1
|
Wang B, Wei B, Lu L, Liu S, Ge W, Sun M. A heterozygous variation of PINK1 is potentially associated with essential tremor in a Chinese family. Neurogenetics 2025; 26:45. [PMID: 40418408 DOI: 10.1007/s10048-025-00827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025]
Abstract
Essential tremor (ET) is a common movement disorder, but its pathophysiologic mechanisms remain elusive. So far, a few genes/loci have been identified, but because of genetic heterogeneity, the genetic etiology of ET is still one of the main challenges. In this study, we report an autosomal dominant ET Chinese pedigree in which the patients presented with involuntary tremor of the head or upper limbs, with a slow progression of symptoms, no difficulty in starting and turning, no slow walking, no other significant findings were noted on neurological examination. A heterozygous missense mutation (c.158G > A, p.G53D) in PINK1 (PTEN-induced kinase 1) was identified by whole-exome sequencing of four affected individuals from this ET family. Confirmed by Sanger sequencing, we find that this PINK1 missense variant co-segregate with ET phenotypes in this pedigree with all the affected subjects, showing clear genotype-phenotype correlation. In addition, the new missense mutation was functionally analyzed by western blotting and mitochondrial membrane potential assay after cell transfection. It was found that PINK1 may play a protective role for cells, whereas the c.158G > A (p.G53D) missense mutation leads to a loss of cellular protection, thereby increasing cellular sensitivity to stress. Thus, this study provides a heterozygous missense mutation in PINK1 potentially associated with ET.
Collapse
Affiliation(s)
- Bin Wang
- Department of Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Bin Wei
- Department of Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Likui Lu
- Department of Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Sha Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Wei Ge
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Miao Sun
- Department of Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- State Key Laboratory for Complex Severe and Rare Diseases, School of Basic Medicine, McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
2
|
Oettinger D, Yamamoto A. Autophagy Dysfunction and Neurodegeneration: Where Does It Go Wrong? J Mol Biol 2025:169219. [PMID: 40383464 DOI: 10.1016/j.jmb.2025.169219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/24/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
An infamous hallmark of neurodegenerative diseases is the accumulation of misfolded or unfolded proteins forming inclusions in the brain. The accumulation of these abnormal structures is a mysterious one, given that cells devote significant resources to integrate complementary pathways to ensure proteome integrity and proper protein folding. Aberrantly folded protein species are rapidly targeted for disposal by the ubiquitin-proteasome system (UPS), and even if this should fail, and the species accumulates, the cell can also rely on the lysosome-mediated degradation pathways of autophagy. Despite the many safeguards in place, failure to maintain protein homeostasis commonly occurs during, or preceding, the onset of disease. Over the last decade and a half, studies suggest that the failure of autophagy may explain the disruption in protein homeostasis observed in disease. In this review, we will examine how the highly complex cells of the brain can become vulnerable to failure of aggregate clearance at specific points during the processive pathway of autophagy, contributing to aggregate accumulation in brains with neurodegenerative disease.
Collapse
Affiliation(s)
- Daphne Oettinger
- Doctoral Program for Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Departments of Neurology and Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Lucchesi M, Biso L, Bonaso M, Longoni B, Buchignani B, Battini R, Santorelli FM, Doccini S, Scarselli M. Mitochondrial Dysfunction in Genetic and Non-Genetic Parkinson's Disease. Int J Mol Sci 2025; 26:4451. [PMID: 40362688 PMCID: PMC12072996 DOI: 10.3390/ijms26094451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Mitochondrial dysfunction is a hallmark of Parkinson's disease (PD) pathogenesis, contributing to increased oxidative stress and impaired endo-lysosomal-proteasome system efficiency underlying neuronal injury. Genetic studies have identified 19 monogenic mutations-accounting for ~10% of PD cases-that affect mitochondrial function and are associated with early- or late-onset PD. Early-onset forms typically involve genes encoding proteins essential for mitochondrial quality control, including mitophagy and structural maintenance, while late-onset mutations impair mitochondrial dynamics, bioenergetics, and trafficking. Atypical juvenile genetic syndromes also exhibit mitochondrial abnormalities. In idiopathic PD, environmental neurotoxins such as pesticides and MPTP act as mitochondrial inhibitors, disrupting complex I activity and increasing reactive oxygen species. These converging pathways underscore mitochondria as a central node in PD pathology. This review explores the overlapping and distinct mitochondrial mechanisms in genetic and non-genetic PD, emphasizing their role in neuronal vulnerability. Targeting mitochondrial dysfunction finally offers a promising therapeutic avenue to slow or modify disease progression by intervening at a key point of neurodegenerative convergence.
Collapse
Affiliation(s)
| | - Letizia Biso
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.B.); (M.B.); (B.L.); (B.B.); (M.S.)
| | - Marco Bonaso
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.B.); (M.B.); (B.L.); (B.B.); (M.S.)
| | - Biancamaria Longoni
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.B.); (M.B.); (B.L.); (B.B.); (M.S.)
| | - Bianca Buchignani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.B.); (M.B.); (B.L.); (B.B.); (M.S.)
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Marco Scarselli
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.B.); (M.B.); (B.L.); (B.B.); (M.S.)
| |
Collapse
|
4
|
Pahal S, Mainali N, Balasubramaniam M, Shmookler Reis RJ, Ayyadevara S. Mitochondria in aging and age-associated diseases. Mitochondrion 2025; 82:102022. [PMID: 40023438 DOI: 10.1016/j.mito.2025.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Mitochondria, essential for cellular energy, are crucial in neurodegenerative disorders (NDDs) and their age-related progression. This review highlights mitochondrial dynamics, mitovesicles, homeostasis, and organelle communication. We examine mitochondrial impacts from aging and NDDs, focusing on protein aggregation and dysfunction. Prospective therapeutic approaches include enhancing mitophagy, improving respiratory chain function, maintaining calcium and lipid balance, using microRNAs, and mitochondrial transfer to protect function. These strategies underscore the crucial role of mitochondrial health in neuronal survival and cognitive functions, offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Sonu Pahal
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A
| | - Nirjal Mainali
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A
| | | | - Robert J Shmookler Reis
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Central Arkansas Veterans Healthcare Service, Little Rock AR 72205, U.S.A.
| | - Srinivas Ayyadevara
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Central Arkansas Veterans Healthcare Service, Little Rock AR 72205, U.S.A.
| |
Collapse
|
5
|
Mallik B, Frank CA. Mitochondrial Complex I and ROS control synapse function through opposing pre- and postsynaptic mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630694. [PMID: 39803545 PMCID: PMC11722341 DOI: 10.1101/2024.12.30.630694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Neurons require high amounts energy, and mitochondria help to fulfill this requirement. Dysfunctional mitochondria trigger problems in various neuronal tasks. Using the Drosophila neuromuscular junction (NMJ) as a model synapse, we previously reported that Mitochondrial Complex I (MCI) subunits were required for maintaining NMJ function and growth. Here we report tissue-specific adaptations at the NMJ when MCI is depleted. In Drosophila motor neurons, MCI depletion causes profound cytological defects and increased mitochondrial reactive oxygen species (ROS). But instead of diminishing synapse function, neuronal ROS triggers a homeostatic signaling process that maintains normal NMJ excitation. We identify molecules mediating this compensatory response. MCI depletion in muscles also enhances local ROS. But high levels of muscle ROS cause destructive responses: synapse degeneration, mitochondrial fragmentation, and impaired neurotransmission. In humans, mutations affecting MCI subunits cause severe neurological and neuromuscular diseases. The tissue-level effects that we describe in the Drosophila system are potentially relevant to forms of mitochondrial pathogenesis.
Collapse
Affiliation(s)
- Bhagaban Mallik
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - C. Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| |
Collapse
|
6
|
Chidambaram R, Kumar K, Parashar S, Ramachandran G, Chen S, Ferro-Novick S. PINK1 controls RTN3L-mediated ER autophagy by regulating peripheral tubule junctions. J Cell Biol 2024; 223:e202407193. [PMID: 39556341 PMCID: PMC11575451 DOI: 10.1083/jcb.202407193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 11/19/2024] Open
Abstract
Here, we report that the RTN3L-SEC24C endoplasmic reticulum autophagy (ER-phagy) receptor complex, the CUL3KLHL12 E3 ligase that ubiquitinates RTN3L, and the FIP200 autophagy initiating protein, target mutant proinsulin (Akita) condensates for lysosomal delivery at ER tubule junctions. When delivery was blocked, Akita condensates accumulated in the ER. In exploring the role of tubulation in these events, we unexpectedly found that loss of the Parkinson's disease protein, PINK1, reduced peripheral tubule junctions and blocked ER-phagy. Overexpression of the PINK1 kinase substrate, DRP1, increased junctions, reduced Akita condensate accumulation, and restored lysosomal delivery in PINK1-depleted cells. DRP1 is a dual-functioning protein that promotes ER tubulation and severs mitochondria at ER-mitochondria contact sites. DRP1-dependent ER tubulating activity was sufficient for suppression. Supporting these findings, we observed PINK1 associating with ER tubules. Our findings show that PINK1 shapes the ER to target misfolded proinsulin for RTN3L-SEC24C-mediated macro-ER-phagy at defined ER sites called peripheral junctions. These observations may have important implications for understanding Parkinson's disease.
Collapse
Affiliation(s)
- Ravi Chidambaram
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Kamal Kumar
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Smriti Parashar
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Gowsalya Ramachandran
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Shuliang Chen
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Susan Ferro-Novick
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Safreena N, Nair IC, Chandra G. Therapeutic potential of Parkin and its regulation in Parkinson's disease. Biochem Pharmacol 2024; 230:116600. [PMID: 39500382 DOI: 10.1016/j.bcp.2024.116600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/14/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the midbrain substantia nigra, resulting in motor and non-motor symptoms. While the exact etiology of PD remains elusive, a growing body of evidence suggests that dysfunction in the parkin protein plays a pivotal role in the pathogenesis of the disease. Parkin is an E3 ubiquitin ligase that ubiquitinates substrate proteins to control a number of crucial cellular processes including protein catabolism, immune response, and cellular apoptosis.While autosomal recessive mutations in the PARK2 gene, which codes for parkin, are linked to an inherited form of early-onset PD, heterozygous mutations in PARK2 have also been reported in the more commonly occurring sporadic PD cases. Impairment of parkin's E3 ligase activity is believed to play a pathogenic role in both familial and sporadic forms of PD.This article provides an overview of the current understanding of the mechanistic basis of parkin's E3 ligase activity, its major physiological role in controlling cellular functions, and how these are disrupted in familial and sporadic PD. The second half of the manuscript explores the currently available and potential therapeutic strategies targeting parkin structure and/or function in order to slow down or mitigate the progressive neurodegeneration in PD.
