1
|
Gong R, Reynolds MJ, Carney KR, Hamilton K, Bidone TC, Alushin GM. Fascin structural plasticity mediates flexible actin bundle construction. Nat Struct Mol Biol 2025; 32:940-952. [PMID: 39833469 PMCID: PMC12086090 DOI: 10.1038/s41594-024-01477-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
Fascin cross-links actin filaments (F-actin) into bundles that support tubular membrane protrusions including filopodia and stereocilia. Fascin dysregulation drives aberrant cell migration during metastasis, and fascin inhibitors are under development as cancer therapeutics. Here, we use cryo-EM, cryo-electron tomography coupled with custom denoising and computational modeling to probe human fascin-1's F-actin cross-linking mechanisms across spatial scales. Our fascin cross-bridge structure reveals an asymmetric F-actin binding conformation that is allosterically blocked by the inhibitor G2. Reconstructions of seven-filament hexagonal bundle elements, variability analysis and simulations show how structural plasticity enables fascin to bridge varied interfilament orientations, accommodating mismatches between F-actin's helical symmetry and bundle hexagonal packing. Tomography of many-filament bundles and modeling uncover geometric rules underlying emergent fascin binding patterns, as well as the accumulation of unfavorable cross-links that limit bundle size. Collectively, this work shows how fascin harnesses fine-tuned nanoscale structural dynamics to build and regulate micron-scale F-actin bundles.
Collapse
Affiliation(s)
- Rui Gong
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA.
| | - Matthew J Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Keith R Carney
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Keith Hamilton
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Tamara C Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Gregory M Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
2
|
Shi H, Nguyen J, Gitai Z, Shaevitz J, Bratton BP, Gopinathan A, Grason G, Huang KC. Sensing the shape of a surface by intracellular filaments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624198. [PMID: 39605553 PMCID: PMC11601562 DOI: 10.1101/2024.11.18.624198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Understanding the mechanisms that dictate the localization of cytoskeletal filaments is crucial for elucidating cell shape regulation in prokaryotes. The actin homolog MreB plays a pivotal role in maintaining the shape of many rod-shaped bacteria such as Escherichia coli by directing cell-wall synthesis according to local curvature cues. However, the basis of MreB's curvature-dependent localization has remained elusive. Here, we develop a biophysical model for the energetics of filament binding to a surface that integrates the complex interplay between filament twist and bending and the two-dimensional surface geometry. Our model predicts that the spatial localization of a filament like MreB with substantial intrinsic twist is governed by both the mean and Gaussian curvatures of the cell envelope, which strongly covary in rod-shaped cells. Using molecular dynamics simulations to estimate the mechanical properties of MreB filaments, we show that their thermodynamic preference for regions with lower mean and Gaussian curvatures matches experimental observations for physiologically relevant filament lengths of ∼50 nm. We find that the experimentally measured statistical curvature preference is maintained in the absence of filament motion and after a cycle of depolymerization, repolymerization, and membrane rebinding, indicating that equilibrium energetics can explain MreB localization. These findings provide critical insights into the physical principles underlying cytoskeletal filament localization, and suggest new design principles for synthetic shape sensing nanomaterials. Significance statement The protein MreB, a homolog of eukaryotic actin, regulates the shape of bacteria like Escherichia coli by guiding new cell-wall insertion based on local curvature cues. However, the mechanism by which a nanometer-scale MreB filament "senses" the micron-scale curvature of the cell wall has remained a mystery. We introduce a biophysical model of the energetics of twisted and bent filaments bound to curved surfaces, which predicts that localization of filaments like MreB is sensitive to both mean and Gaussian curvature. The model captures experimentally measured curvature enrichment patterns and explains how MreB naturally localizes to saddle-shaped regions without energy-consuming processes. Beyond cell shape regulation, our work suggests design principles for synthetic systems that can sense and respond to surface shape.
Collapse
|
3
|
Wang S, Kang L, Salamon P, Wang X, Uchida N, Araoka F, Aida T, Dogic Z, Ishida Y. Stimuli-responsive self-regulating assembly of chiral colloids for robust size and shape control. Nat Commun 2024; 15:9891. [PMID: 39543204 PMCID: PMC11564980 DOI: 10.1038/s41467-024-54217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Most synthetic self-assemblies grow indefinitely into size-unlimited structures, whereas some biological self-assemblies autonomously regulate their size and shape. One mechanism of such self-regulation arises from the chirality of building blocks, inducing their mutual twisting that is incompatible with their long-range ordered packing and thus halts the assembly's growth at a certain stage. This self-regulation occurs robustly in thermodynamic equilibrium rather than kinetic trapping, and therefore is attractive yet elusive. Until now, studies of self-regulating assemblies have focused on non-responsive systems, whose equilibrium point and corresponding size and shape are hardly changeable. Here, we demonstrate a stimuli-responsive, self-regulating assembly. This assembly consists of chiral and magnetically orientable nanorods, where the effective chirality can be changed by balancing chirality-induced twisting and magnet-induced flattening between nanorods. Consequently, the strength of self-regulation in the assembly is modulable by magnetic field intensity, allowing robust, tunable, and reversible control of its size and shape. Our strategy would provide more biomimetic materials with precision and responsiveness.
Collapse
Affiliation(s)
- Shuxu Wang
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Louis Kang
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Péter Salamon
- HUN-REN Wigner Research Centre for Physics, P.O. Box 49, Budapest, Hungary
| | - Xiang Wang
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, Japan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, P. R. China
| | - Noriyuki Uchida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Fumito Araoka
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Takuzo Aida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Zvonimir Dogic
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA, USA
- Biomolecular and Engineering Science, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, Japan.
| |
Collapse
|
4
|
Chikireddy J, Lengagne L, Le Borgne R, Durieu C, Wioland H, Romet-Lemonne G, Jégou A. Fascin-induced bundling protects actin filaments from disassembly by cofilin. J Cell Biol 2024; 223:e202312106. [PMID: 38497788 PMCID: PMC10949937 DOI: 10.1083/jcb.202312106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Actin filament turnover plays a central role in shaping actin networks, yet the feedback mechanism between network architecture and filament assembly dynamics remains unclear. The activity of ADF/cofilin, the main protein family responsible for filament disassembly, has been mainly studied at the single filament level. This study unveils that fascin, by crosslinking filaments into bundles, strongly slows down filament disassembly by cofilin. We show that this is due to a markedly slower initiation of the first cofilin clusters, which occurs up to 100-fold slower on large bundles compared with single filaments. In contrast, severing at cofilin cluster boundaries is unaffected by fascin bundling. After the formation of an initial cofilin cluster on a filament within a bundle, we observed the local removal of fascin. Notably, the formation of cofilin clusters on adjacent filaments is highly enhanced, locally. We propose that this interfilament cooperativity arises from the local propagation of the cofilin-induced change in helicity from one filament to the other filaments of the bundle. Overall, taking into account all the above reactions, we reveal that fascin crosslinking slows down the disassembly of actin filaments by cofilin. These findings highlight the important role played by crosslinkers in tuning actin network turnover by modulating the activity of other regulatory proteins.
Collapse
Affiliation(s)
| | - Léana Lengagne
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Rémi Le Borgne
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Catherine Durieu
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Hugo Wioland
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| |
Collapse
|
5
|
Maxian O, Mogilner A. Helical motors and formins synergize to compact chiral filopodial bundles: A theoretical perspective. Eur J Cell Biol 2024; 103:151383. [PMID: 38237507 DOI: 10.1016/j.ejcb.2023.151383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/28/2024] Open
Abstract
Chiral actin bundles have been shown to play an important role in cell dynamics, but our understanding of the molecular mechanisms which combine to generate chirality remains incomplete. To address this, we numerically simulate a crosslinked filopodial bundle under the actions of helical myosin motors and/or formins and examine the collective buckling and twisting of the actin bundle. We first show that a number of proposed mechanisms to buckle polymerizing actin bundles without motor activity fail under biologically-realistic parameters. We then demonstrate that a simplified model of myosin spinning action at the bundle base effectively "braids" the bundle, but cannot control compaction at the fiber tips. Finally, we show that formin-mediated polymerization and motor activity can act synergitically to compact filopodium bundles, as motor activity bends filaments into shapes that activate twist forces induced by formins. Stochastic fluctuations of actin polymerization rates and slower cross linking dynamics both increase buckling and decrease compaction. We discuss implications of our findings for mechanisms of cytoskeletal chirality.
Collapse
Affiliation(s)
- Ondrej Maxian
- Courant Institute, New York University, New York, NY 10012, USA; Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60615, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60615, USA
| | - Alex Mogilner
- Courant Institute, New York University, New York, NY 10012, USA; Department of Biology, New York University, New York, NY 10012, USA.
| |
Collapse
|
6
|
Gong R, Reynolds MJ, Carney KR, Hamilton K, Bidone TC, Alushin GM. Fascin structural plasticity mediates flexible actin bundle construction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574123. [PMID: 38260322 PMCID: PMC10802278 DOI: 10.1101/2024.01.03.574123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Fascin crosslinks actin filaments (F-actin) into bundles that support tubular membrane protrusions including filopodia and stereocilia. Fascin dysregulation drives aberrant cell migration during metastasis, and fascin inhibitors are under development as cancer therapeutics. Here, we use cryo-electron microscopy, cryo-electron tomography coupled with custom denoising, and computational modeling to probe fascin's F-actin crosslinking mechanisms across spatial scales. Our fascin crossbridge structure reveals an asymmetric F-actin binding conformation that is allosterically blocked by the inhibitor G2. Reconstructions of seven-filament hexagonal bundle elements, variability analysis, and simulations show how structural plasticity enables fascin to bridge varied inter-filament orientations, accommodating mismatches between F-actin's helical symmetry and bundle hexagonal packing. Tomography of many-filament bundles and modeling uncovers geometric rules underlying emergent fascin binding patterns, as well as the accumulation of unfavorable crosslinks that limit bundle size. Collectively, this work shows how fascin harnesses fine-tuned nanoscale structural dynamics to build and regulate micron-scale F-actin bundles.
