1
|
Prasongtanakij S, Soontrapa K, Thumkeo D. The role of prostanoids in regulatory T cells and their implications in inflammatory diseases and cancers. Eur J Cell Biol 2025; 104:151482. [PMID: 40184828 DOI: 10.1016/j.ejcb.2025.151482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025] Open
Abstract
Regulatory T cells (Tregs) play an important role in the immune system through the regulation of immunological self-tolerance and homeostasis. Furthermore, increasing evidence suggests the potential contribution of Tregs beyond immunity in the process of repairing various injured tissues. Tregs are generally characterised by the constitutive expression of forkhead box protein 3 (FOXP3) transcription factor in the nucleus and high expression levels of CD25 and CTLA-4 on the cell surface. To date, a large number of molecules have been identified as key regulators of Treg differentiation and function. Among these molecules are prostanoids, which are multifaceted lipid mediators. Prostanoids are produced from arachidonic acid through the catalytic activity of the enzyme cyclooxygenase and exert their functions through the 9 cognate receptors, DP1-2, EP1-EP4, FP, IP and TP. We briefly review previous studies on the regulatory mechanism of Tregs and then discuss recent works on the modulatory role of prostanoids.
Collapse
Affiliation(s)
- Somsak Prasongtanakij
- Laboratory of Immunopharmacology, Kyoto University Graduate School of Medicine, Japan
| | - Kitipong Soontrapa
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Dean Thumkeo
- Laboratory of Immunopharmacology, Kyoto University Graduate School of Medicine, Japan; Center for Medical Education and Internationalization, Kyoto University Faculty of Medicine, Japan.
| |
Collapse
|
2
|
Sakamoto R, Fujiwara T, Kawano Y, Aikawa S, Inazumi T, Nakayama O, Kawasaki-Shirata Y, Hashimoto-Iwasaki M, Sugimoto T, Tsuchiya S, Nakao S, Takeo T, Hirota Y, Sugimoto Y. Uterine prostaglandin DP receptor-induced upon implantation contributes to decidualization together with EP4 receptor. J Lipid Res 2024; 65:100636. [PMID: 39218218 PMCID: PMC11465058 DOI: 10.1016/j.jlr.2024.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
To investigate the yet-unknown roles of prostaglandins (PGs) in the uterus, we analyzed the expression of various PG receptors in the uterus. We found that three types of Gs-coupled PG receptors, DP, EP2, and EP4, were expressed in luminal epithelial cells from the peri-implantation period to late pregnancy. DP expression was also induced in stromal cells within the mesometrial region, whereas EP4 was expressed in stromal cells within the anti-mesometrial region during the peri-implantation period. The timing of DP induction after embryo attachment correlated well with that of cyclooxygenase-2 (COX-2); however, COX-2-expressing stromal cells were located in the vicinity of the embryo, whereas DP-expressing stromal cells surrounded these cells on the mesometrial side. Specific [3H]PGD2-binding activity was detected in the decidua of uteri, with PGD2 synthesis comparable to that of PGE2 detected in the uteri during the peri-implantation period. Administration of the COX-2-specific inhibitor celecoxib caused adverse effects on decidualization, as demonstrated by the attenuated weight of the implantation sites, which was recovered by the simultaneous administration of a DP agonist. Such a rescuing effect of the DP agonist was mimicked by an EP4 agonist, but not an EP2 agonist. While the importance of DP signaling was shown pharmacologically, DP/EP2 double deficiency did not affect implantation and decidualization, suggesting the contribution of EP4 to these processes. Indeed, administration of an EP4 antagonist substantially affected decidualization in DP/EP2-deficient mice. These results suggest that COX-2-derived PGD2 and PGE2 contribute to decidualization via a coordinated pathway of DP and EP4 receptors.
Collapse
Affiliation(s)
- Risa Sakamoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuji Fujiwara
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuko Kawano
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shizu Aikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - On Nakayama
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukiko Kawasaki-Shirata
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Miho Hashimoto-Iwasaki
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Soken Tsuchiya
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satohiro Nakao
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Aikawa S, Hirota Y. Roles of lipid mediators in early pregnancy events. Reprod Med Biol 2024; 23:e12597. [PMID: 39010880 PMCID: PMC11247399 DOI: 10.1002/rmb2.12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Background Early pregnancy events, including embryo implantation, are critical for maintaining a healthy pregnancy and facilitating childbirth. Despite numerous signaling pathways implicated in establishing early pregnancy, a comprehensive understanding of implantation remains elusive. Methods This paper provides a comprehensive review of the current research on lipids in the context of early pregnancy, with a particular focus on feto-maternal communications. Main Findings Embryo implantation entails direct interaction between uterine tissues and embryos. Introducing embryos triggers significant changes in uterine epithelial morphology and stromal differentiation, facilitating embryo implantation through communication with uterine tissue. Studies employing genetic models and chemical compounds targeting enzymes and receptors have elucidated the crucial roles of lipid mediators-prostaglandins, lysophosphatidic acid, sphingosine-1-phosphate, and cannabinoids-in early pregnancy events. Conclusion Given the high conservation of lipid synthases and receptors across species, lipid mediators likely play pivotal roles in rodents and humans. Further investigations into lipids hold promise for developing novel diagnostic and therapeutic approaches for infertility in humans.
Collapse
Affiliation(s)
- Shizu Aikawa
- Department of Obstetrics and Gynecology Graduate School of Medicine, The University of Tokyo Tokyo Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology Graduate School of Medicine, The University of Tokyo Tokyo Japan
| |
Collapse
|
4
|
Conte JG, Tellechea ML, Park B, Ballerini MG, Jaita G, Peluffo MC. Interaction between epidermal growth factor receptor and C-C motif chemokine receptor 2 in the ovulatory cascade. Front Cell Dev Biol 2023; 11:1161813. [PMID: 37082622 PMCID: PMC10110862 DOI: 10.3389/fcell.2023.1161813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) signaling pathway is one of the main pathways responsible for propagating the luteinizing hormone (LH) signal throughout the cumulus cells and the oocyte. Recently, we have proposed the C-C motif chemokine receptor 2 (CCR2) and its main ligand (monocyte chemoattractant protein-1, MCP1) as novel mediators of the ovulatory cascade. Our previous results demonstrate that the gonadotropins (GNT), amphiregulin (AREG), and prostaglandin E2 (PGE2) stimulation of periovulatory gene mRNA levels occurs, at least in part, through the CCR2/MCP1 pathway, proposing the CCR2 receptor as a novel mediator of the ovulatory cascade in a feline model. For that purpose, feline cumulus-oocyte complexes (COCs) were cultured in the presence or absence of an EGFR inhibitor, recombinant chemokine MCP1, and gonadotropins [as an inducer of cumulus-oocyte expansion (C-OE), and oocyte maturation] to further assess the mRNA expression of periovulatory key genes, C-OE, oocyte nuclear maturation, and steroid hormone production. We observed that MCP1 was able to revert the inhibition of AREG mRNA expression by an EGFR inhibitor within the feline COC. In accordance, the confocal analysis showed that the GNT-stimulated hyaluronic acid (HA) synthesis, blocked by the EGFR inhibitor, was recovered by the addition of recombinant MCP1 in the C-OE culture media. Also, MCP1 was able to revert the inhibition of progesterone (P4) production by EGFR inhibitor in the C-OE culture media. Regarding oocyte nuclear maturation, recombinant MCP1 could also revert the inhibition triggered by the EGFR inhibitor, leading to a recovery in the percentage of metaphase II (MII)-stage oocytes. In conclusion, our results confirm the chemokine receptor CCR2 as a novel intermediate in the ovulatory cascade and demonstrate that the EGFR/AREG and the CCR2/MCP1 signaling pathways play critical roles in regulating feline C-OE and oocyte nuclear maturation, with CCR2/MCP1 signaling pathway being downstream EGFR/AREG pathway within the ovulatory cascade.
Collapse
Affiliation(s)
- J. G. Conte
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. L. Tellechea
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - B. Park
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - M. G. Ballerini
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - G. Jaita
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Biología Celular e Histología, Facultad de Medicina-Universidad de Buenos Aires Buenos, Buenos Aires, Argentina
| | - M. C. Peluffo
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
5
|
Kim S, Oh D, Choi H, Kim M, Cai L, Jawad A, Haomiao Z, Lee J, Kim E, Hyun SH. The effect of C–C motif chemokine ligand 2 supplementation on in vitro maturation of porcine cumulus-oocyte complexes and subsequent developmental competence after parthenogenetic activation. Front Vet Sci 2023; 10:1136705. [PMID: 36992978 PMCID: PMC10040565 DOI: 10.3389/fvets.2023.1136705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Porcine embryos are used for a variety of applications. However, the maturation rate in vitro remains low, and novel in vitro maturation (IVM) techniques that facilitate the collection of mature oocytes are necessary. C-C motif chemokine ligand 2 (CCL2) is a key periovulatory chemokine present in cumulus-oocyte complexes (COCs). We aimed to examine the effects of CCL2 supplementation during IVM on oocyte maturation and embryonic development. The CCL2 concentration was significantly higher in porcine follicular fluid (pFF) derived from follicles >8 mm in size than in pFF derived from smaller follicles. There was a significant increase in CCL2 mRNA levels in all follicular cells after IVM compared with that before IVM. We analyzed the localization of CCL2 and its receptor, the CCL2 receptor, in follicular cells. During IVM, different concentrations of CCL2 were added to COCs cultured in a maturation medium. After IVM, the group treated with 100 ng/mL CCL2 showed significantly higher metaphase II rates than the control group. All CCL2-treatment groups showed a significant increase in intracellular glutathione levels and a significant decrease in reactive oxygen species levels, compared to the control. In CCs treated with 100 ng/mL CCL2, the mRNA levels of BAX, CASP3, and NPR2 were significantly decreased. Furthermore, the mRNA levels of SOD1, SOD2, and CD44 were significantly increased. In oocytes treated with 10 ng/mL CCL2, mRNA levels of BAX and CASP3 were significantly decreased, whereas, NRF2 and NPM2 were significantly increased. ERK1 exhibited significantly increased mRNA expression in both CCs and oocytes treated with 10 ng/mL CCL2. The protein expression ratio of phosphorylated ERK1/2 to total ERK1/2 was significantly increased in CCs treated with 10 ng/mL CCL2. After parthenogenetic activation, cleavage rates were significantly improved in the 100 ng/mL CCL2 treatment group, and blastocyst formation rates were significantly enhanced in the 10 ng/mL CCL2 treatment group. Overall, our results suggest that IVM medium along with CCL2 improves porcine oocyte maturation and the development of parthenogenetically-activated embryos.
