1
|
Sivakova B, Wagner A, Kretova M, Jakubikova J, Gregan J, Kratochwill K, Barath P, Cipak L. Quantitative proteomics and phosphoproteomics profiling of meiotic divisions in the fission yeast Schizosaccharomyces pombe. Sci Rep 2024; 14:23105. [PMID: 39367033 PMCID: PMC11452395 DOI: 10.1038/s41598-024-74523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
In eukaryotes, chromosomal DNA is equally distributed to daughter cells during mitosis, whereas the number of chromosomes is halved during meiosis. Despite considerable progress in understanding the molecular mechanisms that regulate mitosis, there is currently a lack of complete understanding of the molecular mechanisms regulating meiosis. Here, we took advantage of the fission yeast Schizosaccharomyces pombe, for which highly synchronous meiosis can be induced, and performed quantitative proteomics and phosphoproteomics analyses to track changes in protein expression and phosphorylation during meiotic divisions. We compared the proteomes and phosphoproteomes of exponentially growing mitotic cells with cells harvested around meiosis I, or meiosis II in strains bearing either the temperature-sensitive pat1-114 allele or conditional ATP analog-sensitive pat1-as2 allele of the Pat1 kinase. Comparing pat1-114 with pat1-as2 also allowed us to investigate the impact of elevated temperature (25 °C versus 34 °C) on meiosis, an issue that sexually reproducing organisms face due to climate change. Using TMTpro 18plex labeling and phosphopeptide enrichment strategies, we performed quantification of a total of 4673 proteins and 7172 phosphosites in S. pombe. We found that the protein level of 2680 proteins and the rate of phosphorylation of 4005 phosphosites significantly changed during progression of S. pombe cells through meiosis. The proteins exhibiting changes in expression and phosphorylation during meiotic divisions were represented mainly by those involved in the meiotic cell cycle, meiotic recombination, meiotic nuclear division, meiosis I, centromere clustering, microtubule cytoskeleton organization, ascospore formation, organonitrogen compound biosynthetic process, carboxylic acid metabolic process, gene expression, and ncRNA processing, among others. In summary, our findings provide global overview of changes in the levels and phosphorylation of proteins during progression of S. pombe cells through meiosis at normal and elevated temperatures, laying the groundwork for further elucidation of the functions and importance of specific proteins and their phosphorylation in regulating meiotic divisions in this yeast.
Collapse
Affiliation(s)
- Barbara Sivakova
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Anja Wagner
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | - Miroslava Kretova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Jana Jakubikova
- Department of Tumor Immunology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Juraj Gregan
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, 1030, Austria
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 24, Tulln an der Donau, 3430, Austria
| | - Klaus Kratochwill
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria.
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria.
| | - Peter Barath
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia.
- Medirex Group Academy, Novozamocka 67, Nitra, 949 05, Slovakia.
| | - Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia.
| |
Collapse
|
2
|
Rojas J, Oz T, Jonak K, Lyzak O, Massaad V, Biriuk O, Zachariae W. Spo13/MEIKIN ensures a Two-Division meiosis by preventing the activation of APC/C Ama1 at meiosis I. EMBO J 2023; 42:e114288. [PMID: 37728253 PMCID: PMC10577557 DOI: 10.15252/embj.2023114288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
Genome haploidization at meiosis depends on two consecutive nuclear divisions, which are controlled by an oscillatory system consisting of Cdk1-cyclin B and the APC/C bound to the Cdc20 activator. How the oscillator generates exactly two divisions has been unclear. We have studied this question in yeast where exit from meiosis involves accumulation of the APC/C activator Ama1 at meiosis II. We show that inactivation of the meiosis I-specific protein Spo13/MEIKIN results in a single-division meiosis due to premature activation of APC/CAma1 . In the wild type, Spo13 bound to the polo-like kinase Cdc5 prevents Ama1 synthesis at meiosis I by stabilizing the translational repressor Rim4. In addition, Cdc5-Spo13 inhibits the activity of Ama1 by converting the B-type cyclin Clb1 from a substrate to an inhibitor of Ama1. Cdc20-dependent degradation of Spo13 at anaphase I unleashes a feedback loop that increases Ama1's synthesis and activity, leading to irreversible exit from meiosis at the second division. Thus, by repressing the exit machinery at meiosis I, Cdc5-Spo13 ensures that cells undergo two divisions to produce haploid gametes.
Collapse
Affiliation(s)
- Julie Rojas
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Tugce Oz
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Katarzyna Jonak
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Oleksii Lyzak
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Vinal Massaad
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Olha Biriuk
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Wolfgang Zachariae
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
3
|
Wang J, Zhou Q, Ding J, Yin T, Ye P, Zhang Y. The Conceivable Functions of Protein Ubiquitination and Deubiquitination in Reproduction. Front Physiol 2022; 13:886261. [PMID: 35910557 PMCID: PMC9326170 DOI: 10.3389/fphys.2022.886261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
Protein ubiquitination with general existence in virtually all eukaryotic cells serves as a significant post-translational modification of cellular proteins, which leads to the degradation of proteins via the ubiquitin-proteasome system. Deubiquitinating enzymes (DUBs) can reverse the ubiquitination effect by removing the ubiquitin chain from the target protein. Together, these two processes participate in regulating protein stability, function, and localization, thus modulating cell cycle, DNA repair, autophagy, and transcription regulation. Accumulating evidence indicates that the ubiquitination/deubiquitination system regulates reproductive processes, including the cell cycle, oocyte maturation, oocyte-sperm binding, and early embryonic development, primarily by regulating protein stability. This review summarizes the extensive research concerning the role of ubiquitin and DUBs in gametogenesis and early embryonic development, which helps us to understand human pregnancy further.
Collapse
Affiliation(s)
- Jiayu Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Qi Zhou
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jinli Ding
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Sequestration of mRNAs Modulates the Timing of Translation during Meiosis in Budding Yeast. Mol Cell Biol 2015. [PMID: 26217015 DOI: 10.1128/mcb.00189-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Starvation of diploid cells of the budding yeast Saccharomyces cerevisiae induces them to enter meiosis and differentiate into haploid spores. During meiosis, the precise timing of gene expression is controlled at the level of transcription, and also translation. If cells are returned to rich medium after they have committed to meiosis, the transcript levels of most meiotically upregulated genes decrease rapidly. However, for a subset of transcripts whose translation is delayed until the end of meiosis II, termed protected transcripts, the transcript levels remain stable even after nutrients are reintroduced. The Ime2-Rim4 regulatory circuit controls both the delayed translation and the stability of protected transcripts. These protected mRNAs localize in discrete foci, which are not seen for transcripts of genes with different translational timing and are regulated by Ime2. These results suggest that Ime2 and Rim4 broadly regulate translational delay but that additional factors, such as mRNA localization, modulate this delay to tune the timing of gene expression to developmental transitions during sporulation.