Collapse
Affiliation(s)
- Rui Gong
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Matthew J. Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Keith R. Carney
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Keith Hamilton
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Tamara C. Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
7
|
Park J, Bird JE. The actin cytoskeleton in hair bundle development and hearing loss. Hear Res 2023; 436:108817. [PMID: 37300948 PMCID: PMC10408727 DOI: 10.1016/j.heares.2023.108817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Inner ear hair cells assemble mechanosensitive hair bundles on their apical surface that transduce sounds and accelerations. Each hair bundle is comprised of ∼ 100 individual stereocilia that are arranged into rows of increasing height and width; their specific and precise architecture being necessary for mechanoelectrical transduction (MET). The actin cytoskeleton is fundamental to establishing this architecture, not only by forming the structural scaffold shaping each stereocilium, but also by composing rootlets and the cuticular plate that together provide a stable foundation supporting each stereocilium. In concert with the actin cytoskeleton, a large assortment of actin-binding proteins (ABPs) function to cross-link actin filaments into specific topologies, as well as control actin filament growth, severing, and capping. These processes are individually critical for sensory transduction and are all disrupted in hereditary forms of human hearing loss. In this review, we provide an overview of actin-based structures in the hair bundle and the molecules contributing to their assembly and functional properties. We also highlight recent advances in mechanisms driving stereocilia elongation and how these processes are tuned by MET.
Collapse
Affiliation(s)
- Jinho Park
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Myology Institute, University of Florida, Gainesville, FL 32610, United States
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Myology Institute, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
8
|
Rajan S, Kudryashov DS, Reisler E. Actin Bundles Dynamics and Architecture. Biomolecules 2023; 13:450. [PMID: 36979385 PMCID: PMC10046292 DOI: 10.3390/biom13030450] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Cells use the actin cytoskeleton for many of their functions, including their division, adhesion, mechanosensing, endo- and phagocytosis, migration, and invasion. Actin bundles are the main constituent of actin-rich structures involved in these processes. An ever-increasing number of proteins that crosslink actin into bundles or regulate their morphology is being identified in cells. With recent advances in high-resolution microscopy and imaging techniques, the complex process of bundles formation and the multiple forms of physiological bundles are beginning to be better understood. Here, we review the physiochemical and biological properties of four families of highly conserved and abundant actin-bundling proteins, namely, α-actinin, fimbrin/plastin, fascin, and espin. We describe the similarities and differences between these proteins, their role in the formation of physiological actin bundles, and their properties-both related and unrelated to their bundling abilities. We also review some aspects of the general mechanism of actin bundles formation, which are known from the available information on the activity of the key actin partners involved in this process.
Collapse
Affiliation(s)
- Sudeepa Rajan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Nast-Kolb T, Bleicher P, Payr M, Bausch AR. VASP localization to lipid bilayers induces polymerization driven actin bundle formation. Mol Biol Cell 2022; 33:ar91. [PMID: 35830600 PMCID: PMC9582628 DOI: 10.1091/mbc.e21-11-0577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Actin bundles constitute important cytoskeleton structures and enable a scaffold for force transmission inside cells. Actin bundles are formed by proteins, with multiple F-actin binding domains cross-linking actin filaments to each other. Vasodilator-stimulated phosphoprotein (VASP) has mostly been reported as an actin elongator, but it has been shown to be a bundling protein as well and is found in bundled actin structures at filopodia and adhesion sites. Based on in vitro experiments, it remains unclear when and how VASP can act as an actin bundler or elongator. Here we demonstrate that VASP bound to membranes facilitates the formation of large actin bundles during polymerization. The alignment by polymerization requires the fluidity of the lipid bilayers. The mobility within the bilayer enables VASP to bind to filaments and capture and track growing barbed ends. VASP itself phase separates into a protein-enriched phase on the bilayer. This VASP-rich phase nucleates and accumulates at bundles during polymerization, which in turn leads to a reorganization of the underlying lipid bilayer. Our findings demonstrate that the nature of VASP localization is decisive for its function. The up-concentration based on VASP’s affinity to actin during polymerization enables it to simultaneously fulfill the function of an elongator and a bundler.
Collapse
Affiliation(s)
- T Nast-Kolb
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany and
| | - P Bleicher
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany and.,Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892
| | - M Payr
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany and.,Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhoferstr. 1, 69117 Heidelberg, Germany
| | - A R Bausch
- Center for Protein Assemblies (CPA), Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| |
Collapse
|
10
|
Enhanced incorporation of subnanometer tags into cellular proteins for fluorescence nanoscopy via optimized genetic code expansion. Proc Natl Acad Sci U S A 2022; 119:e2201861119. [PMID: 35858298 PMCID: PMC9304028 DOI: 10.1073/pnas.2201861119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With few-nanometer resolution recently achieved by a new generation of fluorescence nanoscopes (MINFLUX and MINSTED), the size of the tags used to label proteins will increasingly limit the ability to dissect nanoscopic biological structures. Bioorthogonal (click) chemical groups are powerful tools for the specific detection of biomolecules. Through the introduction of an engineered aminoacyl–tRNA synthetase/tRNA pair (tRNA: transfer ribonucleic acid), genetic code expansion allows for the site-specific introduction of amino acids with “clickable” side chains into proteins of interest. Well-defined label positions and the subnanometer scale of the protein modification provide unique advantages over other labeling approaches for imaging at molecular-scale resolution. We report that, by pairing a new N-terminally optimized pyrrolysyl–tRNA synthetase (chPylRS
2020
) with a previously engineered orthogonal tRNA, clickable amino acids are incorporated with improved efficiency into bacteria and into mammalian cells. The resulting enhanced genetic code expansion machinery was used to label β-actin in U2OS cell filopodia for MINFLUX imaging with minimal separation of fluorophores from the protein backbone. Selected data were found to be consistent with previously reported high-resolution information from cryoelectron tomography about the cross-sectional filament bundling architecture. Our study underscores the need for further improvements to the degree of labeling with minimal-offset methods in order to fully exploit molecular-scale optical three-dimensional resolution.
Collapse
|
11
|
Abramova A, Glagolev M, Vasilevskaya V. Structured globules with twisted arrangement of helical blocks: Computer simulation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
A generalized Flory-Stockmayer kinetic theory of connectivity percolation and rigidity percolation of cytoskeletal networks. PLoS Comput Biol 2022; 18:e1010105. [PMID: 35533192 PMCID: PMC9119625 DOI: 10.1371/journal.pcbi.1010105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/19/2022] [Accepted: 04/14/2022] [Indexed: 01/07/2023] Open
Abstract
Actin networks are essential for living cells to move, reproduce, and sense their environments. The dynamic and rheological behavior of actin networks is modulated by actin-binding proteins such as α-actinin, Arp2/3, and myosin. There is experimental evidence that actin-binding proteins modulate the cooperation of myosin motors by connecting the actin network. In this work, we present an analytical mean field model, using the Flory-Stockmayer theory of gelation, to understand how different actin-binding proteins change the connectivity of the actin filaments as the networks are formed. We follow the kinetics of the networks and estimate the concentrations of actin-binding proteins that are needed to reach connectivity percolation as well as to reach rigidity percolation. We find that Arp2/3 increases the actomyosin connectivity in the network in a non-monotonic way. We also describe how changing the connectivity of actomyosin networks modulates the ability of motors to exert forces, leading to three possible phases of the networks with distinctive dynamical characteristics: a sol phase, a gel phase, and an active phase. Thus, changes in the concentration and activity of actin-binding proteins in cells lead to a phase transition of the actin network, allowing the cells to perform active contraction and change their rheological properties. The actin cytoskeleton is a complex dynamic system, regulated by multiple proteins that bind to actin filaments. Some actin-binding proteins are crosslinkers, which can bind pairs of actin filaments, forming actin networks. Actin crosslinkers can be passive linkers, providing only structural integrity, or can be active linkers such as myosin motors, which exert forces on the network. Experiments have shown that crosslinked actin networks can behave viscously when the number of passive crosslinkers is low, but become elastic, when there are many crosslinkers. Motors can only lead to contraction of the network when there is an intermediate concentration of passive crosslinkers. The behavior of networks in the cell depends on the concentration and activity of several distinct crosslinkers, which have different binding sites, geometries, affinities, and concentrations. In this work we propose a simple analytical model based on chemical kinetics and the Flory-Stockmayer theory that gives us insight into how different crosslinkers interact with the actin filaments so as to give rise to the emergent mechanical behavior. This theory also allows us to compute analytically several crucial aspects of the development of the mechanical properties during network assembly.
Collapse
|
13
|
Atherton J, Stouffer M, Francis F, Moores CA. Visualising the cytoskeletal machinery in neuronal growth cones using cryo-electron tomography. J Cell Sci 2022; 135:274968. [PMID: 35383828 PMCID: PMC9016625 DOI: 10.1242/jcs.259234] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
Neurons extend axons to form the complex circuitry of the mature brain. This depends on the coordinated response and continuous remodelling of the microtubule and F-actin networks in the axonal growth cone. Growth cone architecture remains poorly understood at nanoscales. We therefore investigated mouse hippocampal neuron growth cones using cryo-electron tomography to directly visualise their three-dimensional subcellular architecture with molecular detail. Our data showed that the hexagonal arrays of actin bundles that form filopodia penetrate and terminate deep within the growth cone interior. We directly observed the modulation of these and other growth cone actin bundles by alteration of individual F-actin helical structures. Microtubules with blunt, slightly flared or gently curved ends predominated in the growth cone, frequently contained lumenal particles and exhibited lattice defects. Investigation of the effect of absence of doublecortin, a neurodevelopmental cytoskeleton regulator, on growth cone cytoskeleton showed no major anomalies in overall growth cone organisation or in F-actin subpopulations. However, our data suggested that microtubules sustained more structural defects, highlighting the importance of microtubule integrity during growth cone migration. Summary: Cryo-electron tomographic reconstruction of neuronal growth cone subdomains reveals distinctive F-actin and microtubule cytoskeleton architectures and modulation at molecular detail.
