1
|
Sun J, Wang D, Wei Y, Wang D, Ji Z, Sun W, Wang X, Wang P, Basmadji NP, Larrarte E, Pedraz JL, Ramalingam M, Xie S, Wang R. Capsaicin-induced Ca 2+ overload and ablation of TRPV1-expressing axonal terminals for comfortable tumor immunotherapy. NANOSCALE 2025; 17:3288-3305. [PMID: 39688368 DOI: 10.1039/d4nr04454a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
As a common malignancy symptom, cancer pain significantly affects patients' quality of life. Approximately 60%-90% of patients with advanced cancer experience debilitating pain. Therefore, a comprehensive treatment system that combines cancer pain suppression and tumor treatment could provide significant benefits for these patients. Here, we designed a manganese oxide (MnO2)/Bovine serum albumin (BSA)/polydopamine (PDA) composite nanoplatform internally loaded with capsaicin for cancer pain suppression and immunotherapy. MBD&C nanoparticles (NPs) can ablate tumor-innervated sensory nerve fibers via Transient receptor potential vanilloid 1 (TRPV1) channels, thereby reducing the pain caused by various inflammatory mediators. The ablation of TRPV1+ nerve terminals can also decrease the secretion of calcitonin gene-related peptide (CGRP) and substance P (SP) in sensory nerve fibers, thus reducing the tumor pain and inhibit tumor progression. MBD&C can promote calcium influx by activating overexpressed TRPV1 channels on the tumor membrane surface, thereby achieving cancer immunotherapy induced by endogenous Ca2+ overloading. In addition, MnO2 NPs can alleviate tumor hypoxia and mitigate the immunosuppressive tumor microenvironment (TME). Ultimately, this treatment system with dual capabilities of inhibiting tumor growth and relieving cancer pain makes comfortable tumor therapy feasible and paves the way for the development of patient-centered approaches to cancer treatment in the future.
Collapse
Affiliation(s)
- Jian Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China.
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Deqiang Wang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Yiying Wei
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
| | - Danyang Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
| | - Zhengkun Ji
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Wanru Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
| | - Xin Wang
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Pingyu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Nicola Paccione Basmadji
- TECNALIA, Basque Research & Technology Alliance (BRTA) Miñano, Spain
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
| | - Eider Larrarte
- TECNALIA, Basque Research & Technology Alliance (BRTA) Miñano, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma, Development, A Joint Venture of TECNALIA and University of the Basque Country (UPV/EHU), Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Murugan Ramalingam
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma, Development, A Joint Venture of TECNALIA and University of the Basque Country (UPV/EHU), Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Shuyang Xie
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China.
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Ranran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
2
|
Rutkowski K, Gola M, Godlewski J, Starzyńska A, Marvaso G, Mastroleo F, Giulia Vincini M, Porazzi A, Zaffaroni M, Jereczek-Fossa BA. Understanding the role of nerves in head and neck cancers - a review. Oncol Rev 2025; 18:1514004. [PMID: 39906323 PMCID: PMC11791411 DOI: 10.3389/or.2024.1514004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/03/2024] [Indexed: 02/06/2025] Open
Abstract
Worldwide, head and neck cancers (HNCs) account for approximately 900,000 cases and 500,000 deaths annually, with their incidence continuing to rise. Carcinogenesis is a complex, multidimensional molecular process leading to cancer development, and in recent years, the role of nerves in the pathogenesis of various malignancies has been increasingly recognized. Thanks to the abundant innervation of the head and neck region, peripheral nervous system has gained considerable interest for its possible role in the development and progression of HNCs. Intratumoral parasympathetic, sympathetic, and sensory nerve fibers are emerging as key players and potential targets for novel anti-cancer and pain-relieving medications in different tumors, including HNCs. This review explores nerve-cancer interactions, including perineural invasion (PNI), cancer-related axonogenesis, neurogenesis, and nerve reprogramming, with an emphasis on their molecular mechanisms, mediators and clinical implications. PNI, an adverse histopathologic feature, has been widely investigated in HNCs. However, its prognostic value remains debated due to inconsistent results when classified dichotomously (present/absent). Emerging evidence suggests that quantitative and qualitative descriptions of PNI may better reflect its clinical usefulness. The review also examines therapies targeting nerve-cancer crosstalk and highlights the influence of HPV status on tumor innervation. By synthesizing current knowledge, challenges, and future perspectives, this review offers insights into the molecular basis of nerve involvement in HNCs and the potential for novel therapeutic approaches.
Collapse
Affiliation(s)
- Krzysztof Rutkowski
- Department of Hematology, Transplantology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Michał Gola
- Department of Human Histology and Embryology, Collegium Medicum, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
- Department of Oncology and Immuno-Oncology, Clinical Hospital of the Ministry of Internal Affairs and Administration with the Warmia-Mazury Oncology Centre, Olsztyn, Poland
| | - Janusz Godlewski
- Department of Human Histology and Embryology, Collegium Medicum, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
- Department of Surgical Oncology, Clinical Hospital of the Ministry of Internal Affairs and Administration with the Warmia-Mazury Oncology Centre, Olsztyn, Poland
| | - Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, Gdańsk, Poland
- Department of Otolaryngology, Phoniatrics and Audiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Giulia Marvaso
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Federico Mastroleo
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Maria Giulia Vincini
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Alice Porazzi
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Mattia Zaffaroni
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Huang Q, Hu B, Zhang P, Yuan Y, Yue S, Chen X, Liang J, Tang Z, Zhang B. Neuroscience of cancer: unraveling the complex interplay between the nervous system, the tumor and the tumor immune microenvironment. Mol Cancer 2025; 24:24. [PMID: 39825376 PMCID: PMC11740516 DOI: 10.1186/s12943-024-02219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025] Open
Abstract
The study of the multifaceted interactions between neuroscience and cancer is an emerging field with significant implications for understanding tumor biology and the innovation in therapeutic approaches. Increasing evidence suggests that neurological functions are connected with tumorigenesis. In particular, the peripheral and central nervous systems, synapse, neurotransmitters, and neurotrophins affect tumor progression and metastasis through various regulatory approaches and the tumor immune microenvironment. In this review, we summarized the neurological functions that affect tumorigenesis and metastasis, which are controlled by the central and peripheral nervous systems. We also explored the roles of neurotransmitters and neurotrophins in cancer progression. Moreover, we examined the interplay between the nervous system and the tumor immune microenvironment. We have also identified drugs that target the nervous system for cancer treatment. In this review we present the work supporting that therapeutic agent targeting the nervous system could have significant potential to improve cancer therapy.
Collapse
Affiliation(s)
- Qibo Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Bai Hu
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ye Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Shiwei Yue
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| |
Collapse
|
4
|
Wang YH, Yang X, Liu CC, Wang X, Yu KD. Unraveling the peripheral nervous System's role in tumor: A Double-edged Sword. Cancer Lett 2025; 611:217451. [PMID: 39793755 DOI: 10.1016/j.canlet.2025.217451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The peripheral nervous system (PNS) includes all nerves outside the brain and spinal cord, comprising various cells like neurons and glial cells, such as schwann and satellite cells. The PNS is increasingly recognized for its bidirectional interactions with tumors, exhibiting both pro- and anti-tumor effects. Our review delves into the complex mechanisms underlying these interactions, highlighting recent findings that challenge the conventional understanding of PNS's role in tumorigenesis. We emphasize the contradictory results in the literature and propose novel perspectives on how these discrepancies can be resolved. By focusing on the PNS's influence on tumor initiation, progression, and microenvironment remodeling, we provide a comprehensive analysis that goes beyond the structural description of the PNS. Our review suggests that a deeper comprehension of the PNS-tumor crosstalk is pivotal for developing targeted anticancer strategies. We conclude by emphasizing the need for future research to unravel the intricate dynamics of the PNS in cancer, which may lead to innovative diagnostic tools and therapeutic approaches.
Collapse
Affiliation(s)
- Yan-Hao Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xuan Yang
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, 030000, PR China
| | - Cui-Cui Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xin Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China.
| |
Collapse
|
5
|
Yaniv D, Mattson B, Talbot S, Gleber-Netto FO, Amit M. Targeting the peripheral neural-tumour microenvironment for cancer therapy. Nat Rev Drug Discov 2024; 23:780-796. [PMID: 39242781 DOI: 10.1038/s41573-024-01017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
As the field of cancer neuroscience expands, the strategic targeting of interactions between neurons, cancer cells and other elements in the tumour microenvironment represents a potential paradigm shift in cancer treatment, comparable to the advent of our current understanding of tumour immunology. Cancer cells actively release growth factors that stimulate tumour neo-neurogenesis, and accumulating evidence indicates that tumour neo-innervation propels tumour progression, inhibits tumour-related pro-inflammatory cytokines, promotes neovascularization, facilitates metastasis and regulates immune exhaustion and evasion. In this Review, we give an up-to-date overview of the dynamics of the tumour microenvironment with an emphasis on tumour innervation by the peripheral nervous system, as well as current preclinical and clinical evidence of the benefits of targeting the nervous system in cancer, laying a scientific foundation for further clinical trials. Combining empirical data with a biomarker-driven approach to identify and hone neuronal targets implicated in cancer and its spread can pave the way for swift clinical integration.
Collapse
Affiliation(s)
- Dan Yaniv
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandi Mattson
- The Neurodegeneration Consortium, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Hasan SR, Manolis D, Stephenson E, Ryskiewicz-Sokalska OA, Maraveyas A, Nikitenko LL. Calcitonin gene-related peptide and intermedin induce phosphorylation of p44/42 MAPK in primary human lymphatic endothelial cells in vitro. Cell Signal 2024; 121:111261. [PMID: 38878805 DOI: 10.1016/j.cellsig.2024.111261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/29/2024]
Abstract
Calcitonin gene-related peptide (CGRP) and adrenomedullin 2/intermedin (AM2/IMD) play important roles in several pathologies, including cardiovascular disease, migraine and cancer. The efficacy of drugs targeting CGRP signalling axis for the treatment of migraine patients is sometimes offset by side effects (e.g. inflammation and microvascular complications, including aberrant neovascularisation in the skin). Recent studies using animal models implicate CGRP in lymphangiogenesis and lymphatic vessel function. However, whether CGRP or AM2/IMD can act directly on lymphatic endothelial cells is unknown. Here, we found that CGRP and AM2/IMD induced p44/42 MAPK phosphorylation in a time- and dose-dependent manner in primary human dermal lymphatic endothelial cells (HDLEC) in vitro, and thus directly affected these cells. These new findings reveal CGRP and AM2/IMD as novel regulators of LEC biology and warrant further investigation of their roles in the context of pathologies associated with lymphatic function in the skin and other organs, and therapies targeting CGRP signalling axis.
Collapse
Affiliation(s)
- Shirin R Hasan
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | - Dimitrios Manolis
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | - Ewan Stephenson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | | | - Anthony Maraveyas
- Hull University Teaching Hospitals NHS Teaching Trust, Queens Centre for Oncology and Haematology, Castle Hill Hospital, Hull, UK
| | - Leonid L Nikitenko
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| |
Collapse
|
7
|
Nakamoto S, Ito Y, Nishizawa N, Kuroda YU, Hosono K, Kamata M, Tsujikawa K, Kumamoto Y, Amano H. Lack of RAMP1 Signaling Suppresses Liver Regeneration and Angiogenesis Following Partial Hepatectomy in Mice. In Vivo 2024; 38:2261-2270. [PMID: 39187322 PMCID: PMC11363762 DOI: 10.21873/invivo.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND/AIM The liver effectively restores both size and function following partial hepatectomy (PHx). Angiogenesis is crucial for the repair and regeneration of liver tissue post-PHx. Calcitonin gene-related peptide (CGRP) released from sensory nerves and its receptor-receptor activity-modifying protein 1 (RAMP1) are involved in angiogenesis. This study aimed to assess the role of RAMP1 signaling in angiogenesis during liver regeneration following PHx. MATERIALS AND METHODS RAMP1 deficient (RAMP1-/-) and wild-type (WT) mice were subjected to PHx. RESULTS RAMP1-/- mice demonstrated delayed liver regeneration, indicated by lower liver-to-body weight ratios compared to WT mice. This was associated with lower levels of Ki67+ hepatocytes and hepatic trophic growth factors. Additionally, RAMP1-/- mice exhibited lower levels of endothelial cell markers, including CD31, compared to WT mice. This reduction was associated with reduced levels of vascular endothelial growth factor (VEGF)-C, VEGF-D, and VEGF receptor 3 (VEGFR3). In WT mice with PHx, the administration of a VEGFR3 inhibitor reduced the liver-to-body weight ratio, Ki67+ hepatocytes, and VEGF-C/VEGFR3 expression levels in the liver compared to those in the vehicle-treated group. CONCLUSION The deletion of RAMP1 signaling suppresses liver regeneration and angiogenesis through VEGFR3. Specific activation of RAMP1 signaling may represent a potential therapeutic strategy for liver regeneration following PHx.