Collapse
Affiliation(s)
- Sohee Kim
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| | - Ali Jawad
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Zheng Haomiao
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Joohyeong Lee
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Eunhye Kim
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
- *Correspondence: Eunhye Kim
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
- Sang-Hwan Hyun
| |
Collapse
|
6
|
Tiwary E, Hu M, Prasain JK. Sperm-Guiding Unconventional Prostaglandins in C. elegans: Synthesis and Signaling. Metabolites 2021; 11:metabo11120853. [PMID: 34940611 PMCID: PMC8705762 DOI: 10.3390/metabo11120853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins comprise a family of lipid signaling molecules derived from polyunsaturated fatty acids and are involved in a wide array of biological processes, including fertilization. Prostaglandin-endoperoxide synthase (a.k.a. cyclooxygenase or Cox) initiates prostaglandin synthesis from 20-carbon polyunsaturated fatty acids, such as arachidonic acid. Oocytes of Caenorhabditis elegans (C. elegans) have been shown to secrete sperm-guidance cues prostaglandins, independent of Cox enzymes. Both prostaglandin synthesis and signal transduction in C. elegans are environmentally modulated pathways that regulate sperm guidance to the fertilization site. Environmental factors such as food triggers insulin and TGF-β secretion and their levels regulate tissue-specific prostaglandin synthesis in C. elegans. This novel PG pathway is abundant in mouse and human ovarian follicular fluid, where their functions, mechanism of synthesis and pathways remain to be established. Given the importance of prostaglandins in reproductive processes, a better understanding of how diets and other environmental factors influence their synthesis and function may lead to new strategies towards improving fertility in mammals.
Collapse
Affiliation(s)
- Ekta Tiwary
- Department of Medicines, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Muhan Hu
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Jeevan K. Prasain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-(205)-996-2612
| |
Collapse
|
7
|
Jaworski JP, Urrutia M, Dascal E, Jaita G, Peluffo MC. C-C motif chemokine receptor 2 as a novel intermediate in the ovulatory cascade. Mol Hum Reprod 2021; 26:289-300. [PMID: 32159806 DOI: 10.1093/molehr/gaaa020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Expression of immune function genes within follicle cells has been reported in ovaries from many species. Recent work from our laboratory showed a direct effect of the monocyte chemoattractant protein 1/C-C motif chemokine receptor 2 system within the feline cumulus oocyte complex, by increasing the mRNA levels of key genes involved in the ovulatory cascade in vitro. Studies were designed to evaluate if C-C motif chemokine receptor 2 acts as a novel mediator of the ovulatory cascade in vitro. Therefore, feline cumulus oocyte complexes were cultured in the presence or absence of a highly selective C-C motif chemokine receptor 2 antagonist together with known inducers of cumulus-oocyte expansion and/or oocyte maturation to assess mRNA expression of key genes related to periovulatory events in other species as well as oocyte maturation. Also, the effects of recombinant monocyte chemoattractant protein 1 on spontaneous or gonadotrophin-induced oocyte maturation were assessed. This is an in vitro system using isolated cumulus oocyte complexes from feline ovaries. The present study reveals the modulation of several key ovulatory genes by a highly selective C-C motif chemokine receptor 2 antagonist. However, this antagonist was not enough to block the oocyte maturation induced by gonadotropins or amphiregulin. Nonetheless, recombinant monocyte chemoattractant protein 1 had a significant effect on spontaneous oocyte maturation, increasing the percentage of metaphase II stage oocytes in comparison to the control. This is the first study in any species to establish C-C motif chemokine receptor 2 as a mediator of some actions of the mid-cycle gonadotrophin surge.
Collapse
Affiliation(s)
- J P Jaworski
- Instituto de Virología, INTA (National Institute of Agricultural Technology-Instituto Nacional de Tecnología Agropecuaria)-CONICET, Argentina. Las Cabañas y Los Reseros s/n, Las Cabañas y Los Reseros 10 s/n, Castelar, Argentina
| | - M Urrutia
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD Ciudad Autónoma de Buenos Aires, Argentina
| | - E Dascal
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD Ciudad Autónoma de Buenos Aires, Argentina
| | - G Jaita
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina CONICET, Universidad de Buenos Aires, Paraguay 2155, C1121ABG Ciudad Autónoma de Buenos Aires, Argentina.,Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires Buenos, Paraguay 2155, C1121ABG Ciudad Autónoma de Buenos Aires, Argentina
| | - M C Peluffo
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
8
|
Turhan A, Pereira MT, Schuler G, Bleul U, Kowalewski MP. Hypoxia-inducible factor (HIF1alpha) inhibition modulates cumulus cell function and affects bovine oocyte maturation in vitro†. Biol Reprod 2020; 104:479-491. [PMID: 33095229 PMCID: PMC7876663 DOI: 10.1093/biolre/ioaa196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Various metabolic and hormonal factors expressed in cumulus cells are positively correlated with the in vitro maturation (IVM) of oocytes. However, the role of hypoxia sensing both during maturation of cumulus–oocyte complexes (COCs) as well as during the resumption of meiosis remains uncertain. HIF1alpha plays major roles in cellular responses to hypoxia, and here we investigated its role during bovine COC maturation by assessing the expression of related genes in cumulus cells. COCs were divided into the following groups: immature (control), in vitro matured (IVM/control), or matured in the presence of a blocker of HIF1alpha activity (echinomycin, IVM/E). We found an inhibition of cumulus cell expansion in IVM/E, compared with the IVM/control. Transcript levels of several factors (n = 13) were assessed in cumulus cells. Decreased expression of HAS2, TNFAIP6, TMSB4, TMSB10, GATM, GLUT1, CX43, COX2, PTGES, and STAR was found in IVM/E (P < 0.05). Additionally, decreased protein levels were detected for STAR, HAS2, and PCNA (P < 0.05), while activated-Caspase 3 remained unaffected in IVM/E. Progesterone output decreased in IVM/E. The application of PX-478, another blocker of HIF1alpha expression, yielded identical results. Negative effects of HIF1alpha suppression were further observed in the significantly decreased oocyte maturation and blastocyst rates from COCs matured with echinomycin (P < 0.05) or PX-478 (P < 0.05). These results support the importance of HIF1alpha for COC maturation and subsequent embryo development. HIF1alpha is a multidirectional factor controlling intercellular communication within COCs, steroidogenic activity, and oocyte development rates, and exerting effects on blastocyst rates.
Collapse
Affiliation(s)
- Aslihan Turhan
- Vetsuisse Faculty, Institute of Veterinary Anatomy, University of Zurich (UZH), Zurich, Switzerland.,Department of Farm Animals, Clinic of Reproductive Medicine, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Miguel Tavares Pereira
- Vetsuisse Faculty, Institute of Veterinary Anatomy, University of Zurich (UZH), Zurich, Switzerland
| | - Gerhard Schuler
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals, Justus-Liebig-University, Giessen, Germany
| | - Ulrich Bleul
- Department of Farm Animals, Clinic of Reproductive Medicine, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Mariusz P Kowalewski
- Vetsuisse Faculty, Institute of Veterinary Anatomy, University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
9
|
Rojo JL, Jaworski JP, Peluffo MC. Direct role of the C-C motif chemokine receptor 2/monocyte chemoattractant protein 1 system in the feline cumulus oocyte complex†. Biol Reprod 2020; 100:1046-1056. [PMID: 30395163 DOI: 10.1093/biolre/ioy237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/14/2018] [Accepted: 11/01/2018] [Indexed: 01/12/2023] Open
Abstract
Studies were designed to (a) evaluate the mRNA expression of the C-C motif chemokine receptor 2 (CCR2) and its chemokine ligands, as well as genes related to periovulatory events, within the cumulus oocyte complex (COC) and follicle wall after a luteinizing hormone (LH) stimulus in cultured feline antral follicles; (b) assess the immunolocalization of CCR2 and its main ligand (monocyte chemoattractant protein 1, MCP1) within the feline COC; and (c) examine the direct effects of exogenous recombinant MCP1 on mRNA expression of the CCR2 receptor and MCP1 as well as key periovulatory genes in the COC, using a feline COC culture system. Both culture systems were developed by our laboratory and exhibit physiological response to gonadotropin stimuli. In summary, this study demonstrated mRNA expression of CCR2 receptor and its assessed ligands (MCP1, MCP2, MCP3, and MCP4) within the feline COC and follicle antral wall, and a significant increase in CCR2 mRNA by LH within the COC. Also, CCR2 and MCP1 immunoreactivity was observed in the oocyte and cumulus cells of the feline COC. Remarkably, this is the first report, in any species, describing a direct effect of the recombinant MCP1 in the CCR2/MCP1 system within the COC, by increasing the mRNA levels of key genes involved in the ovulatory cascade, as well as its own receptor CCR2. Together, these data suggest that CCR2 receptor signaling in the COC may regulate events critical for promoting cumulus oocyte expansion and/or oocyte maturation.
Collapse
Affiliation(s)
- Julieta Laura Rojo
- Centro de Investigaciones Endocrinológicas "Dr César Bergadá", CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan Pablo Jaworski
- National Institute of Agricultural Technology-Instituto Nacional de tecnología agropecuaria-CONICET, Castelar, Argentina
| | - Marina Cinthia Peluffo
- Centro de Investigaciones Endocrinológicas "Dr César Bergadá", CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
10
|
Duan YG, Wehry UP, Buhren BA, Schrumpf H, Oláh P, Bünemann E, Yu CF, Chen SJ, Müller A, Hirchenhain J, Lierop A, Novak N, Cai ZM, Krüssel JS, Schuppe HC, Haidl G, Gerber PA, Allam JP, Homey B. CCL20-CCR6 axis directs sperm-oocyte interaction and its dysregulation correlates/associates with male infertility‡. Biol Reprod 2020; 103:630-642. [PMID: 32412043 DOI: 10.1093/biolre/ioaa072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/28/2020] [Accepted: 05/12/2020] [Indexed: 11/12/2022] Open
Abstract
The interaction of sperm with the oocyte is pivotal during the process of mammalian fertilization. The limited numbers of sperm that reach the fallopian tube as well as anatomic restrictions indicate that human sperm-oocyte encounter is not a matter of chance but a directed process. Chemotaxis is the proposed mechanism for re-orientating sperm toward the source of a chemoattractant and hence to the oocyte. Chemokines represent a superfamily of small (8-11 kDa), cytokine-like proteins that have been shown to mediate chemotaxis and tissue-specific homing of leukocytes through binding to specific chemokine receptors such as CCRs. Here we show that CCR6 is abundantly expressed on human sperms and in human testes. Furthermore, radioligand-binding experiments showed that CCL20 bound human sperm in a specific manner. Conversely, granulosa cells of the oocyte-surrounding cumulus complex as well as human oocytes represent an abundant source of the CCR6-specific ligand CCL20. In human ovaries, CCL20 shows a cycle-dependent expression pattern with peak expression in the preovulatory phase and CCL20 protein induces chemotactic responses of human sperm. Neutralization of CCL20 in ovarian follicular fluid significantly impairs sperm migratory responses. Conversely, analyses in infertile men with inflammatory conditions of the reproductive organs demonstrate a significant increase of CCL20/CCR6 expression in testis and ejaculate. Taken together, findings of the present study suggest that CCR6-CCL20 interaction may represent an important factor in directing sperm-oocyte interaction.
