1
|
Ye Z, Duan Y, Zhang A, Zhang Z, Guo S, Liu Q, Yi D, Wang X, Zhao J, Li Q, Ma L, Ding J, Cen S, Li X. SLFN11 Restricts LINE-1 Mobility. Cells 2025; 14:790. [PMID: 40497966 PMCID: PMC12153781 DOI: 10.3390/cells14110790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/13/2025] [Accepted: 05/21/2025] [Indexed: 06/19/2025] Open
Abstract
Long interspersed element-1 (LINE-1) is the only active autonomous transposon comprising about 17% of human genomes. LINE-1 transposition can cause the mutation and rearrangement of the host's genomic DNA. The host has, therefore, developed multiple mechanisms to restrict LINE-1 mobility. Here, we report that SLFN11, a member of the Schlafen family, can restrict LINE-1 retrotransposition, and the inhibitory activity requires its helicase domain. Mechanistically, SLFN11 specifically binds to the LINE-1 5' untranslated region (5'UTR) and blocks RNA polymerase II recruitment, thereby suppressing its transcription. Furthermore, SLFN11 promotes heterochromatinization, suggesting an epigenetic inhibition pathway.
Collapse
Affiliation(s)
- Zhongjie Ye
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.Y.); (Y.D.); (A.Z.); (Z.Z.); (S.G.); (Q.L.); (D.Y.); (J.Z.); (Q.L.); (L.M.); (S.C.)
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuqing Duan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.Y.); (Y.D.); (A.Z.); (Z.Z.); (S.G.); (Q.L.); (D.Y.); (J.Z.); (Q.L.); (L.M.); (S.C.)
| | - Ao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.Y.); (Y.D.); (A.Z.); (Z.Z.); (S.G.); (Q.L.); (D.Y.); (J.Z.); (Q.L.); (L.M.); (S.C.)
| | - Zixiong Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.Y.); (Y.D.); (A.Z.); (Z.Z.); (S.G.); (Q.L.); (D.Y.); (J.Z.); (Q.L.); (L.M.); (S.C.)
| | - Saisai Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.Y.); (Y.D.); (A.Z.); (Z.Z.); (S.G.); (Q.L.); (D.Y.); (J.Z.); (Q.L.); (L.M.); (S.C.)
| | - Qian Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.Y.); (Y.D.); (A.Z.); (Z.Z.); (S.G.); (Q.L.); (D.Y.); (J.Z.); (Q.L.); (L.M.); (S.C.)
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.Y.); (Y.D.); (A.Z.); (Z.Z.); (S.G.); (Q.L.); (D.Y.); (J.Z.); (Q.L.); (L.M.); (S.C.)
| | - Xinlu Wang
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.Y.); (Y.D.); (A.Z.); (Z.Z.); (S.G.); (Q.L.); (D.Y.); (J.Z.); (Q.L.); (L.M.); (S.C.)
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.Y.); (Y.D.); (A.Z.); (Z.Z.); (S.G.); (Q.L.); (D.Y.); (J.Z.); (Q.L.); (L.M.); (S.C.)
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.Y.); (Y.D.); (A.Z.); (Z.Z.); (S.G.); (Q.L.); (D.Y.); (J.Z.); (Q.L.); (L.M.); (S.C.)
| | - Jiwei Ding
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.Y.); (Y.D.); (A.Z.); (Z.Z.); (S.G.); (Q.L.); (D.Y.); (J.Z.); (Q.L.); (L.M.); (S.C.)
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.Y.); (Y.D.); (A.Z.); (Z.Z.); (S.G.); (Q.L.); (D.Y.); (J.Z.); (Q.L.); (L.M.); (S.C.)
