1
|
Khandagale P, Lin H, Liu L, Sharma P. Statistical mechanics of cell aggregates: explaining the phase transition and paradoxical piezoelectric behavior of soft biological tissues. SOFT MATTER 2025. [PMID: 40195723 DOI: 10.1039/d5sm00035a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Piezoelectricity in biological soft tissues is a controversial issue with differing opinions. While there is compelling experimental evidence to suggest a piezoelectric-like response in tissues such as the aortic wall (among others), there are equally compelling experiments that argue against this notion. In addition, the lack of a polar structure in the underlying components of most soft biological tissues supports the latter. In this paper, we address the collective behavior of cells within a two-dimensional cell aggregate from the viewpoint of statistical mechanics. Our starting point is the simplest form of energy for cell behavior that only includes known observable facts e.g., the electrical Maxwell stress or electrostriction, resting potential across cell membranes, elasticity, and we explicitly exclude any possibility of electromechanical coupling reminiscent of piezoelectricity at the cellular level. We coarse-grain our cellular aggregate to obtain its emergent mechanical, physical, and electromechanical properties. Our findings indicate that the fluctuation of cellular strain (E) plays a similar role as the absolute temperature in a conventional atomistic-level statistical model. The coarse-grained effective free energy reveals several intriguing features of the collective behavior of cell aggregates, such as solid-fluid phase transitions and a distinct piezoelectric-like coupling, even though it is completely absent at the microscale. Closed-form formulas are obtained for key electromechanical properties, including stiffness, effective resting potential, critical E2-temperature (or fluctuation) for solid-fluid phase transitions, and apparent piezoelectric coupling in terms of fluctuation and electric potential regulated by active cellular processes.
Collapse
Affiliation(s)
- Pratik Khandagale
- Department of Mechanical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Hao Lin
- Department of Mechanical and Aerospace Engineering, Rutgers University, New Jersey, 08854, USA.
| | - Liping Liu
- Department of Mechanical and Aerospace Engineering, Rutgers University, New Jersey, 08854, USA.
- Department of Mathematics, Rutgers University, New Jersey, 08854, USA
| | - Pradeep Sharma
- Departments of Mechanical Engineering, Physics, and the Materials Science and Engineering Program, University of Houston, Houston, Texas 77204, USA.
| |
Collapse
|
2
|
Baumann JM, Yarishkin O, Lakk M, De Ieso ML, Rudzitis CN, Kuhn M, Tseng YT, Stamer WD, Križaj D. TRPV4 and chloride channels mediate volume sensing in trabecular meshwork cells. Am J Physiol Cell Physiol 2024; 327:C403-C414. [PMID: 38881423 PMCID: PMC11427009 DOI: 10.1152/ajpcell.00295.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Aqueous humor drainage from the anterior eye determines intraocular pressure (IOP) under homeostatic and pathological conditions. Swelling of the trabecular meshwork (TM) alters its flow resistance but the mechanisms that sense and transduce osmotic gradients remain poorly understood. We investigated TM osmotransduction and its role in calcium and chloride homeostasis using molecular analyses, optical imaging, and electrophysiology. Anisosmotic conditions elicited proportional changes in TM cell volume, with swelling, but not shrinking, evoking elevations in intracellular calcium concentration [Ca2+]TM. Hypotonicity-evoked calcium signals were sensitive to HC067047, a selective blocker of TRPV4 channels, whereas the agonist GSK1016790A promoted swelling under isotonic conditions. TRPV4 inhibition partially suppressed hypotonicity-induced volume increases and reduced the magnitude of the swelling-induced membrane current, with a substantial fraction of the swelling-evoked current abrogated by Cl- channel antagonists 4,4'-diisothiocyanato-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid. The transcriptome of volume-sensing chloride channel candidates in primary human was dominated by ANO6 transcripts, with moderate expression of ANO3, ANO7, and ANO10 transcripts and low expression of LTTRC genes that encode constituents of the volume-activated anion channel. Imposition of 190 mosM but not 285 mosM hypotonic gradients increased conventional outflow in mouse eyes. TRPV4-mediated cation influx thus works with Cl- efflux to sense and respond to osmotic stress, potentially contributing to pathological swelling, calcium overload, and intracellular signaling that could exacerbate functional disturbances in inflammatory disease and glaucoma.NEW & NOTEWORTHY Intraocular pressure is dynamically regulated by the flow of aqueous humor through paracellular passages within the trabecular meshwork (TM). This study shows hypotonic gradients that expand the TM cell volume and reduce the outflow facility in mouse eyes. The swelling-induced current consists of TRPV4 and chloride components, with TRPV4 as a driver of swelling-induced calcium signaling. TRPV4 inhibition reduced swelling, suggesting a novel treatment for trabeculitis and glaucoma.
Collapse
Affiliation(s)
- Jackson M Baumann
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Oleg Yarishkin
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Michael L De Ieso
- Duke Eye Center, Duke University, Durham, North Carolina, United States
| | | | - Megan Kuhn
- Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Yun Ting Tseng
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - W Daniel Stamer
- Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
3
|
Kasuba KC, Buccino AP, Bartram J, Gaub BM, Fauser FJ, Ronchi S, Kumar SS, Geissler S, Nava MM, Hierlemann A, Müller DJ. Mechanical stimulation and electrophysiological monitoring at subcellular resolution reveals differential mechanosensation of neurons within networks. NATURE NANOTECHNOLOGY 2024; 19:825-833. [PMID: 38378885 PMCID: PMC11186759 DOI: 10.1038/s41565-024-01609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024]
Abstract
A growing consensus that the brain is a mechanosensitive organ is driving the need for tools that mechanically stimulate and simultaneously record the electrophysiological response of neurons within neuronal networks. Here we introduce a synchronized combination of atomic force microscopy, high-density microelectrode array and fluorescence microscopy to monitor neuronal networks and to mechanically characterize and stimulate individual neurons at piconewton force sensitivity and nanometre precision while monitoring their electrophysiological activity at subcellular spatial and millisecond temporal resolution. No correlation is found between mechanical stiffness and electrophysiological activity of neuronal compartments. Furthermore, spontaneously active neurons show exceptional functional resilience to static mechanical compression of their soma. However, application of fast transient (∼500 ms) mechanical stimuli to the neuronal soma can evoke action potentials, which depend on the anchoring of neuronal membrane and actin cytoskeleton. Neurons show higher responsivity, including bursts of action potentials, to slower transient mechanical stimuli (∼60 s). Moreover, transient and repetitive application of the same compression modulates the neuronal firing rate. Seemingly, neuronal networks can differentiate and respond to specific characteristics of mechanical stimulation. Ultimately, the developed multiparametric tool opens the door to explore manifold nanomechanobiological responses of neuronal systems and new ways of mechanical control.
