1
|
Basurto E, Ophir AG, Montoya B, Cano-Ramírez H, González-Flores O, Suárez-Rodríguez M, Hoffman K. Episodic memory and reproductive condition could independently influence the pair bond maintenance in the male prairie vole (Microtus ochrogaster): Ecological implications and translational relevance in the study of sub-clinical manifestations of schizophrenia. Behav Brain Res 2025:115648. [PMID: 40409376 DOI: 10.1016/j.bbr.2025.115648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 05/16/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025]
Abstract
Investigations on mating tactics of the prairie vole (Microtus ochrogaster, a socially monogamous rodent) have suggested that reproductive pair bonding and monogamy in this species are associated with increased capacity for social-spatial memory. In the present study, we tested this possibility in male voles that had been co-housed for an extended period with a female, by applying a behavioral test designed to assess familiarity recollection (FR) and novelty detection (ND) components of social, object, social-spatial, and object-spatial memory. We also assessed each male vole's preference to display affiliative behavior toward his mate, relative to an unfamiliar female, as well as the reproductive success of the pair. We found that ND of social-spatial stimuli and reproductive success were independent positive predictors of the male's affiliative preference for his partner female. ND of social, object, and object-spatial stimuli were not associated with male affiliative preference, nor were FR responses to any of these stimuli. Reproductive success was associated with both object-spatial and social-spatial ND. Taken together, the present results indicate that pair bond maintenance in the prairie vole is importantly associated with increased detection of and/or attention to alterations in associations between individual conspecifics and their spatial location. Independently, reproductive success appears to favor detection of object-spatial and social-spatial novelty. These results are discussed in relation to vole natural history, as well as in the context of their possible significance for elucidating relationships between episodic memory deficits and dysfunctional social behavior in pathological conditions such as schizophrenia.
Collapse
Affiliation(s)
- Enrique Basurto
- Centro de Investigación en Reproducción Animal Carlos Beyer, Universidad Autónoma de Tlaxcala-CINVESTAV, Panotla 90140, Mexico; Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Alexander G Ophir
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Bibiana Montoya
- Centro Tlaxcala de Biología de la Conducta (CTBC), Universidad Autónoma de Tlaxcala, Tlaxcala 90000, Mexico
| | - Hugo Cano-Ramírez
- Centro de Investigación en Reproducción Animal Carlos Beyer, Universidad Autónoma de Tlaxcala-CINVESTAV, Panotla 90140, Mexico
| | - Oscar González-Flores
- Centro de Investigación en Reproducción Animal Carlos Beyer, Universidad Autónoma de Tlaxcala-CINVESTAV, Panotla 90140, Mexico
| | - Monserrat Suárez-Rodríguez
- Laboratorio de Ecofisiología y Conducta, Facultad de Estudios Superiores Iztacala, Estado de México, Universidad Nacional Autónoma de México
| | - Kurt Hoffman
- Centro de Investigación en Reproducción Animal Carlos Beyer, Universidad Autónoma de Tlaxcala-CINVESTAV, Panotla 90140, Mexico
| |
Collapse
|
2
|
Horie K, Blumenthal SA, Inoue K, Yada S, Nishimori K, Young LJ. Male, but not female, oxytocin receptor knockout prairie voles (Microtus ochrogaster) show impaired consolation behavior. Horm Behav 2025; 169:105708. [PMID: 39965529 DOI: 10.1016/j.yhbeh.2025.105708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Prosocial behaviors, including empathetic consoling toward others, contribute to maintaining social groups and social connections between individuals in many mammalian species, including monogamous prairie voles (Microtus ochrogaster). Prairie voles display consolation toward distressed partners by increasing allogrooming behavior toward the partner. A previous pharmacological study showed that oxytocin signaling contributes to consolation in male prairie voles, although possible sex differences in the regulation of consoling have not been explored. Here, we demonstrate that male, but not female, oxytocin receptor knockout (Oxtr-/-) prairie voles display disrupted consoling behavior toward distressed opposite sex partners who spend 24 h with their partners to form a pair bond. Notably, both male and female Oxtr-/- prairie voles showed normal partner preference following 24 h of cohabitation. Autoradiography for the vasopressin 1a receptor (AVPR1A) reveals no differences between genotypes in AVPR1A levels in the lateral septum, ventral pallidum, laterodorsal thalamic nucleus, and central amygdala, suggesting that the lack of OXTR does not lead to compensation via AVPR1A system at the receptor expression level in these selected brain regions. These findings demonstrate that OXTR modulates consolation in a sex-specific manner in prairie voles, while the lack of OXTR does not influence pair bonding.
Collapse
Affiliation(s)
- Kengo Horie
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Sarah A Blumenthal
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Kiyoshi Inoue
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Saori Yada
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Katsuhiko Nishimori
- Department of Bioregulation and Pharmacological Medicine,Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Larry J Young
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Freeman AR, Arenas S, Lee DN, Singh B, Ophir AG. Characterization of oxytocin and vasopressin receptors in the Southern giant pouched rat and comparison to other rodents. Front Endocrinol (Lausanne) 2024; 15:1390203. [PMID: 38803478 PMCID: PMC11128605 DOI: 10.3389/fendo.2024.1390203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Vasopressin and oxytocin are well known and evolutionarily ancient modulators of social behavior. The distribution and relative densities of vasopressin and oxytocin receptors are known to modulate the sensitivity to these signaling molecules. Comparative work is needed to determine which neural networks have been conserved and modified over evolutionary time, and which social behaviors are commonly modulated by nonapeptide signaling. To this end, we used receptor autoradiography to determine the distribution of vasopressin 1a and oxytocin receptors in the Southern giant pouched rat (Cricetomys ansorgei) brain, and to assess the relative densities of these receptors in specific brain regions. We then compared the relative receptor pattern to 23 other species of rodents using a multivariate ANOVA. Pouched rat receptor patterns were strikingly similar to hamsters and voles overall, despite the variation in social organization among species. Uniquely, the pouched rat had dense vasopressin 1a receptor binding in the caudate-putamen (i.e., striatum), an area that might impact affiliative behavior in this species. In contrast, the pouched rat had relatively little oxytocin receptor binding in much of the anterior forebrain. Notably, however, oxytocin receptor binding demonstrated extremely dense binding in the bed nucleus of the stria terminalis, which is associated with the modulation of several social behaviors and a central hub of the social decision-making network. Examination of the nonapeptide system has the potential to reveal insights into species-specific behaviors and general themes in the modulation of social behavior.
Collapse
Affiliation(s)
- Angela R. Freeman
- Department of Psychology, Cornell University, Ithaca, NY, United States
- Department of Biology, Salisbury University, Salisbury, MD, United States
| | - Samanta Arenas
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | - Danielle N. Lee
- Department of Psychology, Cornell University, Ithaca, NY, United States
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Bhupinder Singh
- Department of Psychology, Cornell University, Ithaca, NY, United States
- Comparative Medicine Resources, Rutgers University, New Brunswick, NJ, United States
| | | |
Collapse
|
4
|
Sailer LL, Finton CJ, Patel PP, Bogdanowicz SM, Ophir AG. Dorsal CA1 lesions of the hippocampus impact mating tactics in prairie voles by shifting non-monogamous males' use of space to resemble monogamous males. Front Behav Neurosci 2024; 18:1355807. [PMID: 38468707 PMCID: PMC10925758 DOI: 10.3389/fnbeh.2024.1355807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Alternative mating tactics within mating systems are characterized by discrete patterns of spatio-temporal overlap with same-and opposite-sex conspecifics and mating-relevant outcomes. Socially monogamous "residents" maintain relatively small home range sizes, have territories that almost exclusively overlap with their mating partners, and are more likely to produce offspring than non-bonded "wandering" conspecifics. Because mating tactics appear to be so closely tied to patterns of space use, differences in spatial cognitive abilities might differentially impact individual males' decisions to adopt a particular mating tactic and/or how efficient they are within their chosen mating tactic. Yet few studies have considered how the hippocampus, a brain region important for encoding cognitive maps and for processing contextual information, might impact how individuals adopt mating tactics or the spatio-temporal behaviors closely associated with them. We assessed the impact of lesions to the dorsal CA1 (dCA1) region of the hippocampus on male prairie vole space use, reproductive success, and mating tactics in semi-natural outdoor field conditions. Interestingly, dCA1 lesions did not impact the proportion of males that adopted resident or wandering mating tactics, and dCA1 lesions did not impact a male's ability to form a pair bond in the lab. In contrast, we found that lesioning the dCA1 shifted the home range size of reproductively successful and unsuccessful males. Furthermore, we found that patterns of space use among residents were unaffected by dCA1 lesions, whereas wanderers with dCA1 lesions showed pronounced reductions of their space use habits and resembled non-lesioned residents. Collectively, our study supports the hypothesis that wanderer male prairie voles rely on dCA1-mediated spatial cognition to navigate their world in a way that resident males do not. Such differences might have implications for how individuals efficiently attract and defend mates, obtain resources, defend territories, and outcompete rivals.
