1
|
Wiest MC. A quantum microtubule substrate of consciousness is experimentally supported and solves the binding and epiphenomenalism problems. Neurosci Conscious 2025; 2025:niaf011. [PMID: 40342554 PMCID: PMC12060853 DOI: 10.1093/nc/niaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 03/20/2025] [Accepted: 04/04/2025] [Indexed: 05/11/2025] Open
Abstract
Recent experimental evidence, briefly reviewed here, points to intraneuronal microtubules as a functional target of inhalational anesthetics. This finding is consistent with the general hypothesis that the biophysical substrate of consciousness is a collective quantum state of microtubules and is specifically predicted by the Orchestrated Objective Reduction theory of Penrose and Hameroff. I also review experimental evidence that functionally relevant quantum effects occur in microtubules at room temperature, and direct physical evidence of a macroscopic quantum entangled state in the living human brain that is correlated with the conscious state and working memory performance. Having established the physical and biological plausibility of quantum microtubule states related to consciousness, I turn to consider potential practical advantages of a quantum brain and enormous theoretical advantages of a quantum consciousness model. In particular, I explain how the quantum model makes panprotopsychism a viable solution to physicalism's hard problem by solving the phenomenal binding or combination problem. Postulating a quantum physical substrate of consciousness solves the binding problem in principle but appears to leave us with an epiphenomenalism problem, meaning that consciousness seems to have no causal power to confer a fitness advantage, so its evolution remains as an inexplicable mystery. I propose that, contrary to a certain (zombie) intuition, the quantum approach can also solve this problem in a nontrivial way. The Orchestrated Objective Reduction (Orch OR) theory of Penrose and Hameroff embodies these advantages of a quantum model and also accounts for nonalgorithmic human understanding and the psychological arrow of time.
Collapse
Affiliation(s)
- Michael C Wiest
- Department of Neuroscience, Wellesley College, 106 Central St., Wellesley, MA, United States
| |
Collapse
|
2
|
Perez-Martin E, Beranger T, Bonnet L, Teppe F, Lisauskas A, Ikamas K, Vrouwe E, Floriani E, Katona G, Marguet D, Calandrini V, Pettini M, Ruffenach S, Torres J. Unveiling long-range forces in light-harvesting proteins: Pivotal roles of temperature and light. SCIENCE ADVANCES 2025; 11:eadv0346. [PMID: 40305607 PMCID: PMC12042873 DOI: 10.1126/sciadv.adv0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025]
Abstract
Electrodynamic interactions between biomolecules are of potential biological interest for temporal and spatial molecular controls, warranting investigation of their activation through various mechanisms in living systems. Using a light-harvesting protein in the phycobilisome antenna system of red algae, we proved that not only light exposure but also thermal energy alone can trigger attractive electrodynamic interactions up to hundreds of nanometers, sustained by low-frequency collective modes. Activation of such modes and interactions might influence conformational rearrangements and energy transport within the phycobilisome system. This paradigm shift underscores the immense potential of biological systems in exploiting different forms of energy to achieve optimal energy transfer.
Collapse
Affiliation(s)
- Elsa Perez-Martin
- Institut d’Electronique et des Systemes, University of Montpellier CNRS, Montpellier, France
| | - Tristan Beranger
- Institut d’Electronique et des Systemes, University of Montpellier CNRS, Montpellier, France
| | - Laurent Bonnet
- Laboratoire Charles Coulomb, University of Montpellier CNRS, Montpellier, France
| | - Frederic Teppe
- Laboratoire Charles Coulomb, University of Montpellier CNRS, Montpellier, France
| | - Alvydas Lisauskas
- Institute of Applied Electrodynamics and Telecommunications, Vilnius University, Vilnius, Lithuania
| | - Kestutis Ikamas
- Institute of Applied Electrodynamics and Telecommunications, Vilnius University, Vilnius, Lithuania
| | - Elwin Vrouwe
- Micronit BV, Colosseum 15, 7521 PV Enschede, Netherlands
| | - Elena Floriani
- Aix-Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Göteborg, Sweden
| | - Didier Marguet
- Centre d’Immunologie de Marseille Luminy, University of Aix-Marseille CNRS INSERM, Marseille, France
| | - Vania Calandrini
- Computational Biomedicine (IAS-5/INM-9), Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Marco Pettini
- Aix-Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
- Quantum Biology Lab, Howard University, 16 17, Washington, DC 20059, USA
| | - Sandra Ruffenach
- Laboratoire Charles Coulomb, University of Montpellier CNRS, Montpellier, France
| | - Jeremie Torres
- Laboratoire Charles Coulomb, University of Montpellier CNRS, Montpellier, France
- Quantum Biology Lab, Howard University, 16 17, Washington, DC 20059, USA
| |
Collapse
|
3
|
Rytik AP, Tuchin VV. Effect of terahertz radiation on cells and cellular structures. FRONTIERS OF OPTOELECTRONICS 2025; 18:2. [PMID: 39871024 PMCID: PMC11772664 DOI: 10.1007/s12200-024-00146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 12/08/2024] [Indexed: 01/29/2025]
Abstract
The paper presents the results of modern research on the effects of electromagnetic terahertz radiation in the frequency range 0.5-100 THz at different levels of power density and exposure time on the viability of normal and cancer cells. As an accompanying tool for monitoring the effect of radiation on biological cells and tissues, spectroscopic research methods in the terahertz frequency range are described, and attention is focused on the possibility of using the spectra of interstitial water as a marker of pathological processes. The problem of the safety of terahertz radiation for the human body from the point of view of its effect on the structures and systems of biological cells is also considered.
Collapse
Affiliation(s)
- A P Rytik
- Institute of Physics, Saratov State University, Saratov, 410012, Russia.
| | - V V Tuchin
- Institute of Physics, Saratov State University, Saratov, 410012, Russia.
- Science Medical Center, Saratov State University, Saratov, 410012, Russia.
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, 634050, Russia.
- Institute of Precision Mechanics and Control, Federal Research Center "Saratov Scientific Center of the Russian Academy of Sciences", Saratov, 410012, Russia.
| |
Collapse
|
4
|
Hollar DW. The competition of ecological resonances in the quantum metabolic model of cancer: Potential energetic interventions. Biosystems 2022; 222:104798. [DOI: 10.1016/j.biosystems.2022.104798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/02/2022]
|
5
|
Dimitriev OP. Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chem Rev 2022; 122:8487-8593. [PMID: 35298145 DOI: 10.1021/acs.chemrev.1c00648] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The exciton, an excited electron-hole pair bound by Coulomb attraction, plays a key role in photophysics of organic molecules and drives practically important phenomena such as photoinduced mechanical motions of a molecule, photochemical conversions, energy transfer, generation of free charge carriers, etc. Its behavior in extended π-conjugated molecules and disordered organic films is very different and very rich compared with exciton behavior in inorganic semiconductor crystals. Due to the high degree of variability of organic systems themselves, the exciton not only exerts changes on molecules that carry it but undergoes its own changes during all phases of its lifetime, that is, birth, conversion and transport, and decay. The goal of this review is to give a systematic and comprehensive view on exciton behavior in π-conjugated molecules and molecular assemblies at all phases of exciton evolution with emphasis on rates typical for this dynamic picture and various consequences of the above dynamics. To uncover the rich variety of exciton behavior, details of exciton formation, exciton transport, exciton energy conversion, direct and reverse intersystem crossing, and radiative and nonradiative decay are considered in different systems, where these processes lead to or are influenced by static and dynamic disorder, charge distribution symmetry breaking, photoinduced reactions, electron and proton transfer, structural rearrangements, exciton coupling with vibrations and intermediate particles, and exciton dissociation and annihilation as well.