Collapse
Affiliation(s)
- Narukkottil Safreena
- Cell Biology Laboratory, Center for Development and Aging Research, Inter University Center for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam 686009, Kerala, India
| | - Indu C Nair
- SAS SNDP Yogam College, Konni, Pathanamthitta 689691, Kerala, India
| | - Goutam Chandra
- Cell Biology Laboratory, Center for Development and Aging Research, Inter University Center for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam 686009, Kerala, India.
| |
Collapse
|
8
|
Ravindran S, Rau CD. The multifaceted role of mitochondria in cardiac function: insights and approaches. Cell Commun Signal 2024; 22:525. [PMID: 39472951 PMCID: PMC11523909 DOI: 10.1186/s12964-024-01899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
Cardiovascular disease (CVD) remains a global economic burden even in the 21st century with 85% of deaths resulting from heart attacks. Despite efforts in reducing the risk factors, and enhancing pharmacotherapeutic strategies, challenges persist in early identification of disease progression and functional recovery of damaged hearts. Targeting mitochondrial dysfunction, a key player in the pathogenesis of CVD has been less successful due to its role in other coexisting diseases. Additionally, it is the only organelle with an agathokakological function that is a remedy and a poison for the cell. In this review, we describe the origins of cardiac mitochondria and the role of heteroplasmy and mitochondrial subpopulations namely the interfibrillar, subsarcolemmal, perinuclear, and intranuclear mitochondria in maintaining cardiac function and in disease-associated remodeling. The cumulative evidence of mitochondrial retrograde communication with the nucleus is addressed, highlighting the need to study the genotype-phenotype relationships of specific organelle functions with CVD by using approaches like genome-wide association study (GWAS). Finally, we discuss the practicality of computational methods combined with single-cell sequencing technologies to address the challenges of genetic screening in the identification of heteroplasmy and contributory genes towards CVD.
Collapse
Affiliation(s)
- Sriram Ravindran
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA
| | - Christoph D Rau
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA.
| |
Collapse
|
9
|
Couto-Lima CA, Machado MCR, Anhezini L, Oliveira MT, Molina RADS, da Silva RR, Lopes GS, Trinca V, Colón DF, Peixoto PM, Monesi N, Alberici LC, Ramos RGP, Espreafico EM. EMC1 Is Required for the Sarcoplasmic Reticulum and Mitochondrial Functions in the Drosophila Muscle. Biomolecules 2024; 14:1258. [PMID: 39456191 PMCID: PMC11506464 DOI: 10.3390/biom14101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
EMC1 is part of the endoplasmic reticulum (ER) membrane protein complex, whose functions include the insertion of transmembrane proteins into the ER membrane, ER-mitochondria contact, and lipid exchange. Here, we show that the Drosophila melanogaster EMC1 gene is expressed in the somatic musculature and the protein localizes to the sarcoplasmic reticulum (SR) network. Muscle-specific EMC1 RNAi led to severe motility defects and partial late pupae/early adulthood lethality, phenotypes that are rescued by co-expression with an EMC1 transgene. Motility impairment in EMC1-depleted flies was associated with aberrations in muscle morphology in embryos, larvae, and adults, including tortuous and misaligned fibers with reduced size and weakness. They were also associated with an altered SR network, cytosolic calcium overload, and mitochondrial dysfunction and dysmorphology that impaired membrane potential and oxidative phosphorylation capacity. Genes coding for ER stress sensors, mitochondrial biogenesis/dynamics, and other EMC components showed altered expression and were mostly rescued by the EMC1 transgene expression. In conclusion, EMC1 is required for the SR network's mitochondrial integrity and influences underlying programs involved in the regulation of muscle mass and shape. We believe our data can contribute to the biology of human diseases caused by EMC1 mutations.
Collapse
Affiliation(s)
- Carlos Antonio Couto-Lima
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Department of Biotechnology, College of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal 14884-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Maiaro Cabral Rosa Machado
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Lucas Anhezini
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió 57072-900, AL, Brazil
| | - Marcos Túlio Oliveira
- Department of Biotechnology, College of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal 14884-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Roberto Augusto da Silva Molina
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Rodrigo Ribeiro da Silva
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Gabriel Sarti Lopes
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Vitor Trinca
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - David Fernando Colón
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Pablo M. Peixoto
- Baruch College and Graduate Center, The City University of New York, New York, NY 10010, USA
| | - Nadia Monesi
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Luciane Carla Alberici
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Ricardo Guelerman P. Ramos
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Enilza Maria Espreafico
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| |
Collapse
|
10
|
Narendra DP, Youle RJ. The role of PINK1-Parkin in mitochondrial quality control. Nat Cell Biol 2024; 26:1639-1651. [PMID: 39358449 DOI: 10.1038/s41556-024-01513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024]
Abstract
Mitophagy mediated by the recessive Parkinson's disease genes PINK1 and Parkin responds to mitochondrial damage to preserve mitochondrial function. In the pathway, PINK1 is the damage sensor, probing the integrity of the mitochondrial import pathway, and activating Parkin when import is blocked. Parkin is the effector, selectively marking damaged mitochondria with ubiquitin for mitophagy and other quality-control processes. This selective mitochondrial quality-control pathway may be especially critical for dopamine neurons affected in Parkinson's disease, in which the mitochondrial network is widely distributed throughout a highly branched axonal arbor. Here we review the current understanding of the role of PINK1-Parkin in the quality control of mitophagy, including sensing of mitochondrial distress by PINK1, activation of Parkin by PINK1 to induce mitophagy, and the physiological relevance of the PINK1-Parkin pathway.
Collapse
Affiliation(s)
- Derek P Narendra
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Chen Y, Gao R, Fang J, Ding S. A review: Polysaccharides targeting mitochondria to improve obesity. Int J Biol Macromol 2024; 277:134448. [PMID: 39102922 DOI: 10.1016/j.ijbiomac.2024.134448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Polysaccharides are one of the most important and widely used bioactive components of natural products, which can be used to treat metabolic diseases. Natural polysaccharides (NPs) have been the subject of much study and research in the field of treating obesity in recent years. Studies in the past have demonstrated that mitochondria are important for the initiation, progression, and management of obesity. Additionally, NPs have the ability to improve mitochondrial dysfunction via a variety of mechanisms. This review summarized the relationship between the structure of NPs and their anti-obesity activity, focusing on the anti-obesity effects of these compounds at the mitochondrial level. We discussed the association between the structure and anti-obesity action of NPs, including molecular weight, monosaccharide composition, glycosidic linkage, conformation and extraction methods. Furthermore, NPs can demonstrate a range of functions in adipose tissue, including but not limited to improving the mitochondrial oxidative respiratory chain, inhibiting oxidative stress, and maintaining mitochondrial mass homeostasis. The purpose of this work is to acquire a thorough understanding of the function that mitochondria play in the anti-obesity effects of NPs and to offer fresh insights for the investigation of how NPs prevent obesity and the creation of natural anti-obesity medications.
Collapse
Affiliation(s)
- Yongchao Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China
| | - Rong Gao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China.
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China.
| |
Collapse
|
12
|
Hushmandi K, Einollahi B, Aow R, Suhairi SB, Klionsky DJ, Aref AR, Reiter RJ, Makvandi P, Rabiee N, Xu Y, Nabavi N, Saadat SH, Farahani N, Kumar AP. Investigating the interplay between mitophagy and diabetic neuropathy: Uncovering the hidden secrets of the disease pathology. Pharmacol Res 2024; 208:107394. [PMID: 39233055 PMCID: PMC11934918 DOI: 10.1016/j.phrs.2024.107394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mitophagy, the cellular process of selectively eliminating damaged mitochondria, plays a crucial role in maintaining metabolic balance and preventing insulin resistance, both key factors in type 2 diabetes mellitus (T2DM) development. When mitophagy malfunctions in diabetic neuropathy, it triggers a cascade of metabolic disruptions, including reduced energy production, increased oxidative stress, and cell death, ultimately leading to various complications. Thus, targeting mitophagy to enhance the process may have emerged as a promising therapeutic strategy for T2DM and its complications. Notably, plant-derived compounds with β-cell protective and mitophagy-stimulating properties offer potential as novel therapeutic agents. This review highlights the intricate mechanisms linking mitophagy dysfunction to T2DM and its complications, particularly neuropathy, elucidating potential therapeutic interventions for this debilitating disease.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rachel Aow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suhana Binte Suhairi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Pooyan Makvandi
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India; University Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
13
|
Brogyanyi T, Kejík Z, Veselá K, Dytrych P, Hoskovec D, Masařik M, Babula P, Kaplánek R, Přibyl T, Zelenka J, Ruml T, Vokurka M, Martásek P, Jakubek M. Iron chelators as mitophagy agents: Potential and limitations. Biomed Pharmacother 2024; 179:117407. [PMID: 39265234 DOI: 10.1016/j.biopha.2024.117407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Mitochondrial autophagy (mitophagy) is very important process for the maintenance of cellular homeostasis, functionality and survival. Its dysregulation is associated with high risk and progression numerous serious diseases (e.g., oncological, neurodegenerative and cardiovascular ones). Therefore, targeting mitophagy mechanisms is very hot topic in the biological and medicinal research. The interrelationships between the regulation of mitophagy and iron homeostasis are now becoming apparent. In short, mitochondria are central point for the regulation of iron homeostasis, but change in intracellular cheatable iron level can induce/repress mitophagy. In this review, relationships between iron homeostasis and mitophagy are thoroughly discussed and described. Also, therapeutic applicability of mitophagy chelators in the context of individual diseases is comprehensively and critically evaluated.
Collapse
Affiliation(s)
- Tereza Brogyanyi
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic; Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 1, Prague 28 53, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, Prague 121 08, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, Prague 121 08, Czech Republic
| | - Michal Masařik
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Petr Babula
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Tomáš Přibyl
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 1, Prague 28 53, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic.
| |
Collapse
|
14
|
Sevegnani M, Lama A, Girardi F, Hess MW, Castelo MP, Pichler I, Biressi S, Piccoli G. Parkin R274W mutation affects muscle and mitochondrial physiology. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167302. [PMID: 38878834 DOI: 10.1016/j.bbadis.2024.167302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Recessive mutations in the Parkin gene (PRKN) are the most common cause of young-onset inherited parkinsonism. Parkin is a multifunctional E3 ubiquitin ligase that plays a variety of roles in the cell including the degradation of proteins and the maintenance of mitochondrial homeostasis, integrity, and biogenesis. In 2001, the R275W mutation in the PRKN gene was identified in two unrelated families with a multigenerational history of postural tremor, dystonia and parkinsonism. Drosophila models of Parkin R275W showed selective and progressive degeneration of dopaminergic neuronal clusters, mitochondrial abnormalities, and prominent climbing defects. In the Prkn mouse orthologue, the amino acid R274 corresponds to human R275. Here we described an age-related motor impairment and a muscle phenotype in R274W +/+ mice. In vitro, Parkin R274W mutation correlates with abnormal myoblast differentiation, mitochondrial defects, and alteration in mitochondrial mRNA and protein levels. Our data suggest that the Parkin R274W mutation may impact mitochondrial physiology and eventually myoblast proliferation and differentiation.
Collapse
Affiliation(s)
| | - Adriano Lama
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Michael W Hess
- Innsbruck Medical University, Institute of Histology and Embryology, Medical University of Innsbruck, Austria
| | - Maria Paulina Castelo
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | | | | |
Collapse
|
15
|
Chlubek M, Baranowska-Bosiacka I. Selected Functions and Disorders of Mitochondrial Metabolism under Lead Exposure. Cells 2024; 13:1182. [PMID: 39056765 PMCID: PMC11275214 DOI: 10.3390/cells13141182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Mitochondria play a fundamental role in the energy metabolism of eukaryotic cells. Numerous studies indicate lead (Pb) as a widely occurring environmental factor capable of disrupting oxidative metabolism by modulating the mitochondrial processes. The multitude of known molecular targets of Pb and its strong affinity for biochemical pathways involving divalent metals suggest that it may pose a health threat at any given dose. Changes in the bioenergetics of cells exposed to Pb have been repeatedly demonstrated in research, primarily showing a reduced ability to synthesize ATP. In addition, lead interferes with mitochondrial-mediated processes essential for maintaining homeostasis, such as apoptosis, mitophagy, mitochondrial dynamics, and the inflammatory response. This article describes selected aspects of mitochondrial metabolism in relation to potential mechanisms of energy metabolism disorders induced by Pb.
