1
|
Curto Y, Carceller H, Klimczak P, Perez-Rando M, Wang Q, Grewe K, Kawaguchi R, Rizzoli S, Geschwind D, Nave KA, Teruel-Marti V, Singh M, Ehrenreich H, Nácher J. Erythropoietin restrains the inhibitory potential of interneurons in the mouse hippocampus. Mol Psychiatry 2024; 29:2979-2996. [PMID: 38622200 PMCID: PMC11449791 DOI: 10.1038/s41380-024-02528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
Severe psychiatric illnesses, for instance schizophrenia, and affective diseases or autism spectrum disorders, have been associated with cognitive impairment and perturbed excitatory-inhibitory balance in the brain. Effects in juvenile mice can elucidate how erythropoietin (EPO) might aid in rectifying hippocampal transcriptional networks and synaptic structures of pyramidal lineages, conceivably explaining mitigation of neuropsychiatric diseases. An imminent conundrum is how EPO restores synapses by involving interneurons. By analyzing ~12,000 single-nuclei transcriptomic data, we generated a comprehensive molecular atlas of hippocampal interneurons, resolved into 15 interneuron subtypes. Next, we studied molecular alterations upon recombinant human (rh)EPO and saw that gene expression changes relate to synaptic structure, trans-synaptic signaling and intracellular catabolic pathways. Putative ligand-receptor interactions between pyramidal and inhibitory neurons, regulating synaptogenesis, are altered upon rhEPO. An array of in/ex vivo experiments confirms that specific interneuronal populations exhibit reduced dendritic complexity, synaptic connectivity, and changes in plasticity-related molecules. Metabolism and inhibitory potential of interneuron subgroups are compromised, leading to greater excitability of pyramidal neurons. To conclude, improvement by rhEPO of neuropsychiatric phenotypes may partly owe to restrictive control over interneurons, facilitating re-connectivity and synapse development.
Collapse
Affiliation(s)
- Yasmina Curto
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Héctor Carceller
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Patrycja Klimczak
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Marta Perez-Rando
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Qing Wang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Katharina Grewe
- Department of Neuro- & Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Riki Kawaguchi
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Silvio Rizzoli
- Department of Neuro- & Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Daniel Geschwind
- Institute of Precision Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Vicent Teruel-Marti
- Neuronal Circuits Laboratory, Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain
| | - Manvendra Singh
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany.
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany.
- Georg-August-University, Göttingen, Germany.
- Experimental Medicine, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J 5, Mannheim, Germany.
| | - Juan Nácher
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain.
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain.
| |
Collapse
|
2
|
He Y, Zhou H, Qu Y, Chi R, Xu H, Chen S, Meng C, Liu Q, Huang X, You H, Ye Y. Pharmacological modulation of gp130 signalling enhances Achilles tendon repair by regulating tenocyte migration and collagen synthesis via SHP2-mediated crosstalk of the ERK/AKT pathway. Biochem Pharmacol 2024; 226:116370. [PMID: 38880359 DOI: 10.1016/j.bcp.2024.116370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/22/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Tendon injuries typically display limited reparative capacity, often resulting in suboptimal outcomes and an elevated risk of recurrence or rupture. While cytokines of the IL-6 family are primarily recognised for their inflammatory properties, they also have multifaceted roles in tissue regeneration and repair. Despite this, studies examining the association between IL-6 family cytokines and tendon repair remained scarce. gp130, a type of glycoprotein, functions as a co-receptor for all cytokines in the IL-6 family. Its role is to assist in the transmission of signals following the binding of ligands to receptors. RCGD423 is a gp130 modulator. Phosphorylation of residue Y759 of gp130 recruits SHP2 and SOCS3 and inhibits activation of the STAT3 pathway. In our study, RCGD423 stimulated the formation of homologous dimers of gp130 and the phosphorylation of Y759 residues without the involvement of IL-6 and IL-6R. Subsequently, the phosphorylated residues recruited SHP2, activating the downstream ERK and AKT pathways. These mechanisms ultimately promoted the migration ability of tenocytes and matrix synthesis, especially collagen I. Moreover, RCGD423 also demonstrated significant improvements in collagen content, alignment of collagen fibres, and biological and biomechanical function in a rat Achilles tendon injury model. In summary, we demonstrated a promising gp130 modulator (RCGD423) that could potentially enhance tendon injury repair by redirecting downstream signalling of IL-6, suggesting its potential therapeutic application for tendon injuries.
Collapse
Affiliation(s)
- Yi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Haiting Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yunkun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ruimin Chi
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Hanqing Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Sheng Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Chen Meng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Qingyi Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xiaojian Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yaping Ye
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
3
|
Mravic M, He L, Kratochvil HT, Hu H, Nick SE, Bai W, Edwards A, Jo H, Wu Y, DiMaio D, DeGrado WF. De novo-designed transmembrane proteins bind and regulate a cytokine receptor. Nat Chem Biol 2024; 20:751-760. [PMID: 38480980 PMCID: PMC11142920 DOI: 10.1038/s41589-024-01562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 01/25/2024] [Indexed: 05/30/2024]
Abstract
Transmembrane (TM) domains as simple as a single span can perform complex biological functions using entirely lipid-embedded chemical features. Computational design has the potential to generate custom tool molecules directly targeting membrane proteins at their functional TM regions. Thus far, designed TM domain-targeting agents have been limited to mimicking the binding modes and motifs of natural TM interaction partners. Here, we demonstrate the design of de novo TM proteins targeting the erythropoietin receptor (EpoR) TM domain in a custom binding topology competitive with receptor homodimerization. The TM proteins expressed in mammalian cells complex with EpoR and inhibit erythropoietin-induced cell proliferation. In vitro, the synthetic TM domain complex outcompetes EpoR homodimerization. Structural characterization reveals that the complex involves the intended amino acids and agrees with our designed molecular model of antiparallel TM helices at 1:1 stoichiometry. Thus, membrane protein TM regions can now be targeted in custom-designed topologies.
Collapse
Affiliation(s)
- Marco Mravic
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Li He
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Huong T Kratochvil
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA, USA
- Department of Chemistry, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Hailin Hu
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Sarah E Nick
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA, USA
| | - Weiya Bai
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Anne Edwards
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA, USA
| | - Yibing Wu
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA, USA
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA.
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA.
- Yale Cancer Center, New Haven, CT, USA.
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA, USA.
| |
Collapse
|
4
|
Abraham BG, Haikarainen T, Vuorio J, Girych M, Virtanen AT, Kurttila A, Karathanasis C, Heilemann M, Sharma V, Vattulainen I, Silvennoinen O. Molecular basis of JAK2 activation in erythropoietin receptor and pathogenic JAK2 signaling. SCIENCE ADVANCES 2024; 10:eadl2097. [PMID: 38457493 PMCID: PMC10923518 DOI: 10.1126/sciadv.adl2097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
Janus kinase 2 (JAK2) mediates type I/II cytokine receptor signaling, but JAK2 is also activated by somatic mutations that cause hematological malignancies by mechanisms that are still incompletely understood. Quantitative superresolution microscopy (qSMLM) showed that erythropoietin receptor (EpoR) exists as monomers and dimerizes upon Epo stimulation or through the predominant JAK2 pseudokinase domain mutations (V617F, K539L, and R683S). Crystallographic analysis complemented by kinase activity analysis and atomic-level simulations revealed distinct pseudokinase dimer interfaces and activation mechanisms for the mutants: JAK V617F activity is driven by dimerization, K539L involves both increased receptor dimerization and kinase activity, and R683S prevents autoinhibition and increases catalytic activity and drives JAK2 equilibrium toward activation state through a wild-type dimer interface. Artificial intelligence-guided modeling and simulations revealed that the pseudokinase mutations cause differences in the pathogenic full-length JAK2 dimers, particularly in the FERM-SH2 domains. A detailed molecular understanding of mutation-driven JAK2 hyperactivation may enable novel therapeutic approaches to selectively target pathogenic JAK2 signaling.
Collapse
Affiliation(s)
| | - Teemu Haikarainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Joni Vuorio
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Anniina T. Virtanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Antti Kurttila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Christos Karathanasis
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Olli Silvennoinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Mudumbi KC, Burns EA, Schodt DJ, Petrova ZO, Kiyatkin A, Kim LW, Mangiacapre EM, Ortiz-Caraveo I, Rivera Ortiz H, Hu C, Ashtekar KD, Lidke KA, Lidke DS, Lemmon MA. Distinct interactions stabilize EGFR dimers and higher-order oligomers in cell membranes. Cell Rep 2024; 43:113603. [PMID: 38117650 PMCID: PMC10835193 DOI: 10.1016/j.celrep.2023.113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/23/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase with important roles in many cellular processes as well as in cancer and other diseases. EGF binding promotes EGFR dimerization and autophosphorylation through interactions that are well understood structurally. How these dimers relate to higher-order EGFR oligomers seen in cell membranes, however, remains unclear. Here, we used single-particle tracking (SPT) and Förster resonance energy transfer imaging to examine how each domain of EGFR contributes to receptor oligomerization and the rate of receptor diffusion in the cell membrane. Although the extracellular region of EGFR is sufficient to drive receptor dimerization, we find that the EGF-induced EGFR slowdown seen by SPT requires higher-order oligomerization-mediated in part by the intracellular tyrosine kinase domain when it adopts an active conformation. Our data thus provide important insight into the interactions required for higher-order EGFR assemblies involved in EGF signaling.
Collapse
Affiliation(s)
- Krishna C Mudumbi
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA.
| | - Eric A Burns
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - David J Schodt
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Zaritza O Petrova
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Anatoly Kiyatkin
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Lucy W Kim
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Emma M Mangiacapre
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Irais Ortiz-Caraveo
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Hector Rivera Ortiz
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Chun Hu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Kumar D Ashtekar
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Keith A Lidke
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Diane S Lidke
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Mark A Lemmon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA.
| |
Collapse
|
6
|
Pogozheva ID, Cherepanov S, Park SJ, Raghavan M, Im W, Lomize AL. Structural Modeling of Cytokine-Receptor-JAK2 Signaling Complexes Using AlphaFold Multimer. J Chem Inf Model 2023; 63:5874-5895. [PMID: 37694948 PMCID: PMC11791896 DOI: 10.1021/acs.jcim.3c00926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Homodimeric class 1 cytokine receptors include the erythropoietin (EPOR), thrombopoietin (TPOR), granulocyte colony-stimulating factor 3 (CSF3R), growth hormone (GHR), and prolactin receptors (PRLR). These cell-surface single-pass transmembrane (TM) glycoproteins regulate cell growth, proliferation, and differentiation and induce oncogenesis. An active TM signaling complex consists of a receptor homodimer, one or two ligands bound to the receptor extracellular domains, and two molecules of Janus Kinase 2 (JAK2) constitutively associated with the receptor intracellular domains. Although crystal structures of soluble extracellular domains with ligands have been obtained for all of the receptors except TPOR, little is known about the structure and dynamics of the complete TM complexes that activate the downstream JAK-STAT signaling pathway. Three-dimensional models of five human receptor complexes with cytokines and JAK2 were generated here by using AlphaFold Multimer. Given the large size of the complexes (from 3220 to 4074 residues), the modeling required a stepwise assembly from smaller parts, with selection and validation of the models through comparisons with published experimental data. The modeling of active and inactive complexes supports a general activation mechanism that involves ligand binding to a monomeric receptor followed by receptor dimerization and rotational movement of the receptor TM α-helices, causing proximity, dimerization, and activation of associated JAK2 subunits. The binding mode of two eltrombopag molecules to the TM α-helices of the active TPOR dimer was proposed. The models also help elucidate the molecular basis of oncogenic mutations that may involve a noncanonical activation route. Models equilibrated in explicit lipids of the plasma membrane are publicly available.
