1
|
Matos P, Jordan P. Alternative Splicing at the Crossroad of Inflammatory Bowel Diseases and Colitis-Associated Colon Cancer. Cancers (Basel) 2025; 17:219. [PMID: 39858001 PMCID: PMC11764256 DOI: 10.3390/cancers17020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The risk of developing colorectal cancer (CRC) is increased in ulcerative colitis patients compared to the general population. This increased risk results from the state of chronic inflammation, a well-known tumour-promoting condition. This review explores the pathologic and molecular characteristics of colitis-associated colon cancer (CAC), emphasizing the distinct features from sporadic CRC. We focus on the key signalling pathways involved in the transition to CAC, highlighting the emerging role of alternative splicing in these processes, namely on how inflammation-induced alternative splicing can significantly contribute to the increased CRC risk observed among UC patients. This review calls for more transcriptomic studies to elucidate the molecular mechanisms through which inflammation-induced alternative splicing drives CAC pathogenesis. A better understanding of these splicing events is crucial as they may reveal novel biomarkers for disease progression and have the potential to target changes in alternative splicing as a therapeutic strategy.
Collapse
Affiliation(s)
- Paulo Matos
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
2
|
Mao RT, Guo SQ, Zhang G, Li YD, Xu JP, Wang HY, Fu P, Liu CP, Wu SQ, Chen P, Mei YS, Jin QC, Liu CY, Zhang YCF, Ding XY, Liu WJ, Romanova EV, Zhou HB, Cropper EC, Checco JW, Sweedler JV, Jing J. Two C-terminal isoforms of Aplysia tachykinin-related peptide receptors exhibit phosphorylation-dependent and phosphorylation-independent desensitization mechanisms. J Biol Chem 2024; 300:107556. [PMID: 39002683 PMCID: PMC11365428 DOI: 10.1016/j.jbc.2024.107556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024] Open
Abstract
Diversity, a hallmark of G protein-coupled receptor (GPCR) signaling, partly stems from alternative splicing of a single gene generating more than one isoform for a receptor. Additionally, receptor responses to ligands can be attenuated by desensitization upon prolonged or repeated ligand exposure. Both phenomena have been demonstrated and exemplified by the deuterostome tachykinin signaling system, although the role of phosphorylation in desensitization remains a subject of debate. Here, we describe the signaling system for tachykinin-related peptides (TKRPs) in a protostome, mollusk Aplysia. We cloned the Aplysia TKRP precursor, which encodes three TKRPs (apTKRP-1, apTKRP-2a, and apTKRP-2b) containing the FXGXR-amide motif. In situ hybridization and immunohistochemistry showed predominant expression of TKRP mRNA and peptide in the cerebral ganglia. TKRPs and their posttranslational modifications were observed in extracts of central nervous system ganglia using mass spectrometry. We identified two Aplysia TKRP receptors (apTKRPRs), named apTKRPR-A and apTKRPR-B. These receptors are two isoforms generated through alternative splicing of the same gene and differ only in their intracellular C termini. Structure-activity relationship analysis of apTKRP-2b revealed that both C-terminal amidation and conserved residues of the ligand are critical for receptor activation. C-terminal truncates and mutants of apTKRPRs suggested that there is a C-terminal phosphorylation-independent desensitization for both receptors. Moreover, apTKRPR-B also exhibits phosphorylation-dependent desensitization through the phosphorylation of C-terminal Ser/Thr residues. This comprehensive characterization of the Aplysia TKRP signaling system underscores the evolutionary conservation of the TKRP and TK signaling systems, while highlighting the intricacies of receptor regulation through alternative splicing and differential desensitization mechanisms.
Collapse
Affiliation(s)
- Rui-Ting Mao
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Shi-Qi Guo
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Guo Zhang
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.
| | - Ya-Dong Li
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ju-Ping Xu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Hui-Ying Wang
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ping Fu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Cui-Ping Liu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Shao-Qian Wu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ping Chen
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yu-Shuo Mei
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Qing-Chun Jin
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Cheng-Yi Liu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yan-Chu-Fei Zhang
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xue-Ying Ding
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Wei-Jia Liu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Hai-Bo Zhou
- School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, China; Peng Cheng Laboratory, Shenzhen, China.
| | - Elizabeth C Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - James W Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jian Jing
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China; Peng Cheng Laboratory, Shenzhen, China; Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
3
|
Kriska T, Natarajan J, Herrnreiter A, Park SK, Pfister SL, Thomas MJ, Widiapradja A, Levick SP, Campbell WB. Cellular metabolism of substance P produces neurokinin-1 receptor peptide agonists with diminished cyclic AMP signaling. Am J Physiol Cell Physiol 2024; 327:C151-C167. [PMID: 38798270 PMCID: PMC11371325 DOI: 10.1152/ajpcell.00103.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Substance P (SP) is released from sensory nerves in the arteries and heart. It activates neurokinin-1 receptors (NK1Rs) causing vasodilation, immune modulation, and adverse cardiac remodeling. The hypothesis was tested: SP and SP metabolites activate different second messenger signaling pathways. Macrophages, endothelial cells, and fibroblasts metabolized SP to N- and C-terminal metabolites to varying extents. SP 5-11 was the most abundant metabolite followed by SP 1-4, SP 7-11, SP 6-11, SP 3-11, and SP 8-11. In NK1R-expressing human embryonic kidney 293 (HEK293) cells, SP and some C-terminal SP metabolites stimulate the NK1R, promoting the dissociation of several Gα proteins, including Gαs and Gαq from their βγ subunits. SP increases intracellular calcium concentrations ([Ca]i) and cyclic 3',5'-adenosine monophosphate (cAMP) accumulation with similar -log EC50 values of 8.5 ± 0.3 and 7.8 ± 0.1 M, respectively. N-terminal metabolism of SP by up to five amino acids and C-terminal deamidation of SP produce peptides that retain activity to increase [Ca]i but not to increase cAMP. C-terminal metabolism results in the loss of both activities. Thus, [Ca]i and cAMP signaling are differentially affected by SP metabolism. To assess the role of N-terminal metabolism, SP and SP 6-11 were compared with cAMP-mediated activities in NK1R-expressing 3T3 fibroblasts. SP inhibits nuclear factor κB (NF-κB) activity, cell proliferation, and wound healing and stimulates collagen production. SP 6-11 had little or no activity. Cyclooxygenase-2 (COX-2) expression is increased by SP but not by SP 6-11. Thus, metabolism may select the cellular response to SP by inhibiting or redirecting the second messenger signaling pathway activated by the NK1R.NEW & NOTEWORTHY Endothelial cells, macrophages, and fibroblasts metabolize substance P (SP) to N- and C-terminal metabolites with SP 5-11 as the most abundant metabolite. SP activates neurokinin-1 receptors to increase intracellular calcium and cyclic AMP. In contrast, SP metabolites of N-terminal metabolism and C-terminal deamidation retain the ability to increase calcium but lose the ability to increase cyclic AMP. These new insights indicate that the metabolism of SP directs cellular functions by regulating specific signaling pathways.
Collapse
Affiliation(s)
- Tamas Kriska
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jayashree Natarajan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Anja Herrnreiter
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Sang-Kyu Park
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Sandra L Pfister
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Michael J Thomas
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Alexander Widiapradja
- Robert C. Byrd Health Sciences Center, Department of Physiology and Pharmacology, West Virginia University, Morgantown, Virginia, United States
| | - Scott P Levick
- Robert C. Byrd Health Sciences Center, Department of Physiology and Pharmacology, West Virginia University, Morgantown, Virginia, United States
| | - William B Campbell
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
4
|
Martín-García D, Téllez T, Redondo M, García-Aranda M. The use of SP/Neurokinin-1 as a Therapeutic Target in Colon and Rectal Cancer. Curr Med Chem 2024; 31:6487-6509. [PMID: 37861026 DOI: 10.2174/0109298673261625230924114406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 10/21/2023]
Abstract
Different studies have highlighted the role of Substance P / Neurokinin 1 Receptor (SP/NK-1R) axis in multiple hallmarks of cancer including cell transformation, proliferation, and migration as well as angiogenesis and metastasis of a wide range of solid tumors including colorectal cancer. Until now, the selective high-affinity antagonist of human SP/NK1-R aprepitant (Emend) has been authorized by the Food and Drug Administration as a low dosage medication to manage and treat chemotherapy-induced nausea. However, increasing evidence in recent years support the potential utility of high doses of aprepitant as an antitumor agent and thus, opening the possibility to the pharmacological repositioning of SP/NK1-R antagonists as an adjuvant therapy to conventional cancer treatments. In this review, we summarize current knowledge on the molecular basis of colorectal cancer as well as the pathophysiological importance of SP/NK1-R and the potential utility of SP/NK-1R axis as a therapeutic target in this malignancy.
Collapse
Affiliation(s)
| | - Teresa Téllez
- Surgical Specialties, Biochemistry and Immunology, University of Malaga, Spain
| | - Maximino Redondo
- Surgical Specialties, Biochemistry and Immunology, University of Malaga, Spain
| | - Marilina García-Aranda
- Surgical Specialties, Biochemistry and Immunology, University of Malaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| |
Collapse
|
5
|
Rodriguez FD, Covenas R. Association of Neurokinin-1 Receptor Signaling Pathways with Cancer. Curr Med Chem 2024; 31:6460-6486. [PMID: 37594106 DOI: 10.2174/0929867331666230818110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/14/2023] [Accepted: 07/01/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Numerous biochemical reactions leading to altered cell proliferation cause tumorigenesis and cancer treatment resistance. The mechanisms implicated include genetic and epigenetic changes, modified intracellular signaling, and failure of control mechanisms caused by intrinsic and extrinsic factors alone or combined. No unique biochemical events are responsible; entangled molecular reactions conduct the resident cells in a tissue to display uncontrolled growth and abnormal migration. Copious experimental research supports the etiological responsibility of NK-1R (neurokinin-1 receptor) activation, alone or cooperating with other mechanisms, in cancer appearance in different tissues. Consequently, a profound study of this receptor system in the context of malignant processes is essential to design new treatments targeting NK-1R-deviated activity. METHODS This study reviews and discusses recent literature that analyzes the main signaling pathways influenced by the activation of neurokinin 1 full and truncated receptor variants. Also, the involvement of NK-1R in cancer development is discussed. CONCLUSION NK-1R can signal through numerous pathways and cross-talk with other receptor systems. The participation of override or malfunctioning NK-1R in malignant processes needs a more precise definition in different types of cancers to apply satisfactory and effective treatments. A long way has already been traveled: the current disposal of selective and effective NK-1R antagonists and the capacity to develop new drugs with biased agonistic properties based on the receptor's structural states with functional significance opens immediate research action and clinical application.
Collapse
Affiliation(s)
- Francisco David Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
| | - Rafael Covenas
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
6
|
Qi C, Feng F, Guo J, Liu Y, Guo X, Meng Y, Di T, Hu X, Wang Y, Zhao N, Zhang X, Wang Y, Zhao J, Li P. Electroacupuncture on Baihui (DU20) and Xuehai (SP10) acupoints alleviates psoriatic inflammation by regulating neurotransmitter substance P- Neurokinin-1 receptor signaling. J Tradit Complement Med 2024; 14:91-100. [PMID: 38223807 PMCID: PMC10785156 DOI: 10.1016/j.jtcme.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 04/06/2023] [Accepted: 07/06/2023] [Indexed: 01/16/2024] Open
Abstract
Background At present, acupuncture-related practices have been widely used to treat psoriasis. In our study, we investigated the effect and explored the mechanism of electroacupuncture (EA) on acupoints Baihui (DU20) and Xuehai (SP10) for the treatment of psoriasis. Methods Imiquimod-induced psoriasis-like mouse model was used in this study. Mice were treated with electroacupuncture at DU20 and SP10 (depth of 2-3 mm, frequency of 2/15 Hz, intensity of 0.5-1.0 mA, 10 min/day). The severity of psoriasis-like lesions for each group was assessed. In addition, histological analysis of the lesions were performed. The levels of inflammatory cytokines were determined using Elisa. The expression levels of Substance P (SP) and NK1R were measured using Western blotting. In addition, NK1R inhibitor was administrated to evaluate the target of electroacupuncture in our mouse model. Results Electroacupuncture significantly alleviated IMQ-induced skin lesions and epidermal thickness, accompanied with reduced keratinocyte proliferation, CD3+, CD4+, and CD8+ T cells infiltration. The reduced levels of inflammatory cytokines was observed after electroacupuncture treatment. In addition, electroacupuncture inhibited the expression levels of SP and NK1R. NK1R inhibitor could ameliorate lesional symptoms and suppress epidermal thickening and CD3+, CD4+, and CD8 + T cell infiltration. Conclusions Electroacupuncture relieved psoriasis-like inflammation and T cell infiltration. This therapeutic action was likely mediated by the modulation of Substance P and its receptor NK1R.