Collapse
Affiliation(s)
- Shuji Nakamoto
- Department of General-Pediatric-Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan;
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Nobuyuki Nishizawa
- Department of General-Pediatric-Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Y U Kuroda
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Mariko Kamata
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yusuke Kumamoto
- Department of General-Pediatric-Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| |
Collapse
|
8
|
Tiberio P, Balordi M, Castaldo M, Viganò A, Jacobs F, Benvenuti C, Torrisi R, Zambelli A, Santoro A, De Sanctis R. Empowerment, Pain Control, and Quality of Life Improvement in Early Triple-Negative Breast Cancer Patients through Pain Neuroscience Education: A Prospective Cohort Pilot Study Protocol (EMPOWER Trial). J Pers Med 2024; 14:711. [PMID: 39063964 PMCID: PMC11278336 DOI: 10.3390/jpm14070711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The treatment of early triple-negative breast cancer (eTNBC) has improved patients' prognosis but often leads to adverse events and sequelae affecting quality of life (QoL). Pain Neuroscience Education (PNE) is a promising non-pharmacological intervention in this field. Preliminary data have shown the beneficial effect of PNE in BC survivors. However, there are still gaps in knowledge regarding its optimal use in eTNBC. To address this issue, a prospective pilot study will enroll 30 consecutive patients diagnosed with eTNBC at IRCCS Humanitas Research Hospital. The PNE program will consist of 10 weekly sessions to be started within 4 weeks of the onset or worsening of a pain syndrome (PS). QoL, pain, and disability will be assessed before, during, at the end of, and 6 months after PNE using validated questionnaires. Peripheral venous blood samples will be taken before and at the end of PNE to evaluate inflammatory serum biomarker levels. The primary objective is to evaluate whether PNE leads to clinical improvement in QoL and pain. If successful, it will be validated in a larger multi-centric cohort, potentially leading to its widespread implementation as a standard pain management tool for eTNBC patients.
Collapse
Affiliation(s)
- Paola Tiberio
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (P.T.); (F.J.); (C.B.); (R.T.); (A.Z.); (A.S.)
| | - Marco Balordi
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy; (M.B.); (M.C.)
| | - Matteo Castaldo
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy; (M.B.); (M.C.)
- Department of Health Science and Technology, Center for Pain and Neuroplasticity (CNAP), School of Medicine, Sensory Motor Interaction (SMI), Aalborg University, 9220 Aalborg, Denmark
- Clinical Psychology, Clinical Psychophysiology and Clinical Neuropsychology Labs, Parma University, 43126 Parma, Italy
| | | | - Flavia Jacobs
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (P.T.); (F.J.); (C.B.); (R.T.); (A.Z.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy; (M.B.); (M.C.)
| | - Chiara Benvenuti
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (P.T.); (F.J.); (C.B.); (R.T.); (A.Z.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy; (M.B.); (M.C.)
| | - Rosalba Torrisi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (P.T.); (F.J.); (C.B.); (R.T.); (A.Z.); (A.S.)
| | - Alberto Zambelli
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (P.T.); (F.J.); (C.B.); (R.T.); (A.Z.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy; (M.B.); (M.C.)
| | - Armando Santoro
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (P.T.); (F.J.); (C.B.); (R.T.); (A.Z.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy; (M.B.); (M.C.)
| | - Rita De Sanctis
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (P.T.); (F.J.); (C.B.); (R.T.); (A.Z.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy; (M.B.); (M.C.)
| |
Collapse
|
9
|
Qin Q, Ramesh S, Li Z, Zhong L, Cherief M, Archer M, Xing X, Thottappillil N, Gomez-Salazar M, Xu M, Zhu M, Chang L, Uniyal A, Mazhar K, Mittal M, McCarthy EF, Morris CD, Levi B, Guan Y, Clemens TL, Price TJ, James AW. TrkA + sensory neurons regulate osteosarcoma proliferation and vascularization to promote disease progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599869. [PMID: 38979210 PMCID: PMC11230162 DOI: 10.1101/2024.06.20.599869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Bone pain is a presenting feature of bone cancers such as osteosarcoma (OS), relayed by skeletal-innervating peripheral afferent neurons. Potential functions of tumor-associated sensory neurons in bone cancers beyond pain sensation are unknown. To uncover neural regulatory functions, a chemical-genetic approach in mice with a knock-in allele for TrkA was used to functionally perturb sensory nerve innervation during OS growth and disease progression. TrkA inhibition in transgenic mice led to significant reductions in sarcoma-associated sensory innervation and vascularization, tumor growth and metastasis, and prolonged overall survival. Single-cell transcriptomics revealed that sarcoma denervation was associated with phenotypic alterations in both OS tumor cells and cells within the tumor microenvironment, and with reduced calcitonin gene-related peptide (CGRP) and vascular endothelial growth factor (VEGF) signaling. Multimodal and multi-omics analyses of human OS bone samples and human dorsal root ganglia neurons further implicated peripheral innervation and neurotrophin signaling in OS tumor biology. In order to curb tumor-associated axonal ingrowth, we next leveraged FDA-approved bupivacaine liposomes leading to significant reductions in sarcoma growth, vascularity, as well as alleviation of pain. In sum, TrkA-expressing peripheral neurons positively regulate key aspects of OS progression and sensory neural inhibition appears to disrupt calcitonin receptor signaling (CALCR) and VEGF signaling within the sarcoma microenvironment leading to significantly reduced tumor growth and improved survival. These data suggest that interventions to prevent pathological innervation of osteosarcoma represent a novel adjunctive therapy to improve clinical outcomes and survival.
Collapse
|
10
|
Jiang L, Zhou Y, Tang S, Yang D, Zhang Y, Zhang J, Yang F, Zhou T, Xia X, Chen Q, Jiang L, Jiang Y, Feng X. Nociceptive adenosine A 2A receptor on trigeminal nerves orchestrates CGRP release to regulate the progression of oral squamous cell carcinoma. Int J Oral Sci 2024; 16:46. [PMID: 38886342 PMCID: PMC11183250 DOI: 10.1038/s41368-024-00308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 06/20/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) associated pain commonly predicts adverse events among patients. This clinical feature indicates the engagement of nociceptors on sensory neurons during the development of malignancy. However, it is yet to be determined if targeting oncometabolite-associated nociception processes can hinder OSCC progression. In this study, we reported that nociceptive endings infiltrating both clinical samples and mouse tumor xenografts were associated with poorer clinical outcomes and drove tumor progression in vivo, as evidenced by clinical tissue microarray analysis and murine lingual denervation. We observed that the OSCC microenvironment was characteristic of excessive adenosine due to CD73 upregulation which negatively predicted clinical outcomes in the TCGA-HNSC patient cohort. Notably, such adenosine concentrative OSCC niche was associated with the stimulation of adenosine A2A receptor (A2AR) on trigeminal ganglia. Antagonism of trigeminal A2AR with a selective A2AR inhibitor SCH58261 resulted in impeded OSCC growth in vivo. We showed that trigeminal A2AR overstimulation in OSCC xenograft did not entail any changes in the transcription level of CGRP in trigeminal ganglia but significantly triggered the release of CGRP, an effect counteracted by SCH58261. We further demonstrated the pro-tumor effect of CGRP by feeding mice with the clinically approved CGRP receptor antagonist rimegepant which inhibited the activation of ERK and YAP. Finally, we diminished the impact of CGRP on OSCC with istradefylline, a clinically available drug that targets neuronal A2AR. Therefore, we established trigeminal A2AR-mediated CGRP release as a promising druggable circuit in OSCC treatment.
Collapse
Grants
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- Fundamental Research Funds for the Central Universities (YJ201987); Sichuan Science and Technology Program (2021ZYD0090 and 2022YFS0207); Scientific Research Foundation, West China Hospital of Stomatology Sichuan University (QDJF2019-3 and RD-03-202110); CAMS Innovation Fund for Medical Sciences (CIFMS, 2019-I2M-5-004)
- Fundamental Research Funds for the Central Universities (YJ201987), Sichuan Science and Technology Program (2021ZYD0090 and 2022YFS0207), Scientific Research Foundation, West China Hospital of Stomatology Sichuan University (QDJF2019-3 and RD-03-202110), and CAMS Innovation Fund for Medical Sciences (CIFMS, 2019-I2M-5-004)
Collapse
Affiliation(s)
- Lanxin Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shijie Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiuge Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoqiang Xia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Affiliated Stomatology Hospital, Zhejiang University School of Stomatology, Hangzhou, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Selvarajan I, Kiema M, Huang RT, Li J, Zhu J, Pölönen P, Örd T, Õunap K, Godiwala M, Golebiewski AK, Ravindran A, Mäklin K, Toropainen A, Stolze LK, Arce M, Magnusson PU, White S, Romanoski CE, Heinäniemi M, Laakkonen JP, Fang Y, Kaikkonen MU. Coronary Artery Disease Risk Variant Dampens the Expression of CALCRL by Reducing HSF Binding to Shear Stress Responsive Enhancer in Endothelial Cells In Vitro. Arterioscler Thromb Vasc Biol 2024; 44:1330-1345. [PMID: 38602103 PMCID: PMC11111333 DOI: 10.1161/atvbaha.123.318964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND CALCRL (calcitonin receptor-like) protein is an important mediator of the endothelial fluid shear stress response, which is associated with the genetic risk of coronary artery disease. In this study, we functionally characterized the noncoding regulatory elements carrying coronary artery disease that risks single-nucleotide polymorphisms and studied their role in the regulation of CALCRL expression in endothelial cells. METHODS To functionally characterize the coronary artery disease single-nucleotide polymorphisms harbored around the gene CALCRL, we applied an integrative approach encompassing statistical, transcriptional (RNA-seq), and epigenetic (ATAC-seq [transposase-accessible chromatin with sequencing], chromatin immunoprecipitation assay-quantitative polymerase chain reaction, and electromobility shift assay) analyses, alongside luciferase reporter assays, and targeted gene and enhancer perturbations (siRNA and clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) in human aortic endothelial cells. RESULTS We demonstrate that the regulatory element harboring rs880890 exhibits high enhancer activity and shows significant allelic bias. The A allele was favored over the G allele, particularly under shear stress conditions, mediated through alterations in the HSF1 (heat shock factor 1) motif and binding. CRISPR deletion of rs880890 enhancer resulted in downregulation of CALCRL expression, whereas HSF1 knockdown resulted in a significant decrease in rs880890-enhancer activity and CALCRL expression. A significant decrease in HSF1 binding to the enhancer region in endothelial cells was observed under disturbed flow compared with unidirectional flow. CALCRL knockdown and variant perturbation experiments indicated the role of CALCRL in mediating eNOS (endothelial nitric oxide synthase), APLN (apelin), angiopoietin, prostaglandins, and EDN1 (endothelin-1) signaling pathways leading to a decrease in cell proliferation, tube formation, and NO production. CONCLUSIONS Overall, our results demonstrate the existence of an endothelial-specific HSF (heat shock factor)-regulated transcriptional enhancer that mediates CALCRL expression. A better understanding of CALCRL gene regulation and the role of single-nucleotide polymorphisms in the modulation of CALCRL expression could provide important steps toward understanding the genetic regulation of shear stress signaling responses.
Collapse
Affiliation(s)
- Ilakya Selvarajan
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Miika Kiema
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Ru-Ting Huang
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jin Li
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jiayu Zhu
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Petri Pölönen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Tiit Örd
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Kadri Õunap
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Mehvash Godiwala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Anna Kathryn Golebiewski
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona; Tucson, AZ 85721, USA
| | - Aarthi Ravindran
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Kiira Mäklin
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Anu Toropainen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Lindsey K. Stolze
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona; Tucson, AZ 85721, USA
| | - Maximiliano Arce
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Peetra U. Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Stephen White
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE1 3BZ, UK
| | - Casey E. Romanoski
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona; Tucson, AZ 85721, USA
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Johanna P. Laakkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Yun Fang
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
12
|
Saraiva-Santos T, Zaninelli TH, Pinho-Ribeiro FA. Modulation of host immunity by sensory neurons. Trends Immunol 2024; 45:381-396. [PMID: 38697871 DOI: 10.1016/j.it.2024.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 05/05/2024]
Abstract
Recent studies have uncovered a new role for sensory neurons in influencing mammalian host immunity, challenging conventional notions of the nervous and immune systems as separate entities. In this review we delve into this groundbreaking paradigm of neuroimmunology and discuss recent scientific evidence for the impact of sensory neurons on host responses against a wide range of pathogens and diseases, encompassing microbial infections and cancers. These valuable insights enhance our understanding of the interactions between the nervous and immune systems, and also pave the way for developing candidate innovative therapeutic interventions in immune-mediated diseases highlighting the importance of this interdisciplinary research field.