Collapse
Affiliation(s)
- Irina D. Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States
| | | | - Sang-Jun Park
- Departments of Biological Sciences and Chemistry, Lehigh University, Bethlehem, PA 18015, United States
| | - Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Wonpil Im
- Departments of Biological Sciences and Chemistry, Lehigh University, Bethlehem, PA 18015, United States
| | - Andrei L. Lomize
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
7
|
Reth M. Discovering immunoreceptor coupling and organization motifs. Front Immunol 2023; 14:1253412. [PMID: 37731510 PMCID: PMC10507400 DOI: 10.3389/fimmu.2023.1253412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 09/22/2023] Open
Abstract
The recently determined cryo-EM structures of the T cell antigen receptor (TCR) and B cell antigen receptor (BCR) show in molecular details the interactions of the ligand-binding part with the signaling subunits but they do not reveal the signaling mechanism of these antigen receptors. Without knowing the molecular basis of antigen sensing by these receptors, a rational design of optimal vaccines is not possible. The existence of conserved amino acids (AAs) that are not involved in the subunit interaction suggests that antigen receptors form higher complexes and/or have lateral interactors that control their activity. Here, I describe evolutionary conserved leucine zipper (LZ) motifs within the transmembrane domains (TMD) of antigen and coreceptor components that are likely to be involved in the oligomerization and lateral interaction of antigen receptor complexes on T and B cells. These immunoreceptor coupling and organization motifs (ICOMs) are also found within the TMDs of other important receptor types and viral envelope proteins. This discovery suggests that antigen receptors do not function as isolated entities but rather as part of an ICOM-based interactome that controls their nanoscale organization on resting cells and their dynamic remodeling on activated lymphocytes.
Collapse
Affiliation(s)
- Michael Reth
- Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Pogozheva ID, Cherepanov S, Park SJ, Raghavan M, Im W, Lomize AL. Structural modeling of cytokine-receptor-JAK2 signaling complexes using AlphaFold Multimer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544971. [PMID: 37398331 PMCID: PMC10312770 DOI: 10.1101/2023.06.14.544971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Homodimeric class 1 cytokine receptors include the erythropoietin (EPOR), thrombopoietin (TPOR), granulocyte colony-stimulating factor 3 (CSF3R), growth hormone (GHR), and prolactin receptors (PRLR). They are cell-surface single-pass transmembrane (TM) glycoproteins that regulate cell growth, proliferation, and differentiation and induce oncogenesis. An active TM signaling complex consists of a receptor homodimer, one or two ligands bound to the receptor extracellular domains and two molecules of Janus Kinase 2 (JAK2) constitutively associated with the receptor intracellular domains. Although crystal structures of soluble extracellular domains with ligands have been obtained for all the receptors except TPOR, little is known about the structure and dynamics of the complete TM complexes that activate the downstream JAK-STAT signaling pathway. Three-dimensional models of five human receptor complexes with cytokines and JAK2 were generated using AlphaFold Multimer. Given the large size of the complexes (from 3220 to 4074 residues), the modeling required a stepwise assembly from smaller parts with selection and validation of the models through comparisons with published experimental data. The modeling of active and inactive complexes supports a general activation mechanism that involves ligand binding to a monomeric receptor followed by receptor dimerization and rotational movement of the receptor TM α-helices causing proximity, dimerization, and activation of associated JAK2 subunits. The binding mode of two eltrombopag molecules to TM α-helices of the active TPOR dimer was proposed. The models also help elucidating the molecular basis of oncogenic mutations that may involve non-canonical activation route. Models equilibrated in explicit lipids of the plasma membrane are publicly available.
Collapse
Affiliation(s)
- Irina D. Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States
| | | | - Sang-Jun Park
- Departments of Biological Sciences and Chemistry, Lehigh University, Bethlehem, PA 18015, United States
| | - Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Wonpil Im
- Departments of Biological Sciences and Chemistry, Lehigh University, Bethlehem, PA 18015, United States
| | - Andrei L. Lomize
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
9
|
McFarlane A, Pohler E, Moraga I. Molecular and cellular factors determining the functional pleiotropy of cytokines. FEBS J 2023; 290:2525-2552. [PMID: 35246947 PMCID: PMC10952290 DOI: 10.1111/febs.16420] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/26/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
Cytokines are soluble factors vital for mammalian physiology. Cytokines elicit highly pleiotropic activities, characterized by their ability to induce a wide spectrum of functional responses in a diverse range of cell subsets, which makes their study very challenging. Cytokines activate signalling via receptor dimerization/oligomerization, triggering activation of the JAK (Janus kinase)/STAT (signal transducer and activator of transcription) signalling pathway. Given the strong crosstalk and shared usage of key components of cytokine signalling pathways, a long-standing question in the field pertains to how functional diversity is achieved by cytokines. Here, we discuss how biophysical - for example, ligand-receptor binding affinity and topology - and cellular - for example, receptor, JAK and STAT protein levels, endosomal compartment - parameters contribute to the modulation and diversification of cytokine responses. We review how these parameters ultimately converge into a common mechanism to fine-tune cytokine signalling that involves the control of the number of Tyr residues phosphorylated in the receptor intracellular domain upon cytokine stimulation. This results in different kinetics of STAT activation, and induction of specific gene expression programs, ensuring the generation of functional diversity by cytokines using a limited set of signalling intermediaries. We describe how these first principles of cytokine signalling have been exploited using protein engineering to design cytokine variants with more specific and less toxic responses for immunotherapy.
Collapse
Affiliation(s)
- Alison McFarlane
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| | - Elizabeth Pohler
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| | - Ignacio Moraga
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| |
Collapse
|
10
|
Mudumbi KC, Burns EA, Schodt DJ, Petrova ZO, Kiyatkin A, Kim LW, Mangiacapre EM, Ortiz-Caraveo I, Ortiz HR, Hu C, Ashtekar KD, Lidke KA, Lidke DS, Lemmon MA. Distinct interactions stabilize EGFR dimers and higher-order oligomers in cell membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536273. [PMID: 37090557 PMCID: PMC10120646 DOI: 10.1101/2023.04.10.536273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK) with important roles in many cellular processes as well as cancer and other diseases. EGF binding promotes EGFR dimerization and autophosphorylation through interactions that are well understood structurally. However, it is not clear how these dimers relate to higher-order EGFR oligomers detected at the cell surface. We used single-particle tracking (SPT) and Förster resonance energy transfer (FRET) imaging to examine how each domain within EGFR contributes to receptor dimerization and the rate of its diffusion in the cell membrane. We show that the EGFR extracellular region is sufficient to drive receptor dimerization, but that the EGF-induced EGFR slow-down seen by SPT requires formation of higher order oligomers, mediated in part by the intracellular tyrosine kinase domain - but only when in its active conformation. Our data thus provide important insight into higher-order EGFR interactions required for EGF signaling.
Collapse
|
11
|
Mravic M, He L, Kratochvil H, Hu H, Nick SE, Bai W, Edwards A, Jo H, Wu Y, DiMaio D, DeGrado WF. Designed Transmembrane Proteins Inhibit the Erythropoietin Receptor in a Custom Binding Topology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.526773. [PMID: 36824741 PMCID: PMC9949092 DOI: 10.1101/2023.02.13.526773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Transmembrane (TM) domains as simple as a single span can perform complex biological functions using entirely lipid-embedded chemical features. Computational design has potential to generate custom tool molecules directly targeting membrane proteins at their functional TM regions. Thus far, designed TM domain-targeting agents have been limited to mimicking binding modes and motifs of natural TM interaction partners. Here, we demonstrate the design of de novo TM proteins targeting the erythropoietin receptor (EpoR) TM domain in a custom binding topology competitive with receptor homodimerization. The TM proteins expressed in mammalian cells complex with EpoR and inhibit erythropoietin-induced cell proliferation. In vitro, the synthetic TM domain complex outcompetes EpoR homodimerization. Structural characterization reveals that the complex involves the intended amino acids and agrees with our designed molecular model of antiparallel TM helices at 1:1 stoichiometry. Thus, membrane protein TM regions can now be targeted in custom designed topologies.
Collapse
|
12
|
Chen X, Chen LC, Khericha M, Meng X, Salvestrini E, Shafer A, Iyer N, Alag AS, Ding Y, Nicolaou DM, Chen YY. Rational Protein Design Yields a CD20 CAR with Superior Antitumor Efficacy Compared with CD19 CAR. Cancer Immunol Res 2023; 11:150-163. [PMID: 36409926 PMCID: PMC9898126 DOI: 10.1158/2326-6066.cir-22-0504] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/29/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Chimeric antigen receptors (CAR) are fusion proteins whose functional domains are often connected in a plug-and-play manner to generate multiple CAR variants. However, CARs with highly similar sequences can exhibit dramatic differences in function. Thus, approaches to rationally optimize CAR proteins are critical to the development of effective CAR T-cell therapies. Here, we report that as few as two amino-acid changes in nonsignaling domains of a CAR were able to significantly enhance in vivo antitumor efficacy. We demonstrate juxtamembrane alanine insertion and single-chain variable fragment sequence hybridization as two strategies that could be combined to maximize CAR functionality, and describe a CD20 CAR that outperformed the CD19 CAR in antitumor efficacy in preclinical in vitro and in vivo assays. Precise changes in the CAR sequence drove dramatically different transcriptomic profiles upon antigen stimulation, with the most efficacious CAR inducing an enrichment in highly functional memory T cells upon antigen stimulation. These findings underscore the importance of sequence-level optimization to CAR T-cell function, and the protein-engineering strategy described here may be applied to the development of additional CARs against diverse antigens. See related Spotlight by Scheller and Hudecek, p. 142.
