarette smoke (CS) exposure. Pregnant rats were exposed to CS during gestational day 1-20. Offspring were studied on postnatal day 2. Reactive oxygen species (ROS) content and expressions of antioxidant proteins in retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) were examined by fluorogenic dye MitoSOX™ Red and Western blotting, respectively. The response of hypoglossal rootlets discharge to acidification was also detected with micro-injection of H2O2 into RTN/pFRG of offspring brainstem slices in vitro. Results showed that maternal CS exposure led to an increase in ROS production, and brought about decreases in mitochondrial superoxide dismutase and Kelch-like ECH-associated protein-1, and an increase in NF-E2-related factor 2 in offspring RTN/pFRG. Catalase and glutathione reductase expressions were not significantly changed. Moreover, oxidative stress induced by micro-injection of H2O2 into RTN/pFRG in vitro inhibited the discharge response of hypoglossal rootlets to acidification. These findings suggest that maternal CS exposure results in oxidative stress in RTN/pFRG of rat offspring, which might play a role in the impairment of central chemoreception.
Collapse
Affiliation(s)
- Fang Lei
- West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China; Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Wen Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yating Fu
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Ji Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yu Zheng
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
44
|
Patterson KC, Kahanovitch U, Gonçalves CM, Hablitz JJ, Staruschenko A, Mulkey DK, Olsen ML. K ir 5.1-dependent CO 2 /H + -sensitive currents contribute to astrocyte heterogeneity across brain regions. Glia 2021; 69:310-325. [PMID: 32865323 PMCID: PMC8665280 DOI: 10.1002/glia.23898] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 09/19/2023]
Abstract
Astrocyte heterogeneity is an emerging concept in which astrocytes within or between brain regions show variable morphological and/or gene expression profiles that presumably reflect different functional roles. Recent evidence indicates that retrotrapezoid nucleus (RTN) astrocytes sense changes in tissue CO2/ H+ to regulate respiratory activity; however, mechanism(s) by which they do so remain unclear. Alterations in inward K+ currents represent a potential mechanism by which CO2 /H+ signals may be conveyed to neurons. Here, we use slice electrophysiology in rats of either sex to show that RTN astrocytes intrinsically respond to CO2 /H+ by inhibition of an inward rectifying potassium (Kir ) conductance and depolarization of the membrane, while cortical astrocytes do not exhibit such CO2 /H+ -sensitive properties. Application of Ba2+ mimics the effect of CO2 /H+ on RTN astrocytes as measured by reductions in astrocyte Kir -like currents and increased RTN neuronal firing. These CO2 /H+ -sensitive currents increase developmentally, in parallel to an increased expression in Kir 4.1 and Kir 5.1 in the brainstem. Finally, the involvement of Kir 5.1 in the CO2 /H+ -sensitive current was verified using a Kir5.1 KO rat. These data suggest that Kir inhibition by CO2 /H+ may govern the degree to which astrocytes mediate downstream chemoreceptive signaling events through cell-autonomous mechanisms. These results identify Kir channels as potentially important regional CO2 /H+ sensors early in development, thus expanding our understanding of how astrocyte heterogeneity may uniquely support specific neural circuits and behaviors.
Collapse
Affiliation(s)
- Kelsey C Patterson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Uri Kahanovitch
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | - John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
45
|
Zhang M, Du S, Ou H, Cui R, Jiang N, Lin Y, Ge R, Ma D, Zhang J. Ablation of Zfhx4 results in early postnatal lethality by disrupting the respiratory center in mice. J Mol Cell Biol 2021; 13:210-224. [PMID: 33475140 PMCID: PMC8260053 DOI: 10.1093/jmcb/mjaa081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 11/19/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Breathing is an integrated motor behavior that is driven and controlled by a network of brainstem neurons. Zfhx4 is a zinc finger transcription factor and our results showed that it was specifically expressed in several regions of the mouse brainstem. Mice lacking Zfhx4 died shortly after birth from an apparent inability to initiate respiration. We also found that the electrical rhythm of brainstem‒spinal cord preparations was significantly depressed in Zfhx4-null mice compared to wild-type mice. Immunofluorescence staining revealed that Zfhx4 was coexpressed with Phox2b and Math1 in the brainstem and that Zfhx4 ablation greatly decreased the expression of these proteins, especially in the retrotrapezoid nucleus. Combined ChIP‒seq and mRNA expression microarray analysis identified Phox2b as the direct downstream target gene of Zfhx4, and this finding was validated by ChIP‒qPCR. Previous studies have reported that both Phox2b and Math1 play key roles in the development of the respiratory center, and Phox2b and Math1 knockout mice are neonatal lethal due to severe central apnea. On top of this, our study revealed that Zfhx4 is a critical regulator of Phox2b expression and essential for perinatal breathing.