Collapse
Affiliation(s)
- Cong Qi
- Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - Fang Feng
- Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - JianNing Guo
- Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - Yu Liu
- Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - XiaoYao Guo
- Capital Medical University, Beijing, 100069, China
| | - YuJiao Meng
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - TingTing Di
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - XueQing Hu
- Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - Yazhuo Wang
- Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - Ning Zhao
- Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - XiaWei Zhang
- Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - Yan Wang
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - Jingxia Zhao
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - Ping Li
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| |
Collapse
|
7
|
Coveñas R, Rodríguez FD, Robinson P, Muñoz M. The Repurposing of Non-Peptide Neurokinin-1 Receptor Antagonists as Antitumor Drugs: An Urgent Challenge for Aprepitant. Int J Mol Sci 2023; 24:15936. [PMID: 37958914 PMCID: PMC10650658 DOI: 10.3390/ijms242115936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
The substance P (SP)/neurokinin-1 receptor (NK-1R) system is involved in cancer progression. NK-1R, activated by SP, promotes tumor cell proliferation and migration, angiogenesis, the Warburg effect, and the prevention of apoptosis. Tumor cells overexpress NK-1R, which influences their viability. A typical specific anticancer strategy using NK-1R antagonists, irrespective of the tumor type, is possible because these antagonists block all the effects mentioned above mediated by SP on cancer cells. This review will update the information regarding using NK-1R antagonists, particularly Aprepitant, as an anticancer drug. Aprepitant shows a broad-spectrum anticancer effect against many tumor types. Aprepitant alone or in combination therapy with radiotherapy or chemotherapy could reduce the sequelae and increase the cure rate and quality of life of patients with cancer. Current data open the door to new cancer research aimed at antitumor therapeutic strategies using Aprepitant. To achieve this goal, reprofiling the antiemetic Aprepitant as an anticancer drug is urgently needed.
Collapse
Affiliation(s)
- Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37007 Salamanca, Spain;
- Group GIR-BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain;
| | - Francisco D. Rodríguez
- Group GIR-BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain;
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
| | - Prema Robinson
- Department of Infectious Diseases, Infection Control, and Employee Health, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Miguel Muñoz
- Pediatric Intensive Care Unit, Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, 41013 Seville, Spain;
| |
Collapse
|
8
|
Mishra S, Rout M, Singh MK, Dehury B, Pati S. Illuminating the structural basis of human neurokinin 1 receptor (NK1R) antagonism through classical all-atoms molecular dynamics simulations. J Cell Biochem 2023; 124:1848-1869. [PMID: 37942587 DOI: 10.1002/jcb.30493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
Advances in structural biology have bestowed insights into the pleiotropic effects of neurokinin 1 receptors (NK1R) in diverse patho-physiological processes, thereby highlighting the potential therapeutic value of antagonists directed against NK1R. Herein, we investigate the mode of antagonist recognition to discern the obscure atomic facets germane for the function and molecular determinants of NK1R. To commence discernment of potent antagonists and the conformational changes in NK1R, induced upon antagonist binding, state-of-the-art classical all-atoms molecular dynamics (MD) simulations in lipid mimetic bilayers have been utilized. MD simulations of structural ensembles reveals the involvement of TM5 and TM6 in tight anchoring of antagonists through a network of interhelical hydrogen-bonds, while, the extracellular loop 2 (ECL2) governs the overall size and nature of the pocket, thereby modulating NK1R. Consistent comparison between experiments and MD simulation results discerns the predominant role of TM3, TM4, and TM6 in lipid-NK1R interaction. Correlation between hydrophobic index and helicity of TM domains elucidates their importance in maintaining the structural stability in addition to regulating NK1R antagonism. Taken together, we anticipate that our computational study marks a comprehensive structural basis of NK1R antagonism in lipid bilayers, which may facilitate designing of new therapeutics against associated diseases targeting human neurokinin receptors.
Collapse
Affiliation(s)
- Sarbani Mishra
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Madhusmita Rout
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Mahender Kumar Singh
- Data Science Laboratory, National Brain Research Centre, Gurgaon, Haryana, India
| | - Budheswar Dehury
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| |
Collapse
|
9
|
Beets I, Zels S, Vandewyer E, Demeulemeester J, Caers J, Baytemur E, Courtney A, Golinelli L, Hasakioğulları İ, Schafer WR, Vértes PE, Mirabeau O, Schoofs L. System-wide mapping of peptide-GPCR interactions in C. elegans. Cell Rep 2023; 42:113058. [PMID: 37656621 PMCID: PMC7615250 DOI: 10.1016/j.celrep.2023.113058] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Neuropeptides and peptide hormones are ancient, widespread signaling molecules that underpin almost all brain functions. They constitute a broad ligand-receptor network, mainly by binding to G protein-coupled receptors (GPCRs). However, the organization of the peptidergic network and roles of many peptides remain elusive, as our insight into peptide-receptor interactions is limited and many peptide GPCRs are still orphan receptors. Here we report a genome-wide peptide-GPCR interaction map in Caenorhabditis elegans. By reverse pharmacology screening of over 55,384 possible interactions, we identify 461 cognate peptide-GPCR couples that uncover a broad signaling network with specific and complex combinatorial interactions encoded across and within single peptidergic genes. These interactions provide insights into peptide functions and evolution. Combining our dataset with phylogenetic analysis supports peptide-receptor co-evolution and conservation of at least 14 bilaterian peptidergic systems in C. elegans. This resource lays a foundation for system-wide analysis of the peptidergic network.
Collapse
Affiliation(s)
- Isabel Beets
- Department of Biology, KU Leuven, 3000 Leuven, Belgium.
| | - Sven Zels
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | | | - Jonas Demeulemeester
- The Francis Crick Institute, London NW1 1AT, UK; VIB - KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jelle Caers
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Esra Baytemur
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Amy Courtney
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Petra E Vértes
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Olivier Mirabeau
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Inserm U1224, Brain-Immune Communication Lab, 75015 Paris, France
| | | |
Collapse
|
10
|
Safwat A, Helmy A, Gupta A. The Role of Substance P Within Traumatic Brain Injury and Implications for Therapy. J Neurotrauma 2023; 40:1567-1583. [PMID: 37132595 DOI: 10.1089/neu.2022.0510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
This review examines the role of the neuropeptide substance P within the neuroinflammation that follows traumatic brain injury. It examines it in reference to its preferential receptor, the neurokinin-1 receptor, and explores the evidence for antagonism of this receptor in traumatic brain injury with therapeutic intent. Expression of substance P increases following traumatic brain injury. Subsequent binding to the neurokinin-1 receptor results in neurogenic inflammation, a cause of deleterious secondary effects that include an increased intracranial pressure and poor clinical outcome. In several animal models of TBI, neurokinin-1 receptor antagonism has been shown to reduce brain edema and the resultant rise in intracranial pressure. A brief overview of the history of substance P is presented, alongside an exploration into the chemistry of the neuropeptide with a relevance to its functions within the central nervous system. This review summarizes the scientific and clinical rationale for substance P antagonism as a promising therapy for human TBI.
Collapse
Affiliation(s)
- Adam Safwat
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Adel Helmy
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Arun Gupta
- Neurosciences Critical Care Unit, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
11
|
Hegron A, Peach CJ, Tonello R, Seemann P, Teng S, Latorre R, Huebner H, Weikert D, Rientjes J, Veldhuis NA, Poole DP, Jensen DD, Thomsen ARB, Schmidt BL, Imlach WL, Gmeiner P, Bunnett NW. Therapeutic antagonism of the neurokinin 1 receptor in endosomes provides sustained pain relief. Proc Natl Acad Sci U S A 2023; 120:e2220979120. [PMID: 37216510 PMCID: PMC10235985 DOI: 10.1073/pnas.2220979120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/04/2023] [Indexed: 05/24/2023] Open
Abstract
The hypothesis that sustained G protein-coupled receptor (GPCR) signaling from endosomes mediates pain is based on studies with endocytosis inhibitors and lipid-conjugated or nanoparticle-encapsulated antagonists targeted to endosomes. GPCR antagonists that reverse sustained endosomal signaling and nociception are needed. However, the criteria for rational design of such compounds are ill-defined. Moreover, the role of natural GPCR variants, which exhibit aberrant signaling and endosomal trafficking, in maintaining pain is unknown. Herein, substance P (SP) was found to evoke clathrin-mediated assembly of endosomal signaling complexes comprising neurokinin 1 receptor (NK1R), Gαq/i, and βarrestin-2. Whereas the FDA-approved NK1R antagonist aprepitant induced a transient disruption of endosomal signals, analogs of netupitant designed to penetrate membranes and persist in acidic endosomes through altered lipophilicity and pKa caused sustained inhibition of endosomal signals. When injected intrathecally to target spinal NK1R+ve neurons in knockin mice expressing human NK1R, aprepitant transiently inhibited nociceptive responses to intraplantar injection of capsaicin. Conversely, netupitant analogs had more potent, efficacious, and sustained antinociceptive effects. Mice expressing C-terminally truncated human NK1R, corresponding to a natural variant with aberrant signaling and trafficking, displayed attenuated SP-evoked excitation of spinal neurons and blunted nociceptive responses to SP. Thus, sustained antagonism of the NK1R in endosomes correlates with long-lasting antinociception, and domains within the C-terminus of the NK1R are necessary for the full pronociceptive actions of SP. The results support the hypothesis that endosomal signaling of GPCRs mediates nociception and provides insight into strategies for antagonizing GPCRs in intracellular locations for the treatment of diverse diseases.
Collapse
Affiliation(s)
- Alan Hegron
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
| | - Chloe J. Peach
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
| | - Raquel Tonello
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
| | - Philipp Seemann
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Shavonne Teng
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
| | - Rocco Latorre
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
| | - Harald Huebner
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Dorothee Weikert
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Jeanette Rientjes
- Gene Modification Platform, Monash University, Clayton, VIC3168, Australia
| | - Nicholas A. Veldhuis
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Daniel P. Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Dane D. Jensen
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
- NYU Dentistry Translational Research Center, College of Dentistry, New York University, New York, NY10010
| | - Alex R. B. Thomsen
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
| | - Brian L. Schmidt
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
- NYU Dentistry Translational Research Center, College of Dentistry, New York University, New York, NY10010
| | - Wendy L. Imlach
- Department of Physiology and Monash Biomedicine Discovery Institute, Monash University, VIC3800, Australia
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Nigel W. Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
| |
Collapse
|
12
|
Restaino AC, Walz A, Vermeer SJ, Barr J, Kovács A, Fettig RR, Vermeer DW, Reavis H, Williamson CS, Lucido CT, Eichwald T, Omran DK, Jung E, Schwartz LE, Bell M, Muirhead DM, Hooper JE, Spanos WC, Drapkin R, Talbot S, Vermeer PD. Functional neuronal circuits promote disease progression in cancer. SCIENCE ADVANCES 2023; 9:eade4443. [PMID: 37163587 PMCID: PMC10171812 DOI: 10.1126/sciadv.ade4443] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
The molecular and functional contributions of intratumoral nerves to disease remain largely unknown. We localized synaptic markers within tumors suggesting that these nerves form functional connections. Consistent with this, electrophysiological analysis shows that malignancies harbor significantly higher electrical activity than benign disease or normal tissues. We also demonstrate pharmacologic silencing of tumoral electrical activity. Tumors implanted in transgenic animals lacking nociceptor neurons show reduced electrical activity. These data suggest that intratumoral nerves remain functional at the tumor bed. Immunohistochemical staining demonstrates the presence of the neuropeptide, Substance P (SP), within the tumor space. We show that tumor cells express the SP receptor, NK1R, and that ligand/receptor engagement promotes cellular proliferation and migration. Our findings identify a mechanism whereby intratumoral nerves promote cancer progression.