Collapse
Affiliation(s)
- Ximin Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Laurence C. Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mobina Khericha
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiangzhi Meng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emma Salvestrini
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amanda Shafer
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Neha Iyer
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Anya S. Alag
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yunfeng Ding
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Demetri M. Nicolaou
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yvonne Y. Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Downes CEJ, McClure BJ, McDougal DP, Heatley SL, Bruning JB, Thomas D, Yeung DT, White DL. JAK2 Alterations in Acute Lymphoblastic Leukemia: Molecular Insights for Superior Precision Medicine Strategies. Front Cell Dev Biol 2022; 10:942053. [PMID: 35903543 PMCID: PMC9315936 DOI: 10.3389/fcell.2022.942053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, arising from immature lymphocytes that show uncontrolled proliferation and arrested differentiation. Genomic alterations affecting Janus kinase 2 (JAK2) correlate with some of the poorest outcomes within the Philadelphia-like subtype of ALL. Given the success of kinase inhibitors in the treatment of chronic myeloid leukemia, the discovery of activating JAK2 point mutations and JAK2 fusion genes in ALL, was a breakthrough for potential targeted therapies. However, the molecular mechanisms by which these alterations activate JAK2 and promote downstream signaling is poorly understood. Furthermore, as clinical data regarding the limitations of approved JAK inhibitors in myeloproliferative disorders matures, there is a growing awareness of the need for alternative precision medicine approaches for specific JAK2 lesions. This review focuses on the molecular mechanisms behind ALL-associated JAK2 mutations and JAK2 fusion genes, known and potential causes of JAK-inhibitor resistance, and how JAK2 alterations could be targeted using alternative and novel rationally designed therapies to guide precision medicine approaches for these high-risk subtypes of ALL.
Collapse
Affiliation(s)
- Charlotte EJ. Downes
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Barbara J. McClure
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Daniel P. McDougal
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Susan L. Heatley
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| | - John B. Bruning
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Daniel Thomas
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - David T. Yeung
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, Australia
| | - Deborah L. White
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| |
Collapse
|
14
|
Sotolongo Bellón J, Birkholz O, Richter CP, Eull F, Kenneweg H, Wilmes S, Rothbauer U, You C, Walter MR, Kurre R, Piehler J. Four-color single-molecule imaging with engineered tags resolves the molecular architecture of signaling complexes in the plasma membrane. CELL REPORTS METHODS 2022; 2:100165. [PMID: 35474965 PMCID: PMC9017138 DOI: 10.1016/j.crmeth.2022.100165] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/19/2021] [Accepted: 01/13/2022] [Indexed: 12/22/2022]
Abstract
Localization and tracking of individual receptors by single-molecule imaging opens unique possibilities to unravel the assembly and dynamics of signaling complexes in the plasma membrane. We present a comprehensive workflow for imaging and analyzing receptor diffusion and interaction in live cells at single molecule level with up to four colors. Two engineered, monomeric GFP variants, which are orthogonally recognized by anti-GFP nanobodies, are employed for efficient and selective labeling of target proteins in the plasma membrane with photostable fluorescence dyes. This labeling technique enables us to quantitatively resolve the stoichiometry and dynamics of the interferon-γ (IFNγ) receptor signaling complex in the plasma membrane of living cells by multicolor single-molecule imaging. Based on versatile spatial and spatiotemporal correlation analyses, we identify ligand-induced receptor homo- and heterodimerization. Multicolor single-molecule co-tracking and quantitative single-molecule Förster resonance energy transfer moreover reveals transient assembly of IFNγ receptor heterotetramers and confirms its structural architecture.
Collapse
Affiliation(s)
- Junel Sotolongo Bellón
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Oliver Birkholz
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Christian P. Richter
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Florian Eull
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Hella Kenneweg
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Stephan Wilmes
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
- Division of Cell Signalling and Immunology, University of Dundee, School of Life Sciences, Dundee, UK
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard-Karls-University, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Changjiang You
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Mark R. Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rainer Kurre
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
15
|
Scotland KB, Bidnur S, Wang L, Chew BH, Lange D. Mediators of human ureteral smooth muscle contraction-a role for erythropoietin, tamsulosin and Gli effectors. Transl Androl Urol 2021; 10:2953-2961. [PMID: 34430398 PMCID: PMC8350256 DOI: 10.21037/tau-20-1342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/03/2021] [Indexed: 11/29/2022] Open
Abstract
Background Ureteral contractility is a poorly understood process. Contractions have been demonstrated to occur in the smooth muscle layers of the ureter. Previous work suggests the involvement of Gli family proteins and erythropoietin (EPO) in regulating mammalian ureteral smooth muscle contraction. We sought to devise a method by which the effects of these proteins and tamsulosin on distal human ureteral tissue contractility could be investigated to better understand mechanisms regulating human ureteral function. Methods IRB approval was obtained to procure portions of extraneous distal ureteral tissue from living donor renal transplants. Contractility was measured by placing the tissue in Krebs buffer and stimulating via a uniform electric current. Contractile force was recorded with each stimulation with and without the presence of a Gli inhibitor (GANT61) or EPO. Each ureteral specimen was subsequently fixed and tested by immunohistochemistry to determine Gli, EPO and alpha-adrenergic receptor activity. Results Electrical field stimulation successfully elicited contractions in the ureteral tissue. Administering tamsulosin decreased force and duration of ureteral contractions. Inhibiting Gli signaling decreased contractility and EPO decreased ureteral contractile forces within 5 minutes of administration versus untreated controls. Staining confirmed Gli1 protein and α-adrenergic receptor expression in ureteral smooth muscle and epithelial tissue with EPO receptor expression confined to the epithelial layer. Conclusions Distal ureteral contractile forces are decreased by inhibition of Gli family proteins and the α-adrenergic receptor. EPO acts within five minutes, suggesting ion channel involvement instead of changes in gene expression. Continuing work will elucidate the role of these proteins in coordinating ureteral contractions. This has implications for the use of pharmacologic methods to address ureteral contractility and dysfunctional peristalsis during stone passage, ureteroscopy, in transplant patients and potentially to reduce symptoms from ureteral stents.
Collapse
Affiliation(s)
- Kymora B Scotland
- Department of Urology, University of California Los Angeles, Los Angeles, CA 90024, USA
| | - Samir Bidnur
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lu Wang
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Ben H Chew
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Dirk Lange
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Functional Consequences of Mutations in Myeloproliferative Neoplasms. Hemasphere 2021; 5:e578. [PMID: 34095761 PMCID: PMC8171364 DOI: 10.1097/hs9.0000000000000578] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 01/14/2023] Open
Abstract
Driver mutations occur in Janus kinase 2 (JAK2), thrombopoietin receptor (MPL), and calreticulin (CALR) in BCR-ABL1 negative myeloproliferative neoplasms (MPNs). From mutations leading to one amino acid substitution in JAK2 or MPL, to frameshift mutations in CALR resulting in a protein with a different C-terminus, all the mutated proteins lead to pathologic and persistent JAK2-STAT5 activation. The most prevalent mutation, JAK2 V617F, is associated with the 3 entities polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF), while CALR and MPL mutations are associated only with ET and MF. Triple negative ET and MF patients may harbor noncanonical mutations in JAK2 or MPL. One major fundamental question is whether the conformations of JAK2 V617F, MPL W515K/L/A, or CALR mutants differ from those of their wild type counterparts so that a specific treatment could target the clone carrying the mutated driver and spare physiological hematopoiesis. Of great interest, a set of epigenetic mutations can co-exist with the phenotypic driver mutations in 35%–40% of MPNs. These epigenetic mutations, such as TET2, EZH2, ASXL1, or DNMT3A mutations, promote clonal hematopoiesis and increased fitness of aged hematopoietic stem cells in both clonal hematopoiesis of indeterminate potential (CHIP) and MPNs. Importantly, the main MPN driver mutation JAK2 V617F is also associated with CHIP. Accumulation of several epigenetic and splicing mutations favors progression of MPNs to secondary acute myeloid leukemia. Another major fundamental question is how epigenetic rewiring due to these mutations interacts with persistent JAK2-STAT5 signaling. Answers to these questions are required for better therapeutic interventions aimed at preventing progression of ET and PV to MF, and transformation of these MPNs in secondary acute myeloid leukemia.
Collapse
|
17
|
Bhoopalan SV, Huang LJS, Weiss MJ. Erythropoietin regulation of red blood cell production: from bench to bedside and back. F1000Res 2020; 9:F1000 Faculty Rev-1153. [PMID: 32983414 PMCID: PMC7503180 DOI: 10.12688/f1000research.26648.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
More than 50 years of efforts to identify the major cytokine responsible for red blood cell (RBC) production (erythropoiesis) led to the identification of erythropoietin (EPO) in 1977 and its receptor (EPOR) in 1989, followed by three decades of rich scientific discovery. We now know that an elaborate oxygen-sensing mechanism regulates the production of EPO, which in turn promotes the maturation and survival of erythroid progenitors. Engagement of the EPOR by EPO activates three interconnected signaling pathways that drive RBC production via diverse downstream effectors and simultaneously trigger negative feedback loops to suppress signaling activity. Together, the finely tuned mechanisms that drive endogenous EPO production and facilitate its downstream activities have evolved to maintain RBC levels in a narrow physiological range and to respond rapidly to erythropoietic stresses such as hypoxia or blood loss. Examination of these pathways has elucidated the genetics of numerous inherited and acquired disorders associated with deficient or excessive RBC production and generated valuable drugs to treat anemia, including recombinant human EPO and more recently the prolyl hydroxylase inhibitors, which act partly by stimulating endogenous EPO synthesis. Ongoing structure-function studies of the EPOR and its essential partner, tyrosine kinase JAK2, suggest that it may be possible to generate new "designer" drugs that control selected subsets of cytokine receptor activities for therapeutic manipulation of hematopoiesis and treatment of blood cancers.
Collapse
Affiliation(s)
- Senthil Velan Bhoopalan
- Department of Hematology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS #355, Memphis, TN, 38105, USA
| | - Lily Jun-shen Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Mitchell J. Weiss
- Department of Hematology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS #355, Memphis, TN, 38105, USA
| |
Collapse
|
18
|
Wilmes S, Hafer M, Vuorio J, Tucker JA, Winkelmann H, Löchte S, Stanly TA, Pulgar Prieto KD, Poojari C, Sharma V, Richter CP, Kurre R, Hubbard SR, Garcia KC, Moraga I, Vattulainen I, Hitchcock IS, Piehler J. Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. Science 2020; 367:643-652. [PMID: 32029621 PMCID: PMC8117407 DOI: 10.1126/science.aaw3242] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 10/08/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
Homodimeric class I cytokine receptors are assumed to exist as preformed dimers that are activated by ligand-induced conformational changes. We quantified the dimerization of three prototypic class I cytokine receptors in the plasma membrane of living cells by single-molecule fluorescence microscopy. Spatial and spatiotemporal correlation of individual receptor subunits showed ligand-induced dimerization and revealed that the associated Janus kinase 2 (JAK2) dimerizes through its pseudokinase domain. Oncogenic receptor and hyperactive JAK2 mutants promoted ligand-independent dimerization, highlighting the formation of receptor dimers as the switch responsible for signal activation. Atomistic modeling and molecular dynamics simulations based on a detailed energetic analysis of the interactions involved in dimerization yielded a mechanistic blueprint for homodimeric class I cytokine receptor activation and its dysregulation by individual mutations.
