1
|
Sherman CDH, Careau V, Gasparini C, Weston KJ, Evans JP. Population density effects on gamete traits and fertilisation dynamics under varying sperm environments in mussels. Ecol Evol 2024; 14:e11338. [PMID: 38698926 PMCID: PMC11063781 DOI: 10.1002/ece3.11338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
Gamete traits can vary widely among species, populations and individuals, influencing fertilisation dynamics and overall reproductive fitness. Sexual selection can play an important role in determining the evolution of gamete traits with local environmental conditions determining the strength and direction of sexual selection. Here, we test for signatures of post-mating selection on gamete traits in relation to population density, and possible interactive effects of population density and sperm concentration on sperm motility and fertilisation rates among natural populations of mussels. Our study shows that males from high-density populations produce smaller sperm compared with males from low-density populations, but we detected no effect of population density on egg size. Our results also reveal that females from low-density populations tended to exhibit lower fertilisation rates across a range of sperm concentrations, although this became less important as sperm concentration increased. Variances in fertilisation success were higher for females than males and the effect of gamete compatibility between males and females increases as sperm concentrations increase. These results suggest that local population density can influence gamete traits and fertilisation dynamics but also highlight the importance of phenotypic plasticity in governing sperm-egg interactions in a highly dynamic selective environment.
Collapse
Affiliation(s)
- Craig D. H. Sherman
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Vincent Careau
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | | | - Kim J. Weston
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Jonathan P. Evans
- Centre for Evolutionary Biology, School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| |
Collapse
|
2
|
Siljestam M, Martinossi-Allibert I. Anisogamy Does Not Always Promote the Evolution of Mating Competition Traits in Males. Am Nat 2024; 203:230-253. [PMID: 38306281 DOI: 10.1086/727968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
AbstractAnisogamy has evolved in most sexually reproducing multicellular organisms allowing the definition of male and female sexes, producing small and large gametes. Anisogamy, as the initial sexual dimorphism, is a good starting point to understand the evolution of further sexual dimorphisms. For instance, it is generally accepted that anisogamy sets the stage for more intense mating competition in males than in females. We argue that this idea stems from a restrictive assumption on the conditions under which anisogamy evolved in the first place: the absence of sperm limitation (assuming that all female gametes are fertilized). Here, we relax this assumption and present a model that considers the coevolution of gamete size with a mating competition trait, starting in a population without dimorphism. We vary gamete density to produce different scenarios of gamete limitation. We show that while at high gamete density the evolution of anisogamy always results in male investment in competition, gamete limitation at intermediate gamete densities allows for either females or males to invest more into mating competition. Our results thus suggest that anisogamy does not always promote mating competition among males. The conditions under which anisogamy evolves matter, as does the competition trait.
Collapse
|
3
|
Single-Cell RNA Sequencing of the Testis of Ciona intestinalis Reveals the Dynamic Transcriptional Profile of Spermatogenesis in Protochordates. Cells 2022; 11:cells11243978. [PMID: 36552742 PMCID: PMC9776925 DOI: 10.3390/cells11243978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Spermatogenesis is a complex and continuous process of germ-cell differentiation. This complex process is regulated by many factors, of which gene regulation in spermatogenic cells plays a decisive role. Spermatogenesis has been widely studied in vertebrates, but little is known about spermatogenesis in protochordates. Here, for the first time, we performed single-cell RNA sequencing (scRNA-seq) on 6832 germ cells from the testis of adult Ciona intestinalis. We identified six germ cell populations and revealed dynamic gene expression as well as transcriptional regulation during spermatogenesis. In particular, we identified four spermatocyte subtypes and key genes involved in meiosis in C. intestinalis. There were remarkable similarities and differences in gene expression during spermatogenesis between C. intestinalis and two other vertebrates (Chinese tongue sole and human). We identified many spermatogenic-cell-specific genes with functions that need to be verified. These findings will help to further improve research on spermatogenesis in chordates.
Collapse
|
4
|
Hadlow JH, Lymbery RA, Evans JP. Density-dependent patterns of multivariate selection on sperm motility and morphology in a broadcast spawning mussel. Ecol Evol 2022; 12:e8514. [PMID: 35154644 PMCID: PMC8829106 DOI: 10.1002/ece3.8514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022] Open
Abstract
Sperm cells exhibit extraordinary phenotypic variation, both among taxa and within individual species, yet our understanding of the adaptive value of sperm trait variation across multiple contexts is incomplete. For species without the opportunity to choose mating partners, such as sessile broadcast spawning invertebrates, fertilization depends on gamete interactions, which in turn can be strongly influenced by local environmental conditions that alter the concentration of sperm and eggs. However, the way in which such environmental factors impact phenotypic selection on functional gamete traits remains unclear in most systems. Here, we analyze patterns of linear and nonlinear multivariate selection under experimentally altered local sperm densities (densities within the capture zone of eggs) on a range of functionally important sperm traits in the broadcast spawning marine mussel, Mytilus galloprovincialis. Specifically, we assay components of sperm motility and morphology across two fertilization environments that simulate either sperm limitation (when there are too few sperm to fertilize all available eggs), or sperm saturation (when there are many more sperm than required for fertilization, and the risk of polyspermy and embryonic failure is heightened). Our findings reveal that the strength, form, and targets of selection on sperm depend on the prevailing fertilization environment. In particular, our analyses revealed multiple significant axes of nonlinear selection on sperm motility traits under sperm limitation, but only significant negative directional selection on flagellum length under sperm saturation. These findings highlight the importance of local sperm densities in driving the adaptation of sperm phenotypes, particularly those related to sperm motility, in broadcast spawning invertebrates.
Collapse
Affiliation(s)
- Jessica H. Hadlow
- Centre for Evolutionary BiologySchool of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Rowan A. Lymbery
- Centre for Evolutionary BiologySchool of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Jonathan P. Evans
- Centre for Evolutionary BiologySchool of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
5
|
Male sperm storage impairs sperm quality in the zebrafish. Sci Rep 2021; 11:16689. [PMID: 34404815 PMCID: PMC8371167 DOI: 10.1038/s41598-021-94976-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023] Open
Abstract
Variation in sperm traits is widely documented both at inter- and intraspecific level. However, sperm traits vary also between ejaculates of the same male, due for example, to fluctuations in female availability. Variability in the opportunities to mate can indeed have important consequences for sperm traits, as it determines how often sperm are used, and thus the rate at which they are produced and how long they are stored before the mating. While being stored within males’ bodies, sperm are subjected to ageing due to oxidative stress. Sperm storage may significantly impair sperm quality, but evidence linking male sperm storage and variation in sperm traits is still scarce. Here, we tested the effect of the duration of sperm storage on within-male variation in sperm traits in the zebrafish, Danio rerio. We found that without mating opportunities, sperm number increased as storage duration increased, indicating that sperm continue to be produced and accumulate over time within males without being discharged in another way. Long sperm storage (12 days) was associated with an overall impairment in sperm quality, namely sperm motility, sperm longevity, and sperm DNA fragmentation, indicating that sperm aged, and their quality declined during storage. Our results confirm that male sperm storage may generate substantial variation in sperm phenotype, a source of variation which is usually neglected but that should be accounted for in experimental protocols aiming to assay sperm traits or maximise fertilization success.
Collapse
|
6
|
Vieira EA, Flores AAV, Dias GM. Colonization history meets further niche processes: how the identity of founders modulates the way predation structure fouling communities. Oecologia 2021; 196:1167-1178. [PMID: 34304305 DOI: 10.1007/s00442-021-04996-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Community assembly relies on deterministic niche-based processes (e.g., biotic interactions), and stochastic sources of unpredictable variation (e.g., colonization history), that combined will influence late-stage community structure. When community founders present distinct functional traits and a colonization-competition trade-off is not operating, initial colonization can result in late-stage assemblages of variable diversity and composed by different species sets, depending if early colonizers facilitate or inhibit subsequent colonization and survival. By experimentally manipulating the functional identity of founders and predators access during the development of fouling communities, we tested how founder traits constrain colonization history, species interactions and thereby regulate community diversity. We used as founders functionally different fouling organisms (colonial and solitary ascidians, and arborescent and flat-encrusting bryozoans) to build experimental communities that were exposed or protected against predation using a caging approach. Ascidians and bryozoans are pioneer colonizers in benthic communities and also good competitors, but the soft-body of ascidians makes them more susceptible to predators than mineralized bryozoans. When ascidians were founders, their dominance (but not richness) was reduced by predation, resulting in no effects of predators on overall diversity. Conversely, when bryozoans were founders, both space limitation and predator effects resulted in species-poor communities, with reduced number and cover of ascidian species and high overall dominance at the end of the experiment. We, thus, highlight that current species interactions and colonization contingencies related to founder identity should not be viewed as isolated drivers of community organization, but rather as strongly interacting processes underlying species distribution patterns and diversity.