Collapse
Affiliation(s)
- Oleg P Dimitriev
- V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, pr. Nauki 41, Kyiv 03028, Ukraine
| |
Collapse
|
6
|
Schroer MA, Schewa S, Gruzinov AY, Rönnau C, Lahey-Rudolph JM, Blanchet CE, Zickmantel T, Song YH, Svergun DI, Roessle M. Probing the existence of non-thermal Terahertz radiation induced changes of the protein solution structure. Sci Rep 2021; 11:22311. [PMID: 34785744 PMCID: PMC8595702 DOI: 10.1038/s41598-021-01774-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/26/2021] [Indexed: 01/14/2023] Open
Abstract
During the last decades discussions were taking place on the existence of global, non-thermal structural changes in biological macromolecules induced by Terahertz (THz) radiation. Despite numerous studies, a clear experimental proof of this effect for biological particles in solution is still missing. We developed a setup combining THz-irradiation with small angle X-ray scattering (SAXS), which is a sensitive method for detecting the expected structural changes. We investigated in detail protein systems with different shape morphologies (bovine serum albumin, microtubules), which have been proposed to be susceptible to THz-radiation, under variable parameters (THz wavelength, THz power densities up to 6.8 mW/cm2, protein concentrations). None of the studied systems and conditions revealed structural changes detectable by SAXS suggesting that the expected non-thermal THz-induced effects do not lead to alterations of the overall structures, which are revealed by scattering from dissolved macromolecules. This leaves us with the conclusion that, if such effects are present, these are either local or outside of the spectrum and power range covered by the present study.
Collapse
Affiliation(s)
- Martin A. Schroer
- grid.475756.20000 0004 0444 5410European Molecular Biology Laboratory (EMBL), Hamburg Outstation C/O DESY, Notkestr. 85, 22607 Hamburg, Germany ,grid.5718.b0000 0001 2187 5445Present Address: Nanoparticle Process Technology, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany
| | - Siawosch Schewa
- University of Applied Sciences Luebeck, Moenkhofer Weg 239, 23562 Luebeck, Germany
| | - Andrey Yu. Gruzinov
- grid.475756.20000 0004 0444 5410European Molecular Biology Laboratory (EMBL), Hamburg Outstation C/O DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Christian Rönnau
- grid.4562.50000 0001 0057 2672Institute of Physics, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
| | | | - Clement E. Blanchet
- grid.475756.20000 0004 0444 5410European Molecular Biology Laboratory (EMBL), Hamburg Outstation C/O DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Till Zickmantel
- grid.4562.50000 0001 0057 2672Institute of Physics, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
| | - Young-Hwa Song
- grid.4562.50000 0001 0057 2672Institute of Physics, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
| | - Dmitri I. Svergun
- grid.475756.20000 0004 0444 5410European Molecular Biology Laboratory (EMBL), Hamburg Outstation C/O DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Manfred Roessle
- University of Applied Sciences Luebeck, Moenkhofer Weg 239, 23562 Luebeck, Germany
| |
Collapse
|
7
|
Kadantsev VN, Goltsov A. Collective excitations in α-helical protein structures interacting with the water environment. Electromagn Biol Med 2020; 39:419-432. [PMID: 33023315 DOI: 10.1080/15368378.2020.1826961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Low-frequency vibrational excitations of protein macromolecules in the terahertz frequency region are suggested to contribute to many biological processes such as enzymatic catalysis, intra-protein energy/charge transport, recognition, and allostery. To explain high effectiveness of these processes, two possible mechanisms of the long-lived excitation were proposed by H. Fröhlich and A.S. Davydov, which relate to either vibrational modes or solitary waves, respectively. In this paper, we developed a quantum dynamic model of vibrational excitation in α-helical proteins interacting with the aqueous environment. In the model, we distinguished three coupled subsystems, i.e., (i) a chain of hydrogen-bonded peptide groups (PGs), interacting with (ii) the subsystem of the side-chain residuals which in turn interact with (iii) the environment, surrounding water responsible for dissipation and fluctuation in the system. It was shown that the equation of motion for phonon variables of the PG chain can be transformed to nonlinear Schrodinger equation which admits bifurcation into the solution corresponding to the weak-damped vibrational modes (Fröhlich-type regime) and Davydov solitons. A bifurcation parameter is derived through the strength of phonon-phonon interaction between the side-chains and hydration-shell water molecules. As shown, the energy of these excited states is pumped through the interaction of the side-chains with fluctuating water environment of the proteins. The suggested mechanism of the collective vibrational mode excitation is discussed in connection with the recent experiments on the long-lived collective protein excitations in the terahertz frequency region and vibrational energy transport pathways in proteins.
Collapse
Affiliation(s)
| | - Alexey Goltsov
- Russian Technological University (MIREA) , Moscow, Russia
| |
Collapse
|
8
|
Thackston KA, Deheyn DD, Sievenpiper DF. Limitations on electromagnetic communication by vibrational resonances in biological systems. Phys Rev E 2020; 101:062401. [PMID: 32688526 DOI: 10.1103/physreve.101.062401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/30/2020] [Indexed: 11/07/2022]
Abstract
Previous research in biology and physics speculates that high-frequency electromagnetic fields may be an unexplored method of cellular and subcellular communication. The predominant theory for generating electric fields in the cell is mechanical vibration of charged or polar biomolecules such as cell membranes or microtubules. The challenge to this theory is explaining how high-frequency vibrations would not be overdamped by surrounding biological media. As many of these suspected resonators are too large for atomistic molecular dynamics simulations, accurately modeling biological resonators remains an ongoing challenge. While many resonators have been studied and simulated, the general limitations on communication imposed by energy transfer arguments have not been considered. Starting with energy transfer expressions from coupled-mode theory, we derive expressions for the minimum quality factor (Q factor) required to sustain communication for both near- and far-field interactions. We compare previous simulation studies and our theory. We determine the flexing mode of microtubules as an identified resonance in the literature which meets our criteria. Our results suggest the major obstacle to meeting our criteria for effective electromagnetic communication is the trade-off between the Q factor and the plasma frequency: Resonators must be large enough to have a large Q factor, but small enough to resonate at frequencies greater than the plasma frequency.
Collapse
Affiliation(s)
- Kyle A Thackston
- Department of Electrical Engineering, University of California San Diego, San Diego, California 92161, USA
| | - Dimitri D Deheyn
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92037, USA
| | - Daniel F Sievenpiper
- Department of Electrical Engineering, University of California San Diego, San Diego, California 92161, USA
| |
Collapse
|
9
|
Schweicher G, Garbay G, Jouclas R, Vibert F, Devaux F, Geerts YH. Molecular Semiconductors for Logic Operations: Dead-End or Bright Future? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905909. [PMID: 31965662 DOI: 10.1002/adma.201905909] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/18/2019] [Indexed: 05/26/2023]
Abstract
The field of organic electronics has been prolific in the last couple of years, leading to the design and synthesis of several molecular semiconductors presenting a mobility in excess of 10 cm2 V-1 s-1 . However, it is also started to recently falter, as a result of doubtful mobility extractions and reduced industrial interest. This critical review addresses the community of chemists and materials scientists to share with it a critical analysis of the best performing molecular semiconductors and of the inherent charge transport physics that takes place in them. The goal is to inspire chemists and materials scientists and to give them hope that the field of molecular semiconductors for logic operations is not engaged into a dead end. To the contrary, it offers plenty of research opportunities in materials chemistry.