Collapse
Affiliation(s)
- Lindsay L. Sailer
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | - Caitlyn J. Finton
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | - Pooja P. Patel
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | - Steven M. Bogdanowicz
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
5
|
Denney KA, Wu MV, Sun SED, Moon S, Tollkuhn J. Comparative analysis of gonadal hormone receptor expression in the postnatal house mouse, meadow vole, and prairie vole brain. Horm Behav 2024; 158:105463. [PMID: 37995608 PMCID: PMC11145901 DOI: 10.1016/j.yhbeh.2023.105463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The socially monogamous prairie vole (Microtus ochrogaster) and promiscuous meadow vole (Microtus pennsylvanicus) are closely related, but only prairie voles display long-lasting pair bonds, biparental care, and selective aggression towards unfamiliar individuals after pair bonding. These social behaviors in mammals are largely mediated by steroid hormone signaling in the social behavior network (SBN) of the brain. Hormone receptors are reproducible markers of sex differences that can provide more information than anatomy alone and can even be at odds with anatomical dimorphisms. We reasoned that behaviors associated with social monogamy in prairie voles may emerge in part from unique expression patterns of steroid hormone receptors in this species, and that these expression patterns would be more similar across males and females in prairie than in meadow voles or the laboratory mouse. To obtain insight into steroid hormone signaling in the developing prairie vole brain, we assessed expression of estrogen receptor alpha (Esr1), estrogen receptor beta (Esr2), and androgen receptor (Ar) within the SBN, using in situ hybridization at postnatal day 14 in mice, meadow, and prairie voles. We found species-specific patterns of hormone receptor expression in the hippocampus and ventromedial hypothalamus, as well as species differences in the sex bias of these markers in the principal nucleus of the bed nucleus of the stria terminalis. These findings suggest the observed differences in gonadal hormone receptor expression may underlie species differences in the display of social behaviors.
Collapse
Affiliation(s)
- Katherine A Denney
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience, Stony Brook University, Stony Brook, NY 11790, USA
| | - Melody V Wu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Simón E D Sun
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Soyoun Moon
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
6
|
Forero SA, Ophir AG. Bonding against the odds: Male prairie vole response to the "widow effect" among females. Behav Processes 2023; 213:104968. [PMID: 37984679 DOI: 10.1016/j.beproc.2023.104968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Although pair bonding is the preferred mating tactic among socially monogamous prairie voles, naturalistic observations have demonstrated many males remain non-bonded. Moreover, although males readily re-bond after the loss of a partner, females do not (i.e., the "widow effect'). Few studies have attempted to address why so many males remain non-bonded or if a reluctance of re-bonding in females contributes to this outcome. We investigate how female bonding history impacts male pair bond formation. Specifically, we test two alternative hypotheses for how sexually naïve males will behave when paired with widow females. The fecundity hypothesis predicts males will avoid bonding with widow females and be more receptive to novel bond-naïve females. The preference to bond hypothesis predicts males will choose to bond and express a partner preference, irrespective of if a pair-mate is a widow or sexually naïve. Our results demonstrated that males expressed a partner preference for females regardless of their social history. These data support the preference to bond hypothesis and suggest natural variation in bonding may not be strongly due to males forgoing bonding opportunities.
Collapse
|
7
|
Berendzen KM, Bales KL, Manoli DS. Attachment across the lifespan: Examining the intersection of pair bonding neurobiology and healthy aging. Neurosci Biobehav Rev 2023; 153:105339. [PMID: 37536581 PMCID: PMC11073483 DOI: 10.1016/j.neubiorev.2023.105339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/17/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Increasing evidence suggests that intact social bonds are protective against age-related morbidity, while bond disruption and social isolation increase the risk for multiple age-related diseases. Social attachments, the enduring, selective bonds formed between individuals, are thus essential to human health. Socially monogamous species like the prairie vole (M. ochrogaster) form long-term pair bonds, allowing us to investigate the mechanisms underlying attachment and the poorly understood connection between social bonds and health. In this review, we explore several potential areas of focus emerging from data in humans and other species associating attachment and healthy aging, and evidence from prairie voles that may clarify this link. We examine gaps in our understanding of social cognition and pair bond behavior. Finally, we discuss physiologic pathways related to pair bonding that promote resilience to the processes of aging and age-related disease. Advances in the development of molecular genetic tools in monogamous species will allow us to bridge the mechanistic gaps presented and identify conserved research and therapeutic targets relevant to human health and aging.
Collapse
Affiliation(s)
- Kristen M. Berendzen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Center for Integrative Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
| | - Karen L. Bales
- Department of Psychology, University of California, Davis; Davis, CA 95616, USA
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis; Davis, CA 95616, USA
| | - Devanand S. Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Center for Integrative Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Neurosciences Graduate Program, University of California, San Francisco; San Francisco, CA 95158, USA
| |
Collapse
|
8
|
Swain CC, Wischmeier JN, Neifer AE, Lloyd EAR, Neifer KL, Kile KB, Burkett JP. Hereditary convulsions in an outbred prairie vole line. Epilepsy Res 2023; 195:107202. [PMID: 37540927 PMCID: PMC10529651 DOI: 10.1016/j.eplepsyres.2023.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/09/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Patients with epilepsy are significantly burdened by the disease due to long-term health risks, the severe side effect profiles of anti-epileptic drugs, and the strong possibility of pharmacoresistant refractory seizures. New animal models of epilepsy with unique characteristics promise to further research to address these ongoing problems. Here, we characterize a newly developed line of prairie voles (Microtus ochrogaster, UTol:HIC or "Toledo" line) that presents with a hereditary, adult-onset, handling-induced convulsion phenotype. Toledo voles were bred for four generations and tested to determine whether the observed phenotype was consistent with epileptic seizures. Toledo voles maintained a stable 22 % incidence of convulsions across generations, with an average age of onset of 12-16 weeks. Convulsions in Toledo voles were reliably evoked by rodent seizure screens and were phenotypically consistent with murine seizures. At the colony level, Toledo voles had a 7-fold increase in risk for sudden unexpected death from unknown causes, which parallels sudden unexpected death in epilepsy (SUDEP) in human patients. Finally, convulsions in Toledo voles were reduced or prevented by treatment with the anti-epileptic drug levetiracetam. Taken in combination, these results suggest that convulsions in Toledo voles may be epileptic seizures. The Toledo prairie vole strain may serve as a new rodent model of epilepsy in an undomesticated, outbred species.
Collapse
Affiliation(s)
- Caroline C Swain
- University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - James N Wischmeier
- University of Toledo College of Natural Sciences and Mathematics, Toledo, OH 43606, USA
| | - Asha E Neifer
- University of Toledo College of Natural Sciences and Mathematics, Toledo, OH 43606, USA
| | | | - Kari L Neifer
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Kara B Kile
- Department of Physics, University of Toledo College of Natural Sciences and Mathematics, Toledo, OH 43606, USA
| | - James P Burkett
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| |
Collapse
|
9
|
Wallace KJ, Chun EK, Manns JR, Ophir AG, Kelly AM. A test of the social behavior network reveals differential patterns of neural responses to social novelty in bonded, but not non-bonded, male prairie voles. Horm Behav 2023; 152:105362. [PMID: 37086574 PMCID: PMC10291480 DOI: 10.1016/j.yhbeh.2023.105362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/02/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
The social behavior network (SBN) has provided a framework for understanding the neural control of social behavior. The original SBN hypothesis proposed this network modulates social behavior and should exhibit distinct patterns of neural activity across nodes, which correspond to distinct social contexts. Despite its tremendous impact on the field of social neuroscience, no study has directly tested this hypothesis. Thus, we assessed Fos responses across the SBN of male prairie voles (Microtus ochrogaster). Virgin/non-bonded and pair bonded subjects were exposed to a sibling cagemate or pair bonded partner, novel female, novel male, novel meadow vole, novel object, or no stimulus. Inconsistent with the original SBN hypothesis, we did not find profoundly different patterns of neural responses across the SBN for different contexts, but instead found that the SBN generated significantly different patterns of activity in response to social novelty in pair bonded, but not non-bonded males. These findings suggest that non-bonded male prairie voles may perceive social novelty differently from pair bonded males or that SBN functionality undergoes substantial changes after pair bonding. This study reveals novel information about bond-dependent, context-specific neural responsivity in male prairie voles and suggests that the SBN may be particularly important for processing social salience. Further, our study suggests there is a need to reconceptualize the framework of how the SBN modulates social behavior.
Collapse
Affiliation(s)
- Kelly J Wallace
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Eileen K Chun
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Joseph R Manns
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | | | - Aubrey M Kelly
- Department of Psychology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
10
|
López-Gutiérrez MF, Mejía-Chávez S, Alcauter S, Portillo W. The neural circuits of monogamous behavior. Front Neural Circuits 2022; 16:978344. [PMID: 36247729 PMCID: PMC9559370 DOI: 10.3389/fncir.2022.978344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
The interest in studying the neural circuits related to mating behavior and mate choice in monogamous species lies in the parallels found between human social structure and sexual behavior and that of other mammals that exhibit social monogamy, potentially expanding our understanding of human neurobiology and its underlying mechanisms. Extensive research has suggested that social monogamy, as opposed to non-monogamy in mammals, is a consequence of the neural encoding of sociosensory information from the sexual partner with an increased reward value. Thus, the reinforced value of the mate outweighs the reward value of mating with any other potential sexual partners. This mechanism reinforces the social relationship of a breeding pair, commonly defined as a pair bond. In addition to accentuated prosocial behaviors toward the partner, other characteristic behaviors may appear, such as territorial and partner guarding, selective aggression toward unfamiliar conspecifics, and biparental care. Concomitantly, social buffering and distress upon partner separation are also observed. The following work intends to overview and compare known neural and functional circuits that are related to mating and sexual behavior in monogamous mammals. We will particularly discuss reports on Cricetid rodents of the Microtus and Peromyscus genus, and New World primates (NWP), such as the Callicebinae subfamily of the titi monkey and the marmoset (Callithrix spp.). In addition, we will mention the main factors that modulate the neural circuits related to social monogamy and how that modulation may reflect phenotypic differences, ultimately creating the widely observed diversity in social behavior.