Collapse
Affiliation(s)
- Edson A Vieira
- Programa de Pós-Graduação Em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil. .,Departamento de Oceanografia E Limnologia, Centro de Biociências, Universidade Federal Do Rio Grande Do Norte (UFRN), Natal, RN, 59014-002, Brazil.
| | - Augusto A V Flores
- Programa de Pós-Graduação Em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil.,Centro de Biologia Marinha, Universidade de São Paulo (USP), São Sebastião, SP, 11600-000, Brazil
| | - Gustavo M Dias
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC (UFABC), São Bernardo Do Campo, SP, 09606-070, Brazil
| |
Collapse
|
7
|
Strategic adjustment of ejaculate quality in response to variation of the socio-sexual environment. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03032-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Martinez G, Garcia C. Sexual selection and sperm diversity in primates. Mol Cell Endocrinol 2020; 518:110974. [PMID: 32926966 DOI: 10.1016/j.mce.2020.110974] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/30/2022]
Abstract
Many aspects of primate sperm physiology and reproductive behavior have been influenced by sexual selection, especially in taxa exposed to sperm competition where females mate with multiple partners. Primate sperm diversity reflects therefore the evolutionary divergences of the different primate species and the impact of a combination of variables exerting selection pressures on sperm form, function, and competition. Thereby, mating systems, life cycle or ecological variables are some of the important factors driving sperm diversity and explaining variation in terms of sperm morphology, parameters or male sexual characters. Here, we address primate sperm diversity through a compilation of all data available in the literature concerning primate sperm parameters and relationships between them. We also review the factors that can influence primate sperm diversity (e.g. mating systems, trade-off between investments in precopulatory and postcopulatory sexual traits, male and female sexual behaviors, seasonality, social constraints, testosterone levels), and discuss also their relevance to our understanding of human reproduction.
Collapse
Affiliation(s)
- Guillaume Martinez
- Hôpital Couple-Enfant, Centre Hospitalier Universitaire de Grenoble, UM de Génétique Chromosomique, F-38000, Grenoble, France; Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, F-38000, Grenoble, France.
| | - Cécile Garcia
- UMR 7206 Eco-anthropologie, CNRS - MNHN - Université de Paris, Musée de l'Homme, 75016, Paris, France.
| |
Collapse
|
9
|
Evans JP, Lymbery RA. Sexual selection after gamete release in broadcast spawning invertebrates. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200069. [PMID: 33070722 DOI: 10.1098/rstb.2020.0069] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Broadcast spawning invertebrates offer highly tractable models for evaluating sperm competition, gamete-level mate choice and sexual conflict. By displaying the ancestral mating strategy of external fertilization, where sexual selection is constrained to act after gamete release, broadcast spawners also offer potential evolutionary insights into the cascade of events that led to sexual reproduction in more 'derived' groups (including humans). Moreover, the dynamic reproductive conditions faced by these animals mean that the strength and direction of sexual selection on both males and females can vary considerably. These attributes make broadcast spawning invertebrate systems uniquely suited to testing, extending, and sometimes challenging classic and contemporary ideas in sperm competition, many of which were first captured in Parker's seminal papers on the topic. Here, we provide a synthesis outlining progress in these fields, and highlight the burgeoning potential for broadcast spawners to provide both evolutionary and mechanistic understanding into gamete-level sexual selection more broadly across the animal kingdom. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia
| | - Rowan A Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia
| |
Collapse
|
10
|
Lemaître JF, Gaillard JM, Ramm SA. The hidden ageing costs of sperm competition. Ecol Lett 2020; 23:1573-1588. [PMID: 32906225 DOI: 10.1111/ele.13593] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
Ageing and sexual selection are intimately linked. There is by now compelling evidence from studies performed across diverse organisms that males allocating resources to mating competition incur substantial physiological costs, ultimately increasing ageing. However, although insightful, we argue here that to date these studies cover only part of the relationship linking sexual selection and ageing. Crucially, allocation to traits important in post-copulatory sexual selection, that is sperm competition, has been largely ignored. As we demonstrate, such allocation could potentially explain much diversity in male and female ageing patterns observed both within and among species. We first review how allocation to sperm competition traits such as sperm and seminal fluid production depends on the quality of resources available to males and can be associated with a wide range of deleterious effects affecting both somatic tissues and the germline, and thus modulate ageing in both survival and reproductive terms. We further hypothesise that common biological features such as plasticity, prudent sperm allocation and seasonality of ejaculate traits might have evolved as counter-adaptations to limit the ageing costs of sperm competition. Finally, we discuss the implications of these emerging ageing costs of sperm competition for current research on the evolutionary ecology of ageing.
Collapse
Affiliation(s)
- Jean-François Lemaître
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, F-69622, France
| | - Jean-Michel Gaillard
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, F-69622, France
| | - Steven A Ramm
- Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
| |
Collapse
|
11
|
Spermcast mating with release of zygotes in the small dioecious bivalve Digitaria digitaria. Sci Rep 2020; 10:12605. [PMID: 32724126 PMCID: PMC7387346 DOI: 10.1038/s41598-020-69457-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/06/2020] [Indexed: 11/29/2022] Open
Abstract
Digitaria digitaria, a small astartid usually less than 10 mm in length, has a non-brooding behaviour in spite of its limited space for gonad development. This species lives in highly unstable environments with strong currents, which represent a challenge for fertilization and larval settlement. The studied population of D. digitaria from the Strait of Gibraltar area was dioecious, with significant predominance of females and sexual dimorphism, where females are larger than males. The reproductive cycle is asynchronous throughout the year, without a resting period, but with successive partial spawning events. The presence of stored sperm in the suprabranchial chamber and inside the gonad of some females, together with the release of eggs along the dorsal axis of both gills, points to internal oocyte fertilization. Bacteriocytes were found in the female and male follicle walls, but no bacteria were observed inside any of the gametes. Digitaria digitaria could represent a “missing link” between spermcast mating bivalves with brooded offspring and bivalves with broadcast release of eggs and sperm. The small size, limiting the oocyte production, together with the unstable environment could represent evolutionary pressures towards sperm uptake in D. digitaria.
Collapse
|
12
|
Foster T, Gilmour J. Egg size and fecundity of biannually spawning corals at Scott Reef. Sci Rep 2020; 10:12313. [PMID: 32703979 PMCID: PMC7378250 DOI: 10.1038/s41598-020-68289-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 05/20/2020] [Indexed: 12/05/2022] Open
Abstract
Egg size and fecundity are often used as proxies for coral reproductive success and health. The amount of energy a coral invests in reproduction reflects its environmental conditions during gametogenesis. Additionally, assuming resources for reproduction are limited, it is thought that an increase in egg size should result in a decrease in the number of eggs produced i.e. investing in many small eggs or fewer larger eggs. The biannually spawning populations of Scott Reef offer a unique opportunity to compare the egg size and polyp fecundity of corals exposed to different environmental conditions during gametogenesis, prior to spawning in autumn (March) and spring (October). In this study, we investigated the relationship between egg size and polyp fecundity within and between seven Acropora species from 2008 to 2010. We also quantified the fecundity and egg size of four Acropora species that spawn during both autumn and spring (2008–2010). We found no seasonal variability in egg size and fecundity in the species studied here, possibly as a result of a summer light regime being impacted by high cloud cover in cyclone season. There was high natural variability and no apparent trade-off between egg size and fecundity, both within and between each species. These findings challenge the assumption that egg size and fecundity are negatively correlated, or that a simple, energetically constrained trade-off exists between the two.
