1
|
Akinduro O, Kumar S, Chen Y, Thomas B, Hassan Q, Sims B. Human breast milk-derived exosomes attenuate lipopolysaccharide-induced activation in microglia. J Neuroinflammation 2025; 22:41. [PMID: 39955566 PMCID: PMC11830176 DOI: 10.1186/s12974-025-03345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/13/2025] [Indexed: 02/17/2025] Open
Abstract
Microglia mediate the immune response in the central nervous system to many insults, including lipopolysaccharide (LPS), a bacterial endotoxin that initiates neuroinflammation in the neonatal population, especially preterm infants. The synthesis of the proinflammatory proteins CD40 and NLRP3 depends on the canonical NF-κB cascade as the genes encoding CD40 and NLRP3 are transcribed by the phosphorylated NF-κB p50/p65 heterodimer in LPS-induced microglia. Exosomes, which are nanosized vesicles (40-150 nm) involved in intercellular communication, are implicated in many pathophysiological processes. Human breast milk, which is rich in exosomes, plays a vital role in neonatal immune system maturation and adaptation. Activated microglia may cause brain-associated injuries or disorders; therefore, we hypothesize that human breast milk-derived exosomes (HBME) attenuate LPS-induced activation of CD40 and NLRP3 by decreasing p38 MAPK and NF-κB p50/p65 activation/phosphorylation downstream of TLR4 in murine microglia (BV2). Human microglia (HMC3) showed a significant decrease in p65 phosphorylation. We isolated purified HBME and characterized them using nanoparticle tracking analysis, transmission electron microscopy, fluorescence-activated cell sorting, and western blots. Analysis of microglia exposed to LPS and HBME indicated that HBME modulated the expression of signaling molecules in the canonical NF-κB pathway, including MyD88, IκBα, p38 MAPK, NF-κB p65, and their products CD40, NLRP3, and cytokines IL-1β and IL-10. Thus, HBMEs have great potential for attenuating the microglial response to LPS.
Collapse
Affiliation(s)
- Oluwatomi Akinduro
- Department of Pediatrics/Division of Neonatology and Center of Glial Biology in Medicine at the University of Alabama School of Medicine, UAB Women and Infant Center, University of Alabama at Birmingham, 1700 6th Ave South, Birmingham, AL, 35294, USA
| | - Sanjay Kumar
- Department of Pediatrics/Division of Neonatology and Center of Glial Biology in Medicine at the University of Alabama School of Medicine, UAB Women and Infant Center, University of Alabama at Birmingham, 1700 6th Ave South, Birmingham, AL, 35294, USA
| | - Yuechuan Chen
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, 1919 7th Avenue South, Birmingham, AL, 35294, USA
| | - Barbara Thomas
- Department of Pediatrics/Division of Neonatology and Center of Glial Biology in Medicine at the University of Alabama School of Medicine, UAB Women and Infant Center, University of Alabama at Birmingham, 1700 6th Ave South, Birmingham, AL, 35294, USA
| | - Quamarul Hassan
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, 1919 7th Avenue South, Birmingham, AL, 35294, USA.
| | - Brian Sims
- Department of Pediatrics/Division of Neonatology and Center of Glial Biology in Medicine at the University of Alabama School of Medicine, UAB Women and Infant Center, University of Alabama at Birmingham, 1700 6th Ave South, Birmingham, AL, 35294, USA.
| |
Collapse
|
2
|
Mukherjee D, Satyavolu S, Thomas A, Cioffi S, Li Y, Chan ER, Wen K, Huang AY, Jain MK, Dubyak GR, Nayak L. Neutrophil KLF2 regulates inflammasome-dependent neonatal mortality from endotoxemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637657. [PMID: 39990480 PMCID: PMC11844471 DOI: 10.1101/2025.02.11.637657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Preterm neonates die at a significantly higher rate from sepsis than full-term neonates, attributable to their dysregulated immune response. In addition to tissue destruction caused directly by bacterial invasion, an overwhelming cytokine response by the immune cells to bacterial antigens also results in collateral damage. Sepsis leads to decreased gene expression of a critical transcription factor, Krüppel-like factor-2 (KLF2), a tonic repressor of myeloid cell activation. Using a murine model of myeloid- Klf2 deletion, we show that loss of KLF2 is associated with decreased survival after endotoxemia in a developmentally dependent manner, with increased mortality at postnatal day 4 (P4) compared to P12 pups. This survival is significantly increased by neutrophil depletion. P4 knockout pups have increased pro-inflammatory cytokine levels after endotoxemia compared to P4 controls or P12 pups, with significantly increased levels of IL-1β, a product of the activation of the NLRP3 inflammasome complex. Loss of myeloid-KLF2 at an earlier postnatal age leads to a greater increase in NLRP3 priming and activation and greater IL-1β release by BMNs. Inhibition of NLRP3 inflammasome activation by MCC950 significantly increased survival after endotoxemia in P4 pups. Transcriptomic analysis of bone marrow neutrophils showed that loss of myeloid-KLF2 is associated with gene enrichment of pro-inflammatory pathways in a developmentally dependent manner. These data suggest that targeting KLF2 could be a novel strategy to decrease the pro-inflammatory cytokine storm in neonatal sepsis and improve survival in neonates with sepsis. Summary sentence KLF2 regulates the developmental response to endotoxin in neonatal mice through the NLRP3 inflammasome signaling pathway.
Collapse
|
3
|
Jung KJ, Cho J, Yang MJ, Hwang JH, Song J. Exposure to polyhexamethyleneguanidine phosphate in early life dampens pulmonary damage compared to adult mice. Chem Biol Interact 2024; 399:111134. [PMID: 38969276 DOI: 10.1016/j.cbi.2024.111134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Polyhexamethyleneguanidine phosphate (PHMG-P) is a biocide of guanidine family that can cause a fatal lung damage if exposed directly to the lungs. No reports exist regarding the toxicity of PHMG-P in neonatal animals. Therefore, this study aimed to determine PHMG-P toxicity in neonatal and 8-week-old mice after they were intranasally instilled with 1.5 mg/kg, 3 mg/kg, and 4.5 mg/kg PHMG-P. PHMG-P lung exposure resulted in more severe pulmonary toxicity in adult mice than in newborn mice. In the high-dose group of newborn mice, a minimal degree of inflammatory cell infiltration and fibrosis in the lung were detected, whereas more severe pathological lesions including granulomatous inflammation, fibrosis, and degeneration of the bronchiolar epithelium were observed in adult mice. At day 4, C-C motif chemokine ligand 2 (CCL2), a potent chemokine for monocytes, was upregulated but recovered to normal levels at day 15 in newborn mice. However, increased CCL2 and IL-6 levels were sustained at day 15 in adult mice. When comparing the differentially expressed genes of newborn and adult mice through RNA-seq analysis, there were expression changes in several genes associated with inflammation in neonates that were similar or different from those in adults. Although no significant lung damage occurred in newborns, growth inhibition was observed which was not reversed until the end of the experiment. Further research is needed to determine how growth inhibition from neonatal exposure to PHMG-P affects adolescent and young adult health.
Collapse
Affiliation(s)
- Kyung Jin Jung
- Immunotoxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Jeonghee Cho
- Center for Vascular Research, Institute for Basci Science, Daejeon, 34126, Republic of Korea
| | - Mi-Jin Yang
- Jeonbuk Pathology Research Group, Korea Institute of Toxicology, Jeonbuk, 56212, Republic of Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea
| | - Jeongah Song
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea.
| |
Collapse
|
4
|
Opgenorth J, Mayorga EJ, Abeyta MA, Goetz BM, Rodriguez-Jimenez S, Freestone AD, McGill JL, Baumgard LH. Intravenous lipopolysaccharide challenge in early- versus mid-lactation dairy cattle. I: The immune and inflammatory responses. J Dairy Sci 2024; 107:6225-6239. [PMID: 38428491 DOI: 10.3168/jds.2023-24350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
Cows in early lactation (EL) are purportedly immune suppressed, which renders them more susceptible to disease. Thus, the study objective was to compare key biomarkers of immune activation from i.v. LPS between EL and mid-lactation (ML) cows. Multiparous EL (20 ± 2 DIM; n = 11) and ML (131 ± 31 DIM; n = 12) cows were enrolled in a 2 × 2 factorial design and assigned to 1 of 2 treatments by lactation stage (LS): (1) EL (EL-LPS; n = 6) or ML (ML-LPS; n = 6) cows administered a single LPS bolus from Escherichia coli O55:B5 (0.09 µg/kg of BW), or (2) pair-fed (PF) EL (EL-PF; n = 5) or ML (ML-PF; n = 6) cows administered i.v. saline. After LPS administration, cows were intensely evaluated for 3 d to analyze their response and recovery to LPS. Rectal temperature increased in LPS relative to PF cows (1.1°C in the first 9 h), and the response was more severe in EL-LPS relative to ML-LPS cows (2.3 vs. 1.3°C increase at 4 h post-LPS; respectively). Respiration rate increased only in EL-LPS cows (47% relative to ML-LPS in the first hour post-LPS). Circulating tumor necrosis factor-α, IL-6, monocyte chemoattractant protein-1, macrophage inflammatory protein (MIP)-1α, MIP-1β, and IFN-γ-inducible protein-10 increased within the first 6 h after LPS and these changes were exacerbated in EL-LPS relative to ML-LPS cows (6.3-fold, 4.8-fold, 57%, 93%, 10%, and 61%, respectively). All cows administered LPS had decreased circulating iCa relative to PF cows (34% at the 6 h nadir), but the hypocalcemia was more severe in EL-LPS than ML-LPS cows (14% at 6 h nadir). In response to LPS, neutrophils decreased regardless of LS, then increased into neutrophilia by 24 h in all LPS relative to PF cows (2-fold); however, the neutrophilic phase was augmented in EL- compared with ML-LPS cows (63% from 24 to 72 h). Lymphocytes and monocytes rapidly decreased then gradually returned to baseline in LPS cows regardless of LS; however, monocytes were increased (57%) at 72 h in EL-LPS relative to ML-LPS cows. Platelets were reduced (46%) in LPS relative to PF cows throughout the 3-d following LPS, and from 24 to 48 h, platelets were further decreased (41%) in EL-LPS compared with ML-LPS. During the 3-d following LPS, serum amyloid A (SAA), LPS-binding protein (LBP), and haptoglobin (Hp) increased in LPS compared with PF groups (9-fold, 72%, and 153-fold, respectively), and the LBP and Hp responses were more exaggerated in EL-LPS than ML-LPS cows (85 and 79%, respectively) whereas the SAA response did not differ by LS. Thus, our data indicates that EL immune function does not appear "suppressed," and in fact many aspects of the immune response are seemingly functionally robust.
Collapse
Affiliation(s)
- J Opgenorth
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - A D Freestone
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - J L McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|
5
|
Joana Alves M, Browe BM, Carolina Rodrigues Dias A, Torres JM, Zaza G, Bangudi S, Blackburn J, Wang W, de Araujo Fernandes-Junior S, Fadda P, Toland A, Baer LA, Stanford KI, Czeisler C, Garcia AJ, Javier Otero J. Metabolic trade-offs in Neonatal sepsis triggered by TLR4 and TLR1/2 ligands result in unique dysfunctions in neural breathing circuits. Brain Behav Immun 2024; 119:333-350. [PMID: 38561095 DOI: 10.1016/j.bbi.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
Neonatal sepsis remains one of the leading causes of mortality in newborns. Several brainstem-regulated physiological processes undergo disruption during neonatal sepsis. Mechanistic knowledge gaps exist at the interplay between metabolism and immune activation to brainstem neural circuits and pertinent physiological functions in neonates. To delineate this association, we induced systemic inflammation either by TLR4 (LPS) or TLR1/2 (PAM3CSK4) ligand administration in postnatal day 5 mice (PD5). Our findings show that LPS and PAM3CSK4 evoke substantial changes in respiration and metabolism. Physiological trade-offs led to hypometabolic-hypothermic responses due to LPS, but not PAM3CSK4, whereas to both TLR ligands blunted respiratory chemoreflexes. Neuroinflammatory pathways modulation in brainstem showed more robust effects in LPS than PAM3CSK4. Brainstem neurons, microglia, and astrocyte gene expression analyses showed unique responses to TLR ligands. PAM3CSK4 did not significantly modulate gene expression changes in GLAST-1 positive brainstem astrocytes. PD5 pups receiving PAM3CSK4 failed to maintain a prolonged metabolic state repression, which correlated to enhanced gasping latency and impaired autoresuscitation during anoxic chemoreflex challenges. In contrast, LPS administered pups showed no significant changes in anoxic chemoreflex. Electrophysiological studies from brainstem slices prepared from pups exposed to either TLR4 or PAM3CSK4 showed compromised transmission between preBötzinger complex and Hypoglossal as an exclusive response to the TLR1/2 ligand. Spatial gene expression analysis demonstrated a region-specific modulation of PAM3CSK4 within the raphe nucleus relative to other anatomical sites evaluated. Our findings suggest that metabolic changes due to inflammation might be a crucial tolerance mechanism for neonatal sepsis preserving neural control of breathing.