Collapse
Affiliation(s)
| | | | | | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| |
Collapse
|
11
|
Rice MA, Wong GH, Ophir AG. Impacts of spatial learning on male prairie vole mating tactics in seminatural field enclosures are context dependent. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Batsuren E, Zhang X, Song M, Wan X, Li G, Liu J, Huang S, Zhang Z. Density‐dependent changes of mating system and family structure in Brandt's voles (
Lasiopodomys brandtii
). Ecol Evol 2022. [DOI: 10.1002/ece3.9199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Erdenetuya Batsuren
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Science University of Chinese Academy of Sciences Beijing China
- Institute of Plant Protection Ulaanbaatar Mongolia
| | - Xin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Science University of Chinese Academy of Sciences Beijing China
| | - Mingjing Song
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medicine Centre, Ministry of Health Peking Union Medical College Beijing China
| | - Xinru Wan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Science University of Chinese Academy of Sciences Beijing China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology Chinese Academy of Sciences Beijing China
- CAS Center for Excellence in Biotic Interactions University of Chinese Academy of Sciences Beijing China
| | - Jing Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Science University of Chinese Academy of Sciences Beijing China
| | - Shuli Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Science University of Chinese Academy of Sciences Beijing China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology Chinese Academy of Sciences Beijing China
- CAS Center for Excellence in Biotic Interactions University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
13
|
Finton CJ, Ophir AG. Developmental exposure to intranasal vasopressin impacts adult prairie vole spatial memory. Psychoneuroendocrinology 2022; 141:105750. [PMID: 35397260 PMCID: PMC9149121 DOI: 10.1016/j.psyneuen.2022.105750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/18/2022]
Abstract
Spatial memory is critical for many tasks necessary for survival (i.e., locating mates and food resources). The two mammalian nonapeptides arginine vasopressin (AVP) and oxytocin (OT) are mechanistically important in modulating memory ability, albeit in contrasting ways. In general, AVP facilitates memory consolidation and retrieval while OT is an amnesic. Although AVP and OT are known to have these memory effects, past work has focused on their impact in social memory with little research on their effects on spatial memory. In this experiment, we tested the impact of AVP and OT on spatial memory as determined by performance in the Morris water maze (MWM). We administered doses of AVP, OT, or saline (a control) intranasally to male prairie voles (Microtus ochrogaster), a species whose spatial memory is hypothesized to impact their mating tactics. We also investigated if acute doses (given immediately prior to the memory trial in the MWM) and chronic doses (given daily during adolescence) had differing impacts on spatial cognition. We found that chronic intranasal administration of AVP during post-wean development improved spatial memory performance. In contrast, both chronic and acute administration of OT and acute administration of AVP had no impact on spatial memory. These results together suggest that 1) chronic exposure to AVP has organizational effects on spatial memory in the prairie vole, and 2) acute administration of nonapeptides does not impact the retrieval of spatial memories.
Collapse
Affiliation(s)
- Caitlyn J Finton
- Department of Psychology, Cornell University, Ithaca, NY 14850, USA
| | - Alexander G Ophir
- Department of Psychology, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
14
|
Gustison ML, Phelps SM. Individual differences in social attachment: A multi-disciplinary perspective. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12792. [PMID: 35170839 PMCID: PMC8916993 DOI: 10.1111/gbb.12792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/20/2021] [Accepted: 12/12/2021] [Indexed: 01/23/2023]
Abstract
Social behavior varies across both individuals and species. Research to explain this variation falls under the purview of multiple disciplines, each with its own theoretical and empirical traditions. Integration of these disciplinary traditions is key to developing a holistic perspective. Here, we review research on the biology of social attachment, a phenomena in which individuals develop strong affective connections to one another. We provide a historical overview of research on social attachment from psychological, ethological and neurobiological perspectives. As a case study, we describe work on pair-bonding in prairie voles, a socially monogamous rodent. This specific topic takes advantage of many biological perspectives and techniques to explain social bonds. Lastly, we conclude with an overview of multi-dimensional conceptual frameworks that can be used to explain social phenomena, and we propose a new framework for research on individual variation in attachment behavior. These conceptual frameworks originate from philosophy, physics, ethology, cognitive science and neuroscience. The application and synthesis of such frameworks offers a rich opportunity to advance understanding of social behavior and its mechanisms.
Collapse
Affiliation(s)
- Morgan L. Gustison
- Department of Integrative BiologyThe University of Texas at AustinAustinTexasUSA
| | - Steven M. Phelps
- Department of Integrative BiologyThe University of Texas at AustinAustinTexasUSA
- Institute for NeuroscienceThe University of Texas at AustinAustinTexasUSA
| |
Collapse
|
15
|
Eccard JA, Herde A, Schuster AC, Liesenjohann T, Knopp T, Heckel G, Dammhahn M. Fitness, risk taking, and spatial behavior covary with boldness in experimental vole populations. Ecol Evol 2022; 12:e8521. [PMID: 35154645 PMCID: PMC8829380 DOI: 10.1002/ece3.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Individuals of a population may vary along a pace-of-life syndrome from highly fecund, short-lived, bold, dispersive "fast" types at one end of the spectrum to less fecund, long-lived, shy, plastic "slow" types at the other end. Risk-taking behavior might mediate the underlying life history trade-off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)-a species with distinct seasonal life history trajectories-we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed-sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95% and 50% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex-boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near-natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter- and intra-annual fluctuations in population density in the study species and its short life span, density-dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace-of-life.
Collapse
Affiliation(s)
- Jana A Eccard
- Animal Ecology Institute of Biochemistry and Biology University of Potsdam Potsdam Germany
| | - Antje Herde
- Animal Ecology Institute of Biochemistry and Biology University of Potsdam Potsdam Germany
- Animal Behaviour Faculty of Biology University of Bielefeld Bielefeld Germany
| | - Andrea C Schuster
- Animal Ecology Institute of Biochemistry and Biology University of Potsdam Potsdam Germany
- Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Thilo Liesenjohann
- Animal Ecology Institute of Biochemistry and Biology University of Potsdam Potsdam Germany
- BioConsult SH GmbH & Co. KG Husum Germany
| | - Tatjana Knopp
- Animal Ecology Institute of Biochemistry and Biology University of Potsdam Potsdam Germany
| | - Gerald Heckel
- Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Melanie Dammhahn
- Animal Ecology Institute of Biochemistry and Biology University of Potsdam Potsdam Germany
| |
Collapse
|
16
|
Forero SA, Ophir AG. Multi-Level Effects Driving Cognitive and Behavioral Variability among Prairie Voles: Insights into Reproductive Decision-Making from Biological Levels of Organization. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:225-240. [PMID: 35051922 PMCID: PMC9256755 DOI: 10.1159/000522109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/17/2022] [Indexed: 01/22/2023]
Abstract
Behavioral phenotypes play an active role in maximizing fitness and shaping the evolutionary trajectory of species by offsetting the ecological and social environmental factors individuals experience. How these phenotypes evolve and how they are expressed is still a major question in ethology today. In recent years, an increased focus on the mechanisms that regulate the interactions between an individual and its environment has offered novel insights into the expression of alternative phenotypes. In this review, we explore the proximate mechanisms driving the expression of alternative reproductive phenotypes in the male prairie vole (Microtus ochrogaster) as one example of how the interaction of an individual's social context and internal milieu has the potential to alter behavior, cognition, and reproductive decision-making. Ultimately, integrating the physiological and psychological mechanisms of behavior advances understanding into how variation in behavior arises. We take a "levels of biological organization" approach, with prime focus placed on the level of the organism to discuss how cognitive processes emerge as traits, and how they can be studied as important mechanisms driving the expression of behavior.
Collapse
|
17
|
Lambert CT, Lichter JB, Perry AN, Castillo SA, Keane B, Cushing BS, Solomon NG. Medial amygdala ERα expression influences monogamous behaviour of male prairie voles in the field. Proc Biol Sci 2021; 288:20210318. [PMID: 34344176 PMCID: PMC8334872 DOI: 10.1098/rspb.2021.0318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
Formation of long-term pair-bonds is a complex process, involving multiple neural circuits and is context- and experience-dependent. While laboratory studies using prairie voles have identified the involvement of several neural mechanisms, efforts to translate these findings into predictable field outcomes have been inconsistent at best. Here we test the hypothesis that inhibition of oestrogen receptor alpha (ERα) in the medial amygdala of male prairie voles would significantly increase the expression of social monogamy in the field. Prairie vole populations of equal sex ratio were established in outdoor enclosures with males bred for high levels of ERα expression and low levels of prosocial behaviour associated with social monogamy. Medial amygdala ERα expression was knocked down in half the males per population. Knockdown males displayed a greater degree of social monogamy in five of the eight behavioural indices assessed. This study demonstrates the robust nature of ERα in playing a critical role in the expression of male social monogamy in a field setting.
Collapse
Affiliation(s)
| | | | - Adam N. Perry
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Samuel A. Castillo
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Brian Keane
- Department of Biological Sciences, Miami University—Regionals, Hamilton, OH 45011, USA
| | - Bruce S. Cushing
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | | |
Collapse
|
18
|
Alcohol and oxytocin: Scrutinizing the relationship. Neurosci Biobehav Rev 2021; 127:852-864. [PMID: 34102150 DOI: 10.1016/j.neubiorev.2021.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
The initial enthusiasm towards oxytocin (OXT) as a potential treatment for alcohol use disorder has been recently tempered by recognizing existing gaps in literature and the recent appearance of a relatively small number of clinical studies with negative outcomes. On the other hand, several new studies continue to support the OXT system's potential for such treatment. In this review, we thoroughly analyze existing literature assessing both alcohol's effects on the OXT system and OXT's effects on alcohol-related behaviors. Both rodent and clinical research is discussed. We identify areas that have been studied extensively and those that have been undeservingly understudied. OXT's potential effects on tolerance, withdrawal, craving, anxiety and social behaviors, and how these processes ultimately affect alcohol consumption, are critically explored. We conclude that while OXT can affect alcohol consumption in males and females, more comprehensive studies on OXT's effects on alcohol-related tolerance, withdrawal, craving, anxiety and social affiliations in subjects of both sexes and across several levels of analyses are needed.