Collapse
Affiliation(s)
- Taryn Foster
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of Western Australia, Perth, WA, Australia.
| | - James Gilmour
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
13
|
Pitnick S, Wolfner MF, Dorus S. Post-ejaculatory modifications to sperm (PEMS). Biol Rev Camb Philos Soc 2020; 95:365-392. [PMID: 31737992 PMCID: PMC7643048 DOI: 10.1111/brv.12569] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Abstract
Mammalian sperm must spend a minimum period of time within a female reproductive tract to achieve the capacity to fertilize oocytes. This phenomenon, termed sperm 'capacitation', was discovered nearly seven decades ago and opened a window into the complexities of sperm-female interaction. Capacitation is most commonly used to refer to a specific combination of processes that are believed to be widespread in mammals and includes modifications to the sperm plasma membrane, elevation of intracellular cyclic AMP levels, induction of protein tyrosine phosphorylation, increased intracellular Ca2+ levels, hyperactivation of motility, and, eventually, the acrosome reaction. Capacitation is only one example of post-ejaculatory modifications to sperm (PEMS) that are widespread throughout the animal kingdom. Although PEMS are less well studied in non-mammalian taxa, they likely represent the rule rather than the exception in species with internal fertilization. These PEMS are diverse in form and collectively represent the outcome of selection fashioning complex maturational trajectories of sperm that include multiple, sequential phenotypes that are specialized for stage-specific functionality within the female. In many cases, PEMS are critical for sperm to migrate successfully through the female reproductive tract, survive a protracted period of storage, reach the site of fertilization and/or achieve the capacity to fertilize eggs. We predict that PEMS will exhibit widespread phenotypic plasticity mediated by sperm-female interactions. The successful execution of PEMS thus has important implications for variation in fitness and the operation of post-copulatory sexual selection. Furthermore, it may provide a widespread mechanism of reproductive isolation and the maintenance of species boundaries. Despite their possible ubiquity and importance, the investigation of PEMS has been largely descriptive, lacking any phylogenetic consideration with regard to divergence, and there have been no theoretical or empirical investigations of their evolutionary significance. Here, we (i) clarify PEMS-related nomenclature; (ii) address the evolutionary origin, maintenance and divergence in PEMS in the context of the protracted life history of sperm and the complex, selective environment of the female reproductive tract; (iii) describe taxonomically widespread types of PEMS: sperm activation, chemotaxis and the dissociation of sperm conjugates; (iv) review the occurence of PEMS throughout the animal kingdom; (v) consider alternative hypotheses for the adaptive value of PEMS; (vi) speculate on the evolutionary implications of PEMS for genomic architecture, sexual selection, and reproductive isolation; and (vii) suggest fruitful directions for future functional and evolutionary analyses of PEMS.
Collapse
Affiliation(s)
- Scott Pitnick
- Department of Biology, Center for Reproductive Evolution, Syacuse University, Syracuse, NY 13244, USA
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Steve Dorus
- Department of Biology, Center for Reproductive Evolution, Syacuse University, Syracuse, NY 13244, USA
| |
Collapse
|
14
|
Indirect cue of paternity uncertainty does not affect nest site selection or parental care in a Pacific toadfish. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-2803-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Singh P, Vellnow N, Schärer L. Variation in sex allocation plasticity in three closely related flatworm species. Ecol Evol 2020; 10:26-37. [PMID: 31988714 PMCID: PMC6972800 DOI: 10.1002/ece3.5566] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/15/2019] [Accepted: 07/28/2019] [Indexed: 01/15/2023] Open
Abstract
Sex allocation (SA) theory for simultaneous hermaphrodites predicts an influence of group size on SA. Since group size can vary within an individual's lifetime, this can favor the evolution of phenotypically plastic SA. In an emerging comparative context, we here report on SA plasticity in three closely related Macrostomum flatworm species, namely Macrostomum janickei, Macrostomum cliftonensis, and Macrostomum mirumnovem. For each species, we experimentally raised worms in three group sizes (isolated, pairs, and octets) and two enclosure sizes (small and large) in all factorial combinations and studied the effects of these factors on different estimates of SA. In addition, we also evaluated whether isolated worms engage in self-fertilization. We found that all species have plastic SA, with M. cliftonensis being more plastic than the other two species, as assessed by comparing standardized effect sizes of (a) the presence/absence of mating partners and (b) the strength of sexual competition. Moreover, we found that sperm production rate-but not sperm morphology-is plastic in M. cliftonensis, and that only M. mirumnovem self-fertilized during our observation period. Our study suggests that both SA and SA plasticity can diverge even between closely related species.
Collapse
Affiliation(s)
- Pragya Singh
- Evolutionary BiologyZoological InstituteUniversity of BaselBaselSwitzerland
| | - Nikolas Vellnow
- Evolutionary BiologyZoological InstituteUniversity of BaselBaselSwitzerland
- Evolutionary Biology DepartmentBielefeld UniversityBielefeldGermany
| | - Lukas Schärer
- Evolutionary BiologyZoological InstituteUniversity of BaselBaselSwitzerland
| |
Collapse
|
16
|
Kustra MC, Kahrl AF, Reedy AM, Warner DA, Cox RM. Sperm morphology and count vary with fine-scale changes in local density in a wild lizard population. Oecologia 2019; 191:555-564. [PMID: 31624957 PMCID: PMC6825022 DOI: 10.1007/s00442-019-04511-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/10/2019] [Indexed: 10/30/2022]
Abstract
Given that sperm production can be costly, theory predicts that males should optimally adjust the quantity and/or quality of their sperm in response to their social environment to maximize their paternity success. Although experiments demonstrate that males can alter their ejaculates in response to manipulations of the social environment and studies show that ejaculate traits covary with social environment across populations, it is unknown whether individual variation in sperm traits corresponds to natural variation found within wild populations. Using an island population of brown anole lizards (Anolis sagrei), we tested the prediction that sperm traits (sperm count, sperm morphology, sperm velocity) respond to natural variation in the risk of sperm competition, as inferred from the local density and operational sex ratio (OSR) of conspecifics. We found that males living in high-density areas of the island produced relatively larger sperm midpieces, smaller sperm heads, and lower sperm counts. Sperm traits were unrelated to OSR after accounting for the covariance between OSR and density. Our findings broaden the implications of sperm competition theory to intrapopulation social environment variation by showing that sperm count and sperm morphology vary with fine-scale differences in density within a single wild population.
Collapse
Affiliation(s)
- Matthew C Kustra
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA.,Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Ariel F Kahrl
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA. .,Stockholm University, Zoologiska institutionen: Etologi, 106 91, Stockholm, Sweden.
| | - Aaron M Reedy
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA.,Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Daniel A Warner
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Robert M Cox
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
17
|
Vasudeva R, Sutter A, Sales K, Dickinson ME, Lumley AJ, Gage MJG. Adaptive thermal plasticity enhances sperm and egg performance in a model insect. eLife 2019; 8:e49452. [PMID: 31570120 PMCID: PMC6773439 DOI: 10.7554/elife.49452] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022] Open
Abstract
Rising and more variable global temperatures pose a challenge for biodiversity, with reproduction and fertility being especially sensitive to heat. Here, we assessed the potential for thermal adaptation in sperm and egg function using Tribolium flour beetles, a warm-temperate-tropical insect model. Following temperature increases through adult development, we found opposing gamete responses, with males producing shorter sperm and females laying larger eggs. Importantly, this gamete phenotypic plasticity was adaptive: thermal translocation experiments showed that both sperm and eggs produced in warmer conditions had superior reproductive performance in warmer environments, and vice versa for cooler production conditions and reproductive environments. In warmer environments, gamete plasticity enabled males to double their reproductive success, and females could increase offspring production by one-third. Our results reveal exciting potential for sensitive but vital traits within reproduction to handle increasing and more variable thermal regimes in the natural environment.
Collapse
Affiliation(s)
| | - Andreas Sutter
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| | - Kris Sales
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| | | | - Alyson J Lumley
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| | - Matthew JG Gage
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| |
Collapse
|
18
|
Evans JP, Wilson AJ, Pilastro A, Garcia-Gonzalez F. Ejaculate-mediated paternal effects: evidence, mechanisms and evolutionary implications. Reproduction 2019; 157:R109-R126. [PMID: 30668523 DOI: 10.1530/rep-18-0524] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/21/2019] [Indexed: 12/29/2022]
Abstract
Despite serving the primary objective of ensuring that at least one sperm cell reaches and fertilises an ovum, the male ejaculate (i.e. spermatozoa and seminal fluid) is a compositionally complex 'trait' that can respond phenotypically to subtle changes in conditions. In particular, recent research has shown that environmentally and genetically induced changes to ejaculates can have implications for offspring traits that are independent of the DNA sequence encoded into the sperm's haploid genome. In this review, we compile evidence from several disciplines and numerous taxonomic systems to reveal the extent of such ejaculate-mediated paternal effects (EMPEs). We consider a number of environmental and genetic factors that have been shown to impact offspring phenotypes via ejaculates, and where possible, we highlight the putative mechanistic pathways by which ejaculates can act as conduits for paternal effects. We also highlight how females themselves can influence EMPEs, and in some cases, how maternally derived sources of variance may confound attempts to test for EMPEs. Finally, we consider a range of putative evolutionary implications of EMPEs and suggest a number of potentially useful approaches for exploring these further. Overall, our review confirms that EMPEs are both widespread and varied in their effects, although studies reporting their evolutionary effects are still in their infancy.