Collapse
Affiliation(s)
| | | | - Julian Bartram
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Benjamin M Gaub
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Felix J Fauser
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | | | - Sydney Geissler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Michele M Nava
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
4
|
Strege PR, Cowan LM, Alcaino C, Mazzone A, Ahern CA, Milescu LS, Farrugia G, Beyder A. Mechanosensitive pore opening of a prokaryotic voltage-gated sodium channel. eLife 2023; 12:e79271. [PMID: 36912788 PMCID: PMC10038658 DOI: 10.7554/elife.79271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Voltage-gated ion channels (VGICs) orchestrate electrical activities that drive mechanical functions in contractile tissues such as the heart and gut. In turn, contractions change membrane tension and impact ion channels. VGICs are mechanosensitive, but the mechanisms of mechanosensitivity remain poorly understood. Here, we leverage the relative simplicity of NaChBac, a prokaryotic voltage-gated sodium channel from Bacillus halodurans, to investigate mechanosensitivity. In whole-cell experiments on heterologously transfected HEK293 cells, shear stress reversibly altered the kinetic properties of NaChBac and increased its maximum current, comparably to the mechanosensitive eukaryotic sodium channel NaV1.5. In single-channel experiments, patch suction reversibly increased the open probability of a NaChBac mutant with inactivation removed. A simple kinetic mechanism featuring a mechanosensitive pore opening transition explained the overall response to force, whereas an alternative model with mechanosensitive voltage sensor activation diverged from the data. Structural analysis of NaChBac identified a large displacement of the hinged intracellular gate, and mutagenesis near the hinge diminished NaChBac mechanosensitivity, further supporting the proposed mechanism. Our results suggest that NaChBac is overall mechanosensitive due to the mechanosensitivity of a voltage-insensitive gating step associated with the pore opening. This mechanism may apply to eukaryotic VGICs, including NaV1.5.
Collapse
Affiliation(s)
- Peter R Strege
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology & Hepatology, Department of Medicine, Mayo ClinicRochesterUnited States
| | - Luke M Cowan
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology & Hepatology, Department of Medicine, Mayo ClinicRochesterUnited States
| | - Constanza Alcaino
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology & Hepatology, Department of Medicine, Mayo ClinicRochesterUnited States
| | - Amelia Mazzone
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology & Hepatology, Department of Medicine, Mayo ClinicRochesterUnited States
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of IowaIowa CityUnited States
| | - Lorin S Milescu
- Department of Biology, University of Maryland, College ParkCollege ParkUnited States
| | - Gianrico Farrugia
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology & Hepatology, Department of Medicine, Mayo ClinicRochesterUnited States
- Department of Physiology and Biomedical Engineering, Mayo ClinicRochesterUnited States
| | - Arthur Beyder
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology & Hepatology, Department of Medicine, Mayo ClinicRochesterUnited States
- Department of Physiology and Biomedical Engineering, Mayo ClinicRochesterUnited States
| |
Collapse
|
5
|
Aguilar VM, Paul A, Lazarko D, Levitan I. Paradigms of endothelial stiffening in cardiovascular disease and vascular aging. Front Physiol 2023; 13:1081119. [PMID: 36714307 PMCID: PMC9874005 DOI: 10.3389/fphys.2022.1081119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Endothelial cells, the inner lining of the blood vessels, are well-known to play a critical role in vascular function, while endothelial dysfunction due to different cardiovascular risk factors or accumulation of disruptive mechanisms that arise with aging lead to cardiovascular disease. In this review, we focus on endothelial stiffness, a fundamental biomechanical property that reflects cell resistance to deformation. In the first part of the review, we describe the mechanisms that determine endothelial stiffness, including RhoA-dependent contractile response, actin architecture and crosslinking, as well as the contributions of the intermediate filaments, vimentin and lamin. Then, we review the factors that induce endothelial stiffening, with the emphasis on mechanical signals, such as fluid shear stress, stretch and stiffness of the extracellular matrix, which are well-known to control endothelial biomechanics. We also describe in detail the contribution of lipid factors, particularly oxidized lipids, that were also shown to be crucial in regulation of endothelial stiffness. Furthermore, we discuss the relative contributions of these two mechanisms of endothelial stiffening in vasculature in cardiovascular disease and aging. Finally, we present the current state of knowledge about the role of endothelial stiffening in the disruption of endothelial cell-cell junctions that are responsible for the maintenance of the endothelial barrier.
Collapse
Affiliation(s)
- Victor M. Aguilar
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Amit Paul
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Dana Lazarko
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Irena Levitan
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Kayal C, Tamayo-Elizalde M, Adam C, Ye H, Jerusalem A. Voltage-Driven Alterations to Neuron Viscoelasticity. Bioelectricity 2022; 4:31-38. [PMID: 39372227 PMCID: PMC11450331 DOI: 10.1089/bioe.2021.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background The consideration of neurons as coupled mechanical-electrophysiological systems is supported by a growing body of experimental evidence, including observations that cell membranes mechanically deform during the propagation of an action potential. However, the short-term (seconds to minutes) influence of membrane voltage on the mechanical properties of a neuron at the single-cell level remains unknown. Materials and Methods Here, we use microscale dynamic mechanical analysis to demonstrate that changes in membrane potential induce changes in the mechanical properties of individual neurons. We simultaneously measured the membrane potential and mechanical properties of individual neurons through a multiphysics single-cell setup. Membrane voltage of a single neuron was measured through whole-cell patch clamp. The mechanical properties of the same neuron were measured through a nanoindenter, which applied a dynamic indentation to the neuron at different frequencies. Results Neuronal storage and loss moduli were lower for positive voltages than negative voltages. Conclusion The observed effects of membrane voltage on neuron mechanics could be due to piezoelectric or flexoelectric effects and altered ion distributions under the applied voltage. Such effects could change cell mechanics by changing the intermolecular interactions between ions and the various biomolecules within the membrane and cytoskeleton.
Collapse
Affiliation(s)
- Celine Kayal
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Miren Tamayo-Elizalde
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Casey Adam
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Hua Ye
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Antoine Jerusalem
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Tamayo-Elizalde M, Chen H, Malboubi M, Ye H, Jerusalem A. Action potential alterations induced by single F11 neuronal cell loading. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 162:141-153. [PMID: 33444567 DOI: 10.1016/j.pbiomolbio.2020.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/19/2020] [Accepted: 12/18/2020] [Indexed: 01/06/2023]
Abstract
Several research programmes have demonstrated how Transcranial Ultrasound Stimulation (TUS) can non-invasively and reversibly mechanically perturb neuronal functions. However, the mechanisms through which such reversible and a priori non-damaging behaviour can be observed remain largely unknown. While several TUS protocols have demonstrated motor and behavioural alterations in in vivo models, in vitro studies remain scarce. In particular, an experimental framework able to load mechanically an individual neuron in a controlled manner and simultaneously measure the generation and evolution of action potentials before, during and after such load, while allowing for direct microscopy, has not been successfully proposed. To this end, we herein present a multiphysics setup combining nanoindentation and patch clamp systems, assembled in an inverted microscope for simultaneous bright-field or fluorescence imaging. We evaluate the potential of the platform with a set of experiments in which single dorsal root ganglion-derived neuronal cell bodies are compressed while their spontaneous activity is recorded. We show that these transient quasi-static mechanical loads reversibly affect the amplitude and rate of change of the neuronal action potentials, which are smaller and slower upon indentation, while irreversibly altering other features. The ability to simultaneously image, mechanically and electrically manipulate and record single cells in a perturbed mechanical environment makes this system particularly suitable for studying the multiphysics of the brain at the cell level.