Collapse
|
19
|
Abstract
Prairie voles have emerged as an important rodent model for understanding the neuroscience of social behavior. Prairie voles are well known for their capacity for pair bonding and alloparental care. These behavioral phenomena overlap with human social behavior but are not commonly observed in traditional rodent models. In this article, we highlight the many benefits of using prairie voles in neuroscience research. We begin by describing the advantages of using diverse and non-traditional study models. We then focus on social behaviors, including pair bonding, alloparental care, and peer interactions, that have brought voles to the forefront of social neuroscience. We describe many additional features of prairie vole biology and behavior that provide researchers with opportunities to address an array of research questions. We also survey neuroethological methods that have been used with prairie voles, from classic to modern techniques. Finally, we conclude with a discussion of other vole species, particularly meadow voles, and their own unique advantages for neuroscience studies. This article provides a foundation for researchers who are new to working with voles, as well as for experienced neuroscientists who want to expand their research scope. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- William M. Kenkel
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE 19716
| | - Morgan L. Gustison
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
| | - Annaliese K. Beery
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
20
|
Tripp JA, Berrio A, McGraw LA, Matz MV, Davis JK, Inoue K, Thomas JW, Young LJ, Phelps SM. Comparative neurotranscriptomics reveal widespread species differences associated with bonding. BMC Genomics 2021; 22:399. [PMID: 34058981 PMCID: PMC8165761 DOI: 10.1186/s12864-021-07720-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/20/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Pair bonding with a reproductive partner is rare among mammals but is an important feature of human social behavior. Decades of research on monogamous prairie voles (Microtus ochrogaster), along with comparative studies using the related non-bonding meadow vole (M. pennsylvanicus), have revealed many of the neural and molecular mechanisms necessary for pair-bond formation in that species. However, these studies have largely focused on just a few neuromodulatory systems. To test the hypothesis that neural gene expression differences underlie differential capacities to bond, we performed RNA-sequencing on tissue from three brain regions important for bonding and other social behaviors across bond-forming prairie voles and non-bonding meadow voles. We examined gene expression in the amygdala, hypothalamus, and combined ventral pallidum/nucleus accumbens in virgins and at three time points after mating to understand species differences in gene expression at baseline, in response to mating, and during bond formation. RESULTS We first identified species and brain region as the factors most strongly associated with gene expression in our samples. Next, we found gene categories related to cell structure, translation, and metabolism that differed in expression across species in virgins, as well as categories associated with cell structure, synaptic and neuroendocrine signaling, and transcription and translation that varied among the focal regions in our study. Additionally, we identified genes that were differentially expressed across species after mating in each of our regions of interest. These include genes involved in regulating transcription, neuron structure, and synaptic plasticity. Finally, we identified modules of co-regulated genes that were strongly correlated with brain region in both species, and modules that were correlated with post-mating time points in prairie voles but not meadow voles. CONCLUSIONS These results reinforce the importance of pre-mating differences that confer the ability to form pair bonds in prairie voles but not promiscuous species such as meadow voles. Gene ontology analysis supports the hypothesis that pair-bond formation involves transcriptional regulation, and changes in neuronal structure. Together, our results expand knowledge of the genes involved in the pair bonding process and open new avenues of research in the molecular mechanisms of bond formation.
Collapse
Affiliation(s)
- Joel A Tripp
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Alejandro Berrio
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Present Address: Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Lisa A McGraw
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Mikhail V Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jamie K Davis
- Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Kiyoshi Inoue
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - James W Thomas
- National Institutes of Health Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Rockville, MD, USA
| | - Larry J Young
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Steven M Phelps
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
21
|
López-Gutiérrez MF, Gracia-Tabuenca Z, Ortiz JJ, Camacho FJ, Young LJ, Paredes RG, Díaz NF, Portillo W, Alcauter S. Brain functional networks associated with social bonding in monogamous voles. eLife 2021; 10:e55081. [PMID: 33443015 PMCID: PMC7847304 DOI: 10.7554/elife.55081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 01/11/2021] [Indexed: 12/30/2022] Open
Abstract
Previous studies have related pair-bonding in Microtus ochrogaster, the prairie vole, with plastic changes in several brain regions. However, the interactions between these socially relevant regions have yet to be described. In this study, we used resting-state magnetic resonance imaging to explore bonding behaviors and functional connectivity of brain regions previously associated with pair-bonding. Thirty-two male and female prairie voles were scanned at baseline, 24 hr, and 2 weeks after the onset of cohabitation. By using network-based statistics, we identified that the functional connectivity of a corticostriatal network predicted the onset of affiliative behavior, while another predicted the amount of social interaction during a partner preference test. Furthermore, a network with significant changes in time was revealed, also showing associations with the level of partner preference. Overall, our findings revealed the association between network-level functional connectivity changes and social bonding.
Collapse
Affiliation(s)
| | - Zeus Gracia-Tabuenca
- Instituto de Neurobiología, Universidad Nacional Autónoma de MéxicoQuerétaroMexico
| | - Juan J Ortiz
- Instituto de Neurobiología, Universidad Nacional Autónoma de MéxicoQuerétaroMexico
| | - Francisco J Camacho
- Instituto de Neurobiología, Universidad Nacional Autónoma de MéxicoQuerétaroMexico
| | - Larry J Young
- Silvio O Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Department of Psychiatry and Behavioral Sciences, Emory UniversityAtlantaUnited States
| | - Raúl G Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de MéxicoQuerétaroMexico
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de MéxicoQuerétaroMexico
| | - Néstor F Díaz
- Instituto Nacional de Perinatología Isidro Espinosa de los ReyesCiudad de MéxicoMexico
| | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de MéxicoQuerétaroMexico
| | - Sarael Alcauter
- Instituto de Neurobiología, Universidad Nacional Autónoma de MéxicoQuerétaroMexico
| |
Collapse
|
22
|
Coen CW, Bennett NC, Holmes MM, Faulkes CG. Neuropeptidergic and Neuroendocrine Systems Underlying Eusociality and the Concomitant Social Regulation of Reproduction in Naked Mole-Rats: A Comparative Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:59-103. [PMID: 34424513 DOI: 10.1007/978-3-030-65943-1_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The African mole-rat family (Bathyergidae) includes the first mammalian species identified as eusocial: naked mole-rats. Comparative studies of eusocial and solitary mole-rat species have identified differences in neuropeptidergic systems that may underlie the phenomenon of eusociality. These differences are found in the oxytocin, vasopressin and corticotrophin-releasing factor (CRF) systems within the nucleus accumbens, amygdala, bed nucleus of the stria terminalis and lateral septal nucleus. As a corollary of their eusociality, most naked mole-rats remain pre-pubertal throughout life because of the presence of the colony's only reproductive female, the queen. To elucidate the neuroendocrine mechanisms that mediate this social regulation of reproduction, research on the hypothalamo-pituitary-gonadal axis in naked mole-rats has identified differences between the many individuals that are reproductively suppressed and the few that are reproductively mature: the queen and her male consorts. These differences involve gonadal steroids, gonadotrophin-releasing hormone-1 (GnRH-1), kisspeptin, gonadotrophin-inhibitory hormone/RFamide-related peptide-3 (GnIH/RFRP-3) and prolactin. The comparative findings in eusocial and solitary mole-rat species are assessed with reference to a broad range of studies on other mammals.
Collapse
Affiliation(s)
- Clive W Coen
- Reproductive Neurobiology, Division of Women's Health, Faculty of Life Sciences & Medicine, King's College London, London, UK.
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Melissa M Holmes
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Canada.,Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Christopher G Faulkes
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
23
|
Affiliation(s)
- Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.
| |
Collapse
|
24
|
Lichter JB, Lambert CT, Solomon NG, Keane B. Breeding patterns of female prairie voles ( Microtus ochrogaster) displaying alternative reproductive tactics. J Mammal 2020; 101:990-999. [PMID: 33100928 DOI: 10.1093/jmammal/gyaa058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/10/2020] [Indexed: 11/13/2022] Open
Abstract
Individuals of either sex may display alternative behaviors to obtain copulations, but few studies have examined the breeding patterns of females and males in populations where individuals of both sexes exhibit alternative reproductive tactics (ARTs). In prairie voles (Microtus ochrogaster), most adults are territorial, residing at a single nest site either as male-female pairs or as solitary individuals. However, some adults adopt nonterritorial, wandering tactics. During two field seasons monitoring prairie vole populations maintained in seminatural enclosures, we found evidence that females exhibiting different ARTs bred differentially with resident and wandering males. Females residing at a nest with a male bred significantly more often with a paired resident male, primarily their social partner, and significantly less often with male wanderers compared to single resident females or wandering females. These patterns were not due to chance, because paired resident females produced offspring with paired resident males significantly more than expected based on the relative abundance of these males in the population, whereas single resident females produced offspring with male wanderers significantly more than expected based on the proportion of male wanderers in the population. We did not find any evidence that multiple paternity was greater in the litters of single resident females and wanderer females even though these females lacked a male social partner to limit mating access by multiple males. This suggests that mate guarding by a female's male social partner was not the primary determinant of multiple paternity in the litters of females exhibiting different reproductive tactics. However, male ART did affect the likelihood of multiple paternity. Females that produced offspring with single resident or wanderer males had an increased likelihood of multiple paternity relative to females producing offspring with paired resident males. The results of this study show that female and male ARTs can affect breeding patterns.