Collapse
Affiliation(s)
- Michele Joana Alves
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Brigitte M Browe
- Institute for Integrative Physiology, Grossman Institute for Neuroscience Quantitative Biology and Human Behavior, The Neuroscience Institute, The University of Chicago, Chicago, IL, United States
| | - Ana Carolina Rodrigues Dias
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Juliet M Torres
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Giuliana Zaza
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Suzy Bangudi
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Jessica Blackburn
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Wesley Wang
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | | | - Paolo Fadda
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Amanda Toland
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States; Department of Cancer Biology and Genetics and Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Lisa A Baer
- Department of Cancer Biology and Genetics and Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Catherine Czeisler
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Alfredo J Garcia
- Institute for Integrative Physiology, Grossman Institute for Neuroscience Quantitative Biology and Human Behavior, The Neuroscience Institute, The University of Chicago, Chicago, IL, United States.
| | - José Javier Otero
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States.
| |
Collapse
|
6
|
Yang J, Chen N, Zhao P, Yang X, Li Y, Fu Z, Yan Y, Dong N, Li S, Yao R, Du X, Yao Y. DIMINISHED EXPRESSION OF GLS IN CD4 + T CELLS SERVES AS A PROGNOSTIC INDICATOR ASSOCIATED WITH CUPROPTOSIS IN SEPTIC PATIENTS. Shock 2024; 62:51-62. [PMID: 38662604 DOI: 10.1097/shk.0000000000002370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Objectives: Sepsis is defined as a life-threatening disease associated with a dysfunctional host immune response. Stratified identification of critically ill patients might significantly improve the survival rate. The present study sought to probe molecular markers associated with cuproptosis in septic patients to aid in stratification and improve prognosis. Methods: We studied expression of cuproptosis-related genes (CRGs) using peripheral blood samples from septic patients. Further classification was made by examining levels of expression of these potential CRGs in patients. Coexpression networks were constructed using the Weighted Gene Coexpression Network Analysis (WGCNA) method to identify crucial prognostic CRGs. Additionally, we utilized immune cell infiltration analysis to further examine the immune status of septic patients with different subtypes and its association with the CRGs. scRNA-seq data were also analyzed to verify expression of key CRGs among specific immune cells. Finally, immunoblotting, flow cytometry, immunofluorescence, and CFSE analysis were used to investigate possible regulatory mechanisms. Results: We classified septic patients based on CRG expression levels and found significant differences in prognosis and gene expression patterns. Three key CRGs that may influence the prognosis of septic patients were identified. A decrease in GLS expression was subsequently verified in Jurkat cells, accompanied by a reduction in O-GlcNAc levels, and chelation of copper by tetrathiomolybdate could not rescue the reduction in GLS and O-GLcNAc levels. Moreover, immoderate chelation of copper was detrimental to mitochondrial function, cell viability, and cell proliferation, as well as the immune status of the host. Conclusion: We have identified novel molecular markers associated with cuproptosis, which could potentially function as diagnostic indicators for septic patients. The reversible nature of the observed alterations in FDX1 and LIAS was demonstrated through copper chelation, whereas the correlation between copper and the observed changes in GLS requires further investigation.
Collapse
Affiliation(s)
| | - Ning Chen
- Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | - Yang Yan
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ning Dong
- Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Songyan Li
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | | | | | - Yongming Yao
- Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
de Jong R, Tenbrock K, Ohl K. New Insights in Immunometabolism in Neonatal Monocytes and Macrophages in Health and Disease. Int J Mol Sci 2023; 24:14173. [PMID: 37762476 PMCID: PMC10531550 DOI: 10.3390/ijms241814173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
It is well established that the neonatal immune system is different from the adult immune system. A major task of the neonatal immune system is to bridge the achievement of tolerance towards harmless antigens and commensal bacteria while providing protection against pathogens. This is highly important because neonates are immunologically challenged directly after birth by a rigorous change from a semi-allogeneic sterile environment into a world rich with microbes. A so called disease tolerogenic state is typical for neonates and is anticipated to prevent immunopathological damage potentially at the cost of uncontrolled pathogen proliferation. As a consequence, neonates are more susceptible than adults to life-threatening infections. At the basis of a well-functioning immune response, both for adults and neonates, innate immune cells such as monocytes and monocyte-derived macrophages play an essential role. A well-responsive monocyte will alter its cellular metabolism to subsequently induce certain immune effector function, a process which is called immunometabolism. Immunometabolism has received extensive attention in the last decade; however, it has not been broadly studied in neonates. This review focuses on carbohydrate metabolism in monocytes and macrophages in neonates. We will exhibit pathways involving glycolysis, the tricarboxylic acid (TCA) cycle and oxidative phosphorylation and their role in shaping neonates' immune systems to a favorable tolerogenic state. More insight into these pathways will elucidate potential treatments targets in life-threatening conditions including neonatal sepsis or expose potential targets which can be used to induce tolerance in conditions where tolerance is harmfully impaired such as in autoimmune diseases.
Collapse
Affiliation(s)
| | - Klaus Tenbrock
- Department of Pediatrics, RWTH Aachen University, 52074 Aachen, Germany; (R.d.J.); (K.O.)
| | | |
Collapse
|
8
|
Zhang SY, Xu QP, Shi LN, Li SW, Wang WH, Wang QQ, Lu LX, Xiao H, Wang JH, Li FY, Liang YM, Gong ST, Peng HR, Zhang Z, Tang H. Soluble CD4 effectively prevents excessive TLR activation of resident macrophages in the onset of sepsis. Signal Transduct Target Ther 2023; 8:236. [PMID: 37332010 DOI: 10.1038/s41392-023-01438-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 06/20/2023] Open
Abstract
T lymphopenia, occurring in the early phase of sepsis in response to systemic inflammation, is commonly associated with morbidity and mortality of septic infections. We have previously shown that a sufficient number of T cells is required to constrain Toll-like receptors (TLRs) mediated hyperinflammation. However, the underlying mechanisms remains unsolved. Herein, we unveil that CD4+ T cells engage with MHC II of macrophages to downregulate TLR pro-inflammatory signaling. We show further that the direct contact between CD4 molecule of CD4+ T cells or the ectodomain of CD4 (soluble CD4, sCD4), and MHC II of resident macrophages is necessary and sufficient to prevent TLR4 overactivation in LPS and cecal ligation puncture (CLP) sepsis. sCD4 serum concentrations increase after the onset of LPS sepsis, suggesting its compensatory inhibitive effects on hyperinflammation. sCD4 engagement enables the cytoplasmic domain of MHC II to recruit and activate STING and SHP2, which inhibits IRAK1/Erk and TRAF6/NF-κB activation required for TLR4 inflammation. Furthermore, sCD4 subverts pro-inflammatory plasma membrane anchorage of TLR4 by disruption of MHC II-TLR4 raft domains that promotes MHC II endocytosis. Finally, sCD4/MHCII reversal signaling specifically interferes with TLR4 but not TNFR hyperinflammation, and independent of the inhibitive signaling of CD40 ligand of CD4+ cells on macrophages. Therefore, a sufficient amount of soluble CD4 protein can prevent excessive inflammatory activation of macrophages via alternation of MHC II-TLR signaling complex, that might benefit for a new paradigm of preventive treatment of sepsis.
Collapse
Affiliation(s)
- Sheng-Yuan Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
- The Third People's Hospital of Shenzhen, Shenzhen, 518112, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiu-Ping Xu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Li-Na Shi
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shih-Wen Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Wei-Hong Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Qing-Qing Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Liao-Xun Lu
- The Laboratory of Genetic Regulators in The Immune System, Xin-xiang Medical University, Xin-xiang, Henan Province, 453003, China
| | - Hui Xiao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Jun-Hong Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Feng-Ying Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Yin-Ming Liang
- The Laboratory of Genetic Regulators in The Immune System, Xin-xiang Medical University, Xin-xiang, Henan Province, 453003, China
| | - Si-Tang Gong
- The Joint Center of Translational Medicine, Guangzhou Women and Children's Medical Center and Institut Pasteur of Shanghai, Guangzhou, 510623, China
| | - Hao-Ran Peng
- Department of Microbiology, Naval Medical University, Shanghai, 200433, China.
| | - Zheng Zhang
- The Third People's Hospital of Shenzhen, Shenzhen, 518112, China.
| | - Hong Tang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
9
|
Characterization of T Helper 1 and 2 Cytokine Profiles in Newborns of Mothers with COVID-19. Biomedicines 2023; 11:biomedicines11030910. [PMID: 36979888 PMCID: PMC10045352 DOI: 10.3390/biomedicines11030910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 03/17/2023] Open
Abstract
An infectious disease caused by SARS-CoV-2, COVID-19 greatly affects the pediatric population and is 3 times more prevalent in newborns than in the general population. In newborns, the overexpression of immunological molecules may also induce a so-called cytokine storm. In our study, we evaluated the expression of cytokines in newborns admitted to a neonatal ICU whose mothers had SARS-CoV-2 and symptoms of SARS. The blood of newborns of infected and healthy mothers was collected to identify their Th1 and Th2 cytokine profiles, and via flow cytometry, the cytokines TNF-α, IFN-γ, IL-2, IL-6, and IL-10 were identified. Overexpression was observed in the Th1 and Th2 cytokine profiles of newborns from infected mothers compared with the control group. Statistical analysis also revealed significant differences between the cellular and humoral responses of the infected group versus the control group. The cellular versus humoral responses of the newborns of infected mothers were also compared, which revealed the prevalence of the cellular immune response. These data demonstrate that some cytokines identified relate to more severe symptoms and even some comorbidities. IL-6, TNF-α, and IL-10 may especially be related to cytokine storms in neonates of mothers with COVID-19.
Collapse
|
10
|
Imbalanced Inflammatory Responses in Preterm and Term Cord Blood Monocytes and Expansion of the CD14 +CD16 + Subset upon Toll-like Receptor Stimulation. Int J Mol Sci 2023; 24:ijms24054919. [PMID: 36902350 PMCID: PMC10002861 DOI: 10.3390/ijms24054919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Developmentally regulated features of innate immunity are thought to place preterm and term infants at risk of infection and inflammation-related morbidity. Underlying mechanisms are incompletely understood. Differences in monocyte function including toll-like receptor (TLR) expression and signaling have been discussed. Some studies point to generally impaired TLR signaling, others to differences in individual pathways. In the present study, we assessed mRNA and protein expression of pro- and anti-inflammatory cytokines in preterm and term cord blood (CB) monocytes compared with adult controls stimulated ex vivo with Pam3CSK4, zymosan, polyinosinic:polycytidylic acid, lipopolysaccharide, flagellin, and CpG oligonucleotide, which activate the TLR1/2, TLR2/6, TLR3, TLR4, TLR5, and TLR9 pathways, respectively. In parallel, frequencies of monocyte subsets, stimulus-driven TLR expression, and phosphorylation of TLR-associated signaling molecules were analyzed. Independent of stimulus, pro-inflammatory responses of term CB monocytes equaled adult controls. The same held true for preterm CB monocytes-except for lower IL-1β levels. In contrast, CB monocytes released lower amounts of anti-inflammatory IL-10 and IL-1ra, resulting in higher ratios of pro-inflammatory to anti-inflammatory cytokines. Phosphorylation of p65, p38, and ERK1/2 correlated with adult controls. However, stimulated CB samples stood out with higher frequencies of intermediate monocytes (CD14+CD16+). Both pro-inflammatory net effect and expansion of the intermediate subset were most pronounced upon stimulation with Pam3CSK4 (TLR1/2), zymosan (TR2/6), and lipopolysaccharide (TLR4). Our data demonstrate robust pro-inflammatory and yet attenuated anti-inflammatory responses in preterm and term CB monocytes, along with imbalanced cytokine ratios. Intermediate monocytes, a subset ascribed pro-inflammatory features, might participate in this inflammatory state.
Collapse
|
11
|
Sedney CJ, Caulfield A, Dewan KK, Blas-Machado U, Callender M, Manley NR, Harvill ET. Novel murine model reveals an early role for pertussis toxin in disrupting neonatal immunity to Bordetella pertussis. Front Immunol 2023; 14:1125794. [PMID: 36855631 PMCID: PMC9968397 DOI: 10.3389/fimmu.2023.1125794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
The increased susceptibility of neonates to specific pathogens has previously been attributed to an underdeveloped immune system. More recent data suggest neonates have effective protection against most pathogens but are particularly susceptible to those that target immune functions specific to neonates. Bordetella pertussis (Bp), the causative agent of "whooping cough", causes more serious disease in infants attributed to its production of pertussis toxin (PTx), although the neonate-specific immune functions it targets remain unknown. Problematically, the rapid development of adult immunity in mice has confounded our ability to study interactions of the neonatal immune system and its components, such as virtual memory T cells which are prominent prior to the maturation of the thymus. Here, we examine the rapid change in susceptibility of young mice and define a period from five- to eight-days-old during which mice are much more susceptible to Bp than mice even a couple days older. These more narrowly defined "neonatal" mice display significantly increased susceptibility to wild type Bp but very rapidly and effectively respond to and control Bp lacking PTx, more rapidly even than adult mice. Thus, PTx efficiently blocks some very effective form(s) of neonatal protective immunity, potentially providing a tool to better understand the neonatal immune system. The rapid clearance of the PTx mutant correlates with the early accumulation of neutrophils and T cells and suggests a role for PTx in disrupting their accumulation. These results demonstrate a striking age-dependent response to Bp, define an early age of extreme susceptibility to Bp, and demonstrate that the neonatal response can be more efficient than the adult response in eliminating bacteria from the lungs, but these neonatal functions are substantially blocked by PTx. This refined definition of "neonatal" mice may be useful in the study of other pathogens that primarily infect neonates, and PTx may prove a particularly valuable tool for probing the poorly understood neonatal immune system.