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.Y.); (Y.D.); (A.Z.); (Z.Z.); (S.G.); (Q.L.); (D.Y.); (J.Z.); (Q.L.); (L.M.); (S.C.)
| |
Collapse
|
2
|
Yom A, Lewis NE. Coexistence vs collapse in transposon populations. ARXIV 2025:arXiv:2411.11010v2. [PMID: 40470469 PMCID: PMC12136480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
Transposons are small, self-replicating DNA sequences found in every branch of life. Often, one transposon will parasitize another, forming a tiny intracellular ecosystem. In some species these ecosystems thrive, while in others they go extinct, yet little is known about when or why this occurs. Here, we present a stochastic model for these ecosystems and discover a transition from stable coexistence to population collapse when the propensity for a transposon to replicate comes to exceed that of its parasites. Our model also predicts that replication rates should be low in equilibrium, which appears to be true of many transposons in nature.
Collapse
Affiliation(s)
- Aria Yom
- Department of Physics, University of California, San Diego
| | - Nathan E. Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego
- Center for Molecular Medicine, Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology University of Georgia
| |
Collapse
|
3
|
Li X, Liu N. Advances in understanding LINE-1 regulation and function in the human genome. Trends Genet 2025:S0168-9525(25)00103-9. [PMID: 40382218 DOI: 10.1016/j.tig.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 05/20/2025]
Abstract
LINE-1 (long interspersed nuclear element 1, L1) retrotransposons constitute ~17% of human DNA (~0.5 million genomic L1 copies) and exhibit context-dependent expression in different cell lines. Recent studies reveal that L1 is under multilayered control by diverse factors that either collaborate or compete with each other to ensure precise L1 activity. Remarkably, L1s have been co-opted as various transcription-dependent regulatory elements, such as promoters, enhancers, and topologically associating domain (TAD) boundaries, that regulate gene expression in zygotic genome activation, aging, cancer, and other disorders. This review highlights the regulation of L1 and its regulatory functions that influence disease and development.
Collapse
Affiliation(s)
- Xiufeng Li
- State Key Laboratory of Green Biomanufacturing, Tsinghua University-Peking University Joint Center for Life Sciences, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Nian Liu
- State Key Laboratory of Green Biomanufacturing, Tsinghua University-Peking University Joint Center for Life Sciences, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Prokopov D, Tunbak H, Leddy E, Drylie B, Camera F, Deniz Ö. Transposable elements as genome regulators in normal and malignant haematopoiesis. Blood Cancer J 2025; 15:87. [PMID: 40328728 PMCID: PMC12056191 DOI: 10.1038/s41408-025-01295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
Transposable elements (TEs) constitute over half of the human genome and have played a profound role in genome evolution. While most TEs have lost the ability to transpose, many retain functional elements that serve as drivers of genome innovation, including the emergence of novel genes and regulatory elements. Recent advances in experimental and bioinformatic methods have provided new insights into their roles in human biology, both in health and disease. In this review, we discuss the multifaceted roles of TEs in haematopoiesis, highlighting their contributions to both normal and pathological contexts. TEs influence gene regulation by reshaping gene-regulatory networks, modulating transcriptional activity, and creating novel regulatory elements. These activities play key roles in maintaining normal haematopoietic processes and supporting cellular regeneration. However, in haematological malignancies, TE reactivation can disrupt genomic integrity, induce structural variations, and dysregulate transcriptional programmes, thereby driving oncogenesis. By examining the impact of TE activity on genome regulation and variation, we highlight their pivotal roles in both normal haematopoietic processes and haematological cancers.
Collapse
Affiliation(s)
- Dmitry Prokopov
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK
| | - Hale Tunbak
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK
| | - Eve Leddy
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK
| | - Bryce Drylie
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK
| | - Francesco Camera
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK
| | - Özgen Deniz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK.