Collapse
Affiliation(s)
| | - Connor T Lambert
- Department of Biology, Miami University, Oxford, OH, USA.,Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | | | - Brian Keane
- Department of Biological Sciences, Miami University-Hamilton, Hamilton, OH, USA
| |
Collapse
|
25
|
Affiliation(s)
- Nancy G Solomon
- Department of Biology, Miami University, Oxford, OH, United States
| | - Alexander G Ophir
- Department of Psychology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
26
|
Lopes PC, König B. Wild mice with different social network sizes vary in brain gene expression. BMC Genomics 2020; 21:506. [PMID: 32698762 PMCID: PMC7374831 DOI: 10.1186/s12864-020-06911-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Background Appropriate social interactions influence animal fitness by impacting several processes, such as mating, territory defense, and offspring care. Many studies shedding light on the neurobiological underpinnings of social behavior have focused on nonapeptides (vasopressin, oxytocin, and homologues) and on sexual or parent-offspring interactions. Furthermore, animals have been studied under artificial laboratory conditions, where the consequences of behavioral responses may not be as critical as when expressed under natural environments, therefore obscuring certain physiological responses. We used automated recording of social interactions of wild house mice outside of the breeding season to detect individuals at both tails of a distribution of egocentric network sizes (characterized by number of different partners encountered per day). We then used RNA-seq to perform an unbiased assessment of neural differences in gene expression in the prefrontal cortex, the hippocampus and the hypothalamus between these mice with naturally occurring extreme differences in social network size. Results We found that the neurogenomic pathways associated with having extreme social network sizes differed between the sexes. In females, hundreds of genes were differentially expressed between animals with small and large social network sizes, whereas in males very few were. In males, X-chromosome inactivation pathways in the prefrontal cortex were the ones that better differentiated animals with small from those with large social network sizes animals. In females, animals with small network size showed up-regulation of dopaminergic production and transport pathways in the hypothalamus. Additionally, in females, extracellular matrix deposition on hippocampal neurons was higher in individuals with small relative to large social network size. Conclusions Studying neural substrates of natural variation in social behavior in traditional model organisms in their habitat can open new targets of research for understanding variation in social behavior in other taxa.
Collapse
Affiliation(s)
- Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA.
| | - Barbara König
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| |
Collapse
|
27
|
Nowicki JP, Pratchett MS, Walker SPW, Coker DJ, O'Connell LA. Gene expression correlates of social evolution in coral reef butterflyfishes. Proc Biol Sci 2020; 287:20200239. [PMID: 32576103 PMCID: PMC7329040 DOI: 10.1098/rspb.2020.0239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
Animals display remarkable variation in social behaviour. However, outside of rodents, little is known about the neural mechanisms of social variation, and whether they are shared across species and sexes, limiting our understanding of how sociality evolves. Using coral reef butterflyfishes, we examined gene expression correlates of social variation (i.e. pair bonding versus solitary living) within and between species and sexes. In several brain regions, we quantified gene expression of receptors important for social variation in mammals: oxytocin (OTR), arginine vasopressin (V1aR), dopamine (D1R, D2R) and mu-opioid (MOR). We found that social variation across individuals of the oval butterflyfish, Chaetodon lunulatus, is linked to differences in OTR,V1aR, D1R, D2R and MOR gene expression within several forebrain regions in a sexually dimorphic manner. However, this contrasted with social variation among six species representing a single evolutionary transition from pair-bonded to solitary living. Here, OTR expression within the supracommissural part of the ventral telencephalon was higher in pair-bonded than solitary species, specifically in males. These results contribute to the emerging idea that nonapeptide, dopamine and opioid signalling is a central theme to the evolution of sociality across individuals, although the precise mechanism may be flexible across sexes and species.
Collapse
Affiliation(s)
- Jessica P. Nowicki
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4810, Australia
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA 94305, USA
| | - Morgan S. Pratchett
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4810, Australia
| | - Stefan P. W. Walker
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4810, Australia
| | - Darren J. Coker
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4810, Australia
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Lauren A. O'Connell
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA 94305, USA
| |
Collapse
|
28
|
Rigney N, Beaumont R, Petrulis A. Sex differences in vasopressin 1a receptor regulation of social communication within the lateral habenula and dorsal raphe of mice. Horm Behav 2020; 121:104715. [PMID: 32067962 PMCID: PMC7249673 DOI: 10.1016/j.yhbeh.2020.104715] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
The neuropeptide arginine-vasopressin (AVP) has long been implicated in the regulation of social behavior and communication in diverse taxa, often through its actions on the V1a receptor (V1aR) and in a sex-different and steroid-dependent way. One source of sex-different brain AVP is the steroid-sensitive and sexually-dimorphic AVP neurons in the bed nucleus of the stria terminalis (BNST), a cell population that regulates social behavior in a sex-dependent manner. Potential targets of these BNST-AVP cells include the lateral habenula (LHb) and dorsal raphe (DR), areas known to be important for social behavior, yet few studies have investigated AVP action within these regions. Consequently, to test if V1aR action in the LHb or DR controls social behavior in a sexually dimorphic manner, we administered a highly-specific V1aR antagonist (or saline vehicle) in the LHb or DR of C57BL/6 male and female mice and tested its effects on social investigation, social communication (urine marking, ultrasonic vocalizations), and territorial aggression. V1aR antagonism of the LHb or DR decreased male urine marking toward unfamiliar males, but not toward unfamiliar females. Additionally, V1aR blockade of the LHb decreased ultrasonic vocalizations generated in the presence of females. Social investigation, locomotion and aggressive behavior were not altered by V1aR antagonism in either area. Blocking V1aR in the LHb or DR of females had no effect, indicating V1aR action in the DR and LHb drives sex differences in social communication.
Collapse
Affiliation(s)
- Nicole Rigney
- Neuroscience Institute, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Rachael Beaumont
- Neuroscience Institute, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Aras Petrulis
- Neuroscience Institute, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA 30303, USA.
| |
Collapse
|
29
|
|
30
|
Stress in groups: Lessons from non-traditional rodent species and housing models. Neurosci Biobehav Rev 2020; 113:354-372. [PMID: 32278793 DOI: 10.1016/j.neubiorev.2020.03.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/06/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
A major feature of life in groups is that individuals experience social stressors of varying intensity and type. Social stress can have profound effects on health, social behavior, and ongoing relationships. Relationships can also buffer the experience of exogenous stressors. Social stress has most commonly been investigated in dyadic contexts in mice and rats that produce intense stress. Here we review findings from studies of diverse rodents and non-traditional group housing paradigms, focusing on laboratory studies of mice and rats housed in visible burrow systems, prairie and meadow voles, and mole-rats. We argue that the use of methods informed by the natural ecology of rodent species provides novel insights into the relationship between social stress, behavior and physiology. In particular, we describe how this ethologically inspired approach reveals how individuals vary in their experience of and response to social stress, and how ecological and social contexts impact the effects of stress. Social stress induces adaptive changes, as well as long-term disruptive effects on behavior and physiology.
Collapse
|
31
|
Freeman AR, Aulino EA, Caldwell HK, Ophir AG. Comparison of the distribution of oxytocin and vasopressin 1a receptors in rodents reveals conserved and derived patterns of nonapeptide evolution. J Neuroendocrinol 2020; 32:e12828. [PMID: 31925983 DOI: 10.1111/jne.12828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022]
Abstract
Oxytocin (OT) and vasopressin (VP) are known modulators of social behaviour across rodents. Research has revealed the location of action of these nonapeptides through localization of their associated receptors, which include the oxytocin receptor (OTR) and the vasopressin 1a receptor (V1aR). As research into these complex systems has progressed, studies investigating how these systems modulate behaviour have remained relatively narrow in scope (ie, focused on how a single brain region shapes behaviour in only a handful of species). However, the brain regions that regulate social behaviour are part of interconnected neural networks for which coordinated activity enables behavioural variation. Thus, to better understand how nonapeptide systems have evolved under different selective pressures among rodent species, we conducted a meta-analysis using a multivariate comparative method to examine the patterns of OTR and V1aR density expression in this taxon. Several brain regions were highly correlated based on their OTR and V1aR binding patterns across species, supporting the notion that the distribution of these receptors is highly conserved in rodents. However, our results also revealed that specific patterns of V1aR density differed from OTR density, and within-genus variance for V1aR was low compared to between-genus variance, suggesting that these systems have responded and evolved quite differently to selective pressures over evolutionary time. We propose that, in addition to examining single brain regions of interest, taking a broad comparative approach when studying the OT and VP systems is important for understanding how the systemic action of nonapeptides modulate social behaviour across species.