Collapse
Affiliation(s)
- Joseph Atherton
- Randall Centre for Cell and Molecular Biophysics, King's College, London SE1 1YR, UK.,Institute of Structural and Molecular Biology, Birkbeck, University of London, London WC1E 7HX, UK
| | - Melissa Stouffer
- INSERM UMR-S 1270, 17 Rue du Fer à Moulin, 75005 Paris, France.,Sorbonne University UMR-S 1270, 4 Place Jussieu, 75005 Paris, France.,Institut du Fer à Moulin, 17 Rue du Fer à Moulin, 75005 Paris, France.,Institute of Science and Technology Austria, Am campus 1, 3400 Klosterneuberg, Austria
| | - Fiona Francis
- INSERM UMR-S 1270, 17 Rue du Fer à Moulin, 75005 Paris, France.,Sorbonne University UMR-S 1270, 4 Place Jussieu, 75005 Paris, France.,Institut du Fer à Moulin, 17 Rue du Fer à Moulin, 75005 Paris, France
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London WC1E 7HX, UK
| |
Collapse
|
14
|
Ehrlich H, Luczak M, Ziganshin R, Mikšík I, Wysokowski M, Simon P, Baranowska‐Bosiacka I, Kupnicka P, Ereskovsky A, Galli R, Dyshlovoy S, Fischer J, Tabachnick KR, Petrenko I, Jesionowski T, Lubkowska A, Figlerowicz M, Ivanenko VN, Summers AP. Arrested in Glass: Actin within Sophisticated Architectures of Biosilica in Sponges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105059. [PMID: 35156333 PMCID: PMC9009123 DOI: 10.1002/advs.202105059] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Actin is a fundamental member of an ancient superfamily of structural intracellular proteins and plays a crucial role in cytoskeleton dynamics, ciliogenesis, phagocytosis, and force generation in both prokaryotes and eukaryotes. It is shown that actin has another function in metazoans: patterning biosilica deposition, a role that has spanned over 500 million years. Species of glass sponges (Hexactinellida) and demosponges (Demospongiae), representatives of the first metazoans, with a broad diversity of skeletal structures with hierarchical architecture unchanged since the late Precambrian, are studied. By etching their skeletons, organic templates dominated by individual F-actin filaments, including branched fibers and the longest, thickest actin fiber bundles ever reported, are isolated. It is proposed that these actin-rich filaments are not the primary site of biosilicification, but this highly sophisticated and multi-scale form of biomineralization in metazoans is ptterned.
Collapse
Affiliation(s)
- Hermann Ehrlich
- Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreiberg09599Germany
- Center for Advanced TechnologyAdam Mickiewicz UniversityPoznan61614Poland
| | - Magdalena Luczak
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznan61704Poland
| | - Rustam Ziganshin
- Institute of Bioorganic ChemistryRussian Academy of SciencesMoscow142290Russian Federation
| | - Ivan Mikšík
- Institute of PhysiologyThe Czech Academy of SciencesPrague142 20Czech Republic
| | - Marcin Wysokowski
- Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreiberg09599Germany
- Faculty of Chemical TechnologyInstitute of Chemical Technology and EngineeringPoznan University of TechnologyPoznan60965Poland
| | - Paul Simon
- Max Planck Institute for Chemical Physics of SolidsDresden01187Germany
| | - Irena Baranowska‐Bosiacka
- Department of Biochemistry and Medical ChemistryPomeranian Medical University in SzczecinSzczecin70111Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical ChemistryPomeranian Medical University in SzczecinSzczecin70111Poland
| | - Alexander Ereskovsky
- Institut Méditerranéen de Biodiversité et d'Ecologie (IMBE)CNRSIRDAix Marseille UniversitéMarseille13003France
- Biological FacultySt. Petersburg State UniversitySt. Petersburg199034Russian Federation
- Koltzov Institute of Developmental Biology of Russian Academy of SciencesMoscow119334Russian Federation
| | - Roberta Galli
- Clinical Sensoring and MonitoringDepartment of Anesthesiology and Intensive Care MedicineTU DresdenDresden01307Germany
| | - Sergey Dyshlovoy
- Laboratory of Experimental OncologyUniversity Medical Center Hamburg‐EppendorfHamburg20251Germany
- Laboratory of PharmacologyA.V. Zhirmunsky National Scientific Center of Marine BiologyFar Eastern BranchRussian Academy of SciencesVladivostok690041Russian Federation
| | - Jonas Fischer
- Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreiberg09599Germany
| | | | - Iaroslav Petrenko
- Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreiberg09599Germany
| | - Teofil Jesionowski
- Faculty of Chemical TechnologyInstitute of Chemical Technology and EngineeringPoznan University of TechnologyPoznan60965Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical MedicineFaculty of Health SciencesPomeranian Medical University in SzczecinSzczecin71210Poland
| | - Marek Figlerowicz
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznan61704Poland
| | - Viatcheslav N. Ivanenko
- Department of Invertebrate ZoologyBiological FacultyLomonosov Moscow State UniversityMoscow119991Russian Federation
| | - Adam P. Summers
- Department of BiologyFriday Harbor LabsUniversity of WashingtonFriday HarborWA98195USA
| |
Collapse
|
15
|
Bashirzadeh Y, Redford SA, Lorpaiboon C, Groaz A, Moghimianavval H, Litschel T, Schwille P, Hocky GM, Dinner AR, Liu AP. Actin crosslinker competition and sorting drive emergent GUV size-dependent actin network architecture. Commun Biol 2021. [PMID: 34584211 DOI: 10.1101/2020.10.03.322354v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
The proteins that make up the actin cytoskeleton can self-assemble into a variety of structures. In vitro experiments and coarse-grained simulations have shown that the actin crosslinking proteins α-actinin and fascin segregate into distinct domains in single actin bundles with a molecular size-dependent competition-based mechanism. Here, by encapsulating actin, α-actinin, and fascin in giant unilamellar vesicles (GUVs), we show that physical confinement can cause these proteins to form much more complex structures, including rings and asters at GUV peripheries and centers; the prevalence of different structures depends on GUV size. Strikingly, we found that α-actinin and fascin self-sort into separate domains in the aster structures with actin bundles whose apparent stiffness depends on the ratio of the relative concentrations of α-actinin and fascin. The observed boundary-imposed effect on protein sorting may be a general mechanism for creating emergent structures in biopolymer networks with multiple crosslinkers.
Collapse
Affiliation(s)
- Yashar Bashirzadeh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Steven A Redford
- James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
- The graduate program in Biophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
| | | | - Alessandro Groaz
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Thomas Litschel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Glen M Hocky
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Aaron R Dinner
- James Franck Institute, University of Chicago, Chicago, IL, 60637, USA.
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA.
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
16
|
Bashirzadeh Y, Redford SA, Lorpaiboon C, Groaz A, Moghimianavval H, Litschel T, Schwille P, Hocky GM, Dinner AR, Liu AP. Actin crosslinker competition and sorting drive emergent GUV size-dependent actin network architecture. Commun Biol 2021; 4:1136. [PMID: 34584211 PMCID: PMC8478941 DOI: 10.1038/s42003-021-02653-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
The proteins that make up the actin cytoskeleton can self-assemble into a variety of structures. In vitro experiments and coarse-grained simulations have shown that the actin crosslinking proteins α-actinin and fascin segregate into distinct domains in single actin bundles with a molecular size-dependent competition-based mechanism. Here, by encapsulating actin, α-actinin, and fascin in giant unilamellar vesicles (GUVs), we show that physical confinement can cause these proteins to form much more complex structures, including rings and asters at GUV peripheries and centers; the prevalence of different structures depends on GUV size. Strikingly, we found that α-actinin and fascin self-sort into separate domains in the aster structures with actin bundles whose apparent stiffness depends on the ratio of the relative concentrations of α-actinin and fascin. The observed boundary-imposed effect on protein sorting may be a general mechanism for creating emergent structures in biopolymer networks with multiple crosslinkers. By encapsulating proteins in giant unilamellar vesicles, Bashirzadeh et al find that actin crosslinkers, α-actinin and fascin, can self-assemble with actin into complex structures that depend on the degree of confinement. Further analysis and modeling show that α-actinin and fascin sort to separate domains of these structures. These insights may be generalizable to other biopolymer networks containing crosslinkers.
Collapse
Affiliation(s)
- Yashar Bashirzadeh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Steven A Redford
- James Franck Institute, University of Chicago, Chicago, IL, 60637, USA.,The graduate program in Biophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
| | | | - Alessandro Groaz
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Thomas Litschel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Glen M Hocky
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Aaron R Dinner
- James Franck Institute, University of Chicago, Chicago, IL, 60637, USA. .,Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA.
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA. .,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
17
|
Yang B, Wei K, Loebel C, Zhang K, Feng Q, Li R, Wong SHD, Xu X, Lau C, Chen X, Zhao P, Yin C, Burdick JA, Wang Y, Bian L. Enhanced mechanosensing of cells in synthetic 3D matrix with controlled biophysical dynamics. Nat Commun 2021; 12:3514. [PMID: 34112772 PMCID: PMC8192531 DOI: 10.1038/s41467-021-23120-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 03/19/2021] [Indexed: 01/08/2023] Open
Abstract
3D culture of cells in designer biomaterial matrices provides a biomimetic cellular microenvironment and can yield critical insights into cellular behaviours not available from conventional 2D cultures. Hydrogels with dynamic properties, achieved by incorporating either degradable structural components or reversible dynamic crosslinks, enable efficient cell adaptation of the matrix and support associated cellular functions. Herein we demonstrate that given similar equilibrium binding constants, hydrogels containing dynamic crosslinks with a large dissociation rate constant enable cell force-induced network reorganization, which results in rapid stellate spreading, assembly, mechanosensing, and differentiation of encapsulated stem cells when compared to similar hydrogels containing dynamic crosslinks with a low dissociation rate constant. Furthermore, the static and precise conjugation of cell adhesive ligands to the hydrogel subnetwork connected by such fast-dissociating crosslinks is also required for ultra-rapid stellate spreading (within 18 h post-encapsulation) and enhanced mechanosensing of stem cells in 3D. This work reveals the correlation between microscopic cell behaviours and the molecular level binding kinetics in hydrogel networks. Our findings provide valuable guidance to the design and evaluation of supramolecular biomaterials with cell-adaptable properties for studying cells in 3D cultures. 3D culture systems can provide critical insights into cellular behaviour. Here, the authors study the binding timescale of dynamic crosslinks and the conjugation stability of cell-adhesive ligands in cell–hydrogel network interactions to evaluate the impact on stem cell behaviour, mechanosensing and differentiation.
Collapse
Affiliation(s)
- Boguang Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Kongchang Wei
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.,Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| | - Claudia Loebel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kunyu Zhang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Qian Feng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China
| | - Rui Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.,Department of Biomedical Engineering, The Hong Kong Polytechnic University, HongKong, China
| | - Xiayi Xu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Chunhon Lau
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyu Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pengchao Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Chao Yin
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Wang
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, China.