Collapse
Affiliation(s)
- Anthony C. Restaino
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
- University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
| | - Austin Walz
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | | | - Jeffrey Barr
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Attila Kovács
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Robin R. Fettig
- Basic Biomedical Sciences Program, University of South Dakota, Vermillion, SD, USA
| | - Daniel W. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Hunter Reavis
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Tuany Eichwald
- Karolinska Institutet, Department of Pharmacology and Physiology, Solna, Sweden
- Queen’s University, Department of Biomedical and Molecular Sciences, Kingston, Ontario, Canada
| | - Dalia K. Omran
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Euihye Jung
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren E. Schwartz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Bell
- Sanford Gynecologic Oncology, Sanford Health, Sioux Falls, SD, USA
| | | | - Jody E. Hooper
- Legacy Gift Rapid Autopsy Program, Johns Hopkins University, Baltimore, MD, USA
| | - William C. Spanos
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
- Sanford Ear, Nose and Throat Clinic, Sioux Falls, SD, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sebastien Talbot
- Karolinska Institutet, Department of Pharmacology and Physiology, Solna, Sweden
- Queen’s University, Department of Biomedical and Molecular Sciences, Kingston, Ontario, Canada
| | - Paola D. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
- University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
| |
Collapse
|
13
|
Zhu Z, Bhatia M. Inflammation and Organ Injury the Role of Substance P and Its Receptors. Int J Mol Sci 2023; 24:6140. [PMID: 37047113 PMCID: PMC10094202 DOI: 10.3390/ijms24076140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Tightly controlled inflammation is an indispensable mechanism in the maintenance of cellular and organismal homeostasis in living organisms. However, aberrant inflammation is detrimental and has been suggested as a key contributor to organ injury with different etiologies. Substance P (SP) is a neuropeptide with a robust effect on inflammation. The proinflammatory effects of SP are achieved by activating its functional receptors, namely the neurokinin 1 receptor (NK1R) receptor and mas-related G protein-coupled receptors X member 2 (MRGPRX2) and its murine homolog MRGPRB2. Upon activation, the receptors further signal to several cellular signaling pathways involved in the onset, development, and progression of inflammation. Therefore, excessive SP-NK1R or SP-MRGPRX2/B2 signals have been implicated in the pathogenesis of inflammation-associated organ injury. In this review, we summarize our current knowledge of SP and its receptors and the emerging roles of the SP-NK1R system and the SP-MRGPRX2/B2 system in inflammation and injury in multiple organs resulting from different pathologies. We also briefly discuss the prospect of developing a therapeutic strategy for inflammatory organ injury by disrupting the proinflammatory actions of SP via pharmacological intervention.
Collapse
Affiliation(s)
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
14
|
Rahman SN, McNaught-Flores DA, Huppelschoten Y, da Costa Pereira D, Christopoulos A, Leurs R, Langmead CJ. Structural and Molecular Determinants for Isoform Bias at Human Histamine H 3 Receptor Isoforms. ACS Chem Neurosci 2023; 14:645-656. [PMID: 36702158 DOI: 10.1021/acschemneuro.2c00425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The human histamine H3 receptor (hH3R) is predominantly expressed in the CNS, where it regulates the synthesis and release of histamine and other neurotransmitters. Due to its neuromodulatory role, the hH3R has been associated with various CNS disorders, including Alzheimer's and Parkinson's disease. Markedly, the hH3R gene undergoes extensive splicing, resulting in 20 isoforms, of which 7TM isoforms exhibit variations in the intracellular loop 3 (IL3) and/or C-terminal tail. Particularly, hH3R isoforms that display variations in IL3 (e.g., hH3R-365) are shown to differentially signal via Gαi-dependent pathways upon binding of biased agonists (e.g., immepip, proxifan, imetit). Nevertheless, the mechanisms underlying biased agonism at hH3R isoforms remain unknown. Using a structure-function relationship study with a broad range of H3R agonists, we thereby explored determinants underlying isoform bias at hH3R isoforms that exhibit variations in IL3 (i.e., hH3R-445, -415, -365, and -329) in a Gαi-dependent pathway (cAMP inhibition). Hence, we systematically characterized hH3R isoforms on isoform bias by comparing various ligand properties (i.e., structural and molecular) to the degree of isoform bias. Importantly, our study provides novel insights into the structural and molecular basis of receptor isoform bias, highlighting the importance to study GPCRs with multiple isoforms to better tailor drugs.
Collapse
Affiliation(s)
- Sabrina N Rahman
- Amsterdam Institute for Molecular Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZAmsterdam, The Netherlands.,Drug Discovery Biology and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Melbourne, 3052VIC, Australia
| | - Daniel A McNaught-Flores
- Amsterdam Institute for Molecular Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZAmsterdam, The Netherlands
| | - Yara Huppelschoten
- Amsterdam Institute for Molecular Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZAmsterdam, The Netherlands
| | - Daniel da Costa Pereira
- Amsterdam Institute for Molecular Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZAmsterdam, The Netherlands
| | - Arthur Christopoulos
- Drug Discovery Biology and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Melbourne, 3052VIC, Australia
| | - Rob Leurs
- Amsterdam Institute for Molecular Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZAmsterdam, The Netherlands
| | - Christopher J Langmead
- Drug Discovery Biology and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Melbourne, 3052VIC, Australia
| |
Collapse
|
15
|
Xia B, Lin G, Zheng S, Zhang H, Yu Y. Differential effects of PEGylated Cd-free CuInS 2/ZnS quantum dot (QDs) on substance P and LL-37 induced human mast cell activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114108. [PMID: 36174319 DOI: 10.1016/j.ecoenv.2022.114108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
CuInS2/ZnS-PEG quantum dots (QDs) are among the most widely used near infrared non-cadmium QDs and are favored because of their non-cadmium content and strong tissue penetration. However, with their increasing use, there is great concern about whether exposure to QDs is potentially risky to the environment and humans. Furthermore, toxicological data related to CuInS2/ZnS-PEG QDs are scarce. In the study, we found that CuInS2/ZnS-PEG QDs (0-100 μg/mL) could internalize into human LAD2 mast cells without affecting their survival rate, nor did it cause degranulation or release of IL-8 and TNF-α. However, CuInS2/ZnS-PEG QDs significantly inhibited Substance P (SP) and LL-37-induced degranulation and chemotaxis of LAD2 cells by inhibiting calcium mobilization. Lower concentrations of CuInS2/ZnS-PEG QDs promoted the release of TNF-α and IL-8 stimulated by SP, but higher concentrations of CuInS2/ZnS-PEG QDs significantly inhibited the release of TNF-α and IL-8. On the other hand, CuInS2/ZnS-PEG QDs promoted LL-37-mediated TNF-α release from LAD2 cells in a dose-dependent manner from 6.25 to 100 μg/mL, while release of IL-8 triggered by LL-37 was dose-dependently inhibited within a dose concentration of 12.5-100 μg/mL. Collectively, our data demonstrated that CuInS2/ZnS-PEG QDs differentially mediated human mast cell activation induced by SP and LL-37.
Collapse
Affiliation(s)
- Beibei Xia
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Guimiao Lin
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Siman Zheng
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Heng Zhang
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Yangyang Yu
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
16
|
Gao X, Frakich N, Filippini P, Edwards LJ, Vinkemeier U, Gran B, Tanasescu R, Bayraktutan U, Colombo S, Constantinescu CS. Effects of substance P on human cerebral microvascular endothelial cell line hCMEC/D3 are mediated exclusively through a truncated NK-1 receptor and depend on cell confluence. Neuropeptides 2022; 95:102265. [PMID: 35696961 DOI: 10.1016/j.npep.2022.102265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/01/2022] [Accepted: 06/02/2022] [Indexed: 01/15/2023]
Abstract
The neuropeptide substance P (SP) mediates pain transmission, immune modulation, vasodilation and neurogenic inflammation. Its role in the peripheral nervous system has been well characterised. However, its actions on the blood-brain barrier (BBB) are less clear and warrant further study. The aim of this study was to characterise the effect of SP on the brain microvascular endothelial cells using the immortalized human brain microvascular endothelial cell line hCMEC/D3. As part of our studies, we have evaluated changes in expression, at mRNA and protein levels, of genes involved in the function of the blood-brain barrier such as occludin, induced by exposure to SP. We show that the effect of SP is dependent on cell confluence status. Thus, at low confluence but not at full confluence, SP treatment reduced occludin expression. The expression of the SP receptor, neurokinin-1 receptor (NK-1R) (the truncated form of the receptor expressed exclusively in this cell line) was also modulated in a similar pattern. SP treatment stimulated extracellular signal-regulated kinase (Erk2) phosphorylation which was not associated to changes in Interleukin-6 (IL-6), Interleukin-8 (IL-8), or Intercellular Adhesion Molecule 1 (ICAM-1) protein expression. In addition, SP treatment effectively recovered nitric oxide production on cells exposed to tumour necrosis factor alpha (TNF-α). SP did not trigger intracellular calcium release in hCMEC/D3 cells. We conclude that hCMEC/D3 cells are partially responsive to SP, that the effects are mediated through the truncated form of the receptor and are dependent on the confluence status of these cells.
Collapse
Affiliation(s)
- Xin Gao
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | - Nanci Frakich
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Perla Filippini
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Laura J Edwards
- Division of Medical Sciences and Graduate Entry Medicine, Medical School, Royal Derby Hospital, Uttoxeter Road, Derby DE22 3DT, University of Nottingham, UK
| | - Uwe Vinkemeier
- School of Life Science, Action Medical Research Professor of Cell Biology, University of Nottingham, Nottingham, UK
| | - Bruno Gran
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Radu Tanasescu
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, UK; Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Sergio Colombo
- School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Cris S Constantinescu
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, UK; Department of Neurology, Cooper University Hospital, Cooper Neurological Institute, Camden, NJ 08103, USA.
| |
Collapse
|
17
|
Puri S, Kenyon BM, Hamrah P. Immunomodulatory Role of Neuropeptides in the Cornea. Biomedicines 2022; 10:1985. [PMID: 36009532 PMCID: PMC9406019 DOI: 10.3390/biomedicines10081985] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/21/2022] Open
Abstract
The transparency of the cornea along with its dense sensory innervation and resident leukocyte populations make it an ideal tissue to study interactions between the nervous and immune systems. The cornea is the most densely innervated tissue of the body and possesses both immune and vascular privilege, in part due to its unique repertoire of resident immune cells. Corneal nerves produce various neuropeptides that have a wide range of functions on immune cells. As research in this area expands, further insights are made into the role of neuropeptides and their immunomodulatory functions in the healthy and diseased cornea. Much remains to be known regarding the details of neuropeptide signaling and how it contributes to pathophysiology, which is likely due to complex interactions among neuropeptides, receptor isoform-specific signaling events, and the inflammatory microenvironment in disease. However, progress in this area has led to an increase in studies that have begun modulating neuropeptide activity for the treatment of corneal diseases with promising results, necessitating the need for a comprehensive review of the literature. This review focuses on the role of neuropeptides in maintaining the homeostasis of the ocular surface, alterations in disease settings, and the possible therapeutic potential of targeting these systems.