Collapse
|
5
|
Wang LY, Kung HJ. Male germ cell-associated kinase is overexpressed in prostate cancer cells and causes mitotic defects via deregulation of APC/CCDH1. Oncogene 2012; 31:2907-18. [PMID: 21986944 PMCID: PMC3566783 DOI: 10.1038/onc.2011.464] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/02/2011] [Accepted: 09/06/2011] [Indexed: 11/09/2022]
Abstract
Male germ cell-associated kinase (MAK), a direct transcriptional target of androgen receptor (AR), is a co-activator of AR. In this study, we determined the activating mechanism of MAK and identified a previously unknown AR-independent role of MAK in mitosis. We found that MAK kinase activity requires dual phosphorylation of the conserved TDY motif and that the phosphorylation is dynamic during cell cycle. MAK associates with CDH1 (FZR1, fizzy/cell division cycle 20 related 1) and phosphorylates CDH1 at sites phosphorylated by cyclin-dependent kinases. When MAK is overexpressed, the binding of CDH1 to anaphase promoting complex/cyclosome decreased, resulting in an attenuation of anaphase-promoting complex/C ubiquitin ligase activity and the consequential stabilization of the CDH1 targets such as Aurora kinase A and Polo-like kinase 1. As such, overexpression of MAK leads to mitotic defects such as centrosome amplification and lagging chromosomes. Our immunohistochemistry result showed that MAK is overexpressed in prostate tumor tissues, suggesting a role of MAK in prostate carcinogenesis. Taken with our previous results, our data implicate MAK in both AR activation and chromosomal instability, acting in both early and late prostate cancer development.
Collapse
Affiliation(s)
- L-Y Wang
- Department of Biochemistry and Molecular Medicine and University of California Davis Cancer Center, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | | |
Collapse
|
6
|
Bayram O, Braus GH. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 2011; 36:1-24. [PMID: 21658084 DOI: 10.1111/j.1574-6976.2011.00285.x] [Citation(s) in RCA: 394] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Filamentous fungi produce a number of small bioactive molecules as part of their secondary metabolism ranging from benign antibiotics such as penicillin to threatening mycotoxins such as aflatoxin. Secondary metabolism can be linked to fungal developmental programs in response to various abiotic or biotic external triggers. The velvet family of regulatory proteins plays a key role in coordinating secondary metabolism and differentiation processes such as asexual or sexual sporulation and sclerotia or fruiting body formation. The velvet family shares a protein domain that is present in most parts of the fungal kingdom from chytrids to basidiomycetes. Most of the current knowledge derives from the model Aspergillus nidulans where VeA, the founding member of the protein family, was discovered almost half a century ago. Different members of the velvet protein family interact with each other and the nonvelvet protein LaeA, primarily in the nucleus. LaeA is a methyltransferase-domain protein that functions as a regulator of secondary metabolism and development. A comprehensive picture of the molecular interplay between the velvet domain protein family, LaeA and other nuclear regulatory proteins in response to various signal transduction pathway starts to emerge from a jigsaw puzzle of several recent studies.
Collapse
Affiliation(s)
- Ozgür Bayram
- Institut für Mikrobiologie und Genetik, Abteilung Molekulare Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | | |
Collapse
|
7
|
Abstract
Ime2 of the budding yeast Saccharomyces cerevisiae belongs to a family of conserved protein kinases displaying sequence similarities to both cyclin-dependent kinases and mitogen-activated protein kinases. Ime2 has a pivotal role for meiosis and sporulation. The involvement of this protein kinase in the regulation of various key events in meiosis, such as the initiation of DNA replication, the expression of meiosis-specific genes and the passage through the two consecutive rounds of nuclear divisions has been characterized in detail. More than 20 years after the identification of the IME2 gene, a recent report has provided the first evidence for a function of this gene outside of meiosis, which is the regulation of pseudohyphal growth. In the last few years, Ime2-related protein kinases from various fungal species were studied. Remarkably, these homologues are not generally required for meiosis, but instead have other specific tasks. In filamentous ascomycete species, Ime2 homologues are involved in the inhibition of fruiting body formation in response to environmental signals. In the pathogenic basidiomycetes Ustilago maydis and Cryptococcus neoformans, members of this kinase family apparently have primary roles in regulating mating. Thus, Ime2-related kinases exhibit an amazing variety in controlling sexual developmental programs in fungi.
Collapse
Affiliation(s)
- Stefan Irniger
- Institute of Microbiology and Genetics, Georg August University, Grisebachstr. 8, D-37077 Göttingen, Germany.
| |
Collapse
|
8
|
Genetic requirements and meiotic function of phosphorylation of the yeast axial element protein Red1. Mol Cell Biol 2010; 31:912-23. [PMID: 21173162 DOI: 10.1128/mcb.00895-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The synaptonemal complex (SC) is a meiosis-specific tripartite structure that forms between two homologous chromosomes; it consists of a central region and two parallel lateral elements. Lateral elements also are called axial elements prior to synapsis. In Saccharomyces cerevisiae, Red1, Hop1, and Mek1 are structural components of axial/lateral elements. The red1/mek1/hop1 mutants all exhibit reduced levels of interhomolog recombination and produce no viable spores. Red1 is a phosphoprotein. Several earlier reports proposed that phosphorylated Red1 plays important roles in meiosis, including in signaling meiotic DNA damage or in preventing exit from the pachytene chromosomes. We report here that the phosphorylation of Red1 is carried out in CDC28-dependent and CDC28-independent manners. In contrast to previous results, we found Red1 phosphorylation to be independent of meiotic DNA recombination, the Mec1/Tel1 DNA damage checkpoint kinases, and the Mek1 kinase. To functionally validate the phosphorylation of Red1, we mapped the phosphorylation sites on this protein. A red1(14A) mutant showing no detectable Red1 phosphorylation did not exhibit decreased sporulation efficiency, defects in viable spore production, or defects in meiotic DNA damage checkpoints. Thus, our results suggest that the phosphorylation of Red1 is not essential for its functions in meiosis.
Collapse
|
9
|
Liu KH, Shen WC. Mating differentiation in Cryptococcus neoformans is negatively regulated by the Crk1 protein kinase. Fungal Genet Biol 2010; 48:225-40. [PMID: 21111055 DOI: 10.1016/j.fgb.2010.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 11/12/2010] [Accepted: 11/13/2010] [Indexed: 01/27/2023]
Abstract
Cryptococcus neoformans is a heterothallic basidiomycete that grows vegetatively as yeast and filamentous hyphae are produced in the sexual state. Previous studies have shown that C. neoformans Cwc1 and Cwc2 are two central photoregulators which form a complex to inhibit the production of sexual filaments upon light treatment. To reveal the detailed regulatory mechanisms, a genome wide mutagenesis screen was conducted and components in the Cwc1/Cwc2 complex mediated pathway have been identified. In this study, one suppressor mutant, DJ22, is characterized and T-DNA is found to disrupt the C. neoformans CRK1 gene, a homologue of Saccharomyces cerevisiae IME2 and Ustilago maydis crk1. Ime2 is a meiosis-specific gene with the conserved Ser/Thr kinase domain and TXY dual phosphorylation site. Consistent with the findings of other suppressors in our screen, C. neoformans Crk1 plays a negative role in the mating process. Dikaryotic filaments, basidia, and basidiospores are produced earlier in the crk1 mutant crosses and mating efficiency is also increased. Artificial elevation of the CRK1 mRNA level inhibits mating. Interestingly, monokaryotic fruiting is defective both in the MATα crk1 mutant and CRK1 overexpression strains. Our studies demonstrate that C. neoformans CRK1 gene functions as a negative regulator in the mating differentiation.