Collapse
Affiliation(s)
- Telma Saraiva-Santos
- Division of Dermatology, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO, USA
| | - Tiago H Zaninelli
- Division of Dermatology, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO, USA
| | - Felipe A Pinho-Ribeiro
- Division of Dermatology, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO, USA.
| |
Collapse
|
13
|
Șerban RE, Stepan MD, Florescu DN, Boldeanu MV, Florescu MM, Șerbănescu MS, Ionescu M, Streba L, Drăgoescu NAM, Christopher P, Obleagă VC, Constantin C, Vere CC. Expression of Calcitonin Gene-Related Peptide and Calcitonin Receptor-like Receptor in Colorectal Adenocarcinoma. Int J Mol Sci 2024; 25:4461. [PMID: 38674047 PMCID: PMC11050384 DOI: 10.3390/ijms25084461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer is one of the most widespread types of cancer that still causes many deaths worldwide. The development of new diagnostic and prognostic markers, as well as new therapeutic methods, is necessary. The calcitonin gene-related peptide (CGRP) neuropeptide alongside its receptor calcitonin receptor-like receptor (CRLR) could represent future biomarkers and a potential therapeutic target. Increased levels of CGRP have been demonstrated in thyroid, prostate, lung, and breast cancers and may also have a role in colorectal cancer. At the tumor level, it acts through different mechanisms, such as the angiogenesis, migration, and proliferation of tumor cells. The aim of this study was to measure the level of CGRP in colorectal cancer patients' serum by enzyme-linked immunosorbent assay (ELISA) and determine the level of CGRP and CRLR at the tumor level after histopathological (HP) and immunohistochemical (IHC) analysis, and then to correlate them with the TNM stage and with different tumoral characteristics. A total of 54 patients with newly diagnosed colorectal adenocarcinoma were evaluated. We showed that serum levels of CGRP, as well as CGRP and CRLR tumor level expression, correlate with the TNM stage, with local tumor extension, the presence of lymph node metastasis, and distant metastasis, and also with the tumor differentiation degree. CGRP is present in colorectal cancer from the incipient TNM stage, with levels increasing with the stage, and can be used as a diagnostic and prognostic marker and may also represent a potentially new therapeutic target.
Collapse
Affiliation(s)
- Robert-Emmanuel Șerban
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.-E.Ș.); (C.C.V.)
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Mioara-Desdemona Stepan
- Department of Infant Care-Pediatrics-Neonatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Dan Nicolae Florescu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.-E.Ș.); (C.C.V.)
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Mihail-Virgil Boldeanu
- Department of Immunology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mirela-Marinela Florescu
- Department of Pathology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Mircea-Sebastian Șerbănescu
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.-S.Ș.); (M.I.)
| | - Mihaela Ionescu
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.-S.Ș.); (M.I.)
| | - Liliana Streba
- Department of Oncology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str, 200349 Craiova, Romania;
| | | | - Pavel Christopher
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050447 Bucharest, Romania;
| | - Vasile-Cosmin Obleagă
- Department of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Cristian Constantin
- Department of Radiology and Medical Imaging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Cristin Constantin Vere
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.-E.Ș.); (C.C.V.)
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| |
Collapse
|
14
|
Yao M, Liang S, Zeng Y, Peng F, Zhao X, Du C, Ma X, Huang H, Wang D, Zhang Y. Dual Factor-Loaded Artificial Periosteum Accelerates Bone Regeneration. ACS Biomater Sci Eng 2024; 10:2200-2211. [PMID: 38447138 DOI: 10.1021/acsbiomaterials.3c01587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
In the clinic, inactivation of osteosarcoma using microwave ablation would damage the periosteum, resulting in frequent postoperative complications. Therefore, the development of an artificial periosteum is crucial for postoperative healing. In this study, we prepared an artificial periosteum using silk fibroin (SF) loaded with stromal cell-derived factor-1α (SDF-1α) and calcitonin gene-related peptide (CGRP) to accelerate bone remodeling after the microwave ablation of osteosarcoma. The prepared artificial periosteum showed a sustained release of SDF-1α and CGRP after 14 days of immersion. In vitro culture of rat periosteal stem cells (rPDSCs) demonstrated that the artificial periosteum is favorable for cell recruitment, the activity of alkaline phosphatase, and bone-related gene expression. Furthermore, the artificial periosteum improved the tube formation and angiogenesis-related gene expression of human umbilical vein endothelial cells (HUVECs). In an animal study, the periosteum in the femur of a rabbit was inactivated through microwave ablation and then removed. The damaged periosteum was replaced with the as-prepared artificial periosteum and favored bone regeneration. In all, the designed dual-factor-loaded artificial periosteum is a promising strategy to replace the damaged periosteum in the therapy of osteosarcoma for a better bone-rebuilding process.
Collapse
Affiliation(s)
- Mengyu Yao
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangzhou 510080, China
| | - Shengjie Liang
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, China
| | - Yanyan Zeng
- Department of Hyperbaric Oxygen Rehabilitation (Intensive Rehabilitation Center), Southern Theater Command General Hospital of PLA, Guangzhou 510010, Guangdong, China
| | - Feng Peng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangzhou 510080, China
| | - Xiujuan Zhao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chang Du
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaohan Ma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, U.K
| | - Huai Huang
- Department of Hyperbaric Oxygen Rehabilitation (Intensive Rehabilitation Center), Southern Theater Command General Hospital of PLA, Guangzhou 510010, Guangdong, China
| | - Donghui Wang
- Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangzhou 510080, China
| |
Collapse
|
15
|
Yoshida A, Nishibata M, Maruyama T, Sunami S, Isono K, Kawamata T. Activation of Transient Receptor Potential Vanilloid 1 Is Involved in Both Pain and Tumor Growth in a Mouse Model of Cancer Pain. Neuroscience 2024; 538:80-92. [PMID: 38157977 DOI: 10.1016/j.neuroscience.2023.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/03/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Activation of calcitonin gene-related peptide (CGRP)-positive sensory neurons in the tumor microenvironment has been shown to be involved in tumor growth. However, how CGRP-positive sensory neurons are activated requires elucidation. In this study, we focused on transient receptor potential vanilloid 1 (TRPV1) and examined the contribution of TRPV1 to tumor growth and cancer pain in a mouse cancer model in which Lewis lung carcinoma was subcutaneously inoculated in the left plantar region. Tumor inoculation gradually increased the volumes of the hind paws of wild type (WT) mice over time, but those of both αCGRP knockout mice and TRPV1 knockout mice were significantly smaller than those of WT mice after tumor inoculation. Both TRPV1 and CGRP are therefore suggested to be involved in tumor growth. In an immunohistochemical study, the percentage of phosphorylated cyclic adenosine monophosphate response element-binding protein (p-CREB)-positive profiles in CGRP-positive dorsal root ganglion (DRG) neurons in WT mice was significantly increased after tumor inoculation. The percentage of p-CREB-positive profiles in CGRP-positive DRG neurons in TRPV1 knockout mice was also increased after tumor inoculation, but was significantly lower than that in WT mice, indicating the contribution of TRPV1 to activation of CGRP-positive DRG neurons. Cancer pain in TRPV1 knockout mice was significantly lower than that in WT mice. In conclusion, TRPV1 is involved in both tumor growth and cancer pain, potentially leading to a novel strategy for the treatment of cancer pain and cancer development. Cancer pain is also suggested to facilitate tumor growth.
Collapse
Affiliation(s)
- Akari Yoshida
- Department of Anesthesiology, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama 640-0012, Japan.
| | - Masayuki Nishibata
- Department of Anesthesiology, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama 640-0012, Japan
| | - Tomoyuki Maruyama
- Department of Anesthesiology, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama 640-0012, Japan
| | - Shogo Sunami
- Department of Anesthesiology, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama 640-0012, Japan
| | - Kyoichi Isono
- Laboratory Animal Center, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama 640-0012, Japan
| | - Tomoyuki Kawamata
- Department of Anesthesiology, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama 640-0012, Japan
| |
Collapse
|
16
|
Shalabi S, Belayachi A, Larrivée B. Involvement of neuronal factors in tumor angiogenesis and the shaping of the cancer microenvironment. Front Immunol 2024; 15:1284629. [PMID: 38375479 PMCID: PMC10875004 DOI: 10.3389/fimmu.2024.1284629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024] Open
Abstract
Emerging evidence suggests that nerves within the tumor microenvironment play a crucial role in regulating angiogenesis. Neurotransmitters and neuropeptides released by nerves can interact with nearby blood vessels and tumor cells, influencing their behavior and modulating the angiogenic response. Moreover, nerve-derived signals may activate signaling pathways that enhance the production of pro-angiogenic factors within the tumor microenvironment, further supporting blood vessel growth around tumors. The intricate network of communication between neural constituents and the vascular system accentuates the potential of therapeutically targeting neural-mediated pathways as an innovative strategy to modulate tumor angiogenesis and, consequently, neoplastic proliferation. Hereby, we review studies that evaluate the precise molecular interplay and the potential clinical ramifications of manipulating neural elements for the purpose of anti-angiogenic therapeutics within the scope of cancer treatment.
Collapse
Affiliation(s)
- Sharif Shalabi
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
| | - Ali Belayachi
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
| | - Bruno Larrivée
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Montréal, QC, Canada
- Ophthalmology, Université de Montréal, boul. Édouard-Montpetit, Montréal, QC, Canada
| |
Collapse
|
17
|
Rahimi K, Riyahi M, Sajedianfard J, Nazifi S. Effects of intracerebroventricular administration of calcitonin gene-related peptide (CGRP) on sex hormones and sperm quality in rats. Ann Med Surg (Lond) 2023; 85:5454-5458. [PMID: 37915664 PMCID: PMC10617940 DOI: 10.1097/ms9.0000000000001252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/19/2023] [Indexed: 11/03/2023] Open
Abstract
Background Therapeutic strategies with calcitonin gene-related peptide (CGRP) or its receptor have been investigated, but there are few studies regarding the possible harmful effects of CGRP in other body organs. Objective This study aimed to investigate the effect of intracerebroventricular (ICV) injection of CGRP on sex hormones and sperm quality in rats. Methods Twelve male rats were divided into two groups (n=6 per group). The first group (control) rats were injected with 5 µl artificial cerebrospinal fluid intra-ICV; the second group rats, 5 µl (1.5 nmol) CGRP. The levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone were measured. Epididymal sperms were used to determine the sperm parameters. Results The levels of testosterone, LH and FSH in CGRP group was significantly lower than in artificial cerebrospinal fluid (ACSF) group (P<0.05). The concentration and motility of sperm in CGRP group was significantly lower than in ACSF group (P<0.05). In CGRP group live spermatozoa and intact acrosome significantly reduced compared to the ACSF group (P<0.05). In addition, in CGRP group dead spermatozoa and lose acrosome significantly increased compared to the ACSF group (P<0.05). Conclusion ICV injection of CGRP may reduce sperm quality, probably through induction of an imbalance in FSH and LH production as well as testosterone.
Collapse
Affiliation(s)
- Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz
| | | | | | - Saeed Nazifi
- Clinical Science, School of Veterinary Science, Shiraz University, Shiraz, Iran
| |
Collapse
|
18
|
Khan SU, Fatima K, Malik F, Kalkavan H, Wani A. Cancer metastasis: Molecular mechanisms and clinical perspectives. Pharmacol Ther 2023; 250:108522. [PMID: 37661054 DOI: 10.1016/j.pharmthera.2023.108522] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Metastatic progression combined with non-responsiveness towards systemic therapy often shapes the course of disease for cancer patients and commonly determines its lethal outcome. The complex molecular events that promote metastasis are a combination of both, the acquired pro-metastatic properties of cancer cells and a metastasis-permissive or -supportive tumor micro-environment (TME). Yet, dissemination is a challenging process for cancer cells that requires a series of events to enable cancer cell survival and growth. Metastatic cancer cells have to initially detach themselves from primary tumors, overcome the challenges of their intravasal journey and colonize distant sites that are suited for their metastases. The implicated obstacles including anoikis and immune surveillance, can be overcome by intricate intra- and extracellular signaling pathways, which we will summarize and discuss in this review. Further, emerging modulators of metastasis, like the immune-microenvironment, microbiome, sublethal cell death engagement, or the nervous system will be integrated into the existing working model of metastasis.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- The University of Texas MD Anderson Cancer Center, Division of Genitourinary Medical Oncology, Holcombe Blvd, Houston, TX 77030, USA; Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India.
| | - Halime Kalkavan
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| | - Abubakar Wani
- St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, United States.
| |
Collapse
|
19
|
Khanmammadova N, Islam S, Sharma P, Amit M. Neuro-immune interactions and immuno-oncology. Trends Cancer 2023; 9:636-649. [PMID: 37258398 PMCID: PMC10524972 DOI: 10.1016/j.trecan.2023.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
The nervous system is an important component of the tumor microenvironment (TME), driving tumorigenesis and tumor progression. Neuronal cues (e.g., neurotransmitters and neuropeptides) in the TME cause phenotypic changes in immune cells, such as increased exhaustion and inhibition of effector cells, which promote immune evasion and cancer progression. Two types of immune regulation by tumor-associated nerves are discussed in this review: regulation via neuronal stimuli (i.e., by neural transmission) and checkpoint-mediated neuronal immune regulation. The latter occurs via the expression of immune checkpoints on the membranes of intratumoral nerves and glial cells. Here, we summarize novel findings regarding the neuroimmune circuits in the tumor milieu, while emphasizing the potential targets of new and affordable anticancer therapeutic approaches.