Collapse
Affiliation(s)
- Sudan Puri
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Departments of Immunology and Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Cornea Service, Tufts New England Eye Center, Boston, MA 02111, USA
| |
Collapse
|
18
|
Modulating the tachykinin: Role of substance P and neurokinin receptor expression in ocular surface disorders. Ocul Surf 2022; 25:142-153. [PMID: 35779793 DOI: 10.1016/j.jtos.2022.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 01/19/2023]
Abstract
Substance P (SP) is a tachykinin expressed by various cells in the nervous and immune systems. SP is predominantly released by neurons and exerts its biological and immunological effects through the neurokinin receptors, primarily the neurokinin-1 receptor (NK1R). SP is essential for maintaining ocular surface homeostasis, and its reduced levels in disorders like diabetic neuropathy disrupt the corneal tissue. It also plays an essential role in promoting corneal wound healing by promoting the migration of keratocytes. In this review, we briefly discuss the structure, expression, and function of SP and its principal receptor NK1R. In addition, SP induces pro-inflammatory effects through autocrine or paracrine action on the immune cells in various ocular surface pathologies, including dry eye disease, herpes simplex virus keratitis, and Pseudomonas keratitis. We provide an in-depth review of the pathogenic role of SP in various ocular surface diseases and several new approaches developed to counter the immune-mediated effects of SP either through modulating its production or blocking its target receptor.
Collapse
|
19
|
The Emerging Role of Neurokinin-1 Receptor Blockade Using Aprepitant in the Redox System of Esophageal Squamous Cell Carcinoma. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10399-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
SP/NK1R system regulates carcinogenesis in prostate cancer: Shedding light on the antitumoral function of aprepitant. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119221. [PMID: 35134443 DOI: 10.1016/j.bbamcr.2022.119221] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/27/2021] [Accepted: 01/19/2022] [Indexed: 12/28/2022]
Abstract
AIMS Prostate cancer continues to be one of the main global health issues in men. Neuropeptide substance P (SP) acting via neurokinin-1receptor (NK1R) promotes tumorigenicity in many human malignant tumors. However, its pro-tumorigenic functions and the therapeutic effects of its inhibition in prostate cancer remain unclear. METHODS MTT assay was employed for measuring cellular proliferation and cytotoxicity. mRNAs and proteins expression levels were evaluated by qRT-PCR and western blot assay, respectively. Gelatinase activity was assessed by zymography. The migration ability was defined using wound-healing assay. Flow cytometry was employed to evaluate the cell cycle distribution. We also performed an in vivo experiment in a mouse model of prostate cancer to confirm the in vitro therapeutic effect of targeting the SP/NK1R system. RESULTS We found a noticeable increase in the expression of the truncated isoform of NK1R as an oncogenic NK1R splice variant in tumor cells. We also demonstrated that SP promotes both proliferative and migrative phenotypes of prostate cancer through modifying cell cycle-related proteins (c-Myc, cyclin D1, cyclin B1, p21), and apoptosis-related genes (Bcl-2 and Bax), promoting cell migration and increasing MMP-2 and MMP-9 expression and activity, while aprepitant administration could remarkably reverse these effects. SP also stimulated tumor growth in vivo, which was correlated with shorter survival times, while aprepitant reversed this effect and led to significantly longer survival time. SIGNIFICANCE Our findings suggest that SP/NK1R system may serve as a novel therapeutic target in prostate cancer and support the possible candidacy of aprepitant in future prostate cancer therapy.
Collapse
|
21
|
Potential in vitro therapeutic effects of targeting SP/NK1R system in cervical cancer. Mol Biol Rep 2021; 49:1067-1076. [PMID: 34766230 DOI: 10.1007/s11033-021-06928-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/30/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cervical cancer, an aggressive gynecological cancer, seriously threatens women's health worldwide. It is recently reported that neuropeptide substance P (SP) regulates many tumor-associated processes through neurokinin-1 receptor (NK1R). Therefore, we used cervical cancer cell line (HeLa) to investigate the functional relevance of the SP/NK1R system in cervical cancer pathogenesis. METHODS Cellular proliferation and cytotoxicity were analyzed by colorimetric MTT assay. Quantitative real-time PCR (qRT-PCR) was used to measure mRNA expression levels of desired genes. Cell cycle distribution and apoptosis were evaluated by flow cytometry. A wound-healing assay was employed to assess migration ability. RESULTS We found that the truncated isoform of NK1R(NK1R-Tr) is the dominantly expressed form of the receptor in Hela cells. We also indicated that that SP increased HeLa cell proliferation while treatment with NK1R antagonist, aprepitant, inhibited HeLa cell viability in a dose and time-dependent manner. SP also alters the levels of cell cycle regulators (up-regulation of cyclin B1 along with downregulation of p21) and apoptosis-related genes (up-regulation of Bcl-2 along with downregulation of Bax) while aprepitant reversed these effects. Aprepitant also induced arrest within the G2 phase of the cell cycle and subsequent apoptosis. Furthermore, SP promoted the migrative phenotype of HeLa cells and increased MMP-2 and MMP-9 expression while aprepitant exposure significantly reversed these effects. CONCLUSION Collectively, our results indicate the importance of the SP / NK1R system in promoting both proliferative and migrative phenotypes of cervical cancer cells and suggest that aprepitant may be developed as a novel treatment for combating cervical cancer.
Collapse
|
22
|
Beirith I, Renz BW, Mudusetti S, Ring NS, Kolorz J, Koch D, Bazhin AV, Berger M, Wang J, Angele MK, D’Haese JG, Guba MO, Niess H, Andrassy J, Werner J, Ilmer M. Identification of the Neurokinin-1 Receptor as Targetable Stratification Factor for Drug Repurposing in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13112703. [PMID: 34070805 PMCID: PMC8198055 DOI: 10.3390/cancers13112703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022] Open
Abstract
The SP/NK1R-complex plays an important role in tumor proliferation. Targeting of the neurokinin-1 receptor in previous studies with its antagonist aprepitant (AP) resulted in anti-tumoral effects in colorectal cancer and hepatoblastoma. However, there is still a lack of knowledge regarding its effects on pancreatic cancer. Therefore, we treated human pancreatic ductal adenocarcinoma (PDAC) cell lines (Capan-1, DanG, HuP-T3, Panc-1, and MIA PaCa-2) and their cancer stem cell-like cells (CSCs) with AP and analyzed functional effects by MTT-, colony, and sphere formation assays, respectively; moreover, we monitored downstream mechanisms by flow cytometry. NK1R inhibition resulted in dose-dependent growth reduction in both CSCs and non-CSCs without induction of apoptosis in most PDAC cell lines. More importantly, we identified striking AP dependent cell cycle arrest in all parental cells. Furthermore, gene expression and the importance of key genes in PDAC tumorigenesis were analyzed combining RT-qPCR in eight PDAC cell lines with publicly available datasets (TCGA, GEO, CCLE). Surprisingly, we found a better overall survival in patients with high NK1R levels, while at the same time, NK1R was significantly decreased in PDAC tissue compared to normal tissue. Interestingly, there is currently no differentiation between the isoforms of NK1R (truncated and full; NK1R-tr and -fl) in any of the indicated public transcriptomic records, although many publications already emphasize on important regulatory differences between the two isoforms of NK1R in many cancer entities. In conclusion, analysis of splice variants might potentially lead to a stratification of PDAC patients for NK1R-directed therapies. Furthermore, we presume PDAC patients with high expressions of NK1R-tr might benefit from treatment with AP to improve chemoresistance. Therefore, analysis of splice variants might potentially lead to a stratification of PDAC patients for NK1R-directed therapies.
Collapse
Affiliation(s)
- Iris Beirith
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
| | - Bernhard W. Renz
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
- German Center for Translations Cancer Research (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Shristee Mudusetti
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
| | - Natalja Sergejewna Ring
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
| | - Julian Kolorz
- Department of Pediatric Surgery, Research Laboratories, von Hauner Children’s Hospital, Ludwig-Maximilians-University Munich, 80337 Munich, Germany; (J.K.); (M.B.)
| | - Dominik Koch
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
- German Center for Translations Cancer Research (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Michael Berger
- Department of Pediatric Surgery, Research Laboratories, von Hauner Children’s Hospital, Ludwig-Maximilians-University Munich, 80337 Munich, Germany; (J.K.); (M.B.)
- Department of General, Abdominal and Transplant Surgery, Essen University Hospital, 45417 Essen, Germany
| | - Jing Wang
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Martin K. Angele
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
| | - Jan G. D’Haese
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
| | - Markus O. Guba
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
| | - Hanno Niess
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
| | - Joachim Andrassy
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
| | - Jens Werner
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
- German Center for Translations Cancer Research (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Matthias Ilmer
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
- German Center for Translations Cancer Research (DKTK), Partner Site Munich, 80336 Munich, Germany
- Correspondence: ; Tel.: +49-089-4400-711218
| |
Collapse
|
23
|
NK1 antagonists attenuate tau phosphorylation after blast and repeated concussive injury. Sci Rep 2021; 11:8861. [PMID: 33893374 PMCID: PMC8065119 DOI: 10.1038/s41598-021-88237-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/05/2021] [Indexed: 01/05/2023] Open
Abstract
Exposure to repeated concussive traumatic brain injury (TBI) and to blast-induced TBI has been associated with the potential development of the neurodegenerative condition known as chronic traumatic encephalopathy (CTE). CTE is characterized by the accumulation of hyperphosphorylated tau protein, with the resultant tau tangles thought to initiate the cognitive and behavioral manifestations that appear as the condition progresses. However, the mechanisms linking concussive and blast TBI with tau hyperphosphorylation are unknown. Here we show that single moderate TBI, repeated concussive TBI and blast-induced mild TBI all result in hyperphosphorylation of tau via a substance P mediated mechanism. Post-injury administration of a substance P, NK1 receptor antagonist attenuated the injury-induced phosphorylation of tau by modulating the activity of several key kinases including Akt, ERK1/2 and JNK, and was associated with improvement in neurological outcome. We also demonstrate that inhibition of the TRPV1 mechanoreceptor, which is linked to substance P release, attenuated injury-associated tau hyperphosphorylation, but only when it was administered prior to injury. Our results demonstrate that TBI-mediated stimulation of brain mechanoreceptors is associated with substance P release and consequent tau hyperphosphorylation, with administration of an NK1 receptor antagonist attenuating tau phosphorylation and associated neurological deficits. NK1 antagonists may thus represent a pharmacological approach to attenuate the potential development of CTE following concussive and blast TBI.
Collapse
|
24
|
Morelli AE, Sumpter TL, Rojas-Canales DM, Bandyopadhyay M, Chen Z, Tkacheva O, Shufesky WJ, Wallace CT, Watkins SC, Berger A, Paige CJ, Falo LD, Larregina AT. Neurokinin-1 Receptor Signaling Is Required for Efficient Ca 2+ Flux in T-Cell-Receptor-Activated T Cells. Cell Rep 2021; 30:3448-3465.e8. [PMID: 32160549 PMCID: PMC7169378 DOI: 10.1016/j.celrep.2020.02.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/08/2019] [Accepted: 02/12/2020] [Indexed: 01/09/2023] Open
Abstract
Efficient Ca2+ flux induced during cognate T cell activation requires signaling the T cell receptor (TCR) and unidentified G-protein-coupled receptors (GPCRs). T cells express the neurokinin-1 receptor (NK1R), a GPCR that mediates Ca2+ flux in excitable and non-excitable cells. However, the role of the NK1R in TCR signaling remains unknown. We show that the NK1R and its agonists, the neuropeptides substance P and hemokinin-1, co-localize within the immune synapse during cognate activation of T cells. Simultaneous TCR and NK1R stimulation is necessary for efficient Ca2+ flux and Ca2+-dependent signaling that sustains the survival of activated T cells and helper 1 (Th1) and Th17 bias. In a model of contact dermatitis, mice with T cells deficient in NK1R or its agonists exhibit impaired cellular immunity, due to high mortality of activated T cells. We demonstrate an effect of the NK1R in T cells that is relevant for immunotherapies based on pro-inflammatory neuropeptides and its receptors. The neurokinin 1 receptor (NK1R) induces Ca2+ flux in excitable cells. Here, Morelli et al. show that NK1R signaling in T cells promotes optimal Ca2+ flux triggered by TCR stimulation, which is necessary to sustain T cell survival and the efficient Th1- and Th17-based immunity that is relevant for immunotherapies based on pro-inflammatory neuropeptides.