Collapse
Affiliation(s)
| | - Haoyu Chen
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Majid Malboubi
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Hua Ye
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Antoine Jerusalem
- Department of Engineering Science, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Reply to Farrell: Experimental evidence is the ultimate judge for model assumptions. Proc Natl Acad Sci U S A 2020; 117:26574-26575. [DOI: 10.1073/pnas.2017702117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Martinac B, Nikolaev YA, Silvani G, Bavi N, Romanov V, Nakayama Y, Martinac AD, Rohde P, Bavi O, Cox CD. Cell membrane mechanics and mechanosensory transduction. CURRENT TOPICS IN MEMBRANES 2020; 86:83-141. [DOI: 10.1016/bs.ctm.2020.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Yang Y, Liu X, Wang S, Tao N. Plasmonic imaging of subcellular electromechanical deformation in mammalian cells. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-7. [PMID: 31222988 PMCID: PMC6586072 DOI: 10.1117/1.jbo.24.6.066007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/30/2019] [Indexed: 05/12/2023]
Abstract
A membrane potential change in cells is accompanied with mechanical deformation. This electromechanical response can play a significant role in regulating action potential in neurons and in controlling voltage-gated ion channels. However, measuring this subtle deformation in mammalian cells has been a difficult task. We show a plasmonic imaging method to image mechanical deformation in single cells upon a change in the membrane potential. Using this method, we have studied the electromechanical response in mammalian cells and have observed the local deformation within the cells that are associated with cell-substrate interactions. By analyzing frequency dependence of the response, we have further examined the electromechanical deformation in terms of mechanical properties of cytoplasm and cytoskeleton. We demonstrate a plasmonic imaging approach to quantify the electromechanical responses of single mammalian cells and determine local variability related to cell-substrate interactions.
Collapse
Affiliation(s)
- Yunze Yang
- Arizona State University, Biodesign Institute, Center for Bioelectronics and Biosensors, Tempe, Ariz, United States
- Arizona State University, School of Electrical, Computer and Energy Engineering, Tempe, Arizona, United States
| | - Xianwei Liu
- University of Science and Technology of China, CAS Key Laboratory of Urban Pollutant Conversion, Sch, China
| | - Shaopeng Wang
- Arizona State University, Biodesign Institute, Center for Bioelectronics and Biosensors, Tempe, Ariz, United States
| | - Nongjian Tao
- Arizona State University, Biodesign Institute, Center for Bioelectronics and Biosensors, Tempe, Ariz, United States
- Arizona State University, School of Electrical, Computer and Energy Engineering, Tempe, Arizona, United States
- Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemist, China
| |
Collapse
|
11
|
Ayee MAA, LeMaster E, Teng T, Lee J, Levitan I. Hypotonic Challenge of Endothelial Cells Increases Membrane Stiffness with No Effect on Tether Force. Biophys J 2019; 114:929-938. [PMID: 29490252 DOI: 10.1016/j.bpj.2017.12.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/20/2017] [Accepted: 12/27/2017] [Indexed: 01/13/2023] Open
Abstract
Regulation of cell volume is a fundamental property of all mammalian cells. Multiple signaling pathways are known to be activated by cell swelling and to contribute to cell volume homeostasis. Although cell mechanics and membrane tension have been proposed to couple cell swelling to signaling pathways, the impact of swelling on cellular biomechanics and membrane tension have yet to be fully elucidated. In this study, we use atomic force microscopy under isotonic and hypotonic conditions to measure mechanical properties of endothelial membranes including membrane stiffness, which reflects the stiffness of the submembrane cytoskeleton complex, and the force required for membrane tether formation, reflecting membrane tension and membrane-cytoskeleton attachment. We find that hypotonic swelling results in significant stiffening of the endothelial membrane without a change in membrane tension/membrane-cytoskeleton attachment. Furthermore, depolymerization of F-actin, which, as expected, results in a dramatic decrease in the cellular elastic modulus of both the membrane and the deeper cytoskeleton, indicating a collapse of the cytoskeleton scaffold, does not abrogate swelling-induced stiffening of the membrane. Instead, this swelling-induced stiffening of the membrane is enhanced. We propose that the membrane stiffening should be attributed to an increase in hydrostatic pressure that results from an influx of solutes and water into the cells. Most importantly, our results suggest that increased hydrostatic pressure, rather than changes in membrane tension, could be responsible for activating volume-sensitive mechanisms in hypotonically swollen cells.
Collapse
Affiliation(s)
- Manuela Aseye Ayele Ayee
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Elizabeth LeMaster
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Tao Teng
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - James Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
12
|
Ayee MA, Levitan I. Membrane Stiffening in Osmotic Swelling: Analysis of Membrane Tension and Elastic Modulus. CURRENT TOPICS IN MEMBRANES 2018; 81:97-123. [PMID: 30243442 PMCID: PMC6588289 DOI: 10.1016/bs.ctm.2018.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The effects of osmotic swelling on key cellular biomechanical properties are explored in this chapter. We present the governing equations and theoretical backgrounds of the models employed to estimate cell membrane tension and elastic moduli from experimental methods, and provide a summary of the prevailing experimental approaches used to obtain these biomechanical parameters. A detailed analysis of the current evidence of the effects of osmotic swelling on membrane tension and elastic moduli is provided. Briefly, due to the buffering effect of unfolding membrane reservoirs, mild hypotonic swelling does not change membrane tension or the adhesion of the membrane to the underlying cytoskeleton. Conversely, osmotic swelling causes the cell membrane envelope to stiffen, measured as an increase in the membrane elastic modulus.