Collapse
Affiliation(s)
- Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Alastair J Wilson
- Centre for Ecology and Evolution, University of Exeter, Cornwall Campus, Penryn, UK
| | | | - Francisco Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia.,Estacion Biologica de Doñana-CSIC, Sevilla, Spain
| |
Collapse
|
19
|
Silva WTAF, Sáez-Espinosa P, Torijo-Boix S, Romero A, Devaux C, Durieux M, Gómez-Torres MJ, Immler S. The effects of male social environment on sperm phenotype and genome integrity. J Evol Biol 2019; 32:535-544. [PMID: 30817032 PMCID: PMC6850410 DOI: 10.1111/jeb.13435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 12/12/2022]
Abstract
Sperm function and quality are primary determinants of male reproductive performance and hence fitness. The presence of rival males has been shown to affect ejaculate and sperm traits in a wide range of taxa. However, male physiological conditions may not only affect sperm phenotypic traits but also their genetic and epigenetic signatures, affecting the fitness of the resulting offspring. We investigated the effects of male‐male competition on sperm quality using TUNEL assays and geometric morphometrics in the zebrafish, Danio rerio. We found that the sperm produced by males exposed to high male–male competition had smaller heads but larger midpiece and flagellum than sperm produced by males under low competition. Head and flagella also appeared less sensitive to the osmotic stress induced by activation with water. In addition, more sperm showed signals of DNA damage in ejaculates of males under high competition. These findings suggest that the presence of a rival male may have positive effects on sperm phenotypic traits but negative effects on sperm DNA integrity. Overall, males facing the presence of rival males may produce faster swimming and more competitive sperm but this may come at a cost for the next generation.
Collapse
Affiliation(s)
| | | | | | - Alejandro Romero
- Department of Biotechnology, University of Alicante, Alicante, Spain
| | - Caroline Devaux
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Mathilde Durieux
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - María José Gómez-Torres
- Department of Biotechnology, University of Alicante, Alicante, Spain.,Cátedra Human Fertility, University of Alicante, Alicante, Spain
| | - Simone Immler
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden.,School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
20
|
Edme A, Zobač P, Korsten P, Albrecht T, Schmoll T, Krist M. Moderate heritability and low evolvability of sperm morphology in a species with high risk of sperm competition, the collared flycatcher Ficedula albicollis. J Evol Biol 2018; 32:205-217. [PMID: 30449037 DOI: 10.1111/jeb.13404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/02/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022]
Abstract
Spermatozoa represent the morphologically most diverse type of animal cells and show remarkable variation in size across and also within species. To understand the evolution of this diversity, it is important to reveal to what degree this variation is genetic or environmental in origin and whether this depends on species' life histories. Here we applied quantitative genetic methods to a pedigreed multigenerational data set of the collared flycatcher Ficedula albicollis, a passerine bird with high levels of extra-pair paternity, to partition genetic and environmental sources of phenotypic variation in sperm dimensions for the first time in a natural population. Narrow-sense heritability (h2 ) of total sperm length amounted to 0.44 ± 0.14 SE, whereas the corresponding figure for evolvability (estimated as coefficient of additive genetic variation, CVa ) was 0.02 ± 0.003 SE. We also found an increase in total sperm length within individual males between the arrival and nestling period. This seasonal variation may reflect constraints in the production of fully elongated spermatozoa shortly after arrival at the breeding grounds. There was no evidence of an effect of male age on sperm dimensions. In many previous studies on laboratory populations of several insect, mammal and avian species, heritabilities of sperm morphology were higher, whereas evolvabilities were similar. Explanations for the differences in heritability may include variation in the environment (laboratory vs. wild), intensity of sexual selection via sperm competition (high vs. low) and genetic architecture that involves unusual linkage disequilibrium coupled with overdominance in one of the studied species.
Collapse
Affiliation(s)
- Anaïs Edme
- Faculty of Science, Department of Zoology and Laboratory of Ornithology, Palacky University, Olomouc, Czech Republic
| | - Petr Zobač
- Faculty of Science, Department of Zoology and Laboratory of Ornithology, Palacky University, Olomouc, Czech Republic
| | - Peter Korsten
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Tomáš Albrecht
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.,Faculty of Science, Department of Zoology, Charles University in Prague, Prague, Czech Republic
| | - Tim Schmoll
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - Miloš Krist
- Faculty of Science, Department of Zoology and Laboratory of Ornithology, Palacky University, Olomouc, Czech Republic.,Museum of Natural History, Olomouc, Czech Republic
| |
Collapse
|
21
|
Hare RM, Simmons LW. Sexual selection and its evolutionary consequences in female animals. Biol Rev Camb Philos Soc 2018; 94:929-956. [DOI: 10.1111/brv.12484] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Robin M. Hare
- Centre for Evolutionary Biology, School of Biological Sciences University of Western Australia 35 Stirling Highway, Perth, 6009 Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Biological Sciences University of Western Australia 35 Stirling Highway, Perth, 6009 Australia
| |
Collapse
|
22
|
The sperm factor: paternal impact beyond genes. Heredity (Edinb) 2018; 121:239-247. [PMID: 29959427 DOI: 10.1038/s41437-018-0111-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/12/2018] [Accepted: 06/16/2018] [Indexed: 12/20/2022] Open
Abstract
The fact that sperm carry more than the paternal DNA has only been discovered just over a decade ago. With this discovery, the idea that the paternal condition may have direct implications for the fitness of the offspring had to be revisited. While this idea is still highly debated, empirical evidence for paternal effects is accumulating. Male condition not only affects male fertility but also offspring early development and performance later in life. Several factors have been identified as possible carriers of non-genetic information, but we still know little about their origin and function and even less about their causation. I consider four possible non-mutually exclusive adaptive and non-adaptive explanations for the existence of paternal effects in an evolutionary context. In addition, I provide a brief overview of the main non-genetic components found in sperm including DNA methylation, chromatin modifications, RNAs and proteins. I discuss their putative functions and present currently available examples for their role in transferring non-genetic information from the father to the offspring. Finally, I identify some of the most important open questions and present possible future research avenues.
Collapse
|
23
|
Horinouchi Y, Togashi T. Within-clutch variability in gamete size arises from the size variation in gametangia in the marine green alga Monostroma angicava. PLANT REPRODUCTION 2018; 31:193-200. [PMID: 29392416 DOI: 10.1007/s00497-018-0323-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/29/2018] [Indexed: 06/07/2023]
Abstract
Within-clutch gamete size variability in Monostroma angicava. In many organisms, it is unclear how the size variation in gametes is generated in each clutch (i.e., total gametes produced by a gametophyte for a single spawning) or how gamete size is adjusted. Within-clutch variation in gamete size has been explained as a result of either physiological/developmental constraints or bet hedging during gametogenesis. These two explanations have been assumed to be mutually exclusive, and related observations are conflicting. The slightly anisogamous dioecious green alga Monostroma angicava employs a simple mechanism to produce gametes of each sex: each vegetative cell becomes a single gametangium cell, which synchronously divides to form equally sized gametes. The number of such cell divisions has several variations, which might vary gamete size. We measured the volume of gametangia in each clutch, counted the number of cell divisions in each gametangium and estimated the size of the gametes. We found that larger gametangia divided more times than smaller gametangia in both sexes, although male gametangia were smaller than female gametangia when they underwent the same number of cell divisions. Therefore, the variation in the number of cell divisions during gametogenesis serves to adjust gamete size in each sex rather than to vary it. Within-clutch gamete size variability originates in within-clutch variation in gametangium size: any factors that increase the variation in the size of gametangia can increase the within-clutch variation in gamete size.
Collapse
Affiliation(s)
- Yusuke Horinouchi
- Marine Biosystems Research Center, Chiba University, Kamogawa, 299-5502, Japan
| | - Tatsuya Togashi
- Marine Biosystems Research Center, Chiba University, Kamogawa, 299-5502, Japan.
| |
Collapse
|
24
|
Seed CE, Tomkins JL. Positive size-speed relationships in gametes and vegetative cells of Chlamydomonas reinhardtii; implications for the evolution of sperm. Evolution 2018; 72:440-452. [PMID: 29345308 DOI: 10.1111/evo.13427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/19/2017] [Accepted: 12/27/2017] [Indexed: 11/26/2022]
Abstract
It is commonly held that differences in gametes of the two sexes (anisogamy) evolved from ancestors whose gametes were similar in size and behavior (isogamy). Underlying many hypotheses explaining anisogamy are assumed relationships between cell size and speed in the ancestral isogamous population. Using the isogamous alga Chlamydomonas reinhardtii, we explored size-speed distributions in vegetative and gamete cells of 10 cell lines, and clonal data from within two cell lines. We applied an independent speed selection approach to gamete populations of C. reinhardtii, monitoring correlated responses in size following selection for high speed. We demonstrate positive size-speed relationships in clones, cell lines, and artificially selected speed selection lines. We found different size-speed relationships in the two cell types of C. reinhardtii even though they overlap in size, suggesting that cell composition and/or programs of gene expression are capable of altering this relationship, and that the relationship is evolvable. The positive genetic size-speed correlation means that the division of parent vegetative cells into numerous gametes trades off against not only size, but also speed, a trade-off that has not received previous attention. Our results support reevaluating the role of speed selection in the evolution of anisogamy.