Collapse
Affiliation(s)
- Colleen J. Sedney
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Amanda Caulfield
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kaylan K. Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Uriel Blas-Machado
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Maiya Callender
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Nancy R. Manley
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
| | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
12
|
Sarfraz M, Nguyen TTT, Wheler C, Köster W, Gerdts V, Dar A. Characterization of Dosage Levels for In Ovo Administration of Innate Immune Stimulants for Prevention of Yolk Sac Infection in Chicks. Vet Sci 2022; 9:vetsci9050203. [PMID: 35622731 PMCID: PMC9142911 DOI: 10.3390/vetsci9050203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Innate immune stimulants, especially toll-like receptor (TLR) ligands and agonists, are the main players in the initiation of innate immunity and have been widely studied as alternatives to antibiotics to control infection. In the present study, we characterized the dosage levels of various innate immune stimulants, including unmethylated cytosine-phosphate-guanosine dinucleotide -containing oligodeoxynucleotides (CpG ODN), polyinosinic-polycytidylic acid (poly I:C), cyclic polyphosphazene 75B (CPZ75B), avian beta-defensin 2 (ABD2), and combinations of these reagents given in ovo. Data derived from a series of animal experiments demonstrated that the in ovo administration of 10–50 µg CpG ODN/embryo (on embryonic day 18) is an effective formulation for control of yolk sac infection (YSI) due to avian pathogenic Escherichia coli (E. coli) in young chicks. Amongst the different combinations of innate immune stimulants, the in ovo administration of CpG ODN 10 µg in combination with 15 µg of poly I:C was the most effective combination, offering 100% protection from YSI. It is expected that the introduction of these reagents to management practices at the hatchery level may serve as a potential replacement for antibiotics for the reduction of early chick mortality (ECM) due to YSI/colibacillosis.
Collapse
|
13
|
Flores-Maldonado O, González GM, Montoya A, Andrade A, Treviño-Rangel R, Donis-Maturano L, Tavares-Carreón F, Becerril-García MA. Dissemination of Gram-positive bacteria to the lung of newborn mice increases local IL-6 and TNFα levels in lethal bacteremia. Microbes Infect 2022; 24:104984. [DOI: 10.1016/j.micinf.2022.104984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/01/2022]
|
14
|
Peripheral immune cells and perinatal brain injury: a double-edged sword? Pediatr Res 2022; 91:392-403. [PMID: 34750522 PMCID: PMC8816729 DOI: 10.1038/s41390-021-01818-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023]
Abstract
Perinatal brain injury is the leading cause of neurological mortality and morbidity in childhood ranging from motor and cognitive impairment to behavioural and neuropsychiatric disorders. Various noxious stimuli, including perinatal inflammation, chronic and acute hypoxia, hyperoxia, stress and drug exposure contribute to the pathogenesis. Among a variety of pathological phenomena, the unique developing immune system plays an important role in the understanding of mechanisms of injury to the immature brain. Neuroinflammation following a perinatal insult largely contributes to evolution of damage to resident brain cells, but may also be beneficial for repair activities. The present review will focus on the role of peripheral immune cells and discuss processes involved in neuroinflammation under two frequent perinatal conditions, systemic infection/inflammation associated with encephalopathy of prematurity (EoP) and hypoxia/ischaemia in the context of neonatal encephalopathy (NE) and stroke at term. Different immune cell subsets in perinatal brain injury including their infiltration routes will be reviewed and critical aspects such as sex differences and maturational stage will be discussed. Interactions with existing regenerative therapies such as stem cells and also potentials to develop novel immunomodulatory targets are considered. IMPACT: Comprehensive summary of current knowledge on the role of different immune cell subsets in perinatal brain injury including discussion of critical aspects to be considered for development of immunomodulatory therapies.
Collapse
|
15
|
Sakleshpur S, Steed AL. Influenza: Toward understanding the immune response in the young. Front Pediatr 2022; 10:953150. [PMID: 36061377 PMCID: PMC9437304 DOI: 10.3389/fped.2022.953150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/28/2022] [Indexed: 12/12/2022] Open
Abstract
Annually influenza causes a global epidemic resulting in 290,000 to 650,000 deaths and extracts a massive toll on healthcare and the economy. Infants and children are more susceptible to infection and have more severe symptoms than adults likely mitigated by differences in their innate and adaptive immune responses. While it is unclear the exact mechanisms with which the young combat influenza, it is increasingly understood that their immune responses differ from adults. Specifically, underproduction of IFN-γ and IL-12 by the innate immune system likely hampers viral clearance while upregulation of IL-6 may create excessive damaging inflammation. The infant's adaptive immune system preferentially utilizes the Th-2 response that has been tied to γδ T cells and their production of IL-17, which may be less advantageous than the adult Th-1 response for antiviral immunity. This differential immune response of the young is considered to serve as a unique evolutionary adaptation such that they preferentially respond to infection broadly rather than a pathogen-specific one generated by adults. This unique function of the young immune system is temporally, and possibly mechanistically, tied to the microbiota, as they both develop in coordination early in life. Additional research into the relationship between the developing microbiota and the immune system is needed to develop therapies effective at combating influenza in the youngest and most vulnerable of our population.
Collapse
Affiliation(s)
- Sonia Sakleshpur
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Ashley L Steed
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
16
|
Knowledge gaps in late-onset neonatal sepsis in preterm neonates: a roadmap for future research. Pediatr Res 2022; 91:368-379. [PMID: 34497356 DOI: 10.1038/s41390-021-01721-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Late-onset neonatal sepsis (LONS) remains an important threat to the health of preterm neonates in the neonatal intensive care unit. Strategies to optimize care for preterm neonates with LONS are likely to improve survival and long-term neurocognitive outcomes. However, many important questions on how to improve the prevention, early detection, and therapy for LONS in preterm neonates remain unanswered. This review identifies important knowledge gaps in the management of LONS and describe possible methods and technologies that can be used to resolve these knowledge gaps. The availability of computational medicine and hypothesis-free-omics approaches give way to building bedside feedback tools to guide clinicians in personalized management of LONS. Despite advances in technology, implementation in clinical practice is largely lacking although such tools would help clinicians to optimize many aspects of the management of LONS. We outline which steps are needed to get possible research findings implemented on the neonatal intensive care unit and provide a roadmap for future research initiatives. IMPACT: This review identifies knowledge gaps in prevention, early detection, antibiotic, and additional therapy of late-onset neonatal sepsis in preterm neonates and provides a roadmap for future research efforts. Research opportunities are addressed, which could provide the means to fill knowledge gaps and the steps that need to be made before possible clinical use. Methods to personalize medicine and technologies feasible for bedside clinical use are described.
Collapse
|
17
|
Nakasone R, Ashina M, Kido T, Miyauchi H, Saito M, Inoue S, Shinohara M, Nozu K, Fujioka K. Protective Role of an Initial Low-Dose Septic Challenge against Lethal Sepsis in Neonatal Mice: A Pilot Study. J Clin Med 2021; 10:5823. [PMID: 34945120 PMCID: PMC8705039 DOI: 10.3390/jcm10245823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Neonatal sepsis is characterized by systemic bacterial invasion followed by a massive inflammatory response. At present, no therapeutic strategy has been found that significantly reduces the mortality of neonatal sepsis. We aimed to investigate the protective role of an initial low-dose septic challenge for the prevention of subsequent lethal sepsis in a mouse model. A stock cecal slurry (CS) solution was prepared from adult ceca. The LD83 (1.5 mg CS/g) was used for all animals. An initial challenge of normal saline (NS) or 0.5 mg CS/g (non-lethal dose) was administered at four days of age, then 1.5 mg CS/g was administered intraperitoneally at seven days of age (72 h post-initial challenge), and survival was monitored. Initial exposure to NS (n = 10) resulted in 90% mortality following exposure to the LD83 CS dose in contrast to an initial exposure to CS (n = 16), which significantly decreased mortality to 6% (p < 0.0001), reduced blood bacterial counts, attenuated inflammatory responses, and suppressed lipid mediators. Initial exposure to a non-lethal CS dose prior to exposure to a lethal CS dose significantly reduces sepsis mortality, a protective effect that might be mediated by modulating abnormal systemic inflammatory responses.
Collapse
Affiliation(s)
- Ruka Nakasone
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.N.); (M.A.); (T.K.); (K.N.)
| | - Mariko Ashina
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.N.); (M.A.); (T.K.); (K.N.)
| | - Takumi Kido
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.N.); (M.A.); (T.K.); (K.N.)
| | - Harunori Miyauchi
- Department of Pediatric Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Masafumi Saito
- Department of Disaster and Emergency and Critical Care Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (S.I.)
| | - Shigeaki Inoue
- Department of Disaster and Emergency and Critical Care Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (S.I.)
| | - Masakazu Shinohara
- Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.N.); (M.A.); (T.K.); (K.N.)
| | - Kazumichi Fujioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.N.); (M.A.); (T.K.); (K.N.)
| |
Collapse
|
18
|
Makatsariya AD, Slukhanchuk EV, Bitsadze VO, Khizroeva JK, Tretyakova MV, Makatsariya NA, Akinshina SV, Shkoda AS, Pankratyeva LL, Di Renzo GC, Rizzo G, Grigorieva KN, Tsibizova VI, Gris JC, Elalamy I. Neutrophil extracellular traps: a role in inflammation and dysregulated hemostasis as well as in patients with COVID-19 and severe obstetric pathology. OBSTETRICS, GYNECOLOGY AND REPRODUCTION 2021; 15:335-350. [DOI: 10.17749/2313-7347/ob.gyn.rep.2021.238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Numerous studies have proven a close relationship between inflammatory diseases and the state of hypercoagulability. In fact, thromboembolic complications represent one of the main causes of disability and mortality in acute and chronic inflammatory diseases, cancer and obstetric complications. Despite this, the processes of hemostasis and immune responses have long been considered separately; currently, work is underway to identify the molecular basis for a relationship between such systems. It has been identified that various pro-inflammatory stimuli are capable of triggering a coagulation cascade, which in turn modulates inflammatory responses. Neutrophil extracellular traps (NETs) are the networks of histones of extracellular DNA generated by neutrophils in response to inflammatory stimuli. The hemostasis is activated against infection in order to minimize the spread of infection and, if possible, inactivate the infectious agent. Another molecular network is based on fibrin. Over the last 10 years, there has been accumulated a whole body of evidence that NETs and fibrin are able to form a united network within a thrombus, stabilizing each other. Similarities and molecular cross-reactions are also present in the processes of fibrinolysis and lysis of NETs. Both NETs and von Willebrand factor (vWF) are involved in thrombosis as well as inflammation. During the development of these conditions, a series of events occurs in the microvascular network, including endothelial activation, NETs formation, vWF secretion, adhesion, aggregation, and activation of blood cells. The activity of vWF multimers is regulated by the specific metalloproteinase ADAMTS-13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13). Studies have shown that interactions between NETs and vWF can lead to arterial and venous thrombosis and inflammation. In addition, the contents released from activated neutrophils or NETs result in decreased ADAMTS-13 activity, which can occur in both thrombotic microangiopathies and acute ischemic stroke. Recently, NETs have been envisioned as a cause of endothelial damage and immunothrombosis in COVID-19. In addition, vWF and ADAMTS-13 levels predict COVID-19 mortality. In this review, we summarize the biological characteristics and interactions of NETs, vWF, and ADAMTS-13, the effect of NETs on hemostasis regulation and discuss their role in thrombotic conditions, sepsis, COVID-19, and obstetric complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - A. S. Shkoda
- Vorokhobov City Clinical Hospital № 67, Moscow Healthcare Department
| | - L. L. Pankratyeva
- Vorokhobov City Clinical Hospital № 67, Moscow Healthcare Department; Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Health Ministry of Russian Federation
| | - G. C. Di Renzo
- Sechenov University; Center for Prenatal and Reproductive Medicine, University of Perugia
| | - G. Rizzo
- Sechenov University; University of Rome Tor Vergata
| | | | - V. I. Tsibizova
- Almazov National Medical Research Centre, Health Ministry of Russian Federation
| | - J.-C. Gris
- Sechenov University; University of Montpellier
| | - I. Elalamy
- Sechenov University; Medicine Sorbonne University; Hospital Tenon
| |
Collapse
|
19
|
Flores-Maldonado OE, González GM, Andrade-Torres Á, Treviño-Rangel R, Donis-Maturano L, Silva-Sánchez A, Hernández-Bello R, Montoya A, Salazar-Riojas R, Romo-González C, Becerril-García MA. Distinct innate immune responses between sublethal and lethal models of disseminated candidiasis in newborn BALB/c mice. Microb Pathog 2021; 158:105061. [PMID: 34157411 DOI: 10.1016/j.micpath.2021.105061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
Invasive candidiasis is associated with a high incidence and mortality rates in infants, especially in preterm newborns. The immunopathogenesis of the mycosis during the neonatal period is poorly understood. Although several in vivo models exist to study invasive candidiasis, the majority of studies employ distinct routes of infection and use 2 to 6 day-old mice that could be less comparable in studying candidiasis in preterm infants. In this study, by using 0-days-old mice we developed a new neonatal murine model of intravenous Candida albicans infection. Using different inoculums of Candida albicans we evaluated survival, dissemination of the fungus, frequency of CD45+ cells, and cytokine production in the liver, brain, and kidneys of newborn and adult BALB/c mice. Unexpectedly, the newborn mice infected with a low inoculum (1×105 cfu per mouse) of Candida albicans survive to the infection. Compared to adult mice, the liver and brain of newborn animals had the greatest fungal burden, fungal invasion and leukocyte infiltrate. A moderate production of TNFα, IL-1β, IL-6 and IFNγ was detected in tissues of newborn mice infected with a non-lethal inoculum of Candida albicans. In contrast, overproduction of TNFα, IL-1β, IL-6 and IL-10 was determined when injecting with a lethal inoculum. In agreement, flow cytometry of brain and liver showed an inoculum-dependent CD45+ leukocyte infiltration in newborn mice infected with Candida albicans. Overall, our data shows that Candida albicans infection in newborn mice affects mainly the brain and liver and a 2-fold increase of the inoculum rapidly becomes lethal probably due to massive fungal invasion and exacerbated CD45+ leukocyte infiltrate and cytokine production. This study is the first analysis of innate immune responses in different tissues during early neonatal disseminated candidiasis.