Collapse
Affiliation(s)
- Kuang-Hung Liu
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1 Roosevelt Road, Taipei, Taiwan
| | | |
Collapse
|
10
|
Ime1 and Ime2 are required for pseudohyphal growth of Saccharomyces cerevisiae on nonfermentable carbon sources. Mol Cell Biol 2010; 30:5514-30. [PMID: 20876298 DOI: 10.1128/mcb.00390-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudohyphal growth and meiosis are two differentiation responses to nitrogen starvation of diploid Saccharomyces cerevisiae. Nitrogen starvation in the presence of fermentable carbon sources is thought to induce pseudohyphal growth, whereas nitrogen and sugar starvation induces meiosis. In contrast to the genetic background routinely used to study pseudohyphal growth (Σ1278b), nonfermentable carbon sources stimulate pseudohyphal growth in the efficiently sporulating strain SK1. Pseudohyphal SK1 cells can exit pseudohyphal growth to complete meiosis. Two stimulators of meiosis, Ime1 and Ime2, are required for pseudohyphal growth of SK1 cells in the presence of nonfermentable carbon sources. Epistasis analysis suggests that Ime1 and Ime2 act in the same order in pseudohyphal growth as in meiosis. The different behaviors of strains SK1 and Σ1278b are in part attributable to differences in cyclic AMP (cAMP) signaling. In contrast to Σ1278b cells, hyperactivation of cAMP signaling using constitutively active Ras2(G19V) inhibited pseudohyphal growth in SK1 cells. Our data identify the SK1 genetic background as an alternative genetic background for the study of pseudohyphal growth and suggest an overlap between signaling pathways controlling pseudohyphal growth and meiosis. Based on these findings, we propose to include exit from pseudohyphal growth and entry into meiosis in the life cycle of S. cerevisiae.
Collapse
|
11
|
Gurevich V, Kassir Y. A switch from a gradient to a threshold mode in the regulation of a transcriptional cascade promotes robust execution of meiosis in budding yeast. PLoS One 2010; 5:e11005. [PMID: 20543984 PMCID: PMC2882377 DOI: 10.1371/journal.pone.0011005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 05/18/2010] [Indexed: 01/26/2023] Open
Abstract
Tight regulation of developmental pathways is of critical importance to all organisms, and is achieved by a transcriptional cascade ensuring the coordinated expression of sets of genes. We aimed to explore whether a strong signal is required to enter and complete a developmental pathway, by using meiosis in budding yeast as a model. We demonstrate that meiosis in budding yeast is insensitive to drastic changes in the levels of its consecutive positive regulators (Ime1, Ime2, and Ndt80). Entry into DNA replication is not correlated with the time of transcription of the early genes that regulate this event. Entry into nuclear division is directly regulated by the time of transcription of the middle genes, as premature transcription of their activator NDT80, leads to a premature entry into the first meiotic division, and loss of coordination between DNA replication and nuclear division. We demonstrate that Cdk1/Cln3 functions as a negative regulator of Ime2, and that ectopic expression of Cln3 delays entry into nuclear division as well as NDT80 transcription. Because Ime2 functions as a positive regulator for premeiotic DNA replication and NDT80 transcription, as well as a negative regulator of Cdk/Cln, we suggest that a double negative feedback loop between Ime2 and Cdk1/Cln3 promotes a bistable switch from the cell cycle to meiosis. Moreover, our results suggest a regulatory mode switch that ensures robust meiosis as the transcription of the early meiosis-specific genes responds in a graded mode to Ime1 levels, whereas that of the middle and late genes as well as initiation of DNA replication, are regulated in a threshold mode.
Collapse
Affiliation(s)
- Vyacheslav Gurevich
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yona Kassir
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
12
|
The Ras/cAMP pathway and the CDK-like kinase Ime2 regulate the MAPK Smk1 and spore morphogenesis in Saccharomyces cerevisiae. Genetics 2008; 181:511-23. [PMID: 19087957 DOI: 10.1534/genetics.108.098434] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Meiotic development (sporulation) in the yeast Saccharomyces cerevisiae is induced by nutritional deprivation. Smk1 is a meiosis-specific MAP kinase homolog that controls spore morphogenesis after the meiotic divisions have taken place. In this study, recessive mutants that suppress the sporulation defect of a smk1-2 temperature-sensitive hypomorph were isolated. The suppressors are partial function alleles of CDC25 and CYR1, which encode the Ras GDP/GTP exchange factor and adenyl cyclase, respectively, and MDS3, which encodes a kelch-domain protein previously implicated in Ras/cAMP signaling. Deletion of PMD1, which encodes a Mds3 paralog, also suppressed the smk1-2 phenotype, and a mds3-Delta pmd1-Delta double mutant was a more potent suppressor than either single mutant. The mds3-Delta, pmd1-Delta, and mds3-Delta pmd1-Delta mutants also exhibited mitotic Ras/cAMP phenotypes in the same rank order. The effect of Ras/cAMP pathway mutations on the smk1-2 phenotype required the presence of low levels of glucose. Ime2 is a meiosis-specific CDK-like kinase that is inhibited by low levels of glucose via its carboxy-terminal regulatory domain. IME2-DeltaC241, which removes the carboxy-terminal domain of Ime2, exacerbated the smk1-2 spore formation phenotype and prevented cyr1 mutations from suppressing smk1-2. Inhibition of Ime2 in meiotic cells shortly after Smk1 is expressed revealed that Ime2 promotes phosphorylation of Smk1's activation loop. These findings demonstrate that nutrients can negatively regulate Smk1 through the Ras/cAMP pathway and that Ime2 is a key activator of Smk1 signaling.
Collapse
|
13
|
Gray M, Piccirillo S, Purnapatre K, Schneider BL, Honigberg SM. Glucose induction pathway regulates meiosis in Saccharomyces cerevisiae in part by controlling turnover of Ime2p meiotic kinase. FEMS Yeast Res 2008; 8:676-84. [PMID: 18616605 DOI: 10.1111/j.1567-1364.2008.00406.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Several components of the glucose induction pathway, namely the Snf3p glucose sensor and the Rgt1p and Mth1p transcription factors, were shown to be involved in inhibition of sporulation by glucose. The glucose sensors had only a minor role in regulating transcript levels of the two key regulators of meiotic initiation, the Ime1p transcription factor and the Ime2p kinase, but a major role in regulating Ime2p stability. Interestingly, Rgt1p was involved in glucose inhibition of spore formation but not inhibition of Ime2p stability. Thus, the glucose induction pathway may regulate meiosis through both RGT1-dependent and RGT1-independent pathways.