Collapse
Affiliation(s)
- Stephan Wilmes
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Maximillian Hafer
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Joni Vuorio
- Department of Physics, University of Helsinki, Helsinki, Finland
- Computational Physics Laboratory, Tampere University, Tampere, Finland
| | - Julie A Tucker
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Hauke Winkelmann
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Sara Löchte
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Tess A Stanly
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Katiuska D Pulgar Prieto
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Chetan Poojari
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Christian P Richter
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Rainer Kurre
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Stevan R Hubbard
- Skirball Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - K Christopher Garcia
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ignacio Moraga
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland.
- Computational Physics Laboratory, Tampere University, Tampere, Finland
| | - Ian S Hitchcock
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| | - Jacob Piehler
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany.
| |
Collapse
|
19
|
Experimental Modeling of Myeloproliferative Neoplasms. Genes (Basel) 2019; 10:genes10100813. [PMID: 31618985 PMCID: PMC6826898 DOI: 10.3390/genes10100813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/29/2019] [Accepted: 10/12/2019] [Indexed: 12/25/2022] Open
Abstract
Myeloproliferative neoplasms (MPN) are genetically very complex and heterogeneous diseases in which the acquisition of a somatic driver mutation triggers three main myeloid cytokine receptors, and phenotypically expresses as polycythemia vera (PV), essential thrombocytosis (ET), and primary myelofibrosis (PMF). The course of the diseases may be influenced by germline predispositions, modifying mutations, their order of acquisition and environmental factors such as aging and inflammation. Deciphering these contributory elements, their mutual interrelationships, and their contribution to MPN pathogenesis brings important insights into the diseases. Animal models (mainly mouse and zebrafish) have already significantly contributed to understanding the role of several acquired and germline mutations in MPN oncogenic signaling. Novel technologies such as induced pluripotent stem cells (iPSCs) and precise genome editing (using CRISPR/Cas9) contribute to the emerging understanding of MPN pathogenesis and clonal architecture, and form a convenient platform for evaluating drug efficacy. In this overview, the genetic landscape of MPN is briefly described, with an attempt to cover the main discoveries of the last 15 years. Mouse and zebrafish models of the driver mutations are discussed and followed by a review of recent progress in modeling MPN with patient-derived iPSCs and CRISPR/Cas9 gene editing.
Collapse
|
20
|
Spangler JB, Moraga I, Jude KM, Savvides CS, Garcia KC. A strategy for the selection of monovalent antibodies that span protein dimer interfaces. J Biol Chem 2019; 294:13876-13886. [PMID: 31387945 PMCID: PMC6755802 DOI: 10.1074/jbc.ra119.009213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/15/2019] [Indexed: 11/06/2022] Open
Abstract
Ligand-induced dimerization is the predominant mechanism through which secreted proteins activate cell surface receptors to transmit essential biological signals. Cytokines are a large class of soluble proteins that dimerize transmembrane receptors into precise signaling topologies, but there is a need for alternative, engineerable ligand scaffolds that specifically recognize and stabilize these protein interactions. Recombinant antibodies can potentially serve as robust and versatile platforms for cytokine complex stabilization, and their specificity allows for tunable modulation of dimerization equilibrium. Here, we devised an evolutionary strategy to isolate monovalent antibody fragments that bridge together two different receptor subunits in a cytokine-receptor complex, precisely as the receptors are disposed in their natural signaling orientations. To do this, we screened a naive antibody library against a stabilized ligand-receptor ternary complex that acted as a "molecular cast" of the natural receptor dimer conformation. Our selections elicited "stapler" single-chain variable fragments (scFvs) of antibodies that specifically engage the interleukin-4 receptor heterodimer. The 3.1 Å resolution crystal structure of one such stapler revealed that, as intended, this scFv recognizes a composite epitope between the two receptors as they are positioned in the complex. Extending our approach, we evolved a stapler scFv that specifically binds to and stabilizes the interface between the interleukin-2 cytokine and one of its receptor subunits, leading to a 15-fold enhancement in interaction affinity. This demonstration that scFvs can be selected to recognize epitopes that span protein interfaces presents new opportunities to engineer structurally defined antibodies for a broad range of research and therapeutic applications.
Collapse
Affiliation(s)
- Jamie B Spangler
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305 .,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305.,Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Ignacio Moraga
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305.,Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Kevin M Jude
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305.,Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Christina S Savvides
- Department of Biology, Stanford University School of Medicine, Stanford, California 94305
| | - K Christopher Garcia
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305 .,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305.,Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
21
|
Hammarén HM, Virtanen AT, Raivola J, Silvennoinen O. The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine 2019; 118:48-63. [DOI: 10.1016/j.cyto.2018.03.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/12/2023]
|
22
|
Floss DM, Scheller J. Naturally occurring and synthetic constitutive-active cytokine receptors in disease and therapy. Cytokine Growth Factor Rev 2019; 47:1-20. [PMID: 31147158 DOI: 10.1016/j.cytogfr.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Cytokines control immune related events and are critically involved in a plethora of patho-physiological processes including autoimmunity and cancer development. Mutations which cause ligand-independent, constitutive activation of cytokine receptors are quite frequently found in diseases. Many constitutive-active cytokine receptor variants have been directly connected to disease development and mechanistically analyzed. Nature's solutions to generate constitutive cytokine receptors has been recently adopted by synthetic cytokine receptor biology, with the goal to optimize immune therapeutics. Here, CAR T cell immmunotherapy represents the first example to combine synthetic biology with genetic engineering during therapy. Hence, constitutive-active cytokine receptors are therapeutic targets, but also emerging tools to improve or modulate immunotherapeutic strategies. This review gives a comprehensive insight into the field of naturally occurring and synthetic constitutive-active cytokine receptors.
Collapse
Affiliation(s)
- Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
23
|
Emerging technologies in protein interface engineering for biomedical applications. Curr Opin Biotechnol 2019; 60:82-88. [PMID: 30802788 DOI: 10.1016/j.copbio.2019.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/26/2018] [Accepted: 01/21/2019] [Indexed: 12/27/2022]
Abstract
Protein interactions communicate critical information from the environment into cells to orchestrate functional responses relevant to health and disease. Whereas the natural repertoire of protein interfaces is finite, biomolecular engineering tools provide access to an unlimited scope of potential interactions that can be custom-designed for affinity, specificity, mechanism, or other properties of interest. This review highlights recent developments in protein interface engineering that offer insight into human physiology to inform the design of new pharmaceuticals, with a particular focus on immunotherapeutics. We cover three innovative and translationally promising approaches: (1) reprogramming receptor oligomerization to manipulate signaling pathways; (2) computational protein interface design strategies; and (3) engineering bioorthogonal protein interaction networks.
Collapse
|
24
|
Leroy E, Balligand T, Pecquet C, Mouton C, Colau D, Shiau AK, Dusa A, Constantinescu SN. Differential effect of inhibitory strategies of the V617 mutant of JAK2 on cytokine receptor signaling. J Allergy Clin Immunol 2019; 144:224-235. [PMID: 30707971 DOI: 10.1016/j.jaci.2018.12.1023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Janus kinase (JAK) 2 plays pivotal roles in signaling by several cytokine receptors. The mutant JAK2 V617F is the most common molecular event associated with myeloproliferative neoplasms. Selective targeting of the mutant would be ideal for treating these pathologies by sparing essential JAK2 functions. OBJECTIVE We characterize inhibitory strategies for JAK2 V617F and assess their effect on physiologic signaling by distinct cytokine receptors. METHODS Through structure-guided mutagenesis, we assessed the role of key residues around F617 and used a combination of cellular and biochemical assays to measure the activity of JAKs in reconstituted cells. We also assessed the effect of several specific JAK2 V617F inhibitory mutations on receptor dimerization using the NanoBiT protein complementation approach. RESULTS We identified a novel Janus kinase homology 2 (JH2) αC mutation, A598F, which is suggested to inhibit the aromatic stacking between F617 with F594 and F595. Like other JAK2 V617F inhibitory mutations, A598F decreased oncogenic activation and spared cytokine activation while preventing JAK2 V617F-promoted erythropoietin receptor dimerization. Surprisingly, A598F and other V617F-inhibiting mutations (F595A, E596R, and F537A) significantly impaired IFN-γ signaling. This was specific for IFN-γ because the inhibitory mutations preserved responses to ligands of a series of receptor complexes. Similarly, homologous mutations in JAK1 prevented signaling by IFN-γ. CONCLUSIONS The JH2 αC region, which is required for JAK2 V617F hyperactivation, is crucial for relaying cytokine-induced signaling of the IFN-γ receptor. We discuss how strategies aiming to inhibit JAK2 V617F could be used for identifying inhibitors of IFN-γ signaling.
Collapse
Affiliation(s)
- Emilie Leroy
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium
| | - Thomas Balligand
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Christian Pecquet
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Céline Mouton
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Didier Colau
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Andrew K Shiau
- Small Discovery Program, Ludwig Institute for Cancer Research, La Jolla, Calif
| | - Alexandra Dusa
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium.
| |
Collapse
|
25
|
Yang H, Kureshi R, Spangler JB. Structural Basis for Signaling Through Shared Common γ Chain Cytokines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:1-19. [PMID: 31628649 DOI: 10.1007/978-981-13-9367-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The common γ chain (γc) family of hematopoietic cytokines consists of six distinct four α-helix bundle soluble ligands that signal through receptors which include the shared γc subunit to coordinate a wide range of physiological processes, in particular, those related to innate and adaptive immune function. Since the first crystallographic structure of a γc family cytokine/receptor signaling complex (the active Interleukin-2 [IL-2] quaternary complex) was determined in 2005 [1], tremendous progress has been made in the structural characterization of this protein family, transforming our understanding of the molecular mechanisms underlying immune activity. Although many conserved features of γc family cytokine complex architecture have emerged, distinguishing details have been observed for individual cytokine complexes that rationalize their unique functional properties. Much work remains to be done in the molecular characterization of γc family signaling, particularly with regard to intracellular activation events, and looking forward, new technologies in structural biophysics will offer further insight into the biology of cytokine signaling to inform the design of targeted therapeutics for treatment of immune-linked diseases such as cancer, infection, and autoimmune disorders.
