1
|
Falcone JI, Cleveland KH, Kang M, Odle BJ, Forbush KA, Scott JD. The evolution of AKAPs and emergence of PKA isotype selective anchoring determinants. J Biol Chem 2025; 301:108480. [PMID: 40199400 DOI: 10.1016/j.jbc.2025.108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025] Open
Abstract
Cyclic AMP is a versatile signaling molecule utilized throughout the eukaryotic domain. A frequent use is to activate protein kinase A (PKA), a serine/threonine kinase that drives many physiological responses. Spatiotemporal organization of PKA occurs though association with A-kinase anchoring proteins (AKAPs). Sequence alignments and phylogenetic analyses trace the evolution of PKA regulatory (R) and catalytic (C) subunits and AKAPs from the emergence of metazoans. AKAPs that preferentially associate with the type I (RI) or type II (RII) regulatory subunits diverged at the advent of the vertebrate clade. Type I PKA anchoring proteins including smAKAP contain an FA motif at positions 1 and 2 of their amphipathic binding helices. Fluorescence recovery after photobleaching measurements indicate smAKAP preferentially associates with RI (T 1/2. 4.37 ± 1.2 s; n = 3) as compared to RII (T 1/2. 2.19 ± 0.5 s; n = 3). Parallel studies measured AKAP79 recovery half times of 8.74 ± 0.3 s (n = 3) for RI and 14.42 ± 2.1 s (n = 3) and for RII, respectively. Introduction of FA and AF motifs at either ends of the AKAP79 helix biases the full-length anchoring protein toward type I PKA signaling to reduce corticosterone release from adrenal cells by 61.5 ± 0.8% (n = 3). Conversely, substitution of the YA motif at the beginning of the smAKAP helix for a pair of leucine's abrogates RI anchoring. Thus, AKAPs have evolved from the base of the metazoan clade into specialized type I and type II PKA anchoring proteins.
Collapse
Affiliation(s)
- Jerome I Falcone
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kristan H Cleveland
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mingu Kang
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Brianna J Odle
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Katherine A Forbush
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA
| | - John D Scott
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
2
|
Rajan JRS, Gill K, Chow E, Ashbrook DG, Williams RW, Zwicker JG, Goldowitz D. Investigating Motor Coordination Using BXD Recombinant Inbred Mice to Model the Genetic Underpinnings of Developmental Coordination Disorder. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70014. [PMID: 40071748 PMCID: PMC11898013 DOI: 10.1111/gbb.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/12/2024] [Accepted: 01/08/2025] [Indexed: 03/15/2025]
Abstract
The fundamental skills for motor coordination and motor control emerge through development. Neurodevelopmental disorders such as developmental coordination disorder (DCD) lead to impaired acquisition of motor skills. This study investigated motor behaviors that reflect the core symptoms of human DCD through the use of BXD recombinant inbred strains of mice that are known to have divergent phenotypes in many behavioral traits, including motor activity. We sought to correlate behavior in basic motor control tasks with the known genotypes of these reference populations of mice using quantitative trait locus (QTL) mapping. We used 12 BXD strains with an average of 16 mice per group to assess the onset of reflexes during the early neonatal stage of life and differences in motor coordination using the tests for open field, rotarod, and gait behaviors during the adolescent/young adulthood period. Results indicated significant variability between strains in when neonatal reflexes appeared and significant strain differences for all measures of motor coordination. Five strains (BXD15, BXD27, BXD28, BXD75, BXD86) struggled with sensorimotor coordination as seen in gait analysis, rotarod, and open field, similar to human presentation of DCD. We identified three significant quantitative trait loci for gait on proximal Chr 3, Chr 4, and distal Chr 6. Based on expression, function, and polymorphism within the mapped QTL intervals, seven candidate genes (Gpr63, Spata5, Trpc3, Cntn6, Chl1, Grm7, Ogg1) emerged. This study offers new insights into mouse motor behavior, which promises to be a first murine model to explore the genetics and neural correlates of DCD.
Collapse
Affiliation(s)
- Jeffy Rajan Soundara Rajan
- Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
- Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada
- British Columbia Children's Hospital Research InstituteVancouverCanada
| | - Kamaldeep Gill
- British Columbia Children's Hospital Research InstituteVancouverCanada
- Rehabilitation SciencesUniversity of British ColumbiaVancouverCanada
| | - Eric Chow
- Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada
| | - David G. Ashbrook
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Robert W. Williams
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Jill G. Zwicker
- British Columbia Children's Hospital Research InstituteVancouverCanada
- Department of Occupational Science & Occupational TherapyUniversity of British ColumbiaVancouverCanada
- Department of PediatricsUniversity of British ColumbiaVancouverCanada
| | - Daniel Goldowitz
- Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
- Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada
- British Columbia Children's Hospital Research InstituteVancouverCanada
| |
Collapse
|
3
|
Chu CC, Hu YH, Li GZ, Chen J, Zhang NN, Gu YX, Wu SY, Zhang HF, Xu YY, Guo HL, Tian X, Chen F. Unveiling the significance of AKAP79/150 in the nervous system disorders: An emerging opportunity for future therapies? Neurobiol Dis 2025; 206:106812. [PMID: 39864527 DOI: 10.1016/j.nbd.2025.106812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025] Open
Abstract
A-kinase anchoring protein 79/150 (AKAP79/150) is a crucial scaffolding protein that positions various proteins at specific synaptic sites to modulate excitatory synaptic intensity. As our understanding of AKAP79/150's biology deepens, along with its significant role in the pathophysiology of various human disorders, there is growing evidence that reveals new opportunities for therapeutic interventions. In this review, we examine the fundamental structure and primary functions of AKAP79/150, emphasizing its pathophysiological mechanisms in different nervous system disorders, particularly inflammatory pain, epilepsy, depression, and Alzheimer's disease. We also discuss its potential therapeutic implications for patients suffering from these conditions.
Collapse
Affiliation(s)
- Chen-Chao Chu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Hui Hu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Gui-Zhou Li
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ning-Ning Zhang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yi-Xue Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Shi-Yu Wu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hai-Feng Zhang
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yang-Yang Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Li Guo
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China.
| | - Feng Chen
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Rosenthal KJ, Gordan JD, Scott JD. Protein kinase A and local signaling in cancer. Biochem J 2024; 481:1659-1677. [PMID: 39540434 PMCID: PMC11975432 DOI: 10.1042/bcj20230352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Protein kinase A (PKA) is a basophilic kinase implicated in the modulation of many cell-signaling and physiological processes. PKA also contributes to cancer-relevant events such as growth factor action, cell cycle control, cell migration and tumor metabolism. Germline and somatic mutations in PKA, gene amplifications, and chromosome rearrangements that encode kinase fusions, are linked to a growing number of malignant neoplasms. Mislocalization of PKA by exclusion from A-Kinase Anchoring Protein (AKAP) signaling islands further underlies cancer progression. This article highlights the influence of AKAP signaling and local kinase action in selected hallmarks of cancer. We also feature the utility of kinase inhibitor drugs as frontline and future anti-cancer therapies.
Collapse
Affiliation(s)
- Kacey J. Rosenthal
- Department of Pharmacology, University of Washington School of Medicine, 1959 NE Pacific St., Box 357750, Seattle, WA 98195, U.S.A
| | - John D. Gordan
- Department of Medicine (Hematology/Oncology), Quantitative Biosciences Institute, UCSF Helen Diller Family Cancer Center, 1700 4th St., San Francisco, CA 94143, U.S.A
| | - John D. Scott
- Department of Pharmacology, University of Washington School of Medicine, 1959 NE Pacific St., Box 357750, Seattle, WA 98195, U.S.A
| |
Collapse
|
5
|
Maden Bedel F, Balasar Ö, Şimşek A, Tokgöz H, Çaksen H. Could the 14q23.2 microdeletion or AKAP5 haploinsufficiency be a potential cause of intellectual disability? Psychiatr Genet 2024; 34:71-73. [PMID: 38690958 DOI: 10.1097/ypg.0000000000000368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Intellectual disability is characterized by impairment in at least two of the following areas: social skills, communication skills, self-care tasks, and academic skills. These impairments are evaluated in relation to the expected standards based on the individual's age and cultural levels. Additionally, intellectual disability is typically defined by a measurable level of intellectual functioning, represented by an intelligence quotients core of 70 or below. Autism spectrum disorder is a developmental disability resulting from differences in the brain, often characterized by problems in social communication and interaction, and limited or repetitive behaviors or interests. Hereditary spherocytosis is a disease characterized by anemia, jaundice, and splenomegaly as a result of increased tendency to hemolysis with morphological transformation of erythrocytes from biconcave disc-shaped cells with central pallor to spherocytes lacking central pallor due to hereditary injury of cellular membrane proteins. An 11-year-old female patient was referred to Pediatric Genetics Subdivision due to the presence of growth retardation and a diagnosis of hereditary spherocytosis. Since she also had dysmorphic facial features, such as frontal bossing, broad and prominent forehead, tubular nasal structure, and thin vermillion, genetic tests were performed. Chromosomal microarray analysis revealed a 2.5 Mb deletion in the 14q23.2q23.3 region. Deletion was also identified in the same region in her father, who had the same phenotypic characteristics, including hereditary spherocytosis and learning difficulties. We propose that the PLEKHG3 and AKAP5 genes, which are located in this region, may contribute to the development of intellectual disability.
Collapse
Affiliation(s)
- Fayize Maden Bedel
- Department of Pediatric Genetics, Faculty of Medicine, Necmettin Erbakan University
| | | | - Ayşe Şimşek
- Department of Pediatric Hematology, Konya City Hospital
| | - Hüseyin Tokgöz
- Department of Pediatric Hematology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Hüseyin Çaksen
- Department of Pediatric Genetics, Faculty of Medicine, Necmettin Erbakan University
| |
Collapse
|
6
|
Li MD, Wang L, Zheng YQ, Huang DH, Xia ZX, Liu JM, Tian D, OuYang H, Wang ZH, Huang Z, Lin XS, Zhu XQ, Wang SY, Chen WK, Yang SW, Zhao YL, Liu JA, Shen ZC. DHHC2 regulates fear memory formation, LTP, and AKAP150 signaling in the hippocampus. iScience 2023; 26:107561. [PMID: 37664599 PMCID: PMC10469764 DOI: 10.1016/j.isci.2023.107561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/07/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Palmitoyl acyltransferases (PATs) have been suggested to be involved in learning and memory. However, the underlying mechanisms have not yet been fully elucidated. Here, we found that the activity of DHHC2 was upregulated in the hippocampus after fear conditioning, and DHHC2 knockdown impaired fear induced memory and long-term potentiation (LTP). Additionally, the activity of DHHC2 and its synaptic expression were increased after high frequency stimulation (HFS) or glycine treatment. Importantly, fear learning selectively augmented the palmitoylation level of AKAP150, not PSD-95, and this effect was abolished by DHHC2 knockdown. Furthermore, 2-bromopalmitic acid (2-BP), a palmitoylation inhibitor, attenuated the increased palmitoylation level of AKAP150 and the interaction between AKAP150 and PSD-95 induced by HFS. Lastly, DHHC2 knockdown reduced the phosphorylation level of GluA1 at Ser845, and also induced an impairment of LTP in the hippocampus. Our results suggest that DHHC2 plays a critical role in regulating fear memory via AKAP150 signaling.