Collapse
Affiliation(s)
- Catherine E Seed
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Australia
| | - Joseph L Tomkins
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Australia
| |
Collapse
|
25
|
Liao WB, Huang Y, Zeng Y, Zhong MJ, Luo Y, Lüpold S. Ejaculate evolution in external fertilizers: Influenced by sperm competition or sperm limitation? Evolution 2017; 72:4-17. [PMID: 28975611 DOI: 10.1111/evo.13372] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 12/19/2022]
Abstract
The evolution of sperm quality and quantity is shaped by various selective processes, with sperm competition generally considered the primary selective agent. Particularly in external fertilizers, however, sperm limitation through gamete dispersal can also influence gamete investments, but empirical data examining this effect are limited. Here, we studied the relative importance of sperm competition and the spawning conditions in explaining the macroevolutionary patterns of sperm size and number within two taxa with external fertilization but differences in their reproductive biology. In frogs, sperm swim slowly but for up to hours as they penetrate the gelatinous egg coating, whereas fish sperm typically swim fast, are very short-lived (seconds to minutes), and often face a relatively higher risk of being moved away from the ova by currents. Our phylogenetic models and path analyses revealed different trajectories of ejaculate evolution in these two taxa. Sperm size and number responded primarily to variation in sperm competition in the anurans, but more strongly to egg number and water turbulence in the fishes. Whereas the results across anurans align with the general expectation that sexual selection is the main driver of ejaculate evolution, our findings across the fishes suggest that sperm limitation has been underappreciated.
Collapse
Affiliation(s)
- Wen Bo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China
| | - Yan Huang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China
| | - Yu Zeng
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China
| | - Mao Jun Zhong
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China
| | - Yi Luo
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
26
|
Parker GA, Ramm SA, Lehtonen J, Henshaw JM. The evolution of gonad expenditure and gonadosomatic index (GSI) in male and female broadcast-spawning invertebrates. Biol Rev Camb Philos Soc 2017; 93:693-753. [PMID: 28921784 DOI: 10.1111/brv.12363] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/22/2017] [Accepted: 08/09/2017] [Indexed: 01/05/2023]
Abstract
Sedentary broadcast-spawning marine invertebrates, which release both eggs and sperm into the water for fertilization, are of special interest for sexual selection studies. They provide unique insight into the early stages of the evolutionary succession leading to the often-intense operation of both pre- and post-mating sexual selection in mobile gonochorists. Since they are sessile or only weakly mobile, adults can interact only to a limited extent with other adults and with their own fertilized offspring. They are consequently subject mainly to selection on gamete production and gamete success, and so high gonad expenditure is expected in both sexes. We review literature on gonadosomatic index (GSI; the proportion of body tissue devoted to gamete production) of gonochoristic broadcast spawners, which we use as a proxy for gonad expenditure. We show that such taxa most often have a high GSI that is approximately equal in both sexes. When GSI is asymmetric, female GSI usually exceeds male GSI, at least in echinoderms (the majority of species recorded). Intriguingly, though, higher male GSI also occurs in some species and appears more common than female-biased GSI in certain orders of gastropod molluscs. Our limited data also suggest that higher male GSI may be the prevalent pattern in sperm casters (where only males release gametes). We explore how selection might have shaped these patterns using game theoretic models for gonad expenditure that consider possible trade-offs with (i) somatic maintenance or (ii) growth, while also considering sperm competition, sperm limitation, and polyspermy. Our models of the trade-off between somatic tissue (which increases survival) and gonad (which increases reproductive success) predict that GSI should be equal for the two sexes when sperm competition is intense, as is probably common in broadcast spawners due to synchronous spawning in aggregations. Higher female GSI occurs under low sperm competition. Sperm limitation appears unlikely to alter these conclusions qualitatively, but can also act as a force to keep male GSI high, and close to that of females. Polyspermy can act to reduce male GSI. Higher male than female GSI is predicted to be less common (as observed in the data), but can occur when ova/ovaries are sufficiently more resource-intensive to produce than sperm/testes, for which some evidence exists. We also show that sex-specific trade-offs between gonads and growth can generate different life-history strategies for males and females, with males beginning reproduction earlier. This could lead to apparently higher male GSI in empirical studies if immature females are included in calculations of mean GSI. The existence of higher male GSI nonetheless remains somewhat problematic and requires further investigation. When sperm limitation is low, we suggest that the natural logarithm of the male/female GSI ratio may be a suitable index for sperm competition level in broadcast spawners, and that this may also be considered as an index for internally fertilizing taxa.
Collapse
Affiliation(s)
- Geoff A Parker
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, U.K
| | - Steven A Ramm
- Evolutionary Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Jussi Lehtonen
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Jonathan M Henshaw
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, 2601, Canberra, Australia.,Institute of Zoology, University of Graz, Graz, 8010, Austria
| |
Collapse
|
27
|
Zajitschek S, Herbert-Read JE, Abbasi NM, Zajitschek F, Immler S. Paternal personality and social status influence offspring activity in zebrafish. BMC Evol Biol 2017; 17:157. [PMID: 28673261 PMCID: PMC5496241 DOI: 10.1186/s12862-017-1005-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evidence for the transmission of non-genetic information from father to offspring is rapidly accumulating. While the impact of chemical and physical factors such as toxins or diet on the fitness of the parents and their offspring have been studied extensively, the importance of behavioural and social circumstances has only recently been recognised. Behavioural traits such as personality characteristics can be relatively stable, and partly comprise a genetic component but we know little about the non-genetic transmission of plastic behavioural traits from parents to offspring. We investigated the relative effect of personality and of social dominance as indicators at the opposite ends of the plasticity range on offspring behaviour in the zebrafish (Danio rerio). We assessed male boldness, a behavioural trait that has previously been shown previously to possess genetic underpinnings, and experimentally manipulated male social status to assess the association between the two types of behaviour and their correlation with offspring activity. RESULTS We found a clear interaction between the relatively stable and putative genetic effects based on inherited differences in personality and the experimentally induced epigenetic effects from changes in the social status of the father on offspring activity. CONCLUSIONS Our study shows that offspring behaviour is determined by a combination of paternal personality traits and on-genetic effects derived from the social status of the father.
Collapse
Affiliation(s)
- Susanne Zajitschek
- School of Biological Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
- Doñana Biological Station EBD-CSIC, C/Americo Vespucio s/n, 41092, Isla de la Cartuja, Sevilla, Spain
| | - James E. Herbert-Read
- Department of Mathematics, Uppsala University, Lägerhyddsvägen 1, 751 06 Uppsala, Sweden
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Nasir M. Abbasi
- School of Biological Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Felix Zajitschek
- School of Biological Sciences, Monash University, Building 18, Clayton, VIC 3800 Australia
| | - Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| |
Collapse
|
28
|
Gasparini C, Dosselli R, Evans JP. Sperm storage by males causes changes in sperm phenotype and influences the reproductive fitness of males and their sons. Evol Lett 2017; 1:16-25. [PMID: 30283635 PMCID: PMC6121797 DOI: 10.1002/evl3.2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 01/26/2023] Open
Abstract
Recent studies suggest that environmentally induced effects on sperm phenotype can influence offspring phenotype beyond the classic Mendelian inheritance mechanism. However, establishing whether such effects are conveyed purely through ejaculates, independently of maternal environmental effects, remains a significant challenge. Here, we assess whether environmentally induced effects on sperm phenotype affects male reproductive success and offspring fitness. We experimentally manipulated the duration of sperm storage by males, and thus sperm age, in the internally fertilizing fish Poecilia reticulata. We first confirm that sperm ageing influences sperm quality and consequently males reproductive success. Specifically, we show that aged sperm exhibit impaired velocity and are competitively inferior to fresh sperm when ejaculates compete to fertilize eggs. We then used homospermic (noncompetitive) artificial insemination to inseminate females with old or fresh sperm and found that male offspring arising from fertilizations by experimentally aged sperm suffered consistently impaired sperm quality when just sexually mature (four months old) and subsequently as adults (13 months old). Although we have yet to determine whether these effects have a genetic or epigenetic basis, our analyses provide evidence that environmentally induced variation in sperm phenotype constitutes an important source of variation in male reproductive fitness that has far reaching implications for offspring fitness.