Collapse
Affiliation(s)
- Misa Gray
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110-1270, USA
| | | | | | | | | |
Collapse
|
14
|
Sari F, Heinrich M, Meyer W, Braus GH, Irniger S. The C-terminal region of the meiosis-specific protein kinase Ime2 mediates protein instability and is required for normal spore formation in budding yeast. J Mol Biol 2008; 378:31-43. [PMID: 18339400 DOI: 10.1016/j.jmb.2008.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Revised: 01/24/2008] [Accepted: 02/01/2008] [Indexed: 01/09/2023]
Abstract
The cyclin-dependent kinase Cdk1 and the related kinase Ime2 act in concert to trigger progression of the meiotic cell cycle in the yeast Saccharomyces cerevisiae. These kinases share several functions and substrates during meiosis, but their regulation seems to be clearly different. In contrast to Cdk1, no cyclin seems to be involved in the regulation of Ime2 activity. Ime2 is a highly unstable protein, and we aimed to elucidate the relevance of Ime2 instability. We first determined the sequence elements required for Ime2 instability by constructing a set of deletions in the IME2 gene. None of the small deletions in Ime2 affected its instability, but deletion of a 241 amino acid C-terminal region resulted in a highly stabilized protein. Thus, the C-terminal domain of Ime2 is important for mediating protein instability. The stabilized, truncated Ime2 protein is highly active in vivo. Replacement of the IME2 gene with the truncated IME2DeltaC241 in diploid strains did not interfere with meiotic nuclear divisions, but caused abnormalities in spore formation, as manifested by the appearance of many asci with a reduced spore number such as triads and dyads. The truncated Ime2 caused a reduction of spore number in a dominant manner. We conclude that downregulation of Ime2 kinase activity mediated by the C-terminal domain is required for the efficient production of normal four-spore asci. Our data suggest a role for Ime2 in spore number control in S. cerevisiae.
Collapse
Affiliation(s)
- Fatih Sari
- Institute of Microbiology and Genetics, Georg-August-University, Grisebachstr. 8, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
15
|
Holt LJ, Hutti JE, Cantley LC, Morgan DO. Evolution of Ime2 phosphorylation sites on Cdk1 substrates provides a mechanism to limit the effects of the phosphatase Cdc14 in meiosis. Mol Cell 2007; 25:689-702. [PMID: 17349956 PMCID: PMC1939968 DOI: 10.1016/j.molcel.2007.02.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 01/14/2007] [Accepted: 02/15/2007] [Indexed: 11/20/2022]
Abstract
Progression through meiosis in yeast is governed by the cyclin-dependent kinase Cdk1, in concert with a related kinase called Ime2. It remains unclear how these kinases collaborate to meet the unique demands of meiotic progression. We demonstrate that Ime2 and Cdk1 phosphorylate an overlapping substrate set and that the two kinases overlap functionally as inhibitors of the ubiquitin ligase APC(Cdh1) and replication origin licensing. Surprisingly, Ime2 phosphorylates Cdk1 substrates at distinct phosphorylation sites that are highly resistant to dephosphorylation by the phosphatase Cdc14. We propose that Ime2-dependent phosphorylation of a subset of cell-cycle proteins limits the effects of Cdc14 in meiosis.
Collapse
Affiliation(s)
- Liam J. Holt
- Departments of Physiology and Biochemistry & Biophysics, University of California, San Francisco, CA
| | - Jessica E. Hutti
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Lewis C. Cantley
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - David O. Morgan
- Departments of Physiology and Biochemistry & Biophysics, University of California, San Francisco, CA
| |
Collapse
|
16
|
Moore M, Shin M, Bruning A, Schindler K, Vershon A, Winter E. Arg-Pro-X-Ser/Thr is a consensus phosphoacceptor sequence for the meiosis-specific Ime2 protein kinase in Saccharomyces cerevisiae. Biochemistry 2007; 46:271-8. [PMID: 17198398 PMCID: PMC2535912 DOI: 10.1021/bi061858p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ime2 is a meiosis-specific protein kinase in Saccharomyces cerevisiae that is functionally related to cyclin-dependent kinase. Although Ime2 regulates multiple steps in meiosis, only a few of its substrates have been identified. Here we show that Ime2 phosphorylates Sum1, a repressor of meiotic gene transcription, on Thr-306. Ime2 protein kinase assays with Sum1 mutants and synthetic peptides define a consensus Arg-Pro-X-Ser/Thr motif that is required for efficient phosphorylation by Ime2. The carboxyl residue adjacent to the phosphoacceptor (+1 position) also influences the efficiency of Ime2 phosphorylation with alanine being a preferred residue. This information has predictive value in identifying new potential Ime2 targets as shown by the ability of Ime2 to phosphorylate Sgs1 and Gip1 in vitro and could be important in differentiating mitotic and meiotic regulatory pathways.
Collapse
Affiliation(s)
- Michael Moore
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Marcus Shin
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Adrian Bruning
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway New Jersey, 08854
| | - Karen Schindler
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Andrew Vershon
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway New Jersey, 08854
| | - Edward Winter
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
17
|
Liu M, Xiao DS, Qian ZM. Identification of transcriptionally regulated genes in response to cellular iron availability in rat hippocampus. Mol Cell Biochem 2006; 300:139-47. [PMID: 17186380 DOI: 10.1007/s11010-006-9377-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 11/06/2006] [Indexed: 12/11/2022]
Abstract
The present study was attempted to identify transcriptionally regulated genes of the normal neurocytes responsive to iron availability. Postnatal rat hippocampus cells were primarily cultured either under the iron-loaded or depleted conditions. These cultured cells were applied for the generation of subtracted complementary DNA libraries by the suppression subtraction hybridization (SSH) and for the subsequent identification of differentially expressed transcripts by reverse Northern blot. The differentially expressed genes were chosen to perform sequencing, and then some of them were performed by Northern blot analysis for observation of their expression in the hippocampus of rats with the different iron status. The results indicated that five unique transcripts were strong candidates for differential expression in cellular iron repletion, one of them is a novel sequence (GenBank No. AF 433878), while 26 unique transcripts were strong candidates for differential expression in cellular iron deprivation, one of them is a novel sequence (GenBank No. AY 912101). The revealed known genes responsive to iron availability were previously unknown to respond to iron availability, or have not been determined in the brain, have not even been currently determined in their physiological and biological functions. Interestingly, the proteins encoded by most of the known genes are either directly pointed to or indirectly associated with the molecules that play important, even key roles in cellular signal transduction and the cell cycle. These findings lead to the important suggestion that the cellular responses to iron availability involve extensive transcriptional regulation and cellular signal transduction. Therefore, iron may serve as a signal, which directly and/or indirectly regulates or modulates cell functions.