Collapse
Affiliation(s)
- Narmina Khanmammadova
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shajedul Islam
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunobiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas Houston Health Science Center Graduate School of Biomedical Sciences, Department of Neuroscience, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
20
|
Xiong J, Wang Z, Bai J, Cheng K, Liu Q, Ni J. Calcitonin gene-related peptide: a potential protective agent in cerebral ischemia-reperfusion injury. Front Neurosci 2023; 17:1184766. [PMID: 37529236 PMCID: PMC10387546 DOI: 10.3389/fnins.2023.1184766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/29/2023] [Indexed: 08/03/2023] Open
Abstract
Ischemic stroke is the most common type of cerebrovascular disease with high disability and mortality rates, which severely burdens patients, their families, and society. At present, thrombolytic therapy is mainly used for the treatment of ischemic strokes. Even though it can achieve a good effect, thrombolytic recanalization can cause reperfusion injury. Calcitonin gene-related peptide (CGRP) is a neuropeptide that plays a neuroprotective role in the process of ischemia-reperfusion injury. By combining with its specific receptors, CGRP can induce vasodilation of local cerebral ischemia by directly activating the cAMP-PKA pathway in vascular smooth muscle cells and by indirectly activating the NO-cGMP pathway in an endothelial cell-dependent manner,thus rapidly increasing ischemic local blood flow together with reperfusion. CGRP, as a key effector molecule of neurogenic inflammation, can reduce the activation of microglia, downregulates Th1 classical inflammation, and reduce the production of TNF-α, IL-2, and IFN-γ and the innate immune response of macrophages, leading to the reduction of inflammatory factors. CGRP can reduce the overexpression of the aquaporin-4 (AQP-4) protein and its mRNA in the cerebral ischemic junction, and play a role in reducing cerebral edema. CGRP can protect endothelial cells from angiotensin II by reducing the production of oxidants and protecting antioxidant defense. Furthermore, CGRP-upregulated eNOS can further induce VEGF expression, which then promotes the survival and angiogenesis of vascular endothelial cells. CGRP can also reduce apoptosis by promoting the expression of Bcl-2 and inhibiting the expression of caspase-3. These effects suggest that CGRP can reduce brain injury and repair damaged nerve function. In this review, we focused on the role of CGRP in cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Jie Xiong
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Zhiyong Wang
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Junhui Bai
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Keling Cheng
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Qicai Liu
- Department of Reproductive Medicine Centre, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun Ni
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
21
|
Tu NH, Inoue K, Lewis PK, Khan A, Hwang JH, Chokshi V, Dabovic BB, Selvaraj S, Bhattacharya A, Dubeykovskaya Z, Pinkerton NM, Bunnett NW, Loomis CA, Albertson DG, Schmidt BL. Calcitonin Related Polypeptide Alpha Mediates Oral Cancer Pain. Cells 2023; 12:1675. [PMID: 37443709 PMCID: PMC10341289 DOI: 10.3390/cells12131675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Oral cancer patients suffer pain at the site of the cancer. Calcitonin gene related polypeptide (CGRP), a neuropeptide expressed by a subset of primary afferent neurons, promotes oral cancer growth. CGRP also mediates trigeminal pain (migraine) and neurogenic inflammation. The contribution of CGRP to oral cancer pain is investigated in the present study. The findings demonstrate that CGRP-immunoreactive (-ir) neurons and neurites innervate orthotopic oral cancer xenograft tumors in mice. Cancer increases anterograde transport of CGRP in axons innervating the tumor, supporting neurogenic secretion as the source of CGRP in the oral cancer microenvironment. CGRP antagonism reverses oral cancer nociception in preclinical oral cancer pain models. Single-cell RNA-sequencing is used to identify cell types in the cancer microenvironment expressing the CGRP receptor components, receptor activity modifying protein 1 Ramp1 and calcitonin receptor like receptor (CLR, encoded by Calcrl). Ramp1 and Calcrl transcripts are detected in cells expressing marker genes for Schwann cells, endothelial cells, fibroblasts and immune cells. Ramp1 and Calcrl transcripts are more frequently detected in cells expressing fibroblast and immune cell markers. This work identifies CGRP as mediator of oral cancer pain and suggests the antagonism of CGRP to alleviate oral cancer pain.
Collapse
Affiliation(s)
- Nguyen Huu Tu
- Department of Oral and Maxillofacial Surgery, Translational Research Center, New York University College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (A.K.); (J.H.H.); (V.C.); (A.B.); (Z.D.)
| | - Kenji Inoue
- Department of Oral and Maxillofacial Surgery, Translational Research Center, New York University College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (A.K.); (J.H.H.); (V.C.); (A.B.); (Z.D.)
| | - Parker K. Lewis
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, New York, NY 10010, USA; (P.K.L.); (N.M.P.)
| | - Ammar Khan
- Department of Oral and Maxillofacial Surgery, Translational Research Center, New York University College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (A.K.); (J.H.H.); (V.C.); (A.B.); (Z.D.)
| | - Jun Hyeong Hwang
- Department of Oral and Maxillofacial Surgery, Translational Research Center, New York University College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (A.K.); (J.H.H.); (V.C.); (A.B.); (Z.D.)
| | - Varun Chokshi
- Department of Oral and Maxillofacial Surgery, Translational Research Center, New York University College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (A.K.); (J.H.H.); (V.C.); (A.B.); (Z.D.)
| | - Branka Brukner Dabovic
- Department of Pathology, NYU Langone Health, New York, NY 10010, USA; (B.B.D.); (S.S.); (C.A.L.)
| | - Shanmugapriya Selvaraj
- Department of Pathology, NYU Langone Health, New York, NY 10010, USA; (B.B.D.); (S.S.); (C.A.L.)
| | - Aditi Bhattacharya
- Department of Oral and Maxillofacial Surgery, Translational Research Center, New York University College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (A.K.); (J.H.H.); (V.C.); (A.B.); (Z.D.)
| | - Zinaida Dubeykovskaya
- Department of Oral and Maxillofacial Surgery, Translational Research Center, New York University College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (A.K.); (J.H.H.); (V.C.); (A.B.); (Z.D.)
| | - Nathalie M. Pinkerton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, New York, NY 10010, USA; (P.K.L.); (N.M.P.)
| | - Nigel W. Bunnett
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA
- NYU Pain Research Center, New York University College of Dentistry, New York, NY 10010, USA
| | - Cynthia A. Loomis
- Department of Pathology, NYU Langone Health, New York, NY 10010, USA; (B.B.D.); (S.S.); (C.A.L.)
| | - Donna G. Albertson
- Department of Oral and Maxillofacial Surgery, Translational Research Center, New York University College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (A.K.); (J.H.H.); (V.C.); (A.B.); (Z.D.)
- NYU Pain Research Center, New York University College of Dentistry, New York, NY 10010, USA
| | - Brian L. Schmidt
- Department of Oral and Maxillofacial Surgery, Translational Research Center, New York University College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (A.K.); (J.H.H.); (V.C.); (A.B.); (Z.D.)
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA
- NYU Pain Research Center, New York University College of Dentistry, New York, NY 10010, USA
| |
Collapse
|
22
|
Wang Q, Qin H, Deng J, Xu H, Liu S, Weng J, Zeng H. Research Progress in Calcitonin Gene-Related Peptide and Bone Repair. Biomolecules 2023; 13:biom13050838. [PMID: 37238709 DOI: 10.3390/biom13050838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Calcitonin gene-related peptide (CGRP) has 37 amino acids. Initially, CGRP had vasodilatory and nociceptive effects. As research progressed, evidence revealed that the peripheral nervous system is closely associated with bone metabolism, osteogenesis, and bone remodeling. Thus, CGRP is the bridge between the nervous system and the skeletal muscle system. CGRP can promote osteogenesis, inhibit bone resorption, promote vascular growth, and regulate the immune microenvironment. The G protein-coupled pathway is vital for its effects, while MAPK, Hippo, NF-κB, and other pathways have signal crosstalk, affecting cell proliferation and differentiation. The current review provides a detailed description of the bone repair effects of CGRP, subjected to several therapeutic studies, such as drug injection, gene editing, and novel bone repair materials.
Collapse
Affiliation(s)
- Qichang Wang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- School of Clinical Medicine, Department of Medicine, Shenzhen University, Shenzhen 518061, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China
| | - Haotian Qin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jiapeng Deng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Huihui Xu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Su Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jian Weng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China
| |
Collapse
|
23
|
Kumar V, Kingsley D, Perikamana SM, Mogha P, Goodwin CR, Varghese S. Self-assembled innervated vasculature-on-a-chip to study nociception. Biofabrication 2023; 15:10.1088/1758-5090/acc904. [PMID: 36996841 PMCID: PMC10152403 DOI: 10.1088/1758-5090/acc904] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/30/2023] [Indexed: 04/01/2023]
Abstract
Nociceptor sensory neurons play a key role in eliciting pain. An active crosstalk between nociceptor neurons and the vascular system at the molecular and cellular level is required to sense and respond to noxious stimuli. Besides nociception, interaction between nociceptor neurons and vasculature also contributes to neurogenesis and angiogenesis.In vitromodels of innervated vasculature can greatly help delineate these roles while facilitating disease modeling and drug screening. Herein, we report the development of a microfluidic-assisted tissue model of nociception in the presence of microvasculature. The self-assembled innervated microvasculature was engineered using endothelial cells and primary dorsal root ganglion (DRG) neurons. The sensory neurons and the endothelial cells displayed distinct morphologies in presence of each other. The neurons exhibited an elevated response to capsaicin in the presence of vasculature. Concomitantly, increased transient receptor potential cation channel subfamily V member 1 (TRPV1) receptor expression was observed in the DRG neurons in presence of vascularization. Finally, we demonstrated the applicability of this platform for modeling nociception associated with tissue acidosis. While not demonstrated here, this platform could also serve as a tool to study pain resulting from vascular disorders while also paving the way towards the development of innervated microphysiological models.
Collapse
Affiliation(s)
- Vardhman Kumar
- Department of Biomedical Engineering, Duke University, Durham NC
| | - David Kingsley
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham NC
| | | | - Pankaj Mogha
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham NC
| | - C Rory Goodwin
- Department of Neurosurgery, Spine Division, Duke University Medical Center, Durham, NC
| | - Shyni Varghese
- Department of Biomedical Engineering, Duke University, Durham NC
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham NC
- Department of Mechanical Engineering and Material Science, Duke University, Durham NC
| |
Collapse
|
24
|
Gárate G, Pascual M, Rivero M, Toriello M, Pérez-Pereda S, González-Quintanilla V, Madera J, Gutiérrez-Cuadra M, Fariñas MDC, Hernández JL, Olmos JM, Pascual J. Serum Calcitonin Gene-Related Peptide α and β Levels are Increased in COVID-19 Inpatients. Arch Med Res 2023; 54:56-63. [PMID: 36588002 PMCID: PMC9801185 DOI: 10.1016/j.arcmed.2022.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/25/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Vasoactive peptides play an important role in a wide range of physiological and pathological conditions. Due to its known functions, the calcitonin gene-related peptide (CGRP) has been suggested as a possible modulator of the hyperimmune response in COVID-19 and thus, blocking its action may lessen the pulmonary effects of COVID-19. AIM OF THE STUDY To compare the circulating levels of CGRPα and CGRPβ in healthy controls compared to hospitalized COVID-19 patients. The study also analyzed how different comorbidities and treatments may affect these concentrations in cases of COVID-19 infection with pulmonary involvement METHODS: Serum samples were collected from the antecubital vein of 51 control subjects (mean age = 55 ± 14 years; range = 26-77; 56.9% female) and 52 patients hospitalized with COVID-19 infection (mean age = 55 ± 13; range = 23-77; 55.8% female) from December 2020 to May 2021. Enzyme-linked immunosorbent assays (ELISAs) were used for CGRPα (Abbexa, UK) and CGRPβ (CUSABIO, China) measurements. Comorbidities, symptoms, and treatments of infection were listed. RESULTS The results showed that the serum levels of both isoforms of CGRP were significantly higher in patients with COVID-19 (α: 57.9 ± 35.8 pg/mL; β: 6.1 ± 2.6 pg/mL) compared to controls (α: 41.8 ± 25.4 pg/mL; β: 4.5 ± 2.4 pg/mL) (p <0.01). Also, the presence of arterial hypertension (HT), obesity, or corticosteroid treatment significantly alter the serum concentration of CGRPα in the subgroups compared to controls. CONCLUSION The elevated serum CGRP levels found in our COVID-19 group compared to controls may suggest that CGRP plays a role in the pathophysiology of the disease, more specifically, in the cytokine storm and in the pulmonary involvement. Future studies should focus on the source of this CGRP elevation.