Collapse
Affiliation(s)
- Meiqin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Sichen Du
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huayuan Ou
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Renjie Cui
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yifeng Lin
- Children's Hospital, Fudan University, Shanghai 201102, China
| | - Runsheng Ge
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Children's Hospital, Fudan University, Shanghai 201102, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
46
|
Di Lascio S, Benfante R, Cardani S, Fornasari D. Research Advances on Therapeutic Approaches to Congenital Central Hypoventilation Syndrome (CCHS). Front Neurosci 2021; 14:615666. [PMID: 33510615 PMCID: PMC7835644 DOI: 10.3389/fnins.2020.615666] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital central hypoventilation syndrome (CCHS) is a genetic disorder of neurodevelopment, with an autosomal dominant transmission, caused by heterozygous mutations in the PHOX2B gene. CCHS is a rare disorder characterized by hypoventilation due to the failure of autonomic control of breathing. Until now no curative treatment has been found. PHOX2B is a transcription factor that plays a crucial role in the development (and maintenance) of the autonomic nervous system, and in particular the neuronal structures involved in respiratory reflexes. The underlying pathogenetic mechanism is still unclear, although studies in vivo and in CCHS patients indicate that some neuronal structures may be damaged. Moreover, in vitro experimental data suggest that transcriptional dysregulation and protein misfolding may be key pathogenic mechanisms. This review summarizes latest researches that improved the comprehension of the molecular pathogenetic mechanisms responsible for CCHS and discusses the search for therapeutic intervention in light of the current knowledge about PHOX2B function.
Collapse
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy.,CNR-Institute of Neuroscience, Milan, Italy.,NeuroMi-Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy
| | - Silvia Cardani
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy.,CNR-Institute of Neuroscience, Milan, Italy
| |
Collapse
|
47
|
Moreira TS, Sobrinho CR, Falquetto B, Oliveira LM, Lima JD, Mulkey DK, Takakura AC. The retrotrapezoid nucleus and the neuromodulation of breathing. J Neurophysiol 2020; 125:699-719. [PMID: 33427575 DOI: 10.1152/jn.00497.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.
Collapse
Affiliation(s)
- Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Janayna D Lima
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| |
Collapse
|
48
|
Vermeiren S, Bellefroid EJ, Desiderio S. Vertebrate Sensory Ganglia: Common and Divergent Features of the Transcriptional Programs Generating Their Functional Specialization. Front Cell Dev Biol 2020; 8:587699. [PMID: 33195244 PMCID: PMC7649826 DOI: 10.3389/fcell.2020.587699] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Sensory fibers of the peripheral nervous system carry sensation from specific sense structures or use different tissues and organs as receptive fields, and convey this information to the central nervous system. In the head of vertebrates, each cranial sensory ganglia and associated nerves perform specific functions. Sensory ganglia are composed of different types of specialized neurons in which two broad categories can be distinguished, somatosensory neurons relaying all sensations that are felt and visceral sensory neurons sensing the internal milieu and controlling body homeostasis. While in the trunk somatosensory neurons composing the dorsal root ganglia are derived exclusively from neural crest cells, somato- and visceral sensory neurons of cranial sensory ganglia have a dual origin, with contributions from both neural crest and placodes. As most studies on sensory neurogenesis have focused on dorsal root ganglia, our understanding of the molecular mechanisms underlying the embryonic development of the different cranial sensory ganglia remains today rudimentary. However, using single-cell RNA sequencing, recent studies have made significant advances in the characterization of the neuronal diversity of most sensory ganglia. Here we summarize the general anatomy, function and neuronal diversity of cranial sensory ganglia. We then provide an overview of our current knowledge of the transcriptional networks controlling neurogenesis and neuronal diversification in the developing sensory system, focusing on cranial sensory ganglia, highlighting specific aspects of their development and comparing it to that of trunk sensory ganglia.