Collapse
Affiliation(s)
- Orlando E Flores-Maldonado
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, México
| | - Gloria M González
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, México
| | - Ángel Andrade-Torres
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, México
| | - Rogelio Treviño-Rangel
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, México
| | - Luis Donis-Maturano
- Unidad de Investigación en Biomedicina (UBIMED), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores (FES)-Iztacala, Estado de México, México
| | - Aarón Silva-Sánchez
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Romel Hernández-Bello
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, México
| | - Alexandra Montoya
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, México
| | - Rosario Salazar-Riojas
- Servicio de Hematología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, México
| | - Carolina Romo-González
- Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría (INP). Ciudad de México, México
| | - Miguel A Becerril-García
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, México.
| |
Collapse
|
20
|
Angelidou A, Diray-Arce J, Conti MG, Netea MG, Blok BA, Liu M, Sanchez-Schmitz G, Ozonoff A, van Haren SD, Levy O. Human Newborn Monocytes Demonstrate Distinct BCG-Induced Primary and Trained Innate Cytokine Production and Metabolic Activation In Vitro. Front Immunol 2021; 12:674334. [PMID: 34326836 PMCID: PMC8315003 DOI: 10.3389/fimmu.2021.674334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Background Newborns exhibit distinct immune responses and are at high risk of infection. Neonatal immunization with BCG, the live attenuated vaccine against tuberculosis (TB), is associated with broad protection against a range of unrelated pathogens, possibly reflecting vaccine-induced training of innate immune cells ("innate memory"). However, little is known regarding the impact of age on BCG-induced innate responses. Objective Establish an age-specific human monocyte in vitro training platform to characterize and compare BCG-induced primary and memory cytokine responses and immunometabolic shifts. Design/Methods Human neonatal and adult CD33-selected monocytes were stimulated for 24h with RPMI (control) or BCG (Danish strain) in 10% autologous serum, washed and cultured for 5 additional days, prior to re-stimulation with the TLR4 agonist LPS for another 24h. Supernatants were collected at Day 1 (D1) to measure primary innate responses and at Day 7 (D7) to assess memory innate responses by ELISA and multiplex cytokine and chemokine assays. Lactate, a signature metabolite increased during trained immunity, was measured by colorimetric assay. Results Cytokine production by human monocytes differed significantly by age at D1 (primary, BCG 1:750 and 1:100 vol/vol, p<0.0001) and D7 (innate memory response, BCG 1:100 vol/vol, p<0.05). Compared to RPMI control, newborn monocytes demonstrated greater TNF (1:100, 1:10 vol/vol, p<0.01) and IL-12p40 (1:100 vol/vol, p<0.05) production than adult monocytes (1:100, p<0.05). At D7, while BCG-trained adult monocytes, as previously reported, demonstrated enhanced LPS-induced TNF production, BCG-trained newborn monocytes demonstrated tolerization, as evidenced by significantly diminished subsequent LPS-induced TNF (RPMI vs. BCG 1:10, p <0.01), IL-10 and CCL5 production (p<0.05). With the exception of IL-1RA production by newborn monocytes, BCG-induced monocyte production of D1 cytokines/chemokines was inversely correlated with D7 LPS-induced TNF in both age groups (p<0.0001). Compared to BCG-trained adult monocytes, newborn monocytes demonstrated markedly impaired BCG-induced production of lactate, a metabolite implicated in immune training in adults. Conclusions BCG-induced human monocyte primary- and memory-innate cytokine responses were age-dependent and accompanied by distinct immunometabolic shifts that impact both glycolysis and training. Our results suggest that immune ontogeny may shape innate responses to live attenuated vaccines, suggesting age-specific approaches to leverage innate training for broad protection against infection.
Collapse
Affiliation(s)
- Asimenia Angelidou
- Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Joann Diray-Arce
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Maria-Giulia Conti
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Bastiaan A. Blok
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mark Liu
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Guzman Sanchez-Schmitz
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT & Harvard, Cambridge, MA, United States
| |
Collapse
|
21
|
Wu LL, Huang TS, Shyu YC, Wang CL, Wang HY, Chen PJ. Gut microbiota in the innate immunity against hepatitis B virus - implication in age-dependent HBV clearance. Curr Opin Virol 2021; 49:194-202. [PMID: 34242953 DOI: 10.1016/j.coviro.2021.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus (HBV) chronically infects 257 million people and is one of the most important liver diseases worldwide. A unique feature of HBV infection in humans is that viral clearance heavily depends on the age at exposure. Recent studies demonstrated that the virus takes advantage of immature innate immunity, especially hepatic macrophages, and not-yet-stabilized gut microbiota in early life to establish a chronic infection. The liver contains resident and infiltrating myeloid cells involved in immune responses to pathogens. They influence both innate and adaptive sectors of the immune system and their interplay with HBV has only been noticed recently. Here, we discuss how interactions between gut microbiota and hepatic macrophages influence the outcomes of HBV infection. Understanding the underlying mechanism would pave the way for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Li-Ling Wu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taiwan
| | - Ting-Shuo Huang
- Department of General Surgery, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan; Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yu-Chiau Shyu
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan; Department of Nursing, Chang Gung University of Science and Technology, Taoyuan City, Taiwan; Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Lin Wang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Hurng-Yi Wang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Institute of Ecology and Evolutionary Biology, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan.
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Department of Microbiology, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Research, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
22
|
Rodrigues LDS, Rodrigues LDS, Costa LC, Fontoura GMG, Maciel MCG. Trend in infant mortality rate caused by sepsis in Brazil from 2009 to 2018. Rev Inst Med Trop Sao Paulo 2021; 63:e26. [PMID: 33852709 PMCID: PMC8046506 DOI: 10.1590/s1678-9946202163026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/11/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis is the organ dysfunction resulting from an infection associated with an
unregulated host inflammatory response, which generates high mortality rates in
Brazil. The aim of this stydy was to analyze the trend of early, late and
post-neonatal mortality rates due to sepsis in Brazilian regions, from 2009 to
2018. This is an ecological study of time series. The trend of infant mortality
from sepsis was analyzed using the International Classification of Diseases
(ICD10) according to the place of residence (North, Northeast, Southeast, South
and Midwest). Death Certificate data were collected from the Mortality
Information System database. The temporal trend was analyzed using the
Prais-Winsten estimate, interpreted as increasing, decreasing or stable, through
the dependent variable (logarithm of mortality rates) and interdependent
variables (years of the historical series). The Stata 14.0 statistical software
was used. There were 39,867 infant deaths due to sepsis (78.67% for unspecified
bacterial sepsis of the neonate ). Most of the children were male, had mixed
ethnicity (black and white) , were born preterm with low birth weight and most
mothers were 20-34 years old. There were decreasing trends in mortality rates
from 2009 to 2018: early neonatal, in the Southeast (-3.57%), North (-3.33%) and
South (-2.91%); late neonatal, in the South (-4.12%), Southeast (-4.53%), North
(-4.55%) and Midwest (-6.21%); and post-neonatal, in the Northeast (-1.84%),
North (-3.62%), Southeast (-3.83%) and Midwest (-5.81%). The Northeast showed a
stable trend in early and late neonatal mortality rates. It was concluded that
most regions showed a decreasing trend in mortality rates from sepsis in all age
components, despite regional differences.
Collapse
Affiliation(s)
- Liliane Dos Santos Rodrigues
- Universidade Federal do Maranhão, Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal (Rede Bionorte), São Luís, Maranhão, Brazil
| | - Livia Dos Santos Rodrigues
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Ribeirão Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
23
|
Cheng Y, Yang C, Tan Z, He Z. Changes of Intestinal Oxidative Stress, Inflammation, and Gene Expression in Neonatal Diarrhoea Kids. Front Vet Sci 2021; 8:598691. [PMID: 33614759 PMCID: PMC7890263 DOI: 10.3389/fvets.2021.598691] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 02/05/2023] Open
Abstract
Diarrhea and disorders in young goats are serious threats to the animals' health, influencing the profitability of the goat industry. There is a need to better understand the potential biomarkers that can reflect the mortality and morbidity in neonatal diarrhea goats. Ten pairs of twin kid goats from the same does (one healthy and the other diagnosed as diarrhea) with the same age under 14 days after birth were used in this study. Since gastrointestinal infection is probably the first ailment in neonatal goats, we aimed to investigate the changes in oxidative stress, inflammation, and gene expression in the gastrointestinal tract of neonatal diarrhea goats based on an epidemiological perspective. The results showed the activity of glutathione peroxidase (GSH-Px) was less (P < 0.05) in the jejunum in neonatal diarrhea goats compared with control goats. However, the malondialdehyde (MDA) activities in the jejunum and ileum were higher (P < 0.05) in neonatal diarrhea goats. There was no significant difference in the super-oxide dismutase (SOD) and catalase (CAT) activity observed between the two groups (P > 0.05). For the concentrations of intestinal interleukin-2 (IL2) and interleukin-6 (IL6), only the IL-2 in ileum of neonatal diarrhea goats was higher than that from healthy control goats. The transcriptomic analysis of the jejunum showed a total of 364 differential expression genes (DEGs) identified in neonatal diarrhea goats compared with control goats. The Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis of up-regulated DEGs was mainly related to the ECM–receptor interaction and axon guidance, and the down-regulated DEGs mainly related to the Arachidonic acid metabolism, complement and coagulation cascades, and alpha-Linolenic acid metabolism. Real-time PCR results showed that the expression of most toll-like receptor-4-(TLR4) pathway-related genes and intestinal barrier function-related genes were similar in the two groups. These results suggest that neonatal diarrhea goats experienced a higher intestinal oxidative stress compared with control goats. Thus, it is possible that the antioxidant capacity of young ruminants acts as an indicator of health status and the measurements of oxidation stress may be useful as diagnostic biomarkers, reflecting the mortality and morbidity in neonatal diarrhea goats.
Collapse
Affiliation(s)
- Yan Cheng
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, China
| | - Chao Yang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, China
| | - ZhiLiang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - ZhiXiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Danladi J, Sabir H. Perinatal Infection: A Major Contributor to Efficacy of Cooling in Newborns Following Birth Asphyxia. Int J Mol Sci 2021; 22:ijms22020707. [PMID: 33445791 PMCID: PMC7828225 DOI: 10.3390/ijms22020707] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/19/2022] Open
Abstract
Neonatal encephalopathy (NE) is a global burden, as more than 90% of NE occurs in low- and middle-income countries (LMICs). Perinatal infection seems to limit the neuroprotective efficacy of therapeutic hypothermia. Efforts made to use therapeutic hypothermia in LMICs treating NE has led to increased neonatal mortality rates. The heat shock and cold shock protein responses are essential for survival against a wide range of stressors during which organisms raise their core body temperature and temporarily subject themselves to thermal and cold stress in the face of infection. The characteristic increase and decrease in core body temperature activates and utilizes elements of the heat shock and cold shock response pathways to modify cytokine and chemokine gene expression, cellular signaling, and immune cell mobilization to sites of inflammation, infection, and injury. Hypothermia stimulates microglia to secret cold-inducible RNA-binding protein (CIRP), which triggers NF-κB, controlling multiple inflammatory pathways, including nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasomes and cyclooxygenase-2 (COX-2) signaling. Brain responses through changes in heat shock protein and cold shock protein transcription and gene-expression following fever range and hyperthermia may be new promising potential therapeutic targets.