Collapse
Affiliation(s)
- Guillaume Schweicher
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Guillaume Garbay
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Rémy Jouclas
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| | - François Vibert
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Félix Devaux
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Yves H Geerts
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| |
Collapse
|
10
|
Poznański RR, Brändas EJ. Panexperiential materialism: A physical exploration of qualitativeness in the brain. ADVANCES IN QUANTUM CHEMISTRY 2020. [DOI: 10.1016/bs.aiq.2020.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Gagnér VA, Lundholm I, Garcia-Bonete MJ, Rodilla H, Friedman R, Zhaunerchyk V, Bourenkov G, Schneider T, Stake J, Katona G. Clustering of atomic displacement parameters in bovine trypsin reveals a distributed lattice of atoms with shared chemical properties. Sci Rep 2019; 9:19281. [PMID: 31848402 PMCID: PMC6917748 DOI: 10.1038/s41598-019-55777-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022] Open
Abstract
Low-frequency vibrations are crucial for protein structure and function, but only a few experimental techniques can shine light on them. The main challenge when addressing protein dynamics in the terahertz domain is the ubiquitous water that exhibit strong absorption. In this paper, we observe the protein atoms directly using X-ray crystallography in bovine trypsin at 100 K while irradiating the crystals with 0.5 THz radiation alternating on and off states. We observed that the anisotropy of atomic displacements increased upon terahertz irradiation. Atomic displacement similarities developed between chemically related atoms and between atoms of the catalytic machinery. This pattern likely arises from delocalized polar vibrational modes rather than delocalized elastic deformations or rigid-body displacements. The displacement correlation between these atoms were detected by a hierarchical clustering method, which can assist the analysis of other ultra-high resolution crystal structures. These experimental and analytical tools provide a detailed description of protein dynamics to complement the structural information from static diffraction experiments.
Collapse
Affiliation(s)
- Viktor Ahlberg Gagnér
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ida Lundholm
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Helena Rodilla
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | | | - Gleb Bourenkov
- European Molecular Biology Laboratory Hamburg Outstation, EMBL c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany
| | - Thomas Schneider
- European Molecular Biology Laboratory Hamburg Outstation, EMBL c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany
| | - Jan Stake
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
12
|
Zhang Z, Agarwal GS, Scully MO. Quantum Fluctuations in the Fröhlich Condensate of Molecular Vibrations Driven Far From Equilibrium. PHYSICAL REVIEW LETTERS 2019; 122:158101. [PMID: 31050540 DOI: 10.1103/physrevlett.122.158101] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/07/2019] [Indexed: 05/28/2023]
Abstract
Fröhlich discovered the remarkable condensation of polar vibrations into the lowest frequency mode when the system is pumped externally. For a full understanding of the Fröhlich condensate one needs to go beyond the mean field level to describe critical behavior as well as quantum fluctuations. The energy redistribution among vibrational modes with nonlinearity included is shown to be essential for realizing the condensate and the phonon-number distribution, revealing the transition from quasithermal to super-Poissonian statistics with the pump. We further study the spectroscopic properties of the Fröhlich condensate, which are especially revealed by the narrow linewidth. This gives the long-lived coherence and the collective motion of the condensate. Finally, we show that the proteins such as bovine serum albumin and lysozyme are most likely the candidates for observing such collective modes in THz regime by means of Raman or infrared spectroscopy.
Collapse
Affiliation(s)
- Zhedong Zhang
- Texas A&M University, College Station, Texas 77843, USA
| | | | - Marlan O Scully
- Texas A&M University, College Station, Texas 77843, USA
- Baylor University, Waco, Texas 76704, USA
- Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
13
|
Barvitenko N, Lawen A, Aslam M, Pantaleo A, Saldanha C, Skverchinskaya E, Regolini M, Tuszynski JA. Integration of intracellular signaling: Biological analogues of wires, processors and memories organized by a centrosome 3D reference system. Biosystems 2018; 173:191-206. [PMID: 30142359 DOI: 10.1016/j.biosystems.2018.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Myriads of signaling pathways in a single cell function to achieve the highest spatio-temporal integration. Data are accumulating on the role of electromechanical soliton-like waves in signal transduction processes. Theoretical studies strongly suggest feasibility of both classical and quantum computing involving microtubules. AIM A theoretical study of the role of the complex composed of the plasma membrane and the microtubule-based cytoskeleton as a system that transmits, stores and processes information. METHODS Theoretical analysis presented here refers to (i) the Penrose-Hameroff theory of consciousness (Orchestrated Objective Reduction; Orch OR), (ii) the description of the centrosome as a reference system for construction of the 3D map of the cell proposed by Regolini, (iii) the Heimburg-Jackson model of the nerve pulse propagation along axons' lipid bilayer as soliton-like electro-mechanical waves. RESULTS AND CONCLUSION The ideas presented in this paper provide a qualitative model for the decision-making processes in a living cell undergoing a differentiation process. OUTLOOK This paper paves the way for the real-time live-cell observation of information processing by microtubule-based cytoskeleton and cell fate decision making.
Collapse
Affiliation(s)
| | - Alfons Lawen
- Monash University, School of Biomedical Sciences, Department of Biochemistry and Molecular Biology, VIC, 3800, Australia
| | - Muhammad Aslam
- Medical Clininc I, Cardiology/Angiology, University Hospital, Justus-Liebig-University, Giessen, Germany
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Carlota Saldanha
- Instituto de Medicina Molecular, Instituto de Bioquimica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Marco Regolini
- Department of Bioengineering and Mathematical Modeling, AudioLogic, Milan, Italy
| | - Jack A Tuszynski
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada; Department of Physics, University of Alberta, Edmonton, Alberta, Canada; Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10128, Torino, Italy.
| |
Collapse
|
14
|
Melkikh AV, Meijer DK. On a generalized Levinthal's paradox: The role of long- and short range interactions in complex bio-molecular reactions, including protein and DNA folding. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 132:57-79. [DOI: 10.1016/j.pbiomolbio.2017.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/27/2017] [Accepted: 09/17/2017] [Indexed: 01/06/2023]
|
15
|
Zakhvataev VE. Localized density pulses in lipid membranes on the piсosecond time scale. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917030253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Uthamacumaran A. A biophysical approach to cancer dynamics: Quantum chaos and energy turbulence. Biosystems 2017; 156-157:1-22. [PMID: 28377182 DOI: 10.1016/j.biosystems.2017.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 03/22/2017] [Indexed: 02/06/2023]
Abstract
Cancer is a term used to define a collective set of rapidly evolving cells with immortalized replication, altered epimetabolomes and patterns of longevity. Identifying a common signaling cascade to target all cancers has been a major obstacle in medicine. A quantum dynamic framework has been established to explain mutation theory, biological energy landscapes, cell communication patterns and the cancer interactome under the influence of quantum chaos. Quantum tunneling in mutagenesis, vacuum energy field dynamics, and cytoskeletal networks in tumor morphogenesis have revealed the applicability for description of cancer dynamics, which is discussed with a brief account of endogenous hallucinogens, bioelectromagnetism and water fluctuations. A holistic model of mathematical oncology has been provided to identify key signaling pathways required for the phenotypic reprogramming of cancer through an epigenetic landscape. The paper will also serve as a mathematical guide to understand the cancer interactome by interlinking theoretical and experimental oncology. A multi-dimensional model of quantum evolution by adaptive selection has been established for cancer biology.
