1
|
Zeppillo T, Schulmann A, Macciardi F, Hjelm BE, Föcking M, Sequeira PA, Guella I, Cotter D, Bunney WE, Limon A, Vawter MP. Functional impairment of cortical AMPA receptors in schizophrenia. Schizophr Res 2022; 249:25-37. [PMID: 32513544 PMCID: PMC7718399 DOI: 10.1016/j.schres.2020.03.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Abstract
Clinical and preclinical studies suggest that some of the behavioral alterations observed in schizophrenia (SZ) may be mechanistically linked to synaptic dysfunction of glutamatergic signaling. Recent genetic and proteomic studies suggest alterations of cortical glutamate receptors of the AMPA-type (AMPARs), which are the predominant ligand-gated ionic channels of fast transmission at excitatory synapses. The impact of gene and protein alterations on the electrophysiological activity of AMPARs is not known in SZ. In this proof of principle work, using human postmortem brain synaptic membranes isolated from the dorsolateral prefrontal cortex (DLPFC), we combined electrophysiological analysis from microtransplanted synaptic membranes (MSM) with transcriptomic (RNA-Seq) and label-free proteomics data in 10 control and 10 subjects diagnosed with SZ. We observed in SZ a reduction in the amplitude of AMPARs currents elicited by kainate, an agonist of AMPARs that blocks the desensitization of the receptor. This reduction was not associated with protein abundance but with a reduction in kainate's potency to activate AMPARs. Electrophysiologically-anchored dataset analysis (EDA) was used to identify synaptosomal proteins that linearly correlate with the amplitude of the AMPARs responses, gene ontology functional annotations were then used to determine protein-protein interactions. Protein modules associated with positive AMPARs current increases were downregulated in SZ, while protein modules that were upregulated in SZ were associated with decreased AMPARs currents. Our results indicate that transcriptomic and proteomic alterations, frequently observed in the DLPFC in SZ, converge at the synaptic level producing a functional electrophysiological impairment of AMPARs.
Collapse
Affiliation(s)
- Tommaso Zeppillo
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch at Galveston, USA; Department of Life Sciences, University of Trieste, B.R.A.I.N., Centre for Neuroscience, Trieste, Italy
| | - Anton Schulmann
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA; Current address: National Institute of Mental Health, Human Genetics Branch, Bethesda, MD, USA
| | - Fabio Macciardi
- Department of Psychiatry & Human Behavior, University of California Irvine, CA 92697, USA
| | - Brooke E Hjelm
- Department of Translational Genomics, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, USA
| | | | - P Adolfo Sequeira
- Department of Psychiatry & Human Behavior, University of California Irvine, CA 92697, USA
| | - Ilaria Guella
- Department of Psychiatry & Human Behavior, University of California Irvine, CA 92697, USA
| | - David Cotter
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - William E Bunney
- Department of Psychiatry & Human Behavior, University of California Irvine, CA 92697, USA
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch at Galveston, USA.
| | - Marquis P Vawter
- Department of Psychiatry & Human Behavior, University of California Irvine, CA 92697, USA.
| |
Collapse
|
2
|
Ivorra I, Alberola-Die A, Cobo R, González-Ros JM, Morales A. Xenopus Oocytes as a Powerful Cellular Model to Study Foreign Fully-Processed Membrane Proteins. MEMBRANES 2022; 12:986. [PMID: 36295745 PMCID: PMC9610954 DOI: 10.3390/membranes12100986] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The use of Xenopus oocytes in electrophysiological and biophysical research constitutes a long and successful story, providing major advances to the knowledge of the function and modulation of membrane proteins, mostly receptors, ion channels, and transporters. Earlier reports showed that these cells are capable of correctly expressing heterologous proteins after injecting the corresponding mRNA or cDNA. More recently, the Xenopus oocyte has become an outstanding host-cell model to carry out detailed studies on the function of fully-processed foreign membrane proteins after their microtransplantation to the oocyte. This review focused on the latter overall process of transplanting foreign membrane proteins to the oocyte after injecting plasma membranes or purified and reconstituted proteins. This experimental approach allows for the study of both the function of mature proteins, with their native stoichiometry and post-translational modifications, and their putative modulation by surrounding lipids, mostly when the protein is purified and reconstituted in lipid matrices of defined composition. Remarkably, this methodology enables functional microtransplantation to the oocyte of membrane receptors, ion channels, and transporters from different sources including human post-mortem tissue banks. Despite the large progress achieved over the last decades on the structure, function, and modulation of neuroreceptors and ion channels in healthy and pathological tissues, many unanswered questions remain and, most likely, Xenopus oocytes will continue to help provide valuable responses.
Collapse
Affiliation(s)
- Isabel Ivorra
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Apdo 99, E-03080 Alicante, Spain
| | - Armando Alberola-Die
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Apdo 99, E-03080 Alicante, Spain
| | - Raúl Cobo
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Apdo 99, E-03080 Alicante, Spain
| | - José Manuel González-Ros
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, E-03202 Elche, Spain
| | - Andrés Morales
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Apdo 99, E-03080 Alicante, Spain
| |
Collapse
|
3
|
Miller B, Powell A, Gutierrez BA, Limon A. Microtransplantation of Synaptic Membranes to Reactivate Human Synaptic Receptors for Functional Studies. J Vis Exp 2022:10.3791/64024. [PMID: 35938847 PMCID: PMC10729793 DOI: 10.3791/64024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Excitatory and inhibitory ionotropic receptors are the major gates of ion fluxes that determine the activity of synapses during physiological neuronal communication. Therefore, alterations in their abundance, function, and relationships with other synaptic elements have been observed as a major correlate of alterations in brain function and cognitive impairment in neurodegenerative diseases and mental disorders. Understanding how the function of excitatory and inhibitory synaptic receptors is altered by disease is of critical importance for the development of effective therapies. To gain disease-relevant information, it is important to record the electrical activity of neurotransmitter receptors that remain functional in the diseased human brain. So far this is the closest approach to assess pathological alterations in receptors' function. In this work, a methodology is presented to perform microtransplantation of synaptic membranes, which consists of reactivating synaptic membranes from snap frozen human brain tissue containing human receptors, by its injection and posterior fusion into the membrane of Xenopus laevis oocytes. The protocol also provides the methodological strategy to obtain consistent and reliable responses of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and γ-aminobutyric acid (GABA) receptors, as well as novel detailed methods that are used for normalization and rigorous data analysis.