| |
Collapse
|
5
|
You E, Patel BK, Rojas AS, Sun S, Danaher P, Ho NI, Phillips IE, Raabe MJ, Song Y, Xu KH, Kocher JR, Richieri PM, Shin P, Taylor MS, Nieman LT, Greenbaum BD, Ting DT. LINE-1 ORF1p Mimics Viral Innate Immune Evasion Mechanisms in Pancreatic Ductal Adenocarcinoma. Cancer Discov 2025; 15:1063-1082. [PMID: 39919290 PMCID: PMC12046326 DOI: 10.1158/2159-8290.cd-24-1317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/08/2025] [Accepted: 02/06/2025] [Indexed: 02/09/2025]
Abstract
SIGNIFICANCE This study uncovers PDAC-specific mechanisms that dampen immune responses to viral-repeat RNA via long interspersed nuclear element 1 ORF1p. Suppression of ORF1p activates antiviral responses, reducing tumor growth and epithelial-mesenchymal transition. High ORF1p expression correlates with poor prognosis, highlighting its potential as a therapeutic target for PDAC.
Collapse
Affiliation(s)
- Eunae You
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Bidish K. Patel
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Alexandra S. Rojas
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Siyu Sun
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Natalie I. Ho
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Ildiko E. Phillips
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Michael J. Raabe
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Yuhui Song
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Katherine H. Xu
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Joshua R. Kocher
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Peter M. Richieri
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Phoebe Shin
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Martin S. Taylor
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Linda T. Nieman
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Benjamin D. Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, New York
| | - David T. Ting
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Schmidleithner L, Stüve P, Feuerer M. Transposable elements as instructors of the immune system. Nat Rev Immunol 2025:10.1038/s41577-025-01172-3. [PMID: 40301669 DOI: 10.1038/s41577-025-01172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2025] [Indexed: 05/01/2025]
Abstract
Transposable elements (TEs) are mobile repetitive nucleic acid sequences that have been incorporated into the genome through spontaneous integration, accounting for almost 50% of human DNA. Even though most TEs are no longer mobile today, studies have demonstrated that they have important roles in different biological processes, such as ageing, embryonic development, and cancer. TEs influence these processes through various mechanisms, including active transposition of TEs contributing to ongoing evolution, transposon transcription generating RNA or protein, and by influencing gene regulation as enhancers. However, how TEs interact with the immune system remains a largely unexplored field. In this Perspective, we describe how TEs might influence different aspects of the immune system, such as innate immune responses, T cell activation and differentiation, and tissue adaptation. Furthermore, TEs can serve as a source of neoantigens for T cells in antitumour immunity. We suggest that TE biology is an important emerging field of immunology and discuss the potential to harness the TE network therapeutically, for example, to improve immunotherapies for cancer and autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
| | - Philipp Stüve
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Markus Feuerer
- Leibniz Institute for Immunotherapy, Regensburg, Germany.
- Chair for Immunology, University Regensburg, Regensburg, Germany.
| |
Collapse
|
7
|
Ghanim GE, Hu H, Boulanger J, Nguyen THD. Structural mechanism of LINE-1 target-primed reverse transcription. Science 2025; 388:eads8412. [PMID: 40048554 DOI: 10.1126/science.ads8412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/11/2025] [Indexed: 04/26/2025]
Abstract
Long interspersed element-1 (LINE-1) retrotransposons are the only active autonomous transposable elements in humans. They propagate by reverse transcribing their messenger RNA into new genomic locations by a process called target-primed reverse transcription (TPRT). In this work, we present four cryo-electron microscopy structures of the human LINE-1 TPRT complex, revealing the conformational dynamics of open reading frame 2 protein (ORF2p) and its extensive remodeling of the target DNA for TPRT initiation. We observe nicking of the DNA second strand during reverse transcription of the first strand. Structure prediction identifies high-confidence binding sites for LINE-1-associated factors-namely proliferating cell nuclear antigen (PCNA) and cytoplasmic poly(A)-binding protein 1 (PABPC1)-on ORF2p. Together with our structural data, this suggests a mechanism by which these factors regulate retrotransposition and supports a model for TPRT that accounts for retrotransposition outcomes observed in cells.