Collapse
Affiliation(s)
- Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital
| | - U P Wehry
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - B A Buhren
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - H Schrumpf
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - P Oláh
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany.,Department of Dermatology, Venereology and Oncodermatology, Medical Faculty, University of Pécs, Pécs, Hungary
| | - E Bünemann
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - C-F Yu
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - S-J Chen
- Depatment of Minimally Invasive Gynecologic Surgery, Beijing Obstetrics and Gynaecology Hospital, Capital Medical University, 100006 Beijing, PR China
| | - A Müller
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - J Hirchenhain
- Department of Obstetrics and Gynecology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - A Lierop
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - N Novak
- Department of Dermatology and Allergy, Andrology Unit, University of Bonn, 53105 Bonn, Germany
| | - Zhi-Ming Cai
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital
| | - J S Krüssel
- Department of Obstetrics and Gynecology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - H-C Schuppe
- Department of Obstetrics and Gynecology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - G Haidl
- Department of Dermatology and Allergy, Andrology Unit, University of Bonn, 53105 Bonn, Germany
| | - P A Gerber
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - J-P Allam
- Department of Dermatology and Allergy, Andrology Unit, University of Bonn, 53105 Bonn, Germany
| | - B Homey
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Tsuge K, Inazumi T, Shimamoto A, Sugimoto Y. Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases. Int Immunol 2020; 31:597-606. [PMID: 30926983 DOI: 10.1093/intimm/dxz021] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/18/2019] [Indexed: 01/12/2023] Open
Abstract
Prostaglandins (PGs) are the major lipid mediators in animals and which are biosynthesized from arachidonic acid by the cyclooxygenases (COX-1 or COX-2) as the rate-limiting enzymes. Prostaglandin E2 (PGE2), which is the most abundantly detected PG in various tissues, exerts versatile physiological and pathological actions via four receptor subtypes (EP1-4). Non-steroidal anti-inflammatory drugs, such as aspirin and indomethacin, exert potent anti-inflammatory actions by the inhibition of COX activity and the resulting suppression of PG production. Therefore, PGE2 has been shown to exacerbate several inflammatory responses and immune diseases. Recently, studies using mice deficient in each PG receptor subtype have clarified the detailed mechanisms underlying PGE2-associated inflammation and autoimmune diseases involving each EP receptor. Here, we review the recent advances in our understanding of the roles of PGE2 receptors in the progression of acute and chronic inflammation and autoimmune diseases. PGE2 induces acute inflammation through mast cell activation via the EP3 receptor. PGE2 also induces chronic inflammation and various autoimmune diseases through T helper 1 (Th1)-cell differentiation, Th17-cell proliferation and IL-22 production from Th22 cells via the EP2 and EP4 receptors. The possibility of EP receptor-targeted drug development for the treatment of immune diseases is also discussed.
Collapse
Affiliation(s)
- Kyoshiro Tsuge
- Department of Regenerative Medicine Research, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan
| | - Akira Shimamoto
- Department of Regenerative Medicine Research, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
12
|
Okabe M. Sperm-egg interaction and fertilization: past, present, and future. Biol Reprod 2019; 99:134-146. [PMID: 29462236 DOI: 10.1093/biolre/ioy028] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/03/2018] [Indexed: 01/21/2023] Open
Abstract
Fifty years have passed since the findings of capacitation and acrosome reaction. These discoveries and the extensive effort of researchers led to the success of in vitro fertilization, which has become a top choice for patients at infertility clinics today. The effort to understand the mechanism of fertilization is ongoing, but the small number of eggs and similarly small quantity of spermatozoa continue to hinder biochemical experiments. The emergence of transgenic animals and gene disruption techniques has had a significant effect on fertilization research. Factors considered important in the early years were shown not to be essential and were replaced by newly found proteins. However, there is much about sperm-egg interaction which remains to be learned before we can outline the mechanism of fertilization. In fact, our understanding of sperm-egg interaction is entering a new stage. Progress in transgenic spermatozoa helped us to observe the behavior of spermatozoa in vivo and/or at the moment of sperm-egg fusion. These advancements are discussed together with the paradigm-shifting research in related fields to help us picture the direction which fertilization research may take in the future.
Collapse
Affiliation(s)
- Masaru Okabe
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
13
|
Wen X, Kuang Y, Zhou L, Yu B, Chen Q, Fu Y, Yan Z, Guo H, Lyu Q, Xie J, Chai W. Lipidomic Components Alterations of Human Follicular Fluid Reveal the Relevance of Improving Clinical Outcomes in Women Using Progestin-Primed Ovarian Stimulation Compared to Short-Term Protocol. Med Sci Monit 2018; 24:3357-3365. [PMID: 29783268 PMCID: PMC5989624 DOI: 10.12659/msm.906602] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Increasing the success rate of in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) is a duty of clinicians that has made many seek a variety of protocols. This study was undertaken to use a liquid chromatography-mass spectrometry (LC-MS) to define the alterations of follicular fluid (FF) lipid metabolites in patients undergoing progestin-primed ovarian stimulation (PPOS) compared with short-term protocol, revealing potential correlations between the differentially expressed lipids and ameliorative clinical outcomes. MATERIAL AND METHODS Ninety-three infertile women undergoing IVF/ICSI treatment with PPOS (n=62) or a short-term protocol (n=31) were prospectively enrolled in a randomized controlled trial. FF samples were obtained from dominant follicles at the time of oocyte retrieval. Lipid metabolism profiles were analyzed using LC-MS. RESULTS Twelve lipids were found to be higher in patients treated with the PPOS protocol than in those receiving the short-term protocol, including triacylglycerols (TAG-34: 1+NH4, TAG-58: 0+NH4, TAG-64: 3+NH4, and TAG-64: 8+NH4), diacylglycerol DAG-38: 6+NH4, phosphatidylglycerols (PG-26: 0, PG-30: 2, and PG-40: 5), phosphatidylethanolamine PE-32: 2, lysophosphatidylethanolamine LPE-14: 1, lysophosphatidylinositol LPI-12: 0, and lysophosphatidylcholine LPC-16: 0. CONCLUSIONS Our data demonstrate that the PPOS protocol increases the levels of 12 lipids in FF, which reveals a strong association between the differentially elevated lipids and better IVF/ICSI outcomes.
Collapse
Affiliation(s)
- Xiaowei Wen
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, P.R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, P.R. China
| | - Lixia Zhou
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, P.R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Qiuju Chen
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, P.R. China
| | - Yonglun Fu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, P.R. China
| | - Zheng Yan
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, P.R. China
| | - Haiyan Guo
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, P.R. China
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, P.R. China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Weiran Chai
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, P.R. China
| |
Collapse
|
14
|
Niringiyumukiza JD, Cai H, Xiang W. Prostaglandin E2 involvement in mammalian female fertility: ovulation, fertilization, embryo development and early implantation. Reprod Biol Endocrinol 2018; 16:43. [PMID: 29716588 PMCID: PMC5928575 DOI: 10.1186/s12958-018-0359-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/20/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Infertility in mammalian females has been a challenge in reproductive medicine. The causes of female infertility include anovulation, ovulated oocyte defects, abnormal fertilization, and insufficient luteal support for embryo development, as well as early implantation. Ovulation induction, in vitro fertilization and luteal support regimens have been performed for decades to increase fertility rates. The identification of proteins and biochemical factors involved in female reproduction is essential to further increase female fertility rates. Evidence has shown that prostaglandins (PGs) might be involved in the female reproductive process, mainly ovulation, fertilization, and implantation. However, only a few studies on individual PGs in female reproduction have been done so far. This review aimed to identify the pivotal role of prostaglandin E2 (PGE2), a predominant PG, in female reproduction to improve fertility, specifically ovulation, fertilization, embryo development and early implantation. RESULTS Prostaglandin E2 (PGE2) was shown to play a relevant role in the ovulatory cascade, including meiotic maturation, cumulus expansion and follicle rupture, through inducing ovulatory genes, such as Areg, Ereg, Has2 and Tnfaip6, as well as increasing intracellular cAMP levels. PGE2 reduces extracellular matrix viscosity and thereby optimizes the conditions for sperm penetration. PGE2 reduces the phagocytic activity of polymorphonuclear neutrophils (PMNs) against sperm. In the presence of PGE2, sperm function and binding capacity to oocytes are enhanced. PGE2 maintains luteal function for embryo development and early implantation. In addition, it induces chemokine expression for trophoblast apposition and adhesion to the decidua for implantation. CONCLUSION It has been shown that PGE2 positively affects different stages of female fertility. Therefore, PGE2 should be taken into consideration when optimizing reproduction in infertile females. We suggest that in clinical practice, the administration of non-steroidal anti-inflammatory drugs, which are PGE2 synthesis inhibitors, should be reasonable and limited in infertile women. Additionally, assessments of PGE2 protein and receptor expression levels should be taken into consideration.
Collapse
Affiliation(s)
- Jean Damascene Niringiyumukiza
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Hongcai Cai
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Wenpei Xiang
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| |
Collapse
|
15
|
Rojo JL, Linari M, Young KA, Peluffo MC. Stromal-derived factor 1 directly promotes genes expressed within the ovulatory cascade in feline cumulus oocyte complexes. J Assist Reprod Genet 2018; 35:785-792. [PMID: 29516335 PMCID: PMC5984889 DOI: 10.1007/s10815-018-1150-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/26/2018] [Indexed: 01/02/2023] Open
Abstract
PURPOSE We hypothesized that the chemokine SDF1/CXCR4 system was present in feline cumulus-oocyte complexes (COCs) and that COCs cultured with SDF1 would directly upregulate gene expression in the ovulatory cascade. METHODS Ovaries (n = 50) were obtained from adult domestic cats during the breeding season and COCs were recovered from antral follicles. Because IVM media triggers cumulus-oocyte expansion, culture conditions needed to be optimized to study periovulatory genes. After optimization, the effects of 25 ng/ml SDF1 and the CXCR4 inhibitor were examined in a COC culture for 3, 12, and 24 h. RESULTS MEM-hepes with 1% of charcoal stripped-FBS was the optimized culture medium, assessed by the expansion of COCs at 24 h in the gonadotropin (GNT) group but not in the media with serum alone. The mRNA expression of HAS2, TNFAIP6, PTX3, and AREG peaked at 3 h in GNT group as compared to all other groups (p < 0.05). COCs cultured with SDF1 showed increased HAS2 and TNFAIP6 mRNA expression at 3 h compared to negative controls and to the CXCR4 inhibitor group. CXCR4 and SDF1 immunostaining was present in both cumulus cells and the oocyte. CONCLUSIONS These results demonstrate that GNT stimulation upregulates key periovulatory genes and expansion in feline COCs from antral follicles, and support the use of this culture system to examine molecular processes within the COC. In addition, SDF1 directly promotes key periovulatory genes in feline COCs, suggesting that the SDF1-CXCR4 pathway may extend its function beyond a chemoattractant, and may play a direct role within the COC.