Collapse
Affiliation(s)
| | - Irena Levitan
- University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
13
|
Sachs F. Mechanical Transduction and the Dark Energy of Biology. Biophys J 2018; 114:3-9. [PMID: 29320693 PMCID: PMC5984904 DOI: 10.1016/j.bpj.2017.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022] Open
|
14
|
Santelices IB, Friesen DE, Bell C, Hough CM, Xiao J, Kalra A, Kar P, Freedman H, Rezania V, Lewis JD, Shankar K, Tuszynski JA. Response to Alternating Electric Fields of Tubulin Dimers and Microtubule Ensembles in Electrolytic Solutions. Sci Rep 2017; 7:9594. [PMID: 28851923 PMCID: PMC5574899 DOI: 10.1038/s41598-017-09323-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/20/2017] [Indexed: 12/17/2022] Open
Abstract
Microtubules (MTs), which are cylindrical protein filaments that play crucial roles in eukaryotic cell functions, have been implicated in electrical signalling as biological nanowires. We report on the small-signal AC (“alternating current”) conductance of electrolytic solutions containing MTs and tubulin dimers, using a microelectrode system. We find that MTs (212 nM tubulin) in a 20-fold diluted BRB80 electrolyte increase solution conductance by 23% at 100 kHz, and this effect is directly proportional to the concentration of MTs in solution. The frequency response of MT-containing electrolytes exhibits a concentration-independent peak in the conductance spectrum at 111 kHz (503 kHz FWHM that decreases linearly with MT concentration), which appears to be an intrinsic property of MT ensembles in aqueous environments. Conversely, tubulin dimers (42 nM) decrease solution conductance by 5% at 100 kHz under similar conditions. We attribute these effects primarily to changes in the mobility of ionic species due to counter-ion condensation effects, and changes in the solvent structure and solvation dynamics. These results provide insight into MTs’ ability to modulate the conductance of aqueous electrolytes, which in turn, has significant implications for biological information processing, especially in neurons, and for intracellular electrical communication in general.
Collapse
Affiliation(s)
- Iara B Santelices
- Department of Electrical & Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.,Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Douglas E Friesen
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Clayton Bell
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Cameron M Hough
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada.,Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, T6G 1Z2, Canada
| | - Jack Xiao
- Department of Electrical & Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.,Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Aarat Kalra
- Department of Electrical & Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.,Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada.,Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Piyush Kar
- Department of Electrical & Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Holly Freedman
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Vahid Rezania
- Department of Physical Sciences, MacEwan University, Edmonton, Alberta, T5J 4S2, Canada
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Karthik Shankar
- Department of Electrical & Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada. .,NRC National Institute for Nanotechnology, Edmonton, Alberta, T6G 2M9, Canada.
| | - Jack A Tuszynski
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada. .,Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| |
Collapse
|
15
|
Tian J, Tu C, Huang B, Liang Y, Zhou J, Ye X. Study of the union method of microelectrode array and AFM for the recording of electromechanical activities in living cardiomyocytes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:495-507. [PMID: 28012038 DOI: 10.1007/s00249-016-1192-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 10/08/2016] [Accepted: 11/30/2016] [Indexed: 11/28/2022]
Abstract
Electrophysiology and mechanics are two essential components in the functions of cardiomyocytes and skeletal muscle cells. The simultaneous recording of electrophysiological and mechanical activities is important for the understanding of mechanisms underlying cell functions. For example, on the one hand, mechanisms under cardiovascular drug effects will be investigated in a comprehensive way by the simultaneous recording of electrophysiological and mechanical activities. On the other hand, computational models of electromechanics provide a powerful tool for the research of cardiomyocytes. The electrical and mechanical activities are important in cardiomyocyte models. The simultaneous recording of electrophysiological and mechanical activities can provide much experimental data for the models. Therefore, an efficient method for the simultaneous recording of the electrical and mechanical data from cardiomyocytes is required for the improvement of cardiac modeling. However, as far as we know, most of the previous methods were not easy to be implemented in the electromechanical recording. For this reason, in this study, a union method of microelectrode array and atomic force microscope was proposed. With this method, the extracellular field potential and beating force of cardiomyocytes were recorded simultaneously with a low root-mean-square noise level of 11.67 μV and 60 pN. Drug tests were conducted to verify the feasibility of the experimental platform. The experimental results suggested the method would be useful for the cardiovascular drug screening and refinement of the computational cardiomyocyte models. It may be valuable for exploring the functional mechanisms of cardiomyocytes and skeletal muscle cells under physiological or pathological conditions.
Collapse
Affiliation(s)
- Jian Tian
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou, 310027, People's Republic of China.,Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Chunlong Tu
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou, 310027, People's Republic of China.,Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Bobo Huang
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou, 310027, People's Republic of China.,Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yitao Liang
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou, 310027, People's Republic of China.,Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jian Zhou
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou, 310027, People's Republic of China.,Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xuesong Ye
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou, 310027, People's Republic of China. .,Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China. .,State Key Laboratory of CAD and CG, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
16
|
Adaptation Independent Modulation of Auditory Hair Cell Mechanotransduction Channel Open Probability Implicates a Role for the Lipid Bilayer. J Neurosci 2016; 36:2945-56. [PMID: 26961949 DOI: 10.1523/jneurosci.3011-15.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The auditory system is able to detect movement down to atomic dimensions. This sensitivity comes in part from mechanisms associated with gating of hair cell mechanoelectric transduction (MET) channels. MET channels, located at the tops of stereocilia, are poised to detect tension induced by hair bundle deflection. Hair bundle deflection generates a force by pulling on tip-link proteins connecting adjacent stereocilia. The resting open probability (P(open)) of MET channels determines the linearity and sensitivity to mechanical stimulation. Classically, P(open) is regulated by a calcium-sensitive adaptation mechanism in which lowering extracellular calcium or depolarization increases P(open). Recent data demonstrated that the fast component of adaptation is independent of both calcium and voltage, thus requiring an alternative explanation for the sensitivity of P(open) to calcium and voltage. Using rat auditory hair cells, we characterize a mechanism, separate from fast adaptation, whereby divalent ions interacting with the local lipid environment modulate resting P(open). The specificity of this effect for different divalent ions suggests binding sites that are not an EF-hand or calmodulin model. GsMTx4, a lipid-mediated modifier of cationic stretch-activated channels, eliminated the voltage and divalent sensitivity with minimal effects on adaptation. We hypothesize that the dual mechanisms (lipid modulation and adaptation) extend the dynamic range of the system while maintaining adaptation kinetics at their maximal rates.
Collapse
|
17
|
Cox CD, Bae C, Ziegler L, Hartley S, Nikolova-Krstevski V, Rohde PR, Ng CA, Sachs F, Gottlieb PA, Martinac B. Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nat Commun 2016; 7:10366. [PMID: 26785635 PMCID: PMC4735864 DOI: 10.1038/ncomms10366] [Citation(s) in RCA: 356] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 12/04/2015] [Indexed: 12/18/2022] Open
Abstract
Mechanosensitive ion channels are force-transducing enzymes that couple mechanical stimuli to ion flux. Understanding the gating mechanism of mechanosensitive channels is challenging because the stimulus seen by the channel reflects forces shared between the membrane, cytoskeleton and extracellular matrix. Here we examine whether the mechanosensitive channel PIEZO1 is activated by force-transmission through the bilayer. To achieve this, we generate HEK293 cell membrane blebs largely free of cytoskeleton. Using the bacterial channel MscL, we calibrate the bilayer tension demonstrating that activation of MscL in blebs is identical to that in reconstituted bilayers. Utilizing a novel PIEZO1-GFP fusion, we then show PIEZO1 is activated by bilayer tension in bleb membranes, gating at lower pressures indicative of removal of the cortical cytoskeleton and the mechanoprotection it provides. Thus, PIEZO1 channels must sense force directly transmitted through the bilayer.