Collapse
Affiliation(s)
- Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Rakeeb Kureshi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
26
|
Lee JS, Kim J, Im SP, Kim SW, Jung JW, Lazarte JMS, Lee JH, Thompson KD, Jung TS. Dual functionality of lamprey VLRB C-terminus (LC) for multimerization and cell surface display. Mol Immunol 2018; 104:54-60. [PMID: 30408623 DOI: 10.1016/j.molimm.2018.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 10/27/2022]
Abstract
Lamprey, one of the living representatives of jawless vertebrates, uses variable lymphocyte receptors B (VLRB) for antigen recognition, rather than immunoglobulin (Ig) based receptors as used by higher vertebrates. The C-terminus of lamprey VLRB (LC) possess a glycosylphosphatidylinositol (GPI) signal sequence and seven cysteine residues providing dual functionality of the VLRB antibody in the form of a humoral agglutinin and cell membrane receptors. Here, we show that the LC can be either secreted or be membrane anchored as a heterologous fused protein in a multimeric form comprising of eight or ten monomeric units. Using serially truncated LC variants, we showed that the LC, in which the last three amino acid "RKR" were deleted, referred to as LC7, was the most suitable domain for multimeric construction, whereas, the intact LC is more tailored for applications involving membrane anchorage. We show that an antibody specific for viral hemorrhagic septicemia virus (VHSV) (VLR43), displayed on HEK-293F cells using a PiggyBac (PB) transposase system, exhibited a dose-dependent reaction with its antigen, verifying that the LC can be applied in antibody display technology. Therefore, the present report provides valuable insight into the structure of the lamprey VLRB and highlights its potential use as a novel fusion partner for multimerization and membrane anchorage of chimeric proteins.
Collapse
Affiliation(s)
- Jung Seok Lee
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Gyeongsang National University 900 Gajwadong, Jinju, Gyeongnam, 660-701, South Korea
| | - Jaesung Kim
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Gyeongsang National University 900 Gajwadong, Jinju, Gyeongnam, 660-701, South Korea
| | - Se Pyeong Im
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Gyeongsang National University 900 Gajwadong, Jinju, Gyeongnam, 660-701, South Korea
| | - Si Won Kim
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Gyeongsang National University 900 Gajwadong, Jinju, Gyeongnam, 660-701, South Korea
| | - Jae Wook Jung
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Gyeongsang National University 900 Gajwadong, Jinju, Gyeongnam, 660-701, South Korea
| | - Jassy Mary S Lazarte
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Gyeongsang National University 900 Gajwadong, Jinju, Gyeongnam, 660-701, South Korea
| | - Jeong Ho Lee
- Inland Aquaculture Research Center, NIFS, Changwon, 645-806, South Korea
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Gyeongsang National University 900 Gajwadong, Jinju, Gyeongnam, 660-701, South Korea.
| |
Collapse
|
27
|
Gorby C, Martinez-Fabregas J, Wilmes S, Moraga I. Mapping Determinants of Cytokine Signaling via Protein Engineering. Front Immunol 2018; 9:2143. [PMID: 30319612 PMCID: PMC6170656 DOI: 10.3389/fimmu.2018.02143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/30/2018] [Indexed: 12/21/2022] Open
Abstract
Cytokines comprise a large family of secreted ligands that are critical for the regulation of immune homeostasis. Cytokines initiate signaling via dimerization or oligomerization of the cognate receptor subunits, triggering the activation of the Janus Kinases (JAKs)/ signal transducer and activator of transcription (STATs) pathway and the induction of specific gene expression programs and bioactivities. Deregulation of cytokines or their downstream signaling pathways are at the root of many human disorders including autoimmunity and cancer. Identifying and understanding the mechanistic principles that govern cytokine signaling will, therefore, be highly important in order to harness the therapeutic potential of cytokines. In this review, we will analyze how biophysical (ligand-receptor binding geometry and affinity) and cellular (receptor trafficking and intracellular abundance of signaling molecules) parameters shape the cytokine signalosome and cytokine functional pleiotropy; from the initial cytokine binding to its receptor to the degradation of the cytokine receptor complex in the proteasome and/or lysosome. We will also discuss how combining advanced protein engineering with detailed signaling and functional studies has opened promising avenues to tackle complex questions in the cytokine signaling field.
Collapse
Affiliation(s)
- Claire Gorby
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jonathan Martinez-Fabregas
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Stephan Wilmes
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ignacio Moraga
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
28
|
EPO does not promote interaction between the erythropoietin and beta-common receptors. Sci Rep 2018; 8:12457. [PMID: 30127368 PMCID: PMC6102255 DOI: 10.1038/s41598-018-29865-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/19/2018] [Indexed: 12/13/2022] Open
Abstract
A direct interaction between the erythropoietin (EPOR) and the beta-common (βc) receptors to form an Innate Repair Receptor (IRR) is controversial. On one hand, studies have shown a functional link between EPOR and βc receptor in tissue protection while others have shown no involvement of the βc receptor in tissue repair. To date there is no biophysical evidence to confirm a direct association of the two receptors either in vitro or in vivo. We investigated the existence of an interaction between the extracellular regions of EPOR and the βc receptor in silico and in vitro (either in the presence or absence of EPO or EPO-derived peptide ARA290). Although a possible interaction between EPOR and βc was suggested by our computational and genomic studies, our in vitro biophysical analysis demonstrates that the extracellular regions of the two receptors do not specifically associate. We also explored the involvement of the βc receptor gene (Csf2rb) under anaemic stress conditions and found no requirement for the βc receptor in mice. In light of these studies, we conclude that the extracellular regions of the EPOR and the βc receptor do not directly interact and that the IRR is not involved in anaemic stress.
Collapse
|
29
|
Pasquier F, Marty C, Balligand T, Verdier F, Grosjean S, Gryshkova V, Raslova H, Constantinescu SN, Casadevall N, Vainchenker W, Bellanné-Chantelot C, Plo I. New pathogenic mechanisms induced by germline erythropoietin receptor mutations in primary erythrocytosis. Haematologica 2018; 103:575-586. [PMID: 29269524 PMCID: PMC5865417 DOI: 10.3324/haematol.2017.176370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/21/2017] [Indexed: 12/19/2022] Open
Abstract
Primary familial and congenital polycythemia is characterized by erythropoietin hypersensitivity of erythroid progenitors due to germline nonsense or frameshift mutations in the erythropoietin receptor gene. All mutations so far described lead to the truncation of the C-terminal receptor sequence that contains negative regulatory domains. Their removal is presented as sufficient to cause the erythropoietin hypersensitivity phenotype. Here we provide evidence for a new mechanism whereby the presence of novel sequences generated by frameshift mutations is required for the phenotype rather than just extensive truncation resulting from nonsense mutations. We show that the erythropoietin hypersensitivity induced by a new erythropoietin receptor mutant, p.Gln434Profs*11, could not be explained by the loss of negative signaling and of the internalization domains, but rather by the appearance of a new C-terminal tail. The latter, by increasing erythropoietin receptor dimerization, stability and cell-surface localization, causes pre-activation of erythropoietin receptor and JAK2, constitutive signaling and hypersensitivity to erythropoietin. Similar results were obtained with another mutant, p.Pro438Metfs*6, which shares the same last five amino acid residues (MDTVP) with erythropoietin receptor p.Gln434Profs*11, confirming the involvement of the new peptide sequence in the erythropoietin hypersensitivity phenotype. These results suggest a new mechanism that might be common to erythropoietin receptor frameshift mutations. In summary, we show that primary familial and congenital polycythemia is more complex than expected since distinct mechanisms are involved in the erythropoietin hypersensitivity phenotype, according to the type of erythropoietin receptor mutation.
Collapse
Affiliation(s)
- Florence Pasquier
- INSERM, UMR 1170, Gustave Roussy, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Université Paris-Sud, UMR 1170, Gustave Roussy, Villejuif, France
- Service d'Hématologie, Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Caroline Marty
- INSERM, UMR 1170, Gustave Roussy, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Université Paris-Sud, UMR 1170, Gustave Roussy, Villejuif, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Thomas Balligand
- Ludwig Institute for Cancer Research, and Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Frédérique Verdier
- Laboratoire d'Excellence GR-Ex, Paris, France
- INSERM U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, France
| | - Sarah Grosjean
- INSERM, UMR 1170, Gustave Roussy, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Université Paris-Sud, UMR 1170, Gustave Roussy, Villejuif, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Vitalina Gryshkova
- Ludwig Institute for Cancer Research, and Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Hana Raslova
- INSERM, UMR 1170, Gustave Roussy, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Université Paris-Sud, UMR 1170, Gustave Roussy, Villejuif, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research, and Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Nicole Casadevall
- INSERM, UMR 1170, Gustave Roussy, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Laboratoire d'Hématologie, Hôpital Saint Antoine, Assistance Publique Hôpitaux de Paris, France
| | - William Vainchenker
- INSERM, UMR 1170, Gustave Roussy, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Université Paris-Sud, UMR 1170, Gustave Roussy, Villejuif, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Christine Bellanné-Chantelot
- INSERM, UMR 1170, Gustave Roussy, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Département de Génétique, Hôpital Universitaire Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, France
| | - Isabelle Plo
- INSERM, UMR 1170, Gustave Roussy, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Université Paris-Sud, UMR 1170, Gustave Roussy, Villejuif, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
30
|
He L, Steinocher H, Shelar A, Cohen EB, Heim EN, Kragelund BB, Grigoryan G, DiMaio D. Single methyl groups can act as toggle switches to specify transmembrane Protein-protein interactions. eLife 2017; 6:27701. [PMID: 28869036 PMCID: PMC5597333 DOI: 10.7554/elife.27701] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/01/2017] [Indexed: 01/13/2023] Open
Abstract
Transmembrane domains (TMDs) engage in protein-protein interactions that regulate many cellular processes, but the rules governing the specificity of these interactions are poorly understood. To discover these principles, we analyzed 26-residue model transmembrane proteins consisting exclusively of leucine and isoleucine (called LIL traptamers) that specifically activate the erythropoietin receptor (EPOR) in mouse cells to confer growth factor independence. We discovered that the placement of a single side chain methyl group at specific positions in a traptamer determined whether it associated productively with the TMD of the human EPOR, the mouse EPOR, or both receptors. Association of the traptamers with the EPOR induced EPOR oligomerization in an orientation that stimulated receptor activity. These results highlight the high intrinsic specificity of TMD interactions, demonstrate that a single methyl group can dictate specificity, and define the minimal chemical difference that can modulate the specificity of TMD interactions and the activity of transmembrane proteins.