Collapse
Affiliation(s)
- Adrian E Morelli
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, School of Medicine Pittsburgh, PA, USA
| | - Tina L Sumpter
- Department of Immunology, University of Pittsburgh, School of Medicine Pittsburgh, PA, USA; Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | | | - Mohna Bandyopadhyay
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Zhizhao Chen
- Hubei Key Laboratory of Medical Technology on Transplantation, Transplant Center, Institute of Hepatobiliary Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Olga Tkacheva
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - William J Shufesky
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Callen T Wallace
- Department of Cell Biology and Center for Biological Imaging, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; The McGowan Center for Regenerative Medicine, Pittsburgh, PA, USA
| | - Simon C Watkins
- Department of Immunology, University of Pittsburgh, School of Medicine Pittsburgh, PA, USA; Department of Cell Biology and Center for Biological Imaging, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; The McGowan Center for Regenerative Medicine, Pittsburgh, PA, USA
| | - Alexandra Berger
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, ON, Canada
| | | | - Louis D Falo
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; The McGowan Center for Regenerative Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA; The University of Pittsburgh Clinical and Translational Science Institute, Pittsburgh, PA, USA; The UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Adriana T Larregina
- Department of Immunology, University of Pittsburgh, School of Medicine Pittsburgh, PA, USA; Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; The McGowan Center for Regenerative Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Neurokinin-1 receptor signaling induces a pro-inflammatory transcriptomic profile in CD16+ monocytes. J Neuroimmunol 2021; 353:577524. [PMID: 33640716 DOI: 10.1016/j.jneuroim.2021.577524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/22/2023]
Abstract
Neurokinin-1 receptor (NK1R) signaling can be immunomodulatory and it can lead to preferential transmigration of CD14+CD16+ monocytes across the blood brain barrier, potentially promoting the development of inflammatory neurological diseases, such as neuroHIV. To evaluate how NK1R signaling alters monocyte biology, RNA sequencing was used to define NK1R-mediated transcriptional changes in different monocyte subsets. The data show that NK1R activation induces a greater number of changes in CD14+CD16+ monocytes (152 differentially expressed genes), than in CD14+CD16- monocytes (36 genes), including increases in the expression of NF-κB and components of the NLRP3 inflammasome pathway. These results suggest that NK1R may alter the inflammatory state of CD14+CD16+ monocytes, influencing the development of neuroinflammation.
Collapse
|
26
|
The neuropeptide substance P regulates aldosterone secretion in human adrenals. Nat Commun 2020; 11:2673. [PMID: 32471973 PMCID: PMC7260184 DOI: 10.1038/s41467-020-16470-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
Aldosterone, produced by the adrenals and under the control of plasma angiotensin and potassium levels, regulates hydromineral homeostasis and blood pressure. Here we report that the neuropeptide substance P (SP) released by intraadrenal nerve fibres, stimulates aldosterone secretion via binding to neurokinin type 1 receptors (NK1R) expressed by aldosterone-producing adrenocortical cells. The action of SP is mediated by the extracellular signal-regulated kinase pathway and involves upregulation of steroidogenic enzymes. We also conducted a prospective proof-of-concept, double blind, placebo-controlled clinical trial aimed to investigate the impact of the NK1R antagonist aprepitant on aldosterone secretion in healthy male volunteers (EudraCT: 2008-003367-40, ClinicalTrial.gov: NCT00977223). Participants received during two 7-day treatment periods aprepitant (125 mg on the 1st day and 80 mg during the following days) or placebo in a random order at a 2-week interval. The primary endpoint was plasma aldosterone levels during posture test. Secondary endpoints included basal aldosterone alterations, plasma aldosterone variation during metoclopramide and hypoglycaemia tests, and basal and stimulated alterations of renin, cortisol and ACTH during the three different stimulatory tests. The safety of the treatment was assessed on the basis of serum transaminase measurements on days 4 and 7. All pre-specified endpoints were achieved. Aprepitant decreases aldosterone production by around 30% but does not influence the aldosterone response to upright posture. These results indicate that the autonomic nervous system exerts a direct stimulatory tone on mineralocorticoid synthesis through SP, and thus plays a role in the maintenance of hydromineral homeostasis. This regulatory mechanism may be involved in aldosterone excess syndromes. Adrenal aldosterone production is regulated by plasma angiotensin and potassium levels. Here the authors report that the neuropeptide substance P stimulates aldosterone production via neurokinin type 1 receptors (NK1R), and report a proof-of-concept placebo controlled clinical trial showing that a NK1R antagonist decreases aldosterone levels.
Collapse
|
27
|
Nakamura Y, Fukushige R, Watanabe K, Kishida Y, Hisaoka-Nakashima K, Nakata Y, Morioka N. Continuous infusion of substance P into rat striatum relieves mechanical hypersensitivity caused by a partial sciatic nerve ligation via activation of striatal muscarinic receptors. Behav Brain Res 2020; 391:112714. [PMID: 32461131 DOI: 10.1016/j.bbr.2020.112714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 12/14/2022]
Abstract
Previous studies have demonstrated that continuous substance P (SP) infusion into the rat striatum attenuated hind paw formalin-induced nociceptive behaviors and mechanical hypersensitivity via a neurokinin-1 (NK1) receptor dependent mechanism. However, whether there is a role of striatal infusion of SP on chronic, neuropathic pain has yet to be demonstrated. The present study investigated the effect of continuous SP infusion into the rat striatum using a reverse microdialysis method is antinociceptive in a rat model of chronic, mononeuropathic pain. Two weeks after partial sciatic nerve injury, the ipsilateral hind paw demonstrated mechanical hypersensitivity. Infusion of SP (0.2, 0.4, or 0.8 μg/mL, 1 μL/min) for 120 min into the contralateral striatum dose-dependently relieved mechanical hypersensitivity. The antinociceptive effect of SP infusion was inhibited by co-infusion with the NK1 receptor antagonist CP96345 (10 μM). Neither ipsilateral continuous infusion nor acute microinjection of SP (10 ng) into the contralateral striatum was antinociceptive. A role of striatal muscarinic cholinergic neurons is suggested since co-infusion of SP with atropine (10 μM), but not the nicotinic receptor mecamylamine (10 μM), blocked antinociception. The current study suggests that activation of striatal muscarinic receptors through NK1 receptors could be a novel approach to managing chronic pain.
Collapse
Affiliation(s)
- Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Ryo Fukushige
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kohei Watanabe
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yuki Kishida
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan.
| |
Collapse
|
28
|
Wang L, Wang N, Zhang R, Dong D, Liu R, Zhang L, Ji W, Yu M, Zhang F, Niu R, Zhou Y. TGFβ regulates NK1R-Tr to affect the proliferation and apoptosis of breast cancer cells. Life Sci 2020; 256:117674. [PMID: 32380077 DOI: 10.1016/j.lfs.2020.117674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES TGFβ promotes cancer aggressiveness in advanced stages. NK1R-Tr expression in advanced breast cancer has a pro-carcinogenic effect. In this study, we aimed to investigate the effect of the association of TGFβ with NK1R-Tr expression on the proliferation and apoptosis of breast cancer cells. METHODS Immunohistochemical staining and Western blot analysis were used to detect TGFβ and NK1R-Tr in breast cancer and paracancerous tissue samples. MDA-MB-231 and BT549 cells were stimulated with TGFβ after NK1R knockdown or treated with the NK1R antagonist aprepitant, and the effects of TGFβ and NK1R-Tr on proliferation and apoptosis were detected by CCK-8, colony formation and flow cytometry assays. In vivo xenograft models were used to further verify the effects of NK1R-Tr and TGFβ. The regulatory effects of Smad4 on NK1R promoter activity were confirmed by ChIP and dual-luciferase reporter assays. RESULTS The expression levels of TGFβ and NK1R-Tr were higher in breast cancer tissues than in adjacent tissues and were positively correlated in human breast cancer tissues. NK1R knockdown or aprepitant treatment in MDA-MB-231 and BT549 cells attenuated the effects of TGFβ on cell proliferation. The proportion of cells in G2/M phase significantly increased, the expression of cyclin B1 decreased, and the expression of P21 increased; these effects were weakened by TGFβ treatment. Apoptosis in breast cancer cells was significantly increased. In vivo xenograft models were used to further verify that NK1R-Tr and TGFβ promoted tumour growth. After TGFβ treatment, the binding capacity of Smad4 to the NK1R promoter, as well as luciferase activity, was enhanced. CONCLUSIONS The expression levels of TGFβ and NK1R-Tr were higher in breast cancer tissues than in normal tissues, and both were correlated with a poor patient prognosis. TGFβ and NK1R-Tr promoted cell proliferation and inhibited apoptosis, and TGFβ regulated the expression of NK1R-Tr via Smad4.
Collapse
Affiliation(s)
- Lushan Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China; Department of Clinical Laboratory, Tianjin Children's Hospital, Tianjin, China
| | - Ning Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Runshi Zhang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Dong Dong
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lufang Zhang
- Department of Laboratory, Aviation General Hospital, Beijing, China
| | - Wei Ji
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Man Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Yunli Zhou
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
29
|
Ebrahimi S, Javid H, Alaei A, Hashemy SI. New insight into the role of substance P/neurokinin-1 receptor system in breast cancer progression and its crosstalk with microRNAs. Clin Genet 2020; 98:322-330. [PMID: 32266968 DOI: 10.1111/cge.13750] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022]
Abstract
The neuropeptide substance P (SP) triggers a variety of tumor-promoting signaling pathways through the activation of neurokinin-1receptor (NK1R), a class of neurokinin G protein-coupled receptors superfamily. Recent researches in our and other laboratories have shown the overexpression of both SP and NK1R in breast cancer (BC) patients. SP/NK1R signaling is strongly implicated in the pathogenesis of BC through affecting cell proliferation, migration, metastasis, angiogenesis, and resistance. Therefore, SP/NK1R signaling responses must be rigorously regulated; otherwise, they would contribute to a more aggressive BC phenotype. Recently, microRNAs (miRNAs) as a specific class of epigenetic regulators have been shown to regulate NK1R and thus, controlling SP/NK1R signaling responses in BC. This review summarizes the current knowledge of the role of SP/NK1R signaling and its therapeutic potentials in BC. We also provide an overview regarding the effects of miRNA-mediated NK1R regulatory mechanisms in controlling BC tumorigenesis to gain a clearer view and thus better management of cancer.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Alaei
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Cao Z, Yan L, Shen Z, Chen Y, Shi Y, He X, Zhou N. A novel splice variant of Gαq-coupled Bombyx CAPA-PVK receptor 1 functions as a specific Gαi/o-linked receptor for CAPA-PK. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118718. [PMID: 32289337 DOI: 10.1016/j.bbamcr.2020.118718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 01/04/2023]
Abstract
Alternative splicing enables G protein-coupled receptor (GPCR) genes to greatly increase the number of structurally and functionally distinct receptor isoforms. However, the functional role and relevance of the individual GPCR splice variants in regulating physiological processes are still to be assessed. A naturally occurring alternative splice variant of Bombyx CAPA-PVK receptor, BomCAPA-PVK-R1-Δ341, has been shown to act as a dominant-negative protein to regulate cell surface expression and function of the canonical CAPA-PVK receptor. Herein, using functional assays, we identify the splice variant Δ341 as a specific receptor for neuropeptide CAPA-PK, and upon activation, Δ341 signals to ERK1/2 pathway. Further characterization demonstrates that Δ341 couples to Gαi/o, distinct from the Gαq-coupled canonical CAPA-PVK receptor, triggering ERK1/2 phosphorylation through Gβγ-PI3K-PKCζ signaling cascade. Moreover, our ELISA data show that the ligand-dependent internalization of the splice variant Δ341 is significantly impaired due to lack of GRKs-mediated phosphorylation sites. Our findings highlight the potential of this knowledge for molecular, pharmacological and physiological studies on GPCR splice variants in the future.