Collapse
Affiliation(s)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| |
Collapse
|
16
|
Naoi M, Maruyama W, Shamoto-Nagai M, Riederer P. Toxic interactions between dopamine, α-synuclein, monoamine oxidase, and genes in mitochondria of Parkinson's disease. J Neural Transm (Vienna) 2024; 131:639-661. [PMID: 38196001 DOI: 10.1007/s00702-023-02730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
Parkinson's disease is characterized by its distinct pathological features; loss of dopamine neurons in the substantia nigra pars compacta and accumulation of Lewy bodies and Lewy neurites containing modified α-synuclein. Beneficial effects of L-DOPA and dopamine replacement therapy indicate dopamine deficit as one of the main pathogenic factors. Dopamine and its oxidation products are proposed to induce selective vulnerability in dopamine neurons. However, Parkinson's disease is now considered as a generalized disease with dysfunction of several neurotransmitter systems caused by multiple genetic and environmental factors. The pathogenic factors include oxidative stress, mitochondrial dysfunction, α-synuclein accumulation, programmed cell death, impaired proteolytic systems, neuroinflammation, and decline of neurotrophic factors. This paper presents interactions among dopamine, α-synuclein, monoamine oxidase, its inhibitors, and related genes in mitochondria. α-Synuclein inhibits dopamine synthesis and function. Vice versa, dopamine oxidation by monoamine oxidase produces toxic aldehydes, reactive oxygen species, and quinones, which modify α-synuclein, and promote its fibril production and accumulation in mitochondria. Excessive dopamine in experimental models modifies proteins in the mitochondrial electron transport chain and inhibits the function. α-Synuclein and familiar Parkinson's disease-related gene products modify the expression and activity of monoamine oxidase. Type A monoamine oxidase is associated with neuroprotection by an unspecific dose of inhibitors of type B monoamine oxidase, rasagiline and selegiline. Rasagiline and selegiline prevent α-synuclein fibrillization, modulate this toxic collaboration, and exert neuroprotection in experimental studies. Complex interactions between these pathogenic factors play a decisive role in neurodegeneration in PD and should be further defined to develop new therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan.
| | - Wakako Maruyama
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Masayo Shamoto-Nagai
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Peter Riederer
- Clinical Neurochemistry, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
- Department of Psychiatry, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
17
|
Liao JZ, Chung HL, Shih C, Wong KKL, Dutta D, Nil Z, Burns CG, Kanca O, Park YJ, Zuo Z, Marcogliese PC, Sew K, Bellen HJ, Verheyen EM. Cdk8/CDK19 promotes mitochondrial fission through Drp1 phosphorylation and can phenotypically suppress pink1 deficiency in Drosophila. Nat Commun 2024; 15:3326. [PMID: 38637532 PMCID: PMC11026413 DOI: 10.1038/s41467-024-47623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Cdk8 in Drosophila is the orthologue of vertebrate CDK8 and CDK19. These proteins have been shown to modulate transcriptional control by RNA polymerase II. We found that neuronal loss of Cdk8 severely reduces fly lifespan and causes bang sensitivity. Remarkably, these defects can be rescued by expression of human CDK19, found in the cytoplasm of neurons, suggesting a non-nuclear function of CDK19/Cdk8. Here we show that Cdk8 plays a critical role in the cytoplasm, with its loss causing elongated mitochondria in both muscles and neurons. We find that endogenous GFP-tagged Cdk8 can be found in both the cytoplasm and nucleus. We show that Cdk8 promotes the phosphorylation of Drp1 at S616, a protein required for mitochondrial fission. Interestingly, Pink1, a mitochondrial kinase implicated in Parkinson's disease, also phosphorylates Drp1 at the same residue. Indeed, overexpression of Cdk8 significantly suppresses the phenotypes observed in flies with low levels of Pink1, including elevated levels of ROS, mitochondrial dysmorphology, and behavioral defects. In summary, we propose that Pink1 and Cdk8 perform similar functions to promote Drp1-mediated fission.
Collapse
Affiliation(s)
- Jenny Zhe Liao
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, V5A1S6, BC, Canada
- Center for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, V5A1S6, BC, Canada
| | - Hyung-Lok Chung
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Claire Shih
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, V5A1S6, BC, Canada
- Center for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, V5A1S6, BC, Canada
| | - Kenneth Kin Lam Wong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, V5A1S6, BC, Canada
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zelha Nil
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Catherine Grace Burns
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ye-Jin Park
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Paul C Marcogliese
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, R3E0J9, MB, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, R3E3P4, MB, Canada
| | - Katherine Sew
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, V5A1S6, BC, Canada
- Center for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, V5A1S6, BC, Canada
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Institute, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, V5A1S6, BC, Canada.
- Center for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, V5A1S6, BC, Canada.
| |
Collapse
|
18
|
Dagar S, Sharma M, Tsaprailis G, Tapia CS, Crynen G, Joshi PS, Shahani N, Subramaniam S. Ribosome Profiling and Mass Spectrometry Reveal Widespread Mitochondrial Translation Defects in a Striatal Cell Model of Huntington Disease. Mol Cell Proteomics 2024; 23:100746. [PMID: 38447791 PMCID: PMC11040134 DOI: 10.1016/j.mcpro.2024.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024] Open
Abstract
Huntington disease (HD) is caused by an expanded polyglutamine mutation in huntingtin (mHTT) that promotes prominent atrophy in the striatum and subsequent psychiatric, cognitive deficits, and choreiform movements. Multiple lines of evidence point to an association between HD and aberrant striatal mitochondrial functions; however, the present knowledge about whether (or how) mitochondrial mRNA translation is differentially regulated in HD remains unclear. We found that protein synthesis is diminished in HD mitochondria compared to healthy control striatal cell models. We utilized ribosome profiling (Ribo-Seq) to analyze detailed snapshots of ribosome occupancy of the mitochondrial mRNA transcripts in control and HD striatal cell models. The Ribo-Seq data revealed almost unaltered ribosome occupancy on the nuclear-encoded mitochondrial transcripts involved in oxidative phosphorylation (SDHA, Ndufv1, Timm23, Tomm5, Mrps22) in HD cells. By contrast, ribosome occupancy was dramatically increased for mitochondrially encoded oxidative phosphorylation mRNAs (mt-Nd1, mt-Nd2, mt-Nd4, mt-Nd4l, mt-Nd5, mt-Nd6, mt-Co1, mt-Cytb, and mt-ATP8). We also applied tandem mass tag-based mass spectrometry identification of mitochondrial proteins to derive correlations between ribosome occupancy and actual mature mitochondrial protein products. We found many mitochondrial transcripts with comparable or higher ribosome occupancy, but diminished mitochondrial protein products, in HD. Thus, our study provides the first evidence of a widespread dichotomous effect on ribosome occupancy and protein abundance of mitochondria-related genes in HD.
Collapse
Affiliation(s)
- Sunayana Dagar
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Manish Sharma
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - George Tsaprailis
- Proteomics Core, The Wertheim UF Scripps Institute, Jupiter, Florida, USA
| | | | - Gogce Crynen
- Bioinformatics and Statistics Core, The Wertheim UF Scripps Institute, Jupiter, Florida, USA
| | - Preksha Sandipkumar Joshi
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Neelam Shahani
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, California, USA; Norman Fixel Institute for Neurological Diseases, Gainesville, Florida, USA.
| |
Collapse
|
19
|
Chen S, Chen W, Li Z, Yue J, Yung KKL, Li R. Regulation of PM 2.5 on mitochondrial damage in H9c2 cells through miR-421/SIRT3 pathway and protective effect of miR-421 inhibitor and resveratrol. J Environ Sci (China) 2024; 138:288-300. [PMID: 38135396 DOI: 10.1016/j.jes.2023.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 12/24/2023]
Abstract
Fine particulate matter (PM2.5) exposure is associated with cardiovascular disease (CVD) morbidity and mortality. Mitochondria are sensitive targets of PM2.5, and mitochondrial dysfunction is closely related to the occurrence of CVD. The epigenetic mechanism of PM2.5-triggered mitochondrial injury of cardiomyocytes is unclear. This study focused on the miR-421/SIRT3 signaling pathway to investigate the regulatory mechanism in cardiac mitochondrial dynamics imbalance in rat H9c2 cells induced by PM2.5. Results illustrated that PM2.5 impaired mitochondrial function and caused dynamics homeostasis imbalance. Besides, PM2.5 up-regulated miR-421 and down-regulated SIRT3 gene expression, along with decreasing p-FOXO3a (SIRT3 downstream target gene) and p-Parkin expression and triggering abnormal expression of fusion gene OPA1 and fission gene Drp1. Further, miR-421 inhibitor (miR-421i) and resveratrol significantly elevated the SIRT3 levels in H9c2 cells after PM2.5 exposure and mediated the expression of SOD2, OPA1 and Drp1, restoring the mitochondrial morphology and function. It suggests that miR-421/SIRT3 pathway plays an epigenetic regulatory role in mitochondrial damage induced by PM2.5 and that miR-421i and resveratrol exert protective effects against PM2.5-incurred cardiotoxicity.
Collapse
Affiliation(s)
- Shanshan Chen
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Wenqi Chen
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Zhiping Li
- Institute of Judicial Identification Techniques for Environmental Damage, Shanxi University and Shanxi Unisdom Testing Technology Co., Ltd., Taiyuan 030006, China
| | - Jianwei Yue
- Institute of Judicial Identification Techniques for Environmental Damage, Shanxi University and Shanxi Unisdom Testing Technology Co., Ltd., Taiyuan 030006, China
| | - Ken Kin Lam Yung
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China; Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China; Institute of Judicial Identification Techniques for Environmental Damage, Shanxi University and Shanxi Unisdom Testing Technology Co., Ltd., Taiyuan 030006, China; Shanxi Yellow River Laboratory, Taiyuan 030006, China.