Collapse
Affiliation(s)
- Li He
- Department of Genetics, Yale School of Medicine, New Haven, United States
| | - Helena Steinocher
- Department of Biology, Structural and NMR Laboratory, University of Copenhagen, Copenhagen, Denmark
| | - Ashish Shelar
- Department of Genetics, Yale School of Medicine, New Haven, United States
| | - Emily B Cohen
- Department of Genetics, Yale School of Medicine, New Haven, United States
| | - Erin N Heim
- Department of Genetics, Yale School of Medicine, New Haven, United States
| | - Birthe B Kragelund
- Department of Biology, Structural and NMR Laboratory, University of Copenhagen, Copenhagen, Denmark
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, United States
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, United States.,Department of Therapeutic Radiology, Yale School of Medicine, New Haven, United States.,Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, United States.,Yale Cancer Center, New Haven, United States
| |
Collapse
|
31
|
Synthetic Deletion of the Interleukin 23 Receptor (IL-23R) Stalk Region Led to Autonomous IL-23R Homodimerization and Activation. Mol Cell Biol 2017. [PMID: 28630278 DOI: 10.1128/mcb.00014-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Interleukin 23 (IL-23) regulates the development of TH17 cells, which are important for antimicrobial and antifungal responses and autoimmune and chronic inflammatory diseases. IL-23-induced Jak/STAT signaling is mediated via the heterodimeric IL-23 receptor (IL-23R)-IL-12 receptor β1 (IL-12Rβ1) complex. The typical signal-transducing receptor of the IL-6/IL-12 family contains three extracellular-membrane-proximal fibronectin type III (FNIII) domains, which are not involved in cytokine binding but are mandatory for signal transduction. In place of FNIII-type domains, IL-23R has a structurally undefined stalk. We hypothesized that the IL-23R stalk acts as a spacer to position the cytokine binding domains at a defined distance from the plasma membrane to enable signal transduction. Minor deletions of the murine, but not of the human, IL-23R stalk resulted in unresponsiveness to IL-23. Complete deletion of the human IL-23R stalk and the extended murine IL-23R stalk, including a 20-amino-acid-long duplication of domain 3, however, induced ligand-independent, autonomous receptor activation, as determined by STAT3 phosphorylation and cell proliferation. Ligand-independent, autonomous activity was caused by IL-23R homodimers and was independent of IL-12Rβ1. Our data show that deletion of the stalk results in biologically active IL-23R homodimers, thereby creating an as-yet-undescribed receptor complex of the IL-6/IL-12 cytokine family.
Collapse
|
32
|
Uversky VN, Redwan EM. Erythropoietin and co.: intrinsic structure and functional disorder. MOLECULAR BIOSYSTEMS 2017; 13:56-72. [PMID: 27833947 DOI: 10.1039/c6mb00657d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Erythropoietin (Epo) is a heavily glycosylated protein, with its main function being related to erythropoiesis, where it controls red blood cell production via interaction with the Epo receptor (EpoR). It also plays a number of important roles in various hormonal, growth factor, and cytokine pathways. These roles are defined by Epo partners, such as the homodimeric (EpoR)2 receptor, the heterodimeric EpoR/βCR receptor and hypoxia inducing factor (HIF). Although the main structural features of both Epo and EpoR are conserved in vertebrates, the secretion sites of Epo in mammals are different from those in other vertebrates. Both biosynthetic and synthetic analogues of this protein are available on the market. Several side effects, such as pure red cells aplaisa, increase the rate of cancer-related death in patients treated with recombinant Epo. The multifunctionality of Epo and the ability of this protein to serve as a hormone, a cytokine, and a growth factor suggest the presence of functional disorder, which is a typical "structural" feature of moonlighting proteins. The goal of this article is to evaluate the roles of intrinsic disorder in the functions of Epo and its primary interactors, EpoR, βCR, and HIF-1α.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia. and Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia and Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia. and Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab 21934, Alexandria, Egypt
| |
Collapse
|
33
|
Ligand-induced type II interleukin-4 receptor dimers are sustained by rapid re-association within plasma membrane microcompartments. Nat Commun 2017; 8:15976. [PMID: 28706306 PMCID: PMC5519985 DOI: 10.1038/ncomms15976] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 05/16/2017] [Indexed: 12/14/2022] Open
Abstract
The spatiotemporal organization of cytokine receptors in the plasma membrane is still debated with models ranging from ligand-independent receptor pre-dimerization to ligand-induced receptor dimerization occurring only after receptor uptake into endosomes. Here, we explore the molecular and cellular determinants governing the assembly of the type II interleukin-4 receptor, taking advantage of various agonists binding the receptor subunits with different affinities and rate constants. Quantitative kinetic studies using artificial membranes confirm that receptor dimerization is governed by the two-dimensional ligand–receptor interactions and identify a critical role of the transmembrane domain in receptor dimerization. Single molecule localization microscopy at physiological cell surface expression levels, however, reveals efficient ligand-induced receptor dimerization by all ligands, largely independent of receptor binding affinities, in line with the similar STAT6 activation potencies observed for all IL-4 variants. Detailed spatiotemporal analyses suggest that kinetic trapping of receptor dimers in actin-dependent microcompartments sustains robust receptor dimerization and signalling. The contribution of ligands for cytokine receptor dimerization is still not fully understood. Here, the authors show the efficient ligand-induced dimerization of type II interleukin-4 receptor at the plasma membrane and the kinetic trapping of signalling complexes by actin-dependent membrane microdomains.
Collapse
|
34
|
The Erythropoietin System Protects the Heart Upon Injury by Cardiac Progenitor Cell Activation. VITAMINS AND HORMONES 2017. [PMID: 28629520 DOI: 10.1016/bs.vh.2017.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Erythropoietin (EPO) is a growth hormone, widely known for its role in erythropoiesis. The broad expression of erythropoietin receptor (EPOR) in adult organs suggested that EPO may also affect other cells besides late erythroid progenitors. In the embryonic heart, EPOR is expressed in all cells including the immature proliferating cardiomyocytes. In contrast to the embryonic heart in adulthood, EPOR expression is decreased and mainly detected in immature proliferating cells (i.e., resident cardiac progenitor cells) rather than in terminally differentiated cells (i.e., cardiomyocytes). Since cardiac progenitor cells are considered a regenerative cell source upon cardiac injury, the protective action of the EPO system was tested by creating an erythroid-rescued EPOR knockout mouse model. Although these mice appear to have less immature proliferating myocytes during embryogenesis, they reach adulthood without apparent morphological defects. However, upon ischemia reperfusion, these animals show a greater infarct size, suggesting that the EPO/EPOR protects the heart upon injury. Indeed preclinical studies showed that EPO administration postinfarction improves cardiac function via neoangiogenesis, antiapoptotic mechanisms, and/or CPC activation. Despite the promising preclinical data, large cohort clinical studies in humans failed to show a significant amelioration in cardiac function upon systemic injection of EPO in patients with myocardial infarctions. The discrepancy between preclinical and clinical trials may be due to differences between the doses, the way of delivery, the homogeneity of the cohorts, and last but not least the species differences. These data pinpoint the importance of carrying out preclinical studies in human models of disease as engineered human cardiac tissue that will provide a better understanding of the expression pattern of EPOR and the role of its ligand in human cardiac cells. Such studies may be able to bridge the gap between preclinical rodent data and human clinical trials and thus lead to the design of more successful clinical studies.
Collapse
|
35
|
Abstract
Erythropoietin (EPO) is a hormone that is important for regulating red blood cell production. It is functional through binding to its receptor-EpoR. EpoR is a single-span membrane protein. It contains an extracellular region, a transmembrane domain, and a C-terminus. The extracellular region is important for binding to EPO, and its conformation is critical for signal transduction. The transmembrane domain contains 21 residues forming a helix which plays an important role in transferring ligand-induced conformational changes of the extracellular domain across the cell membrane. The C-terminal region contains the Janus kinase 2-binding sites and eight tyrosine residues that can be phosphorylated to become binding sites for transcription factors to active the downstream pathways. This chapter focuses on structural description of the domains of the EpoR. The recent progress in the structural determination of these domains is summarized, which will be useful for understanding their function in signal transduction.
Collapse
|
36
|
Oreopoulos J, Gray-Owen SD, Yip CM. High Density or Urban Sprawl: What Works Best in Biology? ACS NANO 2017; 11:1131-1135. [PMID: 28112892 DOI: 10.1021/acsnano.7b00061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
With new approaches in imaging-from new tools or reagents to processing algorithms-come unique opportunities and challenges to our understanding of biological processes, structures, and dynamics. Although innovations in super-resolution imaging are affording novel perspectives into how molecules structurally associate and localize in response to, or in order to initiate, specific signaling events in the cell, questions arise as to how to interpret these observations in the context of biological function. Just as each neighborhood in a city has its own unique vibe, culture, and indeed density, recent work has shown that membrane receptor behavior and action is governed by their localization and association state. There is tremendous potential in developing strategies for tracking how the populations of these molecular neighborhoods change dynamically.
Collapse
Affiliation(s)
- John Oreopoulos
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto M5S 3G9, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto , Toronto M5S 1A8, Canada
| | - Christopher M Yip
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto M5S 3G9, Canada
| |
Collapse
|
37
|
Wauman J, Zabeau L, Tavernier J. The Leptin Receptor Complex: Heavier Than Expected? Front Endocrinol (Lausanne) 2017; 8:30. [PMID: 28270795 PMCID: PMC5318964 DOI: 10.3389/fendo.2017.00030] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/01/2017] [Indexed: 12/31/2022] Open
Abstract
Under normal physiological conditions, leptin and the leptin receptor (ObR) regulate the body weight by balancing food intake and energy expenditure. However, this adipocyte-derived hormone also directs peripheral processes, including immunity, reproduction, and bone metabolism. Leptin, therefore, can act as a metabolic switch connecting the body's nutritional status to high energy consuming processes. We provide an extensive overview of current structural insights on the leptin-ObR interface and ObR activation, coupling to signaling pathways and their negative regulation, and leptin functioning under normal and pathophysiological conditions (obesity, autoimmunity, cancer, … ). We also discuss possible cross-talk with other receptor systems on the receptor (extracellular) and signaling cascade (intracellular) levels.