Collapse
Affiliation(s)
- Meng-Die Li
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Lu Wang
- Department of Nephrology, Fuzhou Children’s Hospital of Fujian Province, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Yu-Qi Zheng
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Dan-Hong Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zhi-Xuan Xia
- Department of Pharmacology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou 571199, China
| | - Jian-Min Liu
- Department of Pharmacy, Wuhan No. 1 Hospital, Wuhan 430000, China
| | - Dan Tian
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Hui OuYang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zi-Hao Wang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhen Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xiao-Shan Lin
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xiao-Qian Zhu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Si-Ying Wang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Wei-Kai Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Shao-Wei Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yue-Ling Zhao
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jia-An Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zu-Cheng Shen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
7
|
Collins KB, Scott JD. Phosphorylation, compartmentalization, and cardiac function. IUBMB Life 2023; 75:353-369. [PMID: 36177749 PMCID: PMC10049969 DOI: 10.1002/iub.2677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022]
Abstract
Protein phosphorylation is a fundamental element of cell signaling. First discovered as a biochemical switch in glycogen metabolism, we now know that this posttranslational modification permeates all aspects of cellular behavior. In humans, over 540 protein kinases attach phosphate to acceptor amino acids, whereas around 160 phosphoprotein phosphatases remove phosphate to terminate signaling. Aberrant phosphorylation underlies disease, and kinase inhibitor drugs are increasingly used clinically as targeted therapies. Specificity in protein phosphorylation is achieved in part because kinases and phosphatases are spatially organized inside cells. A prototypic example is compartmentalization of the cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase A through association with A-kinase anchoring proteins. This configuration creates autonomous signaling islands where the anchored kinase is constrained in proximity to activators, effectors, and selected substates. This article primarily focuses on A kinase anchoring protein (AKAP) signaling in the heart with an emphasis on anchoring proteins that spatiotemporally coordinate excitation-contraction coupling and hypertrophic responses.
Collapse
Affiliation(s)
- Kerrie B. Collins
- Department of Pharmacology, University of Washington, School of Medicine, 1959 NE Pacific Ave, Seattle WA, 98195
| | - John D. Scott
- Department of Pharmacology, University of Washington, School of Medicine, 1959 NE Pacific Ave, Seattle WA, 98195
| |
Collapse
|
8
|
Church TW, Tewatia P, Hannan S, Antunes J, Eriksson O, Smart TG, Hellgren Kotaleski J, Gold MG. AKAP79 enables calcineurin to directly suppress protein kinase A activity. eLife 2021; 10:e68164. [PMID: 34612814 PMCID: PMC8560092 DOI: 10.7554/elife.68164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 10/04/2021] [Indexed: 12/28/2022] Open
Abstract
Interplay between the second messengers cAMP and Ca2+ is a hallmark of dynamic cellular processes. A common motif is the opposition of the Ca2+-sensitive phosphatase calcineurin and the major cAMP receptor, protein kinase A (PKA). Calcineurin dephosphorylates sites primed by PKA to bring about changes including synaptic long-term depression (LTD). AKAP79 supports signaling of this type by anchoring PKA and calcineurin in tandem. In this study, we discovered that AKAP79 increases the rate of calcineurin dephosphorylation of type II PKA regulatory subunits by an order of magnitude. Fluorescent PKA activity reporter assays, supported by kinetic modeling, show how AKAP79-enhanced calcineurin activity enables suppression of PKA without altering cAMP levels by increasing PKA catalytic subunit capture rate. Experiments with hippocampal neurons indicate that this mechanism contributes toward LTD. This non-canonical mode of PKA regulation may underlie many other cellular processes.
Collapse
Affiliation(s)
- Timothy W Church
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| | - Parul Tewatia
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| | - Saad Hannan
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| | - João Antunes
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
| | - Olivia Eriksson
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
| | - Trevor G Smart
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| | - Matthew G Gold
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| |
Collapse
|
9
|
Gopalan J, Omar MH, Roy A, Cruz NM, Falcone J, Jones KN, Forbush KA, Himmelfarb J, Freedman BS, Scott JD. Targeting an anchored phosphatase-deacetylase unit restores renal ciliary homeostasis. eLife 2021; 10:e67828. [PMID: 34250905 PMCID: PMC8291974 DOI: 10.7554/elife.67828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/11/2021] [Indexed: 11/13/2022] Open
Abstract
Pathophysiological defects in water homeostasis can lead to renal failure. Likewise, common genetic disorders associated with abnormal cytoskeletal dynamics in the kidney collecting ducts and perturbed calcium and cAMP signaling in the ciliary compartment contribute to chronic kidney failure. We show that collecting ducts in mice lacking the A-Kinase anchoring protein AKAP220 exhibit enhanced development of primary cilia. Mechanistic studies reveal that AKAP220-associated protein phosphatase 1 (PP1) mediates this phenotype by promoting changes in the stability of histone deacetylase 6 (HDAC6) with concomitant defects in actin dynamics. This proceeds through a previously unrecognized adaptor function for PP1 as all ciliogenesis and cytoskeletal phenotypes are recapitulated in mIMCD3 knock-in cells expressing a phosphatase-targeting defective AKAP220-ΔPP1 mutant. Pharmacological blocking of local HDAC6 activity alters cilia development and reduces cystogenesis in kidney-on-chip and organoid models. These findings identify the AKAP220-PPI-HDAC6 pathway as a key effector in primary cilia development.
Collapse
Affiliation(s)
- Janani Gopalan
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Mitchell H Omar
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Ankita Roy
- Kidney Research Institute, Division of Nephrology, Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
- Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Nelly M Cruz
- Kidney Research Institute, Division of Nephrology, Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
- Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Jerome Falcone
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Kiana N Jones
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | | | - Jonathan Himmelfarb
- Kidney Research Institute, Division of Nephrology, Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - Benjamin S Freedman
- Kidney Research Institute, Division of Nephrology, Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
- Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - John D Scott
- Department of Pharmacology, University of WashingtonSeattleUnited States
| |
Collapse
|
10
|
Potential therapeutic applications of AKAP disrupting peptides. Clin Sci (Lond) 2021; 134:3259-3282. [PMID: 33346357 DOI: 10.1042/cs20201244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
The 3'-5'-cyclic adenosine monophosphate (cAMP)/PKA pathway represents a major target for pharmacological intervention in multiple disease conditions. Although the last decade saw the concept of highly compartmentalized cAMP/PKA signaling consolidating, current means for the manipulation of this pathway still do not allow to specifically intervene on discrete cAMP/PKA microdomains. Since compartmentalization is crucial for action specificity, identifying new tools that allow local modulation of cAMP/PKA responses is an urgent need. Among key players of cAMP/PKA signaling compartmentalization, a major role is played by A-kinase anchoring proteins (AKAPs) that, by definition, anchor PKA, its substrates and its regulators within multiprotein complexes in well-confined subcellular compartments. Different tools have been conceived to interfere with AKAP-based protein-protein interactions (PPIs), and these primarily include peptides and peptidomimetics that disrupt AKAP-directed multiprotein complexes. While these molecules have been extensively used to understand the molecular mechanisms behind AKAP function in pathophysiological processes, less attention has been devoted to their potential application for therapy. In this review, we will discuss how AKAP-based PPIs can be pharmacologically targeted by synthetic peptides and peptidomimetics.
Collapse
|
11
|
Abstract
Kv7.1-Kv7.5 (KCNQ1-5) K+ channels are voltage-gated K+ channels with major roles in neurons, muscle cells and epithelia where they underlie physiologically important K+ currents, such as neuronal M current and cardiac IKs. Specific biophysical properties of Kv7 channels make them particularly well placed to control the activity of excitable cells. Indeed, these channels often work as 'excitability breaks' and are targeted by various hormones and modulators to regulate cellular activity outputs. Genetic deficiencies in all five KCNQ genes result in human excitability disorders, including epilepsy, arrhythmias, deafness and some others. Not surprisingly, this channel family attracts considerable attention as potential drug targets. Here we will review biophysical properties and tissue expression profile of Kv7 channels, discuss recent advances in the understanding of their structure as well as their role in various neurological, cardiovascular and other diseases and pathologies. We will also consider a scope for therapeutic targeting of Kv7 channels for treatment of the above health conditions.
Collapse
|
12
|
Omar MH, Scott JD. AKAP Signaling Islands: Venues for Precision Pharmacology. Trends Pharmacol Sci 2020; 41:933-946. [PMID: 33082006 DOI: 10.1016/j.tips.2020.09.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Regulatory enzymes often have different roles in distinct subcellular compartments. Yet, most drugs indiscriminately saturate the cell. Thus, subcellular drug-delivery holds promise as a means to reduce off-target pharmacological effects. A-kinase anchoring proteins (AKAPs) sequester combinations of signaling enzymes within subcellular microdomains. Targeting drugs to these 'signaling islands' offers an opportunity for more precise delivery of therapeutics. Here, we review mechanisms that bestow protein kinase A (PKA) versatility inside the cell, appraise recent advances in exploiting AKAPs as platforms for precision pharmacology, and explore the impact of methodological innovations on AKAP research.
Collapse
Affiliation(s)
- Mitchell H Omar
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
13
|
Qasim H, McConnell BK. AKAP12 Signaling Complex: Impacts of Compartmentalizing cAMP-Dependent Signaling Pathways in the Heart and Various Signaling Systems. J Am Heart Assoc 2020; 9:e016615. [PMID: 32573313 PMCID: PMC7670535 DOI: 10.1161/jaha.120.016615] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure is a complex clinical syndrome, represented as an impairment in ventricular filling and myocardial blood ejection. As such, heart failure is one of the leading causes of death in the United States. With a mortality rate of 1 per 8 individuals and a prevalence of 6.2 million Americans, it has been projected that heart failure prevalence will increase by 46% by 2030. Cardiac remodeling (a general determinant of heart failure) is regulated by an extensive network of intertwined intracellular signaling pathways. The ability of signalosomes (molecular signaling complexes) to compartmentalize several cellular pathways has been recently established. These signalosome signaling complexes provide an additional level of specificity to general signaling pathways by regulating the association of upstream signals with downstream effector molecules. In cardiac myocytes, the AKAP12 (A-kinase anchoring protein 12) scaffolds a large signalosome that orchestrates spatiotemporal signaling through stabilizing pools of phosphatases and kinases. Predominantly upon β-AR (β2-adrenergic-receptor) stimulation, the AKAP12 signalosome is recruited near the plasma membrane and binds tightly to β-AR. Thus, one major function of AKAP12 is compartmentalizing PKA (protein kinase A) signaling near the plasma membrane. In addition, it is involved in regulating desensitization, downregulation, and recycling of β-AR. In this review, the critical roles of AKAP12 as a scaffold protein in mediating signaling downstream GPCRs (G protein-coupled receptor) are discussed with an emphasis on its reported and potential roles in cardiovascular disease initiation and progression.