Collapse
Affiliation(s)
- Brice Miller
- The Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch
| | - Ashli Powell
- The Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch
| | - Berenice A Gutierrez
- The Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch
| | - Agenor Limon
- The Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch;
| |
Collapse
|
4
|
Singh A, Allen D, Fracassi A, Tumurbaatar B, Natarajan C, Scaduto P, Woltjer R, Kayed R, Limon A, Krishnan B, Taglialatela G. Functional Integrity of Synapses in the Central Nervous System of Cognitively Intact Individuals with High Alzheimer's Disease Neuropathology Is Associated with Absence of Synaptic Tau Oligomers. J Alzheimers Dis 2021; 78:1661-1678. [PMID: 33185603 PMCID: PMC7836055 DOI: 10.3233/jad-200716] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Certain individuals, here referred to as Non-Demented with Alzheimer Neuropathology (NDAN), do not show overt neurodegeneration (N-) and remain cognitively intact despite the presence of plaques (A+) and tangles (T+) that would normally be consistent with fully symptomatic Alzheimer's disease (AD). OBJECTIVE The existence of NDAN (A + T+N-) subjects suggests that the human brain utilizes intrinsic mechanisms that can naturally evade cognitive decline normally associated with the symptomatic stages of AD (A + T+N+). Deciphering the underlying mechanisms would prove relevant to develop complementing therapeutics to prevent progression of AD-related cognitive decline. METHODS Previously, we have reported that NDAN present with preserved neurogenesis and synaptic integrity paralleled by absence of amyloid oligomers at synapses. Using postmortem brain samples from age-matched control subjects, demented AD patients and NDAN individuals, we performed immunofluorescence, western blots, micro transplantation of synaptic membranes in Xenopus oocytes followed by twin electrode voltage clamp electrophysiology and fluorescence assisted single synaptosome-long term potentiation studies. RESULTS We report decreased tau oligomers at synapses in the brains of NDAN subjects. Furthermore, using novel approaches we report, for the first time, that such absence of tau oligomers at synapses is associated with synaptic functional integrity in NDAN subjects as compared to demented AD patients. CONCLUSION Overall, these results give further credence to tau oligomers as primary actors of synaptic destruction underscoring cognitive demise in AD and support their targeting as a viable therapeutic strategy for AD and related tauopathies.
Collapse
Affiliation(s)
- Ayush Singh
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Dyron Allen
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Anna Fracassi
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Batbayar Tumurbaatar
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Chandramouli Natarajan
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Pietro Scaduto
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Randy Woltjer
- Department of Pathology, Oregon Health and Science University, Portland, OR, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Agenor Limon
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Balaji Krishnan
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA,Correspondence to: Giulio Taglialatela, PhD, Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA. Tel.: +1 409 772 1679; Fax: +1 409 772 0015; E-mail: . and Balaji Krishnan, PhD, Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA. Tel.: +1 409 772 8069; Fax: +1 409 772 0015; E-mail:
| | - Giulio Taglialatela
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA,Correspondence to: Giulio Taglialatela, PhD, Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA. Tel.: +1 409 772 1679; Fax: +1 409 772 0015; E-mail: . and Balaji Krishnan, PhD, Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA. Tel.: +1 409 772 8069; Fax: +1 409 772 0015; E-mail:
| |
Collapse
|
5
|
Lauterborn JC, Scaduto P, Cox CD, Schulmann A, Lynch G, Gall CM, Keene CD, Limon A. Increased excitatory to inhibitory synaptic ratio in parietal cortex samples from individuals with Alzheimer's disease. Nat Commun 2021; 12:2603. [PMID: 33972518 PMCID: PMC8110554 DOI: 10.1038/s41467-021-22742-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Synaptic disturbances in excitatory to inhibitory (E/I) balance in forebrain circuits are thought to contribute to the progression of Alzheimer's disease (AD) and dementia, although direct evidence for such imbalance in humans is lacking. We assessed anatomical and electrophysiological synaptic E/I ratios in post-mortem parietal cortex samples from middle-aged individuals with AD (early-onset) or Down syndrome (DS) by fluorescence deconvolution tomography and microtransplantation of synaptic membranes. Both approaches revealed significantly elevated E/I ratios for AD, but not DS, versus controls. Gene expression studies in an independent AD cohort also demonstrated elevated E/I ratios in individuals with AD as compared to controls. These findings provide evidence of a marked pro-excitatory perturbation of synaptic E/I balance in AD parietal cortex, a region within the default mode network that is overly active in the disorder, and support the hypothesis that E/I imbalances disrupt cognition-related shifts in cortical activity which contribute to the intellectual decline in AD.
Collapse
Affiliation(s)
- Julie C Lauterborn
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA.
| | - Pietro Scaduto
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases. School of Medicine, University of Texas Medical Branch at Galveston, Galveston, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA
| | - Anton Schulmann
- National Institute of Mental Health, Human Genetics Branch, Bethesda, MD, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA
- Department of Psychiatry & Human Behavior, University of California at Irvine, Irvine, CA, 92697, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases. School of Medicine, University of Texas Medical Branch at Galveston, Galveston, USA.
| |
Collapse
|
6
|
Exner CRT, Willsey HR. Xenopus leads the way: Frogs as a pioneering model to understand the human brain. Genesis 2021; 59:e23405. [PMID: 33369095 PMCID: PMC8130472 DOI: 10.1002/dvg.23405] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
From its long history in the field of embryology to its recent advances in genetics, Xenopus has been an indispensable model for understanding the human brain. Foundational studies that gave us our first insights into major embryonic patterning events serve as a crucial backdrop for newer avenues of investigation into organogenesis and organ function. The vast array of tools available in Xenopus laevis and Xenopus tropicalis allows interrogation of developmental phenomena at all levels, from the molecular to the behavioral, and the application of CRISPR technology has enabled the investigation of human disorder risk genes in a higher-throughput manner. As the only major tetrapod model in which all developmental stages are easily manipulated and observed, frogs provide the unique opportunity to study organ development from the earliest stages. All of these features make Xenopus a premier model for studying the development of the brain, a notoriously complex process that demands an understanding of all stages from fertilization to organogenesis and beyond. Importantly, core processes of brain development are conserved between Xenopus and human, underlining the advantages of this model. This review begins by summarizing discoveries made in amphibians that form the cornerstones of vertebrate neurodevelopmental biology and goes on to discuss recent advances that have catapulted our understanding of brain development in Xenopus and in relation to human development and disease. As we engage in a new era of patient-driven gene discovery, Xenopus offers exceptional potential to uncover conserved biology underlying human brain disorders and move towards rational drug design.