Collapse
Affiliation(s)
| | - Hongmiao Hu
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
8
|
Nummi P, Cajuso T, Norri T, Taira A, Kuisma H, Välimäki N, Lepistö A, Renkonen-Sinisalo L, Koskensalo S, Seppälä TT, Ristimäki A, Tahkola K, Mattila A, Böhm J, Mecklin JP, Siili E, Pasanen A, Heikinheimo O, Bützow R, Karhu A, Burns KH, Palin K, Aaltonen LA. Structural features of somatic and germline retrotransposition events in humans. Mob DNA 2025; 16:20. [PMID: 40264183 PMCID: PMC12016303 DOI: 10.1186/s13100-025-00357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Transposons are DNA sequences able to move or copy themselves to other genomic locations leading to insertional mutagenesis. Although transposon-derived sequences account for half of the human genome, most elements are no longer transposition competent. Moreover, transposons are normally repressed through epigenetic silencing in healthy adult tissues but become derepressed in several human cancers, with high activity detected in colorectal cancer. Their impact on non-malignant and malignant tissue as well as the differences between somatic and germline retrotransposition remain poorly understood. With new sequencing technologies, including long read sequencing, we can access intricacies of retrotransposition, such as insertion sequence details and nested repeats, that have been previously challenging to characterize. RESULTS In this study, we investigate somatic and germline retrotransposition by analyzing long read sequencing from 56 colorectal cancers and 112 uterine leiomyomas. We identified 1495 somatic insertions in colorectal samples, while striking lack of insertions was detected in uterine leiomyomas. Our findings highlight differences between somatic and germline events, such as transposon type distribution, insertion length, and target site preference. Leveraging long-read sequencing, we provide an in-depth analysis of the twin-priming phenomenon, detecting it across transposable element types that remain active in humans, including Alus. Additionally, we detect an abundance of germline transposons in repetitive DNA, along with a relationship between replication timing and insertion target site. CONCLUSIONS Our study reveals a stark contrast in somatic transposon activity between colorectal cancers and uterine leiomyomas, and highlights differences between somatic and germline transposition. This suggests potentially different conditions in malignant and non-malignant tissues, as well as in germline and somatic tissues, which could be involved in the transposition process. Long-read sequencing provided important insights into transposon behavior, allowing detailed examination of structural features such as twin priming and nested elements.
Collapse
Affiliation(s)
- Päivi Nummi
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Tatiana Cajuso
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Tuukka Norri
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
- Department of Computer Science, University of Helsinki, Helsinki, 00014, Finland
| | - Aurora Taira
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Heli Kuisma
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Niko Välimäki
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Anna Lepistö
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, Helsinki, 00290, Finland
| | - Laura Renkonen-Sinisalo
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, Helsinki, 00290, Finland
| | - Selja Koskensalo
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, Helsinki, 00290, Finland
| | - Toni T Seppälä
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Faculty of Medicine and Health Technology, University of Tampere and TAYS Cancer Centre, Tampere, 33100, Finland
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, 33520, Finland
- Abdominal Center, Helsinki University Hospital, Helsinki University, Helsinki, 00290, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00290, Finland
| | - Ari Ristimäki
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, 00290, Finland
| | - Kyösti Tahkola
- Department of Surgery, Wellbeing Services County of Central Finland / Hospital Nova of Central Finland, Jyväskylä, 40620, Finland
| | - Anne Mattila
- Department of Surgery, Wellbeing Services County of Central Finland / Hospital Nova of Central Finland, Jyväskylä, 40620, Finland
| | - Jan Böhm
- Department of Surgery, Wellbeing Services County of Central Finland / Hospital Nova of Central Finland, Jyväskylä, 40620, Finland
| | - Jukka-Pekka Mecklin
- Department of Science, Well Being Services County of Central Finland, Jyväskylä, 40620, Finland
- Department of Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, 40014, Finland
| | - Emma Siili
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, 00290, Finland
| | - Annukka Pasanen
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, 00290, Finland
| | - Oskari Heikinheimo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, 00290, Finland
| | - Ralf Bützow
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, 00290, Finland
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, 00290, Finland
| | - Auli Karhu
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, MA, 02115, USA
| | - Kimmo Palin
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland.