Collapse
Affiliation(s)
- Hanan Qasim
- Department of Pharmacological and Pharmaceutical SciencesCollege of PharmacyUniversity of HoustonTX
| | - Bradley K. McConnell
- Department of Pharmacological and Pharmaceutical SciencesCollege of PharmacyUniversity of HoustonTX
| |
Collapse
|
14
|
Bucko PJ, Scott JD. Drugs That Regulate Local Cell Signaling: AKAP Targeting as a Therapeutic Option. Annu Rev Pharmacol Toxicol 2020; 61:361-379. [PMID: 32628872 DOI: 10.1146/annurev-pharmtox-022420-112134] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells respond to environmental cues by mobilizing signal transduction cascades that engage protein kinases and phosphoprotein phosphatases. Correct organization of these enzymes in space and time enables the efficient and precise transmission of chemical signals. The cyclic AMP-dependent protein kinase A is compartmentalized through its association with A-kinase anchoring proteins (AKAPs). AKAPs are a family of multivalent scaffolds that constrain signaling enzymes and effectors at subcellular locations to drive essential physiological events. More recently, it has been recognized that defective signaling in certain endocrine disorders and cancers proceeds through pathological AKAP complexes. Consequently, pharmacologically targeting these macromolecular complexes unlocks new therapeutic opportunities for a growing number of clinical indications. This review highlights recent findings on AKAP signaling in disease, particularly in certain cancers, and offers an overview of peptides and small molecules that locally regulate AKAP-binding partners.
Collapse
Affiliation(s)
- Paula J Bucko
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA; ,
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA; ,
| |
Collapse
|
15
|
Purkey AM, Dell’Acqua ML. Phosphorylation-Dependent Regulation of Ca 2+-Permeable AMPA Receptors During Hippocampal Synaptic Plasticity. Front Synaptic Neurosci 2020; 12:8. [PMID: 32292336 PMCID: PMC7119613 DOI: 10.3389/fnsyn.2020.00008] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/18/2020] [Indexed: 01/28/2023] Open
Abstract
Experience-dependent learning and memory require multiple forms of plasticity at hippocampal and cortical synapses that are regulated by N-methyl-D-aspartate receptors (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors (NMDAR, AMPAR). These plasticity mechanisms include long-term potentiation (LTP) and depression (LTD), which are Hebbian input-specific mechanisms that rapidly increase or decrease AMPAR synaptic strength at specific inputs, and homeostatic plasticity that globally scales-up or -down AMPAR synaptic strength across many or even all inputs. Frequently, these changes in synaptic strength are also accompanied by a change in the subunit composition of AMPARs at the synapse due to the trafficking to and from the synapse of receptors lacking GluA2 subunits. These GluA2-lacking receptors are most often GluA1 homomeric receptors that exhibit higher single-channel conductance and are Ca2+-permeable (CP-AMPAR). This review article will focus on the role of protein phosphorylation in regulation of GluA1 CP-AMPAR recruitment and removal from hippocampal synapses during synaptic plasticity with an emphasis on the crucial role of local signaling by the cAMP-dependent protein kinase (PKA) and the Ca2+calmodulin-dependent protein phosphatase 2B/calcineurin (CaN) that is coordinated by the postsynaptic scaffold protein A-kinase anchoring protein 79/150 (AKAP79/150).
Collapse
Affiliation(s)
| | - Mark L. Dell’Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
16
|
Cilleros-Mañé V, Just-Borràs L, Tomàs M, Garcia N, Tomàs JM, Lanuza MA. The M 2 muscarinic receptor, in association to M 1 , regulates the neuromuscular PKA molecular dynamics. FASEB J 2020; 34:4934-4955. [PMID: 32052889 DOI: 10.1096/fj.201902113r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 01/13/2023]
Abstract
Muscarinic acetylcholine receptor 1 subtype (M1 ) and muscarinic acetylcholine receptor 2 subtype (M2 ) presynaptic muscarinic receptor subtypes increase and decrease, respectively, neurotransmitter release at neuromuscular junctions. M2 involves protein kinase A (PKA), although the muscarinic regulation to form and inactivate the PKA holoenzyme is unknown. Here, we show that M2 signaling inhibits PKA by downregulating Cβ subunit, upregulating RIIα/β and liberating RIβ and RIIα to the cytosol. This promotes PKA holoenzyme formation and reduces the phosphorylation of the transmitter release target synaptosome-associated protein 25 and the gene regulator cAMP response element binding. Instead, M1 signaling, which is downregulated by M2 , opposes to M2 by recruiting R subunits to the membrane. The M1 and M2 reciprocal actions are performed through the anchoring protein A kinase anchor protein 150 as a common node. Interestingly, M2 modulation on protein expression needs M1 signaling. Altogether, these results describe the dynamics of PKA subunits upon M2 muscarinic signaling in basal and under presynaptic nerve activity, uncover a specific involvement of the M1 receptor and reveal the M1 /M2 balance to activate PKA to regulate neurotransmission. This provides a molecular mechanism to the PKA holoenzyme formation and inactivation which could be general to other synapses and cellular models.
Collapse
Affiliation(s)
- Víctor Cilleros-Mañé
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - Laia Just-Borràs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Maria Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - Maria Angel Lanuza
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
17
|
Argyrousi EK, Heckman PRA, Prickaerts J. Role of cyclic nucleotides and their downstream signaling cascades in memory function: Being at the right time at the right spot. Neurosci Biobehav Rev 2020; 113:12-38. [PMID: 32044374 DOI: 10.1016/j.neubiorev.2020.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Abstract
A plethora of studies indicate the important role of cAMP and cGMP cascades in neuronal plasticity and memory function. As a result, altered cyclic nucleotide signaling has been implicated in the pathophysiology of mnemonic dysfunction encountered in several diseases. In the present review we provide a wide overview of studies regarding the involvement of cyclic nucleotides, as well as their upstream and downstream molecules, in physiological and pathological mnemonic processes. Next, we discuss the regulation of the intracellular concentration of cyclic nucleotides via phosphodiesterases, the enzymes that degrade cAMP and/or cGMP, and via A-kinase-anchoring proteins that refine signal compartmentalization of cAMP signaling. We also provide an overview of the available data pointing to the existence of specific time windows in cyclic nucleotide signaling during neuroplasticity and memory formation and the significance to target these specific time phases for improving memory formation. Finally, we highlight the importance of emerging imaging tools like Förster resonance energy transfer imaging and optogenetics in detecting, measuring and manipulating the action of cyclic nucleotide signaling cascades.
Collapse
Affiliation(s)
- Elentina K Argyrousi
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Pim R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands.
| |
Collapse
|
18
|
Zhou HY, He JG, Hu ZL, Xue SG, Xu JF, Cui QQ, Gao SQ, Zhou B, Wu PF, Long LH, Wang F, Chen JG. A-Kinase Anchoring Protein 150 and Protein Kinase A Complex in the Basolateral Amygdala Contributes to Depressive-like Behaviors Induced by Chronic Restraint Stress. Biol Psychiatry 2019; 86:131-142. [PMID: 31076080 DOI: 10.1016/j.biopsych.2019.03.967] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/11/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The basolateral amygdala (BLA) has been widely implicated in the pathophysiology of major depressive disorder. A-kinase anchoring protein 150 (AKAP150) directs kinases and phosphatases to synaptic glutamate receptors, controlling synaptic transmission and plasticity. However, the role of the AKAP150 in the BLA in major depressive disorder remains poorly understood. METHODS Depressive-like behaviors in C57BL/6J mice were developed by chronic restraint stress (CRS). Mice received either intra-BLA injection of lentivirus-expressing Akap5 short hairpin RNA or Ht-31, a peptide to disrupt the interaction of AKAP150 and protein kinase A (PKA), followed by depressive-like behavioral tests. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid glutamate receptor (AMPAR)-mediated miniature excitatory postsynaptic currents were recorded by whole-cell patch-clamp techniques. RESULTS Chronic stress exposure induced depressive-like behaviors, which were accompanied by an increase in total and synaptic AKAP150 expression in the BLA. Accordingly, CRS facilitated the association of AKAP150 with PKA, but not of calcineurin in the BLA. Intra-BLA infusion of lentivirus-expressing Akap5 short hairpin RNA or Ht-31 prevented depressive-like behaviors and normalized phosphorylation of serine 845 and surface expression of AMPAR subunit 1 (GluA1) in the BLA of CRS mice. Finally, blockage of AKAP150-PKA complex signaling rescued the changes in AMPAR-mediated miniature excitatory postsynaptic currents in depressive-like mice. CONCLUSIONS These results suggest that AKAP150-PKA directly modulates BLA neuronal synaptic strength, and that AKAP150-PKA-GluA1 streamline signaling complex is responsible for CRS-induced disruption of synaptic AMPAR-mediated transmission and depressive-like behaviors in mice.
Collapse
Affiliation(s)
- Hai-Yun Zhou
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Gang He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Laboratory of Neuropsychiatric Diseases, Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Ministry of Education of China, Wuhan, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Laboratory of Neuropsychiatric Diseases, Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Ministry of Education of China, Wuhan, China
| | - Shi-Ge Xue
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Feng Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian-Qian Cui
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang-Qi Gao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhou
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Laboratory of Neuropsychiatric Diseases, Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Ministry of Education of China, Wuhan, China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Laboratory of Neuropsychiatric Diseases, Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Ministry of Education of China, Wuhan, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Laboratory of Neuropsychiatric Diseases, Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Ministry of Education of China, Wuhan, China.
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Laboratory of Neuropsychiatric Diseases, Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Ministry of Education of China, Wuhan, China.
| |
Collapse
|
19
|
Zhang M, Lu M, Huang H, Liu X, Su H, Li H. Maturation of thalamocortical synapses in the somatosensory cortex depends on neocortical AKAP5 expression. Neurosci Lett 2019; 709:134374. [PMID: 31310785 DOI: 10.1016/j.neulet.2019.134374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 11/18/2022]
Abstract
Sensory cortex topographic maps consist of organized arrays of thalamocortical afferents (TCAs) that project into distinct areas of the cortex. Formation of topographic maps in sensory cortices is a prerequisite for functional maturation of the neocortex. Studies have shown that the formation of topographic maps and the maturation of thalamocortical synapses in the somatosensory cortex depend on the cyclic adenosine 5'-monophosphate-(cAMP)-protein kinase A (PKA) signaling pathway. AKAP5 is a scaffold protein (also called AKAP79 in humans or AKAP150 in rodents; AKAP79/150) that serves as a signaling hub that links cAMP and PKA signaling. Whether AKAP5 plays a role in topographic map formation and the maturation of thalamocortical synapses during development of the somatosensory cortex is still unknown. Here, we generated cortex-specific AKAP5-knockout mice (CxAKAP5KO) to examine its roles in somatosensory cortex development. We found that CxAKAP5KO mice displayed impaired cortical barrel maps. Electrophysiological recordings showed that the AMPA/NMDA ratio was reduced, and silent synapses were increased in thalamocortical synapses of CxAKAP5KO mice during postnatal development. Morphological analysis of layer IV cortical neurons demonstrated that dendritic refinement of these neurons was abnormal. These results indicate that AKAP5 is necessary for both topographic map formation and maturation of thalamocortical synapses as well as morphological development of cortical neurons in the somatosensory cortex.