Collapse
Affiliation(s)
- Clelia Gasparini
- Centre for Evolutionary Biology, School of Biological Sciences (M092) University of Western Australia Crawley 6009 Australia
| | - Ryan Dosselli
- Centre for Evolutionary Biology, School of Biological Sciences (M092) University of Western Australia Crawley 6009 Australia.,CIBER, ARC Centre of Excellence in Plant Energy Biology University of Western Australia Crawley 6009 Australia
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences (M092) University of Western Australia Crawley 6009 Australia
| |
Collapse
|
29
|
Quality of seminal fluids varies with type of stimulus at ejaculation. Sci Rep 2017; 7:44339. [PMID: 28287188 PMCID: PMC5347088 DOI: 10.1038/srep44339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/07/2017] [Indexed: 02/06/2023] Open
Abstract
The theory of ejaculate economics was mainly built around different sperm competition scenarios but also predicts that investments into ejaculates depend on female fecundity. Previous tests of this prediction focused on invertebrates and lower vertebrate, and on species with high female reproductive potential. It remains unclear whether the prediction also holds for polygynous mammals with low female reproductive potential (due to low litter size and long inter-birth intervals). We used horses (Equus caballus) to experimentally test whether semen characteristics are adjusted to the oestrous cycle of the mare a stallion is exposed to during few moments before ejaculation. We analysed 122 weekly semen samples collected from 16 stallions during exposure to either an oestrous or a dioestrous mare. Semen volume and the rate of motile sperm were higher when stallions were exposed to an oestrous than to a diestrous mare, while total sperm counts and sperm velocity remained unchanged. Sperm collected after exposure to an oestrous mare also showed reduced oxidative degeneration of cell membranes over a period of 48 hours. We conclude that stallions invest more into their seminal fluids when the chance of fertilization is elevated, and that this adjustment of ejaculate quality can happen very quickly.
Collapse
|
30
|
Hussain YH, Sadilek M, Salad S, Zimmer RK, Riffell JA. Individual female differences in chemoattractant production change the scale of sea urchin gamete interactions. Dev Biol 2017; 422:186-197. [PMID: 28088316 DOI: 10.1016/j.ydbio.2017.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/02/2017] [Accepted: 01/10/2017] [Indexed: 01/13/2023]
Abstract
Sperm selection by females is an important process influencing fertilization and, particularly in broadcast-spawning organisms, often occurs before sperm reach the egg. Waterborne sperm chemoattractants are one mechanism by which eggs selectively influence conspecific sperm behavior, but it remains an open question whether the eggs from different females produce different amounts of sperm chemoattractant, and how that might influence sperm behavior. Here, we quantify the differences in attractant production between females of the sea urchin species Lytechinus pictus and use computational models and microfluidic sperm chemotaxis assays to determine how differences in chemoattractant production between females affects their ability to attract sperm. Our study demonstrates that there is significant individual female variation in egg chemoattractant production, and that this variation changes the scope and strength of sperm attraction. These results provide evidence for the importance of individual female variability in differential sperm attraction and fertilization success.
Collapse
Affiliation(s)
- Yasmeen H Hussain
- University of Washington, Department of Biology, Seattle, WA 98195, USA
| | - Martin Sadilek
- University of Washington, Department of Chemistry, Seattle, WA 98195, USA
| | - Shukri Salad
- University of Washington, Department of Biology, Seattle, WA 98195, USA
| | - Richard K Zimmer
- University of California Los Angeles, Department of Ecology and Evolutionary Biology, Los Angeles, CA 90095, USA
| | - Jeffrey A Riffell
- University of Washington, Department of Biology, Seattle, WA 98195, USA
| |
Collapse
|
31
|
|
32
|
Shao Y, Chai X, Xiao G, Zhang J, Lin Z, Liu G. Population Genetic Structure of the Blood Clam,Tegillarca granosa, Along the Pacific Coast of Asia: Isolation by Distance in the Sea. MALACOLOGIA 2016. [DOI: 10.4002/040.059.0208] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Beekman M, Nieuwenhuis B, Ortiz-Barrientos D, Evans JP. Sexual selection in hermaphrodites, sperm and broadcast spawners, plants and fungi. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150541. [PMID: 27619704 PMCID: PMC5031625 DOI: 10.1098/rstb.2015.0541] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2016] [Indexed: 11/12/2022] Open
Abstract
Darwin was the first to recognize that sexual selection is a strong evolutionary force. Exaggerated traits allow same-sex individuals to compete over access to mates and provide a mechanism by which mates are selected. It is relatively easy to appreciate how inter- and intrasexual selection work in organisms with the sensory capabilities to perceive physical or behavioural traits that signal mate quality or mate compatibility, and to assess the relative quality of competitors. It is therefore not surprising that most studies of sexual selection have focused on animals with separate sexes and obvious adaptations that function in the context of reproductive competition. Yet, many sexual organisms are both male and female at the same time, often lack sexual dimorphism and never come into direct contact at mating. How does sexual selection act in such species, and what can we learn from them? Here, we address these questions by exploring the potential for sexual selection in simultaneous hermaphrodites, sperm- and broadcast spawners, plants and fungi. Our review reveals a range of mechanisms of sexual selection, operating primarily after gametes have been released, which are common in many of these groups and also quite possibly in more familiar (internally fertilizing and sexually dimorphic) organisms.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Madeleine Beekman
- School of Life and Environmental Sciences, University of Sydney, 2006 New South Wales, Australia
| | - Bart Nieuwenhuis
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | | | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, 6009 Western Australia, Australia
| |
Collapse
|
34
|
Janicke T, Sandner P, Ramm SA, Vizoso DB, Schärer L. Experimentally evolved and phenotypically plastic responses to enforced monogamy in a hermaphroditic flatworm. J Evol Biol 2016; 29:1713-27. [PMID: 27237934 DOI: 10.1111/jeb.12910] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/07/2016] [Accepted: 05/19/2016] [Indexed: 01/13/2023]
Abstract
Sexual selection is considered a potent evolutionary force in all sexually reproducing organisms, but direct tests in terms of experimental evolution of sexual traits are still lacking for simultaneously hermaphroditic animals. Here, we tested how evolution under enforced monogamy affected a suite of reproductive traits (including testis area, sex allocation, genital morphology, sperm morphology and mating behaviour) in the outcrossing hermaphroditic flatworm Macrostomum lignano, using an assay that also allowed the assessment of phenotypically plastic responses to group size. The experiment comprised 32 independent selection lines that evolved under either monogamy or polygamy for 20 generations. While we did not observe an evolutionary shift in sex allocation, we detected effects of the selection regime for two male morphological traits. Specifically, worms evolving under enforced monogamy had a distinct shape of the male copulatory organ and produced sperm with shorter appendages. Many traits that did not evolve under enforced monogamy showed phenotypic plasticity in response to group size. Notably, individuals that grew up in larger groups had a more male-biased sex allocation and produced slightly longer sperm than individuals raised in pairs. We conclude that, in this flatworm, enforced monogamy induced moderate evolutionary but substantial phenotypically plastic responses.
Collapse
Affiliation(s)
- T Janicke
- Zoological Institute, University of Basel, Basel, Switzerland. .,Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, Ecole Pratique des Hautes Etudes, Université de Montpellier, Université Paul-Valéry Montpellier, Montpellier Cedex 05, France.
| | - P Sandner
- Zoological Institute, University of Basel, Basel, Switzerland
| | - S A Ramm
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - D B Vizoso
- Zoological Institute, University of Basel, Basel, Switzerland
| | - L Schärer
- Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
35
|
Okamoto DK. Competition among Eggs Shifts to Cooperation along a Sperm Supply Gradient in an External Fertilizer. Am Nat 2016; 187:E129-42. [DOI: 10.1086/685813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Dobler R, Reinhardt K. Heritability, evolvability, phenotypic plasticity and temporal variation in sperm-competition success of Drosophila melanogaster. J Evol Biol 2016; 29:929-41. [PMID: 26990919 DOI: 10.1111/jeb.12858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 11/28/2022]
Abstract
Sperm-competition success (SCS) is seen as centrally important for evolutionary change: superior fathers sire superior sons and thereby inherit the traits that make them superior. Additional hypotheses, that phenotypic plasticity in SCS and sperm ageing explain variation in paternity, are less considered. Even though various alleles have individually been shown to be correlated with variation in SCS, few studies have addressed the heritability, or evolvability, of overall SCS. Those studies that have addressed found low or no heritability and have not examined evolvability. They have further not excluded phenotypic plasticity, and temporal effects on SCS, despite their known dramatic effects on sperm function. In Drosophila melanogaster, we found that both standard components of sperm competition, sperm defence and sperm offence, showed nonsignificant heritability across several offspring cohorts. Instead, our analysis revealed, for the first time, the existence of phenotypic plasticity in SCS across an extreme environment (5% CO2 ), and an influence of sperm ageing. Evolvability of SCS was substantial for sperm defence but weak for sperm offence. Our results suggest that the paradigm of explaining evolution by sperm competition is more complex and will benefit from further experimental work on the heritability or evolvability of SCS, measuring phenotypic plasticity, and separating the effects of sperm competition and sperm ageing.