Collapse
Affiliation(s)
- Cameron R T Exner
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|
7
|
Bregestovski P, Heuser J, Martínez-Torres A. Ricardo Miledi - Outstanding Neuroscientist of XX-XXI Centuries. Neuroscience 2020; 439:1-9. [PMID: 32620217 DOI: 10.1016/j.neuroscience.2020.04.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Piotr Bregestovski
- Institut de Neurosciences des Systemes, UMR INSERM 1106, Aix-Marseille Universite, Faculte de Medecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - John Heuser
- Section on Integrative Biophysics, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Ataulfo Martínez-Torres
- Laboratory of Molecular & Cellular Neurobiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Quurétaro, 76230, Mexico.
| |
Collapse
|
8
|
Schoonover KE, Dienel SJ, Lewis DA. Prefrontal cortical alterations of glutamate and GABA neurotransmission in schizophrenia: Insights for rational biomarker development. Biomark Neuropsychiatry 2020; 3. [PMID: 32656540 PMCID: PMC7351254 DOI: 10.1016/j.bionps.2020.100015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Certain cognitive deficits in schizophrenia, such as impaired working memory, are thought to reflect alterations in the neural circuitry of the dorsolateral prefrontal cortex (DLPFC). Gamma oscillations in the DLPFC appear to be a neural corollary of working memory function, and the power of these oscillations during working memory tasks is lower in individuals with schizophrenia. Thus, gamma oscillations represent a potentially useful biomarker to index dysfunction in the DLPFC circuitry responsible for working memory in schizophrenia. Postmortem studies, by identifying the cellular basis of DLPFC dysfunction, can help inform the utility of biomarker measures obtained in vivo. Given that gamma oscillations reflect network activity of excitatory pyramidal neurons and inhibitory GABA neurons, we review postmortem findings of alterations to both cell types in the DLPFC and discuss how these findings might inform future biomarker development and use.
Collapse
Affiliation(s)
- Kirsten E Schoonover
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States
| | - Samuel J Dienel
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States.,Medical Scientist Training Program, University of Pittsburgh, United States.,Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, United States
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States.,Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, United States
| |
Collapse
|
9
|
A Low Cost Antibody Signal Enhancer Improves Immunolabeling in Cell Culture, Primate Brain and Human Cancer Biopsy. Neuroscience 2020; 439:275-286. [DOI: 10.1016/j.neuroscience.2020.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
|
10
|
Scaduto P, Sequeira A, Vawter MP, Bunney W, Limon A. Preservation of global synaptic excitatory to inhibitory ratio during long postmortem intervals. Sci Rep 2020; 10:8626. [PMID: 32451470 PMCID: PMC7248056 DOI: 10.1038/s41598-020-65377-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 12/01/2022] Open
Abstract
The study of postsynaptic excitation to inhibition (E/I ratio) imbalances in human brain diseases, is a highly relevant functional measurement poorly investigated due to postmortem degradation of synaptic receptors. We show that near-simultaneous recording of microtransplanted synaptic receptors after simulated morgue conditions allows the determination of the postsynaptic E/I ratio for at least 120 h after death, expanding the availability and use of human diseased tissue stored in brain banks.
Collapse
Affiliation(s)
- Pietro Scaduto
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases. School of Medicine. University of Texas Medical Branch at Galveston, Galveston, USA
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Division of Human Physiology, University of Palermo, 90134, Palermo, Italy
| | - Adolfo Sequeira
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Marquis P Vawter
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - William Bunney
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases. School of Medicine. University of Texas Medical Branch at Galveston, Galveston, USA.
| |
Collapse
|
11
|
Zeng SL, Sudlow LC, Berezin MY. Using Xenopus oocytes in neurological disease drug discovery. Expert Opin Drug Discov 2019; 15:39-52. [PMID: 31674217 DOI: 10.1080/17460441.2020.1682993] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Introduction: Neurological diseases present a difficult challenge in drug discovery. Many of the current treatments have limited efficiency or result in a variety of debilitating side effects. The search of new therapies is of a paramount importance, since the number of patients that require a better treatment is growing rapidly. As an in vitro model, Xenopus oocytes provide the drug developer with many distinct advantages, including size, durability, and efficiency in exogenous protein expression. However, there is an increasing need to refine the recent breakthroughs.Areas covered: This review covers the usage and recent advancements of Xenopus oocytes for drug discovery in neurological diseases from expression and functional measurement techniques to current applications in Alzheimer's disease, painful neuropathies, and amyotrophic lateral sclerosis (ALS). The existing limitations of Xenopus oocytes in drug discovery are also discussed.Expert opinion: With the rise of aging population and neurological disorders, Xenopus oocytes, will continue to play an important role in understanding the mechanism of the disease, identification and validation of novel molecular targets, and drug screening, providing high-quality data despite the technical limitations. With further advances in oocytes-related techniques toward an accurate modeling of the disease, the diagnostics and treatment of neuropathologies will be becoming increasing personalized.
Collapse
Affiliation(s)
- Steven L Zeng
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Leland C Sudlow
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
12
|
Limon A, Delbruck E, Yassine A, Pandya D, Myers RM, Barchas JD, Lee F, Schatzberg, Watson SJ, Akil H, Bunney WE, Vawter MP, Sequeira A. Electrophysiological evaluation of extracellular spermine and alkaline pH on synaptic human GABA A receptors. Transl Psychiatry 2019; 9:218. [PMID: 31488811 PMCID: PMC6728327 DOI: 10.1038/s41398-019-0551-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/30/2019] [Accepted: 06/20/2019] [Indexed: 01/25/2023] Open
Abstract
Polyamines have fundamental roles in brain homeostasis as key modulators of cellular excitability. Several studies have suggested alterations in polyamine metabolism in stress related disorders, suicide, depression, and neurodegeneration, making the pharmacological modulation of polyamines a highly appealing therapeutic strategy. Polyamines are small aliphatic molecules that can modulate cationic channels involved in neuronal excitability. Previous indirect evidence has suggested that polyamines can modulate anionic GABAA receptors (GABAARs), which mediate inhibitory signaling and provide a direct route to reduce hyperexcitability. Here, we attempted to characterize the effect that spermine, the polyamine with the strongest reported effect on GABAARs, has on human postmortem native GABAARs. We microtransplanted human synaptic membranes from the dorsolateral prefrontal cortex of four cases with no history of mental or neurological disorders, and directly recorded spermine effects on ionic GABAARs responses on microtransplanted oocytes. We show that in human synapses, inhibition of GABAARs by spermine was better explained by alkalization of the extracellular solution. Additionally, spermine had no effect on the potentiation of GABA-currents by diazepam, indicating that even if diazepam binding is enhanced by spermine, it does not translate to changes in functional activity. Our results clearly demonstrate that while extracellular spermine does not have direct effects on human native synaptic GABAARs, spermine-mediated shifts of pH inhibit GABAARs. Potential spermine-mediated increase of pH in synapses in vivo may therefore participate in increased neuronal activity observed during physiological and pathological states, and during metabolic alterations that increase the release of spermine to the extracellular milieu.