Collapse
Affiliation(s)
- Min Zhang
- Department of Physiology, Anhui Medical College, Anhui 230601, China
| | - Meifang Lu
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Anhui 230032, China
| | - Hao Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Anhui 230032, China
| | - Xiaoyan Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Anhui 230032, China
| | - Haoran Su
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - Hong Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Anhui 230032, China.
| |
Collapse
|
20
|
Purkey AM, Woolfrey KM, Crosby KC, Stich DG, Chick WS, Aoto J, Dell'Acqua ML. AKAP150 Palmitoylation Regulates Synaptic Incorporation of Ca 2+-Permeable AMPA Receptors to Control LTP. Cell Rep 2018; 25:974-987.e4. [PMID: 30355502 PMCID: PMC6263960 DOI: 10.1016/j.celrep.2018.09.085] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/06/2018] [Accepted: 09/25/2018] [Indexed: 11/22/2022] Open
Abstract
Ca2+-permeable AMPA-type glutamate receptors (CP-AMPARs) containing GluA1 but lacking GluA2 subunits contribute to multiple forms of synaptic plasticity, including long-term potentiation (LTP), but mechanisms regulating CP-AMPARs are poorly understood. A-kinase anchoring protein (AKAP) 150 scaffolds kinases and phosphatases to regulate GluA1 phosphorylation and trafficking, and trafficking of AKAP150 itself is modulated by palmitoylation on two Cys residues. Here, we developed a palmitoylation-deficient knockin mouse to show that AKAP150 palmitoylation regulates CP-AMPAR incorporation at hippocampal synapses. Using biochemical, super-resolution imaging, and electrophysiological approaches, we found that palmitoylation promotes AKAP150 localization to recycling endosomes and the postsynaptic density (PSD) to limit CP-AMPAR basal synaptic incorporation. In addition, we found that AKAP150 palmitoylation is required for LTP induced by weaker stimulation that recruits CP-AMPARs to synapses but not stronger stimulation that recruits GluA2-containing AMPARs. Thus, AKAP150 palmitoylation controls its subcellular localization to maintain proper basal and activity-dependent regulation of synaptic AMPAR subunit composition.
Collapse
Affiliation(s)
- Alicia M Purkey
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kevin M Woolfrey
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kevin C Crosby
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dominik G Stich
- Advanced Light Microscopy Core, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Wallace S Chick
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jason Aoto
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Advanced Light Microscopy Core, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
21
|
Patriarchi T, Buonarati OR, Hell JW. Postsynaptic localization and regulation of AMPA receptors and Cav1.2 by β2 adrenergic receptor/PKA and Ca 2+/CaMKII signaling. EMBO J 2018; 37:e99771. [PMID: 30249603 PMCID: PMC6187224 DOI: 10.15252/embj.201899771] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/25/2018] [Accepted: 08/17/2018] [Indexed: 11/09/2022] Open
Abstract
The synapse transmits, processes, and stores data within its tiny space. Effective and specific signaling requires precise alignment of the relevant components. This review examines current insights into mechanisms of AMPAR and NMDAR localization by PSD-95 and their spatial distribution at postsynaptic sites to illuminate the structural and functional framework of postsynaptic signaling. It subsequently delineates how β2 adrenergic receptor (β2 AR) signaling via adenylyl cyclase and the cAMP-dependent protein kinase PKA is organized within nanodomains. Here, we discuss targeting of β2 AR, adenylyl cyclase, and PKA to defined signaling complexes at postsynaptic sites, i.e., AMPARs and the L-type Ca2+ channel Cav1.2, and other subcellular surface localizations, the role of A kinase anchor proteins, the physiological relevance of the spatial restriction of corresponding signaling, and their interplay with signal transduction by the Ca2+- and calmodulin-dependent kinase CaMKII How localized and specific signaling by cAMP occurs is a central cellular question. The dendritic spine constitutes an ideal paradigm for elucidating the dimensions of spatially restricted signaling because of their small size and defined protein composition.
Collapse
MESH Headings
- Animals
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/physiology
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Humans
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Synapses/genetics
- Synapses/metabolism
Collapse
Affiliation(s)
- Tommaso Patriarchi
- Department of Pharmacology, University of California, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | | | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
22
|
Penny CJ, Gold MG. Mechanisms for localising calcineurin and CaMKII in dendritic spines. Cell Signal 2018; 49:46-58. [DOI: 10.1016/j.cellsig.2018.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 10/14/2022]
|
23
|
Greene DL, Kosenko A, Hoshi N. Attenuating M-current suppression in vivo by a mutant Kcnq2 gene knock-in reduces seizure burden and prevents status epilepticus-induced neuronal death and epileptogenesis. Epilepsia 2018; 59:1908-1918. [PMID: 30146722 DOI: 10.1111/epi.14541] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The M-current is a low-threshold voltage-gated potassium current generated by Kv7 subunits that regulates neural excitation. It is important to note that M-current suppression, induced by activation of Gq-coupled neurotransmitter receptors, can dynamically regulate the threshold of action-potential firing and firing frequency. Here we sought to directly examine whether M-current suppression is involved in seizures and epileptogenesis. METHODS Kv7.2 knock-in mice lacking the key protein kinase C (PKC) phosphorylation acceptor site for M-current suppression were generated by introducing an alanine substitution at serine residue 559 of mouse Kv7.2, mKv7.2(S559A). Basic electrophysiologic properties of the M-current between wild-type and Kv7.2(S559A) knock-in mice were analyzed in primary cultured neurons. Homozygous Kv7.2(S559A) knock-in mice were used to evaluate the protective effect of mutant Kv7.2 channel against chemoconvulsant-induced seizures. In addition, pilocarpine-induced neuronal damage and spontaneously recurrent seizures were evaluated after equivalent chemoconvulsant-induced status epilepticus was achieved by coadministration of the M-current-specific channel inhibitor, XE991. RESULT Neurons from Kv7.2(S559A) knock-in mice showed normal basal M-currents. Knock-in mice displayed reduced M-current suppression when challenged by a muscarinic agonist, oxotremorine-M. Kv7.2(S559A) mice were resistant to chemoconvulsant-induced seizures with no mortality. Administration of XE991 transiently exacerbated seizures in knock-in mice equivalent to those of wild-type mice. Valproate, which disrupts neurotransmitter-induced M-current suppression, showed no additional anticonvulsant effect in Kv7.2(S559A) mice. After experiencing status epilepticus, Kv7.2(S559A) knock-in mice did not show seizure-induced cell death or spontaneous recurring seizures. SIGNIFICANCE This study provides evidence that neurotransmitter-induced suppression of M-current generated by Kv7.2-containing channels exacerbates behavioral seizures. In addition, prompt recovery of M-current after status epilepticus prevents subsequent neuronal death and the development of spontaneously recurrent seizures. Therefore, prompt restoration of M-current activity may have a therapeutic benefit for epilepsy.
Collapse
Affiliation(s)
- Derek L Greene
- Department of Pharmacology, University of California, Irvine, Irvine, California
| | - Anastasia Kosenko
- Department of Pharmacology, University of California, Irvine, Irvine, California
| | - Naoto Hoshi
- Department of Pharmacology, University of California, Irvine, Irvine, California.,Department of Physiology and Biophysics, University of California, Irvine, Irvine, California
| |
Collapse
|
24
|
Filadi R, Basso E, Lefkimmiatis K, Pozzan T. Beyond Intracellular Signaling: The Ins and Outs of Second Messengers Microdomains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 981:279-322. [PMID: 29594866 DOI: 10.1007/978-3-319-55858-5_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A typical characteristic of eukaryotic cells compared to prokaryotes is represented by the spatial heterogeneity of the different structural and functional components: for example, most of the genetic material is surrounded by a highly specific membrane structure (the nuclear membrane), continuous with, yet largely different from, the endoplasmic reticulum (ER); oxidative phosphorylation is carried out by organelles enclosed by a double membrane, the mitochondria; in addition, distinct domains, enriched in specific proteins, are present in the plasma membrane (PM) of most cells. Less obvious, but now generally accepted, is the notion that even the concentration of small molecules such as second messengers (Ca2+ and cAMP in particular) can be highly heterogeneous within cells. In the case of most organelles, the differences in the luminal levels of second messengers depend either on the existence on their membrane of proteins that allow the accumulation/release of the second messenger (e.g., in the case of Ca2+, pumps, exchangers or channels), or on the synthesis and degradation of the specific molecule within the lumen (the autonomous intramitochondrial cAMP system). It needs stressing that the existence of a surrounding membrane does not necessarily imply the existence of a gradient between the cytosol and the organelle lumen. For example, the nuclear membrane is highly permeable to both Ca2+ and cAMP (nuclear pores are permeable to solutes up to 50 kDa) and differences in [Ca2+] or [cAMP] between cytoplasm and nucleoplasm are not seen in steady state and only very transiently during cell activation. A similar situation has been observed, as far as Ca2+ is concerned, in peroxisomes.
Collapse
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Emy Basso
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy
| | - Konstantinos Lefkimmiatis
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy.
- Venetian Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
25
|
Guercio LA, Hofmann ME, Swinford-Jackson SE, Sigman JS, Wimmer ME, Dell'Acqua ML, Schmidt HD, Pierce RC. A-Kinase Anchoring Protein 150 (AKAP150) Promotes Cocaine Reinstatement by Increasing AMPA Receptor Transmission in the Accumbens Shell. Neuropsychopharmacology 2018; 43:1395-1404. [PMID: 29317777 PMCID: PMC5916366 DOI: 10.1038/npp.2017.297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 11/08/2022]
Abstract
Previous work indicated that activation of D1-like dopamine receptors (D1DRs) in the nucleus accumbens shell promoted cocaine seeking through a process involving the activation of PKA and GluA1-containing AMPA receptors (AMPARs). A-kinase anchoring proteins (AKAPs) localize PKA to AMPARs leading to enhanced phosphorylation of GluA1. AKAP150, the most well-characterized isoform, plays an important role in several forms of neuronal plasticity. However, its involvement in drug addiction has been minimally explored. Here we examine the role of AKAP150 in cocaine reinstatement, an animal model of relapse. We show that blockade of PKA binding to AKAPs in the nucleus accumbens shell of Sprague-Dawley rats attenuates reinstatement induced by either cocaine or a D1DR agonist. Moreover, this effect is specific to AKAP150, as viral overexpression of a PKA-binding deficient mutant of AKAP150 also impairs cocaine reinstatement. This viral-mediated attenuation of cocaine reinstatement was accompanied by decreased phosphorylation of GluA1-containing AMPARs and attenuated AMPAR eEPSCs. Collectively, these results suggest that AKAP150 facilitates the reinstatement of cocaine-seeking behavior by amplifying D1DR/PKA-dependent AMPA transmission in the nucleus accumbens.