Collapse
Affiliation(s)
- Zheng Cao
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lili Yan
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhangfei Shen
- Department of Economic Zoology, College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yu Chen
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaobai He
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
31
|
Sahid MNA, Liu S, Mogi M, Maeyama K. Tachykinin-1 receptor antagonism suppresses substance-P- and compound 48/80-induced mast cell activation from rat mast cells expressing functional mas-related GPCR B3. Inflamm Res 2020; 69:289-298. [PMID: 31993675 DOI: 10.1007/s00011-020-01319-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/21/2019] [Accepted: 01/09/2020] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Mice and rats are important animal models for mast cell (MC) study. However, rat Mas-related-GPCR-B3 receptor (MRGPRB3) has been less studied than its mouse counterpart. Therefore, we aimed to characterize rat MRGPRB3. METHODS Mrgprb3 mRNA expression was assessed in peritoneal cells (RPCs) and peritoneal MCs (RPMCs) of wild-type rats, RPCs of MC-deficient rats, and RBL-2H3 cells by reverse-transcriptase polymerase chain reaction (RT-PCR). RPMCs, MRGPRX2-transfected and non-transfected RBL-2H3 cells were activated by 15-30 min incubation with DNP-BSA, substance-P (SP), or compound-48/80. L732138 or CP96344 was used as a tachykinin/neurokinin-1-receptor antagonist. Histamine release from MCs was measured by HPLC fluorometry. RESULTS Mrgprb3 mRNA expression was found in all cells, with the highest level in wild-type RPCs. All cells responded to DNP-BSA, but only MRGPRX2-transfected-RBL-2H3 cells and RPMCs responded to all activators. L732138 (0.1-10 μM) and CP96344 (1-100 μM) suppressed SP (10 μM)-induced RPMC activation. L732138 inhibition was dose independent, whereas CP96344 inhibition occurred in a dose-dependent manner. Additionally, only CP96344 suppressed SP (100 μM)- and compound-48/80 (10 μg/mL)-induced RPMC activation. CONCLUSIONS RPMCs expressing functional MRGPRB3 response upon MRGPRX2 ligands to regulated MC-mediated activities. It`s provide novel insights for future pseudo-allergic studies in rodents.
Collapse
Affiliation(s)
- Muhammad N A Sahid
- Department of Pharmacology, Graduate School of Medicine, Ehime University, Toon, Ehime, 791-0295, Japan. .,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
| | - Shuang Liu
- Department of Pharmacology, Graduate School of Medicine, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Masaki Mogi
- Department of Pharmacology, Graduate School of Medicine, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Kazutaka Maeyama
- Department of Pharmacology, Graduate School of Medicine, Ehime University, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
32
|
Ge C, Huang H, Huang F, Yang T, Zhang T, Wu H, Zhou H, Chen Q, Shi Y, Sun Y, Liu L, Wang X, Pearson RB, Cao Y, Kang J, Fu C. Neurokinin-1 receptor is an effective target for treating leukemia by inducing oxidative stress through mitochondrial calcium overload. Proc Natl Acad Sci U S A 2019; 116:19635-19645. [PMID: 31488714 PMCID: PMC6765257 DOI: 10.1073/pnas.1908998116] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Substance P (SP) regulates multiple biological processes through its high-affinity neurokinin-1 receptor (NK-1R). While the SP/NK-1R signaling axis is involved in the pathogenesis of solid cancer, the role of this signaling pathway in hematological malignancy remains unknown. Here, we demonstrate that NK-1R expression is markedly elevated in the white blood cells from acute myeloid leukemia patients and a panel of human leukemia cell lines. Blocking NK-1R induces apoptosis in vitro and in vivo via increase of mitochondrial reactive oxygen species. This oxidative stress was triggered by rapid calcium flux from the endoplasmic reticulum into mitochondria and, consequently, impairment of mitochondrial function, a mechanism underlying the cytotoxicity of NK-1R antagonists. Besides anticancer activity, blocking NK-1R produces a potent antinociceptive effect in myeloid leukemia-induced bone pain by alleviating inflammation and inducing apoptosis. These findings thus raise the exciting possibility that the NK-1R antagonists, drugs currently used in the clinic for preventing chemotherapy-induced nausea and vomiting, may provide a therapeutic option for treating human myeloid leukemia.
Collapse
Affiliation(s)
- Chentao Ge
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Hemiao Huang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Feiyan Huang
- Clinical Laboratory, Zhejiang Provincial Hospital of TCM, 310006 Hangzhou, China
| | - Tianxin Yang
- Department of Hematology, Zhejiang Province People's Hospital, 310014 Hangzhou, China
| | - Tengfei Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Hongzhang Wu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Hanwei Zhou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Qi Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Yue Shi
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Yanfang Sun
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Liangjue Liu
- Clinical Laboratory, Zhejiang Provincial Hospital of TCM, 310006 Hangzhou, China
| | - Xi Wang
- Department of Oncology, The People's Liberation Army No. 903rd Hospital, 310013 Hangzhou, China
| | - Richard B Pearson
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Jian Kang
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Caiyun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018 Hangzhou, China;
| |
Collapse
|
33
|
Eapen PM, Rao CM, Nampoothiri M. Crosstalk between neurokinin receptor signaling and neuroinflammation in neurological disorders. Rev Neurosci 2019; 30:233-243. [PMID: 30260793 DOI: 10.1515/revneuro-2018-0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/07/2018] [Indexed: 12/31/2022]
Abstract
The neurokinin 1 receptor with the natural substrate substance P is one of the intensely studied receptors among the neurokinin receptors. The intracellular signaling mechanism uses G protein-coupled transduction regulating various physiological processes from nausea to Alzheimer's disease. The neurokinin 1 receptor plays a significant role in neuroinflammation-mediated alterations in neural circuitry. Neurokinin 1 receptor antagonists are selective, potent and exhibited efficacy in animal models of nervous system disorders. Evolving data now strengthen the viewpoint of brain substance P/neurokinin 1 receptor axis-mediated action in neural circuit dysfunction. Thus, a deep-rooted analysis of disease mechanism in which the neurokinin 1 receptor is involved is necessary for augmenting disease models which encourage the pharmaceutical industry to intensify the research pipeline. This review is an attempt to outline the concept of neurokinin 1 receptor signaling interlinked to the brain innate immune system. We also uncover the mechanisms of the neurokinin 1 receptor involved in neurological disorder and various methods of modulating the neurokinin 1 receptor, which may result in therapeutic action.
Collapse
Affiliation(s)
- Prasanth M Eapen
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Chamallamudi Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
34
|
Ion Channels Involved in Substance P-Mediated Nociception and Antinociception. Int J Mol Sci 2019; 20:ijms20071596. [PMID: 30935032 PMCID: PMC6479580 DOI: 10.3390/ijms20071596] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
Substance P (SP), an 11-amino-acid neuropeptide, has long been considered an effector of pain. However, accumulating studies have proposed a paradoxical role of SP in anti-nociception. Here, we review studies of SP-mediated nociception and anti-nociception in terms of peptide features, SP-modulated ion channels, and differential effector systems underlying neurokinin 1 receptors (NK1Rs) in differential cell types to elucidate the effect of SP and further our understanding of SP in anti-nociception. Most importantly, understanding the anti-nociceptive SP-NK1R pathway would provide new insights for analgesic drug development.
Collapse
|
35
|
He ZX, Liu TY, Yin YY, Song HF, Zhu XJ. Substance P plays a critical role in synaptic transmission in striatal neurons. Biochem Biophys Res Commun 2019; 511:369-373. [PMID: 30803756 DOI: 10.1016/j.bbrc.2019.02.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/10/2019] [Indexed: 01/03/2023]
Abstract
Substance P is one of the major neuropeptides released by striatal neurons; however, its function in the striatum remains unclear. In this study, we found substance P triggers spontaneous neurotransmitter release and rapid synaptic vesicle exocytosis in cultured striatal neurons, as substance P knockdown in these neurons impaired spontaneous neurotransmitter release and calcium-dependent rapid synaptic neurotransmission. Furthermore, treatment with exogenous substance P completely rescued the synaptic dysfunction phenotype in striatal neurons lacking this neuropeptide. On the other hand, substance P knockdown had no effect on the size of the readily releasable pool of synaptic vesicles, but decreased the probability of presynaptic release of synaptic vesicles in cultured striatal neurons. Treatment with CP96345, a NK1 receptor antagonist, also resulted in synaptic defects in cultured striatal neurons. In summary, we propose substance P is critical for synaptic transmission in striatal neurons.
Collapse
Affiliation(s)
- Zi-Xuan He
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China.
| | - Ting-Yu Liu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Yue-Yue Yin
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Hui-Fang Song
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| |
Collapse
|
36
|
Liu X, Yan D, Guo SW. Sensory nerve-derived neuropeptides accelerate the development and fibrogenesis of endometriosis. Hum Reprod 2019; 34:452-468. [PMID: 30689856 DOI: 10.1093/humrep/dey392] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Xishi Liu
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Dingmin Yan
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Abstract
Hybrid compounds (also known as chimeras, designed multiple ligands, bivalent compounds) are chemical units where two active components, usually possessing affinity and selectivity for distinct molecular targets, are combined as a single chemical entity. The rationale for using a chimeric approach is well documented as such novel drugs are characterized by their enhanced enzymatic stability and biological activity. This allows their use at lower concentrations, increasing their safety profile, particularly when considering undesirable side effects. In the group of synthetic bivalent compounds, drugs combining pharmacophores having affinities toward opioid and neurokinin-1 receptors have been extensively studied as potential analgesic drugs. Indeed, substance P is known as a major endogenous modulator of nociception both in the peripheral and central nervous systems. Hence, synthetic peptide fragments showing either agonism or antagonism at neurokinin 1 receptor were both assigned with analgesic properties. However, even though preclinical studies designated neurokinin-1 receptor antagonists as promising analgesics, early clinical studies revealed a lack of efficacy in human. Nevertheless, their molecular combination with enkephalin/endomorphin fragments has been considered as a valuable approach to design putatively promising ligands for the treatment of pain. This paper is aimed at summarizing a 20-year journey to the development of potent analgesic hybrid compounds involving an opioid pharmacophore and devoid of unwanted side effects. Additionally, the legitimacy of considering neurokinin-1 receptor ligands in the design of chimeric drugs is discussed.
Collapse
|
38
|
Substance P and the neurokinin-1 receptor in the ischaemic heart: Two sides to the coin. Int J Cardiol 2018; 271:258-259. [PMID: 29960759 DOI: 10.1016/j.ijcard.2018.06.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 10/28/2022]
|
39
|
Niedermair T, Schirner S, Seebröker R, Straub RH, Grässel S. Substance P modulates bone remodeling properties of murine osteoblasts and osteoclasts. Sci Rep 2018; 8:9199. [PMID: 29907830 PMCID: PMC6003941 DOI: 10.1038/s41598-018-27432-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/04/2018] [Indexed: 11/09/2022] Open
Abstract
Clinical observations suggest neuronal control of bone remodeling. Sensory nerve fibers innervating bone, bone marrow and periosteum signal via neurotransmitters including substance P (SP). In previous studies we observed impaired biomechanical and structural bone parameters in tachykinin (Tac) 1-deficient mice lacking SP. Here, we aim to specify effects of SP on metabolic parameters of bone marrow macrophage (BMM)/osteoclast cultures and osteoblasts isolated from Tac1-deficient and wildtype (WT) mice. We demonstrated endogenous SP production and secretion in WT bone cells. Absence of SP reduced bone resorption rate, as we found reduced numbers of precursor cells (BMM) and multinucleated osteoclasts and measured reduced cathepsin K activity in Tac1-/- BMM/osteoclast cultures. However, this might partly be compensated by reduced apoptosis rate and increased fusion potential of Tac1-/- precursor cells to enlarged "super" osteoclasts. Contrarily, increased ALP enzyme activity and apoptosis rate during early osteoblast differentiation accelerated osteogenesis and cell death in the absence of SP together with reduced ALP activity of Tac1-/- osteoblasts during late osteogenic differentiation resulting in reduced bone formation at later stages. Therefore, we suggest that absence of SP presumably results in a slight reduction of bone resorption rate but concomitantly in a critical reduction of bone formation and mineralization rate.