Collapse
Affiliation(s)
- R Dobler
- Department of Biology, Applied Zoology, TU Dresden, Dresden, Germany.,University of Tübingen, Institute of Evolution and Ecology, Tübingen, Germany
| | - K Reinhardt
- Department of Biology, Applied Zoology, TU Dresden, Dresden, Germany.,University of Tübingen, Institute of Evolution and Ecology, Tübingen, Germany
| |
Collapse
|
37
|
Guillaume AS, Monro K, Marshall DJ. Transgenerational plasticity and environmental stress: do paternal effects act as a conduit or a buffer? Funct Ecol 2015. [DOI: 10.1111/1365-2435.12604] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Annie S. Guillaume
- School of Biological Sciences Monash University Melbourne Victoria 3800 Australia
| | - Keyne Monro
- School of Biological Sciences Monash University Melbourne Victoria 3800 Australia
| | - Dustin J. Marshall
- School of Biological Sciences Monash University Melbourne Victoria 3800 Australia
| |
Collapse
|
38
|
Reinhardt K, Dobler R, Abbott J. An Ecology of Sperm: Sperm Diversification by Natural Selection. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-120213-091611] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Using basic ecological concepts, we introduce sperm ecology as a framework to study sperm cells. First, we describe environmental effects on sperm and conclude that evolutionary and ecological research should not neglect the overwhelming evidence presented here (both in external and internal fertilizers and in terrestrial and aquatic habitats) that sperm function is altered by many environments, including the male environment. Second, we determine that the evidence for sperm phenotypic plasticity is overwhelming. Third, we find that genotype-by-environment interaction effects on sperm function exist, but their general adaptive significance (e.g., local adaptation) awaits further research. It remains unresolved whether sperm diversification occurs by natural selection acting on sperm function or by selection on male and female microenvironments that enable optimal plastic performance of sperm (sperm niches). Environmental effects reduce fitness predictability under sperm competition, predict species distributions under global change, explain adaptive behavior, and highlight the role of natural selection in behavioral ecology and reproductive medicine.
Collapse
Affiliation(s)
- Klaus Reinhardt
- Applied Zoology, Department of Biology, Technische Universität Dresden, 01062 Dresden, Germany;,
| | - Ralph Dobler
- Applied Zoology, Department of Biology, Technische Universität Dresden, 01062 Dresden, Germany;,
| | - Jessica Abbott
- Department of Biology, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
39
|
Hart MK. Phenotypic plasticity in sex allocation and body size leads to trade-offs between male function and growth in a simultaneously hermaphroditic fish. Evol Ecol 2015. [DOI: 10.1007/s10682-015-9804-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Sherman CDH, Ab Rahim ES, Olsson M, Careau V. The more pieces, the better the puzzle: sperm concentration increases gametic compatibility. Ecol Evol 2015; 5:4354-64. [PMID: 26664684 PMCID: PMC4667825 DOI: 10.1002/ece3.1684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/24/2022] Open
Abstract
The genetic benefits individuals receive from mate choice have been the focus of numerous studies, with several showing support for both intrinsic genetic benefits and compatibility effects on fertilization success and offspring viability. However, the robustness of these effects have rarely been tested across an ecologically relevant environmental gradient. In particular, sperm environment is a crucial factor determining fertilization success in many species, especially those with external fertilization. Here, we test the importance of sperm environment in mediating compatibility‐based selection on fertilization using a factorial breeding design. We detected a significant intrinsic male effect on fertilization success at only one of four sperm concentrations. Compatibility effects were significant at the two highest sperm concentrations and, interestingly, the magnitude of the compatibility effect consistently increased with sperm concentration. This suggests that females are able to modify the probability of sperm–egg fusion as the amount of sperm available increases.
Collapse
Affiliation(s)
- Craig D H Sherman
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria 3216 Australia
| | - Emi S Ab Rahim
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria 3216 Australia ; School of Biological Sciences Universiti Sains Malaysia 11800 Minden Penang Malaysia
| | - Mats Olsson
- School of Biological Sciences The University of Sydney Sydney New South Wales 2006 Australia
| | - Vincent Careau
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria 3216 Australia
| |
Collapse
|
41
|
Marshall DJ. Environmentally induced (co)variance in sperm and offspring phenotypes as a source of epigenetic effects. ACTA ACUST UNITED AC 2015; 218:107-13. [PMID: 25568457 DOI: 10.1242/jeb.106427] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Traditionally, it has been assumed that sperm are a vehicle for genes and nothing more. As such, the only source of variance in offspring phenotype via the paternal line has been genetic effects. More recently, however, it has been shown that the phenotype or environment of fathers can affect the phenotype of offspring, challenging traditional theory with implications for evolution, ecology and human in vitro fertilisation. Here, I review sources of non-genetic variation in the sperm phenotype and evidence for co-variation between sperm and offspring phenotypes. I distinguish between two environmental sources of variation in sperm phenotype: the pre-release environment and the post-release environment. Pre-release, sperm phenotypes can vary within species according to male phenotype (e.g. body size) and according to local conditions such as the threat of sperm competition. Post-release, the physicochemical conditions that sperm experience, either when freely spawned or when released into the female reproductive tract, can further filter or modify sperm phenotypes. I find evidence that both pre- and post-release sperm environments can affect offspring phenotype; fertilisation is not a new beginning – rather, the experiences of sperm with the father and upon release can drive variation in the phenotype of the offspring. Interestingly, there was some evidence for co-variation between the stress resistance of sperm and the stress resistance of offspring, though more studies are needed to determine whether such effects are widespread. Overall, it appears that environmentally induced covariation between sperm and offspring phenotypes is non-negligible and further work is needed to determine their prevalence and strength.
Collapse
Affiliation(s)
- Dustin J Marshall
- School of Biological Sciences, Monash University, VIC 3800, Australia
| |
Collapse
|
42
|
Schlegel P, Binet MT, Havenhand JN, Doyle CJ, Williamson JE. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point. J Exp Biol 2015; 218:1084-90. [DOI: 10.1242/jeb.114900] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Broadcast spawning marine invertebrates are susceptible to environmental stressors such as climate change, as their reproduction depends on the successful meeting and fertilization of gametes in the water column. Under near-future scenarios of ocean acidification, the swimming behaviour of marine invertebrate sperm is altered. We tested whether this was due to changes in sperm mitochondrial activity by investigating the effects of ocean acidification on sperm metabolism and swimming behaviour in the sea urchin Centrostephanus rodgersii. We used a fluorescent molecular probe (JC-1) and flow cytometry to visualize mitochondrial activity (measured as change in mitochondrial membrane potential, MMP). Sperm MMP was significantly reduced in ΔpH −0.3 (35% reduction) and ΔpH −0.5 (48% reduction) treatments, whereas sperm swimming behaviour was less sensitive with only slight changes (up to 11% decrease) observed overall. There was significant inter-individual variability in responses of sperm swimming behaviour and MMP to acidified seawater. We suggest it is likely that sperm exposed to these changes in pH are close to their tipping point in terms of physiological tolerance to acidity. Importantly, substantial inter-individual variation in responses of sperm swimming to ocean acidification may increase the scope for selection of resilient phenotypes, which, if heritable, could provide a basis for adaptation to future ocean acidification.