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China. .,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Cavanna F, Alvarado J. Quantification of the mesh structure of bundled actin filaments. SOFT MATTER 2021; 17:5034-5043. [PMID: 33912871 DOI: 10.1039/d1sm00428j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biopolymer networks are essential for a wide variety of cellular functions. The biopolymer actin is known to self-assemble into a variety of spatial structures in response to physiological and physical mechanisms. So far, the mechanics of networks of single actin filaments and bundles has previously been described. However, the spatial structure of actin bundles remains poorly understood. Here, we investigate this question by bundling actin filaments with systematically varied concentrations of known physical bundling agents (MgCl2 and PEG) and physiological bundling agents (α-actinin and fascin). We image bundled actin networks with confocal microscopy and perform analysis to describe their mesh size and the nearest-distance distribution, which we call "mesh structure". We find that the mesh size ξ scales universally with actin concentration as ξ ∼ [actin]-1/2. However, the dependence of ξ on the concentration of the bundling agent depends on the agent used. Finally, we find that nearest-distance distributions are best fit by Weibull and Gamma distributions. A complete understanding of the mesh structure of biopolymer networks leads to a more mechanistic understanding of the structure of the cytoskeleton, and can be exploited to design filters with variable porosity for microfluidic devices.
Collapse
Affiliation(s)
- Francis Cavanna
- UT Austin Department of Physics, 2515 Speedway, Austin, Texas, USA.
| | - José Alvarado
- UT Austin Department of Physics, 2515 Speedway, Austin, Texas, USA.
| |
Collapse
|
19
|
Castaneda N, Park J, Kang EH. Regulation of Actin Bundle Mechanics and Structure by Intracellular Environmental Factors. FRONTIERS IN PHYSICS 2021; 9:675885. [PMID: 34422787 PMCID: PMC8376200 DOI: 10.3389/fphy.2021.675885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The mechanical and structural properties of actin cytoskeleton drive various cellular processes, including structural support of the plasma membrane and cellular motility. Actin monomers assemble into double-stranded helical filaments as well as higher-ordered structures such as bundles and networks. Cells incorporate macromolecular crowding, cation interactions, and actin-crosslinking proteins to regulate the organization of actin bundles. Although the roles of each of these factors in actin bundling have been well-known individually, how combined factors contribute to actin bundle assembly, organization, and mechanics is not fully understood. Here, we describe recent studies that have investigated the mechanisms of how intracellular environmental factors influence actin bundling. This review highlights the effects of macromolecular crowding, cation interactions, and actin-crosslinking proteins on actin bundle organization, structure, and mechanics. Understanding these mechanisms is important in determining in vivo actin biophysics and providing insights into cell physiology.
Collapse
Affiliation(s)
- Nicholas Castaneda
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Jinho Park
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, United States
| | - Ellen Hyeran Kang
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, United States
- Department of Physics, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
20
|
Litschel T, Kelley CF, Holz D, Adeli Koudehi M, Vogel SK, Burbaum L, Mizuno N, Vavylonis D, Schwille P. Reconstitution of contractile actomyosin rings in vesicles. Nat Commun 2021; 12:2254. [PMID: 33859190 PMCID: PMC8050101 DOI: 10.1038/s41467-021-22422-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
One of the grand challenges of bottom-up synthetic biology is the development of minimal machineries for cell division. The mechanical transformation of large-scale compartments, such as Giant Unilamellar Vesicles (GUVs), requires the geometry-specific coordination of active elements, several orders of magnitude larger than the molecular scale. Of all cytoskeletal structures, large-scale actomyosin rings appear to be the most promising cellular elements to accomplish this task. Here, we have adopted advanced encapsulation methods to study bundled actin filaments in GUVs and compare our results with theoretical modeling. By changing few key parameters, actin polymerization can be differentiated to resemble various types of networks in living cells. Importantly, we find membrane binding to be crucial for the robust condensation into a single actin ring in spherical vesicles, as predicted by theoretical considerations. Upon force generation by ATP-driven myosin motors, these ring-like actin structures contract and locally constrict the vesicle, forming furrow-like deformations. On the other hand, cortex-like actin networks are shown to induce and stabilize deformations from spherical shapes. Cytoskeletal networks support and direct cell shape and guide intercellular transport, but relatively little is understood about the self-organization of cytoskeletal components on the scale of an entire cell. Here, authors use an in vitro system and observe the assembly of different types of actin networks and the condensation of membrane-bound actin into single rings.
Collapse
Affiliation(s)
- Thomas Litschel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Charlotte F Kelley
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Danielle Holz
- Department of Physics, Lehigh University, Bethlehem, PA, USA
| | | | - Sven K Vogel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Laura Burbaum
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Naoko Mizuno
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
21
|
Krishnan RK, Baskar R, Anna B, Elia N, Boermel M, Bausch AR, Abdu U. Recapitulating Actin Module Organization in the Drosophila Oocyte Reveals New Roles for Bristle-Actin-Modulating Proteins. Int J Mol Sci 2021; 22:ijms22084006. [PMID: 33924532 PMCID: PMC8070096 DOI: 10.3390/ijms22084006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
The generation of F-actin bundles is controlled by the action of actin-binding proteins. In Drosophila bristle development, two major actin-bundling proteins—Forked and Fascin—were identified, but still the molecular mechanism by which these actin-bundling proteins and other proteins generate bristle actin bundles is unknown. In this study, we developed a technique that allows recapitulation of bristle actin module organization using the Drosophila ovary by a combination of confocal microscopy, super-resolution structured illumination microscopy, and correlative light and electron microscope analysis. Since Forked generated a distinct ectopic network of actin bundles in the oocyte, the additive effect of two other actin-associated proteins, namely, Fascin and Javelin (Jv), was studied. We found that co-expression of Fascin and Forked demonstrated that the number of actin filaments within the actin bundles dramatically increased, and in their geometric organization, they resembled bristle-like actin bundles. On the other hand, co-expression of Jv with Forked increased the length and density of the actin bundles. When all three proteins co-expressed, the actin bundles were longer and denser, and contained a high number of actin filaments in the bundle. Thus, our results demonstrate that the Drosophila oocyte could serve as a test tube for actin bundle analysis.
Collapse
Affiliation(s)
- Ramesh Kumar Krishnan
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (R.K.K.); (R.B.); (B.A.); (N.E.)
| | - Raju Baskar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (R.K.K.); (R.B.); (B.A.); (N.E.)
| | - Bakhrat Anna
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (R.K.K.); (R.B.); (B.A.); (N.E.)
| | - Natalie Elia
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (R.K.K.); (R.B.); (B.A.); (N.E.)
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Mandy Boermel
- Electron Microscopy Core Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany;
| | - Andreas R. Bausch
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany;
- Center for Protein Assemblies (CPA), Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (R.K.K.); (R.B.); (B.A.); (N.E.)
- Correspondence:
| |
Collapse
|
22
|
Sallee JL, Crawford JM, Singh V, Kiehart DP. Mutations in Drosophila crinkled/Myosin VIIA disrupt denticle morphogenesis. Dev Biol 2021; 470:121-135. [PMID: 33248112 PMCID: PMC7855556 DOI: 10.1016/j.ydbio.2020.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
Actin filament crosslinking, bundling and molecular motor proteins are necessary for the assembly of epithelial projections such as microvilli, stereocilia, hairs, and bristles. Mutations in such proteins cause defects in the shape, structure, and function of these actin - based protrusions. One protein necessary for stereocilia formation, Myosin VIIA, is an actin - based motor protein conserved throughout phylogeny. In Drosophila melanogaster, severe mutations in the MyoVIIA homolog crinkled (ck) are "semi - lethal" with only a very small percentage of flies surviving to adulthood. Such survivors show morphological defects related to actin bundling in hairs and bristles. To better understand ck/MyoVIIA's function in bundled - actin structures, we used dominant female sterile approaches to analyze the loss of maternal and zygotic (M/Z) ck/MyoVIIA in the morphogenesis of denticles, small actin - based projections on the ventral epidermis of Drosophila embryos. M/Z ck mutants displayed severe defects in denticle morphology - actin filaments initiated in the correct location, but failed to elongate and bundle to form normal projections. Using deletion mutant constructs, we demonstrated that both of the C - terminal MyTH4 and FERM domains are necessary for proper denticle formation. Furthermore, we show that ck/MyoVIIA interacts genetically with dusky - like (dyl), a member of the ZPD family of proteins that links the extracellular matrix to the plasma membrane, and when mutated also disrupts normal denticle formation. Loss of either protein alone does not alter the localization of the other; however, loss of the two proteins together dramatically enhances the defects in denticle shape observed when either protein alone was absent. Our data indicate that ck/MyoVIIA plays a key role in the formation and/or organization of actin filament bundles, which drive proper shape of cellular projections.
Collapse
Affiliation(s)
- Jennifer L Sallee
- Department of Biology, Duke University, Durham, NC, 27708, USA; Department of Biology, North Central College, Naperville, IL, 60540, USA.
| | | | - Vinay Singh
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | | |
Collapse
|
23
|
Bashirzadeh Y, Wubshet NH, Liu AP. Confinement Geometry Tunes Fascin-Actin Bundle Structures and Consequently the Shape of a Lipid Bilayer Vesicle. Front Mol Biosci 2020; 7:610277. [PMID: 33240934 PMCID: PMC7680900 DOI: 10.3389/fmolb.2020.610277] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
Depending on the physical and biochemical properties of actin-binding proteins, actin networks form different types of membrane protrusions at the cell periphery. Actin crosslinkers, which facilitate the interaction of actin filaments with one another, are pivotal in determining the mechanical properties and protrusive behavior of actin networks. Short crosslinkers such as fascin bundle F-actin to form rigid spiky filopodial protrusions. By encapsulation of fascin and actin in giant unilamellar vesicles (GUVs), we show that fascin-actin bundles cause various GUV shape changes by forming bundle networks or straight single bundles depending on GUV size and fascin concentration. We also show that the presence of a long crosslinker, α-actinin, impacts fascin-induced GUV shape changes and significantly impairs the formation of filopodia-like protrusions. Actin bundle-induced GUV shape changes are confirmed by light-induced disassembly of actin bundles leading to the reversal of GUV shape. Our study contributes to advancing the design of shape-changing minimal cells for better characterization of the interaction between lipid bilayer membranes and actin cytoskeleton.