| |
Collapse
|
20
|
Wang Z, Yang T, Zeng M, Wang Z, Chen Q, Chen J, Christian M, He Z. Mitophagy suppression by miquelianin-rich lotus leaf extract induces 'beiging' of white fat via AMPK/DRP1-PINK1/PARKIN signaling axis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2597-2609. [PMID: 37991930 DOI: 10.1002/jsfa.13143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Lotus (Nelumbo nucifera) leaf has been described to have anti-obesity activity, but the role of white fat 'browning' or 'beiging' in its beneficial metabolic actions remains unclear. Here, 3T3-L1 cells and high-fat-diet (HFD)-fed mice were used to evaluate the effects of miquelianin-rich lotus leaf extract (LLE) on white-to-beige fat conversion and its regulatory mechanisms. RESULTS Treatment with LLE increased mitochondrial abundance, mitochondrial membrane potential and NAD+ /NADH ratio in 3T3-L1 cells, suggesting its potential in promoting mitochondrial activity. qPCR and/or western blotting analysis confirmed that LLE induced the expression of beige fat-enriched gene signatures (e.g. Sirt1, Cidea, Dio2, Prdm16, Ucp1, Cd40, Cd137, Cited1) and mitochondrial biogenesis-related markers (e.g. Nrf1, Cox2, Cox7a, Tfam) in 3T3-L1 cells and inguinal white adipose tissue of HFD-fed mice. Furthermore, we found that LLE treatment inhibited mitochondrial fission protein DRP1 and blocked mitophagy markers such as PINK1, PARKIN, BECLIN1 and LC-3B. Chemical inhibition experiments revealed that AMPK/DRP1 signaling was required for LLE-induced beige fat formation via suppressing PINK1/PARKIN/mitophagy. CONCLUSION Our data reveal a novel mechanism underlying the anti-obesity effect of LLE, namely the induction of white fat beiging via AMPK/DRP1/mitophagy signaling. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Tian Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
21
|
Zhang Y, Yang J, Ouyang C, Meng N. The association between ferroptosis and autophagy in cardiovascular diseases. Cell Biochem Funct 2024; 42:e3985. [PMID: 38509716 DOI: 10.1002/cbf.3985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Autophagy is a process in which cells degrade intracellular substances and play a variety of roles in cells, such as maintaining intracellular homeostasis, preventing cell overgrowth, and removing pathogens. It is highly conserved during the evolution of eukaryotic cells. So far, the study of autophagy is still a hot topic in the field of cytology. Ferroptosis is an iron-dependent form of cell death, accompanied by the accumulation of reactive oxygen species and lipid peroxides. With the deepening of research, it has been found that ferroptosis, like autophagy, is involved in the occurrence and development of cardiovascular diseases. The relationship between autophagy and ferroptosis is complex, and the association between the two in cardiovascular disease remains to be clarified. This article reviews the mechanism of autophagy and ferroptosis and their correlation, and discusses the relationship between them in cardiovascular diseases, which is expected to provide new and important treatment strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Junjun Yang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
22
|
Gu Y, Zhang J, Zhao X, Nie W, Xu X, Liu M, Zhang X. Olfactory dysfunction and its related molecular mechanisms in Parkinson's disease. Neural Regen Res 2024; 19:583-590. [PMID: 37721288 PMCID: PMC10581567 DOI: 10.4103/1673-5374.380875] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 09/19/2023] Open
Abstract
Changes in olfactory function are considered to be early biomarkers of Parkinson's disease. Olfactory dysfunction is one of the earliest non-motor features of Parkinson's disease, appearing in about 90% of patients with early-stage Parkinson's disease, and can often predate the diagnosis by years. Therefore, olfactory dysfunction should be considered a reliable marker of the disease. However, the mechanisms responsible for olfactory dysfunction are currently unknown. In this article, we clearly explain the pathology and medical definition of olfactory function as a biomarker for early-stage Parkinson's disease. On the basis of the findings of clinical olfactory function tests and animal model experiments as well as neurotransmitter expression levels, we further characterize the relationship between olfactory dysfunction and neurodegenerative diseases as well as the molecular mechanisms underlying olfactory dysfunction in the pathology of early-stage Parkinson's disease. The findings highlighted in this review suggest that olfactory dysfunction is an important biomarker for preclinical-stage Parkinson's disease. Therefore, therapeutic drugs targeting non-motor symptoms such as olfactory dysfunction in the early stage of Parkinson's disease may prevent or delay dopaminergic neurodegeneration and reduce motor symptoms, highlighting the potential of identifying effective targets for treating Parkinson's disease by inhibiting the deterioration of olfactory dysfunction.
Collapse
Affiliation(s)
- Yingying Gu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Jiaying Zhang
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xinru Zhao
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Wenyuan Nie
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaole Xu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Mingxuan Liu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaoling Zhang
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
23
|
Wang H, Luo W, Chen H, Cai Z, Xu G. Mitochondrial dynamics and mitochondrial autophagy: Molecular structure, orchestrating mechanism and related disorders. Mitochondrion 2024; 75:101847. [PMID: 38246334 DOI: 10.1016/j.mito.2024.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Mitochondrial dynamics and autophagy play essential roles in normal cellular physiological activities, while abnormal mitochondrial dynamics and mitochondrial autophagy can cause cancer and related disorders. Abnormal mitochondrial dynamics usually occur in parallel with mitochondrial autophagy. Both have been reported to have a synergistic effect and can therefore complement or inhibit each other. Progress has been made in understanding the classical mitochondrial PINK1/Parkin pathway and mitochondrial dynamical abnormalities. Still, the mechanisms and regulatory pathways underlying the interaction between mitophagy and mitochondrial dynamics remain unexplored. Like other existing reviews, we review the molecular structure of proteins involved in mitochondrial dynamics and mitochondrial autophagy, and how their abnormalities can lead to the development of related diseases. We will also review the individual or synergistic effects of abnormal mitochondrial dynamics and mitophagy leading to cellular proliferation, differentiation and invasion. In addition, we explore the mechanisms underlying mitochondrial dynamics and mitochondrial autophagy to contribute to targeted and precise regulation of mitochondrial function. Through the study of abnormal mitochondrial dynamics and mitochondrial autophagy regulation mechanisms, as well as the role of early disease development, effective targets for mitochondrial function regulation can be proposed to enable accurate diagnosis and treatment of the associated disorders.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China; Guangzhou Medical University, Guangzhou 511495, China
| | - Wenjun Luo
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China
| | - Haoyu Chen
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China
| | - Zhiduan Cai
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China.
| | - Guibin Xu
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510230, China.
| |
Collapse
|
24
|
Zhang LW, Feng HQ, Fu SB, Sun DJ. Low Selenium and Low Protein Exacerbate Myocardial Damage in Keshan Disease by Affecting the PINK1/Parkin-mediated Mitochondrial Autophagy Pathway. Curr Med Sci 2024; 44:93-101. [PMID: 38393524 DOI: 10.1007/s11596-024-2834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/25/2023] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Keshan disease (KD) is a myocardial mitochondrial disease closely related to insufficient selenium (Se) and protein intake. PTEN induced putative kinase 1 (PINK1)/Parkin mediated mitochondrial autophagy regulates various physiological and pathological processes in the body. This study aimed to elucidate the relationship between PINK1/Parkin-regulated mitochondrial autophagy and KD-related myocardial injury. METHODS A low Se and low protein animal model was established. One hundred Wistar rats were randomly divided into 5 groups (control group, low Se group, low protein group, low Se + low protein group, and corn from KD area group). The JC-1 method was used to detect the mitochondrial membrane potential (MMP). ELISA was used to detect serum creatine kinase MB (CK-MB), cardiac troponin I (cTnI), and mitochondrial-glutamicoxalacetic transaminase (M-GOT) levels. RT-PCR and Western blot analysis were used to detect the expression of PINK1, Parkin, sequestome 1 (P62), and microtubule-associated proteins1A/1B light chain 3B (MAP1LC3B). RESULTS The MMP was significantly decreased and the activity of CK-MB, cTnI, and M-GOT significantly increased in each experimental group (low Se group, low protein group, low Se + low protein group and corn from KD area group) compared with the control group (P<0.05 for all). The mRNA and protein expression levels of PINK1, Parkin and MAP1LC3B were profoundly increased, and those of P62 markedly decreased in the experimental groups compared with the control group (P<0.05 for all). CONCLUSION Low Se and low protein levels exacerbate myocardial damage in KD by affecting the PINK1/Parkin-mediated mitochondrial autophagy pathway.
Collapse
Affiliation(s)
- Li-Wei Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin, 150086, China
| | - Hong-Qi Feng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin, 150086, China
| | - Song-Bo Fu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin, 150086, China
| | - Dian-Jun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin, 150086, China.
| |
Collapse
|
25
|
Marchesan E, Nardin A, Mauri S, Bernardo G, Chander V, Di Paola S, Chinellato M, von Stockum S, Chakraborty J, Herkenne S, Basso V, Schrepfer E, Marin O, Cendron L, Medina DL, Scorrano L, Ziviani E. Activation of Ca 2+ phosphatase Calcineurin regulates Parkin translocation to mitochondria and mitophagy in flies. Cell Death Differ 2024; 31:217-238. [PMID: 38238520 PMCID: PMC10850161 DOI: 10.1038/s41418-023-01251-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 02/09/2024] Open
Abstract
Selective removal of dysfunctional mitochondria via autophagy is crucial for the maintenance of cellular homeostasis. This event is initiated by the translocation of the E3 ubiquitin ligase Parkin to damaged mitochondria, and it requires the Serine/Threonine-protein kinase PINK1. In a coordinated set of events, PINK1 operates upstream of Parkin in a linear pathway that leads to the phosphorylation of Parkin, Ubiquitin, and Parkin mitochondrial substrates, to promote ubiquitination of outer mitochondrial membrane proteins. Ubiquitin-decorated mitochondria are selectively recruiting autophagy receptors, which are required to terminate the organelle via autophagy. In this work, we show a previously uncharacterized molecular pathway that correlates the activation of the Ca2+-dependent phosphatase Calcineurin to Parkin translocation and Parkin-dependent mitophagy. Calcineurin downregulation or genetic inhibition prevents Parkin translocation to CCCP-treated mitochondria and impairs stress-induced mitophagy, whereas Calcineurin activation promotes Parkin mitochondrial recruitment and basal mitophagy. Calcineurin interacts with Parkin, and promotes Parkin translocation in the absence of PINK1, but requires PINK1 expression to execute mitophagy in MEF cells. Genetic activation of Calcineurin in vivo boosts basal mitophagy in neurons and corrects locomotor dysfunction and mitochondrial respiratory defects of a Drosophila model of impaired mitochondrial functions. Our study identifies Calcineurin as a novel key player in the regulation of Parkin translocation and mitophagy.
Collapse
Affiliation(s)
| | - Alice Nardin
- Department of Biology, University of Padova, Padova, Italy
| | - Sofia Mauri
- Department of Biology, University of Padova, Padova, Italy
| | - Greta Bernardo
- Department of Biology, University of Padova, Padova, Italy
| | - Vivek Chander
- Department of Biology, University of Padova, Padova, Italy
| | - Simone Di Paola
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Napoli, Italy
| | | | | | | | | | | | - Emilie Schrepfer
- Department of Biology, University of Padova, Padova, Italy
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Oriano Marin
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Padova, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Luca Scorrano
- Department of Biology, University of Padova, Padova, Italy
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Elena Ziviani
- Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
26
|
Narwal S, Singh A, Tare M. Analysis of α-syn and parkin interaction in mediating neuronal death in Drosophila model of Parkinson's disease. Front Cell Neurosci 2024; 17:1295805. [PMID: 38239290 PMCID: PMC10794313 DOI: 10.3389/fncel.2023.1295805] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024] Open
Abstract
One of the hallmarks of Parkinson's Disease (PD) is aggregation of incorrectly folded α-synuclein (SNCA) protein resulting in selective death of dopaminergic neurons. Another form of PD is characterized by the loss-of-function of an E3-ubiquitin ligase, parkin. Mutations in SNCA and parkin result in impaired mitochondrial morphology, causing loss of dopaminergic neurons. Despite extensive research on the individual effects of SNCA and parkin, their interactions in dopaminergic neurons remain understudied. Here we employ Drosophila model to study the effect of collective overexpression of SNCA along with the downregulation of parkin in the dopaminergic neurons of the posterior brain. We found that overexpression of SNCA along with downregulation of parkin causes a reduction in the number of dopaminergic neuronal clusters in the posterior region of the adult brain, which is manifested as progressive locomotor dysfunction. Overexpression of SNCA and downregulation of parkin collectively results in altered mitochondrial morphology in a cluster-specific manner, only in a subset of dopaminergic neurons of the brain. Further, we found that SNCA overexpression causes transcriptional downregulation of parkin. However, this downregulation is not further enhanced upon collective SNCA overexpression and parkin downregulation. This suggests that the interactions of SNCA and parkin may not be additive. Our study thus provides insights into a potential link between α-synuclein and parkin interactions. These interactions result in altered mitochondrial morphology in a cluster-specific manner for dopaminergic neurons over a time, thus unraveling the molecular interactions involved in the etiology of Parkinson's Disease.