Collapse
Affiliation(s)
- Tanja Niedermair
- Department of Orthopaedic Surgery, University of Regensburg, Regensburg, Germany.,Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology, University of Regensburg, Regensburg, Germany
| | - Stephan Schirner
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology, University of Regensburg, Regensburg, Germany
| | - Raphael Seebröker
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology, University of Regensburg, Regensburg, Germany
| | - Rainer H Straub
- Department of Internal Medicine I, Experimental Rheumatology and Neuroendocrine-Immunology, University of Regensburg, Regensburg, Germany
| | - Susanne Grässel
- Department of Orthopaedic Surgery, University of Regensburg, Regensburg, Germany. .,Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
40
|
Henssen AG, Odersky A, Szymansky A, Seiler M, Althoff K, Beckers A, Speleman F, Schäfers S, De Preter K, Astrahanseff K, Struck J, Schramm A, Eggert A, Bergmann A, Schulte JH. Targeting tachykinin receptors in neuroblastoma. Oncotarget 2018; 8:430-443. [PMID: 27888795 PMCID: PMC5352132 DOI: 10.18632/oncotarget.13440] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/12/2016] [Indexed: 01/23/2023] Open
Abstract
Neuroblastoma is the most common extracranial tumor in children. Despite aggressive multimodal treatment, high-risk neuroblastoma remains a clinical challenge with survival rates below 50%. Adding targeted drugs to first-line therapy regimens is a promising approach to improve survival in these patients. TACR1 activation by substance P has been reported to be mitogenic in cancer cell lines. Tachykinin receptor (TACR1) antagonists are approved for clinical use as an antiemetic remedy since 2003. Tachykinin receptor inhibition has recently been shown to effectively reduce growth of several tumor types. Here, we report that neuroblastoma cell lines express TACR1, and that targeting TACR1 activity significantly reduced cell viability and induced apoptosis in neuroblastoma cell lines. Gene expression profiling revealed that TACR1 inhibition repressed E2F2 and induced TP53 signaling. Treating mice harboring established neuroblastoma xenograft tumors with Aprepitant also significantly reduced tumor burden. Thus, we provide evidence that the targeted inhibition of tachykinin receptor signaling shows therapeutic efficacy in preclinical models for high-risk neuroblastoma.
Collapse
Affiliation(s)
- Anton G Henssen
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Andrea Odersky
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Germany
| | - Annabell Szymansky
- Department of Pediatric Oncology/Hematology, Charité- Universitätsmedizin Berlin, Germany
| | | | - Kristina Althoff
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Germany
| | - Anneleen Beckers
- Center of Medical Genetics Ghent (CMGG), Ghent University Hospital, Belgium
| | - Frank Speleman
- Center of Medical Genetics Ghent (CMGG), Ghent University Hospital, Belgium
| | - Simon Schäfers
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Germany
| | - Katleen De Preter
- Center of Medical Genetics Ghent (CMGG), Ghent University Hospital, Belgium
| | - Kathy Astrahanseff
- Department of Pediatric Oncology/Hematology, Charité- Universitätsmedizin Berlin, Germany
| | | | - Alexander Schramm
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology/Hematology, Charité- Universitätsmedizin Berlin, Germany.,German Consortium for Translational Cancer Research (DKTK), Partner Site Charite Berlin, Berlin, Germany
| | | | - Johannes H Schulte
- Department of Pediatric Oncology/Hematology, Charité- Universitätsmedizin Berlin, Germany.,German Consortium for Translational Cancer Research (DKTK), Partner Site Charite Berlin, Berlin, Germany
| |
Collapse
|
41
|
Spitsin S, Pappa V, Douglas SD. Truncation of neurokinin-1 receptor-Negative regulation of substance P signaling. J Leukoc Biol 2018; 103:1043-1051. [PMID: 29345372 DOI: 10.1002/jlb.3mir0817-348r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/22/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022] Open
Abstract
Substance P (SP) is a tachykinin peptide, which triggers intracellular signaling in the nervous and immune systems, as well as, other local and systemic events. The interaction between SP and its receptor, neurokinin-1 receptor (NK1R), results in major downstream cellular actions, which include changes in calcium fluxes, ERK, and p21-activated kinase phosphorylation and NFκB activation. Two naturally occurring variants of the NK1R, the full-length, 407 aa receptor (NK1R-F) and the truncated, 311 aa isoform (NK1R-T), mediate the actions of SP. Receptor truncation partially disrupts signaling motifs of the carboxyl tail, a critical site for mediating NK1R signaling, resulting in a "less-efficient" receptor. Although NK1R-F is the predominant isoform in the central and peripheral nervous systems, NK1R-T is expressed in several tissues and cells, which include monocytes, NK cells, and T-cells. The SP binding domain is not affected by truncation and this site is identical in both NK1R receptor isoforms. However, while cells expressing NK1R-F respond to nanomolar concentrations of SP, monocyte and macrophage activation, mediated through NK1R-T, requires micromolar concentrations of SP in order to elicit signaling responses. Elevated plasma levels of SP are associated with increased inflammatory responses and NK1R antagonists reduce inflammation and cytokine production in vivo. This mini review presents and discusses the novel hypothesis that the expression of NK1R-T on immune system cells prevents immune activation in a milieu, which usually contains low concentrations of SP and, thus, maintains immune homeostasis. In contrast, in the activated neuronal microenvironment, when SP levels reach the threshold at tissue sites, SP promotes immune activation and modulates monocyte/macrophage polarization.
Collapse
Affiliation(s)
- Sergei Spitsin
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Vasiliki Pappa
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Steven D Douglas
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
42
|
Burmeister AR, Johnson MB, Chauhan VS, Moerdyk-Schauwecker MJ, Young AD, Cooley ID, Martinez AN, Ramesh G, Philipp MT, Marriott I. Human microglia and astrocytes constitutively express the neurokinin-1 receptor and functionally respond to substance P. J Neuroinflammation 2017; 14:245. [PMID: 29237453 PMCID: PMC5729418 DOI: 10.1186/s12974-017-1012-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/23/2017] [Indexed: 12/30/2022] Open
Abstract
Background The tachykinin substance P (SP) is recognized to exacerbate inflammation at peripheral sites via its target receptor, neurokinin 1 receptor (NK-1R), expressed by leukocytes. More recently, SP/NK-1R interactions have been associated with severe neuroinflammation and neuronal damage. We have previously demonstrated that NK-1R antagonists can limit neuroinflammatory damage in a mouse model of bacterial meningitis. Furthermore, we have since shown that these agents can attenuate bacteria-induced neuronal and glial inflammatory mediator production in nonhuman primate (NHP) brain explants and isolated neuronal cells, and following in vivo infection. Methods In the present study, we have assessed the ability of NHP brain explants, primary human microglia and astrocytes, and immortalized human glial cell lines to express NK-1R isoforms. We have utilized RT-PCR, immunoblot analysis, immunofluorescent microscopy, and/or flow cytometric analysis, to quantify NK-1R expression in each, at rest, or following bacterial challenge. Furthermore, we have assessed the ability of human microglia to respond to SP by immunoblot analysis of NF-kB nuclear translocation and determined the ability of this neuropeptide to augment inflammatory cytokine release and neurotoxic mediator production by human astrocytes using an ELISA and a neuronal cell toxicity assay, respectively. Results We demonstrate that human microglial and astrocytic cells as well as NHP brain tissue constitutively express robust levels of the full-length NK-1R isoform. In addition, we demonstrate that the expression of NK-1R by human astrocytes can be further elevated following exposure to disparate bacterial pathogens or their components. Importantly, we have demonstrated that NK-1R is functional in both human microglia and astrocytes and show that SP can augment the inflammatory and/or neurotoxic immune responses of glial cells to disparate and clinically relevant bacterial pathogens. Conclusions The robust constitutive and functional expression of the full-length NK-1R isoform by human microglia and astrocytes, and the ability of SP to augment inflammatory signaling pathways and mediator production by these cells, support the contention that SP/NK-1R interactions play a significant role in the damaging neuroinflammation associated with conditions such as bacterial meningitis.
Collapse
Affiliation(s)
- Amanda R Burmeister
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Vinita S Chauhan
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Megan J Moerdyk-Schauwecker
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Ada D Young
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Ian D Cooley
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Alejandra N Martinez
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA
| | - Geeta Ramesh
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA
| | - Mario T Philipp
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA.
| |
Collapse
|
43
|
Suvas S. Role of Substance P Neuropeptide in Inflammation, Wound Healing, and Tissue Homeostasis. THE JOURNAL OF IMMUNOLOGY 2017; 199:1543-1552. [PMID: 28827386 DOI: 10.4049/jimmunol.1601751] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/13/2017] [Indexed: 11/19/2022]
Abstract
Substance P (SP) is an undecapeptide present in the CNS and the peripheral nervous system. SP released from the peripheral nerves exerts its biological and immunological activity via high-affinity neurokinin 1 receptor (NK1R). SP is also produced by immune cells and acts as an autocrine or paracrine fashion to regulate the function of immune cells. In addition to its proinflammatory role, SP and its metabolites in combination with insulin-like growth factor-1 are shown to promote the corneal epithelial wound healing. Recently, we showed an altered ocular surface homeostasis in unmanipulated NK1R-/- mice, suggesting the role of SP-NK1R signaling in ocular surface homeostasis under steady-state. This review summarizes the immunobiology of SP and its effect on immune cells and immunity to microbial infection. In addition, the effect of SP in inflammation, wound healing, and corneal epithelial homeostasis in the eye is discussed.
Collapse
Affiliation(s)
- Susmit Suvas
- Department of Ophthalmology/Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI 48201; .,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201; and .,Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
44
|
Chi G, Huang Z, Li X, Zhang K, Li G. Substance P Regulation in Epilepsy. Curr Neuropharmacol 2017; 16:43-50. [PMID: 28474564 PMCID: PMC5771382 DOI: 10.2174/1570159x15666170504122410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/19/2017] [Accepted: 04/27/2017] [Indexed: 11/25/2022] Open
Abstract
Background: Epilepsy is a common neurological disease characterized by abnormal temporary discharge of neurons in the central nervous system. In recent years, studies have revealed the localization and changes in the density of neuropeptides, such as substance P (SP) in the pathogenesis of epilepsy. This review is a concise overview of SP and their physiologic and pathologic functions on regulating epilepsy, and the underline mechanisms. Methods: We research and collect relative online content for reviewing the effects of SP in Epilepsy. Results: The SP/NK-1 receptor system may induce seizures and play an important role in status epilepticus and in experimental animal models of epilepsy. Newest studies show that several mechanisms may explain the excitatory effects of the SP/NK-1 receptor signaling pathway in epilepsy. By binding to the NK-1 receptor, NK-1 receptor antagonists may block the pathophysiological effects of SP, and further studies are needed to confirm the possible anti-epileptic activity of NK-1 receptor antagonists. Conclusion: SP plays crucial roles on through binding with NK-1 receptor during epilepsy pathologic processing, and the NK-1 receptor is receiving a great attention as a therapeutic target for treating epilepsy. Thus, the use of NK-1 receptor antagonists for the treatment of epilepsy should be investigated in further studies.