Collapse
Affiliation(s)
- A. Limon
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA ,0000 0001 1547 9964grid.176731.5Department of Neurology, Mitchel Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, USA
| | - E. Delbruck
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA
| | - A. Yassine
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA
| | - D. Pandya
- 0000 0001 1547 9964grid.176731.5Department of Neurology, Mitchel Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, USA
| | - R. M. Myers
- 0000 0004 0408 3720grid.417691.cHudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - J. D. Barchas
- 000000041936877Xgrid.5386.8Department of Psychiatry, Weill Cornell Medical College, New York, NY USA
| | - F. Lee
- 000000041936877Xgrid.5386.8Department of Psychiatry, Weill Cornell Medical College, New York, NY USA
| | - Schatzberg
- 0000000419368956grid.168010.eDepartment of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA USA
| | - S. J. Watson
- 0000000086837370grid.214458.eMolecular and Behavioral Neurosciences Institute, University of Michigan, Ann Arbor, MI USA
| | - H. Akil
- 0000000086837370grid.214458.eMolecular and Behavioral Neurosciences Institute, University of Michigan, Ann Arbor, MI USA
| | - W. E. Bunney
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA
| | - M. P. Vawter
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA
| | - A. Sequeira
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA
| |
Collapse
|
13
|
Nenni MJ, Fisher ME, James-Zorn C, Pells TJ, Ponferrada V, Chu S, Fortriede JD, Burns KA, Wang Y, Lotay VS, Wang DZ, Segerdell E, Chaturvedi P, Karimi K, Vize PD, Zorn AM. Xenbase: Facilitating the Use of Xenopus to Model Human Disease. Front Physiol 2019; 10:154. [PMID: 30863320 PMCID: PMC6399412 DOI: 10.3389/fphys.2019.00154] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/08/2019] [Indexed: 01/02/2023] Open
Abstract
At a fundamental level most genes, signaling pathways, biological functions and organ systems are highly conserved between man and all vertebrate species. Leveraging this conservation, researchers are increasingly using the experimental advantages of the amphibian Xenopus to model human disease. The online Xenopus resource, Xenbase, enables human disease modeling by curating the Xenopus literature published in PubMed and integrating these Xenopus data with orthologous human genes, anatomy, and more recently with links to the Online Mendelian Inheritance in Man resource (OMIM) and the Human Disease Ontology (DO). Here we review how Xenbase supports disease modeling and report on a meta-analysis of the published Xenopus research providing an overview of the different types of diseases being modeled in Xenopus and the variety of experimental approaches being used. Text mining of over 50,000 Xenopus research articles imported into Xenbase from PubMed identified approximately 1,000 putative disease- modeling articles. These articles were manually assessed and annotated with disease ontologies, which were then used to classify papers based on disease type. We found that Xenopus is being used to study a diverse array of disease with three main experimental approaches: cell-free egg extracts to study fundamental aspects of cellular and molecular biology, oocytes to study ion transport and channel physiology and embryo experiments focused on congenital diseases. We integrated these data into Xenbase Disease Pages to allow easy navigation to disease information on external databases. Results of this analysis will equip Xenopus researchers with a suite of experimental approaches available to model or dissect a pathological process. Ideally clinicians and basic researchers will use this information to foster collaborations necessary to interrogate the development and treatment of human diseases.
Collapse
Affiliation(s)
- Mardi J Nenni
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Malcolm E Fisher
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Christina James-Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Troy J Pells
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Virgilio Ponferrada
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Stanley Chu
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Joshua D Fortriede
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Kevin A Burns
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Ying Wang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Vaneet S Lotay
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Dong Zhou Wang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Erik Segerdell
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - Praneet Chaturvedi
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Kamran Karimi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Peter D Vize
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| |
Collapse
|
14
|
Zwart R, Mazzo F, Sher E. Microtransplantation of human brain receptors into oocytes to tackle key questions in drug discovery. Drug Discov Today 2018; 24:533-543. [PMID: 30395928 DOI: 10.1016/j.drudis.2018.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/18/2018] [Accepted: 10/30/2018] [Indexed: 10/27/2022]
Abstract
It is important in drug discovery to demonstrate that activity of novel drugs found by screening on recombinant receptors translates to activity on native human receptors in brain areas affected by disease. In this review, we summarise the development and use of the microtransplantation technique. Native receptors are reconstituted from human brain tissues into oocytes from the frog Xenopus laevis where they can be functionally assessed. Oocytes microtransplanted with hippocampal tissue from an epileptic patient were used to demonstrate that new antiepileptic agents act on receptors in diseased tissue. Furthermore, frozen post-mortem human tissues were used to show that drugs are active on receptors in brain areas associated with a disease; but not in areas associated with side effects.
Collapse
Affiliation(s)
- Ruud Zwart
- Eli Lilly, Lilly Research Centre, Erl Wood Manor, Sunninghill Road, Windlesham, GU20 6PH, UK.
| | - Francesca Mazzo
- Eli Lilly, Lilly Research Centre, Erl Wood Manor, Sunninghill Road, Windlesham, GU20 6PH, UK
| | - Emanuele Sher
- Eli Lilly, Lilly Research Centre, Erl Wood Manor, Sunninghill Road, Windlesham, GU20 6PH, UK
| |
Collapse
|
15
|
Kramvis I, Mansvelder HD, Meredith RM. Neuronal life after death: electrophysiologic recordings from neurons in adult human brain tissue obtained through surgical resection or postmortem. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:319-333. [PMID: 29496151 DOI: 10.1016/b978-0-444-63639-3.00022-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recordings from fresh human brain slices derived from surgically resected brain tissue are being used to unravel mechanisms underlying human neurophysiology and for the evaluation of potential therapeutic targets and compounds. Data resulting from these studies provide unique insights into physiologic properties of human neuronal microcircuits. However, substantial limitations still remain with this approach. First, the tissue is always resected from patients, never from healthy controls. Second, the patient population undergoing brain surgery with tissue resection is limited to epilepsy and tumor patients - never from patients with other neurologic disorders. Third, the vast majority of tissue resected is limited largely to temporal cortex and hippocampus, occasionally amygdala. Therefore, the possibility to study brain tissue: (1) from healthy controls; (2) from patients with different neuropathologies; (3) from different brain areas; and (4) from a wide spectrum of ages only exists through autopsy-derived brain tissue. Here we describe methods and results from physiologic recordings of adult human neurons and microcircuits in both surgically derived brain tissue as well as in tissue derived from autopsies. We define postmortem time windows during which physiologic recordings could match data obtained from surgical tissue.