Collapse
|
17
|
Moix JM, Parker JE, Echchgadda I. Qualitative Behavior of the Low-Frequency Vibrational Dynamics of Microtubules and the Surrounding Water. J Phys Chem B 2017; 121:3024-3031. [DOI: 10.1021/acs.jpcb.7b01508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jeremy M. Moix
- General Dynamics Information Technology, 4141 Petroleum Road, JBSA
Fort Sam Houston, Texas 78234-2644, United States
| | - James E. Parker
- General Dynamics Information Technology, 4141 Petroleum Road, JBSA
Fort Sam Houston, Texas 78234-2644, United States
| | - Ibtissam Echchgadda
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects
Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, Texas 78234-2644, United States
| |
Collapse
|
18
|
Salari V, Rahnama M, Tuszynski JA. Dissipationless Transfer of Visual Information From Retina to the Primary Visual Cortex in the Human Brain. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/bf03379582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Recently, the experiments on photosynthetic systems via “femto-second laser spectroscopy” methods have indicated that a “quantum-coherence” in the system causes a highly efficient transfer of energy to the “reaction center” (efficiency is approximately equal to 100%). A recent experiment on a single neuron has indicated that it can conduct light. Also, a re-emission of light from both photosynthetic systems and single neurons has been observed, which is called “delayed luminescence”. This can be supposed as a possibility for dissipationless transfer of visual information to the human brain. In addition, a long-range Fröhlich coherence in microtubules can be a candidate for efficient transfer of light through “noisy” and complex structures of the human brain. From an informational point of view it is a legitimate question to ask how human brain can receive subtle external quantum information of photons intact when photons are in a quantum superposition and pass through very noisy and complex pathways from the eye to the brain? Here, we propose a coherent model in which quantum states of photons can be rebuilt in the human brain.
Collapse
|
19
|
Preto J. Semi-classical statistical description of Fröhlich condensation. J Biol Phys 2017; 43:167-184. [PMID: 28197797 DOI: 10.1007/s10867-017-9442-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/03/2017] [Indexed: 12/23/2022] Open
Abstract
Fröhlich's model equations describing phonon condensation in open systems of biological relevance are reinvestigated within a semi-classical statistical framework. The main assumptions needed to deduce Fröhlich's rate equations are identified and it is shown how they lead us to write an appropriate form for the corresponding master equation. It is shown how solutions of the master equation can be numerically computed and can highlight typical features of the condensation effect. Our approach provides much more information compared to the existing ones as it allows to investigate the time evolution of the probability density function instead of following single averaged quantities. The current work is also motivated, on the one hand, by recent experimental evidences of long-lived excited modes in the protein structure of hen-egg white lysozyme, which were reported as a consequence of the condensation effect, and, on the other hand, by a growing interest in investigating long-range effects of electromagnetic origin and their influence on the dynamics of biochemical reactions.
Collapse
Affiliation(s)
- Jordane Preto
- Department of Oncology, 3-336, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada.
| |
Collapse
|
20
|
Preto J. Classical investigation of long-range coherence in biological systems. CHAOS (WOODBURY, N.Y.) 2016; 26:123116. [PMID: 28039969 DOI: 10.1063/1.4971963] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Almost five decades ago, H. Fröhlich [H. Fröhlich, "Long-range coherence and energy storage in biological systems," Int. J. Quantum Chem. 2(5), 641-649 (1968)] reported, on a theoretical basis, that the excitation of quantum modes of vibration in contact with a thermal reservoir may lead to steady states, where under high enough rate of energy supply, only specific low-frequency modes of vibration are strongly excited. This nonlinear phenomenon was predicted to occur in biomolecular systems, which are known to exhibit complex vibrational spectral properties, especially in the terahertz frequency domain. However, since the effects of terahertz or lower-frequency modes are mainly classical at physiological temperatures, there are serious doubts that Fröhlich's quantum description can be applied to predict such a coherent behavior in a biological environment, as suggested by the author. In addition, a quantum formalism makes the phenomenon hard to investigate using realistic molecular dynamics simulations (MD) as they are usually based on the classical principles. In the current paper, we provide a general classical Hamiltonian description of a nonlinear open system composed of many degrees of freedom (biomolecular structure) excited by an external energy source. It is shown that a coherent behaviour similar to Fröhlich's effect is to be expected in the classical case for a given range of parameter values. Thus, the supplied energy is not completely thermalized but stored in a highly ordered fashion. The connection between our Hamiltonian description, carried out in the space of normal modes, and a more standard treatment in the physical space is emphasized in order to facilitate the prediction of the effect from MD simulations. It is shown how such a coherent phenomenon may induce long-range resonance effects that could be of critical importance at the biomolecular level. The present work is motivated by recent experimental evidences of long-lived excited low-frequency modes in protein structures, which were reported as a consequence of the Fröhlich's effect.
Collapse
Affiliation(s)
- Jordane Preto
- Department of Oncology, 3-336, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| |
Collapse
|
21
|
Abstract
David Craig (1919–2015) left us with a lasting legacy concerning basic understanding of chemical spectroscopy and bonding. This is expressed in terms of some of the recent achievements of my own research career, with a focus on integration of Craig’s theories with those of Noel Hush to solve fundamental problems in photosynthesis, molecular electronics (particularly in regard to the molecules synthesized by Maxwell Crossley), and self-assembled monolayer structure and function. Reviewed in particular is the relation of Craig’s legacy to: the 50-year struggle to assign the visible absorption spectrum of arguably the world’s most significant chromophore, chlorophyll; general theories for chemical bonding and structure extending Hush’s adiabatic theory of electron-transfer processes; inelastic electron-tunnelling spectroscopy (IETS); chemical quantum entanglement and the Penrose–Hameroff model for quantum consciousness; synthetic design strategies for NMR quantum computing; Gibbs free-energy measurements and calculations for formation and polymorphism of organic self-assembled monolayers on graphite surfaces from organic solution; and understanding the basic chemical processes involved in the formation of gold surfaces and nanoparticles protected by sulfur-bound ligands, ligands whose form is that of Au0-thiyl rather than its commonly believed AuI-thiolate tautomer.
Collapse
|
22
|
Roedersheimer M. Solving the Measurement Problem and then Steppin' Out over the Line Riding the Rarest Italian: Crossing the Streams to Retrieve Stable Bioactivity in Majorana Bound States of Dialy zed Human Platelet Lysates. Open Neurol J 2015; 9:32-44. [PMID: 26191092 PMCID: PMC4503829 DOI: 10.2174/1874205x01509010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 11/22/2022] Open
Abstract
Exhaustive dialysis (ED) of lysed human platelets against dilute HCl yields stable angiogenic activity. Dialysis against a constrained external volume, with subsequent relaxation of the separation upon opening the dialysis bag, produces material able to maintain phenotypes and viability of human cells in culture better than ED material. Significant graded changes in MTT viability measurement tracked with external volume. The presence of elements smaller than the MW cutoff, capable of setting up cycling currents initiated by oriented flow of HCl across the membrane, suggests that maturation of bioactivity occurred through establishment of a novel type of geometric phase. These information-rich bound states fit recent descriptions of topological order and Majorana fermions, suggesting relevance in testing Penrose and Hameroff's theory of Orchestrated Objective Reduction, under conditions more general, and on finer scales, than those dependent on tubulin protein. The Berry curvature appears to be a good tool for building a general field theory of physiologic stress dependent on the quantum Hall effect. A new form of geometric phase, and an associated "geometric" quantum Hall effect underlying memory retrieval, dependent on the rate of path traversal and reduction from more than two initial field influences is described.
Collapse
|
23
|
Hameroff SR, Craddock TJA, Tuszynski JA. Quantum effects in the understanding of consciousness. J Integr Neurosci 2015; 13:229-52. [PMID: 25012711 DOI: 10.1142/s0219635214400093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This paper presents a historical perspective on the development and application of quantum physics methodology beyond physics, especially in biology and in the area of consciousness studies. Quantum physics provides a conceptual framework for the structural aspects of biological systems and processes via quantum chemistry. In recent years individual biological phenomena such as photosynthesis and bird navigation have been experimentally and theoretically analyzed using quantum methods building conceptual foundations for quantum biology. Since consciousness is attributed to human (and possibly animal) mind, quantum underpinnings of cognitive processes are a logical extension. Several proposals, especially the Orch OR hypothesis, have been put forth in an effort to introduce a scientific basis to the theory of consciousness. At the center of these approaches are microtubules as the substrate on which conscious processes in terms of quantum coherence and entanglement can be built. Additionally, Quantum Metabolism, quantum processes in ion channels and quantum effects in sensory stimulation are discussed in this connection. We discuss the challenges and merits related to quantum consciousness approaches as well as their potential extensions.