Collapse
Affiliation(s)
- Yashar Bashirzadeh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Nadab H. Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Biophysics, University of Michigan, Ann Arbor, MI, United States
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
24
|
Gavrilov M, Gilbert EP, Rowan AE, Lauko J, Yakubov GE. Structural Insights into the Mechanism of Heat-Set Gel Formation of Polyisocyanopeptide Polymers. Macromol Rapid Commun 2020; 41:e2000304. [PMID: 32761855 DOI: 10.1002/marc.202000304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/28/2020] [Indexed: 12/17/2022]
Abstract
One of the key factors influencing the mechanical properties of natural and synthetic extracellular matrices (ECM) is how large-scale 3D gel-like structures emerge from the molecular self-assembly of individual polymers. Here, structural characterization using small-angle neutron scattering (SANS) of ECM-mimicking polyisocyanopeptide (PIC) hydrogels are reported as a function of background ions across the Hofmeister series. More specifically, the process of polymer assembly is examined by probing the structural features of the heat-set gels and correlating them with their rheological and micro-mechanical properties. The molecular parameters obtained from SANS clearly show changes in polymer conformation which map onto the temperature-induced changes in rheological and micro-mechanical behavior. The formation of larger structures are linked to the formation of cross-links (or bundles), whilst the onset of their detection in the SANS is putatively linked to their concentration in the gel. These insights provide support for the 'hot-spot' gelation mechanism of PIC heat-set gels. Finally, it is found that formation of cross-links and heat-set gelling properties can be strongly influenced by ions in accordance with Hofmeister series. In practice, these results have significance since ions are inherently present in high concentration during cell culture studies; this may therefore influence the structure of synthetic ECM networks.
Collapse
Affiliation(s)
- Mikhail Gavrilov
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Elliot P Gilbert
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234, Australia.,Australian Institute for Bioengineering and Nanotechnology and Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jan Lauko
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Gleb E Yakubov
- School of Biosciences, Faculty of Science, University of Nottingham, Nottingham, UK.,School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
25
|
The many implications of actin filament helicity. Semin Cell Dev Biol 2019; 102:65-72. [PMID: 31862222 DOI: 10.1016/j.semcdb.2019.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/15/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
One of the best known features of actin filaments is their helical structure. A number of essential properties emerge from this molecular arrangement of actin subunits. Here, we give an overview of the mechanical and biochemical implications of filament helicity, at different scales. In particular, a number of recent studies have highlighted the role of filament helicity in the adaptation to and the generation of mechanical torsion, and in the modulation of the filament's interaction with very different actin-binding proteins (such as myosins, cross-linkers, formins, and cofilin). Helicity can thus be seen as a key factor for the regulation of actin assembly, and as a link between biochemical regulators and their mechanical context. In addition, actin filament helicity appears to play an essential role in the establishment of chirality at larger scales, up to the organismal scale. Altogether, helicity appears to be an essential feature contributing to the regulation of actin assembly dynamics, and to actin's ability to organize cells at a larger scale.
Collapse
|
26
|
Adeli Koudehi M, Rutkowski DM, Vavylonis D. Organization of associating or crosslinked actin filaments in confinement. Cytoskeleton (Hoboken) 2019; 76:532-548. [PMID: 31525281 DOI: 10.1002/cm.21565] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
A key factor of actin cytoskeleton organization in cells is the interplay between the dynamical properties of actin filaments and cell geometry, which restricts, confines and directs their orientation. Crosslinking interactions among actin filaments, together with geometrical cues and regulatory proteins can give rise to contractile rings in dividing cells and actin rings in neurons. Motivated by recent in vitro experiments, in this work we performed computer simulations to study basic aspects of the interplay between confinement and attractive interactions between actin filaments. We used a spring-bead model and Brownian dynamics to simulate semiflexible actin filaments that polymerize in a confining sphere with a rate proportional to the monomer concentration. We model crosslinking, or attraction through the depletion interaction, implicitly as an attractive short-range potential between filament beads. In confining geometries smaller than the persistence length of actin filaments, we show rings can form by curving of filaments of length comparable to, or longer than the confinement diameter. Rings form for optimal ranges of attractive interactions that exist in between open bundles, irregular loops, aggregated, and unbundled morphologies. The probability of ring formation is promoted by attraction to the confining sphere boundary and decreases for large radii and initial monomer concentrations, in agreement with prior experimental data. The model reproduces ring formation along the flat plane of oblate ellipsoids.
Collapse
|
27
|
Buyukdagli S, Podgornik R. Like-charge polymer-membrane complexation mediated by multivalent cations: One-loop-dressed strong coupling theory. J Chem Phys 2019; 151:094902. [PMID: 31492057 DOI: 10.1063/1.5109637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We probe the electrostatic mechanism driving adsorption of polyelectrolytes onto like-charged membranes upon the addition of tri- and tetravalent counterions to a bathing monovalent salt solution. We develop a one-loop-dressed strong coupling theory that treats the monovalent salt at the electrostatic one-loop level and the multivalent counterions within a strong-coupling approach. It is shown that the adhesive force of the multivalent counterions mediating the like-charge adsorption arises from their strong condensation at the charged membrane. The resulting interfacial counterion excess locally maximizes the screening ability of the electrolyte and minimizes the electrostatic polymer grand potential. This translates into an attractive force that pulls the polymer to the similarly charged membrane. We show that the high counterion valency enables this adsorption transition even at weakly charged membranes. Additionally, strongly charged membranes give rise to monovalent counterion-induced correlations and intensify the interfacial multivalent counterion condensation, strengthening the complexation of the polymer with the like-charged membrane, as well as triggering the orientational transition of the molecule prior to its adsorption. Finally, our theory provides two additional key features as evidenced by previous adsorption experiments: first, the critical counterion concentration for polymer adsorption decreases with the rise of the counterion valency and, second, the addition of monovalent salt enhances the screening of the membrane charges and suppresses monovalent counterion correlations close to the surface. This weakens the interfacial multivalent counterion condensation and results in the desorption of the polymer from the substrate.
Collapse
Affiliation(s)
| | - Rudolf Podgornik
- School of Physical Sciences and Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Moreau C, Giraldi L, Gadêlha H. The asymptotic coarse-graining formulation of slender-rods, bio-filaments and flagella. J R Soc Interface 2019; 15:rsif.2018.0235. [PMID: 29973402 DOI: 10.1098/rsif.2018.0235] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/06/2018] [Indexed: 11/12/2022] Open
Abstract
The inertialess fluid-structure interactions of active and passive inextensible filaments and slender-rods are ubiquitous in nature, from the dynamics of semi-flexible polymers and cytoskeletal filaments to cellular mechanics and flagella. The coupling between the geometry of deformation and the physical interaction governing the dynamics of bio-filaments is complex. Governing equations negotiate elastohydrodynamical interactions with non-holonomic constraints arising from the filament inextensibility. Such elastohydrodynamic systems are structurally convoluted, prone to numerical errors, thus requiring penalization methods and high-order spatio-temporal propagators. The asymptotic coarse-graining formulation presented here exploits the momentum balance in the asymptotic limit of small rod-like elements which are integrated semi-analytically. This greatly simplifies the elastohydrodynamic interactions and overcomes previous numerical instability. The resulting matricial system is straightforward and intuitive to implement, and allows for a fast and efficient computation, more than a hundred times faster than previous schemes. Only basic knowledge of systems of linear equations is required, and implementation achieved with any solver of choice. Generalizations for complex interaction of multiple rods, Brownian polymer dynamics, active filaments and non-local hydrodynamics are also straightforward. We demonstrate these in four examples commonly found in biological systems, including the dynamics of filaments and flagella. Three of these systems are novel in the literature. We additionally provide a Matlab code that can be used as a basis for further generalizations.
Collapse
Affiliation(s)
- Clément Moreau
- Université Côte d'Azur, Inria, CNRS, LJAD, McTAO team, Sophia Antipolis, France
| | - Laetitia Giraldi
- Université Côte d'Azur, Inria, CNRS, LJAD, McTAO team, Sophia Antipolis, France
| | - Hermes Gadêlha
- Department of Mathematics, University of York, York YO10 5DD, UK
| |
Collapse
|
29
|
Assemblies of calcium/calmodulin-dependent kinase II with actin and their dynamic regulation by calmodulin in dendritic spines. Proc Natl Acad Sci U S A 2019; 116:18937-18942. [PMID: 31455737 PMCID: PMC6754556 DOI: 10.1073/pnas.1911452116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Calcium/calmodulin-dependent kinase II (CaMKII) plays a key role in the plasticity of dendritic spines. Calcium signals cause calcium-calmodulin to activate CaMKII, which leads to remodeling of the actin filament (F-actin) network in the spine. We elucidate the mechanism of the remodeling by combining computer simulations with protein array experiments and electron microscopic imaging, to arrive at a structural model for the dodecameric complex of CaMKII with F-actin. The binding interface involves multiple domains of CaMKII. This structure explains the architecture of the micrometer-scale CaMKII/F-actin bundles arising from the multivalence of CaMKII. We also show that the regulatory domain of CaMKII may bind either calmodulin or F-actin, but not both. This frustration, along with the multipartite nature of the binding interface, allows calmodulin transiently to strip CaMKII from actin assemblies so that they can reorganize. This observation therefore provides a simple mechanism by which the structural dynamics of CaMKII establishes the link between calcium signaling and the morphological plasticity of dendritic spines.