Collapse
Affiliation(s)
- Leonardo A Guercio
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mackenzie E Hofmann
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E Swinford-Jackson
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia S Sigman
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathieu E Wimmer
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Heath D Schmidt
- Department for Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - R Christopher Pierce
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
26
|
Control of Homeostatic Synaptic Plasticity by AKAP-Anchored Kinase and Phosphatase Regulation of Ca 2+-Permeable AMPA Receptors. J Neurosci 2018; 38:2863-2876. [PMID: 29440558 DOI: 10.1523/jneurosci.2362-17.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/17/2018] [Accepted: 02/06/2018] [Indexed: 12/31/2022] Open
Abstract
Neuronal information processing requires multiple forms of synaptic plasticity mediated by NMDARs and AMPA-type glutamate receptors (AMPARs). These plasticity mechanisms include long-term potentiation (LTP) and long-term depression (LTD), which are Hebbian, homosynaptic mechanisms locally regulating synaptic strength of specific inputs, and homeostatic synaptic scaling, which is a heterosynaptic mechanism globally regulating synaptic strength across all inputs. In many cases, LTP and homeostatic scaling regulate AMPAR subunit composition to increase synaptic strength via incorporation of Ca2+-permeable receptors (CP-AMPAR) containing GluA1, but lacking GluA2, subunits. Previous work by our group and others demonstrated that anchoring of the kinase PKA and the phosphatase calcineurin (CaN) to A-kinase anchoring protein (AKAP) 150 play opposing roles in regulation of GluA1 Ser845 phosphorylation and CP-AMPAR synaptic incorporation during hippocampal LTP and LTD. Here, using both male and female knock-in mice that are deficient in PKA or CaN anchoring, we show that AKAP150-anchored PKA and CaN also play novel roles in controlling CP-AMPAR synaptic incorporation during homeostatic plasticity in hippocampal neurons. We found that genetic disruption of AKAP-PKA anchoring prevented increases in Ser845 phosphorylation and CP-AMPAR synaptic recruitment during rapid homeostatic synaptic scaling-up induced by combined blockade of action potential firing and NMDAR activity. In contrast, genetic disruption of AKAP-CaN anchoring resulted in basal increases in Ser845 phosphorylation and CP-AMPAR synaptic activity that blocked subsequent scaling-up by preventing additional CP-AMPAR recruitment. Thus, the balanced, opposing phospho-regulation provided by AKAP-anchored PKA and CaN is essential for control of both Hebbian and homeostatic plasticity mechanisms that require CP-AMPARs.SIGNIFICANCE STATEMENT Neuronal circuit function is shaped by multiple forms of activity-dependent plasticity that control excitatory synaptic strength, including LTP/LTD that adjusts strength of individual synapses and homeostatic plasticity that adjusts overall strength of all synapses. Mechanisms controlling LTP/LTD and homeostatic plasticity were originally thought to be distinct; however, recent studies suggest that CP-AMPAR phosphorylation regulation is important during both LTP/LTD and homeostatic plasticity. Here we show that CP-AMPAR regulation by the kinase PKA and phosphatase CaN coanchored to the scaffold protein AKAP150, a mechanism previously implicated in LTP/LTD, is also crucial for controlling synaptic strength during homeostatic plasticity. These novel findings significantly expand our understanding of homeostatic plasticity mechanisms and further emphasize how intertwined they are with LTP and LTD.
Collapse
|
27
|
Nie B, Liu C, Bai X, Chen X, Wu S, Zhang S, Huang Z, Xie M, Xu T, Xin W, Zeng W, Ouyang H. AKAP150 involved in paclitaxel-induced neuropathic pain via inhibiting CN/NFAT2 pathway and downregulating IL-4. Brain Behav Immun 2018; 68:158-168. [PMID: 29056557 DOI: 10.1016/j.bbi.2017.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022] Open
Abstract
Antitubulin chemotherapeutics agents, such as paclitaxel, are effective chemotherapy drugs for cancer treatment. However, painful neuropathy is a major adverse effect limiting the wider application of chemotherapeutics. In this study, we found that A-kinase anchor protein 150 (AKAP150) was significantly upregulated after paclitaxel injection. Inhibition of AKAP150 via siRNA or AKAP150flox/flox in rodents alleviated the pain behavior induced by paclitaxel, and partly restored the decreased calcineurin (CN) phosphatase activity after paclitaxel treatment. Paclitaxel decreased the expression of anti-inflammatory cytokine interleukin-4 (IL-4), and intrathecal injections of IL-4 effectively alleviated paclitaxel-induced hypersensitivity and the frequency of dorsal root ganglion (DRG) neurons action potential. The decreased CN enzyme activity, resulted in reduced protein expression of nuclear factor of activated T cells 2 (NFAT2) in cell nuclei. Chromatin immunoprecipitation showed that, NFAT2 binds to the IL-4 gene promoter regulating the protein expression of IL-4. Overexpression of NFAT2 by intrathecal injection of the AAV5-NFAT2-GFP virus alleviated the pain behavior induced by paclitaxel via increasing the expression of IL-4. Knocked down AKAP150 by siRNA or AAV5-Cre-GFP partly restored the expression of IL-4 in DRG. Our results indicated that regulation of IL-4 via the CN/NFAT2 pathway mediated by AKAP150 could be a pivotal treatment target for paclitaxel-induced neuropathic pain and or other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Bilin Nie
- Department of Anesthesiology, Guangdong Women and Children Hospital, Guangzhou, China; Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Cuicui Liu
- Department of Rehabilitation Medicine and Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaohui Bai
- Department of Rehabilitation Medicine and Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaodi Chen
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shaoyong Wu
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Subo Zhang
- Department of Rehabilitation Medicine and Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuxi Huang
- Department of Rehabilitation Medicine and Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Manxiu Xie
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ting Xu
- Zhongshan Medicine School, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, China.
| | - Wenjun Xin
- Zhongshan Medicine School, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, China
| | - Weian Zeng
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Handong Ouyang
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
28
|
Wild AR, Dell'Acqua ML. Potential for therapeutic targeting of AKAP signaling complexes in nervous system disorders. Pharmacol Ther 2017; 185:99-121. [PMID: 29262295 DOI: 10.1016/j.pharmthera.2017.12.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A common feature of neurological and neuropsychiatric disorders is a breakdown in the integrity of intracellular signal transduction pathways. Dysregulation of ion channels and receptors in the cell membrane and the enzymatic mediators that link them to intracellular effectors can lead to synaptic dysfunction and neuronal death. However, therapeutic targeting of these ubiquitous signaling elements can lead to off-target side effects due to their widespread expression in multiple systems of the body. A-kinase anchoring proteins (AKAPs) are multivalent scaffolding proteins that compartmentalize a diverse range of receptor and effector proteins to streamline signaling within nanodomain signalosomes. A number of essential neurological processes are known to critically depend on AKAP-directed signaling and an understanding of the role AKAPs play in nervous system disorders has emerged in recent years. Selective targeting of AKAP protein-protein interactions may be a means to uncouple pathologically active signaling pathways in neurological disorders with a greater degree of specificity. In this review we will discuss the role of AKAPs in both regulating normal nervous system function and dysfunction associated with disease, and the potential for therapeutic targeting of AKAP signaling complexes.
Collapse
Affiliation(s)
- Angela R Wild
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
29
|
Brown DA. Regulation of neural ion channels by muscarinic receptors. Neuropharmacology 2017; 136:383-400. [PMID: 29154951 DOI: 10.1016/j.neuropharm.2017.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 10/26/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Abstract
The excitable behaviour of neurons is determined by the activity of their endogenous membrane ion channels. Since muscarinic receptors are not themselves ion channels, the acute effects of muscarinic receptor stimulation on neuronal function are governed by the effects of the receptors on these endogenous neuronal ion channels. This review considers some principles and factors determining the interaction between subtypes and classes of muscarinic receptors with neuronal ion channels, and summarizes the effects of muscarinic receptor stimulation on a number of different channels, the mechanisms of receptor - channel transduction and their direct consequences for neuronal activity. Ion channels considered include potassium channels (voltage-gated, inward rectifier and calcium activated), voltage-gated calcium channels, cation channels and chloride channels. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.
Collapse
Affiliation(s)
- David A Brown
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
30
|
Regulation of the phosphatase PP2B by protein-protein interactions. Biochem Soc Trans 2017; 44:1313-1319. [PMID: 27911714 DOI: 10.1042/bst20160150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/09/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
Abstract
Protein dephosphorylation is important for regulating cellular signaling in a variety of contexts. Protein phosphatase-2B (PP2B), or calcineurin, is a widely expressed serine/threonine phosphatase that acts on a large cross section of potential protein substrates when activated by increased levels of intracellular calcium in concert with calmodulin. PxIxIT and LxVP targeting motifs are important for maintaining specificity in response to elevated calcium. In the present study, we describe the mechanism of PP2B activation, discuss its targeting by conserved binding motifs and review recent advances in the understanding of an A-kinase anchoring protein 79/PP2B/protein kinase A complex's role in synaptic long-term depression. Finally, we discuss potential for targeting PP2B anchoring motifs for therapeutic benefit.
Collapse
|
31
|
A-Kinase Anchoring Protein 79/150 Scaffolds Transient Receptor Potential A 1 Phosphorylation and Sensitization by Metabotropic Glutamate Receptor Activation. Sci Rep 2017; 7:1842. [PMID: 28500286 PMCID: PMC5431798 DOI: 10.1038/s41598-017-01999-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/05/2017] [Indexed: 01/20/2023] Open
Abstract
Mechanical pain serves as a base clinical symptom for many of the world’s most debilitating syndromes. Ion channels expressed by peripheral sensory neurons largely contribute to mechanical hypersensitivity. Transient Receptor Potential A 1 (TRPA1) is a ligand-gated ion channel that contributes to inflammatory mechanical hypersensitivity, yet little is known as to the post-translational mechanism behind its somatosensitization. Here, we utilize biochemical, electrophysiological, and behavioral measures to demonstrate that metabotropic glutamate receptor-induced sensitization of TRPA1 nociceptors stimulates targeted modification of the receptor. Type 1 mGluR5 activation increases TRPA1 receptor agonist sensitivity in an AKA-dependent manner. As a scaffolding protein for Protein Kinases A and C (PKA and PKC, respectively), AKAP facilitates phosphorylation and sensitization of TRPA1 in ex vivo sensory neuronal preparations. Furthermore, hyperalgesic priming of mechanical hypersensitivity requires both TRPA1 and AKAP. Collectively, these results identify a novel AKAP-mediated biochemical mechanism that increases TRPA1 sensitivity in peripheral sensory neurons, and likely contributes to persistent mechanical hypersensitivity.