Collapse
Affiliation(s)
- Gabriel Gárate
- Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - Marta Pascual
- Service of Gastroenterology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - Montserrat Rivero
- Service of Gastroenterology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - María Toriello
- Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - Sara Pérez-Pereda
- Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - Vicente González-Quintanilla
- Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - Jorge Madera
- Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - Manuel Gutiérrez-Cuadra
- Service of Infectious Diseases, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - María Del Carmen Fariñas
- Service of Infectious Diseases, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - José Luis Hernández
- Service of Internal Medicine, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - José Manuel Olmos
- Service of Internal Medicine, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - Julio Pascual
- Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain.
| |
Collapse
|
25
|
Chang CL, Cai Z, Hsu SYT. Gel-forming antagonist provides a lasting effect on CGRP-induced vasodilation. Front Pharmacol 2022; 13:1040951. [PMID: 36569288 PMCID: PMC9772450 DOI: 10.3389/fphar.2022.1040951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Migraine affects ∼15% of the adult population, and the standard treatment includes the use of triptans, ergotamines, and analgesics. Recently, CGRP and its receptor, the CLR/RAMP1 receptor complex, have been targeted for migraine treatment due to their critical roles in mediating migraine headaches. The effort has led to the approval of several anti-CGRP antibodies for chronic migraine treatment. However, many patients still suffer continuous struggles with migraine, perhaps due to the limited ability of anti-CGRP therapeutics to fully reduce CGRP levels or reach target cells. An alternative anti-CGRP strategy may help address the medical need of patients who do not respond to existing therapeutics. By serendipity, we have recently found that several chimeric adrenomedullin/adrenomedullin 2 peptides are potent CLR/RAMP receptor antagonists and self-assemble to form liquid gels. Among these analogs, the ADE651 analog, which potently inhibits CLR/RAMP1 receptor signaling, forms gels at a 6-20% level. Screening of ADE651 variants indicated that residues at the junctional region of this chimeric peptide are important for gaining the gel-forming capability. Gel-formation significantly slowed the passage of ADE651 molecules through Centricon filters. Consistently, subcutaneous injection of ADE651 gel in rats led to the sustained presence of ADE651 in circulation for >1 week. In addition, analysis of vascular blood flow in rat hindlimbs showed ADE651 significantly reduces CGRP-induced vasodilation. Because gel-forming antagonists could have direct and sustained access to target cells, ADE651 and related antagonists for CLR/RAMP receptors may represent promising candidates for targeting CGRP- and/or adrenomedullin-mediated headaches in migraine patients.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Taoyuan, Taiwan
| | - Zheqing Cai
- CL Laboratory LLC, Gaithersburg, MD, United States
| | - Sheau Yu Teddy Hsu
- Adepthera LLC, San Jose, CA, United States,*Correspondence: Sheau Yu Teddy Hsu,
| |
Collapse
|
26
|
Gu S, Shu L, Zhou L, Wang Y, Xue H, Jin L, Xia Z, Dai X, Gao P, Cheng H. Interfering with CALCRL expression inhibits glioma proliferation, promotes apoptosis, and predicts prognosis in low-grade gliomas. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1277. [PMID: 36618798 PMCID: PMC9816851 DOI: 10.21037/atm-22-5154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
Background CALCRL is involved in a variety of key biological processes, including cell proliferation, apoptosis, angiogenesis, and inflammation. However, the role of CALCRL in glioma remains unknown. The purpose of this study was to investigate the effect of differential CALCRL expression on the malignant progression of glioma and its value in glioma prognosis. Methods Sequencing data from glioma and normal tissues were downloaded from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, and the downloaded data were statistically analyzed using bioinformatics tools and the corresponding R package. The expression of CALCRL in normal brain tissue and different grades of glioma tissue was detected by pathological and immunohistochemical staining of clinical glioma specimens. The expression of CALCRL in different glioma cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR), and the U87 cell line with high expression was selected to construct the CALCRL knockdown model by transfection with short hairpin (shRNA). The cell proliferation ability was detected by Celigo assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the ability of cell clone formation was detected by clone formation assay, and the level of apoptosis was detected by flow cytometry. Results The expression of CALCRL in glioma was significantly upregulated compared with that of normal tissue, especially in low-grade glioma (LGG) compared to glioblastoma, and the differential expression of CALCRL correlated significantly with the prognosis of LGG. Clinical pathology and immunohistochemistry showed that the expression of CALCRL was related to the pathological grade of glioma, and the highest expression was found in World Health Organization (WHO) grade Ⅲ glioma. The results of qRT-PCR showed that CALCRL expression was highest in the U87 cell line. After knockdown of CALCRL expression, the proliferation and clonogenic ability of U87 cells were significantly decreased, and the apoptosis rate was significantly increased. Conclusions CALCRL is highly expressed in LGG. Interfering with CALCRL expression inhibits glioma cell proliferation and promotes apoptosis, and thus has potential as a biomarker and therapeutic target for the prognosis of those with LGGs.
Collapse
Affiliation(s)
- Shengcai Gu
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Shu
- Department of Clinical Medicine, the First Clinical College of Anhui Medical University, Hefei, China
| | - Lv Zhou
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuxin Wang
- Department of Clinical Medicine, the First Clinical College of Anhui Medical University, Hefei, China
| | - Hanying Xue
- Department of Clinical Medicine, the First Clinical College of Anhui Medical University, Hefei, China
| | - Lan Jin
- Department of Clinical Medicine, the First Clinical College of Anhui Medical University, Hefei, China
| | - Zhiyu Xia
- Department of Clinical Medicine, the First Clinical College of Anhui Medical University, Hefei, China
| | - Xingliang Dai
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peng Gao
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hongwei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
27
|
McIlvried LA, Atherton MA, Horan NL, Goch TN, Scheff NN. Sensory Neurotransmitter Calcitonin Gene-Related Peptide Modulates Tumor Growth and Lymphocyte Infiltration in Oral Squamous Cell Carcinoma. Adv Biol (Weinh) 2022; 6:e2200019. [PMID: 35388989 PMCID: PMC9474661 DOI: 10.1002/adbi.202200019] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/15/2022] [Indexed: 01/28/2023]
Abstract
Head and neck squamous cell carcinoma are highly innervated by peripheral sensory neurons. Local neurotransmitter release (e.g., calcitonin gene-related peptide (CGRP)) from sensory neurons innervating cancer is linked to tumorigenesis. CGRP-immunoreactive nerve presence comprised 9.53±1.9% of total nerve area across 11 HNSCC patients. A syngeneic tongue tumor transplant mouse model of oral cancer and a global Calca knockout mouse (CGRPKO ) are used to investigate the impact of CGRP signaling on tumor growth and the associated immune response in vivo. In tumor-bearing CGRPKO mice, there is a significant reduction in tumor size over time compared to wildtype mice using two different mouse oral cancer cell lines. Furthermore, tumor tissue from CGRPKO mice had a significant increase in tumor-infiltrating CD4+ T cells, cytotoxic CD8+ T cells, and NK1.1+ NK cells compared to wildtype. Fluorescent-activated cell sorting and real-time qPCR are used to confirm that CD4+ T cells are isolated from tumor-bearing wildtype mice containing a high expression of Ramp1 compared to sham mice. These data suggest that sensory neurotransmitter CGRP may modulate oral cancer progression via tumor immunosurveillance. Understanding the relationship between sensory neurons and cancer will aid in repurposing clinically available nervous system drugs for the treatment of cancer.
Collapse
Affiliation(s)
- Lisa A McIlvried
- Department of Neurobiology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, 5117 Centre Ave, Pittsburgh, PA, 15213, USA
| | - Megan A Atherton
- Department of Neurobiology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, 5117 Centre Ave, Pittsburgh, PA, 15213, USA
| | - Nicole L Horan
- Department of Neurobiology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| | - Tori N Goch
- Hillman Cancer Center, University of Pittsburgh Medical Center, 5117 Centre Ave, Pittsburgh, PA, 15213, USA
| | - Nicole N Scheff
- Department of Neurobiology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, 5117 Centre Ave, Pittsburgh, PA, 15213, USA
| |
Collapse
|
28
|
The Role of Neural Signaling in the Pancreatic Cancer Microenvironment. Cancers (Basel) 2022; 14:cancers14174269. [PMID: 36077804 PMCID: PMC9454556 DOI: 10.3390/cancers14174269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Pancreatic cancer is a highly lethal malignant disease with a dense stroma, called the tumor microenvironment. Accumulating evidence indicates the important role of sympathetic, parasympathetic, and sensory nerves in the tumor microenvironment of various cancers, including pancreatic cancer. Cancer cells and neural cells interact with each other to form a complex network and cooperatively promote cancer growth and invasion. In this review article, we describe the current understanding of the role of nerves in the tumor microenvironment. Abstract Pancreatic cancer is one of the most lethal malignant diseases. Various cells in the tumor microenvironment interact with tumor cells and orchestrate to support tumor progression. Several kinds of nerves are found in the tumor microenvironment, and each plays an essential role in tumor biology. Recent studies have shown that sympathetic, parasympathetic, and sensory neurons are found in the pancreatic cancer microenvironment. Neural signaling not only targets neural cells, but tumor cells and immune cells via neural receptors expressed on these cells, through which tumor growth, inflammation, and anti-tumor immunity are affected. Thus, these broad-range effects of neural signaling in the pancreatic cancer microenvironment may represent novel therapeutic targets. The modulation of neural signaling may be a therapeutic strategy targeting the whole tumor microenvironment. In this review, we describe the current understanding of the role of nerves in the tumor microenvironment of various cancers, with an emphasis on pancreatic cancer. We also discuss the underlying mechanisms and the possibility of therapeutic applications.
Collapse
|
29
|
Zhu S, Zidan A, Pang K, Musayeva A, Kang Q, Yin J. Promotion of corneal angiogenesis by sensory neuron-derived calcitonin gene-related peptide. Exp Eye Res 2022; 220:109125. [PMID: 35618042 DOI: 10.1016/j.exer.2022.109125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
Abstract
The normal cornea has no blood vessels but has abundant innervation. There is emerging evidence that sensory nerves, originated from the trigeminal ganglion (TG) neurons, play a key role in corneal angiogenesis. In the current study, we examined the role of TG sensory neuron-derived calcitonin gene-related peptide (CGRP) in promoting corneal neovascularization (CNV). We found that CGRP was expressed in the TG and cultured TG neurons. In the cornea, minimal CGRP mRNA was detected and CGRP immunohistochemical staining was exclusively co-localized with corneal nerves, suggesting corneal nerves are likely the source of CGRP in the cornea. In response to intrastromal suture placement and neovascularization in the cornea, CGRP expression was increased in the TG. In addition, we showed that CGRP was potently pro-angiogenic, leading to vascular endothelial cell (VEC) proliferation, migration, and tube formation in vitro and corneal hemangiogenesis and lymphangiogenesis in vivo. In a co-culture system of TG neurons and VEC, blocking CGRP signaling in the conditioned media of TG neurons led to decreased VEC migration and tube formation. More importantly, subconjunctival injection of a CGRP antagonist CGRP8-37 reduced suture-induced corneal hemangiogenesis and lymphangiogenesis in vivo. Taken together, our data suggest that TG sensory neuron and corneal nerve-derived CGRP promotes corneal angiogenesis.
Collapse
Affiliation(s)
- Shuyan Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China; Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Asmaa Zidan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kunpeng Pang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Aytan Musayeva
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Qianyan Kang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Jia Yin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
CALCRL Gene is a Suitable Prognostic Factor in AML/ETO + AML Patients. JOURNAL OF ONCOLOGY 2022; 2022:3024360. [PMID: 35342399 PMCID: PMC8942673 DOI: 10.1155/2022/3024360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/16/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022]
Abstract
Introduction The t(8 ; 21) translocation is the most common chromosomal abnormality in human acute myeloid leukemia (AML) subtype 2 (M2), which forms the AML/ETO fusion gene. However, AML/ETO alone does not necessarily cause leukemia. Other factors are thought to contribute to the disease. Calcitonin receptor-like (CALCRL), a G-protein-coupled neuropeptide receptor, is involved in various biological processes, such as colony formation and drug resistance. Methods First, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to determine any differences in CALCRL expression in AML patients with and without AML/ETO and the prognostic significance of CALCRL expression in AML patients was further evaluated. Next, we detected the CALCRL expression level in 67 AML/ETO+ AML patients and 16 patients with nonmalignant hematological diseases using qRT-PCR and identified its prognostic relevance. Results Individuals in the group expressing low levels of CALCRL had a longer median survival time. In AML/ETO+ AML patients, higher mRNA levels of CALCRL were observed before treatment, which decreased after the complete remission that followed multiple chemotherapy sessions. Clinical features indicated that more patients in the CALCRLhigh group also had c-kit mutations compared with patients in other groups. Overall survival (OS) was longer in patients with lower levels of CALCRL expression, especially in patients with c-kit mutations or with more blast cells in bone marrow (BM). In addition, a longer OS was observed in the CALCRLlow group after hematopoietic stem cell transplantation (HSCT). Conclusions This preliminary study indicates that CALCRL could serve as a suitable prognostic factor in AML/ETO+ AML patients.
Collapse
|
31
|
CGRP: A New Endogenous Cell Stemness Maintenance Molecule. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4107433. [PMID: 35132349 PMCID: PMC8817839 DOI: 10.1155/2022/4107433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
Abstract
Stem cells have the ability of self-replication and multidirectional differentiation, but the mechanism of how stem cells “maintain” this ability and how to “decide” to give up this state and differentiate into cells with specific functions is still unknown. The Nobel Prize in physiology and medicine in 2021 was awarded to “temperature and tactile receptor,” which made the pain receptor TRPV1-calcitonin gene-related peptide (CGRP) pathway active again. The activation and blocking technology of CGRP has been applied to many clinical diseases. CGRP gene has complex structure and transcription process, with multiple methylation and other modification sites. It has been considered as a research hotspot and difficulty since its discovery. Drug manipulation of TRPV1 and inhibition of CGRP might improve metabolism and prolong longevity. However, whether the TRPV1-neuropeptide-CGRP pathway is directly or indirectly involved in stem cell self-replication and multidirectional differentiation is unclear. Recent studies have found that CGRP is closely related to the migration and differentiation of tumor stem cells, which may be realized by turning off or turning on the CGRP gene expression in stem cells and activating a variety of ways to regulate stem cell niches. In this study, we reviewed the advances in researches concentrated on the biological effects of CGRP as a new endogenous switching of cell stemness.