Collapse
Affiliation(s)
- Julieta L Rojo
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET, FEI, División de Endocrinología Hospital de Niños Ricardo Gutiérrez, Gallo 1330, CABA, C1425EFD, Buenos Aires, Argentina
| | - Martina Linari
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET, FEI, División de Endocrinología Hospital de Niños Ricardo Gutiérrez, Gallo 1330, CABA, C1425EFD, Buenos Aires, Argentina
| | - Kelly A Young
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, 90840, USA
| | - Marina C Peluffo
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET, FEI, División de Endocrinología Hospital de Niños Ricardo Gutiérrez, Gallo 1330, CABA, C1425EFD, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Salustri A, Campagnolo L, Klinger FG, Camaioni A. Molecular organization and mechanical properties of the hyaluronan matrix surrounding the mammalian oocyte. Matrix Biol 2018; 78-79:11-23. [PMID: 29408277 DOI: 10.1016/j.matbio.2018.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 10/18/2022]
Abstract
Successful ovulation and oocyte fertilization are essential prerequisites for the beginning of life in sexually reproducing animals. In mammalian fertilization, the relevance of the protein coat surrounding the oocyte plasma membrane, known as zona pellucida, has been widely recognized, while, until not too long ago, the general belief was that the cumulus oophorus, consisting of follicle cells embedded in a hyaluronan rich extracellular matrix, was not essential. This opinion was based on in vitro fertilization procedures, in which a large number of sperms are normally utilized and the oocyte can be fertilized even if depleted of cumulus cells. Conversely, in vivo, only very few sperm cells reach the fertilization site, arguing against the possibility of a coincidental encounter with the oocyte. In the last two decades, proteins required for HA organization in the cumulus extracellular matrix have been identified and the study of fertility in mice deprived of the corresponding genes have provided compelling evidence that this jelly-like coat is critical for fertilization. This review focuses on the advances in understanding the molecular interactions making the cumulus environment suitable for oocyte and sperm encounter. Most of the studies on the molecular characterization of the cumulus extracellular matrix have been performed in the mouse and we will refer essentially to findings obtained in this animal model.
Collapse
Affiliation(s)
- Antonietta Salustri
- Department of Biomedicine and Prevention, Histology and Embryology Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, Histology and Embryology Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Francesca Gioia Klinger
- Department of Biomedicine and Prevention, Histology and Embryology Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Antonella Camaioni
- Department of Biomedicine and Prevention, Histology and Embryology Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
17
|
Fujihara Y, Miyata H, Ikawa M. Factors controlling sperm migration through the oviduct revealed by gene-modified mouse models. Exp Anim 2018; 67:91-104. [PMID: 29353867 PMCID: PMC5955741 DOI: 10.1538/expanim.17-0153] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mammalian fertilization is comprised of many steps including sperm survival in the
uterus, sperm migration in the female reproductive tract, physiological and morphological
changes to the spermatozoa, and sperm-egg interaction in the oviduct. In
vitro studies have revealed essential factors for these fertilization steps for
over half a century. However, the molecular mechanism of fertilization has recently been
revised by the emergence of genetically modified animals. Here, we focus on essential
factors for sperm fertilizing ability and describe recent advances in our knowledge of the
mechanisms of mammalian fertilization, especially of sperm migration from the uterus into
the oviduct.
Collapse
Affiliation(s)
- Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
18
|
Prostaglandin E2 stimulates the expression of cumulus expansion-related genes in pigs: the role of protein kinase B. Prostaglandins Other Lipid Mediat 2017; 130:38-46. [DOI: 10.1016/j.prostaglandins.2017.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/17/2017] [Accepted: 04/03/2017] [Indexed: 11/22/2022]
|
19
|
Li J, Zhou Z, Zhang X, Zheng L, He D, Ye Y, Zhang QQ, Qi CL, He XD, Yu C, Shao CK, Qiao L, Wang L. Inflammatory Molecule, PSGL-1, Deficiency Activates Macrophages to Promote Colorectal Cancer Growth through NFκB Signaling. Mol Cancer Res 2017; 15:467-477. [PMID: 28108624 DOI: 10.1158/1541-7786.mcr-16-0309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/04/2016] [Accepted: 12/06/2016] [Indexed: 11/16/2022]
Abstract
P-selectin glycoprotein ligand 1 (SELPLG/PSGL-1) is an inflammatory molecule that is functionally related to immune cell differentiation and leukocyte mobilization. However, the role of PSGL-1 in tumor development remains unknown. Therefore, this study investigates the mechanistic role of PSGL-1 in the development of intestinal tumors in colorectal cancer. ApcMin/+ mice are highly susceptible to spontaneous intestinal adenoma formation, and were crossbred with PSGL1-null mice to generate compound transgenic mice with a ApcMin/+;PSGL-1-/- genotype. The incidence and pathologic features of the intestinal tumors were compared between the ApcMin/+ mice and ApcMin/+;PSGL-1-/- mice. Importantly, PSGL-1-deficient mice showed increased susceptibility to develop intestinal tumors and accelerated tumor growth. Mechanistically, increased production of the mouse chemokine ligand 9 (CCL9/MIP-1γ) was found in the PSGL-1-deficient mice, and the macrophages are likely the major source of macrophage inflammatory protein-1 gamma (MIP-1γ). Studies in vitro demonstrated that macrophage-derived MIP-1γ promoted colorectal cancer tumor cell growth through activating NFκB signaling. Conversely, restoration of the PSGL-1 signaling via bone marrow transplantation reduced MIP-1γ production and attenuated the ability of ApcMin/+;PSGL-1-/- mice to generate intestinal tumors. In human colorectal cancer clinical specimens, the presence of PSGL-1-positive cells was associated with a favorable tumor-node-metastasis staging and decreased lymph node metastasis.Implications:PSGL-1 deficiency and inflammation render intestinal tissue more vulnerable to develop colorectal tumors through a MIP-1γ/NFκB signaling axis. Mol Cancer Res; 15(4); 467-77. ©2017 AACR.
Collapse
Affiliation(s)
- Jiangchao Li
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zeqi Zhou
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaohan Zhang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Zheng
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dan He
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuxiang Ye
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qian-Qian Zhang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Cui-Ling Qi
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiao-Dong He
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chen Yu
- Department of Gastroenterology, The First Affiliated Hospital of Pharmaceutical University, Guangzhou, China
| | - Chun-Kui Shao
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Qiao
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at the Westmead, New South Wales, Australia
| | - Lijing Wang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
20
|
Chen WW, Yi YH, Chien CH, Hsiung KC, Ma TH, Lin YC, Lo SJ, Chang TC. Specific polyunsaturated fatty acids modulate lipid delivery and oocyte development in C. elegans revealed by molecular-selective label-free imaging. Sci Rep 2016; 6:32021. [PMID: 27535493 PMCID: PMC4989181 DOI: 10.1038/srep32021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) exhibit critical functions in biological systems and their importance during animal oocyte maturation has been increasingly recognized. However, the detailed mechanism of lipid transportation for oocyte development remains largely unknown. In this study, the transportation of yolk lipoprotein (lipid carrier) and the rate of lipid delivery into oocytes in live C. elegans were examined for the first time by using coherent anti-Stokes Raman scattering (CARS) microscopy. The accumulation of secreted yolk lipoprotein in the pseudocoelom of live C. elegans can be detected by CARS microscopy at both protein (~1665 cm−1) and lipid (~2845 cm−1) Raman bands. In addition, an image analysis protocol was established to quantitatively measure the levels of secreted yolk lipoprotein aberrantly accumulated in PUFA-deficient fat mutants (fat-1, fat-2, fat-3, fat-4) and PUFA-supplemented fat-2 worms (the PUFA add-back experiments). Our results revealed that the omega-6 PUFAs, not omega-3 PUFAs, play a critical role in modulating lipid/yolk level in the oocytes and regulating reproductive efficiency of C. elegans. This work demonstrates the value of using CARS microscopy as a molecular-selective label-free imaging technique for the study of PUFA regulation and oocyte development in C. elegans.