Collapse
Affiliation(s)
- Sonia Narwal
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Meghana Tare
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| |
Collapse
|
27
|
Yu J, Chen G, Zhu H, Zhong Y, Yang Z, Jian Z, Xiong X. Metabolic and proteostatic differences in quiescent and active neural stem cells. Neural Regen Res 2024; 19:43-48. [PMID: 37488842 PMCID: PMC10479840 DOI: 10.4103/1673-5374.375306] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 07/26/2023] Open
Abstract
Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis. Therefore, neural regeneration may be a promising target for treatment of many neurological illnesses. The regenerative capacity of adult neural stem cells can be characterized by two states: quiescent and active. Quiescent adult neural stem cells are more stable and guarantee the quantity and quality of the adult neural stem cell pool. Active adult neural stem cells are characterized by rapid proliferation and differentiation into neurons which allow for integration into neural circuits. This review focuses on differences between quiescent and active adult neural stem cells in nutrition metabolism and protein homeostasis. Furthermore, we discuss the physiological significance and underlying advantages of these differences. Due to the limited number of adult neural stem cells studies, we referred to studies of embryonic adult neural stem cells or non-mammalian adult neural stem cells to evaluate specific mechanisms.
Collapse
Affiliation(s)
- Jiacheng Yu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Gang Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhenxing Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
28
|
Al-Mutairy EA, Al Qattan S, Khalid M, Al-Enazi AA, Al-Saif MM, Imtiaz F, Ramzan K, Raveendran V, Alaiya A, Meyer BF, Atamas SP, Collison KS, Khabar KS, Hasday JD, Al-Mohanna F. Wild-type S100A3 and S100A13 restore calcium homeostasis and mitigate mitochondrial dysregulation in pulmonary fibrosis patient-derived cells. Front Cell Dev Biol 2023; 11:1282868. [PMID: 38099297 PMCID: PMC10720433 DOI: 10.3389/fcell.2023.1282868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Patients with digenic S100A3 and S100A13 mutations exhibited an atypical and progressive interstitial pulmonary fibrosis, with impaired intracellular calcium homeostasis and mitochondrial dysfunction. Here we provide direct evidence of a causative effect of the mutation on receptor mediated calcium signaling and calcium store responses in control cells transfected with mutant S100A3 and mutant S100A13. We demonstrate that the mutations lead to increased mitochondrial mass and hyperpolarization, both of which were reversed by transfecting patient-derived cells with the wild type S100A3 and S100A13, or extracellular treatment with the recombinant proteins. In addition, we demonstrate increased secretion of inflammatory mediators in patient-derived cells and in control cells transfected with the mutant-encoding constructs. These findings indicate that treatment of patients' cells with recombinant S100A3 and S100A13 proteins is sufficient to normalize most of cellular responses, and may therefore suggest the use of these recombinant proteins in the treatment of this devastating disease.
Collapse
Affiliation(s)
- Eid A. Al-Mutairy
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Somaya Al Qattan
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohammed Khalid
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Azizah A. Al-Enazi
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Maher M. Al-Saif
- BioMolecular Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Faiqa Imtiaz
- Clinical Genomics, Center of Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khushnooda Ramzan
- Clinical Genomics, Center of Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Vineesh Raveendran
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ayodele Alaiya
- Stem Cell Therapy Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Brian F. Meyer
- Clinical Genomics, Center of Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sergei P. Atamas
- University of Maryland School of Medicine, Baltimore, MD, United States
- Baltimore VA Medical Center, Baltimore, MD, United States
| | - Kate S. Collison
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khalid S. Khabar
- BioMolecular Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Jeffrey D. Hasday
- University of Maryland School of Medicine, Baltimore, MD, United States
- Baltimore VA Medical Center, Baltimore, MD, United States
| | - Futwan Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Zheng X, Liu K, Xie Q, Xin H, Chen W, Lin S, Feng D, Zhu T. PHB2 Alleviates Neurotoxicity of Prion Peptide PrP 106-126 via PINK1/Parkin-Dependent Mitophagy. Int J Mol Sci 2023; 24:15919. [PMID: 37958902 PMCID: PMC10647768 DOI: 10.3390/ijms242115919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Prion diseases are a group of neurodegenerative diseases characterized by mitochondrial dysfunction and neuronal death. Mitophagy is a selective form of macroautophagy that clears injured mitochondria. Prohibitin 2 (PHB2) has been identified as a novel inner membrane mitophagy receptor that mediates mitophagy. However, the role of PHB2 in prion diseases remains unclear. In this study, we isolated primary cortical neurons from rats and used the neurotoxic prion peptide PrP106-126 as a cell model for prion diseases. We examined the role of PHB2 in PrP106-126-induced mitophagy using Western blotting and immunofluorescence microscopy and assessed the function of PHB2 in PrP106-126-induced neuronal death using the cell viability assay and the TUNEL assay. The results showed that PrP106-126 induced mitochondrial morphological abnormalities and mitophagy in primary cortical neurons. PHB2 was found to be indispensable for PrP106-126-induced mitophagy and was involved in the accumulation of PINK1 and recruitment of Parkin to mitochondria in primary neurons. Additionally, PHB2 depletion exacerbated neuronal cell death induced by PrP106-126, whereas the overexpression of PHB2 alleviated PrP106-126 neuronal toxicity. Taken together, this study demonstrated that PHB2 is indispensable for PINK1/Parkin-mediated mitophagy in PrP106-126-treated neurons and protects neurons against the neurotoxicity of the prion peptide.
Collapse
Affiliation(s)
- Xiaohui Zheng
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China (K.L.); (Q.X.)
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kun Liu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China (K.L.); (Q.X.)
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingqing Xie
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China (K.L.); (Q.X.)
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hangkuo Xin
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China (K.L.); (Q.X.)
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China (K.L.); (Q.X.)
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengyu Lin
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China (K.L.); (Q.X.)
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Danqi Feng
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China (K.L.); (Q.X.)
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ting Zhu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China (K.L.); (Q.X.)
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
30
|
Sharma AK, El Andaloussi A, Ismail N. Evasion of host antioxidative response via disruption of NRF2 signaling in fatal Ehrlichia-induced liver injury. PLoS Pathog 2023; 19:e1011791. [PMID: 37956169 PMCID: PMC10681308 DOI: 10.1371/journal.ppat.1011791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Ehrlichia is Gram negative obligate intracellular bacterium that cause human monocytotropic ehrlichiosis (HME). HME is characterized by acute liver damage and inflammation that may progress to fatal toxic shock. We previously showed that fatal ehrlichiosis is due to deleterious activation of inflammasome pathways, which causes excessive inflammation and liver injury. Mammalian cells have developed mechanisms to control oxidative stress via regulation of nuclear factor erythroid 2 related 2 (NRF2) signaling. However, the contribution of NRF2 signaling to Ehrlichia-induced inflammasome activation and liver damage remains elusive. In this study, we investigated the contribution of NRF2 signaling in hepatocytes (HCs) to the pathogenesis of Ehrlichia-induced liver injury following infection with virulent Ixodes ovatus Ehrlichia (IOE, AKA E. japonica). Employing murine model of fatal ehrlichiosis, we found that virulent IOE inhibited NRF2 signaling in liver tissue of infected mice and in HCs as evidenced by downregulation of NRF2 expression, and downstream target GPX4, as well as decreased NRF2 nuclear translocation, a key step in NRF2 activation. This was associated with activation of non-canonical inflammasomes pathway marked by activation of caspase 11, accumulation of reactive oxygen species (ROS), mitochondrial dysfunction, and endoplasmic reticulum (ER) stress. Mechanistically, treatment of IOE-infected HCs with the antioxidant 3H-1,2-Dithiole-3-Thione (D3T), that induces NRF2 activation, attenuated oxidative stress and caspase 11 activation, as well as restored cell viability. Importantly, treatment of IOE-infected mice with D3T resulted in attenuated liver pathology, decreased inflammation, enhanced bacterial clearance, prolonged survival, and resistance to fatal ehrlichiosis. Our study reveals, for the first time, that targeting anti-oxidative signaling pathway is a key approach in the treatment of severe and potential Ehrlichia-induced acute liver injury and sepsis.
Collapse
Affiliation(s)
- Aditya Kumar Sharma
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Abdeljabar El Andaloussi
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- BioImmune Solutions Inc., 605–1355, Le Corbusier, Laval, Quebec, Canada
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
31
|
Song M, Ma L, Shen C, Liu W, Zhang P, Bi R, Zhao C. FGD5-AS1/miR-5590-3p/PINK1 induces Lenvatinib resistance in hepatocellular carcinoma. Cell Signal 2023; 111:110828. [PMID: 37517671 DOI: 10.1016/j.cellsig.2023.110828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Lenvatinib is a common systemic treatment for advanced hepatocellular carcinoma (HCC), the resistance to which presents a great challenge. However, the mechanism of lenvatinib resistance in HCC remains unclear. Therefore, elucidating the underlying and key regulatory molecular mechanisms of lenvatinib resistance is urgently needed. METHODS Bioinformatic enrichment analysis was used to investigate the gene associated with lenvatinib resistance. RT-PCR, Western blot, immunohistochemistry, and luciferase assays were used to explore the mechanisms of lenvatinib resistance. The effects of the FGD5-AS1/miR-5590-3p/PINK1 axis on lenvatinib resistance were evaluated by colony formation assay, cell viability, apoptosis, mitochondrial homeostasis, and morphology analyses. RESULTS Higher expression of PINK1 was observed in lenvatinib-resistant cells and tissues. PINK1 could be activated by increased FGD5-AS1 expression, thereby maintaining the mitochondrial structure and function and promoting the antioxidative stress response. FGD5-AS1/miR-5590-3p showed competitive regulation of PINK1, which affected lenvatinib sensitivity through regulation of mitochondrial structure and antioxidative stress. CONCLUSIONS PINK1 was identified as a key gene leading to lenvatinib resistance by maintaining the mitochondrial structure and function. The FGD5-AS1/miR-5590-3p/PINK1 axis may be a promising strategy to overcome lenvatinib resistance in treatment-negative patients.