Collapse
|
32
|
Jiang Y, Xin N, Xiong Y, Guo Y, Yuan Y, Zhang Q, Gong P. αCGRP Regulates Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells Through ERK1/2 and p38 MAPK Signaling Pathways. Cell Transplant 2022; 31:9636897221107636. [PMID: 35758252 PMCID: PMC9247368 DOI: 10.1177/09636897221107636] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As a typical neuropeptide richly distributed in central and peripheral nervous
systems, α-calcitonin-gene-related peptide (αCGRP) has recently been found to
play a crucial role in bone development and metabolism, but the mechanisms
involved are not fully uncovered. Here, this study aimed to investigate the
effects and underlying molecular mechanisms of αCGRP in regulating the
osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Using
microarray technology, gene ontology (GO) and kyoto encyclopedia of genes and
genomes (KEGG) analyses revealed that osteogenic properties of BMSCs were
facilitated and mitogen-activated protein kinase (MAPK) signaling pathway was
upregulated by αCGRP in this process. Through western blot assay, we proved that
αCGRP led to an increased phosphorylation level of extracellular
signal-regulated kinases 1 and 2 (ERK1/2) and p38 MAPK signaling cascades in a
time-dependent manner. And αCGRP could promote differentiative capacity of
BMSCs, showing upregulated mRNA and protein expression level of alkaline
phosphatase (Alp), collagen type 1 (Col-1), osteopontin (Opn), and runt-related
transcription factor 2 (Runx2), as well as increased ALP activity and calcified
nodules. The addition of ERK1/2 or p38 MAPK inhibitor—U0126 or SB203580,
resulted in an impaired osteogenic differentiation of BMSCs. Besides,
inactivation of this signal transduction had negative impacts on proliferative
activity and apoptotic process of αCGRP-mediated BMSCs. Our findings
demonstrated that MAPK signaling pathway, at least in part, was responsible for
the enhanced BMSCs’ osteogenesis induced by αCGRP, which might offer us
promising strategies for bone-related disorders.
Collapse
Affiliation(s)
- Yixuan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Na Xin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanjun Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Liu S, Chen T, Wang R, Huang H, Fu S, Zhao Y, Wang S, Wan L. Exploring the effect of the "quaternary regulation" theory of "peripheral nerve-angiogenesis-osteoclast-osteogenesis" on osteoporosis based on neuropeptides. Front Endocrinol (Lausanne) 2022; 13:908043. [PMID: 35983518 PMCID: PMC9379541 DOI: 10.3389/fendo.2022.908043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Osteoporosis is a common bone metabolic disease among the middle-aged and elderly, with its high incidence rate and a major cause of disability and mortality. Early studies found that bone metabolic homeostasis is achieved through osteogenesis-osteoclast coupling. Although current anti-osteoporosis drugs can attenuate bone loss caused by aging, they present specific side effects. With the discovery of CD31hi Emcnhi blood vessels in 2014, the effect of H-type blood vessels on bone metabolism has been valued by researchers, and the ternary regulation theory of bone metabolism of "Angiogenesis-Osteoclast-Osteogenesis" has also been recognized. Nowadays, more studies have confirmed that peripheral nerves substantially impact bone metabolism. However, due to the complex function of peripheral nerves, the crosstalk mechanism of "Peripheral nerve-Angiogenesis-Osteoclast-Osteogenesis" has not yet been fully revealed. Neuropeptide serves as signaling molecules secreted by peripheral nerves that regulate blood vessels, osteoblasts, and osteoclasts' functions. It is likely to be the breakthrough point of the quaternary regulation theory of "Peripheral nerve-Angiogenesis-Osteoclast-Osteogenesis". Here, we discuss the effect of peripheral nerves on osteoporosis based on neuropeptides.
Collapse
Affiliation(s)
- Shuhua Liu
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tongying Chen
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruolin Wang
- Department of Nephrology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hongxing Huang
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sai Fu
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Zhao
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shihao Wang
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wan
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Lei Wan,
| |
Collapse
|
34
|
A pilot analysis of headache disorders in breast cancer patients. Neurol Sci 2021; 43:3313-3320. [PMID: 34817729 DOI: 10.1007/s10072-021-05698-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/24/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The interaction between breast cancer and migraine is complex and not fully elucidated. Large epidemiological studies point towards a beneficial effect of migraines on breast cancer (BC). We aimed to investigate the BC-migraine relationship, with strict data checks and clinical evaluations of both BC and common headache forms. METHODS Consecutive BC patients were evaluated with the International Classification of Headache Disorders. Clinical data on the BC subtypes and treatments were collected. Parametric and nonparametric statistics were used according to data distributions. RESULTS Fifty patients were recruited. The mean age was 53.5 ± 12.5 years; 42% were postmenopausal, 52% were premenopausal, and 6% were peri-menopausal. Eleven patients were diagnosed as luminal A, nine as luminal B, 24 as HER2-positive (HER2 +), six as triple-negative BC. Thirty-eight (76%) patients had hormone receptor-positive disease. Ninety-two percent received chemotherapy, 66% received endocrine therapy, and 52% received radiotherapy. Nine out of 50 reported a worsening of headache after systemic treatment. Migraine was diagnosed in 29 patients (18 with menstrual migraine), tension-type headache (TTH) in nine, and no headache in 12. Patients with migraine were younger (48.4 ± 10.7 vs. 60.5 ± 12; p < 0.01). Patients with migraine and TTH had a higher chance of having a HER2 + BC (p < 0.05). Active migraine was associated with a higher expression of estrogen receptors (p = 0.04). CONCLUSIONS Patients with active migraine had higher estrogen receptor expression, while migraine and TTH patients mainly had HER2 + BC. This association was not known earlier and could be helpful to understand deeper the relationship between BC and headache.
Collapse
|
35
|
Zhang Y, Chen M, Liu Z, Wang X, Ji T. The neuropeptide calcitonin gene-related peptide links perineural invasion with lymph node metastasis in oral squamous cell carcinoma. BMC Cancer 2021; 21:1254. [PMID: 34800986 PMCID: PMC8606076 DOI: 10.1186/s12885-021-08998-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/10/2021] [Indexed: 01/12/2023] Open
Abstract
Objective Although perineural invasion (PNI) is well-known to be correlated with and able to predict lymph node metastasis (LNM) in oral squamous cell carcinoma (OSCC), the clinical and molecular correlation between PNI and LNM has not been elucidated, and preoperative biomarkers for LNM prediction in OSCC are urgently needed. Materials and methods The correlation between PNI and LNM was retrospectively evaluated using a cohort of 218 patients diagnosed with OSCC. Candidate neuropeptides were screened based on TCGA database and verified via immunohistochemistry and Western blot analyses. ELISA was used to detect calcitonin gene-related peptide (CGRP) in patient plasma. In vitro assays were used to explore the effects of CGRP on OSCC cells. Results OSCC patients with PNI had a higher incidence of LNM (69.86% vs. 26.2%, P < 0.0001, n = 218). CGRP expression was upregulated in the PNI niche and in metastatic lymph nodes, and was correlated with poor overall survival of OSCC patients. Preoperative plasma CGRP levels were higher in OSCC patients (n = 70) compared to healthy donors (n = 60) (48.59 vs. 14.58 pg/ml, P < 0.0001), and were correlated with LNM (P < 0.0001) and PNI (P = 0.0002). Preoperative plasma CGRP levels alone yielded an AUC value of 0.8088 to predict LNM, and CGRP levels combined with preoperative T stage reached an AUC value of 0.8590. CGRP promoted proliferation and migration abilities of OSCC cells, which could be antagonized by either pharmacological or genetic blockade of the CGRP receptor. Conclusions The neuropeptide CGRP links PNI and LNM in OSCC, and preoperative plasma CGRP levels can be used to predict LNM in OSCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08998-9.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Mingtao Chen
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Zheqi Liu
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Xu Wang
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China. .,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China. .,Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Tong Ji
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China. .,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China. .,Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
36
|
Calcitonin receptor-like (CALCRL) is a marker of stemness and an independent predictor of outcome in pediatric AML. Blood Adv 2021; 5:4413-4421. [PMID: 34559198 PMCID: PMC8579256 DOI: 10.1182/bloodadvances.2021005236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022] Open
Abstract
We have recently identified the G protein-coupled neuropeptide receptor calcitonin receptor-like (CALCRL) as an independent prognostic biomarker and a therapeutic target in more than 1500 adult patients with acute myeloid leukemia (AML). Here, we confirmed CALCRL expression as a prognostic factor in a cohort of 284 pediatric patients with AML. High CALCRL expression was independently associated with event-free survival (hazard ratio [HR], 1.87; 95% confidence interval [CI], 1.36-2.57; P = .0001), overall survival (HR, 1.55; 95% CI, 1.06-2.27; P = .025), and cumulative incidence of relapse (HR, 2.10; 95% CI, 1.49-1.96; P < .0001) when adjusting for age, white blood cell count, and genetic risk. Despite its association with leukemia stem cell signatures, CALCRL expression remained associated with all end points when compared with the 17-gene leukemic stem cell score. The strong association of CALCRL expression with the risk of relapse also in the pediatric population supports its role as novel age-independent master regulator of relapse-initiating, drug-tolerant AML cells in humans.
Collapse
|
37
|
Han T, Zuo Z, Qu M, Zhou Y, Li Q, Wang H. Comprehensive Analysis of Inflammatory Response-Related Genes, and Prognosis and Immune Infiltration in Patients With Low-Grade Glioma. Front Pharmacol 2021; 12:748993. [PMID: 34712139 PMCID: PMC8545815 DOI: 10.3389/fphar.2021.748993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Although low-grade glioma (LGG) has a good prognosis, it is prone to malignant transformation into high-grade glioma. It has been confirmed that the characteristics of inflammatory factors and immune microenvironment are closely related to the occurrence and development of tumors. It is necessary to clarify the role of inflammatory genes and immune infiltration in LGG. Methods: We downloaded the transcriptome gene expression data and corresponding clinical data of LGG patients from the TCGA and GTEX databases to screen prognosis-related differentially expressed inflammatory genes with the difference analysis and single-factor Cox regression analysis. The prognostic risk model was constructed by LASSO Cox regression analysis, which enables us to compare the overall survival rate of high- and low-risk groups in the model by Kaplan–Meier analysis and subsequently draw the risk curve and survival status diagram. We analyzed the accuracy of the prediction model via ROC curves and performed GSEA enrichment analysis. The ssGSEA algorithm was used to calculate the score of immune cell infiltration and the activity of immune-related pathways. The CellMiner database was used to study drug sensitivity. Results: In this study, 3 genes (CALCRL, MMP14, and SELL) were selected from 9 prognosis-related differential inflammation genes through LASSO Cox regression analysis to construct a prognostic risk model. Further analysis showed that the risk score was negatively correlated with the prognosis, and the ROC curve showed that the accuracy of the model was better. The age, grade, and risk score can be used as independent prognostic factors (p < 0.001). GSEA analysis confirmed that 6 immune-related pathways were enriched in the high-risk group. We found that the degree of infiltration of 12 immune cell subpopulations and the scores of 13 immune functions and pathways in the high-risk group were significantly increased by applying the ssGSEA method (p < 0.05). Finally, we explored the relationship between the genes in the model and the susceptibility of drugs. Conclusion: This study analyzed the correlation between the inflammation-related risk model and the immune microenvironment. It is expected to provide a reference for the screening of LGG prognostic markers and the evaluation of immune response.
Collapse
Affiliation(s)
- Tao Han
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhifan Zuo
- The General Hospital of Northern Theater Command Training Base for Graduate, China Medical University, Shenyang, China
| | - Meilin Qu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yinghui Zhou
- The General Hospital of Northern Theater Command Training Base for Graduate, Jinzhou Medical University, Jinzhou, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongjin Wang
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
38
|
Gysler SM, Drapkin R. Tumor innervation: peripheral nerves take control of the tumor microenvironment. J Clin Invest 2021; 131:e147276. [PMID: 34060481 DOI: 10.1172/jci147276] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In recent decades, cancer research has expanded exponentially beyond the study of abnormally dividing cells to include complex and extensive heterotypic interactions between cancer and noncancer cells that constitute the tumor microenvironment (TME). Modulation of stromal, immune, and endothelial cells by cancer cells promotes proliferation, survival, and metabolic changes that support tumor growth and metastasis. Recent evidence demonstrates that tumors can recruit peripheral nerves to the TME, leading to enhanced tumor growth in a range of cancer models through distinct mechanisms. This process, termed tumor innervation, is associated with an aggressive tumor phenotype and correlates with poor prognosis in clinical studies. Therefore, the peripheral nervous system may play an underrecognized role in cancer development, harboring targetable pathways that warrant investigation. To date, nerves have been implicated in driving proliferation, invasion, metastasis, and immune evasion through locally delivered neurotransmitters. However, emerging evidence suggests that cell-cell communication via exosomes induces tumor innervation, and thus exosomes may also mediate neural regulation of the TME. In this Review, seminal studies establishing tumor innervation are discussed, and known and putative signaling mechanisms between peripheral nerves and components of the TME are explored as a means to identify potential opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Stefan M Gysler
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology.,Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, and
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology.,Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, and.,Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
39
|
Grandits AM, Wieser R. Gene expression changes contribute to stemness and therapy resistance of relapsed acute myeloid leukemia: roles of SOCS2, CALCRL, MTSS1, and KDM6A. Exp Hematol 2021; 99:1-11. [PMID: 34029637 PMCID: PMC7612147 DOI: 10.1016/j.exphem.2021.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022]
Abstract
Relapse is associated with therapy resistance and is a major cause of death in acute myeloid leukemia (AML). It is thought to result from the accretion of therapy-refractory leukemic stem cells. Genetic and transcriptional changes that are recurrently gained at relapse are likely to contribute to the increased stemness and decreased therapy responsiveness at this disease stage. Despite the recent approval of several targeted drugs, chemotherapy with cytosine arabinoside and anthracyclines is still the mainstay of AML therapy. Accordingly, a number of studies have investigated genetic and gene expression changes between diagnosis and relapse of patients subjected to such treatment. Genetic alterations recurrently acquired at relapse were identified, but were restricted to small proportions of patients, and their functional characterization is still largely pending. In contrast, the expression of a substantial number of genes was altered consistently between diagnosis and recurrence of AML. Recent studies corroborated the roles of the upregulation of SOCS2 and CALCRL and of the downregulation of MTSS1 and KDM6A in therapy resistance and/or stemness of AML. These findings spur the assumption that functional investigations of genes consistently altered at recurrence of AML have the potential to promote the development of novel targeted drugs that may help to improve the outcome of this currently often fatal disease.