Collapse
Affiliation(s)
- Charles D. Cox
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Chilman Bae
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Lynn Ziegler
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Silas Hartley
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | - Paul R. Rohde
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Chai-Ann Ng
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Frederick Sachs
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
- The Centre for Single Molecule Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Philip A. Gottlieb
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
- The Centre for Single Molecule Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| |
Collapse
|
18
|
Sachs F. Mechanical transduction by ion channels: A cautionary tale. World J Neurol 2015; 5:74-87. [PMID: 28078202 PMCID: PMC5221657 DOI: 10.5316/wjn.v5.i3.74] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/23/2014] [Accepted: 07/17/2015] [Indexed: 02/06/2023] Open
Abstract
Mechanical transduction by ion channels occurs in all cells. The physiological functions of these channels have just begun to be elaborated, but if we focus on the upper animal kingdom, these channels serve the common sensory services such as hearing and touch, provide the central nervous system with information on the force and position of muscles and joints, and they provide the autonomic system with information about the filling of hollow organs such as blood vessels. However, all cells of the body have mechanosensitive channels (MSCs), including red cells. Most of these channels are cation selective and are activated by bilayer tension. There are also K+ selective MSCs found commonly in neurons where they may be responsible for both general anesthesia and knockout punches in the boxing ring by hyperpolarizing neurons to reduce excitability. The cationic MSCs are typically inactive under normal mechanical stress, but open under pathologic stress. The channels are normally inactive because they are shielded from stress by the cytoskeleton. The cationic MSCs are specifically blocked by the externally applied peptide GsMtx4 (aka, AT-300). This is the first drug of its class and provides a new approach to many pathologies since it is nontoxic, non-immunogenic, stable in a biological environment and has a long pharmacokinetic lifetime. Pathologies involving excessive stress are common. They produce cardiac arrhythmias, contraction in stretched dystrophic muscle, xerocytotic and sickled red cells, etc. The channels seem to function primarily as “fire alarms”, providing feedback to the cytoskeleton that a region of the bilayer is under excessive tension and needs reinforcing. The eukaryotic forms of MSCs have only been cloned in recent years and few people have experience working with them. “Newbies” need to become aware of the technology, potential artifacts, and the fundamentals of mechanics. The most difficult problem in studying MSCs is that the actual stimulus, the force applied to the channel, is not known. We don’t have direct access to the channels themselves but only to larger regions of the membrane as seen in patches. Cortical forces are shared by the bilayer, the cytoskeleton and the extracellular matrix. How much of an applied stimulus reaches the channel is unknown. Furthermore, many of these channels exist in spatial domains where the forces within a domain are different from forces outside the domain, although we often hope they are proportional. This review is intended to be a guide for new investigators who want to study mechanosensitive ion channels.
Collapse
|
19
|
Yang C, Zhang X, Guo Y, Meng F, Sachs F, Guo J. Mechanical dynamics in live cells and fluorescence-based force/tension sensors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1889-904. [PMID: 25958335 DOI: 10.1016/j.bbamcr.2015.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 04/07/2015] [Accepted: 05/01/2015] [Indexed: 01/13/2023]
Abstract
Three signaling systems play the fundamental roles in modulating cell activities: chemical, electrical, and mechanical. While the former two are well studied, the mechanical signaling system is still elusive because of the lack of methods to measure structural forces in real time at cellular and subcellular levels. Indeed, almost all biological processes are responsive to modulation by mechanical forces that trigger dispersive downstream electrical and biochemical pathways. Communication among the three systems is essential to make cells and tissues receptive to environmental changes. Cells have evolved many sophisticated mechanisms for the generation, perception and transduction of mechanical forces, including motor proteins and mechanosensors. In this review, we introduce some background information about mechanical dynamics in live cells, including the ubiquitous mechanical activity, various types of mechanical stimuli exerted on cells and the different mechanosensors. We also summarize recent results obtained using genetically encoded FRET (fluorescence resonance energy transfer)-based force/tension sensors; a new technique used to measure mechanical forces in structural proteins. The sensors have been incorporated into many specific structural proteins and have measured the force gradients in real time within live cells, tissues, and animals.
Collapse
Affiliation(s)
- Chao Yang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, PR China
| | - Xiaohan Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, PR China
| | - Yichen Guo
- The University of Alabama, Tuscaloosa, AL, 35401, USA
| | - Fanjie Meng
- Physiology and Biophysics Department, Center for Single Molecule Studies, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Frederick Sachs
- Physiology and Biophysics Department, Center for Single Molecule Studies, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Jun Guo
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, PR China.
| |
Collapse
|
20
|
Sachs F, Sivaselvan MV. Cell volume control in three dimensions: Water movement without solute movement. ACTA ACUST UNITED AC 2015; 145:373-80. [PMID: 25870207 PMCID: PMC4411252 DOI: 10.1085/jgp.201411297] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Frederick Sachs
- Department of Physiology and Biophysics and Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Mettupalayam V Sivaselvan
- Department of Physiology and Biophysics and Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260
| |
Collapse
|
21
|
Wang Y, Meng F, Sachs F. Genetically encoded force sensors for measuring mechanical forces in proteins. Commun Integr Biol 2014. [DOI: 10.4161/cib.15505] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
22
|
Aspect ratio dependent cytotoxicity and antimicrobial properties of nanoclay. Appl Biochem Biotechnol 2014; 174:936-44. [PMID: 24894661 DOI: 10.1007/s12010-014-0983-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/19/2014] [Indexed: 01/22/2023]
Abstract
Nanoclays may enter human body through various routes such as through the respiratory and gastrointestinal tract, skin, blood, etc. There is dearth of such studies evaluating the interaction of clay nanoparticles with human cells. In particular, the interaction of proteins and nucleic acids with nanoparticles of different aspect ratio remains a domain that is very poorly probed and understood. In the present study, we address the issue of cytotoxicity and antimicrobial attributes of two distinct nanoclay platelets namely, laponite (diameter = 25 nm and thickness = 1 nm) and montmorillonite (MMT, diameter = 300 nm and thickness = 1 nm), having different aspect ratio (25:1 vs 300:1). Cytotoxicity was assessed in both prokatyotes: Escherichia coli, eukaryotes-human embryonic kidney (HEK), and cervical cancer SiHa cell lines, and a comparative size-based analysis of the toxicity were made at different exposure time points by MTT assay. The antimicrobial activity of the nanoclays was evaluated by disc diffusion method (Kirbey-Bauer protocol). Laponite exhibited maximum efficacy as an antimicrobial agent against E. coli. Comparatively smaller size laponite could preferentially enter the cells, leading to relatively wider or larger zone of inhibition. On contradictory; laponite showed 74.67 % survival while MMT showed 89.02 % survival in eukaryotic cells at 0.00001 % (w/v) concentration. In summary, both MMT and laponite indicated cytotoxicity at 0.05 % concentration within 24 h of exposure on HEK and cervical cancer (SiHa) cell lines. The toxicity was possibly dependent on size, aspect ratio, and concentration.