Collapse
|
32
|
Brackley AD, Sarrami S, Gomez R, Guerrero KA, Jeske NA. Identification of a signaling cascade that maintains constitutive δ-opioid receptor incompetence in peripheral sensory neurons. J Biol Chem 2017; 292:8762-8772. [PMID: 28381559 DOI: 10.1074/jbc.m117.776799] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/29/2017] [Indexed: 12/17/2022] Open
Abstract
μ-Opioid receptor (MOR) agonists are often used to treat severe pain but can result in adverse side effects. To circumvent systemic side effects, targeting peripheral opioid receptors is an attractive alternative treatment for severe pain. Activation of the δ-opioid receptor (DOR) produces similar analgesia with reduced side effects. However, until primed by inflammation, peripheral DOR is analgesically incompetent, raising interest in the mechanism. We recently identified a novel role for G-protein-coupled receptor kinase 2 (GRK2) that renders DOR analgesically incompetent at the plasma membrane. However, the mechanism that maintains constitutive GRK2 association with DOR is unknown. Protein kinase A (PKA) phosphorylation of GRK2 at Ser-685 targets it to the plasma membrane. Protein kinase A-anchoring protein 79/150 (AKAP), residing at the plasma membrane in neurons, scaffolds PKA to target proteins to mediate downstream signal. Therefore, we sought to determine whether GRK2-mediated DOR desensitization is directed by PKA via AKAP scaffolding. Membrane fractions from cultured rat sensory neurons following AKAP siRNA transfection and from AKAP-knock-out mice had less PKA activity, GRK2 Ser-685 phosphorylation, and GRK2 plasma membrane targeting than controls. Site-directed mutagenesis revealed that GRK2 Ser-685 phosphorylation drives the association of GRK2 with plasma membrane-associated DOR. Moreover, overexpression studies with AKAP mutants indicated that impaired AKAP-mediated PKA scaffolding significantly reduces DOR-GRK2 association at the plasma membrane and consequently increases DOR activity in sensory neurons without a priming event. These findings suggest that AKAP scaffolds PKA to increase plasma membrane targeting and phosphorylation of GRK2 to maintain DOR analgesic incompetence in peripheral sensory neurons.
Collapse
Affiliation(s)
| | | | | | | | - Nathaniel A Jeske
- From the Departments of Pharmacology, .,Oral and Maxillofacial Surgery, and.,Physiology, University of Texas Health Science Center, San Antonio, Texas 78229
| |
Collapse
|
33
|
Muñoz-Llancao P, de Gregorio C, Las Heras M, Meinohl C, Noorman K, Boddeke E, Cheng X, Lezoualc'h F, Schmidt M, Gonzalez-Billault C. Microtubule-regulating proteins and cAMP-dependent signaling in neuroblastoma differentiation. Cytoskeleton (Hoboken) 2017; 74:143-158. [PMID: 28164467 DOI: 10.1002/cm.21355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 01/15/2023]
Abstract
Neurons are highly differentiated cells responsible for the conduction and transmission of information in the nervous system. The proper function of a neuron relies on the compartmentalization of their intracellular domains. Differentiated neuroblastoma cells have been extensively used to study and understand the physiology and cell biology of neuronal cells. Here, we show that differentiation of N1E-115 neuroblastoma cells is more pronounced upon exposure of a chemical analog of cyclic AMP (cAMP), db-cAMP. We next analysed the expression of key microtubule-regulating proteins in differentiated cells and the expression and activation of key cAMP players such as EPAC, PKA and AKAP79/150. Most of the microtubule-promoting factors were up regulated during differentiation of N1E-115 cells, while microtubule-destabilizing proteins were down regulated. We observed an increase in tubulin post-translational modifications related to microtubule stability. As expected, db-cAMP increased PKA- and EPAC-dependent signalling. Consistently, pharmacological modulation of EPAC activity instructed cell differentiation, number of neurites, and neurite length in N1E-115 cells. Moreover, disruption of the PKA-AKAP interaction reduced these morphometric parameters. Interestingly, PKA and EPAC act synergistically to induce neuronal differentiation in N1E-115. Altogether these results show that the changes observed in the differentiation of N1E-115 cells proceed by regulating several microtubule-stabilizing factors, and the acquisition of a neuronal phenotype is a process involving concerted although independent functions of EPAC and PKA.
Collapse
Affiliation(s)
- Pablo Muñoz-Llancao
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Cristian de Gregorio
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Macarena Las Heras
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Christopher Meinohl
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Kevin Noorman
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Erik Boddeke
- Department of Medical Physiology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, USA
| | - Frank Lezoualc'h
- Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France.,Université de Toulouse III, Paul Sabatier, Toulouse, France
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Christian Gonzalez-Billault
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile.,The Buck Institute for Research on Aging, Novato, USA
| |
Collapse
|
34
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
35
|
Jones BW, Deem J, Younts TJ, Weisenhaus M, Sanford CA, Slack MC, Chin J, Nachmanson D, McKennon A, Castillo PE, McKnight GS. Targeted deletion of AKAP7 in dentate granule cells impairs spatial discrimination. eLife 2016; 5. [PMID: 27911261 PMCID: PMC5135391 DOI: 10.7554/elife.20695] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/23/2016] [Indexed: 01/26/2023] Open
Abstract
Protein Kinase A (PKA) mediates synaptic plasticity and is widely implicated in learning and memory. The hippocampal dentate gyrus (DG) is thought to be responsible for processing and encoding distinct contextual associations in response to highly similar inputs. The mossy fiber (MF) axons of the dentate granule cells convey strong excitatory drive to CA3 pyramidal neurons and express presynaptic, PKA-dependent forms of plasticity. Here, we demonstrate an essential role for the PKA anchoring protein, AKAP7, in mouse MF axons and terminals. Genetic ablation of AKAP7 specifically from dentate granule cells results in disruption of MF-CA3 LTP directly initiated by cAMP, and the AKAP7 mutant mice are selectively deficient in pattern separation behaviors. Our results suggest that the AKAP7/PKA complex in the MF projections plays an essential role in synaptic plasticity and contextual memory formation. DOI:http://dx.doi.org/10.7554/eLife.20695.001
Collapse
Affiliation(s)
- Brian W Jones
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Jennifer Deem
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Thomas J Younts
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Michael Weisenhaus
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Christina A Sanford
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Margaret C Slack
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Jenesa Chin
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Daniela Nachmanson
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Alex McKennon
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Pablo E Castillo
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - G Stanley McKnight
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| |
Collapse
|
36
|
Li L, Li J, Drum BM, Chen Y, Yin H, Guo X, Luckey SW, Gilbert ML, McKnight GS, Scott JD, Santana LF, Liu Q. Loss of AKAP150 promotes pathological remodelling and heart failure propensity by disrupting calcium cycling and contractile reserve. Cardiovasc Res 2016; 113:147-159. [PMID: 27856611 DOI: 10.1093/cvr/cvw221] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/15/2016] [Accepted: 10/11/2016] [Indexed: 01/18/2023] Open
Abstract
AIMS Impaired Ca2 + cycling and myocyte contractility are a hallmark of heart failure triggered by pathological stress such as hemodynamic overload. The A-Kinase anchoring protein AKAP150 has been shown to coordinate key aspects of adrenergic regulation of Ca2+ cycling and excitation-contraction in cardiomyocytes. However, the role of the AKAP150 signalling complexes in the pathogenesis of heart failure has not been investigated. METHODS AND RESULTS Here we examined how AKAP150 signalling complexes impact Ca2+ cycling, myocyte contractility, and heart failure susceptibility following pathological stress. We detected a significant reduction of AKAP150 expression in the failing mouse heart induced by pressure overload. Importantly, cardiac-specific AKAP150 knockout mice were predisposed to develop dilated cardiomyopathy with severe cardiac dysfunction and fibrosis after pressure overload. Loss of AKAP150 also promoted pathological remodelling and heart failure progression following myocardial infarction. However, ablation of AKAP150 did not affect calcineurin-nuclear factor of activated T cells signalling in cardiomyocytes or pressure overload- or agonist-induced cardiac hypertrophy. Immunoprecipitation studies showed that AKAP150 was associated with SERCA2, phospholamban, and ryanodine receptor-2, providing a targeted control of sarcoplasmic reticulum Ca2+ regulatory proteins. Mechanistically, loss of AKAP150 led to impaired Ca2+ cycling and reduced myocyte contractility reserve following adrenergic stimulation or pressure overload. CONCLUSIONS These findings define a critical role for AKAP150 in regulating Ca2+ cycling and myocardial ionotropy following pathological stress, suggesting the AKAP150 signalling pathway may serve as a novel therapeutic target for heart failure.
Collapse
Affiliation(s)
- Lei Li
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | - Jing Li
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | - Benjamin M Drum
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | - Yi Chen
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | - Haifeng Yin
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | - Xiaoyun Guo
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | - Stephen W Luckey
- Department of Biology, Seattle University, 901 12th Ave., Seattle, WA 98122, USA
| | - Merle L Gilbert
- Department of Pharmacology, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | - G Stanley McKnight
- Department of Pharmacology, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | - John D Scott
- Department of Pharmacology, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | - L Fernando Santana
- Deparment of Physiology & Membrane Biology, University of California, One Shields Ave., Davis, CA 95616, USA
| | - Qinghang Liu
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA;
| |
Collapse
|
37
|
McGuier NS, Griffin WC, Gass JT, Padula AE, Chesler EJ, Mulholland PJ. Kv7 channels in the nucleus accumbens are altered by chronic drinking and are targets for reducing alcohol consumption. Addict Biol 2016; 21:1097-1112. [PMID: 26104325 DOI: 10.1111/adb.12279] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alcohol use disorders (AUDs) are a major public health issue and produce enormous societal and economic burdens. Current Food and Drug Administration (FDA)-approved pharmacotherapies for treating AUDs suffer from deleterious side effects and are only effective in a subset of individuals. It is therefore essential to find improved medications for the management of AUDs. Emerging evidence suggests that anticonvulsants are a promising class of drugs for treating individuals with AUDs. In these studies, we used integrative functional genomics to demonstrate that genes that encode Kv7 channels (i.e. Kcnq2/3) are related to alcohol (ethanol) consumption, preference and acceptance in rodents. We then tested the ability of the FDA-approved anticonvulsant retigabine, a Kv7 channel opener, to reduce voluntary ethanol consumption of Wistar rats in a two-bottle choice intermittent alcohol access paradigm. Systemic administration and microinjections of retigabine into the nucleus accumbens significantly reduced alcohol drinking, and retigabine was more effective at reducing intake in high- versus low-drinking populations of Wistar rats. Prolonged voluntary drinking increased the sensitivity to the proconvulsant effects of pharmacological blockade of Kv7 channels and altered surface trafficking and SUMOylation patterns of Kv7.2 channels in the nucleus accumbens. These data implicate Kcnq2/3 in the regulation of ethanol drinking and demonstrate that long-term drinking produces neuroadaptations in Kv7 channels. In addition, these results have identified retigabine as a potential pharmacotherapy for treating AUDs and Kv7 channels as a novel therapeutic target for reducing heavy drinking.