Collapse
Affiliation(s)
- Peter Schlegel
- Marine Ecology Group, Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Monique T. Binet
- Centre for Environmental Contaminants Research, CSIRO, Locked Bag 2007, Kirrawee, Sydney, NSW 2232, Australia
| | - Jonathan N. Havenhand
- Department of Biological & Environmental Sciences – Tjärnö, University of Gothenburg, Strömstad 45296, Sweden
| | | | - Jane E. Williamson
- Marine Ecology Group, Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
43
|
Fitzpatrick JL, Lüpold S. Sexual selection and the evolution of sperm quality. ACTA ACUST UNITED AC 2014; 20:1180-9. [DOI: 10.1093/molehr/gau067] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Blengini CS, Sergio N, Gabriela C, Giojalas LC, Margarita C. Variability in sperm form and function in the context of sperm competition risk in two Tupinambis lizards. Ecol Evol 2014; 4:4080-92. [PMID: 25505535 PMCID: PMC4242561 DOI: 10.1002/ece3.1262] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/06/2014] [Accepted: 09/09/2014] [Indexed: 12/25/2022] Open
Abstract
In polyandrous species, sperm morphometry and sperm velocity are under strong sexual selection. Although several hypotheses have been proposed to explain the role of sperm competition in sperm trait variation, this aspect is still poorly understood. It has been suggested that an increase in sperm competition pressure could reduce sperm size variation or produce a diversity of sperm to maximize male fertilization success. We aim at elucidating the variability of sperm morphometric traits and velocity in two Tupinambis lizards in the context of sperm competition risk. Sperm traits showed substantial variation at all levels examined: between species, among males within species, and within the ejaculate of individual males. Sperm velocity was found to be positively correlated with flagellum: midpiece ratio, with relatively longer flagella associated with faster sperm. Our results document high variability in sperm form and function in lizards.
Collapse
Affiliation(s)
- Cecilia S Blengini
- Laboratorio de Biología del Comportamiento, Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Diversidad y Ecología Animal (IDEA) CONICET, Universidad Nacional de Córdoba Av. Vélez Sársfield 299, X5000JJC, Córdoba, Argentina
| | - Naretto Sergio
- Laboratorio de Biología del Comportamiento, Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Diversidad y Ecología Animal (IDEA) CONICET, Universidad Nacional de Córdoba Av. Vélez Sársfield 299, X5000JJC, Córdoba, Argentina
| | - Cardozo Gabriela
- Laboratorio de Biología del Comportamiento, Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Diversidad y Ecología Animal (IDEA) CONICET, Universidad Nacional de Córdoba Av. Vélez Sársfield 299, X5000JJC, Córdoba, Argentina
| | - Laura C Giojalas
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT) CONICET, Universidad Nacional de Córdoba Av.Velez Sarsfield 1611, X5016GCA, Córdoba, Argentina
| | - Chiaraviglio Margarita
- Laboratorio de Biología del Comportamiento, Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Diversidad y Ecología Animal (IDEA) CONICET, Universidad Nacional de Córdoba Av. Vélez Sársfield 299, X5000JJC, Córdoba, Argentina
| |
Collapse
|
45
|
Giordano M, Groothuis TGG, Tschirren B. Interactions between prenatal maternal effects and posthatching conditions in a wild bird population. Behav Ecol 2014. [DOI: 10.1093/beheco/aru149] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
46
|
Henshaw JM, Marshall DJ, Jennions MD, Kokko H. Local gamete competition explains sex allocation and fertilization strategies in the sea. Am Nat 2014; 184:E32-49. [PMID: 25058290 DOI: 10.1086/676641] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Within and across taxa, there is much variation in the mode of fertilization, that is, whether eggs and/or sperm are released or kept inside or on the surface of the parent's body. Although the evolutionary consequences of fertilization mode are far-reaching, transitions in the fertilization mode itself have largely escaped theoretical attention. Here we develop the first evolutionary model of egg retention and release, which also considers transitions between hermaphroditism and dioecy as well as egg size evolution. We provide a unifying explanation for reported associations between small body size, hermaphroditism, and egg retention in marine invertebrates that have puzzled researchers for more than 3 decades. Our model, by including sperm limitation, shows that all these patterns can arise as an evolutionary response to local competition between eggs for fertilization. This can provide a general explanation for three empirical patterns: sperm casters tend to be smaller than related broadcast spawners, hermaphroditism is disproportionately common in sperm casters, and offspring of sperm casters are larger. Local gamete competition also explains a universal sexual asymmetry: females of some species retain their gametes while males release theirs, but the opposite ("egg casting") lacks evolutionary stability and is apparently not found in nature.
Collapse
Affiliation(s)
- Jonathan M Henshaw
- Research School of Biology, Australian National University, Australian Capital Territory 0200, Australia
| | | | | | | |
Collapse
|
47
|
Zajitschek S, Hotzy C, Zajitschek F, Immler S. Short-term variation in sperm competition causes sperm-mediated epigenetic effects on early offspring performance in the zebrafish. Proc Biol Sci 2014; 281:20140422. [PMID: 24789902 PMCID: PMC4024299 DOI: 10.1098/rspb.2014.0422] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/01/2014] [Indexed: 11/12/2022] Open
Abstract
The inheritance of non-genetic factors is increasingly seen to play a major role in ecology and evolution. While the causes and consequences of epigenetic effects transmitted from the mother to the offspring have received ample attention, much less is known about how variation in the condition of the father affects the offspring. Here, we manipulated the intensity of sperm competition experienced by male zebrafish Danio rerio to investigate the potential for sperm-mediated epigenetic effects over a relatively short period of time. We found that the rapid responses of males to varying intensity of sperm competition not only affected sperm traits as shown previously, but also the performance of the resulting offspring. We observed that males exposed to high intensity of sperm competition produced faster swimming and more motile sperm, and sired offspring that hatched over a narrower time frame but exhibited a lower survival rate than males exposed to low intensity of sperm competition. Our results provide striking evidence for short-term paternal effects and the possible fitness consequences of such sperm-mediated non-genetic factors not only for the resulting offspring but also for the female.
Collapse
Affiliation(s)
- Susanne Zajitschek
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala 752 36, Sweden
| | - Cosima Hotzy
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala 752 36, Sweden
| | - Felix Zajitschek
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, Uppsala 752 36, Sweden
| | - Simone Immler
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala 752 36, Sweden
| |
Collapse
|
48
|
Vasudeva R, Deeming DC, Eady PE. Developmental temperature affects the expression of ejaculatory traits and the outcome of sperm competition in Callosobruchus maculatus. J Evol Biol 2014; 27:1811-8. [DOI: 10.1111/jeb.12431] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 12/31/2022]
Affiliation(s)
- R. Vasudeva
- School of Life Sciences; University of Lincoln; Lincoln UK
| | - D. C. Deeming
- School of Life Sciences; University of Lincoln; Lincoln UK
| | - P. E. Eady
- School of Life Sciences; University of Lincoln; Lincoln UK
| |
Collapse
|
49
|
Monro K, Marshall DJ. Two sexes, one body: intra- and intersex covariation of gamete phenotypes in simultaneous hermaphrodites. Ecol Evol 2014; 4:1340-6. [PMID: 24834330 PMCID: PMC4020693 DOI: 10.1002/ece3.1035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 02/20/2014] [Accepted: 02/20/2014] [Indexed: 11/24/2022] Open
Abstract
By harboring male and female functions in the same genome and expressing them in every individual, simultaneous hermaphrodites may incur sexual conflict unless both sex functions can evolve phenotypic optima independently of each other. The first step toward understanding their capacity to do so lies in understanding whether sex functions are phenotypically correlated within individuals, but remarkably few data address this issue. We tested the potential for intra- and intersex covariation of gamete phenotypes to mediate sexual conflict in broadcast-spawning hermaphrodites (the ascidians Ciona intestinalis and Pyura praeputialis), for which sex-specific selection acts predominantly on sperm–egg interactions in the water column. In both species, gamete phenotypes covaried within and across sex functions, implying that selection may be unable to target them independently because its direct effects on male gametes translate into correlated effects on female gametes and vice versa. This alone does not preclude the evolution of a different phenotypic optimum for each sex function, but imposes the more restrictive requirement that selection – which ultimately sorts among whole individuals, not sex functions – aligns with the direction in which gamete phenotypes covary at this level.
Collapse
Affiliation(s)
- Keyne Monro
- School of Biological Sciences, Monash University Melbourne, Victoria, 3800, Australia
| | - Dustin J Marshall
- School of Biological Sciences, Monash University Melbourne, Victoria, 3800, Australia
| |
Collapse
|
50
|
Ramm SA, Schärer L. The evolutionary ecology of testicular function: size isn't everything. Biol Rev Camb Philos Soc 2014; 89:874-88. [DOI: 10.1111/brv.12084] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 12/23/2013] [Accepted: 01/12/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Steven A. Ramm
- Evolutionary Biology; Bielefeld University; Morgenbreede 45 33615 Bielefeld Germany
| | - Lukas Schärer
- Evolutionary Biology; Zoological Institute, University of Basel; Vesalgasse 1 4051 Basel Switzerland
| |
Collapse
|