Collapse
Affiliation(s)
- Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, Jilin, China
| | - Zhehao Huang
- China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin, China
| | - Xianglan Li
- China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin, China
| | - Kun Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| |
Collapse
|
45
|
Johnson MB, Young AD, Marriott I. The Therapeutic Potential of Targeting Substance P/NK-1R Interactions in Inflammatory CNS Disorders. Front Cell Neurosci 2017; 10:296. [PMID: 28101005 PMCID: PMC5209380 DOI: 10.3389/fncel.2016.00296] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/13/2016] [Indexed: 12/27/2022] Open
Abstract
The inflammatory responses of resident central nervous system (CNS) cells are now known to play a critical role in the initiation and progression of an array of infectious and sterile neuroinflammatory disorders such as meningitis, encephalitis, Parkinson's disease, Alzheimer's disease and multiple sclerosis (MS). Regulating glial inflammatory responses in a timely manner is therefore critical in preserving normal CNS functions. The neuropeptide substance P is produced at high levels within the CNS and its selective receptor, the neurokinin 1 receptor (NK-1R), is abundantly expressed by neurons and is present on glial cell types including microglia and astrocytes. In addition to its functions as a neurotransmitter in the perception of pain and its essential role in gut motility, this tachykinin is widely recognized to exacerbate inflammation at peripheral sites including the skin, gastrointestinal tract and the lungs. Recently, a number of studies have identified a role for substance P and NK-1R interactions in neuroinflammation and described the ability of this neuropeptide to alter the immune functions of activated microglia and astrocytes. In this review article, we describe the expression of substance P and its receptor by resident CNS cells, and we discuss the ability of this neuropeptide to exacerbate the inflammatory responses of glia and immune cells that are recruited to the brain during neurodegenerative diseases. In addition, we discuss the available data indicating that the NK-1R-mediated augmentation of such responses appears to be detrimental during microbial infection and some sterile neurodegenerative disorders, and propose the repurposed use of NK-1R antagonists, of a type that are currently approved as anti-emetic and anti-anxiolytic agents, as an adjunct therapy to ameliorate the inflammatory CNS damage in these conditions.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| | - Ada D Young
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| | - Ian Marriott
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| |
Collapse
|
46
|
Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pothoulakis C, Dana R. Neuropeptide substance P and the immune response. Cell Mol Life Sci 2016; 73:4249-4264. [PMID: 27314883 PMCID: PMC5056132 DOI: 10.1007/s00018-016-2293-z] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/25/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023]
Abstract
Substance P is a peptide mainly secreted by neurons and is involved in many biological processes, including nociception and inflammation. Animal models have provided insights into the biology of this peptide and offered compelling evidence for the importance of substance P in cell-to-cell communication by either paracrine or endocrine signaling. Substance P mediates interactions between neurons and immune cells, with nerve-derived substance P modulating immune cell proliferation rates and cytokine production. Intriguingly, some immune cells have also been found to secrete substance P, which hints at an integral role of substance P in the immune response. These communications play important functional roles in immunity including mobilization, proliferation and modulation of the activity of immune cells. This review summarizes current knowledge of substance P and its receptors, as well as its physiological and pathological roles. We focus on recent developments in the immunobiology of substance P and discuss the clinical implications of its ability to modulate the immune response.
Collapse
Affiliation(s)
- Alireza Mashaghi
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Anna Marmalidou
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Mohsen Tehrani
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Peter M. Grace
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO 80309 USA
| | - Charalabos Pothoulakis
- Division of Digestive Diseases, David Geffen School of Medicine, Inflammatory Bowel Disease Center, University of California, Los Angeles, Los Angeles, CA USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
47
|
Spitsin S, Meshki J, Winters A, Tuluc F, Benton TD, Douglas SD. Substance P-mediated chemokine production promotes monocyte migration. J Leukoc Biol 2016; 101:967-973. [PMID: 28366881 DOI: 10.1189/jlb.1ab0416-188rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/29/2016] [Accepted: 10/05/2016] [Indexed: 01/13/2023] Open
Abstract
The neuropeptide SP has physiologic and pathophysiologic roles in CNS and peripheral tissues and is involved in crosstalk between nervous and immune systems in various conditions, including HIV and SIV infection. Increased SP levels were demonstrated in plasma of HIV+ individuals as well as in the CNS of SIV-infected, nonhuman primates. SP increases HIV infection in macrophages through interaction with its receptor, NK1R. The SP effect on immune system is both pro- and anti-inflammatory and includes up-regulation of a number of cytokines and cell receptors. The main goal of this study was to determine whether there is interplay between monocyte exposure to SP and recruitment into sites of inflammation. We now demonstrate that exposure of either human macrophages or PBMCs to SP leads to increased production of chemokines, including MCP-1, for which expression is limited to cells of the myeloid lineage. This effect is inhibited by the NK1R antagonist, aprepitant. Exposure to conditioned medium derived from SP-treated PBMCs resulted in increased monocyte migration through semipermeable membranes and an in vitro human BBB model. Monocyte migration was blocked by anti-MCP-1 antibodies. Our results suggest that increased SP levels associated with HIV and other inflammatory conditions may contribute to increased monocyte migration into the CNS and other tissues through a MCP-1-dependent mechanism.
Collapse
Affiliation(s)
- Sergei Spitsin
- Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - John Meshki
- Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Angela Winters
- Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Florin Tuluc
- Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Tami D Benton
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; and
| | - Steven D Douglas
- Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA; .,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
48
|
Corrigan F, Mander KA, Leonard AV, Vink R. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J Neuroinflammation 2016; 13:264. [PMID: 27724914 PMCID: PMC5057243 DOI: 10.1186/s12974-016-0738-9] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/28/2016] [Indexed: 01/05/2023] Open
Abstract
Background The neuroinflammatory response following traumatic brain injury (TBI) is known to be a key secondary injury factor that can drive ongoing neuronal injury. Despite this, treatments that have targeted aspects of the inflammatory pathway have not shown significant efficacy in clinical trials. Main body We suggest that this may be because classical inflammation only represents part of the story, with activation of neurogenic inflammation potentially one of the key initiating inflammatory events following TBI. Indeed, evidence suggests that the transient receptor potential cation channels (TRP channels), TRPV1 and TRPA1, are polymodal receptors that are activated by a variety of stimuli associated with TBI, including mechanical shear stress, leading to the release of neuropeptides such as substance P (SP). SP augments many aspects of the classical inflammatory response via activation of microglia and astrocytes, degranulation of mast cells, and promoting leukocyte migration. Furthermore, SP may initiate the earliest changes seen in blood-brain barrier (BBB) permeability, namely the increased transcellular transport of plasma proteins via activation of caveolae. This is in line with reports that alterations in transcellular transport are seen first following TBI, prior to decreases in expression of tight-junction proteins such as claudin-5 and occludin. Indeed, the receptor for SP, the tachykinin NK1 receptor, is found in caveolae and its activation following TBI may allow influx of albumin and other plasma proteins which directly augment the inflammatory response by activating astrocytes and microglia. Conclusions As such, the neurogenic inflammatory response can exacerbate classical inflammation via a positive feedback loop, with classical inflammatory mediators such as bradykinin and prostaglandins then further stimulating TRP receptors. Accordingly, complete inhibition of neuroinflammation following TBI may require the inhibition of both classical and neurogenic inflammatory pathways.
Collapse
Affiliation(s)
- Frances Corrigan
- Adelaide Centre for Neuroscience Research, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Kimberley A Mander
- Adelaide Centre for Neuroscience Research, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anna V Leonard
- Adelaide Centre for Neuroscience Research, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert Vink
- Sansom Institute for Health Research, The University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
49
|
Mistrova E, Kruzliak P, Chottova Dvorakova M. Role of substance P in the cardiovascular system. Neuropeptides 2016; 58:41-51. [PMID: 26706184 DOI: 10.1016/j.npep.2015.12.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/07/2015] [Accepted: 12/07/2015] [Indexed: 01/03/2023]
Abstract
This article provides an overview of the structure and function of substance P signalling system and its involvement in the cardiovascular regulation. Substance P is an undecapeptide originating from TAC1 gen and belonging to the tachykinin family. The biological actions of substance P are mainly mediated through neurokinin receptor 1 since substance P is the ligand with the highest affinity to neurokinin receptor 1. Substance P is widely distributed within the central and peripheral nervous systems as well as in the cardiovascular system. Substance P is involved in the regulation of heart frequency, blood pressure and in the stretching of vessels. Substance P plays an important role in ischemia and reperfusion and cardiovascular response to stress. Additionally, it has been also implicated in angiogenesis, pain transmission and inflammation. The substance P/neurokinin receptor 1 receptor system is involved in the molecular bases of many human pathological processes. Antagonists of neurokinin receptor 1 receptor could provide clinical solutions for a variety of diseases. Neurokinin receptor 1 antagonists are already used in the prevention of chemotherapy induced nausea and vomiting.
Collapse
Affiliation(s)
- Eliska Mistrova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Peter Kruzliak
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic; 2(nd) Department of Internal Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Magdalena Chottova Dvorakova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| |
Collapse
|
50
|
Roux SL, Borbely G, Słoniecka M, Backman LJ, Danielson P. Transforming Growth Factor Beta 1 Modulates the Functional Expression of the Neurokinin-1 Receptor in Human Keratocytes. Curr Eye Res 2015; 41:1035-1043. [PMID: 26673553 PMCID: PMC4989870 DOI: 10.3109/02713683.2015.1088954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Purpose: Transforming growth factor beta 1 (TGF-β1) is a cytokine involved in a variety of processes, such as differentiation of fibroblasts into myofibroblasts. TGF-β1 has also been shown to delay the internalization of the neurokinin-1 receptor (NK-1 R) after its activation by its ligand, the neuropeptide substance P (SP). NK-1 R comprises two naturally occurring variants, a full-length and a truncated form, triggering different cellular responses. SP has been shown to affect important events in the cornea – such as stimulating epithelial cell proliferation – processes that are involved in corneal wound healing and thus in maintaining the transparency of the corneal stroma. An impaired signaling through NK-1 R could thus impact the visual quality. We hypothesize that TGF-β1 modulates the expression pattern of NK-1 R in human corneal stroma cells, keratocytes. The purpose of this study was to test that hypothesis. Methods: Cultures of primary keratocytes were set up with cells derived from healthy human corneas, obtained from donated transplantation graft leftovers, and characterized by immunocytochemistry and Western blot. Immunocytochemistry for TGF-β receptors and NK-1 R was performed. Gene expression was assessed with real-time polymerase chain reaction (qPCR). Results: Expression of TGF-β receptors was confirmed in keratocytes in vitro. Treating the cells with TGF-β1 significantly reduced the gene expression of NK-1 R. Furthermore, immunocytochemistry for NK-1 R demonstrated that it is specifically the expression of the full-length isotype of the receptor that is reduced after treatment with TGF-β1, which was also confirmed with qPCR using a specific probe for the full-length receptor. Conclusions: TGF-β1 down-regulates the gene expression of the full-length variant of NK-1 R in human keratocytes, which might impact its signaling pathway and thus explain the known delay in internalization after activation by SP seen with TGF-β1 treatment.
Collapse
Affiliation(s)
- Sandrine Le Roux
- a Department of Integrative Medical Biology , Umeå University , Umeå , Sweden
| | - Gabor Borbely
- a Department of Integrative Medical Biology , Umeå University , Umeå , Sweden
| | - Marta Słoniecka
- a Department of Integrative Medical Biology , Umeå University , Umeå , Sweden.,b Department of Clinical Sciences, Ophthalmology , Umeå University , Umeå , Sweden
| | - Ludvig J Backman
- a Department of Integrative Medical Biology , Umeå University , Umeå , Sweden
| | - Patrik Danielson
- a Department of Integrative Medical Biology , Umeå University , Umeå , Sweden.,b Department of Clinical Sciences, Ophthalmology , Umeå University , Umeå , Sweden
| |
Collapse
|