Collapse
Affiliation(s)
- Ioannis Kramvis
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands.
| | - Rhiannon M Meredith
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Murenzi E, Toltin AC, Symington SB, Morgan MM, Clark JM. Evaluation of microtransplantation of rat brain neurolemma into Xenopus laevis oocytes as a technique to study the effect of neurotoxicants on endogenous voltage-sensitive ion channels. Neurotoxicology 2016; 60:260-273. [PMID: 27063102 DOI: 10.1016/j.neuro.2016.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 10/22/2022]
Abstract
Microtransplantation of mammalian brain neurolemma into the plasma membrane of Xenopus oocytes is used to study ion channels in their native form as they appear in the central nervous system. Use of microtransplanted neurolemma is advantageous for various reasons: tissue can be obtained from various sources and at different developmental stages; ion channels and receptors are present in their native configuration in their proper lipid environment along with appropriate auxiliary subunits; allowing the evaluation of numerous channelpathies caused by neurotoxicants in an ex vivo state. Here we show that Xenopus oocytes injected with post-natal day 90 (PND90) rat brain neurolemma fragments successfully express functional ion channels. Using a high throughput two electrode voltage clamp (TEVC) electrophysiological system, currents that were sensitive to tetrodotoxin, ω-conotoxin MVIIC, and tetraethylammonium were detected, indicating the presence of multiple voltage-sensitive ion channels (voltage-sensitive sodium (VSSC), calcium and potassium channels, respectively). The protein expression pattern for nine different VSSC isoforms (Nav1.1-Nav1.9) was determined in neurolemma using automated western blotting, with the predominant isoforms expressed being Nav1.2 and Nav1.6. VSSC were also successfully detected in the plasma membrane of Xenopus oocytes microtransplanted with neurolemma. Using this approach, a "proof-of-principle" experiment was conducted where a well-established structure-activity relationship between the neurotoxicant, 1,1,1-trichloro-2,2-di(4-chlorophenyl)ethane (DDT) and its non-neurotoxic metabolite, 1,1-bis-(4-chlorophenyl)-2,2-dichloroethene (DDE) was examined. A differential sensitivity of DDT and DDE on neurolemma-injected oocytes was determined where DDT elicited a concentration-dependent increase in TTX-sensitive inward sodium current upon pulse-depolarization whereas DDE resulted in no significant effect. Additionally, DDT resulted in a slowing of sodium channel inactivation kinetics whereas DDE was without effect. These results are consistent with the findings obtained using heterologous expression of single isoforms of rat brain VSSCs in Xenopus oocytes and with many other electrophysiological approaches, validating the use of the microtransplantation procedure as a toxicologically-relevant ex vivo assay. Once fully characterized, it is likely that this approach could be expanded to study the role of environmental toxicants and contaminants on various target tissues (e.g. neural, reproductive, developmental) from many species.
Collapse
Affiliation(s)
- Edwin Murenzi
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, United States; Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States.
| | - Abigail C Toltin
- Department of Biology and Biomedical Science, Salve Regina University, Newport, RI, United States.
| | - Steven B Symington
- Department of Biology and Biomedical Science, Salve Regina University, Newport, RI, United States.
| | - Molly M Morgan
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States.
| | - John M Clark
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, United States; Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States.
| |
Collapse
|
17
|
Bittolo T, Raminelli CA, Deiana C, Baj G, Vaghi V, Ferrazzo S, Bernareggi A, Tongiorgi E. Pharmacological treatment with mirtazapine rescues cortical atrophy and respiratory deficits in MeCP2 null mice. Sci Rep 2016; 6:19796. [PMID: 26806603 PMCID: PMC4726391 DOI: 10.1038/srep19796] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/14/2015] [Indexed: 01/22/2023] Open
Abstract
Loss of MeCP2 (Methyl CpG binding protein 2) in Rett syndrome (RTT) causes brain weight decrease, shrinkage of the cortex with reduced dendritic arborization, behavioral abnormalities, seizures and cardio-respiratory complications. The observed monoamine neurotransmitters reduction in RTT suggested antidepressants as a possible therapy. We treated MeCP2-null mice from postnatal-day 28 for two weeks with desipramine, already tested in RTT, or mirtazapine, an antidepressant with limited side-effects, known to promote GABA release. Mirtazapine was more effective than desipramine in restoring somatosensory cortex thickness by fully rescuing pyramidal neurons dendritic arborization and spine density. Functionally, mirtazapine treatment normalized heart rate, breath rate, anxiety levels, and eliminated the hopping behavior observed in MeCP2-null mice, leading to improved phenotypic score. These morphological and functional effects of mirtazapine were accompanied by reestablishment of the GABAergic and glutamatergic receptor activity recorded in cortex and brainstem tissues. Thus, mirtazapine can represent a new potential pharmacological treatment for the Rett syndrome.