Collapse
|
30
|
Kang B, Jo S, Baek J, Nakamura F, Hwang W, Lee H. Role of mechanical flow for actin network organization. Acta Biomater 2019; 90:217-224. [PMID: 30928733 DOI: 10.1016/j.actbio.2019.03.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/28/2019] [Accepted: 03/26/2019] [Indexed: 11/30/2022]
Abstract
The major cytoskeletal protein actin forms complex networks to provide structural support and perform vital functions in cells. In vitro studies have revealed that the structure of the higher-order actin network is determined primarily by the type of actin binding protein (ABP). By comparison, there are far fewer studies about the role of the mechanical environment for the organization of the actin network. In particular, the duration over which cells reorganize their shape in response to functional demands is relatively short compared to the in vitro protein polymerization time, suggesting that such changes can influence the actin network formation. We hypothesize that mechanical flows in the cytoplasm generated by exogenous and endogenous stimulation play a key role in the spatiotemporal regulation of the actin architecture. To mimic cytoplasmic streaming, we generated a circulating flow using surface acoustic wave in a microfluidic channel and investigated its effect on the formation of networks by actin and ABPs. We found that the mechanical flow affected the orientation and thickness of actin bundles, depending on the type and concentration of ABPs. Our computational model shows that the extent of alignment and thickness of actin bundle are determined by the balance between flow-induced drag forces and the tendency of ABPs to crosslink actin filaments at given angles. These results suggest that local intracellular flows can affect the assembly dynamics and morphology of the actin cytoskeleton. STATEMENT OF SIGNIFICANCE: Spatiotemporal regulation of actin cytoskeleton structure is essential in many cellular functions. It has been shown that mechanical cues including an applied force and geometric boundary can alter the structural characteristics of actin network. However, even though the cytoplasm accounts for a large portion of the cell volume, the effect of the cytoplasmic streaming flow produced during cell dynamics on actin network organization has not been reported. In this study, we demonstrated that the mechanical flow exerted during actin network organization play an important role in determining the orientation and dimension of actin bundle network. Our result will be beneficial in understanding the mechanism of the actin network reorganization occurred during physiological and pathological processes.
Collapse
Affiliation(s)
- Byungjun Kang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghan Jo
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jonghyeok Baek
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Wonmuk Hwang
- Departments of Biomedical Engineering, Materials Science & Engineering, and Physics & Astronomy, Texas A&M University, College Station, TX 77843, USA; School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Hyungsuk Lee
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
31
|
Mulla Y, Wierenga H, Alkemade C, Ten Wolde PR, Koenderink GH. Frustrated binding of biopolymer crosslinkers. SOFT MATTER 2019; 15:3036-3042. [PMID: 30900710 DOI: 10.1039/c8sm02429d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Transiently crosslinked actin filament networks allow cells to combine elastic rigidity with the ability to deform viscoelastically. Theoretical models of semiflexible polymer networks predict that the crosslinker unbinding rate governs the timescale beyond which viscoelastic flow occurs. However a direct comparison between network and crosslinker dynamics is lacking. Here we measure the network's stress relaxation timescale using rheology and the lifetime of bound crosslinkers using fluorescence recovery after photobleaching (FRAP). Intriguingly, we observe that the crosslinker unbinding rate measured by FRAP is more than an order of magnitude slower than the rate measured by rheology. We rationalize this difference with a three-state model where crosslinkers are bound to either 0, 1 or 2 filaments, which allows us to extract crosslinker transition rates that are otherwise difficult to access. We find that the unbinding rate of singly bound crosslinkers is nearly two orders of magnitude slower than for doubly bound ones. We attribute the increased unbinding rate of doubly bound crosslinkers to the high stiffness of biopolymers, which frustrates crosslinker binding.
Collapse
Affiliation(s)
- Yuval Mulla
- Living Matter Department, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
32
|
Castaneda N, Lee M, Rivera-Jacquez HJ, Marracino RR, Merlino TR, Kang H. Actin Filament Mechanics and Structure in Crowded Environments. J Phys Chem B 2019; 123:2770-2779. [PMID: 30817154 DOI: 10.1021/acs.jpcb.8b12320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cellular environment is crowded with high concentrations of macromolecules that significantly reduce accessible volume for biomolecular interactions. Reductions in cellular volume can generate depletion forces that affect protein assembly and stability. The mechanical and structural properties of actin filaments play critical roles in various cellular functions, including structural support, cell movement, division, and intracellular transport. Although the effects of molecular crowding on actin polymerization have been shown, how crowded environments affect filament mechanics and structure is unknown. In this study, we investigate the effects of solution crowding on the modulations of actin filament bending stiffness and conformations both in vitro and in silico. Direct visualization of thermally fluctuating filaments in the presence of crowding agents is achieved by fluorescence microscopy imaging. Biophysical analysis indicates that molecular crowding enhances filament's effective bending stiffness and reduces average filament lengths. Utilizing the all-atom molecular dynamics simulations, we demonstrate that molecular crowding alters filament conformations and intersubunit contacts that are directly coupled to the mechanical properties of filaments. Taken together, our study suggests that the interplay between excluded volume effects and nonspecific interactions raised from molecular crowding may modulate actin filament mechanics and structure.
Collapse
Affiliation(s)
- Nicholas Castaneda
- NanoScience Technology Center , University of Central Florida , Orlando , Florida 32826 , United States.,Burnett School of Biomedical Sciences, College of Medicine , University of Central Florida , Orlando , Florida 32827 , United States
| | - Myeongsang Lee
- NanoScience Technology Center , University of Central Florida , Orlando , Florida 32826 , United States
| | - Hector J Rivera-Jacquez
- NanoScience Technology Center , University of Central Florida , Orlando , Florida 32826 , United States
| | - Ryan R Marracino
- NanoScience Technology Center , University of Central Florida , Orlando , Florida 32826 , United States.,Burnett School of Biomedical Sciences, College of Medicine , University of Central Florida , Orlando , Florida 32827 , United States
| | - Theresa R Merlino
- NanoScience Technology Center , University of Central Florida , Orlando , Florida 32826 , United States
| | - Hyeran Kang
- NanoScience Technology Center , University of Central Florida , Orlando , Florida 32826 , United States
| |
Collapse
|
33
|
Li Z, Liu H, Li J, Yang Q, Feng Z, Li Y, Yang H, Yu C, Wan J, Liu W, Zhang M. Homer Tetramer Promotes Actin Bundling Activity of Drebrin. Structure 2019; 27:27-38.e4. [DOI: 10.1016/j.str.2018.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/26/2018] [Accepted: 10/18/2018] [Indexed: 11/30/2022]
|
34
|
Nicholl ID, Matsui T, Weiss TM, Stanley CB, Heller WT, Martel A, Farago B, Callaway DJE, Bu Z. α-Catenin Structure and Nanoscale Dynamics in Solution and in Complex with F-Actin. Biophys J 2018; 115:642-654. [PMID: 30037495 DOI: 10.1016/j.bpj.2018.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/17/2018] [Accepted: 07/05/2018] [Indexed: 12/26/2022] Open
Abstract
As a core component of the adherens junction, α-catenin stabilizes the cadherin/catenin complexes to the actin cytoskeleton for the mechanical coupling of cell-cell adhesion. α-catenin also modulates actin dynamics, cell polarity, and cell-migration functions that are independent of the adherens junction. We have determined the solution structures of the α-catenin monomer and dimer using in-line size-exclusion chromatography small-angle X-ray scattering, as well as the structure of α-catenin dimer in complex to F-actin filament using selective deuteration and contrast-matching small angle neutron scattering. We further present the first observation, to our knowledge, of the nanoscale dynamics of α-catenin by neutron spin-echo spectroscopy, which explicitly reveals the mobile regions of α-catenin that are crucial for binding to F-actin. In solution, the α-catenin monomer is more expanded than either protomer shown in the crystal structure dimer, with the vinculin-binding M fragment and the actin-binding domain being able to adopt different configurations. The α-catenin dimer in solution is also significantly more expanded than the dimer crystal structure, with fewer interdomain and intersubunit contacts than the crystal structure. When in complex to F-actin, the α-catenin dimer has an even more open and extended conformation than in solution, with the actin-binding domain further separated from the main body of the dimer. The α-catenin-assembled F-actin bundle develops into an ordered filament packing arrangement at increasing α-catenin/F-actin molar ratios. Together, the structural and dynamic studies reveal that α-catenin possesses dynamic molecular conformations that prime this protein to function as a mechanosensor protein.
Collapse
Affiliation(s)
- Iain D Nicholl
- Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Light Source, Menlo Park, California
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Light Source, Menlo Park, California
| | | | - William T Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | | | | | - David J E Callaway
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, New York.
| | - Zimei Bu
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, New York.
| |
Collapse
|
35
|
Li S, Zhang J, Wang C, Nithiarasu P. Atomistic Modeling of F-Actin Mechanical Responses and Determination of Mechanical Properties. ACS Biomater Sci Eng 2018; 4:2794-2803. [DOI: 10.1021/acsbiomaterials.8b00640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Si Li
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, Wales SA1 8EN, U.K
| | - Jin Zhang
- Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chengyuan Wang
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, Wales SA1 8EN, U.K
| | - Perumal Nithiarasu
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, Wales SA1 8EN, U.K
| |
Collapse
|
36
|
Ma R, Berro J. Structural organization and energy storage in crosslinked actin assemblies. PLoS Comput Biol 2018; 14:e1006150. [PMID: 29813051 PMCID: PMC5993335 DOI: 10.1371/journal.pcbi.1006150] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/08/2018] [Accepted: 04/18/2018] [Indexed: 11/19/2022] Open
Abstract
During clathrin-mediated endocytosis in yeast cells, short actin filaments (< 200nm) and crosslinking protein fimbrin assemble to drive the internalization of the plasma membrane. However, the organization of the actin meshwork during endocytosis remains largely unknown. In addition, only a small fraction of the force necessary to elongate and pinch off vesicles can be accounted for by actin polymerization alone. In this paper, we used mathematical modeling to study the self-organization of rigid actin filaments in the presence of elastic crosslinkers in conditions relevant to endocytosis. We found that actin filaments condense into either a disordered meshwork or an ordered bundle depending on filament length and the mechanical and kinetic properties of the crosslinkers. Our simulations also demonstrated that these nanometer-scale actin structures can store a large amount of elastic energy within the crosslinkers (up to 10kBT per crosslinker). This conversion of binding energy into elastic energy is the consequence of geometric constraints created by the helical pitch of the actin filaments, which results in frustrated configurations of crosslinkers attached to filaments. We propose that this stored elastic energy can be used at a later time in the endocytic process. As a proof of principle, we presented a simple mechanism for sustained torque production by ordered detachment of crosslinkers from a pair of parallel filaments.