Collapse
Affiliation(s)
- Alexander M Grandits
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Vienna, Austria
| | - Rotraud Wieser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Vienna, Austria.
| |
Collapse
|
40
|
Ochoa-Callejero L, García-Sanmartín J, Villoslada-Blanco P, Íñiguez M, Pérez-Matute P, Pujadas E, Fowkes ME, Brody R, Oteo JA, Martínez A. Circulating Levels of Calcitonin Gene-Related Peptide Are Lower in COVID-19 Patients. J Endocr Soc 2021; 5:bvaa199. [PMID: 33506161 PMCID: PMC7798995 DOI: 10.1210/jendso/bvaa199] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Indexed: 12/27/2022] Open
Abstract
Background To better understand the biology of COVID-19, we have explored the behavior of calcitonin gene-related peptide (CGRP), an angiogenic, vasodilating, and immune modulating peptide, in severe acute respiratory syndrome coronavirus 2 positive patients. Methods Levels of CGRP in the serum of 57 COVID-19 patients (24 asymptomatic, 23 hospitalized in the general ward, and 10 admitted to the intensive care unit) and healthy donors (n = 24) were measured by enzyme-linked immunosorbent assay (ELISA). In addition, to better understand the physiological consequences of the observed variations, we investigated by immunofluorescence the distribution of receptor activity modifying protein 1 (RAMP1), one of the components of the CGRP receptor, in autopsy lung specimens. Results CGRP levels were greatly decreased in COVID-19 patients (P < 0.001) when compared to controls, and there were no significant differences due to disease severity, sex, age, or comorbidities. We found that COVID-19 patients treated with proton pump inhibitors had lower levels of CGRP than other patients not taking this treatment (P = 0.001). RAMP1 immunoreactivity was found in smooth muscle cells of large blood vessels and the bronchial tree and in the airways´ epithelium. In COVID-19 samples, RAMP1 was also found in proliferating type II pneumocytes, a common finding in these patients. Conclusions The lower levels of CGRP should negatively impact the respiratory physiology of COVID-19 patients due to vasoconstriction, improper angiogenesis, less epithelial repair, and faulty immune response. Therefore, restoring CGRP levels in these patients may represent a novel therapeutic approach for COVID-19.
Collapse
Affiliation(s)
| | | | | | - María Íñiguez
- Infectious Diseases, Microbiota, and Metabolism Unit (CIBIR), Logroño, Spain
| | | | - Elisabet Pujadas
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary E Fowkes
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Brody
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - José A Oteo
- Infectious Diseases, Microbiota, and Metabolism Unit (CIBIR), Logroño, Spain.,Infectious Diseases Department, Hospital Universitario San Pedro, Logroño, Spain
| | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
41
|
Zhu W, Sheng D, Shao Y, Zhang Q, Peng Y. Neuronal calcitonin gene-related peptide promotes prostate tumor growth in the bone microenvironment. Peptides 2021; 135:170423. [PMID: 33086087 DOI: 10.1016/j.peptides.2020.170423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 11/27/2022]
Abstract
Advanced stage of prostate cancer cells preferentially metastasizes to varying bones of prostate cancer patients, resulting in incurable disease with poor prognosis and limited therapeutical treatment options. Calcitonin gene-related peptide (CGRP), a neuropeptide produced by prostate gland, is known to play a pivotal role in facilitating tumor growth and metastasis of numerous human cancers. In this study, we aim to investigate the clinical relevance of CGRP in prostate cancer patients and the effects of CGRP and CGRP antagonists on prostate tumor growth in the mouse model. The prostate tumor-bearing mice were received either CGRP or CGRP antagonist treatment, and the tumor growth was monitored by quantification of luminescence intensities. We found that the CGRP+ nerve fiber density and serum CGRP levels were substantially upregulated in the bone or serum specimens from advanced prostate cancer patients as well as in prostate tumor-bearing mice. Administration of CGRP promoted, whereas treatment of CGRP antagonists inhibited prostate tumor growth in the femurs of mice. In addition, CGRP treatment activated extracellular signal-regulated kinases (ERKs)/ Signal transducer and activator of transcription 3 (STAT3) signaling in prostate cancer cells. Targeting CGRP may serve as a potential therapeutic strategy for advanced prostate cancer patients.
Collapse
Affiliation(s)
- Wenjing Zhu
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Dongya Sheng
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yiqun Shao
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Qiang Zhang
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yu Peng
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
42
|
Xu J, Wang J, Chen X, Li Y, Mi J, Qin L. The Effects of Calcitonin Gene-Related Peptide on Bone Homeostasis and Regeneration. Curr Osteoporos Rep 2020; 18:621-632. [PMID: 33030684 DOI: 10.1007/s11914-020-00624-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The goals of this review are two folds: (1) to describe the recent understandings on the roles of calcitonin gene-related peptide-α (CGRP) in bone homeostasis and the underlying mechanisms of related neuronal regulation and (2) to propose innovative CGRP-modulated approaches for enhancing bone regeneration in challenging bone disorders. RECENT FINDINGS CGRP is predominantly produced by the densely distributed sensory neuronal fibers in bone, declining with age. Under mechanical and biochemical stimulations, CGRP releases and exerts either physiological or pathophysiological roles. CGRP at physiological level orchestrates the communications of bone cells with cells of other lineages, affecting not only osteogenesis, osteoclastogenesis, and adipogenesis but also angiogenesis, demonstrating with pronounced anabolic effect, thus is essential for maintaining bone homeostasis, with tuned nerve-vessel-bone network. In addition, its effects on immunity and cell recruitment are also crucial for bone fracture healing. Binding to the G protein-coupled receptor composited by calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein 1 (RAMP1) on cellular surface, CGRP triggers various intracellular signaling cascades involving cyclic adenosine monophosphate (cAMP) and cAMP response element-binding protein (CREB). Peaking at early stage post-fracture, CGRP promotes bone formation, displaying with larger callus. Then CGRP gradually decreases over time, allowing normal or physiological bone remodeling. By elevating CGRP at early stage, low-intensity pulsed ultrasound (LIPUS), electrical stimulation, and magnesium-based bio-mineral products may promisingly accelerate bone regeneration experimentally in medical conditions like osteoporosis, osteoporotic fracture, and spine fusion. Excess CGRP expression is commonly observed in pathological conditions including cancer metastatic lesions in bone and fracture delayed- or non-healing, resulting in persistent chronic pain. To date, these discoveries have largely been limited to animal models. Clinical applications are highly desirable. Compelling evidence show the anabolic effects of CGRP on bone in animals. However, further validation on the role of CGRP and the underlying mechanisms in human skeletons is required. It remains unclear if it is type H vessel connecting neuronal CGRP to osteogenesis, and if there is only specific rather than all osteoprogenitors responsible to CGRP. Clear priority should be put to eliminate these knowledge gaps by integrating with high-resolution 3D imaging of transparent bulk bone and single-cell RNA-sequencing. Last but not the least, given that small molecule antagonists such as BIBN4096BS can block the beneficial effects of CGRP on bone, concerns on the potential side effects of humanized CGRP-neutralizing antibodies when systemically administrated to treat migraine in clinics are arising.
Collapse
Affiliation(s)
- Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Health and Science Institute, The Chinese University of Hong Kong, Hong Kong, China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xiaodan Chen
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Mi
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Health and Science Institute, The Chinese University of Hong Kong, Hong Kong, China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
43
|
Kucharczyk MW, Derrien D, Dickenson AH, Bannister K. The Stage-Specific Plasticity of Descending Modulatory Controls in a Rodent Model of Cancer-Induced Bone Pain. Cancers (Basel) 2020; 12:cancers12113286. [PMID: 33172040 PMCID: PMC7716240 DOI: 10.3390/cancers12113286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/25/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The mechanisms that underlie pain resulting from metastatic bone disease remain elusive. This translates to a clinical and socioeconomic burden—targeted therapy is not possible, and patients do not receive adequate analgesic relief. The heterogeneous nature of metastatic bone disease complicates matters. Early stage cancers are molecularly very different to their late stage counterparts and so is the pain associated with early stage and advanced tumours. Thus, analgesic approaches should differ according to disease stage. In this article, we demonstrate that a unique form of brain inhibitory control responsible for the modulation of incoming pain signals at the level of the spinal cord changes with the progression of bone tumours. This corresponds with the degree of damage to the primary afferents innervating the cancerous tissue. Plasticity in the modulation of spinal neuronal activity by descending control pathways reveals a novel opportunity for targeting bone cancer pain in a stage-specific manner. Abstract Pain resulting from metastatic bone disease is a major unmet clinical need. Studying spinal processing in rodent models of cancer pain is desirable since the percept of pain is influenced in part by modulation at the level of the transmission system in the dorsal horn of the spinal cord. Here, a rodent model of cancer-induced bone pain (CIBP) was generated following syngeneic rat mammary gland adenocarcinoma cell injection in the tibia of male Sprague Dawley rats. Disease progression was classified as “early” or “late” stage according to bone destruction. Even though wakeful CIBP rats showed progressive mechanical hypersensitivity, subsequent in vivo electrophysiological measurement of mechanically evoked deep dorsal horn spinal neuronal responses revealed no change. Rather, a dynamic reorganization of spinal neuronal modulation by descending controls was observed, and this was maladaptive only in the early stage of CIBP. Interestingly, this latter observation corresponded with the degree of damage to the primary afferents innervating the cancerous tissue. Plasticity in the modulation of spinal neuronal activity by descending control pathways reveals a novel opportunity for targeting CIBP in a stage-specific manner. Finally, the data herein have translational potential since the descending control pathways measured are present also in humans.
Collapse
Affiliation(s)
- Mateusz Wojciech Kucharczyk
- Central Modulation of Pain Group, Wolfson Centre for Age-Related Diseases, King’s College London, London SE1 1UL, UK;
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK; (D.D.); (A.H.D.)
- Correspondence: ; Tel.: +44-20-7848-4617; Fax: +44-20-7848-6806
| | - Diane Derrien
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK; (D.D.); (A.H.D.)
| | - Anthony Henry Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK; (D.D.); (A.H.D.)
| | - Kirsty Bannister
- Central Modulation of Pain Group, Wolfson Centre for Age-Related Diseases, King’s College London, London SE1 1UL, UK;
| |
Collapse
|
44
|
Zhang Y, Lin C, Wang X, Ji T. Calcitonin gene-related peptide: A promising bridge between cancer development and cancer-associated pain in oral squamous cell carcinoma. Oncol Lett 2020; 20:253. [PMID: 32994816 PMCID: PMC7509602 DOI: 10.3892/ol.2020.12116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/27/2020] [Indexed: 01/23/2023] Open
Abstract
Nerves have been widely demonstrated to exert major effects in tumor-associated microenvironments. Due to the characteristic innervation of the oral cavity and the fact that cancer-associated pain is a distinct feature of oral squamous cell carcinoma (OSCC), the sensory nerves may dominate in the OSCC-nerve microenvironment. As the most abundant neuropeptide in the trigeminal ganglion, the calcitonin gene-related peptide (CGRP) exerts a dual effect on cancer development and cancer-associated pain in various types of cancer. The present review explored the potential molecular mechanisms of the roles of CGRP in cancer development and cancer-associated pain, suggesting that CGRP may be a promising therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Chengzhong Lin
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xu Wang
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Tong Ji
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
45
|
Honda M, Ito Y, Hattori K, Hosono K, Sekiguchi K, Tsujikawa K, Unno N, Majima M. Inhibition of receptor activity-modifying protein 1 suppresses the development of endometriosis and the formation of blood and lymphatic vessels. J Cell Mol Med 2020; 24:11984-11997. [PMID: 32869443 PMCID: PMC7578853 DOI: 10.1111/jcmm.15823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
Neuroimmune interactions are involved in the development of endometriosis. Here, we examined the role of a neuropeptide, calcitonin gene–related peptide (CGRP), and its receptor, receptor activity–modifying protein (RAMP) 1, in growth of endometrial tissues and the formation of blood and lymphatic vessels in a mouse ectopic endometrial transplantation model. Endometrial fragments from donor wild‐type (WT) mice transplanted into the peritoneal wall of recipient WT mice grew with increased density of blood and lymphatic vessels. When tissues from RAMP1‐deficient (RAMP1−/−) mice were transplanted into RAMP1−/− mice, implant growth and angiogenesis/lymphangiogenesis were decreased. CGRP was up‐regulated in dorsal root ganglia, and CGRP+ nerve fibres were distributed into the implants from the peritoneum. RAMP1 was co‐expressed with CD11b (macrophages) and S100A4 (fibroblasts), but did not co‐localize with blood vessel endothelial cell marker CD31 or lymphatic vessel endothelial hyaluronan receptor (LYVE)‐1. Cultured with CGRP, macrophages up‐regulated vascular endothelial growth factor (VEGF)‐A, VEGF‐C and VEGF‐D, whereas fibroblasts up‐regulated VEGF‐C, but not VEGF‐A or VEGF‐D, in a RAMP1‐dependent manner. CGRP receptor antagonist CGRP8‐37 inhibited growth of and angiogenesis/lymphangiogenesis within endometrial tissue implants. These results suggest that RAMP1 signalling is crucial for growth and angiogenesis/lymphangiogenesis in endometrial tissue. Blockade of RAMP1 is a potential tool for the treatment of endometriosis.