Collapse
Affiliation(s)
- Meifang Song
- Department of Infectious Diseases, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Luyuan Ma
- Department of Infectious Diseases, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Chuan Shen
- Department of Infectious Diseases, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Wenpeng Liu
- Department of Hepatobiliary Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Pengfei Zhang
- Department of Hepatobiliary Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Ranran Bi
- Department of Infectious Diseases, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Caiyan Zhao
- Department of Infectious Diseases, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China.
| |
Collapse
|
32
|
Wang Z, Yang T, Zeng M, Wang Z, Chen Q, Chen J, Christian M, He Z. Miquelianin in Folium Nelumbinis extract promotes white-to-beige fat conversion via blocking AMPK/DRP1/mitophagy and modulating gut microbiota in HFD-fed mice. Food Chem Toxicol 2023; 181:114089. [PMID: 37804915 DOI: 10.1016/j.fct.2023.114089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/16/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
The main purpose of the present study was to investigate the effect of miquelianin (quercetin 3-O-glucuronide, Q3G), one of the main flavonoids in the Folium Nelumbinis extract (FNE), on beige adipocyte formation and its underlying mechanisms. In 3T3-L1 adipocytes Q3G (12.8%)-rich FNE treatment upregulated beige-related markers such as SIRT1, COX2, PGC-1α, TFAM, and UCP1. Furthermore, Q3G enhanced mitochondrial biosynthesis and inhibited mitophagy by downregulating the expression of PINK1, PARKIN, BECLIN1 and LC-3B in 3T3-L1 cells. Moreover, in high-fat-diet (HFD)-fed mice, Q3G markedly inhibited body weight gain, reduced blood glucose/lipid levels, reduced white adipose tissues (WAT) and mitigated hepatic steatosis. Meanwhile, the induced beiging accompanied by suppressed mitophagy was also demonstrated in inguinal WAT (iWAT). Chemical intervention of AMPK activity with Compound C (Com C) and Acadesine (AICAR) revealed that AMPK/DRP1 signaling was involved in Q3G-mediated mitophagy and the beiging process. Importantly, 16S rRNA sequencing analysis showed that Q3G beneficially reshaped gut microbiota structure, specifically inhibiting unclassified_Lachnospiraceae, Faecalibaculum, Roseburia and Colidextribacter while increasing Bacteroides, Akkermansia and Mucispirillum, which may potentially facilitate WAT beiging. Collectively, our findings provide a novel biological function for Folium Nelumbinis and Q3G in the fight against obesity through activating the energy-dissipating capacity of beige fat.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tian Yang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Mark Christian
- School of Science and Technology, Trent University, Clifton, Nottingham, NG11 8NS, United Kingdom.
| | - Zhiyong He
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
33
|
Liu L, Li Y, Chen G, Chen Q. Crosstalk between mitochondrial biogenesis and mitophagy to maintain mitochondrial homeostasis. J Biomed Sci 2023; 30:86. [PMID: 37821940 PMCID: PMC10568841 DOI: 10.1186/s12929-023-00975-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
Mitochondrial mass and quality are tightly regulated by two essential and opposing mechanisms, mitochondrial biogenesis (mitobiogenesis) and mitophagy, in response to cellular energy needs and other cellular and environmental cues. Great strides have been made to uncover key regulators of these complex processes. Emerging evidence has shown that there exists a tight coordination between mitophagy and mitobiogenesis, and their defects may cause many human diseases. In this review, we will first summarize the recent advances made in the discovery of molecular regulations of mitobiogenesis and mitophagy and then focus on the mechanism and signaling pathways involved in the simultaneous regulation of mitobiogenesis and mitophagy in the response of tissue or cultured cells to energy needs, stress, or pathophysiological conditions. Further studies of the crosstalk of these two opposing processes at the molecular level will provide a better understanding of how the cell maintains optimal cellular fitness and function under physiological and pathophysiological conditions, which holds promise for fighting aging and aging-related diseases.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Yanjun Li
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guo Chen
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
34
|
Li Y, Chen W, Wang D. Promotion of mitochondrial fragmentation suppresses the formation of mitochondrial spherical compartmentation in PINK1 B9Drosophila melanogaster. Biochem Biophys Res Commun 2023; 676:48-57. [PMID: 37481943 DOI: 10.1016/j.bbrc.2023.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Mitochondria undergo structural changes reflective of functional statuses. Ultrastructural characterizing of mitochondria is valuable for understanding mitochondrial dysfunction in various pathological conditions. PINK1, a Parkinson's disease (PD) associated gene, plays key roles in maintaining mitochondrial function and integrity. In Drosophila melanogaster, deficiency of PINK1 results in PD-like pathologies due to mitochondrial abnormalities. Here, we report the existence of a new type of mitochondrial-membrane deformity, mitochondrial spherical compartmentation (MSC), caused by PINK1 deficiency in Drosophila. The MSC is a three-dimensional spheroid-like mitochondrial membrane structure encompassing nonselective contents. Upregulation of dDrp1, downregulation of dMarf, and upregulation of dArgK1-A-all resulting in mitochondrial fragmentation-were able to suppress the formation of MSC. Furthermore, arginine kinase, only when localizing to the vicinity of mitochondria, induced mitochondrial fragmentation and reversed the MSC phenotype. In summary, this study demonstrates that loss of dPINK1 leads to the formation of mitochondrial-membrane deformity MSC, which responds to mitochondrial dynamics. In addition, our data suggest a new perspective of how phosphagen energy-buffer system might regulate mitochondrial dynamics.
Collapse
Affiliation(s)
- Yi Li
- Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute for Future Sciences, University of South China, Changsha, Hunan, China
| | - Wen Chen
- Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute for Future Sciences, University of South China, Changsha, Hunan, China
| | - Danling Wang
- Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute for Future Sciences, University of South China, Changsha, Hunan, China.
| |
Collapse
|
35
|
Liu H, Wang L, Xu H, Tan B, Yi Q, Deng H, Chen Y, He B, Tian J, Zhu J. Quantitative proteomic and phosphoproteomic analysis reveal the relationship between mitochondrial dysfunction and cytoskeletal remodeling in hiPSC-CMs deficient in PINK1. J Transl Med 2023; 21:581. [PMID: 37649075 PMCID: PMC10466879 DOI: 10.1186/s12967-023-04467-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are seed cells that can be used for alternative treatment of myocardial damage. However, their immaturity limits their clinical application. Mitochondrial development accompanies cardiomyocyte maturation, and PINK1 plays an important role in the regulation of mitochondrial quality. However, the role and mechanism of PINK1 in cardiomyocyte development remain unclear. METHODS We used proteomic and phosphoproteomic to identify protein and phosphosite changes in hiPSC-CMs deficient in PINK1. Bioinformatics analysis was performed to identify the potential biological functions and regulatory mechanisms of these differentially expressed proteins and validate potential downstream mechanisms. RESULTS Deletion of PINK1 resulted in mitochondrial structural breakdown and dysfunction, accompanied by disordered myofibrils arrangement. hiPSC-CMs deficient in PINK1 exhibited significantly decreased expression of mitochondrial ATP synthesis proteins and inhibition of the oxidative phosphorylation pathway. In contrast, the expression of proteins related to cardiac pathology was increased, and the phosphoproteins involved in cytoskeleton construction were significantly altered. Mechanistically, PINK1 deletion damaged the mitochondrial cristae of hiPSC-CMs and reduced the efficiency of mitochondrial respiratory chain assembly. CONCLUSION The significantly differentially expressed proteins identified in this study highlight the important role of PINK1 in regulating mitochondrial quality in hiPSC-CMs. PINK1-mediated mitochondrial respiratory chain assembly is the basis for mitochondrial function. Whereas the cytoskeleton may be adaptively altered in response to mitochondrial dysfunction caused by PINK1 deletion, inadequate energy supply hinders myocardial development. These findings facilitate the exploration of the mechanism of PINK1 in cardiomyocyte development and guide efforts to promote the maturation of hiPSC-CMs.
Collapse
Affiliation(s)
- Huiwen Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Xu
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yi
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongrong Deng
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yunxia Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bolin He
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Blood Transfusion, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Tian
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiovascular (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhu
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
36
|
Maddison DC, Malik B, Amadio L, Bis-Brewer DM, Züchner S, Peters OM, Smith GA. COPI-regulated mitochondria-ER contact site formation maintains axonal integrity. Cell Rep 2023; 42:112883. [PMID: 37498742 PMCID: PMC10840514 DOI: 10.1016/j.celrep.2023.112883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/05/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Coat protein complex I (COPI) is best known for its role in Golgi-endoplasmic reticulum (ER) trafficking, responsible for the retrograde transport of ER-resident proteins. The ER is crucial to neuronal function, regulating Ca2+ homeostasis and the distribution and function of other organelles such as endosomes, peroxisomes, and mitochondria via functional contact sites. Here we demonstrate that disruption of COPI results in mitochondrial dysfunction in Drosophila axons and human cells. The ER network is also disrupted, and the neurons undergo rapid degeneration. We demonstrate that mitochondria-ER contact sites (MERCS) are decreased in COPI-deficient axons, leading to Ca2+ dysregulation, heightened mitophagy, and a decrease in respiratory capacity. Reintroducing MERCS is sufficient to rescue not only mitochondrial distribution and Ca2+ uptake but also ER morphology, dramatically delaying neurodegeneration. This work demonstrates an important role for COPI-mediated trafficking in MERC formation, which is an essential process for maintaining axonal integrity.
Collapse
Affiliation(s)
- Daniel C Maddison
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Bilal Malik
- UK Dementia Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Leonardo Amadio
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; UK Dementia Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Dana M Bis-Brewer
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Stephan Züchner
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Owen M Peters
- UK Dementia Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Gaynor A Smith
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK.
| |
Collapse
|
37
|
Sanchez-Martinez A, Martinez A, Whitworth AJ. FBXO7/ntc and USP30 antagonistically set the ubiquitination threshold for basal mitophagy and provide a target for Pink1 phosphorylation in vivo. PLoS Biol 2023; 21:e3002244. [PMID: 37535686 PMCID: PMC10427020 DOI: 10.1371/journal.pbio.3002244] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/15/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
Functional analyses of genes linked to heritable forms of Parkinson's disease (PD) have revealed fundamental insights into the biological processes underpinning pathogenic mechanisms. Mutations in PARK15/FBXO7 cause autosomal recessive PD and FBXO7 has been shown to regulate mitochondrial homeostasis. We investigated the extent to which FBXO7 and its Drosophila orthologue, ntc, share functional homology and explored its role in mitophagy in vivo. We show that ntc mutants partially phenocopy Pink1 and parkin mutants and ntc overexpression supresses parkin phenotypes. Furthermore, ntc can modulate basal mitophagy in a Pink1- and parkin-independent manner by promoting the ubiquitination of mitochondrial proteins, a mechanism that is opposed by the deubiquitinase USP30. This basal ubiquitination serves as the substrate for Pink1-mediated phosphorylation that triggers stress-induced mitophagy. We propose that FBXO7/ntc works in equilibrium with USP30 to provide a checkpoint for mitochondrial quality control in basal conditions in vivo and presents a new avenue for therapeutic approaches.
Collapse
Affiliation(s)
- Alvaro Sanchez-Martinez
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Aitor Martinez
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Alexander J. Whitworth
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
38
|
Moehlman AT, Kanfer G, Youle RJ. Loss of STING in parkin mutant flies suppresses muscle defects and mitochondria damage. PLoS Genet 2023; 19:e1010828. [PMID: 37440574 PMCID: PMC10368295 DOI: 10.1371/journal.pgen.1010828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/25/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The early pathogenesis and underlying molecular causes of motor neuron degeneration in Parkinson's Disease (PD) remains unresolved. In the model organism Drosophila melanogaster, loss of the early-onset PD gene parkin (the ortholog of human PRKN) results in impaired climbing ability, damage to the indirect flight muscles, and mitochondrial fragmentation with swelling. These stressed mitochondria have been proposed to activate innate immune pathways through release of damage associated molecular patterns (DAMPs). Parkin-mediated mitophagy is hypothesized to suppress mitochondrial damage and subsequent activation of the cGAS/STING innate immunity pathway, but the relevance of this interaction in the fly remains unresolved. Using a combination of genetics, immunoassays, and RNA sequencing, we investigated a potential role for STING in the onset of parkin-null phenotypes. Our findings demonstrate that loss of Drosophila STING in flies rescues the thorax muscle defects and the climbing ability of parkin-/- mutants. Loss of STING also suppresses the disrupted mitochondrial morphology in parkin-/- flight muscles, suggesting unexpected feedback of STING on mitochondria integrity or activation of a compensatory mitochondrial pathway. In the animals lacking both parkin and sting, PINK1 is activated and cell death pathways are suppressed. These findings support a unique, non-canonical role for Drosophila STING in the cellular and organismal response to mitochondria stress.