Collapse
Affiliation(s)
| | | | - Heather K Caldwell
- Department of Biological Sciences, Kent State University, Kent, OH, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | | |
Collapse
|
32
|
Madrid JE, Parker KJ, Ophir AG. Variation, plasticity, and alternative mating tactics: Revisiting what we know about the socially monogamous prairie vole. ADVANCES IN THE STUDY OF BEHAVIOR 2020. [DOI: 10.1016/bs.asb.2020.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Sinervo B, Chaine AS, Miles DB. Social Games and Genic Selection Drive Mammalian Mating System Evolution and Speciation. Am Nat 2019; 195:247-274. [PMID: 32017620 DOI: 10.1086/706810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Mating system theory based on economics of resource defense has been applied to describe social system diversity across taxa. Such models are generally successful but fail to account for stable mating systems across different environments or shifts in mating system without a change in ecological conditions. We propose an alternative approach to resource defense theory based on frequency-dependent competition among genetically determined alternative behavioral strategies characterizing many social systems (polygyny, monogamy, sneak). We modeled payoffs for competition, neighborhood choice, and paternal care to determine evolutionary transitions among mating systems. Our model predicts four stable outcomes driven by the balance between cooperative and agonistic behaviors: promiscuity (two or three strategies), polygyny, and monogamy. Phylogenetic analysis of 288 rodent species supports assumptions of our model and is consistent with patterns of evolutionarily stable states and mating system transitions. Support for model assumptions include that monogamy and polygyny evolve from promiscuity and that paternal care and monogamy are coadapted in rodents. As predicted by our model, monogamy and polygyny occur in sister taxa among rodents more often than by chance. Transitions to monogamy also favor higher speciation rates in subsequent lineages, relative to polygynous sister lineages. Taken together, our results suggest that genetically based neighborhood choice behavior and paternal care can drive transitions in mating system evolution. While our genic mating system theory could complement resource-based theory, it can explain mating system transitions regardless of resource distribution and provides alternative explanations, such as evolutionary inertia, when resource ecology and mating systems do not match.
Collapse
|
34
|
Portillo W, Paredes RG. Motivational Drive in Non-copulating and Socially Monogamous Mammals. Front Behav Neurosci 2019; 13:238. [PMID: 31636551 PMCID: PMC6787552 DOI: 10.3389/fnbeh.2019.00238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022] Open
Abstract
Motivational drives guide behaviors in animals of different species, including humans. Some of these motivations, like looking for food and water, are crucial for the survival of the individual and hence for the preservation of the species. But there is at least another motivation that is also important for the survival of the species but not for the survival of the individual. Undoubtedly, sexual motivation is important for individuals to find a mate and reproduce, thus ensuring the survival of the species. In species with sexual reproduction, when males find a female in the appropriate hormonal conditions, they will display sexual behavior. However, some healthy males do not mate when they have access to a sexually receptive female, even though they are repeatedly tested. These non-copulating (NC) individuals have been reported in murine, cricetid and ungulates. In humans this sexual orientation is denominated asexuality. Asexual individuals are physically and emotionally healthy men and women without desire for sexual intercourse. Different species have developed a variety of strategies to find a mate and reproduce. Most species of mammals are polygamous; they mate with one or several partners at the same time, as occur in rats, or they can reproduce with different conspecifics throughout their life span. There are also monogamous species that only mate with one partner. One of the most studied socially monogamous species is the Prairie vole. In this species mating or cohabitation for long periods induces the formation of a long-lasting pair bond. Both males and females share the nest, show a preference for their sexual partner, display aggression to other males and females and display parental behavior towards their pups. This broad spectrum of reproductive strategies demonstrates the biological variability of sexual motivation and points out the importance of understanding the neurobiological basis of sexual motivational drives in different species.
Collapse
Affiliation(s)
- Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Raúl G Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
35
|
Lee W, Hiura LC, Yang E, Broekman KA, Ophir AG, Curley JP. Social status in mouse social hierarchies is associated with variation in oxytocin and vasopressin 1a receptor densities. Horm Behav 2019; 114:104551. [PMID: 31279703 DOI: 10.1016/j.yhbeh.2019.06.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/03/2019] [Accepted: 06/28/2019] [Indexed: 01/15/2023]
Abstract
The neuropeptides oxytocin and vasopressin and their receptors have established roles in the regulation of mammalian social behavior including parental care, sex, affiliation and pair-bonding, but less is known regarding their relationship to social dominance and subordination within social hierarchies. We have previously demonstrated that male mice can form stable linear dominance hierarchies with individuals occupying one of three classes of social status: alpha, subdominant, subordinate. Alpha males exhibit high levels of aggression and rarely receive aggression. Subdominant males exhibit aggression towards subordinate males but also receive aggression from more dominant individuals. Subordinate males rarely exhibit aggression and receive aggression from more dominant males. Here, we examined whether variation in social status was associated with levels of oxytocin (OTR) and vasopressin 1a (V1aR) receptor binding in socially relevant brain regions. We found that socially dominant males had significantly higher OTR binding in the nucleus accumbens core than subordinate animals. Alpha males also had higher OTR binding in the anterior olfactory nucleus, posterior part of the cortical amygdala and rostral lateral septum compared to more subordinate individuals. Conversely, alpha males had lower V1aR binding in the rostral lateral septum and lateral preoptic area compared to subordinates. These observed relationships have two potential explanations. Preexisting individual differences in the patterns of OTR and V1aR binding may underlie behavioral differences that promote or inhibit the acquisition of social status. More likely, the differential social environments experienced by dominant and subordinate animals may shift receptor expression, potentially facilitating the expression of adaptive social behaviors.
Collapse
Affiliation(s)
- Won Lee
- Department of Psychology, Columbia University, New York, NY, USA
| | - Lisa C Hiura
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Eilene Yang
- Department of Psychology, Columbia University, New York, NY, USA
| | - Katherine A Broekman
- Department of Psychology, Columbia University, New York, NY, USA; SUNY Stony Brook University, Stony Brook, NY, USA
| | | | - James P Curley
- Department of Psychology, Columbia University, New York, NY, USA; Center for Integrative Animal Behavior, Columbia University, New York, NY, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
36
|
Fischer EK, Roland AB, Moskowitz NA, Tapia EE, Summers K, Coloma LA, O'Connell LA. The neural basis of tadpole transport in poison frogs. Proc Biol Sci 2019; 286:20191084. [PMID: 31311480 DOI: 10.1098/rspb.2019.1084] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parental care has evolved repeatedly and independently across animals. While the ecological and evolutionary significance of parental behaviour is well recognized, underlying mechanisms remain poorly understood. We took advantage of behavioural diversity across closely related species of South American poison frogs (Family Dendrobatidae) to identify neural correlates of parental behaviour shared across sexes and species. We characterized differences in neural induction, gene expression in active neurons and activity of specific neuronal types in three species with distinct care patterns: male uniparental, female uniparental and biparental. We identified the medial pallium and preoptic area as core brain regions associated with parental care, independent of sex and species. The identification of neurons active during parental care confirms a role for neuropeptides associated with care in other vertebrates as well as identifying novel candidates. Our work is the first to explore neural and molecular mechanisms of parental care in amphibians and highlights the potential for mechanistic studies in closely related but behaviourally variable species to help build a more complete understanding of how shared principles and species-specific diversity govern parental care and other social behaviour.
Collapse
Affiliation(s)
- Eva K Fischer
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | | | - Nora A Moskowitz
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | - Elicio E Tapia
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Otonga, Quito, Ecuador
| | - Kyle Summers
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Luis A Coloma
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Otonga, Quito, Ecuador
| | - Lauren A O'Connell
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| |
Collapse
|
37
|
Freeman AR, Hare JF, Caldwell HK. Central distribution of oxytocin and vasopressin 1a receptors in juvenile Richardson's ground squirrels. J Neurosci Res 2019; 97:772-789. [PMID: 30802986 DOI: 10.1002/jnr.24400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/15/2019] [Accepted: 01/31/2019] [Indexed: 12/30/2022]
Abstract
Oxytocin and vasopressin are well-conserved peptides important to the regulation of numerous aspects of social behavior, including sociality. Research exploring the distribution of the receptors for oxytocin (Oxtr) and for vasopressin (Avpr1a) in mammals has revealed associations between receptor distribution, sociality, and species' mating systems. Given that sociality and gregariousness can be tightly linked to reproduction, these nonapeptides unsurprisingly support affiliative behaviors that are important for mating and offspring care. We localized these receptors in juvenile Richardson's ground squirrel brains to determine whether distribution patterns of Oxtr and Avpr1a that are associated with promiscuous mating systems differ in rodents that also exhibit non-reproductive affiliation. These squirrels are social, colonial, and engage in nepotistic alarm calling behavior and affiliation outside of a reproductive context. Juveniles are the most affiliative age-class and are non-reproductive; making them ideal for examining these associations. We found that juveniles had dense Oxtr binding in the dentate gyrus of the hippocampus, amygdala, lateral septum, bed nucleus of the stria terminalis and medial geniculate nucleus. Juveniles had low to modest levels of Avpr1a binding in the medial preoptic area, olfactory bulbs, nucleus accumbens, superior colliculus, and inferior colliculus. We noted Oxtr and Avpr1a binding in the social behavior neural network (SBNN), further supporting a role of these nonapeptides in modulating social behavior across taxa. Oxtr and Avpr1a binding was also present in brain regions important to auditory processing that have known projections to the SBNN. We speculate that these neural substrates may be where these nonapeptides regulate communication.