Collapse
Affiliation(s)
- Stuart R Hameroff
- Center for Consciousness Studies, The University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
24
|
Beneduci A, Cosentino K, Romeo S, Massa R, Chidichimo G. Effect of millimetre waves on phosphatidylcholine membrane models: a non-thermal mechanism of interaction. SOFT MATTER 2014; 10:5559-5567. [PMID: 24959858 DOI: 10.1039/c4sm00551a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The nonthermal biological effects of millimeter waves have been mainly attributed to the interaction with biological membranes. Several data on biomimetic membrane systems seem to support this conclusion. In this paper a mechanistic hypothesis is evaluated to explain such an interaction taking into account experimental NMR data on deuterium-labeled phospholipid vesicles. These data showed that millimeter waves induce a time and a hydration-dependent reduction of the water ordering around the phosphocholine headgroups. This effect is here interpreted as a change in membrane water partitioning, due to the coupling of the radiation with the fast rotational dynamics of bound water molecules, that results in a measurable relocation of water molecules from the inner to the outer binding regions of the membrane interface. When millimeter wave exposure is performed in the vicinity of the transition point, this effect can lead to an upward shift of the membrane phase transition temperature from the fluid to the gel phase. At a macroscopic level, this unique sensitivity may be explained by the universal dynamic behaviour of the membranes in the vicinity of the transition point, where a pretransitional increase of membrane area fluctuations, i.e., of the mean area per phospholipid headgroup, is observed. Exposure to millimeter waves increases the above fluctuations and enhances the second order character of the transition.
Collapse
Affiliation(s)
- Amerigo Beneduci
- Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende (CS), Italy.
| | | | | | | | | |
Collapse
|
25
|
Brezinski ME, Rupnick M. Can We Advance Macroscopic Quantum Systems Outside the Framework of Complex Decoherence Theory? JOURNAL OF COMPUTER SCIENCE AND SYSTEMS BIOLOGY 2014; 7:119-136. [PMID: 29200743 PMCID: PMC5710819 DOI: 10.4172/jcsb.1000147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macroscopic quantum systems (MQS) are macroscopic systems driven by quantum rather than classical mechanics, a long studied area with minimal success till recently. Harnessing the benefits of quantum mechanics on a macroscopic level would revolutionize fields ranging from telecommunication to biology, the latter focused on here for reasons discussed. Contrary to misconceptions, there are no known physical laws that prevent the development of MQS. Instead, they are generally believed universally lost in complex systems from environmental entanglements (decoherence). But we argue success is achievable MQS with decoherence compensation developed, naturally or artificially, from top-down rather current reductionist approaches. This paper advances the MQS field by a complex systems approach to decoherence. First, why complex system decoherence approaches (top-down) are needed is discussed. Specifically, complex adaptive systems (CAS) are not amenable to reductionist models (and their master equations) because of emergent behaviour, approximation failures, not accounting for quantum compensatory mechanisms, ignoring path integrals, and the subentity problem. In addition, since MQS must exist within the context of the classical world, where rapid decoherence and prolonged coherence are both needed. Nature has already demonstrated this for quantum subsystems such as photosynthesis and magnetoreception. Second, we perform a preliminary study that illustrates a top-down approach to potential MQS. In summary, reductionist arguments against MQS are not justifiable. It is more likely they are not easily detectable in large intact classical systems or have been destroyed by reductionist experimental set-ups. This complex systems decoherence approach, using top down investigations, is critical to paradigm shifts in MQS research both in biological and non-biological systems.
Collapse
Affiliation(s)
- Mark E Brezinski
- Center for Optical Coherence Tomography and Modern Physics, Department of Orthopedic Surgery, Brigham and Women’s Hospital, 75 Francis Street, MRB-114, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Rm 36-360, 50 Vassar St., Cambridge, MA 02139, USA
| | - Maria Rupnick
- Center for Optical Coherence Tomography and Modern Physics, Department of Orthopedic Surgery, Brigham and Women’s Hospital, 75 Francis Street, MRB-114, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
26
|
Clark KB. Basis for a neuronal version of Grover's quantum algorithm. Front Mol Neurosci 2014; 7:29. [PMID: 24860419 PMCID: PMC4029008 DOI: 10.3389/fnmol.2014.00029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/31/2014] [Indexed: 11/25/2022] Open
Abstract
Grover's quantum (search) algorithm exploits principles of quantum information theory and computation to surpass the strong Church–Turing limit governing classical computers. The algorithm initializes a search field into superposed N (eigen)states to later execute nonclassical “subroutines” involving unitary phase shifts of measured states and to produce root-rate or quadratic gain in the algorithmic time (O(N1/2)) needed to find some “target” solution m. Akin to this fast technological search algorithm, single eukaryotic cells, such as differentiated neurons, perform natural quadratic speed-up in the search for appropriate store-operated Ca2+ response regulation of, among other processes, protein and lipid biosynthesis, cell energetics, stress responses, cell fate and death, synaptic plasticity, and immunoprotection. Such speed-up in cellular decision making results from spatiotemporal dynamics of networked intracellular Ca2+-induced Ca2+ release and the search (or signaling) velocity of Ca2+ wave propagation. As chemical processes, such as the duration of Ca2+ mobilization, become rate-limiting over interstore distances, Ca2+ waves quadratically decrease interstore-travel time from slow saltatory to fast continuous gradients proportional to the square-root of the classical Ca2+ diffusion coefficient, D1/2, matching the computing efficiency of Grover's quantum algorithm. In this Hypothesis and Theory article, I elaborate on these traits using a fire-diffuse-fire model of store-operated cytosolic Ca2+ signaling valid for glutamatergic neurons. Salient model features corresponding to Grover's quantum algorithm are parameterized to meet requirements for the Oracle Hadamard transform and Grover's iteration. A neuronal version of Grover's quantum algorithm figures to benefit signal coincidence detection and integration, bidirectional synaptic plasticity, and other vital cell functions by rapidly selecting, ordering, and/or counting optional response regulation choices.
Collapse
Affiliation(s)
- Kevin B Clark
- Research and Development Service, Veterans Affairs Greater Los Angeles Healthcare System Los Angeles, CA, USA ; Complex Biological Systems Alliance North Andover, MA, USA
| |
Collapse
|
27
|
Hameroff S, Penrose R. Reply to criticism of the ‘Orch OR qubit’ – ‘Orchestrated objective reduction’ is scientifically justified. Phys Life Rev 2014. [DOI: 10.1016/j.plrev.2013.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Reimers JR, McKemmish LK, McKenzie RH, Mark AE, Hush NS. The revised Penrose–Hameroff orchestrated objective-reduction proposal for human consciousness is not scientifically justified. Phys Life Rev 2014; 11:101-3; discussion 104-12. [DOI: 10.1016/j.plrev.2013.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
|
29
|
Consciousness in the universe: a review of the 'Orch OR' theory. Phys Life Rev 2013; 11:39-78. [PMID: 24070914 DOI: 10.1016/j.plrev.2013.08.002] [Citation(s) in RCA: 264] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/05/2013] [Indexed: 11/20/2022]
Abstract
The nature of consciousness, the mechanism by which it occurs in the brain, and its ultimate place in the universe are unknown. We proposed in the mid 1990's that consciousness depends on biologically 'orchestrated' coherent quantum processes in collections of microtubules within brain neurons, that these quantum processes correlate with, and regulate, neuronal synaptic and membrane activity, and that the continuous Schrödinger evolution of each such process terminates in accordance with the specific Diósi-Penrose (DP) scheme of 'objective reduction' ('OR') of the quantum state. This orchestrated OR activity ('Orch OR') is taken to result in moments of conscious awareness and/or choice. The DP form of OR is related to the fundamentals of quantum mechanics and space-time geometry, so Orch OR suggests that there is a connection between the brain's biomolecular processes and the basic structure of the universe. Here we review Orch OR in light of criticisms and developments in quantum biology, neuroscience, physics and cosmology. We also introduce a novel suggestion of 'beat frequencies' of faster microtubule vibrations as a possible source of the observed electro-encephalographic ('EEG') correlates of consciousness. We conclude that consciousness plays an intrinsic role in the universe.