Collapse
Affiliation(s)
- Mei Liu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China
| | | | | |
Collapse
|
18
|
Sedgwick C, Rawluk M, Decesare J, Raithatha S, Wohlschlegel J, Semchuk P, Ellison M, Yates J, Stuart D. Saccharomyces cerevisiae Ime2 phosphorylates Sic1 at multiple PXS/T sites but is insufficient to trigger Sic1 degradation. Biochem J 2006; 399:151-60. [PMID: 16776651 PMCID: PMC1570159 DOI: 10.1042/bj20060363] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The initiation of DNA replication in Saccharomyces cerevisiae depends upon the destruction of the Clb-Cdc28 inhibitor Sic1. In proliferating cells Cln-Cdc28 complexes phosphorylate Sic1, which stimulates binding of Sic1 to SCF(Cdc4) and triggers its proteosome mediated destruction. During sporulation cyclins are not expressed, yet Sic1 is still destroyed at the G1-/S-phase boundary. The Cdk (cyclin dependent kinase) sites are also required for Sic1 destruction during sporulation. Sic1 that is devoid of Cdk phosphorylation sites displays increased stability and decreased phosphorylation in vivo. In addition, we found that Sic1 was modified by ubiquitin in sporulating cells and that SCF(Cdc4) was required for this modification. The meiosis-specific kinase Ime2 has been proposed to promote Sic1 destruction by phosphorylating Sic1 in sporulating cells. We found that Ime2 phosphorylates Sic1 at multiple sites in vitro. However, only a subset of these sites corresponds to Cdk sites. The identification of multiple sites phosphorylated by Ime2 has allowed us to propose a motif for phosphorylation by Ime2 (PXS/T) where serine or threonine acts as a phospho-acceptor. Although Ime2 phosphorylates Sic1 at multiple sites in vitro, the modified Sic1 fails to bind to SCF(Cdc4). In addition, the expression of Ime2 in G1 arrested haploid cells does not promote the destruction of Sic1. These data support a model where Ime2 is necessary but not sufficient to promote Sic1 destruction during sporulation.
Collapse
Affiliation(s)
- Chantelle Sedgwick
- *Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Matthew Rawluk
- *Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - James Decesare
- *Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Sheetal Raithatha
- *Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - James Wohlschlegel
- †The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 U.S.A
| | - Paul Semchuk
- ‡Institute for Biomolecular Design, 367 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2H7, Canada
| | - Michael Ellison
- ‡Institute for Biomolecular Design, 367 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2H7, Canada
| | - John Yates
- †The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 U.S.A
| | - David Stuart
- *Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- To whom correspondence should be addressed (email )
| |
Collapse
|
19
|
|
20
|
Schindler K, Winter E. Phosphorylation of Ime2 regulates meiotic progression in Saccharomyces cerevisiae. J Biol Chem 2006; 281:18307-16. [PMID: 16684773 DOI: 10.1074/jbc.m602349200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ime2p is a meiosis-specific protein kinase in Saccharomyces cerevisiae that controls multiple steps in meiosis. Although Ime2p is functionally related to the Cdc28p cyclin-dependent kinase (CDK), no cyclin binding partners that regulate its activities have been identified. The sequence of the Ime2p catalytic domain is similar to CDKs and mitogen-activated protein kinases (MAPKs). Ime2p is activated by phosphorylation of its activation loop in a Cak1p-dependent fashion and is subsequently phosphorylated on multiple residues as cells progress through meiosis. In this study, we show that Ime2p purified from meiotic cells is phosphorylated on Thr(242) and Tyr(244) in its activation loop and on Ser(520) and Ser(625) in its C terminus. Ime2p autophosphorylates on threonine in its activation loop in vitro consistent with autophosphorylation of Thr(242) playing a role in its activation. Moreover, autophosphorylation in cis is required for Ime2p to become hyperphosphorylated. Phosphorylation of the C-terminal serines is not essential to sporulation. However, Ime2p C-terminal phosphorylation site mutants genetically interact with components of the FEAR network that controls exit from meiosis I. These data suggest that Ime2p plays a role in controlling the exit from meiosis I and demonstrate that a phospho-modification pathway regulates Ime2p during the different phases of meiotic development.
Collapse
Affiliation(s)
- Karen Schindler
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
21
|
Abstract
Meiosis can be considered an elaboration of the cell division cycle in the sense that meiosis combines cell-cycle processes with programs specific to meiosis. Each phase of the cell division cycle is driven forward by cell-cycle kinases (Cdk) and coordinated with other phases of the cycle through checkpoint functions. Meiotic differentiation is also controlled by these two types of regulation; however, recent study in the budding yeast S. cerevisiae indicates that progression of meiosis is also controlled by a master regulator specific to meiosis, namely the Ime2p kinase. Below, I describe the overlapping roles of Ime2p and Cdk during meiosis in yeast and speculate on how these two kinases cooperate to drive the progression of meiosis.
Collapse
Affiliation(s)
- Saul M Honigberg
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499, USA.
| |
Collapse
|
22
|
Purnapatre K, Gray M, Piccirillo S, Honigberg SM. Glucose inhibits meiotic DNA replication through SCFGrr1p-dependent destruction of Ime2p kinase. Mol Cell Biol 2005; 25:440-50. [PMID: 15601864 PMCID: PMC538797 DOI: 10.1128/mcb.25.1.440-450.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, the cell division cycle and sporulation are mutually exclusive cell fates; glucose, which stimulates the cell division cycle, is a potent inhibitor of sporulation. Addition of moderate concentrations of glucose (0.5%) to sporulation medium did not inhibit transcription of two key activators of sporulation, IME1 and IME2, but did increase levels of Sic1p, a cyclin-dependent kinase inhibitor, resulting in a block to meiotic DNA replication. The effects of glucose on Sic1p levels and DNA replication required Grr1p, a component of the SCF(Grr1p) ubiquitin ligase. Sic1p is negatively regulated by Ime2p kinase, and several observations indicate that glucose inhibits meiotic DNA replication through SCF(Grr1p)-mediated destruction of this kinase. First, Ime2p was destabilized in the presence of glucose, and this turnover required Grr1p, a second component of SCF(Grr1p), Cdc53p, and an SCF(Grr1p)-associated E2 enzyme, Cdc34p. Second, Ime2p-ubiquitin conjugates were detected under conditions of rapid Ime2p turnover, and conjugation of Ime2p to ubiquitin required GRR1. Third, a mutant form of Ime2p (Ime2(DeltaPEST)), in which a putative Grr1p-interacting sequence was deleted, was more stable than wild-type Ime2p. Finally, expression of the IME2(DeltaPEST) allele bypassed the block to meiotic DNA replication caused by 0.5% glucose. In addition, Grr1p is required for later events in sporulation independently of its role in Ime2p turnover.
Collapse
Affiliation(s)
- Kedar Purnapatre
- Division of Cell Biology and Biophysics, University of Missouri-Kansas City, 5007 Rockhill Road., Kansas City, MO 64110, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Meiosis is the type of cell division that gives rise to eggs and sperm. Errors in the execution of this process can result in the generation of aneuploid gametes, which are associated with birth defects and infertility in humans. Here, we review recent findings on how cell-cycle controls ensure the coordination of meiotic events, with a particular focus on the segregation of chromosomes.