Collapse
Affiliation(s)
- Tamara Bittolo
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5-34127 Trieste, Italy
| | - Carlo Antonio Raminelli
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5-34127 Trieste, Italy
| | - Chiara Deiana
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5-34127 Trieste, Italy
| | - Gabriele Baj
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5-34127 Trieste, Italy
| | - Valentina Vaghi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5-34127 Trieste, Italy
| | - Sara Ferrazzo
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5-34127 Trieste, Italy
| | - Annalisa Bernareggi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5-34127 Trieste, Italy
| | - Enrico Tongiorgi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5-34127 Trieste, Italy
| |
Collapse
|
18
|
Crespin L, Legros C, List O, Tricoire-Leignel H, Mattei C. Injection of insect membrane in Xenopus oocyte: An original method for the pharmacological characterization of neonicotinoid insecticides. J Pharmacol Toxicol Methods 2015; 77:10-6. [PMID: 26391340 DOI: 10.1016/j.vascn.2015.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/04/2015] [Accepted: 09/15/2015] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Insect nicotinic acetylcholine receptors (nAChRs) represent a major target of insecticides, belonging to the neonicotinoid family. However, the pharmacological profile of native nAChRs is poorly documented, mainly because of a lack of knowledge of their subunit stoichiometry, their tissue distribution and the weak access to nAChR-expressing cells. In addition, the expression of insect nAChRs in heterologous systems remains hard to achieve. Therefore, the structure-activity characterization of nAChR-targeting insecticides is made difficult. The objective of the present study was to characterize insect nAChRs by an electrophysiological approach in a heterologous system naturally devoid of these receptors to allow a molecular/cellular investigation of the mode of action of neonicotinoids. Methods To overcome impediments linked to the expression of insect nAChR mRNA or cDNA, we chose to inject insect membranes from the pea aphid (Acyrthosiphon pisum) into Xenopus oocytes. This microtransplantation technique was designed to gain access to native nAChRs embedded in their membrane, through direct stimulation with nicotinic agonists. Results We provide evidence that an enriched-nAChR membrane allows us to characterize native receptors. The presence of such receptors was confirmed with fluorescent α-BgTX labeling. Electrophysiological recordings of nicotine-induced inward currents allowed us to challenge the presence of functional nAChR. We compared the effect of nicotine (NIC) with clothianidin (CLO) and we assessed the effect of thiamethoxam (TMX). Discussion This technique has been recently highlighted with mammalian and human material as a powerful functional approach, but has, to our knowledge, never been used with insect membrane. In addition, the use of the insect membrane microtransplantation opens a new and original way for pharmacological screening of neurotoxic insecticides, including neonicotinoids. Moreover, it might also be a powerful tool to investigate the pharmacological properties of insect nAChR.
Collapse
Affiliation(s)
- Lucille Crespin
- Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée CNRS UMR6214, INSERM U1083, Univ. Angers Faculté de Médecine, rue Haute de Reculée, 49045 Angers cedex 01, France
| | - Christian Legros
- Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée CNRS UMR6214, INSERM U1083, Univ. Angers Faculté de Médecine, rue Haute de Reculée, 49045 Angers cedex 01, France
| | - Olivier List
- Récepteurs et Canaux Ioniques Membranaires, UPRES-EA 2647 USC INRA 1330, SFR 4207 QUASAV, Univ. Angers, 2 Bd Lavoisier, 49045 Angers cedex 01, France
| | - Hélène Tricoire-Leignel
- INRA/Université d'Angers, Neuroéthologie-RCIM, UPRES-EA 2647 USC INRA 1330, SFR 4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France.
| | - César Mattei
- Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée CNRS UMR6214, INSERM U1083, Univ. Angers Faculté de Médecine, rue Haute de Reculée, 49045 Angers cedex 01, France.
| |
Collapse
|
19
|
Candelario M, Cuellar E, Reyes-Ruiz JM, Darabedian N, Feimeng Z, Miledi R, Russo-Neustadt A, Limon A. Direct evidence for GABAergic activity of Withania somnifera on mammalian ionotropic GABAA and GABAρ receptors. JOURNAL OF ETHNOPHARMACOLOGY 2015; 171:264-72. [PMID: 26068424 DOI: 10.1016/j.jep.2015.05.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/22/2015] [Accepted: 05/30/2015] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera (WS) has been traditionally used in Ayurvedic medicine as a remedy for debility, stress, nervous exhaustion, insomnia, loss of memory, and to enhance cognitive function. This study provides an empirical evidence to support the traditional use of WS to aid in mental process engaging GABAergic signaling. AIM OF THE STUDY We evaluated the effect of aqueous WS root extract (aqWS), and its two main components, withaferin A and withanolide A, on the main inhibitory receptors in the central nervous system: ionotropic GABAA receptors. MATERIALS AND METHODS The pharmacological activity of aqWS, withaferin A and withanolide A, was tested on native rat brain GABAA channels microtransplanted into Xenopus oocytes and GABAρ1 receptors heterologously expressed in oocytes. The GABAergic activity of aqWS compounds was evaluated by the two-electrode voltage-clamp method and the fingerprint of the extract was done by LC-MS. RESULTS Concentration-dependent inward ion currents were elicited by aqWS in microtransplanted oocytes with an EC50 equivalent to 4.7 mg/mL and a Hill coefficient (nH) of 1.6. The GABAA receptor antagonist bicuculline blocked these currents. Our results show that aqWS activated inotropic GABAA channels but with lower efficacy compared to the endogenous agonist GABA. We also demonstrate for first time that aqWS is a potent agonist of GABAρ1 receptors. GABAρ1 receptors were 27 fold more sensitive to aqWS than GABAA receptors. Furthermore, aqWS activated GABAρ1 receptors eliciting maximum currents that were no significantly different to those produced by GABA (paired t-test; p=0.533). The differential activity on GABAA and GABA ρ1 receptors and the reported lack of significant GABA presence in WS root extract indicates that the GABAergic activity of aqWS is not mediated by GABA. WS main active components, witaferin A and withanolide A, were tested to determine if they were responsible for the activation of the GABA receptors. Neither compound activated GABAA nor GABAρ1 receptors, suggesting that other constituent/s in WS are responsible for GABAA receptor mediated responses. CONCLUSIONS Our results provide evidence indicating that key constituents in WS may have an important role in the development of pharmacological treatments for neurological disorders associated with GABAergic signaling dysfunction such as general anxiety disorders, sleep disturbances, muscle spasms, and seizures. In addition, the differential activation of GABA receptor subtypes elucidates a potential mechanism by which WS accomplishes its reported adaptogenic properties.
Collapse
Affiliation(s)
- Manuel Candelario
- Biological Sciences Department, California State University, Los Angeles, CA, United States
| | - Erika Cuellar
- Biological Sciences Department, California State University, Los Angeles, CA, United States
| | | | - Narek Darabedian
- Department of Chemistry and Biochemistry, California State University, Los Angeles, CA, United States
| | - Zhou Feimeng
- Department of Chemistry and Biochemistry, California State University, Los Angeles, CA, United States
| | - Ricardo Miledi
- Department of Neurobiology & Behavior, University of California, Irvine, CA, United States
| | - Amelia Russo-Neustadt
- Biological Sciences Department, California State University, Los Angeles, CA, United States
| | - Agenor Limon
- Department of Neurobiology & Behavior, University of California, Irvine, CA, United States; Department of Psychiatry and Human Behavior, University of California, Irvine, CA, United States.