Collapse
|
30
|
Clark KB. Ciliates learn to diagnose and correct classical error syndromes in mating strategies. Front Microbiol 2013; 4:229. [PMID: 23966987 PMCID: PMC3746415 DOI: 10.3389/fmicb.2013.00229] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/28/2013] [Indexed: 01/06/2023] Open
Abstract
Preconjugal ciliates learn classical repetition error-correction codes to safeguard mating messages and replies from corruption by “rivals” and local ambient noise. Because individual cells behave as memory channels with Szilárd engine attributes, these coding schemes also might be used to limit, diagnose, and correct mating-signal errors due to noisy intracellular information processing. The present study, therefore, assessed whether heterotrich ciliates effect fault-tolerant signal planning and execution by modifying engine performance, and consequently entropy content of codes, during mock cell–cell communication. Socially meaningful serial vibrations emitted from an ambiguous artificial source initiated ciliate behavioral signaling performances known to advertise mating fitness with varying courtship strategies. Microbes, employing calcium-dependent Hebbian-like decision making, learned to diagnose then correct error syndromes by recursively matching Boltzmann entropies between signal planning and execution stages via “power” or “refrigeration” cycles. All eight serial contraction and reversal strategies incurred errors in entropy magnitude by the execution stage of processing. Absolute errors, however, subtended expected threshold values for single bit-flip errors in three-bit replies, indicating coding schemes protected information content throughout signal production. Ciliate preparedness for vibrations selectively and significantly affected the magnitude and valence of Szilárd engine performance during modal and non-modal strategy corrective cycles. But entropy fidelity for all replies mainly improved across learning trials as refinements in engine efficiency. Fidelity neared maximum levels for only modal signals coded in resilient three-bit repetition error-correction sequences. Together, these findings demonstrate microbes can elevate survival/reproductive success by learning to implement classical fault-tolerant information processing in social contexts.
Collapse
Affiliation(s)
- Kevin B Clark
- Research and Development Service, Veterans Affairs Greater Los Angeles Healthcare System Los Angeles, CA, USA
| |
Collapse
|
31
|
Beneduci A, Cosentino K, Chidichimo G. Millimeter Wave Radiations Affect Membrane Hydration in Phosphatidylcholine Vesicles. MATERIALS 2013; 6:2701-2712. [PMID: 28811403 PMCID: PMC5521226 DOI: 10.3390/ma6072701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/20/2013] [Accepted: 07/02/2013] [Indexed: 11/23/2022]
Abstract
A clear understanding of the response of biological systems to millimeter waves exposure is of increasing interest for the scientific community due to the recent convincing use of these radiations in the ultrafast wireless communications. Here we report a deuterium nuclear magnetic resonance spectroscopy (2H-NMR) investigation on the effects of millimeter waves in the 53–78 GHz range on phosphocholine bio-mimetic membranes. Millimeter waves significantly affect the polar interface of the membrane causing a decrease of the heavy water quadrupole splitting. This effect is as important as inducing the transition from the fluid to the gel phase when the membrane exposure occurs in the neighborhood of the transition point. On the molecular level, the above effect can be well explained by membrane dehydration induced by the radiation.
Collapse
Affiliation(s)
- Amerigo Beneduci
- Department of Chemistry, University of Calabria, Via P. Bucci-Cubo 17/D, Arcavacata di Rende (CS) 87040, Italy.
| | - Katia Cosentino
- Department of Chemistry, University of Calabria, Via P. Bucci-Cubo 17/D, Arcavacata di Rende (CS) 87040, Italy.
- Adhesion and Inflammation, CNRS UMR 7333, INSERM U1067, Aix Marseille University, Luminy, Marseille 13009, France.
| | - Giuseppe Chidichimo
- Department of Chemistry, University of Calabria, Via P. Bucci-Cubo 17/D, Arcavacata di Rende (CS) 87040, Italy.
| |
Collapse
|
32
|
Pokorný J, Foletti A, Kobilková J, Jandová A, Vrba J, Vrba J, Nedbalová M, Čoček A, Danani A, Tuszyński JA. Biophysical insights into cancer transformation and treatment. ScientificWorldJournal 2013; 2013:195028. [PMID: 23844381 PMCID: PMC3693169 DOI: 10.1155/2013/195028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/09/2013] [Indexed: 11/26/2022] Open
Abstract
Biological systems are hierarchically self-organized complex structures characterized by nonlinear interactions. Biochemical energy is transformed into work of physical forces required for various biological functions. We postulate that energy transduction depends on endogenous electrodynamic fields generated by microtubules. Microtubules and mitochondria colocalize in cells with microtubules providing tracks for mitochondrial movement. Besides energy transformation, mitochondria form a spatially distributed proton charge layer and a resultant strong static electric field, which causes water ordering in the surrounding cytosol. These effects create conditions for generation of coherent electrodynamic field. The metabolic energy transduction pathways are strongly affected in cancers. Mitochondrial dysfunction in cancer cells (Warburg effect) or in fibroblasts associated with cancer cells (reverse Warburg effect) results in decreased or increased power of the generated electromagnetic field, respectively, and shifted and rebuilt frequency spectra. Disturbed electrodynamic interaction forces between cancer and healthy cells may favor local invasion and metastasis. A therapeutic strategy of targeting dysfunctional mitochondria for restoration of their physiological functions makes it possible to switch on the natural apoptotic pathway blocked in cancer transformed cells. Experience with dichloroacetate in cancer treatment and reestablishment of the healthy state may help in the development of novel effective drugs aimed at the mitochondrial function.
Collapse
Affiliation(s)
- Jiří Pokorný
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, AS CR, Chaberská 57, 182 51 Prague 8-Kobylisy, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Williams R, Schofield A, Holder G, Downes J, Edgar D, Harrison P, Siggel-King M, Surman M, Dunning D, Hill S, Holder D, Jackson F, Jones J, McKenzie J, Saveliev Y, Thomsen N, Williams P, Weightman P. The influence of high intensity terahertz radiation on mammalian cell adhesion, proliferation and differentiation. Phys Med Biol 2012; 58:373-91. [PMID: 23257566 DOI: 10.1088/0031-9155/58/2/373] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Understanding the influence of exposure of biological systems to THz radiation is becoming increasingly important. There is some evidence to suggest that THz radiation can influence important activities within mammalian cells. This study evaluated the influence of the high peak power, low average power THz radiation produced by the ALICE (Daresbury Laboratory, UK) synchrotron source on human epithelial and embryonic stem cells. The cells were maintained under standard tissue culture conditions, during which the THz radiation was delivered directly into the incubator for various exposure times. The influence of the THz radiation on cell morphology, attachment, proliferation and differentiation was evaluated. The study demonstrated that there was no difference in any of these parameters between irradiated and control cell cultures. It is suggested that under these conditions the cells are capable of compensating for any effects caused by exposure to THz radiation with the peak powers levels employed in these studies.