Collapse
Affiliation(s)
- Joris Wauman
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Lennart Zabeau
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Jan Tavernier
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
- *Correspondence: Jan Tavernier,
| |
Collapse
|
38
|
|
39
|
Hubbard SR. Mechanistic Insights into Regulation of JAK2 Tyrosine Kinase. Front Endocrinol (Lausanne) 2017; 8:361. [PMID: 29379470 PMCID: PMC5770812 DOI: 10.3389/fendo.2017.00361] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/11/2017] [Indexed: 01/04/2023] Open
Abstract
JAK2 is a member of the Janus kinase (JAKs) family of non-receptor protein tyrosine kinases, which includes JAK1-3 and TYK2. JAKs serve as the cytoplasmic signaling components of cytokine receptors and are activated through cytokine-mediated trans-phosphorylation, which leads to receptor phosphorylation and recruitment and phosphorylation of signal transducer and activator of transcription (STAT) proteins. JAKs are unique among tyrosine kinases in that they possess a pseudokinase domain, which is just upstream of the C-terminal tyrosine kinase domain. A wealth of biochemical and clinical data have established that the pseudokinase domain of JAKs is crucial for maintaining a low basal (absence of cytokine) level of tyrosine kinase activity. In particular, gain-of-function mutations in the JAK genes, most frequently, V617F in the pseudokinase domain of JAK2, have been mapped in patients with blood disorders, including myeloproliferative neoplasms and leukemias. Recent structural and biochemical studies have begun to decipher the molecular mechanisms that maintain the basal, low-activity state of JAKs and that, via mutation, lead to constitutive activity and disease. This review will examine these mechanisms and describe how this knowledge could potentially inform drug development efforts aimed at obtaining a mutant (V617F)-selective inhibitor of JAK2.
Collapse
Affiliation(s)
- Stevan R. Hubbard
- Department of Biochemistry and Molecular Pharmacology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, United States
- *Correspondence: Stevan R. Hubbard,
| |
Collapse
|
40
|
Varghese LN, Defour JP, Pecquet C, Constantinescu SN. The Thrombopoietin Receptor: Structural Basis of Traffic and Activation by Ligand, Mutations, Agonists, and Mutated Calreticulin. Front Endocrinol (Lausanne) 2017; 8:59. [PMID: 28408900 PMCID: PMC5374145 DOI: 10.3389/fendo.2017.00059] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022] Open
Abstract
A well-functioning hematopoietic system requires a certain robustness and flexibility to maintain appropriate quantities of functional mature blood cells, such as red blood cells and platelets. This review focuses on the cytokine receptor that plays a significant role in thrombopoiesis: the receptor for thrombopoietin (TPO-R; also known as MPL). Here, we survey the work to date to understand how this receptor functions at a molecular level throughout its lifecycle, from traffic to the cell surface, dimerization and binding cognate cytokine via its extracellular domain, through to its subsequent activation of associated Janus kinases and initiation of downstream signaling pathways, as well as the regulation of these processes. Atomic level resolution structures of TPO-R have remained elusive. The identification of disease-causing mutations in the receptor has, however, offered some insight into structure and function relationships, as has artificial means of receptor activation, through TPO mimetics, transmembrane-targeting receptor agonists, and engineering in dimerization domains. More recently, a novel activation mechanism was identified whereby mutated forms of calreticulin form complexes with TPO-R via its extracellular N-glycosylated domain. Such complexes traffic pathologically in the cell and persistently activate JAK2, downstream signal transducers and activators of transcription (STATs), and other pathways. This pathologic TPO-R activation is associated with a large fraction of human myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Leila N. Varghese
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- SIGN Pole, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Philippe Defour
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- SIGN Pole, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Department of Clinical Biology, Cliniques universitaires St Luc, Université catholique de Louvain, Brussels, Belgium
| | - Christian Pecquet
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- SIGN Pole, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Stefan N. Constantinescu
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- SIGN Pole, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- *Correspondence: Stefan N. Constantinescu,
| |
Collapse
|
41
|
Corbett MSP, Poger D, Mark AE. Revisiting the scissor-like mechanism of activation for the erythropoietin receptor. FEBS Lett 2016; 590:3083-8. [PMID: 27490140 DOI: 10.1002/1873-3468.12340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/28/2023]
Abstract
An interpretation of alternative crystal structures of the erythropoietin receptor, with and without ligand, led to the proposal of a scissor-like mechanism of activation. This model has been propagated in the literature and is still being used to interpret crystal structures of related type-I cytokine receptors. Here, we assess whether the model remains compatible with current knowledge on the family of type-I cytokine receptors, and consider whether the model, as initially presented, is truly supported by the crystal structures on which it was originally based.
Collapse
Affiliation(s)
- Michael S P Corbett
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - David Poger
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Alan E Mark
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
42
|
Deng W, Li R. Juxtamembrane contribution to transmembrane signaling. Biopolymers 2016; 104:317-22. [PMID: 25846274 DOI: 10.1002/bip.22651] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/23/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022]
Abstract
Signaling across the cell membrane mediated by transmembrane receptors plays an important role in diverse biological processes. Recent studies have indicated that, in a number of single-span transmembrane receptors, the intracellular juxtamembrane (JM) sequence linking the transmembrane helix with the rest of the cytoplasmic domain participates directly in the signaling process via several novel mechanisms. This review briefly highlights several modes of JM dynamics in the context of signal transduction that are shared by different types of transmembrane receptors.
Collapse
Affiliation(s)
- Wei Deng
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322
| | - Renhao Li
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322
| |
Collapse
|
43
|
Dey S, Li X, Teng R, Alnaeeli M, Chen Z, Rogers H, Noguchi CT. Erythropoietin regulates POMC expression via STAT3 and potentiates leptin response. J Mol Endocrinol 2016; 56:55-67. [PMID: 26563310 PMCID: PMC4692057 DOI: 10.1530/jme-15-0171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2015] [Indexed: 01/02/2023]
Abstract
The arcuate nucleus of the hypothalamus is essential for metabolic homeostasis and responds to leptin by producing several neuropeptides including proopiomelanocortin (POMC). We previously reported that high-dose erythropoietin (Epo) treatment in mice while increasing hematocrit reduced body weight, fat mass, and food intake and increased energy expenditure. Moreover, we showed that mice with Epo receptor (EpoR) restricted to erythroid cells (ΔEpoRE) became obese and exhibited decreased energy expenditure. Epo/EpoR signaling was found to promote hypothalamus POMC expression independently from leptin. Herein we used WT and ΔEpoRE mice and hypothalamus-derived neural culture system to study the signaling pathways activated by Epo in POMC neurons. We show that Epo stimulation activated STAT3 signaling and upregulated POMC expression in WT neural cultures. ΔEpoRE mice hypothalamus showed reduced POMC levels and lower STAT3 phosphorylation, with and without leptin treatment, compared to in vivo and ex vivo WT controls. Collectively, these data show that Epo regulates hypothalamus POMC expression via STAT3 activation, and provide a previously unrecognized link between Epo and leptin response.
Collapse
|
44
|
Trenker R, Call ME, Call MJ. Crystal Structure of the Glycophorin A Transmembrane Dimer in Lipidic Cubic Phase. J Am Chem Soc 2015; 137:15676-9. [PMID: 26642914 DOI: 10.1021/jacs.5b11354] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanisms of assembly and function for many important type I/II (single-pass) transmembrane (TM) receptors are proposed to involve the formation and/or alteration of specific interfaces among their membrane-embedded α-helical TM domains. The application of lipidic cubic phase (LCP) bilayer media for crystallization of single-α-helical TM complexes has the potential to provide valuable structural and mechanistic insights into many such systems. However, the fidelity of the interfaces observed in crowded crystalline arrays has been difficult to establish from the very limited number of such structures determined using X-ray diffraction data. Here we examine this issue using the glycophorin A (GpA) model system, whose homodimeric TM helix interface has been characterized by solution and solid-state NMR and biochemical techniques but never crystallographically. We report that a GpA-TM peptide readily crystallized in a monoolein cubic phase bilayer, yielding a dimeric α-helical structure that is in excellent agreement with previously reported NMR measurements made in several different types of host media. These results provide compelling support for the wider application of LCP techniques to enable X-ray crystallographic analysis of single-pass TM interactions.
Collapse
Affiliation(s)
- Raphael Trenker
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research , Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne , Parkville, Victoria 3052, Australia
| | - Matthew E Call
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research , Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne , Parkville, Victoria 3052, Australia
| | - Melissa J Call
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research , Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne , Parkville, Victoria 3052, Australia
| |
Collapse
|
45
|
Leroy E, Defour JP, Sato T, Dass S, Gryshkova V, Shwe MM, Staerk J, Constantinescu SN, Smith SO. His499 Regulates Dimerization and Prevents Oncogenic Activation by Asparagine Mutations of the Human Thrombopoietin Receptor. J Biol Chem 2015; 291:2974-87. [PMID: 26627830 DOI: 10.1074/jbc.m115.696534] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Indexed: 01/18/2023] Open
Abstract
Ligand binding to the extracellular domain of the thrombopoietin receptor (TpoR) imparts a specific orientation on the transmembrane (TM) and intracellular domains of the receptors that is required for physiologic activation via receptor dimerization. To map the inactive and active dimeric orientations of the TM helices, we performed asparagine (Asn)-scanning mutagenesis of the TM domains of the murine and human TpoR. Substitution of Asn at only one position (S505N) activated the human receptor, whereas Asn substitutions at several positions activated the murine receptor. Second site mutational studies indicate that His(499) near the N terminus of the TM domain is responsible for protecting the human receptor from activation by Asn mutations. Structural studies reveal that the sequence preceding His(499) is helical in the murine receptor but non-helical in peptides corresponding to the TM domain of the inactive human receptor. The activating S505N mutation and the small molecule agonist eltrombopag both induce helix in this region of the TM domain and are associated with dimerization and activation of the human receptor. Thus, His(499) regulates the activation of human TpoR and provides additional protection against activating mutations, such as oncogenic Asn mutations in the TM domain.
Collapse
Affiliation(s)
- Emilie Leroy
- From the Ludwig Institute for Cancer Research, 1200 Brussels, Belgium de Duve Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Jean-Philippe Defour
- From the Ludwig Institute for Cancer Research, 1200 Brussels, Belgium de Duve Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Takeshi Sato
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sharmila Dass
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, and
| | - Vitalina Gryshkova
- From the Ludwig Institute for Cancer Research, 1200 Brussels, Belgium de Duve Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Myat M Shwe
- From the Ludwig Institute for Cancer Research, 1200 Brussels, Belgium de Duve Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Judith Staerk
- Stem Cell Group, Nordic European Molecular Biology Laboratory Partnership and Center for Molecular Medicine, 0318 Oslo, Norway
| | - Stefan N Constantinescu
- From the Ludwig Institute for Cancer Research, 1200 Brussels, Belgium de Duve Institute, Université catholique de Louvain, 1200 Brussels, Belgium,
| | - Steven O Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, and
| |
Collapse
|
46
|
Li Q, Wong YL, Yueqi Lee M, Li Y, Kang C. Solution structure of the transmembrane domain of the mouse erythropoietin receptor in detergent micelles. Sci Rep 2015; 5:13586. [PMID: 26316120 PMCID: PMC4551963 DOI: 10.1038/srep13586] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/31/2015] [Indexed: 12/19/2022] Open
Abstract
Erythropoiesis is regulated by the erythropoietin receptor (EpoR) binding to its ligand. The transmembrane domain (TMD) and the juxtamembrane (JM) regions of the EpoR are important for signal transduction across the cell membrane. We report a solution NMR study of the mouse erythropoietin receptor (mEpoR) comprising the TMD and the JM regions reconstituted in dodecylphosphocholine (DPC) micelles. The TMD and the C-terminal JM region of the mEpoR are mainly α-helical, adopting a similar structure to those of the human EpoR. Residues from S216 to T219 in mEpoR form a short helix. Relaxation study demonstrates that the TMD of the mEpoR is rigid whilst the N-terminal region preceding the TMD is flexible. Fluorescence spectroscopy and sequence analysis indicate that the C-terminal JM region is exposed to the solvent. Helix wheel result shows that there is hydrophilic patch in the TMD of the mEpoR formed by residues S231, S238 and T242, and these residues might be important for the receptor dimerization.