Collapse
|
23
|
Guo J, Sachs F, Meng F. Fluorescence-based force/tension sensors: a novel tool to visualize mechanical forces in structural proteins in live cells. Antioxid Redox Signal 2014; 20:986-99. [PMID: 24205787 PMCID: PMC3924807 DOI: 10.1089/ars.2013.5708] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
SIGNIFICANCE Three signaling systems, chemical, electrical, and mechanical, ubiquitously contribute to cellular activities. There is limited information on the mechanical signaling system because of a lack of tools to measure stress in specific proteins. Although significant advances in methodologies such as atomic force microscopy and laser tweezers have achieved great success in single molecules and measuring the mean properties of cells and tissues, they cannot deal with specific proteins in live cells. RECENT ADVANCES To remedy the situation, we developed a family of genetically encoded optical force sensors to measure the stress in structural proteins in living cells. The sensors can be incorporated into specific proteins and are not harmful in transgenic animals. The chimeric proteins distribute and function as their wild-type counterparts, and local stress can be read out from changes in Förster resonance energy transfer (FRET). CRITICAL ISSUES Our original sensor used two mutant green fluorescence proteins linked by an alpha helix that served as a linking spring. Ever since, we have improved the probe design in a number of ways. For example, we replaced the helical linker with more common elastic protein domains to better match the compliance of the wild-type hosts. We greatly improved sensitivity by using the angular dependence of FRET rather than the distance dependence as the transduction mechanism, because that has nearly 100% efficiency at rest and nearly zero when stretched. FUTURE DIRECTIONS These probes enable researchers to investigate the roles of mechanical force in cellular activities at the level of single molecules, cells, tissues, and whole animals.
Collapse
Affiliation(s)
- Jun Guo
- 1 Department of Biochemistry, Nanjing Medical University , Nanjing, People's Republic of China
| | | | | |
Collapse
|
24
|
Yang R, Xi N, Lai KWC, Patterson K, Chen H, Song B, Qu C, Zhong B, Wang DH. Cellular biophysical dynamics and ion channel activities detected by AFM-based nanorobotic manipulator in insulinoma β-cells. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2013; 9:636-45. [PMID: 23178285 PMCID: PMC3594338 DOI: 10.1016/j.nano.2012.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/13/2012] [Accepted: 10/29/2012] [Indexed: 12/17/2022]
Abstract
Distinct biochemical, electrochemical and electromechanical coupling processes of pancreatic β-cells may well underlie different response patterns of insulin release from glucose and capsaicin stimulation. Intracellular Ca(2+) levels increased rapidly and dose-dependently upon glucose stimulation, accompanied with about threefold rapid increases in cellular stiffness. Subsequently, cellular stiffness diminished rapidly and settled at a value about twofold of the baseline. Capsaicin caused a similar transient increase in intracellular Ca(2+) changes. However, cellular stiffness increased gradually to about twofold until leveling off. The current study characterizes for the first time the biophysical properties underlying glucose-induced biphasic responses of insulin secretion, distinctive from the slow and single-phased stiffness response to capsaicin despite similar changes in intracellular Ca(2+) levels. The integrated AFM nanorobotics and optical investigation enables the fine dissection of mechano-property from ion channel activities in response to specific and non-specific agonist stimulation, providing novel biomechanical markers for the insulin secretion process. FROM THE CLINICAL EDITOR This study characterizes the biophysical properties underlying glucose-induced biphasic responses of insulin secretion. Integrated AFM nanorobotics and optical investigations provided novel biomechanical markers for the insulin secretion process.
Collapse
Affiliation(s)
- Ruiguo Yang
- College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Ning Xi
- College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - King Wai Chiu Lai
- College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Kevin Patterson
- College of Human Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - Hongzhi Chen
- College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Bo Song
- College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Chengeng Qu
- College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Beihua Zhong
- College of Human Medicine, Michigan State University, East Lansing, MI 48824 USA
- Department of Medicine, Michigan State University, East Lansing, MI 48824 USA
- Guangzhou Medical College, Guangzhou, China
| | - Donna H. Wang
- College of Human Medicine, Michigan State University, East Lansing, MI 48824 USA
- Department of Medicine, Michigan State University, East Lansing, MI 48824 USA
- Neuroscience Program, Cell and Molecular Biology Program in Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
25
|
Strege P, Beyder A, Bernard C, Crespo-Diaz R, Behfar A, Terzic A, Ackerman M, Farrugia G. Ranolazine inhibits shear sensitivity of endogenous Na+ current and spontaneous action potentials in HL-1 cells. Channels (Austin) 2012; 6:457-62. [PMID: 23018927 PMCID: PMC3536731 DOI: 10.4161/chan.22017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Na(V)1.5 is a mechanosensitive voltage-gated Na(+) channel encoded by the gene SCN5A, expressed in cardiac myocytes and required for phase 0 of the cardiac action potential (AP). In the cardiomyocyte, ranolazine inhibits depolarizing Na(+) current and delayed rectifier (I(Kr)) currents. Recently, ranolazine was also shown to be an inhibitor of Na(V)1.5 mechanosensitivity. Stretch also accelerates the firing frequency of the SA node, and fluid shear stress increases the beating rate of cultured cardiomyocytes in vitro. However, no cultured cell platform exists currently for examination of spontaneous electrical activity in response to mechanical stimulation. In the present study, flow of solution over atrial myocyte-derived HL-1 cultured cells was used to study shear stress mechanosensitivity of Na(+) current and spontaneous, endogenous rhythmic action potentials. In voltage-clamped HL-1 cells, bath flow increased peak Na(+) current by 14 ± 5%. In current-clamped cells, bath flow increased the frequency and decay rate of AP by 27 ± 12% and 18 ± 4%, respectively. Ranolazine blocked both responses to shear stress. This study suggests that cultured HL-1 cells are a viable in vitro model for detailed study of the effects of mechanical stimulation on spontaneous cardiac action potentials. Inhibition of the frequency and decay rate of action potentials in HL-1 cells are potential mechanisms behind the antiarrhythmic effect of ranolazine.
Collapse
Affiliation(s)
- Peter Strege
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sukharev S, Sachs F. Molecular force transduction by ion channels: diversity and unifying principles. J Cell Sci 2012; 125:3075-83. [PMID: 22797911 DOI: 10.1242/jcs.092353] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cells perceive force through a variety of molecular sensors, of which the mechanosensitive ion channels are the most efficient and act the fastest. These channels apparently evolved to prevent osmotic lysis of the cell as a result of metabolite accumulation and/or external changes in osmolarity. From this simple beginning, nature developed specific mechanosensitive enzymes that allow us to hear, maintain balance, feel touch and regulate many systemic variables, such as blood pressure. For a channel to be mechanosensitive it needs to respond to mechanical stresses by changing its shape between the closed and open states. In that way, forces within the lipid bilayer or within a protein link can do work on the channel and stabilize its state. Ion channels have the highest turnover rates of all enzymes, and they can act as both sensors and effectors, providing the necessary fluxes to relieve osmotic pressure, shift the membrane potential or initiate chemical signaling. In this Commentary, we focus on the common mechanisms by which mechanical forces and the local environment can regulate membrane protein structure, and more specifically, mechanosensitive ion channels.