Collapse
Affiliation(s)
- Adèle L Marston
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233, 40 Ames Street, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
24
|
Chang HY, Levasseur M, Jones KT. Degradation of APCcdc20 and APCcdh1 substrates during the second meiotic division in mouse eggs. J Cell Sci 2004; 117:6289-96. [PMID: 15561765 DOI: 10.1242/jcs.01567] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Metaphase II-arrested mouse eggs are stimulated to complete meiosis by sperm-induced Ca2+ spiking. The Ca2+ signal causes activation of the E3 ligase anaphase-promoting complex/cyclosome (APC), leading to the destruction of key proteins necessary for meiotic exit. We show, using western blots of mouse eggs, the presence of both APC activators cdc20 and cdh1, which target D-box and D-box/KEN-box substrates, respectively, for proteolysis. We decided to examine the temporal activation of APCcdc20 and APCcdh1 by coupling APC substrates to GFP and examining their destruction in real-time following release from second meiotic division arrest. D-box substrates were degraded quickly after the initiation of sperm-induced Ca2+ spiking, such that their degradation was complete by the time of second polar body extrusion. By contrast, KEN-box-containing substrates were degraded when CDK1 activity was low, during the period between polar body extrusion and pronucleus formation. This observation of apparent APCcdh1 activity in meiosis II based on destruction of exogenous GFP-coupled substrates was then confirmed by observing destruction of endogenous APCcdh1 substrates. These data are consistent with a model of initial APCcdc20 activation on sperm-induced activation, followed by APCcdh1 activation after second polar body extrusion. Interestingly, therefore, we propose that mammalian eggs undergo meiosis II with both APCcdc20 and APCcdh1, whereas eggs of other species so far described have APCcdc20 activity only.
Collapse
Affiliation(s)
- Heng-Yu Chang
- Cell and Developmental Physiology Research Group, Institute for Cell and Molecular Biosciences, The Medical School, Framlington Place, University of Newcastle, Newcastle, NE2 4HH, UK
| | | | | |
Collapse
|
25
|
Marangos P, Carroll J. Fertilization and InsP3-induced Ca2+ release stimulate a persistent increase in the rate of degradation of cyclin B1 specifically in mature mouse oocytes. Dev Biol 2004; 272:26-38. [PMID: 15242788 DOI: 10.1016/j.ydbio.2004.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 04/15/2004] [Accepted: 04/20/2004] [Indexed: 10/26/2022]
Abstract
Vertebrate oocytes proceed through meiosis I before undergoing a cytostatic factor (CSF)-mediated arrest at metaphase of meiosis II. Exit from MII arrest is stimulated by a sperm-induced increase in intracellular Ca2+. This increase in Ca2+ results in the destruction of cyclin B1, the regulatory subunit of cdk1 that leads to inactivation of maturation promoting factor (MPF) and egg activation. Progression through meiosis I also involves cyclin B1 destruction, but it is not known whether Ca2+ can activate the destruction machinery during MI. We have investigated Ca2+ -induced cyclin destruction in MI and MII by using a cyclin B1-GFP fusion protein and measurement of intracellular Ca2+. We find no evidence for a role for Ca2+ in MI since oocytes progress through MI in the absence of detectable Ca2+ transients. Furthermore, Ca2+ increases induced by photorelease of InsP3 stimulate a persistent destruction of cyclin B1-GFP in MII but not MI stage oocytes. In addition to a steady decrease in cyclin B1-GFP fluorescence, the increase in Ca2+ stimulated a transient decrease in fluorescence in both MI and MII stage oocytes. Similar transient decreases in fluorescence imposed on a more persistent fluorescence decrease were detected in cyclin-GFP-injected eggs undergoing fertilization-induced Ca2+ oscillations. The transient decreases in fluorescence were not a result of cyclin B1 destruction since transients persisted in the presence of a proteasome inhibitor and were detected in controls injected with eGFP and in untreated oocytes. We conclude that increases in cytosolic Ca2+ induce transient changes in autofluorescence and that the pattern of cyclin B1 degradation at fertilization is not stepwise but exponential. Furthermore, this Ca2+ -induced increase in degradation of cyclin B1 requires factors specific to mature oocytes, and that to overcome arrest at MII, Ca2+ acts to release the CSF-mediated brake on cyclin B1 destruction.
Collapse
Affiliation(s)
- Petros Marangos
- Department of Physiology, University College London, WC1E 6BT, UK
| | | |
Collapse
|
26
|
Hyslop LA, Nixon VL, Levasseur M, Chapman F, Chiba K, McDougall A, Venables JP, Elliott DJ, Jones KT. Ca2+-promoted cyclin B1 degradation in mouse oocytes requires the establishment of a metaphase arrest. Dev Biol 2004; 269:206-19. [PMID: 15081368 DOI: 10.1016/j.ydbio.2004.01.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 01/22/2004] [Accepted: 01/27/2004] [Indexed: 02/05/2023]
Abstract
CDK1-cyclin B1 is a universal cell cycle kinase required for mitotic/meiotic cell cycle entry and its activity needs to decline for mitotic/meiotic exit. During their maturation, mouse oocytes proceed through meiosis I and arrest at second meiotic metaphase with high CDK1-cyclin B1 activity. Meiotic arrest is achieved by the action of a cytostatic factor (CSF), which reduces cyclin B1 degradation. Meiotic arrest is broken by a Ca2+ signal from the sperm that accelerates it. Here we visualised degradation of cyclin B1::GFP in oocytes and found that its degradation rate was the same for both meiotic divisions. Ca2+ was the necessary and sufficient trigger for cyclin B1 destruction during meiosis II; but it played no role during meiosis I and furthermore could not accelerate cyclin B1 destruction during this time. The ability of Ca2+ to trigger cyclin B1 destruction developed in oocytes following a restabilisation of cyclin B1 levels at about 12 h of culture. This was independent of actual first polar body extrusion. Thus, in metaphase I arrested oocytes, Ca2+ would induce cyclin B1 destruction and the first polar body would be extruded. In contrast to some reports in lower species, we found no evidence that oocyte activation was associated with an increase in 26S proteasome activity. We therefore conclude that Ca2+ mediates cyclin B1 degradation by increasing the activity of an E3 ubiquitin ligase. However, this stimulation occurs only in the presence of the ubiquitin ligase inhibitor CSF. We propose a model in which Ca2+ directly stimulates destruction of CSF during mammalian fertilisation.