Collapse
Affiliation(s)
- Rachel Williams
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Di Donato L, Cataldo M, Stano P, Massa R, Ramundo-Orlando A. Permeability Changes of Cationic Liposomes Loaded with Carbonic Anhydrase Induced by Millimeter Waves Radiation. Radiat Res 2012; 178:437-46. [DOI: 10.1667/rr2949.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Weightman P. Prospects for the study of biological systems with high power sources of terahertz radiation. Phys Biol 2012; 9:053001. [PMID: 22931749 DOI: 10.1088/1478-3975/9/5/053001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The emergence of intense sources of terahertz radiation based on lasers and electron accelerators has considerable potential for research on biological systems. This perspective gives a brief survey of theoretical work and the results of experiments on biological molecules and more complex biological systems. Evidence is accumulating that terahertz radiation influences biological systems and this needs to be clarified in order to establish safe levels of human exposure to this radiation. The use of strong sources of terahertz radiation may contribute to the resolution of controversies over the mechanism of biological organization. However the potential of these sources will only be realized if they are accompanied by the development of sophisticated pump-probe and multidimensional experimental techniques and by the study of biological systems in the controlled environments necessary for their maintenance and viability.
Collapse
Affiliation(s)
- Peter Weightman
- Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE UK.
| |
Collapse
|
36
|
Plankar M, Brežan S, Jerman I. The principle of coherence in multi-level brain information processing. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 111:8-29. [PMID: 22986048 DOI: 10.1016/j.pbiomolbio.2012.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/02/2012] [Indexed: 02/03/2023]
Abstract
Synchronisation has become one of the major scientific tools to explain biological order at many levels of organisation. In systems neuroscience, synchronised subthreshold and suprathreshold oscillatory neuronal activity within and between distributed neuronal assemblies is acknowledged as a fundamental mode of neuronal information processing. Coherent neuronal oscillations correlate with all basic cognitive functions, mediate local and long-range neuronal communication and affect synaptic plasticity. However, it remains unclear how the very fast and complex changes of functional neuronal connectivity necessary for cognition, as mediated by dynamic patterns of neuronal synchrony, could be explained exclusively based on the well-established synaptic mechanisms. A growing body of research indicates that the intraneuronal matrix, composed of cytoskeletal elements and their binding proteins, structurally and functionally connects the synapses within a neuron, modulates neurotransmission and memory consolidation, and is hypothesised to be involved in signal integration via electric signalling due to its charged surface. Theoretical modelling, as well as emerging experimental evidence indicate that neuronal cytoskeleton supports highly cooperative energy transport and information processing based on molecular coherence. We suggest that long-range coherent dynamics within the intra- and extracellular filamentous matrices could establish dynamic ordered states, capable of rapid modulations of functional neuronal connectivity via their interactions with neuronal membranes and synapses. Coherence may thus represent a common denominator of neurophysiological and biophysical approaches to brain information processing, operating at multiple levels of neuronal organisation, from which cognition may emerge as its cardinal manifestation.
Collapse
Affiliation(s)
- Matej Plankar
- BION Institute, Stegne 21, 1000 Ljubljana, Slovenia.
| | | | | |
Collapse
|
37
|
Abstract
Electromagnetic fields are usually absent in the picture of processes taking place in living cells which is dominated by biochemistry, molecular genetics and microscopic morphology. Yet experimental and theoretical studies suggest that this omission is not justified. At the end of 1960's H. Fröhlich elaborated a semi-phenomenological model of polar oscillating units that are metabolically driven, exchange energy with the cell's internal heat reservoir, and store part of the energy in excited vibrational modes in such way, that mode with the lowest frequency becomes highly excited, while the higher-order modes remain near thermal equilibrium. This affords energy-hungry chemical reactions to take place while the rest of the cell is not exposed to heat stress. At present, part of the cytoskeleton - microtubules - are deemed to fulfil the role of oscillating units. The paper provides an introduction to the Fröhlich ideas for readers with background in medicine and biology in that it avoids mathematical formulas and relies on figures to convey information about the basic properties of the model. The essential features of the Fröhlich model - most notably the energy condensation - are demonstrated on ensemble encompassing three coupled vibration modes that can be exactly described using original diagrammatic method.
Collapse
Affiliation(s)
- F Srobár
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
38
|
Zoltowski M. Insight into DNA periodicity by a single-channel sequence data approach. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:2438-41. [PMID: 22254834 DOI: 10.1109/iembs.2011.6090678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It has not been obvious how to map a genomic sequence into the numbers to elucidate its periodicities by digital signal processing (DSP) in accord with the underlying biology [1]. The well known DNA spectra and their extensions appear the A-T-C-G--base-wise by Fourier (FT), wavelet (WT) or related transforms of the indicatory functions (IF-s) of these bases. The IF assumes either 1-in the presence or 0-in the absence of the indicated base in sequence. The IF's spectra can be next combined in a different way including the optimal one to provide the net spectrum [2]. In this contribution, it is attempted, and not limited to; showing that single channel numeric DNA also turns out to be sufficient for biologically meaningful results by DSP with accompanying merits. Plausibility is possible considering any RNA message as a single-channel coded waveform; by the triplets of the codon bases which code for 20 different amino acids. This in turn enables a clear justification for the coding rhythm in terms of the codon usage frequency (CUF) and the gene series autocorrelation. The latter simply assesses a self-similarity of the message. Along with appending well established communication insight to biological perspectives, the answer to how the genetic code is becoming specific, inducing the self-similarity of the coded sequences under the three-base-shift case is addressed. Supporting the focus, there are some findings in vertebrates' genes data elucidated by the EMD of Huang-Hilbert transform (H-HT) [3]; these are long-term spectra relevant to the coding, the content of dicodons and the structural properties of coded proteins [4]. Also a new finding in the coding rhythm--the one which is attributed to the coding DNA, is included. This is the net coding rhythms in Homo sapiens, Homo sapiens house-keeping and vertebrates' genes comparison by histograms of adaptively tracked amplitudes case. It is intriguing how spectral features of genomic sequences correspond to related physical phenomena [5-8].
Collapse
|
39
|
Kučera O, Havelka D. Mechano-electrical vibrations of microtubules--link to subcellular morphology. Biosystems 2012; 109:346-55. [PMID: 22575306 DOI: 10.1016/j.biosystems.2012.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/23/2012] [Indexed: 01/19/2023]
Abstract
Spontaneous mechanical oscillations were predicted and experimentally proven on almost every level of cellular structure. Besides morphogenetic potential of oscillatory mechanical force, oscillations may drive vibrations of electrically polar structures or these structures themselves may oscillate on their own natural frequencies. Vibrations of electric charge will generate oscillating electric field, role of which in morphogenesis is discussed in this paper. This idea is demonstrated in silico on the conformation of two growing microtubules.
Collapse
Affiliation(s)
- Ondřej Kučera
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 182 51 Prague, Czechia.
| | | |
Collapse
|
40
|
Preto J, Floriani E, Nardecchia I, Ferrier P, Pettini M. Experimental assessment of the contribution of electrodynamic interactions to long-distance recruitment of biomolecular partners: Theoretical basis. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:041904. [PMID: 22680495 DOI: 10.1103/physreve.85.041904] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/30/2011] [Indexed: 06/01/2023]
Abstract
Highly specific spatiotemporal interactions between cognate molecular partners essentially sustain all biochemical transactions in living matter. That such an exquisite level of accuracy may result from encountering forces solely driven by thermal diffusive processes is unlikely. Here we propose a yet unexplored strategy to experimentally tackle the long-standing question of a possibly active recruitment at a distance of cognate partners of biomolecular reactions via the action of resonant electrodynamic interactions. We considered two simplified models for a preliminary feasibility investigation of the devised methodology. By taking advantage of advanced experimental techniques nowadays available, we propose to measure the characteristic encounter time scales of dually interacting biopartners and to compare them with theoretical predictions worked out in both the presence and absence of putative long-range electromagnetic forces.