Collapse
Affiliation(s)
- Jibrin Danladi
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital University of Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Correspondence:
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital University of Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
25
|
Elahi S. Neonatal and Children’s Immune System and COVID-19: Biased Immune Tolerance versus Resistance Strategy. THE JOURNAL OF IMMUNOLOGY 2020; 205:1990-1997. [DOI: 10.4049/jimmunol.2000710] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
The recent outbreak of COVID-19 has emerged as a major global health concern. Although susceptible to infection, recent evidence indicates mostly asymptomatic or mild presentation of the disease in infants, children, and adolescents. Similar observations were made for acute respiratory infections caused by other coronaviruses (severe acute respiratory syndrome and Middle East respiratory syndrome). These observations suggest that the immune system behaves differently in children than adults. Recent developments in the field demonstrated fundamental differences in the neonatal immune system as compared with adults, whereby infants respond to microorganisms through biased immune tolerance rather than resistance strategies. Similarly, more frequent/recent vaccinations in children and younger populations may result in trained immunity. Therefore, the physiological abundance of certain immunosuppressive cells, a tightly regulated immune system, and/or exposure to attenuated vaccines may enhance trained immunity to limit excessive immune reaction to COVID-19 in the young.
Collapse
Affiliation(s)
- Shokrollah Elahi
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G2E1, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G1Z2, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G2E1, Canada; and
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| |
Collapse
|
26
|
Green J, Petty J, Bromley P, Walker K, Jones L. COVID-19 in babies: Knowledge for neonatal care. JOURNAL OF NEONATAL NURSING : JNN 2020; 26:239-246. [PMID: 32837224 PMCID: PMC7340054 DOI: 10.1016/j.jnn.2020.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Infection is a leading cause of death worldwide in babies under one month of age who are more susceptible to sepsis due to immature host defence mechanisms. Usually, babies may become acutely unwell from infective pathogens due to specific differences in their respiratory and immune systems. However, with the COVID-19 virus, the focus of this paper, it appears that the neonatal population is not significantly affected in the same way as adults. That said, knowledge about this novel virus is rapidly emerging. Therefore, it is vital that neonatal nurses, midwives and other healthcare professionals are adequately informed and educated about the potential impact on neonatal practice. This review paper draws upon key findings and themes from a selection of recent literature to provide an overview of current knowledge on COVID-19 and the implications for care within the neonatal field. The discussion focuses on the nature of COVID-19, its pathophysiology and transmission relevant to maternal and neonatal care. This is followed by implications for practice; namely, maternal issues, the importance of human breast milk, neonatal care relating to parenting and specific management before a final review of the current World Health Organization guidance.
Collapse
Affiliation(s)
| | - Julia Petty
- School of Health and Social Work, The University of Hertfordshire, Hatfield, UK
| | - Patricia Bromley
- School of Nursing, College of Health and Medicine, University of Tasmania, Australia
| | | | - Linda Jones
- School of Nursing, College of Health and Medicine, University of Tasmania, Australia
| |
Collapse
|
27
|
Shrestha AK, Menon RT, El-Saie A, Barrios R, Reynolds C, Shivanna B. Interactive and independent effects of early lipopolysaccharide and hyperoxia exposure on developing murine lungs. Am J Physiol Lung Cell Mol Physiol 2020; 319:L981-L996. [PMID: 32901520 DOI: 10.1152/ajplung.00013.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension (PH) is a chronic infantile lung disease that lacks curative therapies. Infants with BPD-associated PH are often exposed to hyperoxia and additional insults such as sepsis that contribute to disease pathogenesis. Animal models that simulate these scenarios are necessary to develop effective therapies; therefore, we investigated whether lipopolysaccharide (LPS) and hyperoxia exposure during saccular lung development cooperatively induce experimental BPD-PH in mice. C57BL/6J mice were exposed to normoxia or 70% O2 (hyperoxia) during postnatal days (PNDs) 1-5 and intraperitoneally injected with varying LPS doses or a vehicle on PNDs 3-5. On PND 14, we performed morphometry, echocardiography, and gene and protein expression studies to determine the effects of hyperoxia and LPS on lung development, vascular remodeling and function, inflammation, oxidative stress, cell proliferation, and apoptosis. LPS and hyperoxia independently and cooperatively affected lung development, inflammation, and apoptosis. Growth rate and antioxidant enzyme expression were predominantly affected by LPS and hyperoxia, respectively, while cell proliferation and vascular remodeling and function were mainly affected by combined exposure to LPS and hyperoxia. Mice treated with lower LPS doses developed adaptive responses and hyperoxia exposure did not worsen their BPD phenotype, whereas those mice treated with higher LPS doses displayed the most severe BPD phenotype when exposed to hyperoxia and were the only group that developed PH. Collectively, our data suggest that an additional insult such as LPS may be necessary for models utilizing short-term exposure to moderate hyperoxia to recapitulate human BPD-PH.
Collapse
Affiliation(s)
- Amrit Kumar Shrestha
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Renuka T Menon
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Ahmed El-Saie
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Roberto Barrios
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Corey Reynolds
- Mouse Phenotyping Core, Baylor College of Medicine, Houston, Texas
| | - Binoy Shivanna
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
28
|
Odendaal L, Clift SJ, Fosgate GT, Davis AS. Ovine Fetal and Placental Lesions and Cellular Tropism in Natural Rift Valley Fever Virus Infections. Vet Pathol 2020; 57:791-806. [PMID: 32885745 DOI: 10.1177/0300985820954549] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infection with Rift Valley fever phlebovirus (RVFV) causes abortion storms and a wide variety of outcomes for both ewes and fetuses. Sheep fetuses and placenta specimens were examined during the 2010-2011 River Valley fever (RVF) outbreak in South Africa. A total of 72 fetuses were studied of which 58 were confirmed positive for RVF. Placenta specimens were available for 35 cases. Macroscopic lesions in fetuses were nonspecific and included marked edema and occasional hemorrhages in visceral organs. Microscopically, multifocal hepatic necrosis was present in 48 of 58 cases, and apoptotic bodies, foci of liquefactive hepatic necrosis (primary foci), and eosinophilic intranuclear inclusions in hepatocytes were useful diagnostic features. Lymphocytolysis was present in all lymphoid organs examined with the exception of thymus and Peyer's patches, and pyknosis or karyorrhexis was often present in renal glomeruli. The most significant histologic lesion in the placenta was necrosis of trophoblasts and endothelial cells in the cotyledonary and intercotyledonary chorioallantois. Immunolabeling for RVFV was most consistent in trophoblasts of the cotyledon or caruncle. Other antigen-positive cells included hepatocytes, renal tubular epithelial, juxtaglomerular and extraglomerular mesangial cells, vascular smooth muscle, endothelial and adrenocortical cells, cardiomyocytes, Purkinje fibers, and macrophages. Fetal organ samples for diagnosis must minimally include liver, kidney, and spleen. From the placenta, the minimum recommended specimens for histopathology include the cotyledonary units and caruncles from the endometrium, if available. The diagnostic investigation of abortion in endemic areas should always include routine testing for RVFV, and a diagnosis during interepidemic periods might be missed if only limited specimens are available for examination.
Collapse
Affiliation(s)
- Lieza Odendaal
- 56410University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - Sarah J Clift
- 56410University of Pretoria, Onderstepoort, Pretoria, South Africa
| | | | - A Sally Davis
- 56410University of Pretoria, Onderstepoort, Pretoria, South Africa.,5308Kansas State University, Manhattan, KS, USA
| |
Collapse
|
29
|
Zarate MA, Nguyen LM, De Dios RK, Zheng L, Wright CJ. Maturation of the Acute Hepatic TLR4/NF-κB Mediated Innate Immune Response Is p65 Dependent in Mice. Front Immunol 2020; 11:1892. [PMID: 32973783 PMCID: PMC7472845 DOI: 10.3389/fimmu.2020.01892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/14/2020] [Indexed: 12/27/2022] Open
Abstract
Compared to adults, neonates are at increased risk of infection. There is a growing recognition that dynamic qualitative and quantitative differences in immunity over development contribute to these observations. The liver plays a key role as an immunologic organ, but whether its contribution to the acute innate immune response changes over lifetime is unknown. We hypothesized that the liver would activate a developmentally-regulated acute innate immune response to intraperitoneal lipopolysaccharide (LPS). We first assessed the hepatic expression and activity of the NF-κB, a key regulator of the innate immune response, at different developmental ages (p0, p3, p7, p35, and adult). Ontogeny of the NF-κB subunits (p65/p50) revealed a reduction in Rela (p65) and Nfkb1 (p105, precursor to p50) gene expression (p0) and p65 subunit protein levels (p0 and p3) vs. older ages. The acute hepatic innate immune response to LPS was associated by the degradation of the NF-κB inhibitory proteins (IκBα and IκBβ), and nuclear translocation of the NF-κB subunit p50 in all ages, whereas nuclear translocation of the NF-κB subunit p65 was only observed in the p35 and adult mouse. Consistent with these findings, we detected NF-κB subunit p65 nuclear staining exclusively in the LPS-exposed adult liver compared with p7 mouse. We next interrogated the LPS-induced hepatic expression of pro-inflammatory genes (Tnf, Icam1, Ccl3, and Traf1), and observed a gradually increase in gene expression starting from p0. Confirming our results, hepatic NF-κB subunit p65 nuclear translocation was associated with up-regulation of the Icam1 gene in the adult, and was not detected in the p7 mouse. Thus, an inflammatory challenge induces an NF-κB-mediated hepatic innate immune response activation across all developmental ages, but nuclear translocation of the NF-κB subunit p65 and associated induction of pro-inflammatory genes occurred only after the first month of life. Our results demonstrate that the LPS-induced hepatic innate immune response is developmentally regulated by the NF-κB subunit p65 in the mouse.
Collapse
Affiliation(s)
- Miguel A Zarate
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Leanna M Nguyen
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Robyn K De Dios
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
30
|
Sato Y, Ochiai D, Abe Y, Masuda H, Fukutake M, Ikenoue S, Kasuga Y, Shimoda M, Kanai Y, Tanaka M. Prophylactic therapy with human amniotic fluid stem cells improved survival in a rat model of lipopolysaccharide-induced neonatal sepsis through immunomodulation via aggregates with peritoneal macrophages. Stem Cell Res Ther 2020; 11:300. [PMID: 32690106 PMCID: PMC7370504 DOI: 10.1186/s13287-020-01809-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/06/2020] [Accepted: 07/03/2020] [Indexed: 01/15/2023] Open
Abstract
Background Despite recent advances in neonatal care, sepsis remains a leading cause of mortality in neonates. Mesenchymal stem cells derived from various tissues, such as bone marrow, umbilical cord, and adipose tissue, have beneficial effects on adult sepsis. Although human amniotic fluid stem cells (hAFSCs) have mesenchymal stem cell properties, the efficacy of hAFSCs on neonatal sepsis is yet to be elucidated. This study aimed to investigate the therapeutic potential of hAFSCs on neonatal sepsis using a rat model of lipopolysaccharide (LPS)-induced sepsis. Methods hAFSCs were isolated as CD117-positive cells from human amniotic fluid. Three-day-old rat pups were intraperitoneally treated with LPS to mimic neonatal sepsis. hAFSCs were administered either 3 h before or at 0, 3, or 24 h after LPS exposure. Serum inflammatory cytokine levels, gene expression profiles from spleens, and multiple organ damage were analyzed. hAFSC localization was determined in vivo. In vitro LPS stimulation tests were performed using neonatal rat peritoneal macrophages co-cultured with hAFSCs in a cell-cell contact-dependent/independent manner. Immunoregulation in the spleen was determined using a DNA microarray analysis. Results Prophylactic therapy with hAFSCs improved survival in the LPS-treated rats while the hAFSCs transplantation after LPS exposure did not elicit a therapeutic response. Therefore, hAFSC pretreatment was used for all subsequent studies. Inflammatory cytokine levels were elevated after LPS injection, which was attenuated by hAFSC pretreatment. Subsequently, inflammation-induced damages in the brain, lungs, and liver were ameliorated. hAFSCs aggregated with peritoneal macrophages and/or transiently accumulated in the liver, mesentery, and peritoneum. Paracrine factors released by hAFSCs induced M1-M2 macrophage polarization in a cell-cell contact-independent manner. Direct contact between hAFSCs and peritoneal macrophages further enhanced the polarization. Microarray analysis of the spleen showed that hAFSC pretreatment reduced the expression of genes involved in apoptosis and inflammation and subsequently suppressed toll-like receptor 4 signaling pathways. Conclusions Prophylactic therapy with hAFSCs improved survival in a rat model of LPS-induced neonatal sepsis. These effects might be mediated by a phenotypic switch from M1 to M2 in peritoneal macrophages, triggered by hAFSCs in a cell-cell contact-dependent/independent manner and the subsequent immunomodulation of the spleen.