Collapse
Affiliation(s)
- Louise A Hyslop
- Cell and Developmental Physiology Research Group, School of Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle NE2 4HH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Clifford DM, Marinco SM, Brush GS. The Meiosis-specific Protein Kinase Ime2 Directs Phosphorylation of Replication Protein A. J Biol Chem 2004; 279:6163-70. [PMID: 14634024 DOI: 10.1074/jbc.m306943200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In Saccharomyces cerevisiae, the cellular single-stranded DNA-binding protein replication protein A (RPA) becomes phosphorylated during meiosis in two discrete reactions. The primary reaction is first observed shortly after cells enter the meiotic program and leads to phosphorylation of nearly all the detectable RPA. The secondary reaction, which requires the ATM/ATR homologue Mec1, is induced upon initiation of recombination and only modifies a fraction of the total RPA. We now report that correct timing of both RPA phosphorylation reactions requires Ime2, a meiosis-specific protein kinase that is critical for proper initiation of meiotic progression. Expression of Ime2 in vegetative cells leads to an unscheduled RPA phosphorylation reaction that does not require other tested meiosis-specific kinases and is distinct from the RPA phosphorylation reaction that normally occurs during mitotic growth. In addition, immunoprecipitated Ime2 catalyzes phosphorylation of purified RPA. Our data strongly suggest that Ime2 is an RPA kinase in vivo. We propose that Ime2 directly catalyzes RPA phosphorylation in the primary reaction and indirectly promotes the Mec1-dependent secondary reaction by advancing cells through meiotic progression. Our studies have identified a novel meiosis-specific reaction that targets a key protein required for DNA replication, repair, and recombination. This pathway could be important in differentiating mitotic and meiotic DNA metabolism.
Collapse
Affiliation(s)
- Dawn M Clifford
- Program in Molecular Biology and Genetics, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
28
|
Dieckhoff P, Bolte M, Sancak Y, Braus GH, Irniger S. Smt3/SUMO and Ubc9 are required for efficient APC/C-mediated proteolysis in budding yeast. Mol Microbiol 2004; 51:1375-87. [PMID: 14982631 DOI: 10.1046/j.1365-2958.2003.03910.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ubiquitin-mediated proteolysis triggered by the anaphase-promoting complex/cyclosome (APC/C) is essential for sister chromatid separation and the mitotic exit. Like ubiquitylation, protein modification with the small ubiquitin-related modifier SUMO appears to be important during mitosis, because yeast cells impaired in the SUMO-conjugating enzyme Ubc9 were found to be blocked in mitosis and defective in cyclin degradation. Here, we analysed the role of SUMOylation in the metaphase/anaphase transition and in APC/C-mediated proteolysis in Saccharomyces cerevisiae. We show that cells depleted of Ubc9 or Smt3, the yeast SUMO protein, mostly arrested with undivided nuclei and with high levels of securin Pds1. This metaphase block was partially relieved by a deletion of PDS1. The absence of Ubc9 or Smt3 also resulted in defects in chromosome segregation. Temperature-sensitive ubc9-2 mutants were delayed in proteolysis of Pds1 and of cyclin Clb2 during mitosis. The requirement of SUMOylation for APC/C-mediated degradation was tested more directly in G1-arrested cells. Both ubc9-2 and smt3-331 mutants were defective in efficient degradation of Pds1 and mitotic cyclins, whereas proteolysis of unstable proteins that are not APC/C substrates was unaffected. We conclude that SUMOylation is needed for efficient proteolysis mediated by APC/C in budding yeast.
Collapse
Affiliation(s)
- Patrick Dieckhoff
- Institute of Microbiology and Genetics, Georg-August-University, Grisebachstr. 8, D-37077 Goettingen, Germany
| | | | | | | | | |
Collapse
|
29
|
Shubassi G, Luca N, Pak J, Segall J. Activity of phosphoforms and truncated versions of Ndt80, a checkpoint-regulated sporulation-specific transcription factor of Saccharomyces cerevisiae. Mol Genet Genomics 2003; 270:324-36. [PMID: 14605875 DOI: 10.1007/s00438-003-0922-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Accepted: 08/18/2003] [Indexed: 10/26/2022]
Abstract
Ndt80 contributes to the highly regulated cascade of sequential gene expression that directs spore formation in Saccharomyces cerevisiae. This DNA-binding transcriptional activator, which is responsible for the expression of a set of middle sporulation-specific genes, is a target of the meiotic recombination checkpoint. Triggering of this checkpoint prevents phosphorylation and accumulation of active Ndt80. In this study we have investigated the requirements for the activation function of Ndt80 by exploring the role of phosphorylation in the regulation of its activity and by examining the effect of C-terminal truncations. Of three phosphoforms of Ndt80 that we resolved, which we refer to as P approximately Ndt80", P approximately Ndt80', and P approximately Ndt80 in order of increasing electrophoretic mobility, the P approximately Ndt80" and P approximately Ndt80' isoforms correlated with active Ndt80. In particular, P approximately Ndt80" was present in lysates from wild-type sporulating cells and in cells that bypassed checkpoint-mediated arrest as a result of mutations in RAD17, SUM1, or SWE1, or overexpression of NDT80. P approximately Ndt80' was the slowest-migrating isoform that accumulated in Delta ime2/Delta ime2 Delta sum1/Delta sum1 cells in sporulation medium and in mitotic cells that ectopically expressed NDT80. Nonphosphorylated Ndt80 and P approximately Ndt80, which had a slightly lower mobility than nonphosphorylated Ndt80 and was the predominant phosphoform present in checkpoint-arrested cells, correlated with inactive Ndt80. These data are consistent with the notion that extensive phosphorylation, but not Ime2-dependent phosphorylation, of Ndt80 is required for its activity. Examination of the effect of increasingly extensive truncation of the C terminal region of Ndt80 revealed that some functions of Ndt80 were more sensitive to a reduction in its activity than others. In particular, we found that a truncated version of Ndt80 that lacked the last 110 residues was able to promote expression of some middle sporulation-specific genes, but could not direct spore formation. Full activity, however, could be restored to this version of Ndt80 by increasing its level of expression.
Collapse
Affiliation(s)
- G Shubassi
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8 Canada
| | | | | | | |
Collapse
|
30
|
Benjamin KR, Zhang C, Shokat KM, Herskowitz I. Control of landmark events in meiosis by the CDK Cdc28 and the meiosis-specific kinase Ime2. Genes Dev 2003; 17:1524-39. [PMID: 12783856 PMCID: PMC196082 DOI: 10.1101/gad.1101503] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Meiosis is thought to require the protein kinase Ime2 early for DNA replication and the cyclin-dependent kinase Cdc28 late for chromosome segregation. To elucidate the roles of these kinases, we inhibited their activities early and late using conditional mutants that are sensitive to chemical inhibitors. Our studies reveal that both Cdc28 and Ime2 have critical roles in meiotic S phase and M phase. Early inhibition of analog-sensitive cdc28-as1 blocked DNA replication, revealing a previously undetected role for Cdc28. Yet Cdc28 was dispensable for one of its functions in the mitotic cell cycle, degradation of Sic1. Late addition of inhibitor to ime2-as1 revealed unexpected roles of Ime2 in the initiation and execution of chromosome segregation. The requirement of Ime2 for M phase is partially explained by its stimulation of the key meiotic transcription factor Ndt80, which is needed in turn for high Cdc28 activity. In accordance with a late role for Ime2, we observed an increase in its activity during M phase that depended on Cdc28 and Ndt80. We speculate that several unique features of the meiotic cell division reflect a division of labor and regulatory coordination between Ime2 and Cdc28.