Collapse
|
41
|
Microwave induced shift of the main phase transition in phosphatidylcholine membranes. Bioelectrochemistry 2012; 84:18-24. [DOI: 10.1016/j.bioelechem.2011.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/11/2011] [Accepted: 10/06/2011] [Indexed: 11/21/2022]
|
42
|
Rahnama M, Tuszynski JA, Bókkon I, Cifra M, Sardar P, Salari V. Emission of mitochondrial biophotons and their effect on electrical activity of membrane via microtubules. J Integr Neurosci 2012; 10:65-88. [PMID: 21425483 DOI: 10.1142/s0219635211002622] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 01/26/2011] [Indexed: 01/07/2023] Open
Abstract
In this paper we argue that, in addition to electrical and chemical signals propagating in the neurons of the brain, signal propagation takes place in the form of biophoton production. This statement is supported by recent experimental confirmation of photon guiding properties of a single neuron. We have investigated the interaction of mitochondrial biophotons with microtubules from a quantum mechanical point of view. Our theoretical analysis indicates that the interaction of biophotons and microtubules causes transitions/fluctuations of microtubules between coherent and incoherent states. A significant relationship between the fluctuation function of microtubules and alpha-EEG diagrams is elaborated on in this paper. We argue that the role of biophotons in the brain merits special attention.
Collapse
Affiliation(s)
- Majid Rahnama
- Department of Physics, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | | | | | | | | |
Collapse
|
43
|
Hadzibeganovic T, Lima FWS. Non-Classical Connectionist Models of Visual Object Recognition. Cognit Comput 2012. [DOI: 10.1007/s12559-012-9123-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
44
|
|
45
|
Salari V, Tuszynski J, Bokkon I, Rahnama M, Cifra M. On the Photonic Cellular Interaction and the Electric Activity of Neurons in the Human Brain. ACTA ACUST UNITED AC 2011. [DOI: 10.1088/1742-6596/329/1/012006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Mezzasalma SA. Influence of a nanorod molecular layer on the biological activity of neuronal cells. A semiclassical model for complex solid/liquid interfaces with carbon nanotubes. J Colloid Interface Sci 2011; 360:805-17. [PMID: 21621793 DOI: 10.1016/j.jcis.2011.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 11/19/2022]
Abstract
A general account of electric effects is given for a biological phase interacting with a nanorod molecular layer by means of the formed hard-soft and solid-liquid interfaces. In particular, the frequency enhancement previously detected for the spontaneous activity of neuronal cultures interfaced with carbon nanotubes is quantitatively explained upon a quantum/semiclassical description, where the duration of a biological signal is viewed as the (average) lifetime of a decaying state (or population of states), and the effect of the carbon phase as a linewidth broadening. Four contributions were principally accounted for, one biological, for the synaptic strength, one electrochemical, for the overall capacitance increase implied by the nanotube double layers, one geometric, for the typical scales ruling the electron and ion conduction mechanisms, and one electromagnetic-like, translating the membrane polarization changes. These calculations predict an enhancement factor equal on average to ≃6.39, against a former experimental value ≃6.08.
Collapse
Affiliation(s)
- Stefano A Mezzasalma
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy.
| |
Collapse
|
47
|
Havelka D, Cifra M, Kučera O, Pokorný J, Vrba J. High-frequency electric field and radiation characteristics of cellular microtubule network. J Theor Biol 2011; 286:31-40. [PMID: 21782830 DOI: 10.1016/j.jtbi.2011.07.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 07/10/2011] [Accepted: 07/11/2011] [Indexed: 01/11/2023]
Abstract
Microtubules are important structures in the cytoskeleton, which organizes the cell. Since microtubules are electrically polar, certain microtubule normal vibration modes efficiently generate oscillating electric field. This oscillating field may be important for the intracellular organization and intercellular interaction. There are experiments which indicate electrodynamic activity of variety of cells in the frequency region from kHz to GHz, expecting the microtubules to be the source of this activity. In this paper, results from the calculation of intensity of electric field and of radiated electromagnetic power from the whole cellular microtubule network are presented. The subunits of microtubule (tubulin heterodimers) are approximated by elementary electric dipoles. Mechanical oscillation of microtubule is represented by the spatial function which modulates the dipole moment of subunits. The field around oscillating microtubules is calculated as a vector superposition of contributions from all modulated elementary electric dipoles which comprise the cellular microtubule network. The electromagnetic radiation and field characteristics of the whole cellular microtubule network have not been theoretically analyzed before. For the perspective experimental studies, the results indicate that macroscopic detection system (antenna) is not suitable for measurement of cellular electrodynamic activity in the radiofrequency region since the radiation rate from single cells is very low (lower than 10⁻²⁰ W). Low noise nanoscopic detection methods with high spatial resolution which enable measurement in the cell vicinity are desirable in order to measure cellular electrodynamic activity reliably.
Collapse
Affiliation(s)
- D Havelka
- Department of Electromagnetic Field, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
48
|
Salari V, Tuszynski J, Rahnama M, Bernroider G. Plausibility of quantum coherent states in biological systems. ACTA ACUST UNITED AC 2011. [DOI: 10.1088/1742-6596/306/1/012075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Pietak AM. Endogenous electromagnetic fields in plant leaves: a new hypothesis for vascular pattern formation. Electromagn Biol Med 2011; 30:93-107. [PMID: 21591894 DOI: 10.3109/15368378.2011.566779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Electromagnetic (EM) phenomena have long been implicated in biological development, but few detailed, practical mechanisms have been put forth to connect electromagnetism with morphogenetic processes. This work describes a new hypothesis for plant leaf veination, whereby an endogenous electric field forming as a result of a coherent Frohlich process, and corresponding to an EM resonant mode of the developing leaf structure, is capable of instigating leaf vascularisation. In order to test the feasibility of this hypothesis, a three-dimensional, EM finite-element model (FEM) of a leaf primordium was constructed to determine if suitable resonant modes were physically possible for geometric and physical parameters similar to those of developing leaf tissue. Using the FEM model, resonant EM modes with patterns of relevance to developing leaf vein modalities were detected. On account of the existence of shared geometric signatures in a leaf's vascular pattern and the electric field component of EM resonant modes supported by a developing leaf structure, further theoretical and experimental investigations are warranted. Significantly, this hypothesis is not limited to leaf vascular patterning, but may be applicable to a variety of morphogenetic phenomena in a number of living systems.
Collapse
Affiliation(s)
- Alexis Mari Pietak
- Department of Anatomy and Structural Biology, University of Otago Dunedin, New Zealand.
| |
Collapse
|
50
|
Cancer physics: diagnostics based on damped cellular elastoelectrical vibrations in microtubules. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:747-59. [PMID: 21394502 DOI: 10.1007/s00249-011-0688-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 02/07/2011] [Accepted: 02/17/2011] [Indexed: 12/26/2022]
Abstract
This paper describes a proposed biophysical mechanism of a novel diagnostic method for cancer detection developed recently by Vedruccio. The diagnostic method is based on frequency selective absorption of electromagnetic waves by malignant tumors. Cancer is connected with mitochondrial malfunction (the Warburg effect) suggesting disrupted physical mechanisms. In addition to decreased energy conversion and nonutilized energy efflux, mitochondrial malfunction is accompanied by other negative effects in the cell. Diminished proton space charge layer and the static electric field around the outer membrane result in a lowered ordering level of cellular water and increased damping of microtubule-based cellular elastoelectrical vibration states. These changes manifest themselves in a dip in the amplitude of the signal with the fundamental frequency of the nonlinear microwave oscillator-the core of the diagnostic device-when coupled to the investigated cancerous tissue via the near-field. The dip is not present in the case of healthy tissue.
Collapse
|