Collapse
Affiliation(s)
- Yu Sato
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Daigo Ochiai
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan.
| | - Yushi Abe
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Hirotaka Masuda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Marie Fukutake
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Satoru Ikenoue
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Yoshifumi Kasuga
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| |
Collapse
|
31
|
Ganal-Vonarburg SC, Hornef MW, Macpherson AJ. Microbial-host molecular exchange and its functional consequences in early mammalian life. Science 2020; 368:604-607. [PMID: 32381716 DOI: 10.1126/science.aba0478] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Molecules from symbiotic microorganisms pervasively infiltrate almost every organ system of a mammalian host, marking the initiation of microbial-host mutualism in utero, long before the newborn acquires its own microbiota. Starting from in utero development, when maternal microbial molecules can penetrate the placental barrier, we follow the different phases of adaptation through the life events of birth, lactation, and weaning, as the young mammal adapts to the microbes that colonize its body surfaces. The vulnerability of early-life mammals is mitigated by maternal detoxification and excretion mechanisms, the protective effects of maternal milk, and modulation of neonatal receptor systems. Host adaptations to microbial exposure during specific developmental windows are critical to ensure organ function for development, growth, and immunity.
Collapse
Affiliation(s)
- Stephanie C Ganal-Vonarburg
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Mathias W Hornef
- Institute for Medical Microbiology, RWTH University Hospital, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Andrew J Macpherson
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland.
| |
Collapse
|
32
|
Pires JM, Foresti ML, Silva CS, Rêgo DB, Calió ML, Mosini AC, Nakamura TKE, Leslie ATF, Mello LE. Lipopolysaccharide-Induced Systemic Inflammation in the Neonatal Period Increases Microglial Density and Oxidative Stress in the Cerebellum of Adult Rats. Front Cell Neurosci 2020; 14:142. [PMID: 32581717 PMCID: PMC7283979 DOI: 10.3389/fncel.2020.00142] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/28/2020] [Indexed: 01/09/2023] Open
Abstract
Inflammatory processes occurring in the perinatal period may affect different brain regions, resulting in neurologic sequelae. Injection of lipopolysaccharide (LPS) at different neurodevelopmental stages produces long-term consequences in several brain structures, but there is scarce evidence regarding alterations in the cerebellum. The aim of this study was to evaluate the long-term consequences on the cerebellum of a systemic inflammatory process induced by neonatal LPS injection. For this, neonatal rats were randomly assigned to three different groups: naïve, sham, and LPS. Saline (sham group) or LPS solution (1 mg/kg) was intraperitoneally injected on alternate postnatal days (PN) PN1, PN3, PN5, and PN7. Spontaneous activity was evaluated with the open field test in adulthood. The cerebellum was evaluated for different parameters: microglial and Purkinje cell densities, oxidative stress levels, and tumor necrosis factor alpha (TNF-α) mRNA expression. Our results show that administration of LPS did not result in altered spontaneous activity in adult animals. Our data also indicate increased oxidative stress in the cerebellum, as evidenced by an increase in superoxide fluorescence by dihydroethidium (DHE) indicator. Stereological analyses indicated increased microglial density in the cerebellum that was not accompanied by Purkinje cell loss or altered TNF-α expression in adult animals. Interestingly, Purkinje cells ectopically positioned in the granular and molecular layers of the cerebellum were observed in animals of the LPS group. Our data suggest that neonatal LPS exposure causes persistent cellular and molecular changes to the cerebellum, indicating the susceptibility of this region to systemic inflammatory insults in infancy. Further investigation of the consequences of these changes and the development of strategies to avoid those should be subject of future studies.
Collapse
Affiliation(s)
| | - Maira Licia Foresti
- Physiology Department, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| | | | | | | | - Amanda Cristina Mosini
- Physiology Department, Universidade Federal de São Paulo, São Paulo, Brazil.,Associação Brasileira de Epilepsia, São Paulo, Brazil
| | | | | | - Luiz Eugênio Mello
- Physiology Department, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Viemann D. S100-Alarmins Are Essential Pilots of Postnatal Innate Immune Adaptation. Front Immunol 2020; 11:688. [PMID: 32425933 PMCID: PMC7203218 DOI: 10.3389/fimmu.2020.00688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
The restricted capacity of newborn infants to mount inflammatory responses toward microbial challenges has traditionally been linked to the high risk of septic diseases during the neonatal period. In recent years, substantial evidence has been provided that this characteristic of the neonatal immune system is actually a meaningful physiologic state that is based on specific transiently active cellular and molecular mechanisms and required for a favorable course of postnatal immune adaptation. The identification of physiologically high amounts of S100-alarmins in neonates has been one of the crucial pieces in the puzzle that contributed to the change of concept. In this context, innate immune immaturity could be redefined and assigned to the epigenetic silence of adult-like cell-autonomous regulation at the beginning of life. S100-alarmins represent an alternative age-specific mechanism of immune regulation that protects neonates from hyperinflammatory immune responses. Here, we summarize how infants are provided with S100-alarmins and why these allow an uneventful clash between the innate immune system and the extrauterine world. The mode of action of S100-alarmins is highlighted including their tuning functions at multiple levels for establishing a state of homeostasis with the environment in the newborn individual.
Collapse
Affiliation(s)
- Dorothee Viemann
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany.,PRIMAL Consortium, Hanover, Germany
| |
Collapse
|
34
|
Khashana A, Saleeh A, Fouad M, Mosbah BE. Activin A is a novel biomarker in early screening of neonatal sepsis. J Clin Neonatol 2020. [DOI: 10.4103/jcn.jcn_77_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
35
|
Giannoni E, Schlapbach LJ. Editorial: Sepsis in Neonates and Children. Front Pediatr 2020; 8:621663. [PMID: 33330295 PMCID: PMC7728741 DOI: 10.3389/fped.2020.621663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Eric Giannoni
- Department Mother-Woman-Child, Clinic of Neonatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Luregn J Schlapbach
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia.,Paediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, QLD, Australia.,Pediatric and Neonatal Intensive Care Unit, Children's Research Center, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Kumova OK, Fike AJ, Thayer JL, Nguyen LT, Mell JC, Pascasio J, Stairiker C, Leon LG, Katsikis PD, Carey AJ. Lung transcriptional unresponsiveness and loss of early influenza virus control in infected neonates is prevented by intranasal Lactobacillus rhamnosus GG. PLoS Pathog 2019; 15:e1008072. [PMID: 31603951 PMCID: PMC6808501 DOI: 10.1371/journal.ppat.1008072] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/23/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Respiratory viral infections contribute substantially to global infant losses and disproportionately affect preterm neonates. Using our previously established neonatal murine model of influenza infection, we demonstrate that three-day old mice are exceptionally sensitive to influenza virus infection and exhibit high mortality and viral load. Intranasal pre- and post-treatment of neonatal mice with Lactobacillus rhamnosus GG (LGG), an immune modulator in respiratory viral infection of adult mice and human preterm neonates, considerably improves neonatal mice survival after influenza virus infection. We determine that both live and heat-killed intranasal LGG are equally efficacious in protection of neonates. Early in influenza infection, neonatal transcriptional responses in the lung are delayed compared to adults. These responses increase by 24 hours post-infection, demonstrating a delay in the kinetics of the neonatal anti-viral response. LGG pretreatment improves immune gene transcriptional responses during early infection and specifically upregulates type I IFN pathways. This is critical for protection, as neonatal mice intranasally pre-treated with IFNβ before influenza virus infection are also protected. Using transgenic mice, we demonstrate that the protective effect of LGG is mediated through a MyD88-dependent mechanism, specifically via TLR4. LGG can improve both early control of virus and transcriptional responsiveness and could serve as a simple and safe intervention to protect neonates.
Collapse
Affiliation(s)
- Ogan K. Kumova
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Adam J. Fike
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Jillian L. Thayer
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Linda T. Nguyen
- Pediatrics, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Joshua Chang Mell
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Judy Pascasio
- Pathology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Christopher Stairiker
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Leticia G. Leon
- Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Peter D. Katsikis
- Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alison J. Carey
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Pediatrics, Drexel University College of Medicine, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
37
|
Bickes MS, Pirr S, Heinemann AS, Fehlhaber B, Halle S, Völlger L, Willers M, Richter M, Böhne C, Albrecht M, Langer M, Pfeifer S, Jonigk D, Vieten G, Ure B, Kaisenberg C, Förster R, Köckritz-Blickwede M, Hansen G, Viemann D. Constitutive TNF‐α signaling in neonates is essential for the development of tissue‐resident leukocyte profiles at barrier sites. FASEB J 2019; 33:10633-10647. [DOI: 10.1096/fj.201900796r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marie Sophie Bickes
- Department of Pediatric Pneumology, Allergology, and NeonatologyHannover Medical SchoolHannoverGermany
| | - Sabine Pirr
- Department of Pediatric Pneumology, Allergology, and NeonatologyHannover Medical SchoolHannoverGermany
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC)Hannover Medical SchoolHannoverGermany
| | - Anna Sophie Heinemann
- Department of Pediatric Pneumology, Allergology, and NeonatologyHannover Medical SchoolHannoverGermany
| | - Beate Fehlhaber
- Department of Pediatric Pneumology, Allergology, and NeonatologyHannover Medical SchoolHannoverGermany
| | - Stephan Halle
- Institute of ImmunologyHannover Medical SchoolHannoverGermany
| | - Lena Völlger
- Department of Pediatric Pneumology, Allergology, and NeonatologyHannover Medical SchoolHannoverGermany
| | - Maike Willers
- Department of Pediatric Pneumology, Allergology, and NeonatologyHannover Medical SchoolHannoverGermany
| | - Manuela Richter
- Department of Pediatric Pneumology, Allergology, and NeonatologyHannover Medical SchoolHannoverGermany
- Children's Hospital Auf der BultHannoverGermany
| | - Carolin Böhne
- Department of Pediatric Pneumology, Allergology, and NeonatologyHannover Medical SchoolHannoverGermany
| | - Melanie Albrecht
- Department of Pediatric Pneumology, Allergology, and NeonatologyHannover Medical SchoolHannoverGermany
| | - Melissa Langer
- Department of Physiological ChemistryResearch Center for Emerging Infections and Zoonoses (RIZ)University of Veterinary Medicine HannoverHannoverGermany
| | - Sandra Pfeifer
- Department of Physiological ChemistryResearch Center for Emerging Infections and Zoonoses (RIZ)University of Veterinary Medicine HannoverHannoverGermany
| | - Danny Jonigk
- Department of PathologyHannover Medical SchoolHannoverGermany
| | - Gertrud Vieten
- Department of Pediatric SurgeryHannover Medical SchoolHannoverGermany
| | - Benno Ure
- Department of Pediatric SurgeryHannover Medical SchoolHannoverGermany
| | | | - Reinhold Förster
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC)Hannover Medical SchoolHannoverGermany
- Institute of ImmunologyHannover Medical SchoolHannoverGermany
| | - Maren Köckritz-Blickwede
- Department of Physiological ChemistryResearch Center for Emerging Infections and Zoonoses (RIZ)University of Veterinary Medicine HannoverHannoverGermany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology, and NeonatologyHannover Medical SchoolHannoverGermany
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC)Hannover Medical SchoolHannoverGermany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology, and NeonatologyHannover Medical SchoolHannoverGermany
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC)Hannover Medical SchoolHannoverGermany
| |
Collapse
|
38
|
Polyphenol Effects on Splenic Cytokine Response in Post-Weaning Contactin 1-Overexpressing Transgenic Mice. Molecules 2019; 24:molecules24122205. [PMID: 31212848 PMCID: PMC6631041 DOI: 10.3390/molecules24122205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/18/2022] Open
Abstract
Background: In mice, postnatal immune development has previously been investigated, and evidence of a delayed maturation of the adaptive immune response has been detected. Methods: In this study, the effects of red grape polyphenol oral administration on the murine immune response were explored using pregnant mice (TAG/F3 transgenic and wild type (wt) mice) as the animal model. The study was performed during pregnancy as well as during lactation until postnatal day 8. Suckling pups from polyphenol-administered dams as well as day 30 post-weaning pups (dietary-administered with polyphenols) were used. Polyphenol effects were evaluated, measuring splenic cytokine secretion. Results: Phorbol myristate acetate-activated splenocytes underwent the highest cytokine production at day 30 in both wt and TAG/F3 mice. In the latter, release of interferon (IFN)-γ and tumor necrosis factor (TNF)-α was found to be higher than in the wt counterpart. In this context, polyphenols exerted modulating activities on day 30 TAG/F3 mice, inducing release of interleukin (IL)-10 in hetero mice while abrogating release of IL-2, IFN-γ, TNF-α, IL-6, and IL-4 in homo and hetero mice. Conclusion: Polyphenols are able to prevent the development of an inflammatory/allergic profile in postnatal TAG/F3 mice.