Collapse
Affiliation(s)
- Wei-Wen Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan.,Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 106, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yung-Hsiang Yi
- Center of Molecular Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan.,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Cheng-Hao Chien
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Kuei-Ching Hsiung
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Tian-Hsiang Ma
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Yi-Chun Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Szecheng J Lo
- Center of Molecular Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan.,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Ta-Chau Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan.,Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 106, Taiwan
| |
Collapse
|
21
|
Hirohashi N. Site of Mammalian Sperm Acrosome Reaction. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2016; 220:145-58. [DOI: 10.1007/978-3-319-30567-7_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
22
|
Winuthayanon W, Bernhardt ML, Padilla-Banks E, Myers PH, Edin ML, Lih FB, Hewitt SC, Korach KS, Williams CJ. Oviductal estrogen receptor α signaling prevents protease-mediated embryo death. eLife 2015; 4:e10453. [PMID: 26623518 PMCID: PMC4718728 DOI: 10.7554/elife.10453] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/29/2015] [Indexed: 12/28/2022] Open
Abstract
Development of uterine endometrial receptivity for implantation is orchestrated by cyclic steroid hormone-mediated signals. It is unknown if these signals are necessary for oviduct function in supporting fertilization and preimplantation development. Here we show that conditional knockout (cKO) mice lacking estrogen receptor α (ERα) in oviduct and uterine epithelial cells have impaired fertilization due to a dramatic reduction in sperm migration. In addition, all successfully fertilized eggs die before the 2-cell stage due to persistence of secreted innate immune mediators including proteases. Elevated protease activity in cKO oviducts causes premature degradation of the zona pellucida and embryo lysis, and wild-type embryos transferred into cKO oviducts fail to develop normally unless rescued by concomitant transfer of protease inhibitors. Thus, suppression of oviductal protease activity mediated by estrogen-epithelial ERα signaling is required for fertilization and preimplantation embryo development. These findings have implications for human infertility and post-coital contraception. DOI:http://dx.doi.org/10.7554/eLife.10453.001 In female mammals, eggs made in the ovaries travel to the uterus via tubes called oviducts (or Fallopian tubes). If sperm fertilize these eggs on the way, they complete this journey as early embryos and then implant into the wall of the uterus. As sperm and then newly fertilized embryos travel down these tubes, they encounter fluid inside the oviduct, which is generated by the cells that line the tube. The hormonal changes that occur with the menstrual cycle alter the complexity and cellular composition of the uterus. When an egg is fertilized, further changes in the levels of the hormones, estrogen and progesterone, ensure the uterus becomes receptive to the embryo. However, it remains unknown whether such hormone-mediated signals also regulate the oviduct to support fertilization and early embryo development. To investigate this question, Winuthayanon et al. studied female mice that lack an important estrogen receptor in the cells that line their oviducts and uterus. These mice are infertile. This is partly because most sperm become stuck in the uterus and fail to reach the eggs in the oviduct in order to fertilize them. The oviduct also becomes a hostile environment for both eggs and embryos, as reflected in damaged eggs and the complete loss of all new embryos by two days after fertilization. These embryos die, not because their development fails, but because their outer membrane becomes damaged and breaks apart. Winuthayanon et al. showed that this is due to the persistence of enzymes that form part of the immune system inside the oviduct. These enzymes can degrade proteins and damage cell membranes. The presence of this estrogen receptor on the inner lining of the oviduct thus appears to be crucially important for reproduction (these effects were not seen when it is removed from other cells of the oviduct). The loss of this receptor also reveals the vital role that estrogen plays in suppressing parts of the immune response to ensure the oviduct provides a supportive environment for fertilization and embryo development. These findings could also have future application in the development of new contraceptives and might also shed light on the causes of human infertility. DOI:http://dx.doi.org/10.7554/eLife.10453.002
Collapse
Affiliation(s)
- Wipawee Winuthayanon
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States.,School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, United States
| | - Miranda L Bernhardt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Page H Myers
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Matthew L Edin
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Fred B Lih
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, USA
| | - Sylvia C Hewitt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| |
Collapse
|
23
|
Sugimoto Y, Inazumi T, Tsuchiya S. Roles of prostaglandin receptors in female reproduction. J Biochem 2014; 157:73-80. [PMID: 25480981 DOI: 10.1093/jb/mvu081] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Prostaglandins (PGs) have long been known to play roles in various processes of female reproduction; however, the molecular mechanisms therein remained unsolved until recently. This review summarizes the recent progress towards understanding the molecular mechanisms underlying PG actions in fertilization and parturition. A series of studies using EP2-deficient mice demonstrated that after ovulation chemokine signalling in the cumulus cells stimulates integrin activation and cumulus extracellular matrix (ECM) assembly through the RhoA/ROCK/actomyosin pathway, although excessive chemokine signalling disturbs sperm penetration. PGE2-EP2 signalling suppresses such a chemokine signalling and stimulates cumulus ECM disassembly, which contributes to successful fertilization. A series of studies using FP-deficient mice revealed that PGF(2α)-FP signalling induces parturition at least by terminating progesterone production; however, some other EP signals are likely to be involved in parturition by inducing myometrial contraction. Therefore, it should be clarified as to which EP and/or FP receptor signals are physiologically essential for myometrial contraction and successful parturition.
Collapse
Affiliation(s)
- Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Kumamoto University Graduate School of Pharmaceutical Sciences, Oe-Honmachi, Kumamoto 862-0973, Japan and CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan Department of Pharmaceutical Biochemistry, Kumamoto University Graduate School of Pharmaceutical Sciences, Oe-Honmachi, Kumamoto 862-0973, Japan and CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Kumamoto University Graduate School of Pharmaceutical Sciences, Oe-Honmachi, Kumamoto 862-0973, Japan and CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Soken Tsuchiya
- Department of Pharmaceutical Biochemistry, Kumamoto University Graduate School of Pharmaceutical Sciences, Oe-Honmachi, Kumamoto 862-0973, Japan and CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan Department of Pharmaceutical Biochemistry, Kumamoto University Graduate School of Pharmaceutical Sciences, Oe-Honmachi, Kumamoto 862-0973, Japan and CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
24
|
Scherzer R, Bacchetti P, Messerlian G, Goderre J, Maki PM, Seifer DB, Anastos K, Karim R, Greenblatt RM. Impact of CD4+ lymphocytes and HIV infection on Anti-Müllerian Hormone levels in a large cohort of HIV-infected and HIV-uninfected women. Am J Reprod Immunol 2014; 73:273-84. [PMID: 25339186 DOI: 10.1111/aji.12332] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/23/2014] [Indexed: 12/21/2022] Open
Abstract
PROBLEM Effects of HIV infection on ovarian function and aging are unclear. METHOD OF STUDY Anti-Müllerian Hormone (AMH) levels were analyzed in 2621 HIV-infected and 941 uninfected participants using left-censored longitudinal models. RESULTS Age-adjusted AMH levels were 16% lower in women with undetectable viraemia and 26% lower in detectable viraemia, relative to uninfected women. Current CD4 count associated with higher AMH in both HIV-infected and HIV-uninfected women. After controlling for current and nadir CD4, AMH was ~15% higher in HIV-infected relative to uninfected women, regardless of HIV viraemia. Gravidity, amenorrhea, and nadir total lymphocyte counts associated with higher AMH; hormonal contraceptive use and past weight loss associated with lower AMH. CONCLUSIONS CD4 + lymphocyte counts were associated with AMH in both HIV-infected and uninfected women. After adjustment for CD4 counts and age, HIV infection was associated with higher AMH. CD4 T cells and cellular activation may influence ovarian granulosa cell function.
Collapse
Affiliation(s)
- Rebecca Scherzer
- Department of Medicine, San Francisco School of Medicine, University of California, San Francisco, CA, USA; San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kotarska K, Galas J, Przybyło M, Bilińska B, Styrna J. Increased progesterone production in cumulus-oocyte complexes of female mice sired by males with the Y-chromosome long arm deletion and its potential influence on fertilization efficiency. Reprod Sci 2014; 22:242-9. [PMID: 24899473 DOI: 10.1177/1933719114537717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It was revealed previously that B10.BR(Y(del)) females sired by males with the Y-chromosome long arm deletion differ from genetically identical B10.BR females sired by males with the intact Y chromosome. This is interpreted as a result of different epigenetic information which females of both groups inherit from their fathers. In the following study, we show that cumulus-oocyte complexes ovulated by B10.BR(Y(del)) females synthesize increased amounts of progesterone, which is important sperm stimulator. Because their extracellular matrix is excessively firm, the increased progesterone secretion belongs presumably to factors that compensate this feature enabling unchanged fertilization ratios. Described compensatory mechanism can act only on sperm of high quality, presenting proper receptors. Indeed, low proportion of sperm of Y(del) males that poorly fertilize B10.BR(Y(del)) oocytes demonstrates positive staining of membrane progesterone receptors. This proportion is significantly higher for sperm of control males that fertilize B10.BR(Y(del)) and B10.BR oocytes with the same efficiency.
Collapse
Affiliation(s)
- Katarzyna Kotarska
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Jerzy Galas
- Department of Endocrinology and Tissue Culture, Chair of Animal Physiology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Barbara Bilińska
- Department of Endocrinology and Tissue Culture, Chair of Animal Physiology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Józefa Styrna
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
26
|
Agca C, Yakan A, Agca Y. Estrus synchronization and ovarian hyper-stimulation treatments have negligible effects on cumulus oocyte complex gene expression whereas induction of ovulation causes major expression changes. Mol Reprod Dev 2013; 80:102-17. [PMID: 23239112 DOI: 10.1002/mrd.22141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/29/2012] [Indexed: 02/02/2023]
Abstract
The effects of exogenous hormones, used for estrus synchronization and ovarian hyper stimulation, on cumulus oocyte complexes (COCs) gene expression in sexually mature rats were determined using microarrays. Gene expression in COCs collected from GnRH (G(trt)), GnRH + eCG (G + E(trt)), and GnRH + eCG + hCG (G + E + H(trt)) treatments were compared to COCs from naturally cycling (NC) rats before the preovulatory luteninizing hormone surge. There was no significant difference in gene expression among NC, G(trt), and G + E(trt); however, over 2,600 genes were significantly different between NC and G + E + H(trt) (P < 0.05). Genes upregulated in G + E + H(trt) encode for: proteins that are involved in prostaglandin synthesis (Ptgs2, Pla2g4a, and Runx1) and cholesterol biosynthesis (Hmgcr, Sc4mol, and Dhcr24); receptors that allow cholesterol uptake (Ldlr and Scarb1), regulate progesterone synthesis (Star), and inactivate estrogen (Sult1e1); and downstream effectors of LH signal (Pgr, Cebpb, Creb3l1, Areg, Ereg, and Adamts1). Conversely, G + E + H(trt) downregulated genes encoding proteins involved in: DNA replication and cell cycle progression (Ccne2, Orc5l, Rad50, and Mcm6); reproductive developmental process; and granulosa cell expansion (Gdf9, Bmp15, Amh, Amhr2, Bmpr1b, Tgfb2, Foxl2, Pde3a, Esr2, Fshr, Ybx2, Ccnd2, Ccnb1ip1, and Zp3); maternal effect genes required for embryo development (Zar1, Npm2, Nlrp5, Dnmt1, H1foo, and Zfp57); amino acid degradation; and ketogenesis (Hmgcs2, and Cpt1b). These results from the rat show that hormones used for estrus synchronization (G(trt)) and ovarian hyper stimulation (G + E(trt)) had minimal effects on gene expression, whereas induction of ovulation (G + E + H(trt)) caused major changes in gene expression of rat COCs. This study provides comprehensive information about regulated genes during late follicle development and ovulation induction.