Collapse
Affiliation(s)
- Kirsten R Benjamin
- Department of Biochemistry and Biophysics, University of California-San Francisco, San Francisco, CA 94143-0448, USA.
| | | | | | | |
Collapse
|
31
|
Hall MC, Torres MP, Schroeder GK, Borchers CH. Mnd2 and Swm1 are core subunits of the Saccharomyces cerevisiae anaphase-promoting complex. J Biol Chem 2003; 278:16698-705. [PMID: 12609981 DOI: 10.1074/jbc.m213109200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The anaphase-promoting complex (APC) is a multisubunit E3 ubiquitin ligase that regulates the metaphase-anaphase transition and exit from mitosis in eukaryotic cells. Eleven subunits have been previously identified in APC from budding yeast. We have identified two additional subunits, Mnd2 and Swm1, by mass spectrometry. Both Mnd2 and Swm1 were found specifically associated with a highly purified preparation of APC from haploid yeast whole cell extract. Moreover, the APC co-purified with epitope-tagged Mnd2 and Swm1. Both proteins were present in APC preparations from haploid cells arrested in G(1), S, and M phases and from meiotic diploid cells, indicating that they are constitutive components of the complex throughout the yeast cell cycle. Mnd2 interacted strongly with Cdc23, Apc5, and Apc1 when coexpressed in an in vitro transcription/translation reaction. Swm1 also interacted with Cdc23 and Apc5 in this system. Previous studies described meiotic defects for mutations in MND2 and SWM1. Here, we show that mnd2delta and swm1delta haploid strains exhibit slow growth and accumulation of G(2)/M cells comparable with that seen in apc9delta or apc10Delta strains and consistent with an APC defect. Taken together, these results demonstrate that Swm1 and Mnd2 are functional components of the yeast APC.
Collapse
Affiliation(s)
- Mark C Hall
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
32
|
Garrido E, Pérez-Martín J. The crk1 gene encodes an Ime2-related protein that is required for morphogenesis in the plant pathogen Ustilago maydis. Mol Microbiol 2003; 47:729-43. [PMID: 12535072 DOI: 10.1046/j.1365-2958.2003.03323.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fungal pathogen Ustilago maydis alternates between budding and filamentous growth during its life cycle. This dimorphic transition is regulated by environmental factors and mating. We cloned a new gene, crk1, which encodes a protein with sequence similarity to Ime2, a kinase involved in developmental choices in S. cerevisiae. Disruption of the crk1 gene in U. maydis resulted in cells that are unable to respond in an appropriate manner to environmental stimuli and show defects in morphogenesis and cell cycle adjustment to changing conditions. We have analysed the regulation of the crk1 gene and demonstrated that cAMP and MAPK pathways have opposite influences on the transcript levels for crk1. Furthermore, we have shown that alterations in the components of these pathways impair the ability of the cellular machinery to adapt to changing conditions. These results demonstrate an important role for the crk1- encoded protein in the morphogenesis and environmental adaptation in Ustilago maydis.
Collapse
Affiliation(s)
- Elia Garrido
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | | |
Collapse
|
33
|
Suzumori N, Burns KH, Yan W, Matzuk MM. RFPL4 interacts with oocyte proteins of the ubiquitin-proteasome degradation pathway. Proc Natl Acad Sci U S A 2003; 100:550-5. [PMID: 12525704 PMCID: PMC141033 DOI: 10.1073/pnas.0234474100] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oocyte meiosis and early mitotic divisions in developing embryos rely on the timely production of cell cycle regulators and their clearance via proteasomal degradation. Ret Finger Protein-Like 4 (Rfpl4), encoding a RING finger-like protein with a B30.2 domain, was discovered during an in silico search for germ cell-specific genes. To study the expression and functions of RFPL4 protein, we performed immunolocalizations and used yeast two-hybrid and other protein-protein interaction assays. Immunohistochemistry and immunofluorescence showed that RFPL4 accumulates in all growing oocytes and quickly disappears during early embryonic cleavage. We used a yeast two-hybrid model to demonstrate that RFPL4 interacts with the E2 ubiquitin-conjugating enzyme HR6A, proteasome subunit beta type 1, ubiquitin B, as well as a degradation target protein, cyclin B1. Coimmunoprecipitation analyses of in vitro translated proteins and extracts of transiently cotransfected Chinese hamster ovary (CHO)-K1 cells confirmed these findings. We conclude that, like many RING-finger containing proteins, RFPL4 is an E3 ubiquitin ligase. The specificity of its expression and these interactions suggest that RFPL4 targets cyclin B1 for proteasomal degradation, a key aspect of oocyte cell cycle control during meiosis and the crucial oocyte-to-embryo transition to mitosis.
Collapse
Affiliation(s)
- Nobuhiro Suzumori
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
34
|
Sopko R, Raithatha S, Stuart D. Phosphorylation and maximal activity of Saccharomyces cerevisiae meiosis-specific transcription factor Ndt80 is dependent on Ime2. Mol Cell Biol 2002; 22:7024-40. [PMID: 12242283 PMCID: PMC139797 DOI: 10.1128/mcb.22.20.7024-7040.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2002] [Revised: 04/16/2002] [Accepted: 07/18/2002] [Indexed: 12/13/2022] Open
Abstract
The Saccharomyces cerevisiae meiosis-specific transcription factor Ndt80 is responsible for the induction of a class of genes referred to as middle sporulation genes. Among the members of this family are the B-type cyclins and other genes whose products are required for meiotic chromosome division and spore morphogenesis. Inactivation of NDT80 leads to a failure to induce the middle sporulation genes and a subsequent arrest in pachytene. The expression of NDT80 is itself highly regulated. The initial transcription of NDT80 is dependent upon the protein kinase Ime2; once Ndt80 protein accumulates, it activates its own promoter, thus generating an autoactivation loop. In addition to being transcriptionally regulated, Ndt80 protein is posttranslationally regulated. Phosphorylation of Ndt80 occurs coincident with its activation as a transcription factor. If expressed prematurely in meiosis, Ndt80 accumulates initially in an unmodified form that is subsequently modified by phosphorylation. In contrast, Ndt80 expressed in ime2 mutant strains does not become modified and has a reduced ability to activate transcription of its target genes. Ime2 can also phosphorylate Ndt80 in vitro, further supporting a direct role for Ime2 in the phosphorylation of Ndt80. These data indicate that Ime2 plays a novel and previously unexpected role in promoting chromosome dissemination and progress through meiotic development by activating Ndt80.
Collapse
Affiliation(s)
- Richelle Sopko
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|
35
|
Harper JW, Burton JL, Solomon MJ. The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev 2002; 16:2179-206. [PMID: 12208841 DOI: 10.1101/gad.1013102] [Citation(s) in RCA: 368] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J Wade Harper
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|