Collapse
Affiliation(s)
- Andrew T. Moehlman
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gil Kanfer
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard J. Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
39
|
Kalyn M, Lee H, Curry J, Tu W, Ekker M, Mennigen JA. Effects of PFOS, F-53B and OBS on locomotor behaviour, the dopaminergic system and mitochondrial function in developing zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121479. [PMID: 36958660 DOI: 10.1016/j.envpol.2023.121479] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) has widely been reported to persist in the environment and to elicit neurotoxicological effects in wildlife and humans. Following the restriction of PFOS use, 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) have emerged as novel PFOS alternatives and have been detected in the environment. However, knowledge on the toxicological effects of these alternatives remains scarce. Using developing transgenic Tg(dat:eGFP) zebrafish, we evaluated the consequences of exposure to 0, 0.1 and 1 mg/l PFOS, F-53B and OBS on the dopaminergic system, locomotor behaviour and mitochondrial function. All compounds generally reduced locomotor activity under light conditions irrespective of exposure concentration. Exposure to OBS (at all concentrations), as well as PFOS and F-53B (at 1 mg/l), significantly reduced subpallial dopaminergic neuron abundance. PFOS also significantly reduced dat and pink1 expression irrespective of exposure concentration, while F-53B and OBS tended to reduce mitochondrial pink1 and fis1 expression across concentrations without reaching statistical significance. Mitochondrial function, in the form of reduced oxygen consumption rate and marginally inhibited ATP-linked oxygen consumption rate, was affected only in response to 1 mg/l PFOS. Together, PFOS and the emerging contaminants F-53B and OBS inhibit locomotion at similar concentrations, a finding correlated with decreased dopaminergic neuron numbers in the subpallium and decreased expression of pink1. These findings are relevant to wildlife and human health, as they suggest that PFOS as well as replacement compounds affect locomotion likely in part by negatively impacting the dopamine system.
Collapse
Affiliation(s)
- Michael Kalyn
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, K1N6N5, Ottawa, ON, Canada
| | - Hyojin Lee
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, K1N6N5, Ottawa, ON, Canada.
| | - Jory Curry
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, K1N6N5, Ottawa, ON, Canada
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Marc Ekker
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, K1N6N5, Ottawa, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, K1N6N5, Ottawa, ON, Canada
| |
Collapse
|
40
|
Trempe JF, Gehring K. Structural mechanisms of mitochondrial quality control mediated by PINK1 and parkin. J Mol Biol 2023:168090. [PMID: 37054910 DOI: 10.1016/j.jmb.2023.168090] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and represents a looming public health crisis as the global population ages. While the etiology of the more common, idiopathic form of the disease remains unknown, the last ten years have seen a breakthrough in our understanding of the genetic forms related to two proteins that regulate a quality control system for the removal of damaged or non-functional mitochondria. Here, we review the structure of these proteins, PINK1, a protein kinase, and parkin, a ubiquitin ligase with an emphasis on the molecular mechanisms responsible for their recognition of dysfunctional mitochondria and control of the subsequent ubiquitination cascade. Recent atomic structures have revealed the basis of PINK1 substrate specificity and the conformational changes responsible for activation of PINK1 and parkin catalytic activity. Progress in understanding the molecular basis of mitochondrial quality control promises to open new avenues for therapeutic interventions in PD.
Collapse
Affiliation(s)
- Jean-François Trempe
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale
| | - Kalle Gehring
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale
| |
Collapse
|
41
|
Makar TK, Guda PR, Ray S, Andhavarapu S, Keledjian K, Gerzanich V, Simard JM, Nimmagadda VKC, Bever CT. Immunomodulatory therapy with glatiramer acetate reduces endoplasmic reticulum stress and mitochondrial dysfunction in experimental autoimmune encephalomyelitis. Sci Rep 2023; 13:5635. [PMID: 37024509 PMCID: PMC10079956 DOI: 10.1038/s41598-023-29852-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/11/2023] [Indexed: 04/08/2023] Open
Abstract
Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are found in lesions of multiple sclerosis (MS) and animal models of MS such as experimental autoimmune encephalomyelitis (EAE), and may contribute to the neuronal loss that underlies permanent impairment. We investigated whether glatiramer acetate (GA) can reduce these changes in the spinal cords of chronic EAE mice by using routine histology, immunostaining, and electron microscopy. EAE spinal cord tissue exhibited increased inflammation, demyelination, mitochondrial dysfunction, ER stress, downregulation of NAD+ dependent pathways, and increased neuronal death. GA reversed these pathological changes, suggesting that immunomodulating therapy can indirectly induce neuroprotective effects in the CNS by mediating ER stress.
Collapse
Affiliation(s)
- Tapas K Makar
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA.
- Research Service, Institute of Human Virology, VA Maryland Health Care System, 725 W Lombard St, Baltimore, MD, 21201, USA.
| | - Poornachander R Guda
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
| | - Sugata Ray
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
| | - Sanketh Andhavarapu
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, School of Medicine, University of Maryland, College Park, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, School of Medicine, University of Maryland, College Park, USA
| | - J Marc Simard
- Department of Neurosurgery, School of Medicine, University of Maryland, College Park, USA
| | - Vamshi K C Nimmagadda
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
| | - Christopher T Bever
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
- Research Service, Institute of Human Virology, VA Maryland Health Care System, 725 W Lombard St, Baltimore, MD, 21201, USA
- Department of Veterans Affairs, Office of Research and Development, Washington, USA
| |
Collapse
|
42
|
Naraiah Mukkala A, Petrut R, Goldfarb R, Leigh Beroncal E, Ho Leung C, Khan Z, Ailenberg M, Jerkic M, Andreazza AC, Rhind SG, Jeschke MG, Kapus A, Rotstein OD. Augmented Parkin-dependent mitophagy underlies the hepatoprotective effect of remote ischemic conditioning used prior to hemorrhagic shock. Mitochondrion 2023; 70:20-30. [PMID: 36906251 DOI: 10.1016/j.mito.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/04/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND AND AIMS Hemorrhagic shock-resuscitation (HSR) following trauma contributes to organ dysfunction by causing ischemia-reperfusion injury (IRI). We previously showed that 'remote ischemic preconditioning' (RIPC) exerted multi-organ protection from IRI. Maintenance of mitochondrial quality by clearance of dysfunctional mitochondria via mitophagy is vital in restoring organ integrity. We hypothesized that parkin-dependent mitophagy played a role in RIPC-induced hepatoprotection following HSR. METHODS The hepatoprotective effect of RIPC in a murine model of HSR-IRI was investigated in wild type and parkin-/- animals. Mice were subjected to HSR ± RIPC and blood and organs were collected, followed by cytokine ELISAs, histology, qPCR, Western blots, and transmission electron microscopy. RESULTS HSR increased hepatocellular injury, as measured by plasma ALT and liver necrosis, while antecedent RIPC prevented this injury; in parkin-/- mice, RIPC failed to exert hepatoprotection. The ability of RIPC to lessen HSR-induced rises in plasma IL-6 and TNFα, was lost in parkin-/- mice. While RIPC alone did not induce mitophagy, the application of RIPC prior to HSR caused a synergistic increase in mitophagy, this increase was not observed in parkin-/- mice. RIPC induced shifts in mitochondrial morphology favoring mitophagy in WT but not in parkin-/- animals. CONCLUSIONS RIPC was hepatoprotective in WT mice following HSR but not in parkin-/- mice. Loss of protection in parkin-/- mice corresponded with the failure of RIPC plus HSR to upregulate the mitophagic process. Improving mitochondrial quality by modulating mitophagy, may prove to be an attractive therapeutic target in disease processes caused by IRI.
Collapse
Affiliation(s)
- Avinash Naraiah Mukkala
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Raluca Petrut
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Rachel Goldfarb
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | | | - Chung Ho Leung
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Zahra Khan
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Menachem Ailenberg
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Mirjana Jerkic
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Ana C Andreazza
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - Shawn G Rhind
- Defence Research and Development Canada, Department of National Defense, Government of Canada, Toronto, Canada
| | - Marc G Jeschke
- Hamilton Health Sciences Centre and McMaster University, Hamilton, Canada
| | - Andras Kapus
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Surgery, University of Toronto, Toronto, Canada; Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Ori D Rotstein
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
43
|
Pan X, Dutta D, Lu S, Bellen HJ. Sphingolipids in neurodegenerative diseases. Front Neurosci 2023; 17:1137893. [PMID: 36875645 PMCID: PMC9978793 DOI: 10.3389/fnins.2023.1137893] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Neurodegenerative Diseases (NDDs) are a group of disorders that cause progressive deficits of neuronal function. Recent evidence argues that sphingolipid metabolism is affected in a surprisingly broad set of NDDs. These include some lysosomal storage diseases (LSDs), hereditary sensory and autonomous neuropathy (HSAN), hereditary spastic paraplegia (HSP), infantile neuroaxonal dystrophy (INAD), Friedreich's ataxia (FRDA), as well as some forms of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Many of these diseases have been modeled in Drosophila melanogaster and are associated with elevated levels of ceramides. Similar changes have also been reported in vertebrate cells and mouse models. Here, we summarize studies using fly models and/or patient samples which demonstrate the nature of the defects in sphingolipid metabolism, the organelles that are implicated, the cell types that are initially affected, and potential therapeutics for these diseases.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
44
|
Vos M, Klein C, Hicks AA. Role of Ceramides and Sphingolipids in Parkinson's Disease. J Mol Biol 2023:168000. [PMID: 36764358 DOI: 10.1016/j.jmb.2023.168000] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Sphingolipids, including the basic ceramide, are a subset of bioactive lipids that consist of many different species. Sphingolipids are indispensable for proper neuronal function, and an increasing number of studies have emerged on the complexity and importance of these lipids in (almost) all biological processes. These include regulation of mitochondrial function, autophagy, and endosomal trafficking, which are affected in Parkinson's disease (PD). PD is the second most common neurodegenerative disorder and is characterized by the loss of dopaminergic neurons. Currently, PD cannot be cured due to the lack of knowledge of the exact pathogenesis. Nonetheless, important advances have identified molecular changes in mitochondrial function, autophagy, and endosomal function. Furthermore, recent studies have identified ceramide alterations in patients suffering from PD, and in PD models, suggesting a critical interaction between sphingolipids and related cellular processes in PD. For instance, autosomal recessive forms of PD cause mitochondrial dysfunction, including energy production or mitochondrial clearance, that is directly influenced by manipulating sphingolipids. Additionally, endo-lysosomal recycling is affected by genes that cause autosomal dominant forms of the disease, such as VPS35 and SNCA. Furthermore, endo-lysosomal recycling is crucial for transporting sphingolipids to different cellular compartments where they will execute their functions. This review will discuss mitochondrial dysfunction, defects in autophagy, and abnormal endosomal activity in PD and the role sphingolipids play in these vital molecular processes.
Collapse
Affiliation(s)
- Melissa Vos
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany.
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Andrew A Hicks
- Institute for Biomedicine (affiliated to the University of Luebeck, Luebeck, Germany), Eurac Research, 39100 Bolzano, Italy. https://twitter.com/andrewhicks
| |
Collapse
|
45
|
Mandik F, Kanana Y, Rody J, Misera S, Wilken B, Laabs von Holt BH, Klein C, Vos M. A new model for fatty acid hydroxylase-associated neurodegeneration reveals mitochondrial and autophagy abnormalities. Front Cell Dev Biol 2022; 10:1000553. [PMID: 36589738 PMCID: PMC9794614 DOI: 10.3389/fcell.2022.1000553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Fatty acid hydroxylase-associated neurodegeneration (FAHN) is a rare disease that exhibits brain modifications and motor dysfunctions in early childhood. The condition is caused by a homozygous or compound heterozygous mutation in fatty acid 2 hydroxylase (FA2H), whose encoded protein synthesizes 2-hydroxysphingolipids and 2-hydroxyglycosphingolipids and is therefore involved in sphingolipid metabolism. A few FAHN model organisms have already been established and give the first insight into symptomatic effects. However, they fail to establish the underlying cellular mechanism of FAHN so far. Drosophila is an excellent model for many neurodegenerative disorders; hence, here, we have characterized and validated the first FAHN Drosophila model. The investigation of loss of dfa2h lines revealed behavioral abnormalities, including motor impairment and flying disability, in addition to a shortened lifespan. Furthermore, alterations in mitochondrial dynamics, and autophagy were identified. Analyses of patient-derived fibroblasts, and rescue experiments with human FA2H, indicated that these defects are evolutionarily conserved. We thus present a FAHN Drosophila model organism that provides new insights into the cellular mechanism of FAHN.