Collapse
Affiliation(s)
- Cansu Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
27
|
Puglisi R, Cambuli C, Capoferri R, Giannino L, Lukaj A, Duchi R, Lazzari G, Galli C, Feligini M, Galli A, Bongioni G. Differential gene expression in cumulus oocyte complexes collected by ovum pick up from repeat breeder and normally fertile Holstein Friesian heifers. Anim Reprod Sci 2013; 141:26-33. [PMID: 23911014 DOI: 10.1016/j.anireprosci.2013.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 11/25/2022]
Abstract
The aim of this study was to establish whether perturbed gene expression during cumulus oocyte development causes repeat breeding in cattle. In this study, a repeat breeder was defined as a normal estrous cycling animal that did not become pregnant after three inseminations despite the absence of clinically detectable reproductive disorders. Transcripts of genes extracted from cumulus oocyte complexes (COC) that were collected from three repeat breeder and three normally fertile Holstein Friesian heifers were compared. Up to 40 COC were collected from each heifer by means of repeated sessions of ovum pick up in the absence of hormonal stimulation; immediately plunged into liquid nitrogen; and stored at -80°C until analysis. For each heifer, RNA was extracted from the pooled COC and hybridized on GeneChip(®) Bovine Gene Array (Affymetrix). Analysis of gene expression profiles of repeat breeder and control COC showed that 178 genes were differentially expressed (log2 fold change>1.5). Of these genes, 43 (24%) were up-regulated and 135 (76%) were down-regulated in repeat breeder relative to control heifers. This altered pattern of expression occurred in genes involved in several cellular biological processes and cellular components such as metabolism, angiogenesis, substrate/ion transport, regulation/signaling, cell adhesion and cytoskeleton. From these, 13 genes potentially involved in cumulus oocyte growth were subjected to validation by qRT-PCR and nine genes (annexin A1, ANXA1; lactoferrin, LTF; interferon stimulated exonuclease 20kDa, ISG20/HEM45; oxidized low density lipoprotein receptor 1, OLR1; fatty acid desaturase 2, FADS2; glutathione S-transferase A2 and A4, GSTA2 and GSTA4; glutathione peroxidase 1, GPX1; endothelin receptor type A, EDNRA) were confirmed to be differentially expressed. This study identified potential marker genes for fertility in dairy cattle.
Collapse
Affiliation(s)
- Roberto Puglisi
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Loc. La Quercia, 26027 Rivolta d'Adda (CR), Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kohaya N, Fujiwara K, Ito J, Kashiwazaki N. Generation of live offspring from vitrified mouse oocytes of C57BL/6J strain. PLoS One 2013; 8:e58063. [PMID: 23516430 PMCID: PMC3596345 DOI: 10.1371/journal.pone.0058063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/30/2013] [Indexed: 11/18/2022] Open
Abstract
In mammals, unfertilized oocytes are one of the most available stages for cryopreservation because the cryopreserved oocytes can be used for assisted reproductive technologies, including in vitro fertilization (IVF) and intracytoplasmic sperm injection. However, it has generally been reported that the fertility and developmental ability of the oocytes are reduced by cryopreservation. C57BL/6J mice, an inbred strain, are used extensively for the production of transgenic and knockout mice. If the oocytes from C57BL/6J mice can be successfully cryopreserved, the cryopreservation protocol used will contribute to the high-speed production of not only gene-modified mice but also hybrid mice. Very recently, we succeeded in the vitrification of mouse oocytes derived from ICR (outbred) mice. However, our protocol can be applied to the vitrification of oocytes from an inbred strain. The aim of the present study was to establish the vitrification of oocytes from C57BL/6J mice. First, the effect of cumulus cells on the ability of C57BL/6J mouse oocytes to fertilize and develop in vitro was examined. The fertility and developmental ability of oocyte-removed cumulus cells (i.e., denuded oocytes, or DOs) after IVF were reduced compared to cumulus oocyte complexes (COCs) in both fresh and cryopreserved groups. Vitrified COCs showed significantly (P<0.05) higher fertility and ability to develop into the 2-cell and blastocyst stages compared to the vitrified DOs with cumulus cells and vitrified DOs alone. The vitrified COCs developed to term at a high success rate, equivalent to the rate obtained with IVF using fresh COCs. Taken together, our results demonstrate that we succeeded for the first time in the vitrification of mouse oocytes from C57BL/6J mice. Our findings will also contribute to the improvement of oocyte vitrification not only in animals but also in clinical applications for human infertility.
Collapse
Affiliation(s)
- Natsuki Kohaya
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | | | - Junya Ito
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
- Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan
- * E-mail:
| | - Naomi Kashiwazaki
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
- Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan
| |
Collapse
|
29
|
Shimada M, Mihara T, Kawashima I, Okazaki T. Anti-Bacterial Factors Secreted From Cumulus Cells of Ovulated COCs Enhance Sperm Capacitation DuringIn VitroFertilization. Am J Reprod Immunol 2012; 69:168-79. [DOI: 10.1111/aji.12024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/30/2012] [Indexed: 12/01/2022] Open
Affiliation(s)
- Masayuki Shimada
- Laboratory of Reproductive Endocrinology; Graduate School of Biosphere Science; Hiroshima University; Hiroshima; Japan
| | - Toshihiro Mihara
- Laboratory of Reproductive Endocrinology; Graduate School of Biosphere Science; Hiroshima University; Hiroshima; Japan
| | - Ikko Kawashima
- Laboratory of Reproductive Endocrinology; Graduate School of Biosphere Science; Hiroshima University; Hiroshima; Japan
| | - Tetsuji Okazaki
- Smaller Livestock and Environment Section; Livestock Research Institute; Oita Prefectural Agriculture; Forestry and Fisheries Research Center; Bungo-ono; Japan
| |
Collapse
|
30
|
Dunning KR, Watson LN, Sharkey DJ, Brown HM, Norman RJ, Thompson JG, Robker RL, Russell DL. Molecular Filtration Properties of the Mouse Expanded Cumulus Matrix: Controlled Supply of Metabolites and Extracellular Signals to Cumulus Cells and the Oocyte1. Biol Reprod 2012; 87:89. [DOI: 10.1095/biolreprod.111.096271] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
31
|
Kotarska K, Lenartowicz M, Przybyło M, Gołas A, Styrna J. Increased prostaglandin E₂-EP2 signalling in cumulus cells of female mice sired by males with the Y-chromosome long-arm deletion. Reprod Fertil Dev 2012; 25:900-6. [PMID: 22953728 DOI: 10.1071/rd12086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/26/2012] [Indexed: 11/23/2022] Open
Abstract
Cumuli oophori surrounding ovulated oocytes of B10.BR(Y(del)) females (sired by males with the Y-chromosome long-arm deletion) are more resistant to hyaluronidase digestion than cumuli oophori around eggs of genetically identical females but sired by males with the intact Y chromosome (B10.BR). This has been interpreted as a result of differences in paternal genome imprinting, which females of both groups inherit from their fathers. The following study shows that it is not hyaluronan, but rather excessive protein concentration, that makes the cumulus extracellular matrix of B10.BR(Y(del)) oocytes more resistant to enzymatic treatment. It was revealed, additionally, that cumulus cells around ovulating oocytes of B10.BR(Y(del)) females display higher surface accumulation of prostaglandin EP2 subtype receptors and higher expression of the Ptgs2 gene (encoding a rate-limiting enzyme of prostaglandin E₂ synthesis) in relation to the cells of control B10.BR females. The expression levels of the prostaglandin-dependent Tnfaip6 and Ccl2 genes were also altered in B10.BR(Y(del)) cumulus cells in a manner indicating increased prostaglandin signalling. The study provides further evidence for the divergence in reproductive phenotypes between B10.BR and B10.BR(Y(del)) female mice. It supports the hypothesis that genes of the Y-chromosome long arm may be involved in establishment of epigenetic marks in X-bearing spermatozoa.
Collapse
Affiliation(s)
- Katarzyna Kotarska
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| | | | | | | | | |
Collapse
|
32
|
Hobbs RJ, Howard J, Wildt DE, Comizzoli P. Absence of seasonal changes in FSHR gene expression in the cat cumulus-oocyte complex in vivo and in vitro. Reproduction 2012; 144:111-22. [PMID: 22596062 DOI: 10.1530/rep-12-0098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Domestic cat oocytes are seasonally sensitive to FSH. Compared with those collected during the breeding season, oocytes from the nonbreeding (NB) season require more FSH during in vitro maturation to achieve comparable developmental competence. This study tested the hypothesis that this seasonal variation was due to altered expression of FSH receptors (FSHR) and/or FSH-induced genes. Relative expression levels of FSHR mRNA and FSH-enhanced gene estrogen receptor β (ESR2) were measured by qPCR in whole ovaries and immature cumulus-oocyte complexes (COCs) isolated from cat ovaries during the natural breeding vs NB seasons. Expression levels of FSH-induced genes prostaglandin-endoperoxide synthase 2 (PTGS2), early growth response protein-1 (EGR1), and epidermal growth factor receptor (EGFR) were examined in mature COCs from both seasons that were a) recovered in vivo or b) matured in vitro with conventional (1 μg/ml) or high (10 μg/ml) FSH concentrations. Overall, FSHR mRNA levels were lower in whole ovaries during the NB compared with breeding season but were similar in immature COCs, whereas ESR2 levels did not differ in either group between intervals. We observed changes in PTGS2, EGR1, and EGFR mRNA expression patterns across maturation in COCs within but not between the two seasons. The lack of seasonal differentiation in FSH-related genes was not consistent with the decreased developmental capacity of oocytes fertilized during the NB season. These findings reveal that the seasonal decrease in cat oocyte sensitivity to FSH occurs both in vivo and in vitro. Furthermore, this decline is unrelated to changes in expression of FSHR mRNA or mRNA of FSH-induced genes in COCs from antral follicles.
Collapse
Affiliation(s)
- Rebecca J Hobbs
- Smithsonian Conservation Biology Institute, Center for Species Survival, National Zoological Park, PO Box 37012, MRC 5502, Washington, District of Columbia 20013, USA.
| | | | | | | |
Collapse
|
33
|
Kotarska K, Styrna J. Can the partial deletion in the Y chromosome of male mice affect the reproductive efficiency of their daughters? Syst Biol Reprod Med 2011; 58:81-7. [PMID: 22149694 DOI: 10.3109/19396368.2011.638969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It has been previously shown that cumuli oophori around ovulated oocytes of B10.BR-Y(del) female mice (sired by males with the deleted Y chromosome) are more resistant to enzymatic treatment than cumuli oophori around eggs of control B10.BR females (having fathers with the intact Y chromosome). This can imply that some genes which influence the establishment of the imprinting pattern in male gametes are located in the region covered by the deletion. We hypothesize that the Y-dependent imprinting pattern, inherited by female offspring, affects stability of periovum layers within them. In the present study, cumulus-oocyte complexes ovulated by females from consomic strains: DBA, DBA-Y(BR), DBA-Y(del), and CBA, CBA-Y(BR), CBA-Y(del) were tested for their susceptibility to hyaluronidase digestion. The mean times for dispersal of cumulus cells surrounding oocytes of females from the backcross lines were convergent with the times typical for oocytes from strains being the donors of the Y chromosome (B10.BR or B10.BR-Y(del)) and differed clearly from pure DBA and CBA strains. It confirmed previous findings that Y chromosomes of fathers influence the properties of cumulus-oocyte complexes ovulated by their daughters. This influence is definitely stronger than the influence of the genetic background. Additionally, it was demonstrated that the cumuli oophori surrounding oocytes of B10.BR-Y(del) females exhibit increased resistance to penetration by spermatozoa in vitro, in comparison to the control B10.BR strain. This regularity was reflected in the decreased proportion of fertilized ova recovered from oviducts of B10.BR-Y(del) females mated with B10.BR-Y(del) males and in the lower litter sizes recorded for these pairs. The excessive stability of cumuli oophori typical for oocytes of females having Y(del) fathers may negatively affect their fertility, if they have partners producing poor quality sperm.