| |
Collapse
|
20
|
Reyes-Ruiz JM, Limon A, Korn MJ, Nakamura PA, Shirkey NJ, Wong JK, Miledi R. Profiling neurotransmitter receptor expression in the Ambystoma mexicanum brain. Neurosci Lett 2013; 538:32-7. [PMID: 23353105 DOI: 10.1016/j.neulet.2013.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/18/2012] [Accepted: 01/11/2013] [Indexed: 11/25/2022]
Abstract
Ability to regenerate limbs and central nervous system (CNS) is unique to few vertebrates, most notably the axolotl (Ambystoma sp.). However, despite the fact the neurotransmitter receptors are involved in axonal regeneration, little is known regarding its expression profile. In this project, RT-PCR and qPCR were performed to gain insight into the neurotransmitter receptors present in Ambystoma. Its functional ability was studied by expressing axolotl receptors in Xenopus laevis oocytes by either injection of mRNA or by direct microtransplantation of brain membranes. Oocytes injected with axolotl mRNA expressed ionotropic receptors activated by GABA, aspartate+glycine and kainate, as well as metabotropic receptors activated by acetylcholine and glutamate. Interestingly, we did not see responses following the application of serotonin. Membranes from the axolotl brain were efficiently microtransplanted into Xenopus oocytes and two types of native GABA receptors that differed in the temporal course of their responses and affinities to GABA were observed. Results of this study are necessary for further characterization of axolotl neurotransmitter receptors and may be useful for guiding experiments aimed at understanding activity-dependant limb and CNS regeneration.
Collapse
|
21
|
Conti L, Limon A, Palma E, Miledi R. Microtransplantation of cellular membranes from squid stellate ganglion reveals ionotropic GABA receptors. THE BIOLOGICAL BULLETIN 2013; 224:47-52. [PMID: 23493508 DOI: 10.1086/bblv224n1p47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The squid has been the most studied cephalopod, and it has served as a very useful model for investigating the events associated with nerve impulse generation and synaptic transmission. While the physiology of squid giant axons has been extensively studied, very little is known about the distribution and function of the neurotransmitters and receptors that mediate inhibitory transmission at the synapses. In this study we investigated whether γ-aminobutyric acid (GABA) activates neurotransmitter receptors in stellate ganglia membranes. To overcome the low abundance of GABA-like mRNAs in invertebrates and the low expression of GABA in cephalopods, we used a two-electrode voltage clamp technique to determine if Xenopus laevis oocytes injected with cell membranes from squid stellate ganglia responded to GABA. Using this method, membrane patches containing proteins and ion channels from the squid's stellate ganglion were incorporated into the surface of oocytes. We demonstrated that GABA activates membrane receptors in cellular membranes isolated from squid stellate ganglia. Using the same approach, we were able to record native glutamate-evoked currents. The squid's GABA receptors showed an EC(50) of 98 μmol l(-1) to GABA and were inhibited by zinc (IC(50) = 356 μmol l(-1)). Interestingly, GABA receptors from the squid were only partially blocked by bicuculline. These results indicate that the microtransplantation of native cell membranes is useful to identify and characterize scarce membrane proteins. Moreover, our data also support the role of GABA as an ionotropic neurotransmitter in cephalopods, acting through chloride-permeable membrane receptors.
Collapse
Affiliation(s)
- Luca Conti
- Grass Laboratory at the Marine Biological Laboratory, 7 MBL St., Woods Hole, MA 02543, USA.
| | | | | | | |
Collapse
|
22
|
Loss of functional GABA(A) receptors in the Alzheimer diseased brain. Proc Natl Acad Sci U S A 2012; 109:10071-6. [PMID: 22691495 DOI: 10.1073/pnas.1204606109] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cholinergic and glutamatergic neurotransmission systems are known to be severely disrupted in Alzheimer's disease (AD). GABAergic neurotransmission, in contrast, is generally thought to be well preserved. Evidence from animal models and human postmortem tissue suggest GABAergic remodeling in the AD brain. Nevertheless, there is no information on changes, if any, in the electrophysiological properties of human native GABA receptors as a consequence of AD. To gain such information, we have microtransplanted cell membranes, isolated from temporal cortices of control and AD brains, into Xenopus oocytes, and recorded the electrophysiological activity of the transplanted GABA receptors. We found an age-dependent reduction of GABA currents in the AD brain. This reduction was larger when the AD membranes were obtained from younger subjects. We also found that GABA currents from AD brains have a faster rate of desensitization than those from non-AD brains. Furthermore, GABA receptors from AD brains were slightly, but significantly, less sensitive to GABA than receptors from non-AD brains. The reduction of GABA currents in AD was associated with reductions of mRNA and protein of the principal GABA receptor subunits normally present in the temporal cortex. Pairwise analysis of the transcripts within control and AD groups and analyses of the proportion of GABA receptor subunits revealed down-regulation of α1 and γ2 subunits in AD. In contrast, the proportions of α2, β1, and γ1 transcripts were up-regulated in the AD brains. Our data support a functional remodeling of GABAergic neurotransmission in the human AD brain.
Collapse
|
23
|
Abaffy T, Defazio AR. The location of olfactory receptors within olfactory epithelium is independent of odorant volatility and solubility. BMC Res Notes 2011; 4:137. [PMID: 21548958 PMCID: PMC3118157 DOI: 10.1186/1756-0500-4-137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 05/06/2011] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Our objective was to study the pattern of olfactory receptor expression within the dorsal and ventral regions of the mouse olfactory epithelium. We hypothesized that olfactory receptors were distributed based on the chemical properties of their ligands: e.g. receptors for polar, hydrophilic and weakly volatile odorants would be present in the dorsal region of olfactory epithelium; while receptors for non-polar, more volatile odorants would be distributed to the ventral region. To test our hypothesis, we used micro-transplantation of cilia-enriched plasma membranes derived from dorsal or ventral regions of the olfactory epithelium into Xenopus oocytes for electrophysiological characterization against a panel of 100 odorants. FINDINGS Odorants detected by ORs from the dorsal and ventral regions showed overlap in volatility and water solubility. We did not find evidence for a correlation between the solubility and volatility of odorants and the functional expression of olfactory receptors in the dorsal or ventral region of the olfactory epithelia. CONCLUSIONS No simple clustering or relationship between chemical properties of odorants could be associated with the different regions of the olfactory epithelium. These results suggest that the location of ORs within the epithelium is not organized based on the physico-chemical properties of their ligands.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, 1600 NW 10thAve, Miami, 33136, Fl, USA.