Collapse
Affiliation(s)
- Frida Mandik
- Institute of Neurogenetics, University of Luebeck, UKSH, Luebeck, Germany
| | - Yuliia Kanana
- Institute of Neurogenetics, University of Luebeck, UKSH, Luebeck, Germany
| | - Jost Rody
- Institute of Neurogenetics, University of Luebeck, UKSH, Luebeck, Germany
| | - Sophie Misera
- Institute of Neurogenetics, University of Luebeck, UKSH, Luebeck, Germany
| | - Bernd Wilken
- Department of Neuropediatrics, Klinikum Kassel, Kassel, Germany
| | | | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, UKSH, Luebeck, Germany
| | - Melissa Vos
- Institute of Neurogenetics, University of Luebeck, UKSH, Luebeck, Germany,*Correspondence: Melissa Vos,
| |
Collapse
|
46
|
Usher JL, Sanchez‐Martinez A, Terriente‐Felix A, Chen P, Lee JJ, Chen C, Whitworth AJ. Parkin drives pS65-Ub turnover independently of canonical autophagy in Drosophila. EMBO Rep 2022; 23:e53552. [PMID: 36250243 PMCID: PMC9724668 DOI: 10.15252/embr.202153552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease-related proteins, PINK1 and Parkin, act in a common pathway to maintain mitochondrial quality control. While the PINK1-Parkin pathway can promote autophagic mitochondrial turnover (mitophagy) following mitochondrial toxification in cell culture, alternative quality control pathways are suggested. To analyse the mechanisms by which the PINK1-Parkin pathway operates in vivo, we developed methods to detect Ser65-phosphorylated ubiquitin (pS65-Ub) in Drosophila. Exposure to the oxidant paraquat led to robust, Pink1-dependent pS65-Ub production, while pS65-Ub accumulates in unstimulated parkin-null flies, consistent with blocked degradation. Additionally, we show that pS65-Ub specifically accumulates on disrupted mitochondria in vivo. Depletion of the core autophagy proteins Atg1, Atg5 and Atg8a did not cause pS65-Ub accumulation to the same extent as loss of parkin, and overexpression of parkin promoted turnover of both basal and paraquat-induced pS65-Ub in an Atg5-null background. Thus, we have established that pS65-Ub immunodetection can be used to analyse Pink1-Parkin function in vivo as an alternative to reporter constructs. Moreover, our findings suggest that the Pink1-Parkin pathway can promote mitochondrial turnover independently of canonical autophagy in vivo.
Collapse
Affiliation(s)
- Joanne L Usher
- MRC Mitochondrial Biology UnitCambridgeUK
- PNAC Division, MRC Laboratory of Molecular BiologyCambridgeUK
- Present address:
MSD R&D Innovation CentreLondonUK
| | | | | | - Po‐Lin Chen
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesZhunanTaiwan
| | | | - Chun‐Hong Chen
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesZhunanTaiwan
| | | |
Collapse
|
47
|
Lin C, Yan J, Kapur MD, Norris KL, Hsieh C, Huang D, Vitale N, Lim K, Guan Z, Wang X, Chi J, Yang W, Yao T. Parkin coordinates mitochondrial lipid remodeling to execute mitophagy. EMBO Rep 2022; 23:e55191. [PMID: 36256516 PMCID: PMC9724658 DOI: 10.15252/embr.202255191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Autophagy has emerged as the prime machinery for implementing organelle quality control. In the context of mitophagy, the ubiquitin E3 ligase Parkin tags impaired mitochondria with ubiquitin to activate autophagic degradation. Although ubiquitination is essential for mitophagy, it is unclear how ubiquitinated mitochondria activate autophagosome assembly locally to ensure efficient destruction. Here, we report that Parkin activates lipid remodeling on mitochondria targeted for autophagic destruction. Mitochondrial Parkin induces the production of phosphatidic acid (PA) and its subsequent conversion to diacylglycerol (DAG) by recruiting phospholipase D2 and activating the PA phosphatase, Lipin-1. The production of DAG requires mitochondrial ubiquitination and ubiquitin-binding autophagy receptors, NDP52 and optineurin (OPTN). Autophagic receptors, via Golgi-derived vesicles, deliver an autophagic activator, EndoB1, to ubiquitinated mitochondria. Inhibition of Lipin-1, NDP52/OPTN, or EndoB1 results in a failure to produce mitochondrial DAG, autophagosomes, and mitochondrial clearance, while exogenous cell-permeable DAG can induce autophagosome production. Thus, mitochondrial DAG production acts downstream of Parkin to enable the local assembly of autophagosomes for the efficient disposal of ubiquitinated mitochondria.
Collapse
Affiliation(s)
- Chao‐Chieh Lin
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNCUSA
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
| | - Jin Yan
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNCUSA
| | - Meghan D Kapur
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNCUSA
| | - Kristi L Norris
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNCUSA
| | - Cheng‐Wei Hsieh
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
| | - De Huang
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNCUSA
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et IntégrativesUPR‐3212 CNRS ‐ Université de StrasbourgStrasbourgFrance
| | - Kah‐Leong Lim
- Lee Kong Chian School of MedicineSingapore CitySingapore
| | - Ziqiang Guan
- Department of BiochemistryDuke University Medical CenterDurhamNCUSA
| | - Xiao‐Fan Wang
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNCUSA
| | - Jen‐Tsan Chi
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
| | - Wei‐Yuan Yang
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
| | - Tso‐Pang Yao
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNCUSA
| |
Collapse
|
48
|
Lechner SA, Welsch JM, Pahapill NK, Kaldenberg TAR, Regenbaum A, Kelm-Nelson CA. Predictors of prodromal Parkinson's disease in young adult Pink1-/- rats. Front Behav Neurosci 2022; 16:867958. [PMID: 36172466 PMCID: PMC9510667 DOI: 10.3389/fnbeh.2022.867958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Parkinson's disease (PD) is a progressive, degenerative disease that affects nearly 10 million people worldwide. Hallmark limb motor signs and dopamine depletion have been well studied; however, few studies evaluating early stage, prodromal biology exist. Pink1-/- rats, a rodent model of PD mitochondrial dysfunction, exhibit early stage behavioral deficits, including vocal communication and anxiety, that progress during mid-to-late adulthood (6-12 months of age). Yet, the biological pathways and mechanisms that lead to prodromal dysfunction are not well understood. This study investigated the Pink1-/- rat in young adulthood (2 months of age). Mixed sex groups of Pink1-/- rats and wildtype (WT) controls were assayed for limb motor, anxiety, and vocal motor behaviors. A customized NanoString CodeSet, based on genetic work in later adulthood, was used to probe for the up regulation of genes involved in disease pathways and inflammation within the brainstem and vocal fold muscle. In summary, the data show sex- and genotype-differences in limb motor, anxiety, and vocal motor behaviors. Specifically, female Pink1-/- rats demonstrate less anxiety-like behavior compared to male Pink1-/- rats and female rats show increased locomotor activity compared to male rats. Pink1-/- rats also demonstrate prodromal ultrasonic vocalization dysfunction across all acoustic parameters and sex differences were present for intensity (loudness) and peak frequency. These data demonstrate a difference in phenotype in the Pink1-/- model. Tuba1c transcript level was identified as a key marker negatively correlated to ultrasonic vocalization at 2 months of age. Identifying genes, such as Tuba1c, may help determine early predictors of PD pathology in the Pink1-/- rat and serve as targets for future drug therapy studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Cynthia A. Kelm-Nelson
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
49
|
Mauri S, Favaro M, Bernardo G, Mazzotta GM, Ziviani E. Mitochondrial autophagy in the sleeping brain. Front Cell Dev Biol 2022; 10:956394. [PMID: 36092697 PMCID: PMC9449320 DOI: 10.3389/fcell.2022.956394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
A significant percentage of the mitochondrial mass is replaced on a daily basis via mechanisms of mitochondrial quality control. Through mitophagy (a selective type of autophagy that promotes mitochondrial proteostasis) cells keep a healthy pool of mitochondria, and prevent oxidative stress and inflammation. Furthermore, mitophagy helps adapting to the metabolic demand of the cells, which changes on a daily basis.Core components of the mitophagy process are PINK1 and Parkin, which mutations are linked to Parkinson’s Disease. The crucial role of PINK1/Parkin pathway during stress-induced mitophagy has been extensively studied in vitro in different cell types. However, recent advances in the field allowed discovering that mitophagy seems to be only slightly affected in PINK1 KO mice and flies, putting into question the physiological relevance of this pathway in vivo in the whole organism. Indeed, several cell-specific PINK1/Parkin-independent mitophagy pathways have been recently discovered, which appear to be activated under physiological conditions such as those that promote mitochondrial proteome remodeling during differentiation or in response to specific physiological stimuli.In this Mini Review we want to summarize the recent advances in the field, and add another level of complexity by focusing attention on a potentially important aspect of mitophagy regulation: the implication of the circadian clock. Recent works showed that the circadian clock controls many aspects of mitochondrial physiology, including mitochondrial morphology and dynamic, respiratory activity, and ATP synthesis. Furthermore, one of the essential functions of sleep, which is controlled by the clock, is the clearance of toxic metabolic compounds from the brain, including ROS, via mechanisms of proteostasis. Very little is known about a potential role of the clock in the quality control mechanisms that maintain the mitochondrial repertoire healthy during sleep/wake cycles. More importantly, it remains completely unexplored whether (dys)function of mitochondrial proteostasis feedbacks to the circadian clockwork.
Collapse
Affiliation(s)
| | | | | | | | - Elena Ziviani
- *Correspondence: Gabriella M. Mazzotta, Elena Ziviani,
| |
Collapse
|
50
|
Abstract
Unknown processes promote the accumulation of mitochondrial DNA (mtDNA) mutations during aging. Accumulation of defective mitochondrial genomes is thought to promote the progression of heteroplasmic mitochondrial diseases and degenerative changes with natural aging. We used a heteroplasmic Drosophila model to test 1) whether purifying selection acts to limit the abundance of deleterious mutations during development and aging, 2) whether quality control pathways contribute to purifying selection, 3) whether activation of quality control can mitigate accumulation of deleterious mutations, and 4) whether improved quality control improves health span. We show that purifying selection operates during development and growth but is ineffective during aging. Genetic manipulations suggest that a quality control process known to enforce purifying selection during oogenesis also suppresses accumulation of a deleterious mutation during growth and development. Flies with nuclear genotypes that enhance purifying selection sustained higher genome quality, retained more vigorous climbing activity, and lost fewer dopaminergic neurons. A pharmacological agent thought to enhance quality control produced similar benefits. Importantly, similar pharmacological treatment of aged mice reversed age-associated accumulation of a deleterious mtDNA mutation. Our findings reveal dynamic maintenance of mitochondrial genome fitness and reduction in the effectiveness of purifying selection during life. Importantly, we describe interventions that mitigate and even reverse age-associated genome degeneration in flies and in mice. Furthermore, mitigation of genome degeneration improved well-being in a Drosophila model of heteroplasmic mitochondrial disease.
Collapse
|