Collapse
Affiliation(s)
- Katarzyna Kotarska
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Krakow, Poland.
| | | |
Collapse
|
34
|
Woodward DF, Jones RL, Narumiya S. International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 2011; 63:471-538. [PMID: 21752876 DOI: 10.1124/pr.110.003517] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is now more than 15 years since the molecular structures of the major prostanoid receptors were elucidated. Since then, substantial progress has been achieved with respect to distribution and function, signal transduction mechanisms, and the design of agonists and antagonists (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=58). This review systematically details these advances. More recent developments in prostanoid receptor research are included. The DP(2) receptor, also termed CRTH2, has little structural resemblance to DP(1) and other receptors described in the original prostanoid receptor classification. DP(2) receptors are more closely related to chemoattractant receptors. Prostanoid receptors have also been found to heterodimerize with other prostanoid receptor subtypes and nonprostanoids. This may extend signal transduction pathways and create new ligand recognition sites: prostacyclin/thromboxane A(2) heterodimeric receptors for 8-epi-prostaglandin E(2), wild-type/alternative (alt4) heterodimers for the prostaglandin FP receptor for bimatoprost and the prostamides. It is anticipated that the 15 years of research progress described herein will lead to novel therapeutic entities.
Collapse
Affiliation(s)
- D F Woodward
- Dept. of Biological Sciences RD3-2B, Allergan, Inc., 2525 Dupont Dr., Irvine, CA 92612, USA.
| | | | | |
Collapse
|
35
|
Edmonds JW, McKinney SL, Prasain JK, Miller MA. The gap junctional protein INX-14 functions in oocyte precursors to promote C. elegans sperm guidance. Dev Biol 2011; 359:47-58. [PMID: 21889935 DOI: 10.1016/j.ydbio.2011.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/26/2011] [Accepted: 08/17/2011] [Indexed: 01/07/2023]
Abstract
Innexins are the subunits of invertebrate gap junctions. Here we show that the innexin INX-14 promotes sperm guidance to the fertilization site in the Caenorhabditis elegans hermaphrodite reproductive tract. inx-14 loss causes cell nonautonomous defects in sperm migration velocity and directional velocity. Results from genetic and immunocytochemical analyses provide strong evidence that INX-14 acts in transcriptionally active oocyte precursors in the distal gonad, not in transcriptionally inactive oocytes that synthesize prostaglandin sperm-attracting cues. Somatic gonadal sheath cell interaction is necessary for INX-14 function, likely via INX-8 and INX-9 expressed in sheath cells. However, electron microscopy has not identified gap junctions in oocyte precursors, suggesting that INX-14 acts in a channel-independent manner or INX-14 channels are difficult to document. INX-14 promotes prostaglandin signaling to sperm at a step after F-series prostaglandin synthesis in oocytes. Taken together, our results support the model that INX-14 functions in a somatic gonad/germ cell signaling mechanism essential for sperm function. We propose that this mechanism regulates the transcription of a factor(s) that modulates prostaglandin metabolism, transport, or activity in the reproductive tract.
Collapse
Affiliation(s)
- Johnathan W Edmonds
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shauna L McKinney
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeevan K Prasain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael A Miller
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
36
|
Fujita Y, Mihara T, Okazaki T, Shitanaka M, Kushino R, Ikeda C, Negishi H, Liu Z, Richards JS, Shimada M. Toll-like receptors (TLR) 2 and 4 on human sperm recognize bacterial endotoxins and mediate apoptosis. Hum Reprod 2011; 26:2799-806. [PMID: 21775336 DOI: 10.1093/humrep/der234] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Bacterial infections of the genital tract are one of the most serious causes of infertility in males. In some human patients with poor semen quality, leukocytospermia has been observed. Because leukocytes express the bacterial-lipopolysaccharide (LPS) responsive Toll-like receptor (TLR) signaling cascade and secrete tumor necrosis factor-α, secreted cytokines comprise one, but probably not the only, class of factors that can impact sperm motility. METHODS AND RESULTS In this study, we documented that bacterial endotoxins, LPS and peptidoglycan, can be detected in human semen. Furthermore, the addition of endotoxins in the absence of leukocytes directly and significantly reduced the motility and increased the apoptotic rate of both human and mouse sperm and suppressed fertilization by mouse sperm both in vivo and in vitro. The well-known LPS receptor, TLR4, and peptidoglycan receptor, TLR2, were expressed in human and mouse sperm. In Tlr2/4(-/-) double-mutant mice, the negative effects of endotoxins on sperm functions were blocked, suggesting that the bacterial endotoxins mediated activation of TLR-dependent pathways in sperm leading to apoptosis. CONCLUSIONS Sperm can recognize bacterial endotoxins by TLRs present in their membranes. The activated TLRs reduce sperm motility, induce sperm apoptosis and significantly impair the potential for fertilization.
Collapse
Affiliation(s)
- Youko Fujita
- Laboratory of Reproductive Endocrinology, Department of Applied Animal Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nuttinck F, Gall L, Ruffini S, Laffont L, Clement L, Reinaud P, Adenot P, Grimard B, Charpigny G, Marquant-Le Guienne B. PTGS2-Related PGE2 Affects Oocyte MAPK Phosphorylation and Meiosis Progression in Cattle: Late Effects on Early Embryonic Development. Biol Reprod 2011; 84:1248-57. [DOI: 10.1095/biolreprod.110.088211] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
38
|
Hanaue M, Miwa N, Uebi T, Fukuda Y, Katagiri Y, Takamatsu K. Characterization of S100A11, a suppressive factor of fertilization, in the mouse female reproductive tract. Mol Reprod Dev 2011; 78:91-103. [DOI: 10.1002/mrd.21273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/15/2010] [Indexed: 12/15/2022]
|
39
|
KOHAYA N, FUJIWARA K, ITO J, KASHIWAZAKI N. High Developmental Rates of Mouse Oocytes Cryopreserved by an Optimized Vitrification Protocol: The Effects of Cryoprotectants, Calcium and Cumulus Cells. J Reprod Dev 2011; 57:675-80. [DOI: 10.1262/jrd.11-066h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Natsuki KOHAYA
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Katsuyoshi FUJIWARA
- Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan
| | - Junya ITO
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
- Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan
| | - Naomi KASHIWAZAKI
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
- Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan
| |
Collapse
|
40
|
Kitaya K, Yamada H. Pathophysiological roles of chemokines in human reproduction: an overview. Am J Reprod Immunol 2010; 65:449-59. [PMID: 21087337 DOI: 10.1111/j.1600-0897.2010.00928.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chemokines are a group of small cytokines that have an ability to induce leukocyte migration. Chemokines exert their functions by binding and activating specific G protein-coupled receptors. Studies have unveiled pleiotropic bioactivities of chemokines in various phenomena ranging from immunomodulation, embryogenesis, and homeostasis to pathogenesis. In the mammalian reproductive system, chemokines unexceptionally serve in multimodal events that are closely associated with establishment, maintenance, and deterioration of fecundity. The aim of this review is to update the knowledge on chemokines in male and female genital organs, with a focus on their potential pathophysiological roles in human reproduction.
Collapse
Affiliation(s)
- Kotaro Kitaya
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan.
| | | |
Collapse
|
41
|
Tanii I, Aradate T, Matsuda K, Komiya A, Fuse H. PACAP-mediated sperm-cumulus cell interaction promotes fertilization. Reproduction 2010; 141:163-71. [PMID: 21071464 DOI: 10.1530/rep-10-0201] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The developing acrosome in spermatids contains pituitary adenylate cyclase-activating polypeptide (PACAP). However, the role of the acrosomal PACAP remains unclear because it has not been detected in mature spermatids and sperm. We reinvestigated whether the sperm acrosome contains PACAP. An antiserum produced against PACAP reacted to the anterior acrosome in epididymal sperm fixed under mild conditions, suggesting that PACAP acts on oocytes and/or cumulus cells at the site of fertilization. Immunolabeling and RT-PCR demonstrated the presence of PACAP type I receptor, a PACAP-specific receptor, in postovulatory cumulus cells. To investigate the role of PACAP in fertilization, we pretreated cumulus-oocyte complexes with the polypeptide. At a low concentration of sperm, the fertilization rate was significantly enhanced by PACAP in a dose-dependent manner. Sperm penetration through the oocyte investment, cumulus layer, and zona pellucida was also enhanced by PACAP. The enhancement was probably due to an enhancement in sperm motility and the zona-induced acrosome reaction, which were stimulated by a cumulus cell-releasing factor. Indeed, PACAP treatment increased the secretion of progesterone from the cumulus-oocyte complexes. These results strongly suggest that in response to PACAP, cumulus cells release a soluble factor that probably stimulates sperm motility and the acrosome reaction, thereby promoting fertilization.
Collapse
Affiliation(s)
- Ichiro Tanii
- Department of Medical Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | | | | | | | | |
Collapse
|
42
|
Han SM, Cottee PA, Miller MA. Sperm and oocyte communication mechanisms controlling C. elegans fertility. Dev Dyn 2010; 239:1265-81. [PMID: 20034089 DOI: 10.1002/dvdy.22202] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During sexual reproduction in many species, sperm and oocyte secrete diffusible signaling molecules to help orchestrate the biological symphony of fertilization. In the Caenorhabditis elegans gonad, bidirectional signaling between sperm and oocyte is important for guiding sperm to the fertilization site and inducing oocyte maturation. The molecular mechanisms that regulate sperm guidance and oocyte maturation are being delineated. Unexpectedly, these mechanisms are providing insight into human diseases, such as amyotrophic lateral sclerosis, spinal muscular atrophy, and cancer. Here we review sperm and oocyte communication in C. elegans and discuss relationships to human disorders.