Collapse
Affiliation(s)
- Rui Ma
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
37
|
Castaneda N, Zheng T, Rivera-Jacquez HJ, Lee HJ, Hyun J, Balaeff A, Huo Q, Kang H. Cations Modulate Actin Bundle Mechanics, Assembly Dynamics, and Structure. J Phys Chem B 2018; 122:3826-3835. [PMID: 29608304 DOI: 10.1021/acs.jpcb.8b00663] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Actin bundles are key factors in the mechanical support and dynamic reorganization of the cytoskeleton. High concentrations of multivalent counterions promote bundle formation through electrostatic attraction between actin filaments that are negatively charged polyelectrolytes. In this study, we evaluate how physiologically relevant divalent cations affect the mechanical, dynamic, and structural properties of actin bundles. Using a combination of total internal reflection fluorescence microscopy, transmission electron microscopy, and dynamic light scattering, we demonstrate that divalent cations modulate bundle stiffness, length distribution, and lateral growth. Molecular dynamics simulations of an all-atom model of the actin bundle reveal specific actin residues coordinate cation-binding sites that promote the bundle formation. Our work suggests that specific cation interactions may play a fundamental role in the assembly, structure, and mechanical properties of actin bundles.
Collapse
Affiliation(s)
- Nicholas Castaneda
- NanoScience Technology Center , University of Central Florida , Orlando , Florida 32826 , United States.,Burnett School of Biomedical Sciences, College of Medicine , University of Central Florida , Orlando , Florida 32827 , United States
| | - Tianyu Zheng
- NanoScience Technology Center , University of Central Florida , Orlando , Florida 32826 , United States
| | - Hector J Rivera-Jacquez
- NanoScience Technology Center , University of Central Florida , Orlando , Florida 32826 , United States
| | - Hyun-Ju Lee
- Electron Microscopy Research Center , Korea Basic Science Institute (KBSI) , Cheongju-si , Chungcheongbuk-do 28119 , Republic of Korea
| | - Jaekyung Hyun
- Electron Microscopy Research Center , Korea Basic Science Institute (KBSI) , Cheongju-si , Chungcheongbuk-do 28119 , Republic of Korea
| | - Alexander Balaeff
- NanoScience Technology Center , University of Central Florida , Orlando , Florida 32826 , United States
| | - Qun Huo
- NanoScience Technology Center , University of Central Florida , Orlando , Florida 32826 , United States
| | - Hyeran Kang
- NanoScience Technology Center , University of Central Florida , Orlando , Florida 32826 , United States
| |
Collapse
|
38
|
Vargas-Lara F, Douglas JF. Fiber Network Formation in Semi-Flexible Polymer Solutions: An Exploratory Computational Study. Gels 2018; 4:E27. [PMID: 30674803 PMCID: PMC6209269 DOI: 10.3390/gels4020027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 11/16/2022] Open
Abstract
The formation of gels through the bundling of semi-flexible polymer chains into fiber networks is ubiquitous in diverse manufactured and natural materials, and, accordingly, we perform exploratory molecular dynamics simulations of a coarse-grained model of semi-flexible polymers in a solution with attractive lateral interchain interactions to understand essential features of this type of gel formation. After showing that our model gives rise to fibrous gels resembling real gels of this kind, we investigate how the extent of fiber bundling influences the "melting" temperature, T m , and the emergent rigidification of model bundled fibers having a fixed number of chains, N, within them. Based on our preliminary observations, we suggest the fiber size is kinetically selected by a reduced thermodynamic driving force and a slowing of the dynamics within the fibers associated with their progressive rigidification with the inclusion of an increasing number of chains in the bundle.
Collapse
Affiliation(s)
- Fernando Vargas-Lara
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
39
|
Coy R, Gadêlha H. The counterbend dynamics of cross-linked filament bundles and flagella. J R Soc Interface 2018; 14:rsif.2017.0065. [PMID: 28566516 DOI: 10.1098/rsif.2017.0065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/03/2017] [Indexed: 11/12/2022] Open
Abstract
Cross-linked filament bundles, such as in cilia and flagella, are ubiquitous in biology. They are considered in textbooks as simple filaments with larger stiffness. Recent observations of flagellar counterbend, however, show that induction of curvature in one section of a passive flagellum instigates a compensatory counter-curvature elsewhere, exposing the intricate role of the diminutive cross-linking proteins at large scales. We show that this effect, a material property of the cross-linking mechanics, modifies the bundle dynamics and induces a bimodal L2 - L3 length-dependent material response that departs from the Euler-Bernoulli theory. Hence, the use of simpler theories to analyse experiments can result in paradoxical interpretations. Remarkably, the counterbend dynamics instigates counter-waves in opposition to driven oscillations in distant parts of the bundle, with potential impact on the regulation of flagellar bending waves. These results have a range of physical and biological applications, including the empirical disentanglement of material quantities via counterbend dynamics.
Collapse
Affiliation(s)
- Rachel Coy
- CoMPLEX, University College London, London WC1E 6BT, UK
| | - Hermes Gadêlha
- Department of Mathematics, University of York, York YO10 SDD, UK
| |
Collapse
|
40
|
Carlsson AE. Membrane bending by actin polymerization. Curr Opin Cell Biol 2018; 50:1-7. [PMID: 29207306 PMCID: PMC5911415 DOI: 10.1016/j.ceb.2017.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 11/20/2017] [Indexed: 01/22/2023]
Abstract
Actin polymerization provides driving force to aid several types of processes that involve pulling the plasma membrane into the cell, including phagocytosis, cellular entry of large viruses, and endocytosis. In endocytosis, actin polymerization is especially important under conditions of high membrane tension or high turgor pressure. Recent modeling efforts have shown how actin polymerization can give rise to a distribution of forces around the endocytic site, and explored how these forces affect the shape dynamics; experiments have revealed the structure of the endocytic machinery in increasing detail, and demonstrated key feedback interactions between actin assembly and membrane curvature. Here we provide a perspective on these findings and suggest avenues for future research.
Collapse
Affiliation(s)
- Anders E Carlsson
- Department of Physics, Washington University, One Brookings Drive, Campus Box 1105, St. Louis, MO 63130, United States.
| |
Collapse
|
41
|
Yuan H, Xu J, van Dam EP, Giubertoni G, Rezus YLA, Hammink R, Bakker HJ, Zhan Y, Rowan AE, Xing C, Kouwer PHJ. Strategies To Increase the Thermal Stability of Truly Biomimetic Hydrogels: Combining Hydrophobicity and Directed Hydrogen Bonding. Macromolecules 2017; 50:9058-9065. [PMID: 29213150 PMCID: PMC5707627 DOI: 10.1021/acs.macromol.7b01832] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/08/2017] [Indexed: 01/29/2023]
Abstract
Enhancing the thermal stability of proteins is an important task for protein engineering. There are several ways to increase the thermal stability of proteins in biology, such as greater hydrophobic interactions, increased helical content, decreased occurrence of thermolabile residues, or stable hydrogen bonds. Here, we describe a well-defined polymer based on β-helical polyisocyanotripeptides (TriPIC) that uses biological approaches, including hydrogen bonding and hydrophobic interactions for its exceptional thermal stability in aqueous solutions. The multiple hydrogen bonding arrays along the polymer backbone shield the hydrophobic core from water. Variable temperature CD and FTIR studies indicate that, on heating, a better packed polymer conformation further stiffens the backbone. Driven by hydrophobic interactions, TriPIC solutions give fully reversible hydrogels that can withstand high temperatures (80 °C) for extended times. Cryo-scanning electron microscopy (cryo-SEM), small-angle X-ray scattering (SAXS), and thorough rheological analysis show that the hydrogel has a bundled architecture, which gives rise to strain stiffening effects on deformation of the gel, analogous to many biological hydrogels.
Collapse
Affiliation(s)
- Hongbo Yuan
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China.,Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Jialiang Xu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.,Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | | | | | - Yves L A Rezus
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Roel Hammink
- Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Huib J Bakker
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Yong Zhan
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Alan E Rowan
- Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Paul H J Kouwer
- Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| |
Collapse
|
42
|
Schnauß J, Glaser M, Lorenz JS, Schuldt C, Möser C, Sajfutdinow M, Händler T, Käs JA, Smith DM. DNA Nanotubes as a Versatile Tool to Study Semiflexible Polymers. J Vis Exp 2017:56056. [PMID: 29155710 PMCID: PMC5755217 DOI: 10.3791/56056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mechanical properties of complex, polymer-based soft matter, such as cells or biopolymer networks, can be understood in neither the classical frame of flexible polymers nor of rigid rods. Underlying filaments remain outstretched due to their non-vanishing backbone stiffness, which is quantified via the persistence length (lp), but they are also subject to strong thermal fluctuations. Their finite bending stiffness leads to unique, non-trivial collective mechanics of bulk networks, enabling the formation of stable scaffolds at low volume fractions while providing large mesh sizes. This underlying principle is prevalent in nature (e.g., in cells or tissues), minimizing the high molecular content and thereby facilitating diffusive or active transport. Due to their biological implications and potential technological applications in biocompatible hydrogels, semiflexible polymers have been subject to considerable study. However, comprehensible investigations remained challenging since they relied on natural polymers, such as actin filaments, which are not freely tunable. Despite these limitations and due to the lack of synthetic, mechanically tunable, and semiflexible polymers, actin filaments were established as the common model system. A major limitation is that the central quantity lp cannot be freely tuned to study its impact on macroscopic bulk structures. This limitation was resolved by employing structurally programmable DNA nanotubes, enabling controlled alteration of the filament stiffness. They are formed through tile-based designs, where a discrete set of partially complementary strands hybridize in a ring structure with a discrete circumference. These rings feature sticky ends, enabling the effective polymerization into filaments several microns in length, and display similar polymerization kinetics as natural biopolymers. Due to their programmable mechanics, these tubes are versatile, novel tools to study the impact of lp on the single-molecule as well as the bulk scale. In contrast to actin filaments, they remain stable over weeks, without notable degeneration, and their handling is comparably straightforward.