Collapse
|
39
|
Potera RM, Cao M, Jordan LF, Hogg RT, Hook JS, Moreland JG. Alveolar Macrophage Chemokine Secretion Mediates Neutrophilic Lung Injury in Nox2-Deficient Mice. Inflammation 2019; 42:185-198. [PMID: 30288635 PMCID: PMC6775637 DOI: 10.1007/s10753-018-0883-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Acute lung injury (ALI), developing as a component of the systemic inflammatory response syndrome (SIRS), leads to significant morbidity and mortality. Reactive oxygen species (ROS), produced in part by the neutrophil NADPH oxidase 2 (Nox2), have been implicated in the pathogenesis of ALI. Previous studies in our laboratory demonstrated the development of pulmonary inflammation in Nox2-deficient (gp91phox-/y) mice that was absent in WT mice in a murine model of SIRS. Given this finding, we hypothesized that Nox2 in a resident cell in the lung, specifically the alveolar macrophage, has an essential anti-inflammatory role. Using a murine model of SIRS, we examined whole-lung digests and bronchoalveolar lavage fluid (BALf) from WT and gp91phox-/y mice. Both genotypes demonstrated neutrophil sequestration in the lung during SIRS, but neutrophil migration into the alveolar space was only present in the gp91phox-/y mice. Macrophage inflammatory protein (MIP)-1α gene expression and protein secretion were higher in whole-lung digest from uninjected gp91phox-/y mice compared to the WT mice. Gene expression of MIP-1α, MCP-1, and MIP-2 was upregulated in alveolar macrophages obtained from gp91phox-/y mice at baseline compared with WT mice. Further, ex vivo analysis of alveolar macrophages, but not bone marrow-derived macrophages or peritoneal macrophages, demonstrated higher gene expression of MIP-1α and MIP-2. Moreover, isolated lung polymorphonuclear neutrophils migrate to BALf obtained from gp91phox-/y mice, further providing evidence of a cell-specific anti-inflammatory role for Nox2 in alveolar macrophages. We speculate that Nox2 represses the development of inflammatory lung injury by modulating chemokine expression by the alveolar macrophage.
Collapse
Affiliation(s)
- Renee M Potera
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9063, USA.
| | - Mou Cao
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9063, USA
| | - Lin F Jordan
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9063, USA
| | - Richard T Hogg
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9063, USA
| | - Jessica S Hook
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9063, USA
| | - Jessica G Moreland
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9063, USA.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
40
|
Colón DF, Wanderley CW, Franchin M, Silva CM, Hiroki CH, Castanheira FVS, Donate PB, Lopes AH, Volpon LC, Kavaguti SK, Borges VF, Speck-Hernandez CA, Ramalho F, Carlotti AP, Carmona F, Alves-Filho JC, Liew FY, Cunha FQ. Neutrophil extracellular traps (NETs) exacerbate severity of infant sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:113. [PMID: 30961634 PMCID: PMC6454713 DOI: 10.1186/s13054-019-2407-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 03/25/2019] [Indexed: 12/13/2022]
Abstract
Background Neutrophil extracellular traps (NETs) are innate defense mechanisms that are also implicated in the pathogenesis of organ dysfunction. However, the role of NETs in pediatric sepsis is unknown. Methods Infant (2 weeks old) and adult (6 weeks old) mice were submitted to sepsis by intraperitoneal (i.p.) injection of bacteria suspension or lipopolysaccharide (LPS). Neutrophil infiltration, bacteremia, organ injury, and concentrations of cytokine, NETs, and DNase in the plasma were measured. Production of reactive oxygen and nitrogen species and release of NETs by neutrophils were also evaluated. To investigate the functional role of NETs, mice undergoing sepsis were treated with antibiotic plus rhDNase and the survival, organ injury, and levels of inflammatory markers and NETs were determined. Blood samples from pediatric and adult sepsis patients were collected and the concentrations of NETs measured. Results Infant C57BL/6 mice subjected to sepsis or LPS-induced endotoxemia produced significantly higher levels of NETs than the adult mice. Moreover, compared to that of the adult mice, this outcome was accompanied by increased organ injury and production of inflammatory cytokines. The increased NETs were associated with elevated expression of Padi4 and histone H3 citrullination in the neutrophils. Furthermore, treatment of infant septic mice with rhDNase or a PAD-4 inhibitor markedly attenuated sepsis. Importantly, pediatric septic patients had high levels of NETs, and the severity of pediatric sepsis was positively correlated with the level of NETs. Conclusion This study reveals a hitherto unrecognized mechanism of pediatric sepsis susceptibility and suggests that NETs represents a potential target to improve clinical outcomes of sepsis. Electronic supplementary material The online version of this article (10.1186/s13054-019-2407-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David F Colón
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Carlos W Wanderley
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, 60020-181, CE, Brazil
| | - Marcelo Franchin
- Department of Pharmacology, University of Campinas, Campinas, 13083-970, SP, Brazil
| | - Camila M Silva
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, 60020-181, CE, Brazil
| | - Carlos H Hiroki
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Fernanda V S Castanheira
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Paula B Donate
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Alexandre H Lopes
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Leila C Volpon
- Pediatrics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Silvia K Kavaguti
- Pediatrics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Vanessa F Borges
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Cesar A Speck-Hernandez
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Fernando Ramalho
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Ana P Carlotti
- Pediatrics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Fabio Carmona
- Pediatrics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Jose C Alves-Filho
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Foo Y Liew
- Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, G128QQ, UK. .,School of Biology and Basic Medical Science, Soochow University, Suzhou, 215006, JS, China.
| | - Fernando Q Cunha
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
41
|
Shrestha AK, Bettini ML, Menon RT, Gopal VYN, Huang S, Edwards DP, Pammi M, Barrios R, Shivanna B. Consequences of early postnatal lipopolysaccharide exposure on developing lungs in mice. Am J Physiol Lung Cell Mol Physiol 2019; 316:L229-L244. [PMID: 30307313 PMCID: PMC6383495 DOI: 10.1152/ajplung.00560.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of infants that is characterized by interrupted lung development. Postnatal sepsis causes BPD, yet the contributory mechanisms are unclear. To address this gap, studies have used lipopolysaccharide (LPS) during the alveolar phase of lung development. However, the lungs of infants who develop BPD are still in the saccular phase of development, and the effects of LPS during this phase are poorly characterized. We hypothesized that chronic LPS exposure during the saccular phase disrupts lung development by mechanisms that promote inflammation and prevent optimal lung development and repair. Wild-type C57BL6J mice were intraperitoneally administered 3, 6, or 10 mg/kg of LPS or a vehicle once daily on postnatal days (PNDs) 3-5. The lungs were collected for proteomic and genomic analyses and flow cytometric detection on PND6. The impact of LPS on lung development, cell proliferation, and apoptosis was determined on PND7. Finally, we determined differences in the LPS effects between the saccular and alveolar lungs. LPS decreased the survival and growth rate and lung development in a dose-dependent manner. These effects were associated with a decreased expression of proteins regulating cell proliferation and differentiation and increased expression of those mediating inflammation. While the lung macrophage population of LPS-treated mice increased, the T-regulatory cell population decreased. Furthermore, LPS-induced inflammatory and apoptotic response and interruption of cell proliferation and alveolarization was greater in alveolar than in saccular lungs. Collectively, the data support our hypothesis and reveal several potential therapeutic targets for sepsis-mediated BPD in infants.
Collapse
Affiliation(s)
- Amrit Kumar Shrestha
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| | - Matthew L Bettini
- Section of Diabetes and Endocrinology, Department of Pediatrics, McNair Medical Institute, Baylor College of Medicine , Houston, Texas
| | - Renuka T Menon
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| | - Vashisht Y N Gopal
- Department of Melanoma Medical Oncology and Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine , Houston, Texas
| | - Dean P Edwards
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine , Houston, Texas
| | - Mohan Pammi
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| | - Roberto Barrios
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital , Houston, Texas
| | - Binoy Shivanna
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
42
|
Pietrasanta C, Pugni L, Ronchi A, Bottino I, Ghirardi B, Sanchez-Schmitz G, Borriello F, Mosca F, Levy O. Vascular Endothelium in Neonatal Sepsis: Basic Mechanisms and Translational Opportunities. Front Pediatr 2019; 7:340. [PMID: 31456998 PMCID: PMC6700367 DOI: 10.3389/fped.2019.00340] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022] Open
Abstract
Neonatal sepsis remains a major health issue worldwide, especially for low-birth weight and premature infants, with a high risk of death and devastating sequelae. Apart from antibiotics and supportive care, there is an unmet need for adjunctive treatments to improve the outcomes of neonatal sepsis. Strong and long-standing research on adult patients has shown that vascular endothelium is a key player in the pathophysiology of sepsis and sepsis-associated organ failure, through a direct interaction with pathogens, leukocytes, platelets, and the effect of soluble circulating mediators, in part produced by endothelial cells themselves. Despite abundant evidence that the neonatal immune response to sepsis is distinct from that of adults, comparable knowledge on neonatal vascular endothelium is much more limited. Neonatal endothelial cells express lower amounts of adhesion molecules compared to adult ones, and present a reduced capacity to neutralize reactive oxygen species. Conversely, available evidence on biomarkers of endothelial damage in neonates is not as robust as in adult patients, and endothelium-targeted therapeutic opportunities for neonatal sepsis are almost unexplored. Here, we summarize current knowledge on the structure of neonatal vascular endothelium, its interactions with neonatal immune system and possible endothelium-targeted diagnostic and therapeutic tools for neonatal sepsis. Furthermore, we outline areas of basic and translational research worthy of further study, to shed light on the role of vascular endothelium in the context of neonatal sepsis.
Collapse
Affiliation(s)
- Carlo Pietrasanta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Lorenza Pugni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Andrea Ronchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Ilaria Bottino
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Beatrice Ghirardi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Guzman Sanchez-Schmitz
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Francesco Borriello
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Division of Immunology, Boston Children's Hospital, Boston, MA, United States.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organisation Center of Excellence, Naples, Italy
| | - Fabio Mosca
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
43
|
Sharma P, Hartley CS, Haque M, Coffey TJ, Egan SA, Flynn RJ. Bovine Neonatal Monocytes Display Phenotypic Differences Compared With Adults After Challenge With the Infectious Abortifacient Agent Neospora caninum. Front Immunol 2018; 9:3011. [PMID: 30619358 PMCID: PMC6305741 DOI: 10.3389/fimmu.2018.03011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/05/2018] [Indexed: 11/14/2022] Open
Abstract
The neonatal period represents a window of susceptibility for ruminants given the abundance of infectious challenges in their environment. Maternal transfer of immunity does not occur in utero but post-parturition, however this does not compensate for potential deficits in the cellular compartment. Here we present a cellular and transcriptomic study to investigate if there is an age-related difference in the monocyte response in cattle during intra-cellular protozoan infection. We utilized Neospora caninum, an obligate intracellular protozoan parasite that causes abortion and negative economic impacts in cattle worldwide, to study these responses. We found neonatal animals had a significant greater percentage of CD14+ monocytes with higher CD80 cell surface expression. Adult monocytes harbored more parasites compared to neonatal monocytes; additionally greater secretion of IL-1β was observed in neonates. Microarray analysis revealed neonates have 535 genes significantly upregulated compared to adult with 23 upregulated genes. Biological pathways involved in immune response were evaluated and both age groups showed changes in the upregulation of tyrosine phosphorylation of STAT protein and JAK-STAT cascade pathways. However, the extent to which these pathways were upregulated in neonates was much greater. Our findings suggest that neonates are more resistant to cellular invasion with protozoan parasites and that the magnitude of the responses is related to significant changes in the JAK-STAT network.
Collapse
Affiliation(s)
- Parul Sharma
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Catherine S Hartley
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Manjurul Haque
- Institute of Parasitology, McGill University, Sainte Anne de Bellevue, QC, Canada
| | - Tracey J Coffey
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Sharon A Egan
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Robin J Flynn
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
44
|
McKenna S, Burey T, Sandoval J, Nguyen L, Castro O, Gudipati S, Gonzalez J, El Kasmi KC, Wright CJ. Immunotolerant p50/NFκB Signaling and Attenuated Hepatic IFNβ Expression Increases Neonatal Sensitivity to Endotoxemia. Front Immunol 2018; 9:2210. [PMID: 30319651 PMCID: PMC6168645 DOI: 10.3389/fimmu.2018.02210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022] Open
Abstract
Sepsis is a major cause of neonatal morbidity and mortality. The current paradigm suggests that neonatal susceptibility to infection is explained by an innate immune response that is functionally immature. Recent studies in adults have questioned a therapeutic role for IFNβ in sepsis; however, the role of IFNβ in mediating neonatal sensitivity to sepsis is unknown. We evaluated the transcriptional regulation and expression of IFNβ in early neonatal (P0) and adult murine models of endotoxemia (IP LPS, 5 mg/kg). We found that hepatic, pulmonary, and serum IFNβ expression was significantly attenuated in endotoxemic neonates when compared to similarly exposed adults. Furthermore, endotoxemia induced hepatic p65/NFκB and IRF3 activation exclusively in adults. In contrast, endotoxemia induced immunotolerant p50/NFκB signaling in neonatal mice without evidence of IRF3 activation. Consistent with impaired IFNβ expression and attenuated circulating serum levels, neonatal pulmonary STAT1 signaling and target gene expression was significantly lower than adult levels. Using multiple in vivo approaches, the source of hepatic IFNβ expression in endotoxemic adult mice was determined to be the hepatic macrophage, and experiments in RAW 264.7 cells confirmed that LPS-induced IFNβ expression was NFκB dependent. Finally, treating neonatal mice with IFNβ 2 h after endotoxemia stimulated pulmonary STAT1 signaling and STAT1 dependent gene expression. Furthermore, IFNβ treatment of endotoxemic neonatal animals resulted in significantly improved survival following exposure to lethal endotoxemia. In conclusion, endotoxemia induced IFNβ expression is attenuated in the early neonatal period, secondary to impaired NFκB-p65/IRF3 signaling. Pre-treatment with IFNβ decreases neonatal sensitivity to endotoxemia. These results support further study of the role of impaired IFNβ expression and neonatal sensitivity to sepsis.