Collapse
Affiliation(s)
- Sung Min Han
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
43
|
Brown HM, Dunning KR, Robker RL, Boerboom D, Pritchard M, Lane M, Russell DL. ADAMTS1 cleavage of versican mediates essential structural remodeling of the ovarian follicle and cumulus-oocyte matrix during ovulation in mice. Biol Reprod 2010; 83:549-57. [PMID: 20592310 DOI: 10.1095/biolreprod.110.084434] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Remodeling of ovarian follicle extracellular matrix is essential for ovulation and vascularization of the corpus luteum (CL). Formation of the cumulus matrix around oocytes also plays an important role in ovulation and subsequent fertilization of oocytes. ADAMTS1 is an extracellular metalloprotease induced in ovarian follicles by ovulatory hormones and is required for fertility. In this study, we identified ADAMTS1-mediated structural and morphological changes in remodeling of the follicle and cumulus oocyte complex (COC). In Adamts1(-/-) mice, the ovulation rate was 77% reduced and fertilization of ovulated oocytes was reduced a further 63%, resulting in a reduced number of litters and pups per litter. Morphological assessment of peri-ovulatory ovaries revealed abnormal morphogenesis with a lack of thecal/vascular invagination in the basal region of follicles. Cleavage of the ADAMTS1 substrate, versican, at these invaginating regions was abundant in Adamts1(+/-) but undetectable in Adamts1(-/-) ovaries, indicating that processing of versican by ADAMTS1 is involved in ovulating follicle remodeling. Versican and hyaluronan localization was abnormal during COC matrix expansion, and versican persisted beyond the expected time of fertilization in Adamts1(-/-) but was catabolized and cleared from control COC. The results demonstrate that ADAMTS1 is critical in both ovulation and fertilization processes in vivo. The protease activity of ADAMTS1 mediates neomorphogenesis of the ovulating follicle wall and COC matrix necessary for successful ovulation and fertilization, as well as subsequent catabolism of versican required for degradation of COC matrix after fertilization.
Collapse
Affiliation(s)
- Hannah M Brown
- School of Paediatrics and Reproductive Health, Robinson Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
44
|
Chang H, Suarez SS. Rethinking the relationship between hyperactivation and chemotaxis in mammalian sperm. Biol Reprod 2010; 83:507-13. [PMID: 20463353 DOI: 10.1095/biolreprod.109.083113] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hyperactivation, a motility pattern of mammalian sperm in the oviduct, is essential to fertilization. Hyperactivation helps sperm to swim effectively through oviductal mucus, to escape from the sperm reservoir, and to penetrate the cumulus matrix and zona pellucida of the oocyte. There is some evidence that mammalian sperm can undergo chemotaxis; however, the relationship of chemotaxis to hyperactivation is unknown. Ca(2+) signaling is involved in hyperactivation and implicated in chemotaxis as well. In vivo, sperm hyperactivate in the lower oviduct, far from the cumulus-oocyte complex and possibly beyond the influence of chemotactic gradients emanating from the oocyte or cumulus. Thus, sperm are likely to be hyperactivated before sensing chemotactic gradients. Chemotactic signals might modulate hyperactivation to direct sperm toward oocytes as they reach a region of influence. Ca(2+)-directed modulation of hyperactivation is a potential mechanism of this process.
Collapse
Affiliation(s)
- Haixin Chang
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
45
|
Tamba S, Yodoi R, Morimoto K, Inazumi T, Sukeno M, Segi-Nishida E, Okuno Y, Tsujimoto G, Narumiya S, Sugimoto Y. Expression profiling of cumulus cells reveals functional changes during ovulation and central roles of prostaglandin EP2 receptor in cAMP signaling. Biochimie 2010; 92:665-75. [PMID: 20399827 DOI: 10.1016/j.biochi.2010.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 04/13/2010] [Indexed: 11/28/2022]
Abstract
To understand the role of prostaglandin (PG) receptor EP2 (Ptger2) signaling in ovulation and fertilization, we investigated time-dependent expression profiles in wild-type (WT) and Ptger2(-/-) cumuli before and after ovulation by using microarrays. We prepared cumulus cells from mice just before and 3, 9 and 14 h after human chorionic gonadotropin injection. Key genes including cAMP-related and epidermal growth factor (EGF) genes, as well as extracellular matrix- (ECM-) related and chemokine genes were up-regulated in WT cumuli at 3 h and 14 h, respectively. Ptger2 deficiency differently affected the expression of many of the key genes at 3 h and 14 h. These results indicate that the gene expression profile of cumulus cells greatly differs before and after ovulation, and in each situation, PGE(2)-EP2 signaling plays a critical role in cAMP-regulated gene expression in the cumulus cells under physiological conditions.
Collapse
Affiliation(s)
- Shigero Tamba
- Department of Physiological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ikawa M, Inoue N, Benham AM, Okabe M. Fertilization: a sperm's journey to and interaction with the oocyte. J Clin Invest 2010; 120:984-94. [PMID: 20364096 DOI: 10.1172/jci41585] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mammalian fertilization comprises sperm migration through the female reproductive tract, biochemical and morphological changes to sperm, and sperm-egg interaction in the oviduct. Recent gene knockout approaches in mice have revealed that many factors previously considered important for fertilization are largely dispensable, or if they are essential, they have an unexpected function. These results indicate that what has been observed in in vitro fertilization (IVF) differs significantly from what occurs during "physiological" fertilization. This Review focuses on the advantages of studying fertilization using gene-manipulated animals and highlights an emerging molecular mechanism of mammalian fertilization.
Collapse
Affiliation(s)
- Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, Osaka, 565-0871, Japan
| | | | | | | |
Collapse
|
47
|
Boissonnas CC, Montjean D, Lesaffre C, Auer J, Vaiman D, Wolf JP, Ziyyat A. Role of sperm αvβ3 integrin in mouse fertilization. Dev Dyn 2010; 239:773-83. [DOI: 10.1002/dvdy.22206] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
48
|
Ichikawa A, Sugimoto Y, Tanaka S. Molecular biology of histidine decarboxylase and prostaglandin receptors. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:848-66. [PMID: 20948178 PMCID: PMC3037517 DOI: 10.2183/pjab.86.848] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Histamine and prostaglandins (PGs) play a variety of physiological roles as autacoids, which function in the vicinity of their sources and maintain local homeostasis in the body. They stimulate target cells by acting on their specific receptors, which are coupled to trimeric G proteins. For the precise understanding of the physiological roles of histamine and PGs, it is necessary to clarify the molecular mechanisms involved in their synthesis as well as their receptor-mediated responses. We cloned the cDNAs for mouse L-histidine decarboxylase (HDC) and 6 mouse prostanoid receptors (4 PGE(2) receptors, PGF receptor, and PGI receptor). We then characterized the expression patterns and functions of these genes. Furthermore, we established gene-targeted mouse strains for HDC and PG receptors to explore the novel pathophysiological roles of histamine and PGs. We have here summarized our research, which should contribute to progress in the molecular biology of HDC and PG receptors.
Collapse
MESH Headings
- Animals
- Cloning, Molecular
- DNA, Complementary/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Enzymologic
- Histamine/chemistry
- Histidine Decarboxylase/genetics
- Histidine Decarboxylase/metabolism
- Homeostasis
- Humans
- Mice
- Models, Biological
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/genetics
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
Collapse
Affiliation(s)
- Atsushi Ichikawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| | | | | |
Collapse
|
49
|
Kimura M, Kim E, Kang W, Yamashita M, Saigo M, Yamazaki T, Nakanishi T, Kashiwabara SI, Baba T. Functional roles of mouse sperm hyaluronidases, HYAL5 and SPAM1, in fertilization. Biol Reprod 2009; 81:939-47. [PMID: 19605784 DOI: 10.1095/biolreprod.109.078816] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although sperm entry into the oocyte-cumulus complex and subsequent sperm penetration through the cumulus matrix to reach the oocyte zona pellucida are essential for mammalian fertilization, the molecular mechanism remains controversial. Previously, we have shown that mouse sperm lacking SPAM1 are capable of penetrating the cumulus matrix despite a delayed dispersal of cumulus cells. We also have identified another sperm hyaluronidase, HYAL5, as a candidate enzyme involved in sperm penetration through the cumulus. In the present study, we produced HYAL5-deficient mice to uncover the functional roles of HYAL5 and SPAM1 in fertilization. The HYAL5-deficient mice were fully fertile and yielded normal litter sizes. In vitro fertilization assays demonstrated that HYAL5-deficient epididymal sperm is functionally normal. We thus conclude that HYAL5 may be dispensable for fertilization. Comparative analysis among wild-type, HYAL5-deficient, and SPAM1-deficient epididymal sperm revealed that only SPAM1 is probably involved in sperm penetration through the cumulus matrix. Notably, the loss of SPAM1 resulted in a remarkably increased accumulation of sperm on the surface or outer edge of the cumulus. These data suggest that SPAM1 may function in sperm entry into the cumulus and sperm penetration through the cumulus matrix.
Collapse
Affiliation(s)
- Masanori Kimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba Science City, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yodoi R, Tamba S, Morimoto K, Segi-Nishida E, Nishihara M, Ichikawa A, Narumiya S, Sugimoto Y. RhoA/Rho kinase signaling in the cumulus mediates extracellular matrix assembly. Endocrinology 2009; 150:3345-52. [PMID: 19342461 PMCID: PMC2703534 DOI: 10.1210/en.2008-1449] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cumulus cells surround the oocyte and regulate the production and assembly of the extracellular matrix (ECM) around the cumulus-oocyte complex for its timely interaction with sperm in the oviduct. We recently found that C-C chemokines such as CCL2, CCL7, and CCL9 are produced and stimulate integrin-mediated ECM assembly in the postovulatory cumulus to protect eggs and that prostaglandin E(2)-EP2 signaling in the cumulus cells facilitates fertilization by suppressing this chemokine signaling, which otherwise results in fertilization failure by preventing sperm penetration through the cumulus ECM. However, it remains unknown as to what mechanisms underlie chemokine-induced cumulus ECM assembly. Here we report that inhibition of EP2 signaling or addition of CCL7 augments RhoA activation and induces the surface accumulation of integrin and the contraction of cumulus cells. Enhanced surface accumulation of integrin then stimulates the formation and assembly of fibronectin fibrils as well as induces cumulus ECM resistance to hyaluronidase and sperm penetration. These changes in the cumulus ECM as well as cell contraction are relieved by the addition of Y27632 or blebbistatin. These results suggest that chemokines induce integrin engagement to the ECM and consequent ECM remodeling through the RhoA/Rho kinase/actomyosin pathway, making the cumulus ECM barrier resistant to sperm penetration. Based on these results, we propose that prostaglandin E(2)-EP2 signaling negatively regulates chemokine-induced Rho/ROCK signaling in cumulus cells for successful fertilization.
Collapse
Affiliation(s)
- Rieko Yodoi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|