| | | |
Collapse
|
24
|
Characterization of GABA(A) receptors expressed in glial cell membranes of adult mouse neocortex using a Xenopus oocyte microtransplantation expression system. J Neurosci Methods 2011; 198:77-83. [PMID: 21439322 DOI: 10.1016/j.jneumeth.2011.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 11/21/2022]
Abstract
Cell membranes isolated from nervous tissue can be easily injected into Xenopus oocytes, thereby effectively "microtransplanting" functional neurotransmitter receptors. This technique therefore allows a direct functional characterization of the original membrane receptor/ion channel proteins and the associated molecules while still embedded in their natural lipid environment. Cell membranes will contain components from different types of cells, i.e. neurons and glial cells, expressing their own receptors, with possibly different properties. To study the receptor properties of a single cell type, we injected oocytes with membranes isolated only from glia (gliosomes) of adult mouse neocortex and we focused our work on GABA(A) receptors incorporated in the oocyte cell membrane. We found that GABA(A)-activated currents allowed a good biophysical and pharmacological characterization of glial GABA(A) receptors. Therefore, the microtransplantation of gliosomes into oocytes can represent a good model to study the electrical and pharmacological properties of adult glial cells under different physiological and pathological conditions. Moreover, since gliosomes can be isolated from frozen tissues, this approach can be extended to post-mortem human tissues.
Collapse
|
25
|
|
26
|
Bernareggi A, Reyes-Ruiz JM, Lorenzon P, Ruzzier F, Miledi R. Microtransplantation of acetylcholine receptors from normal or denervated rat skeletal muscles to frog oocytes. J Physiol 2011; 589:1133-42. [PMID: 21224230 DOI: 10.1113/jphysiol.2010.202994] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cell membranes, carrying neurotransmitter receptors and ion channels, can be 'microtransplanted' into frog oocytes. This technique allows a direct functional characterization of the original membrane proteins, together with any associated molecules they may have, still embedded in their natural lipid environment. This approach has been previously demonstrated to be very useful to study neurotransmitter receptors and ion channels contained in cell membranes isolated from human brains. Here, we examined the possibility of using the microtransplantation method to study acetylcholine receptors from normal and denervated rat skeletal muscles. We found that the muscle membranes, carrying their fetal or adult acetylcholine receptor isoforms, could be efficiently microtransplanted to the oocyte membrane, making the oocytes become sensitive to acetylcholine. These results show that oocytes injected with skeletal muscle membranes efficiently incorporate functional acetylcholine receptors, thus making the microtransplantation approach a valuable tool to further investigate receptors and ion channels of human muscle diseases.
Collapse
Affiliation(s)
- Annalisa Bernareggi
- Department of Life Sciences, University of Trieste, Via A. Fleming 22, I-34127 Trieste, Italy.
| | | | | | | | | |
Collapse
|
27
|
Musa-Aziz R, Boron WF, Parker MD. Using fluorometry and ion-sensitive microelectrodes to study the functional expression of heterologously-expressed ion channels and transporters in Xenopus oocytes. Methods 2010; 51:134-45. [PMID: 20051266 PMCID: PMC2905798 DOI: 10.1016/j.ymeth.2009.12.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 12/23/2009] [Accepted: 12/29/2009] [Indexed: 12/17/2022] Open
Abstract
The Xenopus laevis oocyte is a model system for the electrophysiological study of exogenous ion transporters. Three main reasons make the oocyte suitable for this purpose: (a) it has a large cell size (approximately 1mm diameter), (b) it has an established capacity to produce-from microinjected mRNAs or cRNAs-exogenous ion transporters with close-to-physiological post-translational modifications and actions, and (c) its membranes contain endogenous ion-transport activities which are usually smaller in magnitude than the activities of exogenously-expressed ion transporters. The expression of ion transporters as green fluorescent protein fusions allows the fluorometric assay of transporter yield in living oocytes. Monitoring of transporter-mediated movement of ions such as Cl(-), H(+) (and hence base equivalents like OH(-) and HCO(3)(-)), K(+), and Na(+) is achieved by positioning the tips of ion-sensitive microelectrodes inside the oocyte and/or at the surface of the oocyte plasma membrane. The use of ion-sensitive electrodes is critical for studying net ion-movements mediated by electroneutral transporters. The combined use of fluorometry and electrophysiology expedites transporter study by allowing measurement of transporter yield prior to electrophysiological study and correlation of relative transporter yield with transport rates.
Collapse
Affiliation(s)
- Raif Musa-Aziz
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
28
|
Halladay AK, Amaral D, Aschner M, Bolivar VJ, Bowman A, DiCicco-Bloom E, Hyman SL, Keller F, Lein P, Pessah I, Restifo L, Threadgill DW. Animal models of autism spectrum disorders: information for neurotoxicologists. Neurotoxicology 2009; 30:811-21. [PMID: 19596370 PMCID: PMC3014989 DOI: 10.1016/j.neuro.2009.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/26/2009] [Accepted: 07/01/2009] [Indexed: 11/28/2022]
Abstract
Recent findings derived from large-scale datasets and biobanks link multiple genes to autism spectrum disorders. Consequently, novel rodent mutants with deletions, truncations and in some cases, overexpression of these candidate genes have been developed and studied both behaviorally and biologically. At the Annual Neurotoxicology Meeting in Rochester, NY in October of 2008, a symposium of clinicians and basic scientists gathered to present the behavioral features of autism, as well as strategies to model those behavioral features in mice and primates. The aim of the symposium was to provide researchers with up-to-date information on both the genetics of autism and how they are used in differing in vivo and in vitro animal models as well as to provide a background on the environmental exposures being tested on several animal models. In addition, researchers utilizing complementary approaches, presented on cell culture, in vitro or more basic models, which target neurobiological mechanisms, including Drosophila. Following the presentation, a panel convened to explore the opportunities and challenges of using model systems to investigate genetic and environment interactions in autism spectrum disorders. The following paper represents a summary of each presentation, as well as the discussion that followed at the end of the symposium.
Collapse
Affiliation(s)
- Alycia K Halladay
- Autism Speaks, 2 Park Avenue, 4th Floor, New York, NY 10016, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Microtransplantation of ligand-gated receptor-channels from fresh or frozen nervous tissue into Xenopus oocytes: A potent tool for expanding functional information. Prog Neurobiol 2009; 88:32-40. [DOI: 10.1016/j.pneurobio.2009.01.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 12/21/2008] [Accepted: 01/29/2009] [Indexed: 02/05/2023]
|
30
|
A Rosetta stone for analysis of human membrane protein function. Proc Natl Acad Sci U S A 2008; 105:10641-2. [PMID: 18669649 DOI: 10.1073/pnas.0806110105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|