Collapse
Affiliation(s)
- Natalie S. McGuier
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| | - William C. Griffin
- Department of Psychiatry and Behavioral Sciences; Medical University of South Carolina; Charleston SC USA
| | - Justin T. Gass
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| | - Audrey E. Padula
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| | | | - Patrick J. Mulholland
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
- Department of Psychiatry and Behavioral Sciences; Medical University of South Carolina; Charleston SC USA
| |
Collapse
|
38
|
Zhang J, Carver CM, Choveau FS, Shapiro MS. Clustering and Functional Coupling of Diverse Ion Channels and Signaling Proteins Revealed by Super-resolution STORM Microscopy in Neurons. Neuron 2016; 92:461-478. [PMID: 27693258 DOI: 10.1016/j.neuron.2016.09.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/24/2016] [Accepted: 08/26/2016] [Indexed: 11/25/2022]
Abstract
The fidelity of neuronal signaling requires organization of signaling molecules into macromolecular complexes, whose components are in intimate proximity. The intrinsic diffraction limit of light makes visualization of individual signaling complexes using visible light extremely difficult. However, using super-resolution stochastic optical reconstruction microscopy (STORM), we observed intimate association of individual molecules within signaling complexes containing ion channels (M-type K+, L-type Ca2+, or TRPV1 channels) and G protein-coupled receptors coupled by the scaffolding protein A-kinase-anchoring protein (AKAP)79/150. Some channels assembled as multi-channel supercomplexes. Surprisingly, we identified novel layers of interplay within macromolecular complexes containing diverse channel types at the single-complex level in sensory neurons, dependent on AKAP79/150. Electrophysiological studies revealed that such ion channels are functionally coupled as well. Our findings illustrate the novel role of AKAP79/150 as a molecular coupler of different channels that conveys crosstalk between channel activities within single microdomains in tuning the physiological response of neurons.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Chase M Carver
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Frank S Choveau
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Mark S Shapiro
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
39
|
Greene DL, Hoshi N. Modulation of Kv7 channels and excitability in the brain. Cell Mol Life Sci 2016; 74:495-508. [PMID: 27645822 DOI: 10.1007/s00018-016-2359-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/25/2016] [Accepted: 09/06/2016] [Indexed: 11/26/2022]
Abstract
Neuronal Kv7 channels underlie a voltage-gated non-inactivating potassium current known as the M-current. Due to its particular characteristics, Kv7 channels show pronounced control over the excitability of neurons. We will discuss various factors that have been shown to drastically alter the activity of this channel such as protein and phospholipid interactions, phosphorylation, calcium, and numerous neurotransmitters. Kv7 channels locate to key areas for the control of action potential initiation and propagation. Moreover, we will explore the dynamic surface expression of the channel modulated by neurotransmitters and neural activity. We will also focus on known principle functions of neural Kv7 channels: control of resting membrane potential and spiking threshold, setting the firing frequency, afterhyperpolarization after burst firing, theta resonance, and transient hyperexcitability from neurotransmitter-induced suppression of the M-current. Finally, we will discuss the contribution of altered Kv7 activity to pathologies such as epilepsy and cognitive deficits.
Collapse
Affiliation(s)
- Derek L Greene
- Department of Pharmacology, University of California, 360 Med Surge II, Irvine, CA, 92697, USA
| | - Naoto Hoshi
- Department of Pharmacology, University of California, 360 Med Surge II, Irvine, CA, 92697, USA.
- Department of Physiology and Biophysics, University of California, Irvine, USA.
| |
Collapse
|
40
|
A-kinase anchoring protein 79/150 coordinates metabotropic glutamate receptor sensitization of peripheral sensory neurons. Pain 2016; 156:2364-2372. [PMID: 26172554 DOI: 10.1097/j.pain.0000000000000295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glutamate serves as the primary excitatory neurotransmitter in the nervous system. Previous studies have identified a role for glutamate and group I metabotropic receptors as targets for study in peripheral inflammatory pain. However, the coordination of signaling events that transpire from receptor activation to afferent neuronal sensitization has not been explored. Herein, we identify that scaffolding protein A-kinase anchoring protein 79/150 (AKAP150) coordinates increased peripheral thermal sensitivity after group I metabotropic receptor (mGluR5) activation. In both acute and persistent models of thermal somatosensory behavior, we report that mGluR5 sensitization requires AKAP150 expression. Furthermore, electrophysiological approaches designed to record afferent neuronal activity reveal that mGluR5 sensitization also requires functional AKAP150 expression. In dissociated primary afferent neurons, mGluR5 activation increases TRPV1 responses in an AKAP-dependent manner through a mechanism that induces AKAP association with TRPV1. Experimental results presented herein identify a mechanism of receptor-driven scaffolding association with ion channel targets. Importantly, this mechanism could prove significant in the search for therapeutic targets that repress episodes of acute pain from becoming chronic in nature.
Collapse
|
41
|
Sanderson JL, Gorski JA, Dell'Acqua ML. NMDA Receptor-Dependent LTD Requires Transient Synaptic Incorporation of Ca²⁺-Permeable AMPARs Mediated by AKAP150-Anchored PKA and Calcineurin. Neuron 2016; 89:1000-15. [PMID: 26938443 DOI: 10.1016/j.neuron.2016.01.043] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/15/2015] [Accepted: 01/14/2016] [Indexed: 11/17/2022]
Abstract
Information processing in the brain requires multiple forms of synaptic plasticity that converge on regulation of NMDA and AMPA-type glutamate receptors (NMDAR, AMPAR), including long-term potentiation (LTP) and long-term depression (LTD) and homeostatic scaling. In some cases, LTP and homeostatic plasticity regulate synaptic AMPAR subunit composition to increase the contribution of Ca(2+)-permeable receptors (CP-AMPARs) containing GluA1 but lacking GluA2 subunits. Here, we show that PKA anchored to the scaffold protein AKAP150 regulates GluA1 phosphorylation and plays a novel role controlling CP-AMPAR synaptic incorporation during NMDAR-dependent LTD. Using knockin mice that are deficient in AKAP-anchoring of either PKA or the opposing phosphatase calcineurin, we found that CP-AMPARs are recruited to hippocampal synapses by anchored PKA during LTD induction but are then rapidly removed by anchored calcineurin. Importantly, blocking CP-AMPAR recruitment, removal, or activity interferes with LTD. Thus, CP-AMPAR synaptic recruitment is required to transiently augment NMDAR Ca(2+) signaling during LTD induction.
Collapse
Affiliation(s)
- Jennifer L Sanderson
- Department of Pharmacology, University of Colorado School of Medicine, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Jessica A Gorski
- Department of Pharmacology, University of Colorado School of Medicine, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, 12800 East 19th Avenue, Aurora, CO 80045, USA; Program in Neuroscience, University of Colorado School of Medicine, 12800 East 19th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
42
|
AKAP220 manages apical actin networks that coordinate aquaporin-2 location and renal water reabsorption. Proc Natl Acad Sci U S A 2016; 113:E4328-37. [PMID: 27402760 DOI: 10.1073/pnas.1607745113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Filtration through the kidney eliminates toxins, manages electrolyte balance, and controls water homeostasis. Reabsorption of water from the luminal fluid of the nephron occurs through aquaporin-2 (AQP2) water pores in principal cells that line the kidney-collecting duct. This vital process is impeded by formation of an "actin barrier" that obstructs the passive transit of AQP2 to the plasma membrane. Bidirectional control of AQP2 trafficking is managed by hormones and signaling enzymes. We have discovered that vasopressin-independent facets of this homeostatic mechanism are under the control of A-Kinase Anchoring Protein 220 (AKAP220; product of the Akap11 gene). CRISPR/Cas9 gene editing and imaging approaches show that loss of AKAP220 disrupts apical actin networks in organoid cultures. Similar defects are evident in tissue sections from AKAP220-KO mice. Biochemical analysis of AKAP220-null kidney extracts detected reduced levels of active RhoA GTPase, a well-known modulator of the actin cytoskeleton. Fluorescent imaging of kidney sections from these genetically modified mice revealed that RhoA and AQP2 accumulate at the apical surface of the collecting duct. Consequently, these animals are unable to appropriately dilute urine in response to overhydration. We propose that membrane-proximal signaling complexes constrained by AKAP220 impact the actin barrier dynamics and AQP2 trafficking to ensure water homeostasis.
Collapse
|
43
|
Compartmentalization of GPCR signalling controls unique cellular responses. Biochem Soc Trans 2016; 44:562-7. [DOI: 10.1042/bst20150236] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Indexed: 02/08/2023]
Abstract
With >800 members, G protein-coupled receptors (GPCRs) are the largest class of cell-surface signalling proteins, and their activation mediates diverse physiological processes. GPCRs are ubiquitously distributed across all cell types, involved in many diseases and are major drug targets. However, GPCR drug discovery is still characterized by very high attrition rates. New avenues for GPCR drug discovery may be provided by a recent shift away from the traditional view of signal transduction as a simple chain of events initiated from the plasma membrane. It is now apparent that GPCR signalling is restricted to highly organized compartments within the cell, and that GPCRs activate distinct signalling pathways once internalized. A high-resolution understanding of how compartmentalized signalling is controlled will probably provide unique opportunities to selectively and therapeutically target GPCRs.
Collapse
|
44
|
AKAP150 participates in calcineurin/NFAT activation during the down-regulation of voltage-gated K(+) currents in ventricular myocytes following myocardial infarction. Cell Signal 2015; 28:733-40. [PMID: 26724383 DOI: 10.1016/j.cellsig.2015.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 12/19/2022]
Abstract
The Ca(2+)-responsive phosphatase calcineurin/protein phosphatase 2B dephosphorylates the transcription factor NFATc3. In the myocardium activation of NFATc3 down-regulates the expression of voltage-gated K(+) (Kv) channels after myocardial infarction (MI). This prolongs action potential duration and increases the probability of arrhythmias. Although recent studies infer that calcineurin is activated by local and transient Ca(2+) signals the molecular mechanism that underlies the process is unclear in ventricular myocytes. Here we test the hypothesis that sequestering of calcineurin to the sarcolemma of ventricular myocytes by the anchoring protein AKAP150 is required for acute activation of NFATc3 and the concomitant down-regulation of Kv channels following MI. Biochemical and cell based measurements resolve that approximately 0.2% of the total calcineurin activity in cardiomyocytes is associated with AKAP150. Electrophysiological analyses establish that formation of this AKAP150-calcineurin signaling dyad is essential for the activation of the phosphatase and the subsequent down-regulation of Kv channel currents following MI. Thus AKAP150-mediated targeting of calcineurin to sarcolemmal micro-domains in ventricular myocytes contributes to the local and acute gene remodeling events that lead to the down-regulation of Kv currents.