Collapse
Affiliation(s)
- Angela R Freeman
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Kent State University, Kent, Ohio
| | - James F Hare
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Heather K Caldwell
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Kent State University, Kent, Ohio.,School of Biomedical Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
38
|
Shuster SM, Willen RM, Keane B, Solomon NG. Alternative Mating Tactics in Socially Monogamous Prairie Voles, Microtus ochrogaster. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Abstract
Genetic monogamy is rare-at least at the level of a species-and monogamy can exist in the absence of sexual fidelity. Rather than focusing on mating exclusivity, it has become common to use the term "social monogamy" to describe a cluster of social features, including the capacity for selective and lasting social bonds, central to what humans call "love." Socially monogamous mammals often exhibit selective aggression toward strangers and form extended families. These features of social monogamy in mammals are supported by patterns of hormonal function originating in the neurobiology of maternity, including oxytocin, as well as a more primitive vasopressin pathway. Another key feature of social monogamy is reduced sexual dimorphism. Processes associated with sexual differentiation offer clues to the mysteries surrounding the evolution of monogamy. Although there is consistency in the necessary ingredients, it is likely that there is no single recipe for social monogamy. As reviewed here, genes for steroids and peptides and their receptors are variable and are subject to epigenetic regulation across the lifespan permitting individual, gender and species variations and providing substrates for evolution. Reduced sensitivity to gonadal androgens, and a concurrent increased reliance on vasopressin (for selective defense) and oxytocin (for selective affiliation) may have offered pathways to the emergence of social monogamy.
Collapse
Affiliation(s)
- C. Sue Carter
- Kinsey Institute, Indiana University, Bloomington, IN, United States
| | | |
Collapse
|
40
|
Sabol AC, Solomon NG, Dantzer B. How to Study Socially Monogamous Behavior in Secretive Animals? Using Social Network Analyses and Automated Tracking Systems to Study the Social Behavior of Prairie Voles. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Sadino JM, Donaldson ZR. Prairie Voles as a Model for Understanding the Genetic and Epigenetic Regulation of Attachment Behaviors. ACS Chem Neurosci 2018. [PMID: 29513516 DOI: 10.1021/acschemneuro.7b00475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over a lifetime, humans build relationships with family, friends, and partners that are critically important for our mental and physical health. Unlike commonly used laboratory mice and rats, Microtine rodents provide a unique model to study the neurobiology underlying pair bonding and the selective attachments that form between adults. Comparisons between monogamous prairie voles and the closely related but nonmonogamous meadow and montane voles have revealed that brain-region-specific neuropeptide receptor patterning modulates social behavior between and within species. In particular, diversity in vasopressin 1a receptor (V1aR) distribution has been linked to individual and species differences in monogamy-related behaviors such as partner preference, mate guarding, and space use. Given the importance of differential receptor expression for regulating social behavior, a critical question has emerged: What are the genetic and epigenetic mechanisms that underlie brain-region-specific receptor patterns? This review will summarize what is known about how the vasopressin (AVP)-V1aR axis regulates social behaviors via signaling in discrete brain regions. From this work, we propose that brain-region-specific regulatory mechanisms facilitate robust evolvability of V1aR expression to generate diverse sociobehavioral traits. Translationally, we provide a perspective on how these studies have contributed to our understanding of human social behaviors and how brain-region-specific regulatory mechanisms might be harnessed for targeted therapies to treat social deficits in psychiatric disorders such as depression, complicated grief, and autism spectrum disorder.
Collapse
Affiliation(s)
- Julie M. Sadino
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Zoe R. Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
42
|
Prounis GS, Thomas K, Ophir AG. Developmental trajectories and influences of environmental complexity on oxytocin receptor and vasopressin 1A receptor expression in male and female prairie voles. J Comp Neurol 2018; 526:1820-1842. [PMID: 29665010 PMCID: PMC5990463 DOI: 10.1002/cne.24450] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/19/2018] [Accepted: 03/26/2018] [Indexed: 12/25/2022]
Abstract
Nonapeptide receptors, like oxytocin receptor (OTR) and vasopressin 1a receptor (V1aR), modulate a variety of functions across taxa, and mediate phenotypic variation within and between species. Despite the popularity of studying nonapeptides in adults, developmental perspectives on properties of OTR and V1aR expression are lacking. Study of prairie voles (Microtus ochrogaster) has facilitated an understanding of mechanisms of social behavior and provides great potential to inform how early life experiences alter phenotype. We provide the first comprehensive profiling of OTR and V1aR in male and female prairie voles across postnatal development and into adulthood. Differences in receptor densities across the forebrain were region- and sex-specific. Postnatal changes in receptor expression fell into four themes: (a) constant over time, (b) increasing with age, (c) decreasing with age, or (d) peaking during late pre-weaning (postnatal day 15-21). We also examined the influence of post-weaning social and spatial enrichment (i.e., environmental complexity) on OTR and V1aR. Environmental complexity appeared to promote expression of OTR in males and females, and reduced expression of V1aR across several brain regions in males. Our results show that nonapeptide receptor profiles are plastic over development and suggest that different patterns of expression might represent functional differences in sensitivity to nonapeptide activation over a period when social environments are dynamic. Our results on environmental complexity suggest that nonapeptide sensitivity responds flexibly to different environmental contexts during development. Understanding the developmental trajectories of nonapeptide receptors provides a better understanding of the dynamic nature of social behavior and the underlying mechanisms.
Collapse
Affiliation(s)
| | - Kyle Thomas
- Department of Zoology, Oklahoma State University, Stillwater, OK
74078
| | | |
Collapse
|
43
|
Williamson CM, Klein IS, Lee W, Curley JP. Immediate early gene activation throughout the brain is associated with dynamic changes in social context. Soc Neurosci 2018; 14:253-265. [PMID: 29781376 DOI: 10.1080/17470919.2018.1479303] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Social competence is dependent on successful processing of social context information. The social opportunity paradigm is a methodology in which dynamic shifts in social context are induced through removal of the alpha male in a dominance hierarchy, leading to rapid ascent in the hierarchy of the beta male and of other subordinate males in the social group. In the current study, we use the social opportunity paradigm to determine what brain regions respond to this dynamic change in social context, allowing an individual to recognize the absence of the alpha male and subsequently perform status-appropriate social behaviors. Replicating our previous work, we show that following removal of the alpha male, beta males rapidly ascend the social hierarchy and attain dominant status by increasing aggression towards more subordinate individuals. Analysis of patterns of Fos immunoreactivity throughout the brain indicates that in individuals undergoing social ascent, there is increased activity in regions of the social behavior network, as well as the infralimbic and prelimbic regions of the prefrontal cortex and areas of the hippocampus. Our findings demonstrate that male mice are able to respond to changes in social context and provide insight into the how the brain processes these complex behavioral changes.
Collapse
Affiliation(s)
- Cait M Williamson
- a Department of Psychology , Columbia University , New York , NY , USA
| | - Inbal S Klein
- a Department of Psychology , Columbia University , New York , NY , USA
| | - Won Lee
- a Department of Psychology , Columbia University , New York , NY , USA
| | - James P Curley
- a Department of Psychology , Columbia University , New York , NY , USA.,b Department of Psychology , UT Austin , Austin , TX , USA
| |
Collapse
|
44
|
French JA, Cavanaugh J, Mustoe AC, Carp SB, Womack SL. Social Monogamy in Nonhuman Primates: Phylogeny, Phenotype, and Physiology. JOURNAL OF SEX RESEARCH 2018; 55:410-434. [PMID: 28704071 PMCID: PMC6004613 DOI: 10.1080/00224499.2017.1339774] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monogamy as a social system has been both a scientific puzzle and a sociocultural issue for decades. In this review, we examine social monogamy from a comparative perspective with a focus on primates, our closest genetic relatives. We break down monogamy into component elements, including pair-bonding and partner preference, mate guarding or jealousy, social attachment, and biparental care. Our survey of primates shows that not all features are present in species classified as socially monogamous, in the same way that human monogamous relationships may not include all elements-a perspective we refer to as "monogamy à la carte." Our review includes a survey of the neurobiological correlates of social monogamy in primates, exploring unique or common pathways for the elemental components of monogamy. This compilation reveals that the components of monogamy are modulated by a suite of androgenic steroids, glucocorticoid hormones, the nonapeptide hormones oxytocin and vasopressin, and other neurotransmitter systems (e.g., dopamine and opioids). We propose that efforts to understand the biological underpinnings of complex human and animal sociosexual relationships will be well served by exploring individual phenotypic traits, as opposed to pursuing these questions with the assumption that monogamy is a unitary trait or a species-specific characteristic.
Collapse
Affiliation(s)
- Jeffrey A French
- a Department of Psychology and Department of Biology , University of Nebraska Omaha
| | - Jon Cavanaugh
- b Department of Psychology , University of Nebraska Omaha
| | - Aaryn C Mustoe
- b Department of Psychology , University of Nebraska Omaha
| | - Sarah B Carp
- b Department of Psychology , University of Nebraska Omaha
| | | |
Collapse
|
45
|
Renn SC, Machado HE, Duftner N, Sessa AK, Harris RM, Hofmann HA. Gene expression signatures of mating system evolution. Genome 2018; 61:287-297. [DOI: 10.1139/gen-2017-0075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The diversity of mating systems among animals is astounding. Importantly, similar mating systems have evolved even across distantly related taxa. However, our understanding of the mechanisms underlying these convergently evolved phenotypes is limited. Here, we examine on a genomic scale the neuromolecular basis of social organization in cichlids of the tribe Ectodini from Lake Tanganyika. Using field-collected males and females of four closely related species representing two independent evolutionary transitions from polygyny to monogamy, we take a comparative transcriptomic approach to test the hypothesis that these independent transitions have recruited similar gene sets. Our results demonstrate that while lineage and species exert a strong influence on neural gene expression profiles, social phenotype can also drive gene expression evolution. Specifically, 331 genes (∼6% of those assayed) were associated with monogamous mating systems independent of species or sex. Among these genes, we find a strong bias (4:1 ratio) toward genes with increased expression in monogamous individuals. A highly conserved nonapeptide system known to be involved in the regulation of social behavior across animals was not associated with mating system in our analysis. Overall, our findings suggest deep molecular homologies underlying the convergent or parallel evolution of monogamy in different cichlid lineages of Ectodini.