Collapse
Affiliation(s)
- Sergei Sukharev
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
27
|
Thompson G, Reukov V, Nikiforov M, Jesse S, Kalinin S, Vertegel A. Electromechanical and elastic probing of bacteria in a cell culture medium. NANOTECHNOLOGY 2012; 23:245705. [PMID: 22641388 PMCID: PMC3409894 DOI: 10.1088/0957-4484/23/24/245705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Rapid phenotype characterization and identification of cultured cells, which is needed for progress in tissue engineering and drug testing, requires an experimental technique that measures physical properties of cells with sub-micron resolution. Recently, band excitation piezoresponse force microscopy (BEPFM) has been proven useful for recognition and imaging of bacteria of different types in pure water. Here, the BEPFM method is performed for the first time on physiologically relevant electrolyte media, such as Dulbecco's phosphate-buffered saline (DPBS) and Dulbecco's modified Eagle's medium (DMEM). Distinct electromechanical responses for Micrococcus lysodeikticus (Gram-positive) and Pseudomonas fluorescens (Gram-negative) bacteria in DPBS are demonstrated. The results suggest that mechanical properties of the outer surface coating each bacterium, as well as the electrical double layer around them, are responsible for the BEPFM image formation mechanism in electrolyte media.
Collapse
Affiliation(s)
- G.L. Thompson
- Clemson University, Department of Bioengineering, Clemson, SC 29634
| | - V.V. Reukov
- Clemson University, Department of Bioengineering, Clemson, SC 29634
| | | | - S. Jesse
- Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - S.V. Kalinin
- Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - A.A. Vertegel
- Clemson University, Department of Bioengineering, Clemson, SC 29634
| |
Collapse
|
28
|
Beyder A, Farrugia G. Targeting ion channels for the treatment of gastrointestinal motility disorders. Therap Adv Gastroenterol 2012; 5:5-21. [PMID: 22282704 PMCID: PMC3263980 DOI: 10.1177/1756283x11415892] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gastrointestinal (GI) functional and motility disorders are highly prevalent and responsible for long-term morbidity and sometimes mortality in the affected patients. It is estimated that one in three persons has a GI functional or motility disorder. However, diagnosis and treatment of these widespread conditions remains challenging. This partly stems from the multisystem pathophysiology, including processing abnormalities in the central and peripheral (enteric) nervous systems and motor dysfunction in the GI wall. Interstitial cells of Cajal (ICCs) are central to the generation and propagation of the cyclical electrical activity and smooth muscle cells (SMCs) are responsible for electromechanical coupling. In these and other excitable cells voltage-sensitive ion channels (VSICs) are the main molecular units that generate and regulate electrical activity. Thus, VSICs are potential targets for intervention in GI motility disorders. Research in this area has flourished with advances in the experimental methods in molecular and structural biology and electrophysiology. However, our understanding of the molecular mechanisms responsible for the complex and variable electrical behavior of ICCs and SMCs remains incomplete. In this review, we focus on the slow waves and action potentials in ICCs and SMCs. We describe the constituent VSICs, which include voltage-gated sodium (Na(V)), calcium (Ca(V)), potassium (K(V), K(Ca)), chloride (Cl(-)) and nonselective ion channels (transient receptor potentials [TRPs]). VSICs have significant structural homology and common functional mechanisms. We outline the approaches and limitations and provide examples of targeting VSICs at the pores, voltage sensors and alternatively spliced sites. Rational drug design can come from an integrated view of the structure and mechanisms of gating and activation by voltage or mechanical stress.
Collapse
Affiliation(s)
- Arthur Beyder
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
29
|
Wang Y, Meng F, Sachs F. Genetically encoded force sensors for measuring mechanical forces in proteins. Commun Integr Biol 2011; 4:385-90. [PMID: 21966553 DOI: 10.4161/cib.4.4.15505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 03/16/2011] [Indexed: 11/19/2022] Open
Abstract
THERE ARE THREE SOURCES OF FREE ENERGY FOR CELLS: chemical potential, electrical potential and mechanical potential. There is little known about the last one since there have not been simple ways to measure stress in proteins in cells. we have now developed genetically encoded force sensors to assess the stress in fibrous proteins in living cells. These FReT based fluorescence sensors can be read out at video rates and provide real time maps of the stress distribution in cells, tissues and animals. The sensors can be inserted into specific proteins and in general do not disturb the normal function or anatomy. The original sensors used mutant GFPs linked by elastic linkers. These sensors provide a linear output with applied stress but the response is linear in strain. To improve contrast and dynamic range we have now developed a new class of sensors that are smaller making them less invasive, and have much higher intrinsic sensitivity since force modulates the angle between the donor and acceptor much more than the distance between them. Known as cpstFRET, the probe shows improved biocompatibility, wider dynamic range and higher sensitivity.
Collapse
Affiliation(s)
- Yuexiu Wang
- Center for Single Molecule Biophysics; Department of Physiology and Biophysics; University at Buffalo; the State University of New York; NY USA
| | | | | |
Collapse
|
30
|
Upadhye KV, Candiello JE, Davidson LA, Lin H. Whole-Cell Electrical Activity Under Direct Mechanical Stimulus by AFM Cantilever Using Planar Patch Clamp Chip Approach. Cell Mol Bioeng 2011; 4:270-280. [PMID: 22174731 DOI: 10.1007/s12195-011-0160-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Patch clamp is a powerful tool for studying the properties of ion-channels and cellular membrane. In recent years, planar patch clamp chips have been fabricated from various materials including glass, quartz, silicon, silicon nitride, polydimethyl-siloxane (PDMS), and silicon dioxide. Planar patch clamps have made automation of patch clamp recordings possible. However, most planar patch clamp chips have limitations when used in combination with other techniques. Furthermore, the fabrication methods used are often expensive and require specialized equipments. An improved design as well as fabrication and characterization of a silicon-based planar patch clamp chip are described in this report. Fabrication involves true batch fabrication processes that can be performed in most common microfabrication facilities using well established MEMS techniques. Our planar patch clamp chips can form giga-ohm seals with the cell plasma membrane with success rate comparable to existing patch clamp techniques. The chip permits whole-cell voltage clamp recordings on variety of cell types including Chinese Hamster Ovary (CHO) cells and pheochromocytoma (PC12) cells, for times longer than most available patch clamp chips. When combined with a custom microfluidics chamber, we demonstrate that it is possible to perfuse the extra-cellular as well as intra-cellular buffers. The chamber design allows integration of planar patch clamp with atomic force microscope (AFM). Using our planar patch clamp chip and microfluidics chamber, we have recorded whole-cell mechanosensitive (MS) currents produced by directly stimulating human keratinocyte (HaCaT) cells using an AFM cantilever. Our results reveal the spatial distribution of MS ion channels and temporal details of the responses from MS channels. The results show that planar patch clamp chips have great potential for multi-parametric high throughput studies of ion channel proteins.