Collapse
|
45
|
Woolfrey KM, Dell'Acqua ML. Coordination of Protein Phosphorylation and Dephosphorylation in Synaptic Plasticity. J Biol Chem 2015; 290:28604-12. [PMID: 26453308 DOI: 10.1074/jbc.r115.657262] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A central theme in nervous system function is equilibrium: synaptic strengths wax and wane, neuronal firing rates adjust up and down, and neural circuits balance excitation with inhibition. This push/pull regulatory theme carries through to the molecular level at excitatory synapses, where protein function is controlled through phosphorylation and dephosphorylation by kinases and phosphatases. However, these opposing enzymatic activities are only part of the equation as scaffolding interactions and assembly of multi-protein complexes are further required for efficient, localized synaptic signaling. This review will focus on coordination of postsynaptic serine/threonine kinase and phosphatase signaling by scaffold proteins during synaptic plasticity.
Collapse
Affiliation(s)
- Kevin M Woolfrey
- From the Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Mark L Dell'Acqua
- From the Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
46
|
Regulation of fear extinction versus other affective behaviors by discrete cortical scaffolding complexes associated with NR2B and PKA signaling. Transl Psychiatry 2015; 5:e657. [PMID: 26460481 PMCID: PMC4930127 DOI: 10.1038/tp.2015.150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 02/07/2023] Open
Abstract
In patients suffering from post-traumatic stress disorder (PTSD), fear evoked by trauma-related memories lasts long past the traumatic event and it is often complicated by general anxiety and depressed mood. This poses a treatment challenge, as drugs beneficial for some symptoms might exacerbate others. For example, in preclinical studies, antagonists of the NR2B subunit of N-methyl-d-aspartate receptors and activators of cAMP-dependent protein kinase (PKA) act as potent antidepressants and anxiolytics, but they block fear extinction. Using mice, we attempted to overcome this problem by interfering with individual NR2B and PKA signaling complexes organized by scaffolding proteins. We infused cell-permeable Tat peptides that displaced either NR2B from receptor for activated C kinase 1 (RACK1), or PKA from A-kinase anchor proteins (AKAPs) or microtubule-associated proteins (MAPs). The infusions were targeted to the retrosplenial cortex, an area involved in both fear extinction of remotely acquired memories and in mood regulation. Tat-RACK1 and Tat-AKAP enhanced fear extinction, all peptides reduced anxiety and none affected baseline depression-like behavior. However, disruption of PKA complexes distinctively interfered with the rapid antidepressant actions of the N-methyl-D-aspartate receptors antagonist MK-801 in that Tat-MAP2 blocked, whereas Tat-AKAP completely inverted the effect of MK-801 from antidepressant to depressant. These effects were unrelated to the MK-801-induced changes of brain-derived neurotrophic factor messenger RNA levels. Together, the findings suggest that NR2B-RACK1 complexes specifically contribute to fear extinction, and may provide a target for the treatment of PTSD. AKAP-PKA, on the other hand, appears to modulate fear extinction and antidepressant responses in opposite directions.
Collapse
|
47
|
Mari Y, Katnik C, Cuevas J. σ-1 Receptor Inhibition of ASIC1a Channels is Dependent on a Pertussis Toxin-Sensitive G-Protein and an AKAP150/Calcineurin Complex. Neurochem Res 2015; 40:2055-67. [PMID: 24925261 DOI: 10.1007/s11064-014-1324-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/17/2014] [Accepted: 05/03/2014] [Indexed: 10/25/2022]
Abstract
ASIC1a channels play a major role in various pathophysiological conditions including depression, anxiety, epilepsy, and neurodegeneration following ischemic stroke. Sigma-1 (σ-1) receptor stimulation depresses the activity of ASIC1a channels in cortical neurons, but the mechanism(s) by which σ-1 receptors exert their influence on ASIC1a remains unknown. Experiments were undertaken to elucidate the signaling cascade linking σ-1 receptors to ASIC1a channels. Immunohistochemical studies showed that σ-1 receptors, ASIC1a and A-kinase anchoring peptide 150 colocalize in the plasma membrane of the cell body and processes of cortical neurons. Fluorometric Ca(2+) imaging experiments showed that disruption of the macromolecular complexes containing AKAP150 diminished the effects of the σ-1 on ASIC1a, as did application of the calcineurin inhibitors, cyclosporin A and FK-506. Moreover, whole-cell patch clamp experiments showed that σ-1 receptors were less effective at decreasing ASIC1a-mediated currents in the presence of the VIVIT peptide, which binds to calcineurin and prevents cellular effects dependent on AKAP150/calcineurin interaction. The coupling of σ-1 to ASIC1a was also disrupted by preincubation of the neurons in the G-protein inhibitor, pertussis toxin (PTX). Taken together, our data reveal that σ-1 receptor block of ASIC1a function is dependent on activation of a PTX-sensitive G-protein and stimulation of AKAP150 bound calcineurin.
Collapse
Affiliation(s)
- Yelenis Mari
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC-9, Tampa, FL, 33612-4799, USA
| | - Christopher Katnik
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC-9, Tampa, FL, 33612-4799, USA
| | - Javier Cuevas
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC-9, Tampa, FL, 33612-4799, USA.
| |
Collapse
|
48
|
Kay HY, Greene DL, Kang S, Kosenko A, Hoshi N. M-current preservation contributes to anticonvulsant effects of valproic acid. J Clin Invest 2015; 125:3904-14. [PMID: 26348896 DOI: 10.1172/jci79727] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 07/30/2015] [Indexed: 01/04/2023] Open
Abstract
Valproic acid (VPA) has been widely used for decades to treat epilepsy; however, its mechanism of action remains poorly understood. Here, we report that the anticonvulsant effects of nonacute VPA treatment involve preservation of the M-current, a low-threshold noninactivating potassium current, during seizures. In a wide variety of neurons, activation of Gq-coupled receptors, such as the m1 muscarinic acetylcholine receptor, suppresses the M-current and induces hyperexcitability. We demonstrated that VPA treatment disrupts muscarinic suppression of the M-current and prevents resultant agonist-induced neuronal hyperexcitability. We also determined that VPA treatment interferes with M-channel signaling by inhibiting palmitoylation of a signaling scaffold protein, AKAP79/150, in cultured neurons. In a kainate-induced murine seizure model, administration of a dose of an M-channel inhibitor that did not affect kainate-induced seizure transiently eliminated the anticonvulsant effects of VPA. Retigabine, an M-channel opener that does not open receptor-suppressed M-channels, provided anticonvulsant effects only when administered prior to seizure induction in control animals. In contrast, treatment of VPA-treated mice with retigabine induced anticonvulsant effects even when administered after seizure induction. Together, these results suggest that receptor-induced M-current suppression plays a role in the pathophysiology of seizures and that preservation of the M-current during seizures has potential as an effective therapeutic strategy.
Collapse
|
49
|
Wang Y, Ho TG, Franz E, Hermann JS, Smith FD, Hehnly H, Esseltine JL, Hanold LE, Murph MM, Bertinetti D, Scott JD, Herberg FW, Kennedy EJ. PKA-type I selective constrained peptide disruptors of AKAP complexes. ACS Chem Biol 2015; 10:1502-10. [PMID: 25765284 DOI: 10.1021/acschembio.5b00009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A-Kinase Anchoring Proteins (AKAPs) coordinate complex signaling events by serving as spatiotemporal modulators of cAMP-dependent protein kinase activity in cells. Although AKAPs organize a plethora of diverse pathways, their cellular roles are often elusive due to the dynamic nature of these signaling complexes. AKAPs can interact with the type I or type II PKA holoenzymes by virtue of high-affinity interactions with the R-subunits. As a means to delineate AKAP-mediated PKA signaling in cells, we sought to develop isoform-selective disruptors of AKAP signaling. Here, we report the development of conformationally constrained peptides named RI-STapled Anchoring Disruptors (RI-STADs) that target the docking/dimerization domain of the type 1 regulatory subunit of PKA. These high-affinity peptides are isoform-selective for the RI isoforms, can outcompete binding by the classical AKAP disruptor Ht31, and can selectively displace RIα, but not RIIα, from binding the dual-specific AKAP149 complex. Importantly, these peptides are cell-permeable and disrupt Type I PKA-mediated phosphorylation events in the context of live cells. Hence, RI-STAD peptides are versatile cellular tools to selectively probe anchored type I PKA signaling events.
Collapse
Affiliation(s)
- Yuxiao Wang
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Tienhuei G. Ho
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Eugen Franz
- Department
of Biochemistry, University of Kassel, 34132 Kassel, Germany
| | | | - F. Donelson Smith
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Heidi Hehnly
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Jessica L. Esseltine
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Laura E. Hanold
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Mandi M. Murph
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | | | - John D. Scott
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | | | - Eileen J. Kennedy
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
50
|
Whiting JL, Nygren PJ, Tunquist BJ, Langeberg LK, Seternes OM, Scott JD. Protein Kinase A Opposes the Phosphorylation-dependent Recruitment of Glycogen Synthase Kinase 3β to A-kinase Anchoring Protein 220. J Biol Chem 2015; 290:19445-57. [PMID: 26088133 DOI: 10.1074/jbc.m115.654822] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Indexed: 02/04/2023] Open
Abstract
The proximity of an enzyme to its substrate can influence rate and magnitude of catalysis. A-kinase anchoring protein 220 (AKAP220) is a multivalent anchoring protein that can sequester a variety of signal transduction enzymes. These include protein kinase A (PKA) and glycogen synthase kinase 3β (GSK3β). Using a combination of molecular and cellular approaches we show that GSK3β phosphorylation of Thr-1132 on AKAP220 initiates recruitment of this kinase into the enzyme scaffold. We also find that AKAP220 anchors GSK3β and its substrate β-catenin in membrane ruffles. Interestingly, GSK3β can be released from the multienzyme complex in response to PKA phosphorylation on serine 9, which suppresses GSK3β activity. The signaling scaffold may enhance this regulatory mechanism, as AKAP220 has the capacity to anchor two PKA holoenzymes. Site 1 on AKAP220 (residues 610-623) preferentially interacts with RII, whereas site 2 (residues 1633-1646) exhibits a dual specificity for RI and RII. In vitro affinity measurements revealed that site 2 on AKAP220 binds RII with ∼10-fold higher affinity than site 1. Occupancy of both R subunit binding sites on AKAP220 could provide a mechanism to amplify local cAMP responses and enable cross-talk between PKA and GSK3β.
Collapse
Affiliation(s)
- Jennifer L Whiting
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Patrick J Nygren
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Brian J Tunquist
- Translational Oncology, Array BioPharma, Inc., Boulder, Colorado 80301, and
| | - Lorene K Langeberg
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Ole-Morten Seternes
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, Department of Pharmacy, University of Tromsø, The Arctic University of Norway, 9037 Tromsø, Norway
| | - John D Scott
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195,
| |
Collapse
|