Collapse
Affiliation(s)
- Qingxin Li
- Institute of Chemical &Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ying Lei Wong
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore, 138669 Singapore
| | - Michelle Yueqi Lee
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore, 138669 Singapore
| | - Yan Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore, 138669 Singapore
| | - CongBao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore, 138669 Singapore
| |
Collapse
|
47
|
Maruyama IN. Activation of transmembrane cell-surface receptors via a common mechanism? The "rotation model". Bioessays 2015; 37:959-67. [PMID: 26241732 PMCID: PMC5054922 DOI: 10.1002/bies.201500041] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It has long been thought that transmembrane cell-surface receptors, such as receptor tyrosine kinases and cytokine receptors, among others, are activated by ligand binding through ligand-induced dimerization of the receptors. However, there is growing evidence that prior to ligand binding, various transmembrane receptors have a preformed, yet inactive, dimeric structure on the cell surface. Various studies also demonstrate that during transmembrane signaling, ligand binding to the extracellular domain of receptor dimers induces a rotation of transmembrane domains, followed by rearrangement and/or activation of intracellular domains. The paper here describes transmembrane cell-surface receptors that are known or proposed to exist in dimeric form prior to ligand binding, and discusses how these preformed dimers are activated by ligand binding.
Collapse
Affiliation(s)
- Ichiro N Maruyama
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
48
|
Oh JG, Chin YW, Kim SJ, Choi JM, Kim SK, Kang HE, Heo TH. Biphasic Effects of Ingenol 3,20-Dibenzoate on the Erythropoietin Receptor: Synergism at Low Doses and Antagonism at High Doses. Mol Pharmacol 2015; 88:392-400. [PMID: 26048958 DOI: 10.1124/mol.114.097436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 06/05/2015] [Indexed: 11/22/2022] Open
Abstract
Although ingenol 3,20-dibenzoate (IDB) is known as a selective novel protein kinase C (PKC) agonist, its biologic actions and underlying mechanisms remain incompletely understood. In this study, we identified IDB as a proliferative agent for an erythropoietin (EPO)-dependent cell line, UT-7/EPO, through the screening of a natural compound library. To clarify the underlying mechanism of IDB's EPO-like activities, we thoroughly analyzed the mutual relation between EPO and IDB in terms of in vitro and in vivo activities, signaling molecules, and a cellular receptor. IDB substantially induced the proliferation of UT-7/EPO cells, but not as much as EPO. IDB also lessened the anemia induced by 5-fluorouracil in an in vivo mouse model. Interestingly, IDB showed a synergistic effect on EPO at low concentration, but an antagonistic effect at higher concentration. Physical interaction and activation of PKCs by IDB- and EPO-competitive binding of IDB to EPO receptor (EPOR) explain these synergistic and antagonistic activities, respectively. Importantly, we addressed IDB's mechanism of action by demonstrating the direct binding of IDB to PKCs, and by identifying EPOR as a novel molecular target of IDB. Based on these dual targeting properties, IDB holds promise as a new small molecule modulator of EPO-related pathologic conditions.
Collapse
Affiliation(s)
- Jin-Gyo Oh
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, Catholic University of Korea, Bucheon, Republic of Korea (J.-G.O., H.E.K., T.-H.H.); College of Pharmacy, Dongguk University-Seoul, Seoul, Republic of Korea (Y.-W.C.); Department of Biotechnology, Hoseo University, Baebang, Asan, Chungnam, Republic of Korea (S.-J.K.); and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea (J.M.C., S.K.K.)
| | - Young-Won Chin
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, Catholic University of Korea, Bucheon, Republic of Korea (J.-G.O., H.E.K., T.-H.H.); College of Pharmacy, Dongguk University-Seoul, Seoul, Republic of Korea (Y.-W.C.); Department of Biotechnology, Hoseo University, Baebang, Asan, Chungnam, Republic of Korea (S.-J.K.); and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea (J.M.C., S.K.K.)
| | - Sung-Jo Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, Catholic University of Korea, Bucheon, Republic of Korea (J.-G.O., H.E.K., T.-H.H.); College of Pharmacy, Dongguk University-Seoul, Seoul, Republic of Korea (Y.-W.C.); Department of Biotechnology, Hoseo University, Baebang, Asan, Chungnam, Republic of Korea (S.-J.K.); and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea (J.M.C., S.K.K.)
| | - Jong Min Choi
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, Catholic University of Korea, Bucheon, Republic of Korea (J.-G.O., H.E.K., T.-H.H.); College of Pharmacy, Dongguk University-Seoul, Seoul, Republic of Korea (Y.-W.C.); Department of Biotechnology, Hoseo University, Baebang, Asan, Chungnam, Republic of Korea (S.-J.K.); and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea (J.M.C., S.K.K.)
| | - Sang Kyum Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, Catholic University of Korea, Bucheon, Republic of Korea (J.-G.O., H.E.K., T.-H.H.); College of Pharmacy, Dongguk University-Seoul, Seoul, Republic of Korea (Y.-W.C.); Department of Biotechnology, Hoseo University, Baebang, Asan, Chungnam, Republic of Korea (S.-J.K.); and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea (J.M.C., S.K.K.)
| | - Hee Eun Kang
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, Catholic University of Korea, Bucheon, Republic of Korea (J.-G.O., H.E.K., T.-H.H.); College of Pharmacy, Dongguk University-Seoul, Seoul, Republic of Korea (Y.-W.C.); Department of Biotechnology, Hoseo University, Baebang, Asan, Chungnam, Republic of Korea (S.-J.K.); and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea (J.M.C., S.K.K.)
| | - Tae-Hwe Heo
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, Catholic University of Korea, Bucheon, Republic of Korea (J.-G.O., H.E.K., T.-H.H.); College of Pharmacy, Dongguk University-Seoul, Seoul, Republic of Korea (Y.-W.C.); Department of Biotechnology, Hoseo University, Baebang, Asan, Chungnam, Republic of Korea (S.-J.K.); and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea (J.M.C., S.K.K.)
| |
Collapse
|
49
|
Wilmes S, Beutel O, Li Z, Francois-Newton V, Richter CP, Janning D, Kroll C, Hanhart P, Hötte K, You C, Uzé G, Pellegrini S, Piehler J. Receptor dimerization dynamics as a regulatory valve for plasticity of type I interferon signaling. ACTA ACUST UNITED AC 2015; 209:579-93. [PMID: 26008745 PMCID: PMC4442803 DOI: 10.1083/jcb.201412049] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type I interferons (IFNs) activate differential cellular responses through a shared cell surface receptor composed of the two subunits, IFNAR1 and IFNAR2. We propose here a mechanistic model for how IFN receptor plasticity is regulated on the level of receptor dimerization. Quantitative single-molecule imaging of receptor assembly in the plasma membrane of living cells clearly identified IFN-induced dimerization of IFNAR1 and IFNAR2. The negative feedback regulator ubiquitin-specific protease 18 (USP18) potently interferes with the recruitment of IFNAR1 into the ternary complex, probably by impeding complex stabilization related to the associated Janus kinases. Thus, the responsiveness to IFNα2 is potently down-regulated after the first wave of gene induction, while IFNβ, due to its ∼100-fold higher binding affinity, is still able to efficiently recruit IFNAR1. Consistent with functional data, this novel regulatory mechanism at the level of receptor assembly explains how signaling by IFNβ is maintained over longer times compared with IFNα2 as a temporally encoded cause of functional receptor plasticity.
Collapse
Affiliation(s)
- Stephan Wilmes
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Oliver Beutel
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Zhi Li
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique URA1961, 75724 Paris, France
| | - Véronique Francois-Newton
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique URA1961, 75724 Paris, France
| | - Christian P Richter
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Dennis Janning
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Cindy Kroll
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Patrizia Hanhart
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Katharina Hötte
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Changjiang You
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Gilles Uzé
- Centre National de la Recherche Scientifique Montpellier, 34095 Montpellier, France
| | - Sandra Pellegrini
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique URA1961, 75724 Paris, France
| | - Jacob Piehler
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| |
Collapse
|
50
|
Li Q, Wong YL, Huang Q, Kang C. Structural insight into the transmembrane domain and the juxtamembrane region of the erythropoietin receptor in micelles. Biophys J 2015; 107:2325-36. [PMID: 25418301 DOI: 10.1016/j.bpj.2014.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 01/06/2023] Open
Abstract
Erythropoietin receptor (EpoR) dimerization is an important step in erythrocyte formation. Its transmembrane domain (TMD) and juxtamembrane (JM) region are essential for signal transduction across the membrane. A construct compassing residues S212-P259 and containing the TMD and JM region of the human EpoR was purified and reconstituted in detergent micelles. The solution structure of the construct was determined in dodecylphosphocholine (DPC) micelles by solution NMR spectroscopy. Structural and dynamic studies demonstrated that the TMD and JM region are an ?-helix in DPC micelles, whereas residues S212-D224 at the N-terminus of the construct are not structured. The JM region is a helix that contains a hydrophobic patch formed by conserved hydrophobic residues (L253, I257, and W258). Nuclear Overhauser effect analysis, fluorescence spectroscopy, and paramagnetic relaxation enhancement experiments suggested that the JM region is exposed to the solvent. The structures of the TMD and JM region of the mouse EpoR were similar to those of the human EpoR.
Collapse
Affiliation(s)
- Qingxin Li
- Institute of Chemical & Engineering Sciences, Technology and Research (A(?)STAR), Singapore
| | - Ying Lei Wong
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A(?)STAR), Singapore
| | - Qiwei Huang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A(?)STAR), Singapore
| | - CongBao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A(?)STAR), Singapore.
| |
Collapse
|