Collapse
Affiliation(s)
- Kalpesh V Upadhye
- Department of Bioengineering, University of Pittsburgh, Suite 306, 300 Technology Drive, Pittsburgh, PA 15219, USA
| | | | | | | |
Collapse
|
31
|
Beyder A, Rae JL, Bernard C, Strege PR, Sachs F, Farrugia G. Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel. J Physiol 2010; 588:4969-85. [PMID: 21041530 DOI: 10.1113/jphysiol.2010.199034] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The voltage-sensitive sodium channel Na(v)1.5 (encoded by SCN5A) is expressed in electromechanical organs and is mechanosensitive. This study aimed to determine the mechanosensitive transitions of Na(v)1.5 at the molecular level. Na(v)1.5 was expressed in HEK 293 cells and mechanosensitivity was studied in cell-attached patches. Patch pressure up to -50 mmHg produced increases in current and large hyperpolarizing shifts of voltage dependence with graded shifts of half-activation and half-inactivation voltages (V(1/2)) by ∼0.7 mV mmHg(-1). Voltage dependence shifts affected channel kinetics by a single constant. This suggested that stretch accelerated only one of the activation transitions. Stretch accelerated voltage sensor movement, but not rate constants for gate opening and fast inactivation. Stretch also appeared to stabilize the inactivated states, since recovery from inactivation was slowed with stretch. Unitary conductance and maximum open probability were unaffected by stretch, but peak current was increased due to an increased number of active channels. Stretch effects were partially reversible, but recovery following a single stretch cycle required minutes. These data suggest that mechanical activation of Na(v)1.5 results in dose-dependent voltage dependence shifts of activation and inactivation due to mechanical modulation of the voltage sensors.
Collapse
Affiliation(s)
- Arthur Beyder
- Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
32
|
Pihlasalo S, Pellonperä L, Martikkala E, Hänninen, P, Härmä H. Sensitive Fluorometric Nanoparticle Assays for Cell Counting and Viability. Anal Chem 2010; 82:9282-8. [DOI: 10.1021/ac1017869] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sari Pihlasalo
- Laboratory of Biophysics and Medicity, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Lotta Pellonperä
- Laboratory of Biophysics and Medicity, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Eija Martikkala
- Laboratory of Biophysics and Medicity, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Pekka Hänninen,
- Laboratory of Biophysics and Medicity, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Harri Härmä
- Laboratory of Biophysics and Medicity, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland
| |
Collapse
|
33
|
Boucher PA, Morris CE, Joós B. Mechanosensitive closed-closed transitions in large membrane proteins: osmoprotection and tension damping. Biophys J 2010; 97:2761-70. [PMID: 19917230 DOI: 10.1016/j.bpj.2009.08.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 08/20/2009] [Accepted: 08/31/2009] [Indexed: 12/11/2022] Open
Abstract
Multiconformation membrane proteins are mechanosensitive (MS) if their conformations displace different bilayer areas. Might MS closed-closed transitions serve as tension buffers, that is, as membrane "spandex"? While bilayer expansion is effectively instantaneous, transitions of bilayer-embedded MS proteins are stochastic (thermally activated) so spandex kinetics would be critical. Here we model generic two-state (contracted/expanded) stochastic spandexes inspired by known bacterial osmovalves (MscL, MscS) then suggest experimental approaches to test for spandex-like behaviors in these proteins. Modeling shows: 1), spandex kinetics depend on the transition state location along an area reaction coordinate; 2), increasing membrane concentration of a spandex right-shifts its midpoint (= tension-Boltzmann); 3), spandexes with midpoints below the activating tension of an osmovalve could optimize osmovalve deployment (required: large midpoint, barrier near the expanded state); 4), spandexes could damp bilayer tension excursions (required: midpoint at target tension, and for speed, barrier halfway between the contracted and expanded states; the larger the spandex Delta-area, the more precise the maintenance of target tension; higher spandex concentrations damp larger amplitude strain fluctuations). One spandex species could not excel as both first line of defense for osmovalve partners and tension damper. Possible interactions among MS closed-closed and closed-open transitions are discussed for MscS- and MscL-like proteins.
Collapse
|
34
|
Abstract
Mechanosensitive ion channels (MSCs) exist in all cells, but mechanosensitivity is a phenotype not a genotype. Specialized mechanoreceptors such as the hair cells of the cochlea require elaborate mechanical impedance matching to couple the channels to the external stress. In contrast, MSCs in nonspecialized cells appear activated by stress in the bilayer local to the channel--within about three lipids. Local mechanical stress can be produced by far-field tension, amphipaths, phase separations, the cytoskeleton, the extracellular matrix, and the adhesion energy between the membrane and a patch pipette. Understanding MSC function requires under standing the stimulus.
Collapse
|
35
|
Gating in CNGA1 channels. Pflugers Arch 2009; 459:547-55. [PMID: 19898862 DOI: 10.1007/s00424-009-0751-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 10/14/2009] [Accepted: 10/16/2009] [Indexed: 01/07/2023]
Abstract
The aminoacid sequences of CNG and K(+) channels share a significant sequence identity, and it has been suggested that these channels have a common ancestral 3D architecture. However, K(+) and CNG channels have profoundly different physiological properties: indeed, K(+) channels have a high ionic selectivity, their gating strongly depends on membrane voltage and when opened by a steady depolarizing voltage several K(+) channels inactivate, whereas CNG channels have a low ion selectivity, their gating is poorly voltage dependent, and they do not desensitize in the presence of a steady concentration of cyclic nucleotides that cause their opening. The purpose of the present review is to summarize and recapitulate functional and structural differences between K(+) and CNG channels with the aim to understand the gating mechanisms of CNG channels.
Collapse
|
36
|
Sachs F, Brownell WE, Petrov AG. Membrane Electromechanics in Biology, with a Focus on Hearing. MRS BULLETIN 2009; 34:665. [PMID: 20165559 PMCID: PMC2822359 DOI: 10.1557/mrs2009.178] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cells are ion conductive gels surrounded by a ~5-nm-thick insulating membrane, and molecular ionic pumps in the membrane establish an internal potential of approximately -90 mV. This electrical energy store is used for high-speed communication in nerve and muscle and other cells. Nature also has used this electric field for high-speed motor activity, most notably in the ear, where transduction and detection can function as high as 120 kHz. In the ear, there are two sets of sensory cells: the "inner hair cells" that generate an electrical output to the nervous system and the more numerous "outer hair cells" that use electromotility to counteract viscosity and thus sharpen resonance to improve frequency resolution. Nature, in a remarkable exhibition of nanomechanics, has made out of soft, aqueous materials a microphone and high-speed decoder capable of functioning at 120 kHz, limited only by thermal noise. Both physics and biology are only now becoming aware of the material properties of biomembranes and their ability to perform work and sense the environment. We anticipate new examples of this biopiezoelectricity will be forthcoming.
Collapse
|