Collapse
Affiliation(s)
- Simon Vermeiren
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Eric J Bellefroid
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Simon Desiderio
- Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier, France
| |
Collapse
|
49
|
Bednarczuk N, Milner A, Greenough A. The Role of Maternal Smoking in Sudden Fetal and Infant Death Pathogenesis. Front Neurol 2020; 11:586068. [PMID: 33193050 PMCID: PMC7644853 DOI: 10.3389/fneur.2020.586068] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022] Open
Abstract
Maternal smoking is a risk factor for both sudden infant death syndrome (SIDS) and sudden intrauterine unexplained death syndrome (SIUDS). Both SIDS and SIUDS are more frequently observed in infants of smoking mothers. The global prevalence of smoking during pregnancy is 1.7% and up to 8.1% of women in Europe smoke during pregnancy and worldwide 250 million women smoke during pregnancy. Infants born to mothers who smoke have an abnormal response to hypoxia and hypercarbia and they also have reduced arousal responses. The harmful effects of tobacco smoke are mainly mediated by release of carbon monoxide and nicotine. Nicotine can enter the fetal circulation and affect multiple developing organs including the lungs, adrenal glands and the brain. Abnormalities in brainstem nuclei crucial to respiratory control, the cerebral cortex and the autonomic nervous system have been demonstrated. In addition, hypodevelopment of the intermediolateral nucleus in the spinal cord has been reported. It initiates episodic respiratory movements that facilitate lung development. Furthermore, abnormal maturation and transmitter levels in the carotid bodies have been described which would make infants more vulnerable to hypoxic challenges. Unfortunately, smoking cessation programs do not appear to have significantly reduced the number of pregnant women who smoke.
Collapse
Affiliation(s)
- Nadja Bednarczuk
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Anthony Milner
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Anne Greenough
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.,The Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, London, United Kingdom.,National Institute for Health Research (NIHR) Biomedical Research Centre at Guy's & St Thomas' National Health Service (NHS) Foundation Trust and King's College London, London, United Kingdom
| |
Collapse
|
50
|
Lei F, Wang W, Fu Y, Wang J, Zheng Y. Mitochondrial KATP channels contribute to the protective effects of hydrogen sulfide against impairment of central chemoreception of rat offspring exposed to maternal cigarette smoke. PLoS One 2020; 15:e0237643. [PMID: 33064729 PMCID: PMC7567348 DOI: 10.1371/journal.pone.0237643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/30/2020] [Indexed: 02/05/2023] Open
Abstract
We previously reported that maternal cigarette smoke (CS) exposure resulted in impairment of central chemoreception and induced mitochondrial dysfunction in offspring parafacial respiratory group (pFRG), the kernel for mammalian central chemoreception. We also found that hydrogen sulfide (H2S) could attenuate maternal CS exposure-induced impairment of central chemoreception in the rat offspring in vivo. Mitochondrial ATP sensitive potassium (mitoKATP) channel has been reported to play a significant role in mitochondrial functions and protect against apoptosis in neurons. Thus, we hypothesize here that mitoKATP channel plays a role in the protective effects of H2S on neonatal central chemoreception in maternal CS-exposed rats. Our findings revealed that pretreatment with NaHS (donor of H2S, 22.4mM) reversed the central chemosensitivity decreased by maternal CS exposure, and also inhibited cell apoptosis in offspring pFRG, however, 5-HD (blocker of mitoKATP channels, 19mM) attenuated the protective effects of NaHS. In addition, NaHS declined pro-apoptotic proteins related to mitochondrial pathway apoptosis in CS rat offspring pFRG, such as Bax, Cytochrome C, caspase9 and caspase3. NaHS or 5-HD alone had no significant effect on above indexes. These results suggest that mitoKATP channels play an important role in the protective effect of H2S against impairment of central chemoreception via anti-apoptosis in pFRG of rat offspring exposed to maternal CS.
Collapse
Affiliation(s)
- Fang Lei
- West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Wen Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yating Fu
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ji Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yu Zheng
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
- * E-mail:
| |
Collapse
|