Collapse
Affiliation(s)
| | - Heather E. Machado
- Department of Biology, Reed College
- Department of Biology, Stanford University
| | - Nina Duftner
- Department of Integrative Biology, the University of Texas at Austin
| | - Anna K. Sessa
- Department of Integrative Biology, the University of Texas at Austin
| | - Rayna M. Harris
- Department of Integrative Biology, the University of Texas at Austin
- Institute for Cellular and Molecular Biology, the University of Texas at Austin
| | - Hans A. Hofmann
- Department of Integrative Biology, the University of Texas at Austin
- Institute for Cellular and Molecular Biology, the University of Texas at Austin
- Center for Computational Biology and Bioinformatics, Institute for Neuroscience, the University of Texas at Austin
| |
Collapse
|
46
|
|
47
|
Kelly AM, Hiura LC, Saunders AG, Ophir AG. Oxytocin Neurons Exhibit Extensive Functional Plasticity Due To Offspring Age in Mothers and Fathers. Integr Comp Biol 2018; 57:603-618. [PMID: 28957529 DOI: 10.1093/icb/icx036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The needs of offspring change as they develop. Thus, parents should concomitantly change their investment based on the age-related needs of the offspring as they mature. Due to the high costs of parental care, it is optimal for parents to exhibit a shift from intense caregiving of young offspring to promoting independence in older offspring. Yet, the neural mechanisms that underlie shifts in parental behavior are poorly understood, and little is known about how the parental brain responds to offspring of different ages. To elucidate mechanisms that relate to shifts in parental behavior as offspring develop, we examined behavioral and neural responses of male and female prairie voles (Microtus ochrogaster), a biparental rodent, to interactions with offspring at different stages of development (ranging from neonatal to weaning age). Importantly, in biparental species, males and females may adjust their behavior differentially as offspring develop. Because the nonapeptides, vasopressin (VP) and oxytocin (OT), are well known for modulating aspects of parental care, we focused on functional activity of distinct VP and OT cell groups within the maternal and paternal brain in response to separation from, reunion (after a brief period of separation) with, or no separation from offspring of different ages. We found several differences in the neural responses of individual VP and OT cell groups that varied based on the age of pups and sex of the parent. Hypothalamic VP neurons exhibit similar functional responses in both mothers and fathers. However, hypothalamic and amygdalar OT neurons exhibit differential functional responses to being separated from pups based on the sex of the parent. Our results also reveal that the developmental stage of offspring significantly impacts neural function within OT, but not VP, cell groups of both mothers and fathers. These findings provide insight into the functional plastic capabilities of the nonapeptide system, specifically in relation to parental behavior. Identifying neural mechanisms that exhibit functional plasticity can elucidate one way in which animals are able to shift behavior on relatively short timescales in order to exhibit the most context-appropriate and adaptive behaviors.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Lisa C Hiura
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
48
|
Delevan CJ, Rodriguez NA, Legzim KM, Aliou F, Parker JT, Bamshad M. Physical separation from the mate diminishes male's attentiveness towards other females: a study in monogamous prairie voles Microtus ochrogaster. Curr Zool 2018; 63:537-544. [PMID: 29492013 PMCID: PMC5804201 DOI: 10.1093/cz/zow087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/27/2016] [Indexed: 11/13/2022] Open
Abstract
We tested whether continuous cohabitation in monogamous voles affects the mated male's attentiveness to his breeding partner versus another female. Each male was housed in a 3-chamber apparatus with a Focal female (FF) and a Control female (CF) for 13 days then placed in a T-maze to assess his attentiveness to and memory of those females. The Distal male remained physically separated from both females, but received their distal cues. The Separate male cohabited with the FF for 3 days then remained physically separated from both females. The Disrupt male's continuous cohabitation with the FF was disrupted by having him physically separated from her after 10 days and placed with the CF for the last 3 days. The Continuous male cohabited continuously with the FF for 13 days. With females in the T-maze, the Separate and Disrupt males spent more time near the FF's box and the Disrupt males spent more time manipulating the FF's box than the CF's box. The Separate males groomed themselves more when near the FF's box than the CF's box. The Distal and Continuous males' attentiveness to the two females did not differ. Results suggest that physical distance from the partner may reduce male's attentiveness toward other potential mates. Prairie voles might be similar to socially monogamous primates in using tactile cues as a signal for maintaining their social bonds.
Collapse
Affiliation(s)
- Christine J Delevan
- Department of Biological Sciences, Lehman College-The City University of New York, Bronx, NY 10468, USA
| | - Natalia A Rodriguez
- Department of Biological Sciences, Lehman College-The City University of New York, Bronx, NY 10468, USA
| | - Karine M Legzim
- Department of Biological Sciences, Lehman College-The City University of New York, Bronx, NY 10468, USA
| | - Fayeza Aliou
- Department of Biological Sciences, Lehman College-The City University of New York, Bronx, NY 10468, USA
| | - Jamie T Parker
- Department of Biological Sciences, Lehman College-The City University of New York, Bronx, NY 10468, USA
| | - Maryam Bamshad
- Department of Biological Sciences, Lehman College-The City University of New York, Bronx, NY 10468, USA
| |
Collapse
|
49
|
Kelly AM, Saunders AG, Ophir AG. Mechanistic substrates of a life history transition in male prairie voles: Developmental plasticity in affiliation and aggression corresponds to nonapeptide neuronal function. Horm Behav 2018; 99:14-24. [PMID: 29407458 PMCID: PMC5880752 DOI: 10.1016/j.yhbeh.2018.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/12/2018] [Accepted: 01/23/2018] [Indexed: 11/17/2022]
Abstract
Although prairie vole (Microtus ochrogaster) social behavior is well-characterized in adults, surprisingly little is known about the development of social behavior in voles. Further, the overwhelming majority of studies in prairie voles examine social behavior in a reproductive context. Here, we examine developmental plasticity in affiliation and aggression and their underlying neural correlates. Using sexually naïve males, we characterized interactions with an age-matched, novel, same-sex conspecific in four different age groups that span pre-weaning to adulthood. We found that prosocial behavior decreased and aggression increased as males matured. Additionally, pre-weaning males were more prosocial than nonsocial, whereas post-weaning males were more nonsocial than prosocial. We also examined nonapeptide neural activity in response to a novel conspecific in brain regions important for promoting sociality and aggression using the immediate early gene cFos. Assessment of developmental changes in neural activity showed that vasopressin neurons in the medial bed nucleus of the stria terminalis exhibit functional plasticity, providing a potential functional mechanism that contributes to this change in sociality as prairie voles mature. This behavioral shift corresponds to the transition from a period of allopatric cohabitation with siblings to a period of time when voles disperse and presumably attempt to establish and defend territories. Taken together our data provide a putative mechanism by which brain and behavior prepare for the opportunity to pairbond (characterized by selective affiliation with a partner and aggression toward unfamiliar conspecifics) by undergoing changes away from general affiliation and toward selective aggression, accounting for this important life history event.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
50
|
Willett JA, Johnson AG, Vogel AR, Patisaul HB, McGraw LA, Meitzen J. Nucleus accumbens core medium spiny neuron electrophysiological properties and partner preference behavior in the adult male prairie vole, Microtus ochrogaster. J Neurophysiol 2018; 119:1576-1588. [PMID: 29361665 DOI: 10.1152/jn.00737.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Medium spiny neurons (MSNs) in the nucleus accumbens have long been implicated in the neurobiological mechanisms that underlie numerous social and motivated behaviors as studied in rodents such as rats. Recently, the prairie vole has emerged as an important model animal for studying social behaviors, particularly regarding monogamy because of its ability to form pair bonds. However, to our knowledge, no study has assessed intrinsic vole MSN electrophysiological properties or tested how these properties vary with the strength of the pair bond between partnered voles. Here we performed whole cell patch-clamp recordings of MSNs in acute brain slices of the nucleus accumbens core (NAc) of adult male voles exhibiting strong and weak preferences for their respective partnered females. We first document vole MSN electrophysiological properties and provide comparison to rat MSNs. Vole MSNs demonstrated many canonical electrophysiological attributes shared across species but exhibited notable differences in excitability compared with rat MSNs. Second, we assessed male vole partner preference behavior and tested whether MSN electrophysiological properties varied with partner preference strength. Male vole partner preference showed extensive variability. We found that decreases in miniature excitatory postsynaptic current amplitude and the slope of the evoked action potential firing rate to depolarizing current injection weakly associated with increased preference for the partnered female. This suggests that excitatory synaptic strength and neuronal excitability may be decreased in MSNs in males exhibiting stronger preference for a partnered female. Overall, these data provide extensive documentation of MSN electrophysiological characteristics and their relationship to social behavior in the prairie vole. NEW & NOTEWORTHY This research represents the first assessment of prairie vole nucleus accumbens core medium spiny neuron intrinsic electrophysiological properties and probes the relationship between cellular excitability and social behavior.
Collapse
Affiliation(s)
- Jaime A Willett
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Graduate Program in Physiology, North Carolina State University , Raleigh, North Carolina
| | - Ashlyn G Johnson
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina
| | - Andrea R Vogel
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Graduate Program in Genetics, North Carolina State University , Raleigh, North Carolina
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Center for Human Health and the Environment, North Carolina State University , Raleigh, North Carolina
| | - Lisa A McGraw
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Graduate Program in Genetics, North Carolina State University , Raleigh, North Carolina
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Center for Human Health and the Environment, North Carolina State University , Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina
| |
Collapse
|