Collapse
Affiliation(s)
- Sarah McKenna
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Taylor Burey
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jeryl Sandoval
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Leanna Nguyen
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Odalis Castro
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Suma Gudipati
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jazmin Gonzalez
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Karim C El Kasmi
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
45
|
Harbeson D, Francis F, Bao W, Amenyogbe NA, Kollmann TR. Energy Demands of Early Life Drive a Disease Tolerant Phenotype and Dictate Outcome in Neonatal Bacterial Sepsis. Front Immunol 2018; 9:1918. [PMID: 30190719 PMCID: PMC6115499 DOI: 10.3389/fimmu.2018.01918] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/03/2018] [Indexed: 12/16/2022] Open
Abstract
Bacterial sepsis is one of the leading causes of death in newborns. In the face of growing antibiotic resistance, it is crucial to understand the pathology behind the disease in order to develop effective interventions. Neonatal susceptibility to sepsis can no longer be attributed to simple immune immaturity in the face of mounting evidence that the neonatal immune system is tightly regulated and well controlled. The neonatal immune response is consistent with a "disease tolerance" defense strategy (minimizing harm from immunopathology) whereas adults tend toward a "disease resistance" strategy (minimizing harm from pathogens). One major advantage of disease tolerance is that is less energetically demanding than disease resistance, consistent with the energetic limitations of early life. Immune effector cells enacting disease resistance responses switch to aerobic glycolysis upon TLR stimulation and require steady glycolytic flux to maintain the inflammatory phenotype. Rapid and intense upregulation of glucose uptake by immune cells necessitates an increased reliance on fatty acid metabolism to (a) fuel vital tissue function and (b) produce immunoregulatory intermediates which help control the magnitude of inflammation. Increasing disease resistance requires more energy: while adults have fat and protein stores to catabolize, neonates must reallocate resources away from critical growth and development. This understanding of sepsis pathology helps to explain many of the differences between neonatal and adult immune responses. Taking into account the central role of metabolism in the host response to infection and the severe metabolic demands of early life, it emerges that the striking clinical susceptibility to bacterial infection of the newborn is at its core a problem of metabolism. The evidence supporting this novel hypothesis, which has profound implications for interventions, is presented in this review.
Collapse
Affiliation(s)
- Danny Harbeson
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Freddy Francis
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Winnie Bao
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Nelly A. Amenyogbe
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tobias R. Kollmann
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
46
|
The LPS Responsiveness in BN and LEW Rats and Its Severity Are Modulated by the Liver. J Immunol Res 2018; 2018:6328713. [PMID: 30151394 PMCID: PMC6091288 DOI: 10.1155/2018/6328713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 12/30/2022] Open
Abstract
Differences in LPS responsiveness influence the outcome of patients with sepsis. The intensity of the response is highly variable in patients and strain dependent in rodents. However, the role of the liver for initiating the LPS response remains ill defined. We hypothesize that hepatic LPS uptake is a key event for initiating the LPS response. In the present study, the severity of the LPS-induced inflammatory response and the hepatic LPS uptake was compared in two rat strains (Lewis (LEW) rats and Brown Norway (BN) rats). Using a transplantation model, we demonstrated the decisive role of the liver. The expression of hepatic TNF-α, IL-6, and IL-1β mRNA levels in BN rats was significantly lower than that in LEW rats. LEW rats were sensitized to LPS via G-CSF pretreatment. Sensitization caused by G-CSF pretreatment induced severe liver injury and mortality in LEW rats, but not in BN rats (survival rate: 0% (LEW) versus 100% (BN), p < 0.01). LEW rats presented with higher liver enzymes, more alterations in histology, and higher expression of caspase 3 and higher cytokines levels. One of the reasons could be the increased hepatic LPS uptake, which was only observed in LEW but not in BN livers. Using the transplantation model revealed the decisive role of the LPS responsiveness of the liver. Injection of LPS to the high-responding LEW recipient before transplantation of a low-responder BN liver resulted in a 50% survival rate. In contrast, injecting the same dose of LPS into the high-responding LEW recipient after transplanting the low-responding BN liver resulted in a 100% survival rate. The severity of inflammatory response in different strains might be related to the differences in hepatic LPS uptake. This observation suggests that the liver plays a genetically defined decisive role in modulating the inflammatory severity.
Collapse
|
47
|
Schüller SS, Kramer BW, Villamor E, Spittler A, Berger A, Levy O. Immunomodulation to Prevent or Treat Neonatal Sepsis: Past, Present, and Future. Front Pediatr 2018; 6:199. [PMID: 30073156 PMCID: PMC6060673 DOI: 10.3389/fped.2018.00199] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Despite continued advances in neonatal medicine, sepsis remains a leading cause of death worldwide in neonatal intensive care units. The clinical presentation of sepsis in neonates varies markedly from that in older children and adults, and distinct acute inflammatory responses results in age-specific inflammatory and protective immune response to infection. This review first provides an overview of the neonatal immune system, then covers current mainstream, and experimental preventive and adjuvant therapies in neonatal sepsis. We also discuss how the distinct physiology of the perinatal period shapes early life immune responses and review strategies to reduce neonatal sepsis-related morbidity and mortality. A summary of studies that characterize immune ontogeny and neonatal sepsis is presented, followed by discussion of clinical trials assessing interventions such as breast milk, lactoferrin, probiotics, and pentoxifylline. Finally, we critically appraise future treatment options such as stem cell therapy, other antimicrobial protein and peptides, and targeting of pattern recognition receptors in an effort to prevent and/or treat sepsis in this highly vulnerable neonatal population.
Collapse
Affiliation(s)
- Simone S. Schüller
- Division of Neonatology, Pediatric Intensive Care & Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Precision Vaccines Program, Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Boris W. Kramer
- Department of Pediatrics, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
- School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, Netherlands
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
- School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, Netherlands
| | - Andreas Spittler
- Department of Surgery, Research Labs & Core Facility Flow Cytometry, Medical University of Vienna, Vienna, Austria
| | - Angelika Berger
- Division of Neonatology, Pediatric Intensive Care & Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Boston, MA, United States
| |
Collapse
|
48
|
Harbeson D, Ben-Othman R, Amenyogbe N, Kollmann TR. Outgrowing the Immaturity Myth: The Cost of Defending From Neonatal Infectious Disease. Front Immunol 2018; 9:1077. [PMID: 29896192 PMCID: PMC5986917 DOI: 10.3389/fimmu.2018.01077] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/30/2018] [Indexed: 12/28/2022] Open
Abstract
Newborns suffer high rates of mortality due to infectious disease-this has been generally regarded to be the result of an "immature" immune system with a diminished disease-fighting capacity. However, the immaturity dogma fails to explain (i) greater pro-inflammatory responses than adults in vivo and (ii) the ability of neonates to survive a significantly higher blood pathogen burden than of adults. To reconcile the apparent contradiction of clinical susceptibility to disease and the host immune response findings when contrasting newborn to adult, it will be essential to capture the entirety of available host-defense strategies at the newborn's disposal. Adults focus heavily on the disease resistance approach: pathogen reduction and elimination. Newborn hyperactive innate immunity, sensitivity to immunopathology, and the energetic requirements of growth and development (immune and energy costs), however, preclude them from having an adult-like resistance response. Instead, newborns also may avail themselves of disease tolerance (minimizing immunopathology without reducing pathogen load), as a disease tolerance approach provides a counterbalance to the dangers of a heightened innate immunity and has lower-associated immune costs. Further, disease tolerance allows for the establishment of a commensal bacterial community without mounting an unnecessarily dangerous immune resistance response. Since disease tolerance has its own associated costs (immune suppression leading to unchecked pathogen proliferation), it is the maintenance of homeostasis between disease tolerance and disease resistance that is critical to safe and effective defense against infections in early life. This paradigm is consistent with nearly all of the existing evidence.
Collapse
Affiliation(s)
- Danny Harbeson
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rym Ben-Othman
- Department of Pediatrics, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada
| | - Nelly Amenyogbe
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tobias R. Kollmann
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
49
|
Pirr S, Richter M, Fehlhaber B, Pagel J, Härtel C, Roth J, Vogl T, Viemann D. High Amounts of S100-Alarmins Confer Antimicrobial Activity on Human Breast Milk Targeting Pathogens Relevant in Neonatal Sepsis. Front Immunol 2017; 8:1822. [PMID: 29326708 PMCID: PMC5733341 DOI: 10.3389/fimmu.2017.01822] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Sepsis is a leading cause of perinatal mortality worldwide. Breast milk (BM) feeding is protective against neonatal sepsis, but the molecular mechanisms remain unexplained. Despite various supplementations with potential bioactive components from BM formula feeding cannot protect from sepsis. S100-alarmins are important immunoregulators in newborns preventing excessive inflammation. At high concentrations, the S100A8/A9 protein complex also has antimicrobial properties due to its metal ion chelation capacity. To assess whether BM contains S100-alarmins that might mediate the sepsis-protective effect of BM 97 human BM samples stratified for gestational age, mode of delivery and sampling after birth were collected and analyzed. S100A8/A9 levels were massively elevated after birth (p < 0.0005). They slowly decreased during the first month of life, then reaching levels comparable to normal values in adult serum. The concentration of S100A8/A9 in BM was significantly higher after term compared with preterm birth (extremely preterm, p < 0.005; moderate preterm, p < 0.05) and after vaginal delivery compared with cesarean section (p < 0.0005). In newborn s100a9−/− mice, enterally supplied S100-alarmins could be retrieved systemically in the plasma. To explore the antimicrobial activity against common causal pathogens of neonatal sepsis, purified S100-alarmins and unmodified as well as S100A8/A9-depleted BM were used in growth inhibition tests. The high amount of S100A8/A9 proved to be an important mediator of the antimicrobial activity of BM, especially inhibiting the growth of manganese (Mn) sensitive bacteria such as Staphylococcus aureus (p < 0.00005) and group B streptococci (p < 0.005). Depletion of S100A8/A9 significantly reduced this effect (p < 0.05, respectively). The growth of Escherichia coli was also inhibited by BM (p < 0.00005) as well as by S100A8/A9 in culture assays (p < 0.05). But its growth in BM remained unaffected by the removal of S100A8/A9 and was neither dependent on Mn suggesting that the antimicrobial effects of S100A8/A9 in BM are primarily mediated by its Mn chelating capacity. In summary, the enteral supply of bioavailable, antimicrobially active amounts of S100-alarmins might be a promising option to protect newborns at high risk from infections and sepsis.
Collapse
Affiliation(s)
- Sabine Pirr
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Manuela Richter
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany.,Children's Hospital "Auf der Bult", Hannover, Germany
| | - Beate Fehlhaber
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Julia Pagel
- Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | | | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
50
|
Brook B, Harbeson D, Ben-Othman R, Viemann D, Kollmann TR. Newborn susceptibility to infection vs. disease depends on complex in vivo interactions of host and pathogen. Semin Immunopathol 2017; 39:615-625. [PMID: 29098373 DOI: 10.1007/s00281-017-0651-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023]
Abstract
The burden of newborn infectious disease has long been recognized as the highest across the entire human life span. The precise underlying cause is unfortunately still far from clear. A substantial body of data derived mostly from in vitro experimentation indicates "lower" host immune responses in early vs. adult life and is briefly summarized within this review. However, emerging data derived mostly from in vivo experimentation reveal that the newborn host also exhibits an exuberant immune and inflammatory response following infection when compared to the adult. In this context, it is important to emphasize that "infection" does not equate "infectious disease," as for many infections it is the host response to the infection that causes disease. This simple insight readily arranges existing evidence into cause-effect relationships that explain much of the increase in clinical suffering from infection in early life. We here briefly summarize the evidence in support of this paradigm and highlight the important implications it has for efforts to ameliorate the suffering and dying from infection in early life.
Collapse
Affiliation(s)
- Byron Brook
- Department of Experimental Medicine, University of British Columbia, UBC, BCCHRI A5-175, 950 W 28th Ave, Vancouver, BC, V5Z4H4, Canada
| | - Danny Harbeson
- Department of Experimental Medicine, University of British Columbia, UBC, BCCHRI A5-175, 950 W 28th Ave, Vancouver, BC, V5Z4H4, Canada
| | - Rym Ben-Othman
- Department of Pediatrics, Division of Infectious Diseases, University of British Columbia, Vancouver, Canada
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Tobias R Kollmann
- Department of Experimental Medicine, University of British Columbia, UBC, BCCHRI A5-175, 950 W 28th Ave, Vancouver, BC, V5Z4H4, Canada. .,Department of Pediatrics, Division of Infectious Diseases, University of British Columbia, Vancouver, Canada.
| |
Collapse
|