Collapse
Affiliation(s)
- Masako Honda
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Sagamihara, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Sagamihara, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Sagamihara, Japan
| | - Kyoko Hattori
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Sagamihara, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Sagamihara, Japan
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Sagamihara, Japan
| | - Kazuki Sekiguchi
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Sagamihara, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Sagamihara, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Nobuya Unno
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Sagamihara, Japan
| | - Masataka Majima
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Sagamihara, Japan.,Department of Medical Therapeutics, Kanagawa Institute of Technology, Atsugi, Japan
| |
Collapse
|
46
|
Urits I, Clark G, An D, Wesp B, Zhou R, Amgalan A, Berger AA, Kassem H, Ngo AL, Kaye AD, Kaye RJ, Cornett EM, Viswanath O. An Evidence-Based Review of Fremanezumab for the Treatment of Migraine. Pain Ther 2020; 9:195-215. [PMID: 32222952 PMCID: PMC7203396 DOI: 10.1007/s40122-020-00159-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/27/2022] Open
Abstract
Migraine headache is a common, chronic, debilitating disease with a complex etiology. Current therapy for migraine headache comprises either treatments targeting acute migraine pain or prophylactic therapy aimed at increasing the length of time between migraine episodes. Recent evidence suggests that calcium gene-related peptide (CGRP) is a critical component in the pathogenesis of migraines. Fremanezumab, a monoclonal antibody against CGRP, was recently approved by the Food and Drug Administration (FDA) after multiple studies showed that it was well-tolerated, safe, and effective in the treatment of migraines. Further research is needed to elucidate the long-term effects of fremanezumab and CGRP-antagonists in general, and additional data is required in less healthy patients to estimate its effects in these populations and potentially increase the eligible group of recipients. This is a comprehensive review of the current literature on the efficacy and safety of fremanezumab for the treatment of chronic migraine. In this review we provide an update on the epidemiology, pathogenesis, diagnosis, and current treatment of migraine, and summarize the evidence for fremanezumab as a treatment for migraine.
Collapse
Affiliation(s)
- Ivan Urits
- Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA.
| | - Gavin Clark
- Georgetown University School of Medicine, Washington, DC, USA
| | - Daniel An
- Georgetown University School of Medicine, Washington, DC, USA
| | - Bredan Wesp
- Georgetown University School of Medicine, Washington, DC, USA
| | - Rebecca Zhou
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Amnon A Berger
- Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Hisham Kassem
- Department of Anesthesiology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Anh L Ngo
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pain Medicine, Pain Specialty Group, Newington, NH, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Rachel J Kaye
- Medical University of South Carolina, Charleston, SC, USA
| | - Elyse M Cornett
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Omar Viswanath
- Valley Anesthesiology and Pain Consultants - Envision Physician Services, Phoenix, AZ, USA
- Department of Anesthesiology, Creighton University School of Medicine, Omaha, NE, USA
- Department of Anesthesiology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| |
Collapse
|
47
|
Tsuru S, Ito Y, Matsuda H, Hosono K, Inoue T, Nakamoto S, Kurashige C, Mishima T, Tsujikawa K, Okamoto H, Majima M. RAMP1 signaling in immune cells regulates inflammation-associated lymphangiogenesis. J Transl Med 2020; 100:738-750. [PMID: 31911634 DOI: 10.1038/s41374-019-0364-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Calcitonin gene-related peptide (CGRP) regulates inflammation via signaling through receptor activity-modifying protein (RAMP) 1. Here, we investigated the role of RAMP1 signaling in growth of lymphatic vessels during inflammation. Lymphangiogenesis in the diaphragm of RAMP1-deficient (-/-) mice or their wild-type (WT) counterparts was induced by repeated intraperitoneal injection of lipopolysaccharide (LPS). Compared with WT mice, LPS-induced lymphangiogenesis in RAMP1-/- mice was suppressed. This was accompanied by the reduced expression of vascular endothelial growth factor (VEGF)-C and VEGF-D. The number of CD4+ cells in diaphragm tissue from WT mice was greater than RAMP1-/- mice. Removing CD4+ cells attenuated lymphangiogenesis and expression of VEGF-C and VEGF-D. CD4+ cells isolated from RAMP1-/- mice exhibited reduced expression of VEGF-C and VEGF-D. The number of CD11b+ cells from RAMP1-/- mice was higher than WT mice and was associated with the upregulated expression of genes related to pro-inflammatory macrophage phenotype and downregulation of reparative macrophage phenotype-related expression. When fluorescein isothiocyanate (FITC)-dextran was injected into the peritoneal cavity, the amount of residual FITC-dextran in WT mice was lower than that in RAMP1-/- mice. The present results suggest that RAMP1 signaling in immune cells plays a critical role in inflammation-related lymphangiogenesis; therefore, it represents a novel target for controlling lymphangiogenesis.
Collapse
Affiliation(s)
- Seri Tsuru
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan.,Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yoshiya Ito
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hiromi Matsuda
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kanako Hosono
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Tomoyoshi Inoue
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan
| | - Shuji Nakamoto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan
| | - Chie Kurashige
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Toshiaki Mishima
- Department of Cardiovascular Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hirotsugu Okamoto
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masataka Majima
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan. .,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan.
| |
Collapse
|
48
|
Gluexam T, Grandits AM, Schlerka A, Nguyen CH, Etzler J, Finkes T, Fuchs M, Scheid C, Heller G, Hackl H, Harrer N, Sill H, Koller E, Stoiber D, Sommergruber W, Wieser R. CGRP Signaling via CALCRL Increases Chemotherapy Resistance and Stem Cell Properties in Acute Myeloid Leukemia. Int J Mol Sci 2019; 20:E5826. [PMID: 31756985 PMCID: PMC6928760 DOI: 10.3390/ijms20235826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022] Open
Abstract
The neuropeptide CGRP, acting through the G-protein coupled receptor CALCRL and its coreceptor RAMP1, plays a key role in migraines, which has led to the clinical development of several inhibitory compounds. Recently, high CALCRL expression has been shown to be associated with a poor prognosis in acute myeloid leukemia (AML). We investigate, therefore, the functional role of the CGRP-CALCRL axis in AML. To this end, in silico analyses, human AML cell lines, primary patient samples, and a C57BL/6-based mouse model of AML are used. We find that CALCRL is up-regulated at relapse of AML, in leukemic stem cells (LSCs) versus bulk leukemic cells, and in LSCs versus normal hematopoietic stem cells. CGRP protects receptor-positive AML cell lines and primary AML samples from apoptosis induced by cytostatic drugs used in AML therapy, and this effect is inhibited by specific antagonists. Furthermore, the CGRP antagonist olcegepant increases differentiation and reduces the leukemic burden as well as key stem cell properties in a mouse model of AML. These data provide a basis for further investigations into a possible role of CGRP-CALCRL inhibition in the therapy of AML.
Collapse
Affiliation(s)
- Tobias Gluexam
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (T.G.); (A.M.G.); (A.S.); (C.H.N.); (J.E.); (T.F.); (G.H.)
- Comprehensive Cancer Center, Spitalgasse 23, 1090 Vienna, Austria
| | - Alexander M. Grandits
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (T.G.); (A.M.G.); (A.S.); (C.H.N.); (J.E.); (T.F.); (G.H.)
- Comprehensive Cancer Center, Spitalgasse 23, 1090 Vienna, Austria
| | - Angela Schlerka
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (T.G.); (A.M.G.); (A.S.); (C.H.N.); (J.E.); (T.F.); (G.H.)
- Comprehensive Cancer Center, Spitalgasse 23, 1090 Vienna, Austria
| | - Chi Huu Nguyen
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (T.G.); (A.M.G.); (A.S.); (C.H.N.); (J.E.); (T.F.); (G.H.)
- Comprehensive Cancer Center, Spitalgasse 23, 1090 Vienna, Austria
| | - Julia Etzler
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (T.G.); (A.M.G.); (A.S.); (C.H.N.); (J.E.); (T.F.); (G.H.)
- Comprehensive Cancer Center, Spitalgasse 23, 1090 Vienna, Austria
| | - Thomas Finkes
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (T.G.); (A.M.G.); (A.S.); (C.H.N.); (J.E.); (T.F.); (G.H.)
- Comprehensive Cancer Center, Spitalgasse 23, 1090 Vienna, Austria
| | - Michael Fuchs
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (M.F.); (C.S.)
| | - Christoph Scheid
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (M.F.); (C.S.)
| | - Gerwin Heller
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (T.G.); (A.M.G.); (A.S.); (C.H.N.); (J.E.); (T.F.); (G.H.)
- Comprehensive Cancer Center, Spitalgasse 23, 1090 Vienna, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria;
| | - Nathalie Harrer
- Department for Cancer Research, Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria;
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria;
| | - Elisabeth Koller
- Third Medical Department, Hanusch Hospital, Heinrich Collinstrasse 30, 1140 Vienna, Austria;
| | - Dagmar Stoiber
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090 Vienna, Austria;
- Division Pharmacology, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500 Krems, Austria
| | - Wolfgang Sommergruber
- Department of Biotechnology, University of Applied Sciences, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria;
| | - Rotraud Wieser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (T.G.); (A.M.G.); (A.S.); (C.H.N.); (J.E.); (T.F.); (G.H.)
- Comprehensive Cancer Center, Spitalgasse 23, 1090 Vienna, Austria
| |
Collapse
|
49
|
Crosson T, Roversi K, Balood M, Othman R, Ahmadi M, Wang JC, Seadi Pereira PJ, Tabatabaei M, Couture R, Eichwald T, Latini A, Prediger RD, Rangachari M, Seehus CR, Foster SL, Talbot S. Profiling of how nociceptor neurons detect danger - new and old foes. J Intern Med 2019; 286:268-289. [PMID: 31282104 DOI: 10.1111/joim.12957] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The host evolves redundant mechanisms to preserve physiological processing and homeostasis. These functions range from sensing internal and external threats, creating a memory of the insult and generating reflexes, which aim to resolve inflammation. Impairment in such functioning leads to chronic inflammatory diseases. By interacting through a common language of ligands and receptors, the immune and sensory nervous systems work in concert to accomplish such protective functions. Whilst this bidirectional communication helps to protect from danger, it can contribute to disease pathophysiology. Thus, the somatosensory nervous system is anatomically positioned within primary and secondary lymphoid tissues and mucosa to modulate immunity directly. Upstream of this interplay, neurons detect danger, which prompts the release of neuropeptides initiating (i) defensive reflexes (ranging from withdrawal response to coughing) and (ii) chemotaxis, adhesion and local infiltration of immune cells. The resulting outcome of such neuro-immune interplay is still ill-defined, but consensual findings start to emerge and support neuropeptides not only as blockers of TH 1-mediated immunity but also as drivers of TH 2 immune responses. However, the modalities detected by nociceptors revealed broader than mechanical pressure and temperature sensing and include signals as various as cytokines and pathogens to immunoglobulins and even microRNAs. Along these lines, we aggregated various dorsal root ganglion sensory neuron expression profiling datasets supporting such wide-ranging sensing capabilities to help identifying new danger detection modalities of these cells. Thus, revealing unexpected aspects of nociceptor neuron biology might prompt the identification of novel drivers of immunity, means to resolve inflammation and strategies to safeguard homeostasis.
Collapse
Affiliation(s)
- T Crosson
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - K Roversi
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Departamento de Farmacologia Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - M Balood
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Axe Neurosciences, Centre de recherche du CHU, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - R Othman
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - M Ahmadi
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - J-C Wang
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - M Tabatabaei
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - R Couture
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - T Eichwald
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - A Latini
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - R D Prediger
- Departamento de Farmacologia Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - M Rangachari
- Axe Neurosciences, Centre de recherche du CHU, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - C R Seehus
- FM Kirby Neurobiology Center, Children's Hospital, Boston, MA, USA
| | - S L Foster
- Depression Clinical Research Program, Massachusetts General Hospital, Boston, MA, USA
| | - S Talbot
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
50
|
Borkum JM. CGRP and Brain Functioning: Cautions for Migraine Treatment. Headache 2019; 59:1339-1357. [DOI: 10.1111/head.13591] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Jonathan M. Borkum
- Department of Psychology University of Maine Orono ME USA
- Health Psych Maine Waterville ME USA
| |
Collapse
|