Collapse
Affiliation(s)
- Jörg Schnauß
- Fraunhofer Institute for Cell Therapy and Immunology; Institute of Experimental Physics I, Universität Leipzig;
| | - Martin Glaser
- Fraunhofer Institute for Cell Therapy and Immunology; Institute of Experimental Physics I, Universität Leipzig
| | | | - Carsten Schuldt
- Fraunhofer Institute for Cell Therapy and Immunology; Institute of Experimental Physics I, Universität Leipzig
| | | | | | - Tina Händler
- Fraunhofer Institute for Cell Therapy and Immunology; Institute of Experimental Physics I, Universität Leipzig
| | - Josef A Käs
- Institute of Experimental Physics I, Universität Leipzig
| | - David M Smith
- Fraunhofer Institute for Cell Therapy and Immunology;
| |
Collapse
|
43
|
Tom AM, Rajesh R, Vemparala S. Aggregation of flexible polyelectrolytes: Phase diagram and dynamics. J Chem Phys 2017; 147:144903. [DOI: 10.1063/1.4993684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
44
|
Kihara T, Sugimoto Y, Shinohara S, Takaoka S, Miyake J. Cysteine-rich protein 2 accelerates actin filament cluster formation. PLoS One 2017; 12:e0183085. [PMID: 28813482 PMCID: PMC5558965 DOI: 10.1371/journal.pone.0183085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/29/2017] [Indexed: 12/22/2022] Open
Abstract
Filamentous actin (F-actin) forms many types of structures and dynamically regulates cell morphology and movement, and plays a mechanosensory role for extracellular stimuli. In this study, we determined that the smooth muscle-related transcription factor, cysteine-rich protein 2 (CRP2), regulates the supramolecular networks of F-actin. The structures of CRP2 and F-actin in solution were analyzed by small-angle X-ray solution scattering (SAXS). The general shape of CRP2 was partially unfolded and relatively ellipsoidal in structure, and the apparent cross sectional radius of gyration (Rc) was about 15.8 Å. The predicted shape, derived by ab initio modeling, consisted of roughly four tandem clusters: LIM domains were likely at both ends with the middle clusters being an unfolded linker region. From the SAXS analysis, the Rc of F-actin was about 26.7 Å, and it was independent of CRP2 addition. On the other hand, in the low angle region of the CRP2-bound F-actin scattering, the intensities showed upward curvature with the addition of CRP2, which indicates increasing branching of F-actin following CRP2 binding. From biochemical analysis, the actin filaments were augmented and clustered by the addition of CRP2. This F-actin clustering activity of CRP2 was cooperative with α-actinin. Thus, binding of CRP2 to F-actin accelerates actin polymerization and F-actin cluster formation.
Collapse
Affiliation(s)
- Takanori Kihara
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, Hibikino, Wakamatsu, Kitakyushu, Fukuoka, Japan
| | - Yasunobu Sugimoto
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Satoko Shinohara
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka, Japan
| | - Shunpei Takaoka
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, Hibikino, Wakamatsu, Kitakyushu, Fukuoka, Japan
| | - Jun Miyake
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka, Japan
| |
Collapse
|
45
|
Sakhardande R, Stanojeviea S, Baskaran A, Baskaran A, Hagan MF, Chakraborty B. Theory of microphase separation in bidisperse chiral membranes. Phys Rev E 2017; 96:012704. [PMID: 29347212 DOI: 10.1103/physreve.96.012704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 04/29/2023]
Abstract
We present a Ginzburg-Landau theory of microphase separation in a bidisperse chiral membrane consisting of rods of opposite handedness. This model system undergoes a phase transition from an equilibrium state where the two components are completely phase separated to a state composed of microdomains of a finite size comparable to the twist penetration depth. Characterizing the phenomenology using linear stability analysis and numerical studies, we trace the origin of the discontinuous change in microdomain size that occurs during this phase transition to a competition between the cost of creating an interface and the gain in twist energy for small microdomains in which the twist penetrates deep into the center of the domain.
Collapse
Affiliation(s)
- Raunak Sakhardande
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Stefan Stanojeviea
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Arvind Baskaran
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Aparna Baskaran
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Bulbul Chakraborty
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
46
|
X-Ray Micro- and Nanodiffraction Imaging on Human Mesenchymal Stem Cells and Differentiated Cells. Biophys J 2017; 110:680-690. [PMID: 26840732 PMCID: PMC4744168 DOI: 10.1016/j.bpj.2015.12.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/09/2015] [Accepted: 12/07/2015] [Indexed: 01/09/2023] Open
Abstract
Adult human mesenchymal stem cells show structural rearrangements of their cytoskeletal network during mechanically induced differentiation toward various cell types. In particular, the alignment of acto-myosin fibers is cell fate-dependent and can serve as an early morphological marker of differentiation. Quantification of such nanostructures on a mesoscopic scale requires high-resolution imaging techniques. Here, we use small- angle x-ray scattering with a spot size in the micro- and submicrometer range as a high-resolution and label-free imaging technique to reveal structural details of stem cells and differentiated cell types. We include principal component analysis into an automated empirical analysis scheme that allows the local characterization of oriented structures. Results on freeze-dried samples lead to quantitative structural information for all cell lines tested: differentiated cells reveal pronounced structural orientation and a relatively intense overall diffraction signal, whereas naive human mesenchymal stem cells lack these features. Our data support the hypothesis of stem cells establishing ordered structures along their differentiation process.
Collapse
|
47
|
The dynamics of filament assembly define cytoskeletal network morphology. Nat Commun 2016; 7:13827. [PMID: 28000681 PMCID: PMC5187503 DOI: 10.1038/ncomms13827] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/04/2016] [Indexed: 11/22/2022] Open
Abstract
The actin cytoskeleton is a key component in the machinery of eukaryotic cells, and it self-assembles out of equilibrium into a wide variety of biologically crucial structures. Although the molecular mechanisms involved are well characterized, the physical principles governing the spatial arrangement of actin filaments are not understood. Here we propose that the dynamics of actin network assembly from growing filaments results from a competition between diffusion, bundling and steric hindrance, and is responsible for the range of observed morphologies. Our model and simulations thus predict an abrupt dynamical transition between homogeneous and strongly bundled networks as a function of the actin polymerization rate. This suggests that cells may effect dramatic changes to their internal architecture through minute modifications of their nonequilibrium dynamics. Our results are consistent with available experimental data.
The dynamics of actin cytoskeleton is essential to the function of living cells. Here, Foffano et al. describe a nonequilibrium filament model to mimic the formation of cytoskeleton and pinpoint the key role played by the actin entanglement during the transition from homogeneous to bundled networks.
Collapse
|
48
|
Bucki R, Janmey PA. Extracellular aggregation of polyelectrolytes escaped from the cell interior: Mechanisms and physiological consequences. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Krey JF, Krystofiak ES, Dumont RA, Vijayakumar S, Choi D, Rivero F, Kachar B, Jones SM, Barr-Gillespie PG. Plastin 1 widens stereocilia by transforming actin filament packing from hexagonal to liquid. J Cell Biol 2016; 215:467-482. [PMID: 27811163 PMCID: PMC5119939 DOI: 10.1083/jcb.201606036] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/29/2016] [Accepted: 10/11/2016] [Indexed: 11/24/2022] Open
Abstract
With their essential role in inner ear function, stereocilia of sensory hair cells demonstrate the importance of cellular actin protrusions. Actin packing in stereocilia is mediated by cross-linkers of the plastin, fascin, and espin families. Although mice lacking espin (ESPN) have no vestibular or auditory function, we found that mice that either lacked plastin 1 (PLS1) or had nonfunctional fascin 2 (FSCN2) had reduced inner ear function, with double-mutant mice most strongly affected. Targeted mass spectrometry indicated that PLS1 was the most abundant cross-linker in vestibular stereocilia and the second most abundant protein overall; ESPN only accounted for ∼15% of the total cross-linkers in bundles. Mouse utricle stereocilia lacking PLS1 were shorter and thinner than wild-type stereocilia. Surprisingly, although wild-type stereocilia had random liquid packing of their actin filaments, stereocilia lacking PLS1 had orderly hexagonal packing. Although all three cross-linkers are required for stereocilia structure and function, PLS1 biases actin toward liquid packing, which allows stereocilia to grow to a greater diameter.
Collapse
Affiliation(s)
- Jocelyn F Krey
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR 97239
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239
| | - Evan S Krystofiak
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Rachel A Dumont
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR 97239
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239
| | - Sarath Vijayakumar
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Dongseok Choi
- Oregon Health and Science University-Portland State University School of Public Health, Oregon Health and Science University, Portland, OR 97239
- Graduate School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Francisco Rivero
- Centre for Cardiovascular and Metabolic Research, The Hull York Medical School, University of Hull, Hull HU6 7RX, England, UK
| | - Bechara Kachar
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR 97239
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239
| |
Collapse
|
50
|
Winkelman JD, Suarez C, Hocky GM, Harker AJ, Morganthaler AN, Christensen JR, Voth GA, Bartles JR, Kovar DR. Fascin- and α-Actinin-Bundled Networks Contain Intrinsic Structural Features that Drive Protein Sorting. Curr Biol 2016; 26:2697-2706. [PMID: 27666967 DOI: 10.1016/j.cub.2016.07.080] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/04/2016] [Accepted: 07/28/2016] [Indexed: 12/25/2022]
Abstract
Cells assemble and maintain functionally distinct actin cytoskeleton networks with various actin filament organizations and dynamics through the coordinated action of different sets of actin-binding proteins. The biochemical and functional properties of diverse actin-binding proteins, both alone and in combination, have been increasingly well studied. Conversely, how different sets of actin-binding proteins properly sort to distinct actin filament networks in the first place is not nearly as well understood. Actin-binding protein sorting is critical for the self-organization of diverse dynamic actin cytoskeleton networks within a common cytoplasm. Using in vitro reconstitution techniques including biomimetic assays and single-molecule multi-color total internal reflection fluorescence microscopy, we discovered that sorting of the prominent actin-bundling proteins fascin and α-actinin to distinct networks is an intrinsic behavior, free of complicated cellular signaling cascades. When mixed, fascin and α-actinin mutually exclude each other by promoting their own recruitment and inhibiting recruitment of the other, resulting in the formation of distinct fascin- or α-actinin-bundled domains. Subdiffraction-resolution light microscopy and negative-staining electron microscopy revealed that fascin domains are densely packed, whereas α-actinin domains consist of widely spaced parallel actin filaments. Importantly, other actin-binding proteins such as fimbrin and espin show high specificity between these two bundle types within the same reaction. Here we directly observe that fascin and α-actinin intrinsically segregate to discrete bundled domains that are specifically recognized by other actin-binding proteins.
Collapse
Affiliation(s)
- Jonathan D Winkelman
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Glen M Hocky
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Alyssa J Harker
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Alisha N Morganthaler
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jenna R Christensen
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Gregory A Voth
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; James Franck Institute, The University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Computation Institute, The University of Chicago, Chicago, IL 60637, USA
| | - James R Bartles
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|