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00290, Finland.
| | - Lauri A Aaltonen
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00290, Finland
| |
Collapse
|
9
|
Qian W, Jiang P, Niu M, Fu Y, Huang D, Zhang D, Liang Y, Wang Q, Han Y, Zeng X, Shi Y, Jiang L, Yu Z, Li J, Lu H, Wang H, Chen B, Qian P. Selective identification of epigenetic regulators at methylated genomic sites by SelectID. Nat Commun 2025; 16:3709. [PMID: 40251151 PMCID: PMC12008204 DOI: 10.1038/s41467-025-59002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
DNA methylation is a significant component in proximal chromatin regulation and plays crucial roles in regulating gene expression and maintaining the repressive state of retrotransposon elements. However, accurate profiling of the proteomics which simultaneously identifies specific DNA sequences and their associated epigenetic modifications remains a challenge. Here, we report a strategy termed SelectID (selective profiling of epigenetic control at genome targets identified by dCas9), which introduces methylated DNA binding domain into dCas9-mediated proximity labeling system to enable in situ protein capture at repetitive elements with 5-methylcytosine (5mC) modifications. SelectID is demonstrated as feasible as dCas9-TurboID system at specific DNA methylation regions, such as the chromosome 9 satellite. Using SelectID, we successfully identify CHD4 as potential repressors of methylated long interspersed nuclear element-1 (LINE-1) retrotransposon through direct binding at the 5' untranslated region (5'UTR) of young LINE-1 elements. Overall, our SelectID approach has opened up avenues for uncovering potential regulators of specific DNA regions with DNA methylation, which will greatly facilitate future studies on epigenetic regulation.
Collapse
Affiliation(s)
- Wenchang Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Penglei Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Mingming Niu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yujuan Fu
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Deyu Huang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Dong Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ying Liang
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiwei Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Xin Zeng
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yixin Shi
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Lingli Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zebin Yu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jinxin Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Huan Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Hong Wang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, China.
| | - Baohui Chen
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
| |
Collapse
|
10
|
Zhang W, Huang C, Yao H, Yang S, Jiapaer Z, Song J, Wang X. Retrotransposon: an insight into neurological disorders from perspectives of neurodevelopment and aging. Transl Neurodegener 2025; 14:14. [PMID: 40128823 PMCID: PMC11934714 DOI: 10.1186/s40035-025-00471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/21/2025] [Indexed: 03/26/2025] Open
Abstract
Neurological disorders present considerable challenges in diagnosis and treatment due to their complex and diverse etiology. Retrotransposons are a type of mobile genetic element that are increasingly revealed to play a role in these diseases. This review provides a detailed overview of recent developments in the study of retrotransposons in neurodevelopment, neuroaging, and neurological diseases. Retrotransposons, including long interspersed nuclear elements-1, Alu, SINE-VNTR-Alu, and endogenous retrovirus, play important regulatory roles in the development and aging of the nervous system. They have also been implicated in the pathological processes of several neurological diseases, including Alzheimer's disease, X-linked dystonia-parkinsonism, amyotrophic lateral sclerosis, autism spectrum disorder, and schizophrenia. Retrotransposons provide a new perspective for understanding the molecular mechanisms underlying neurological diseases and provide insights into diagnostic and therapeutic strategies of these diseases.
Collapse
Affiliation(s)
- Wenchuan Zhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenxuan Huang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyang Yao
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shangzhi Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zeyidan Jiapaer
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Xinjiang, China.
| | - Juan Song
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Le E, Moadab F, Wang X, Najjar R, Van den Bogaerde SJ, Bays A, LaCava J, Mustelin T. Interferons and Cytokines Induce Transcriptional Activation of the Long-Interspersed Element-1 in Myeloid Cells from Autoimmune Patients. Eur J Immunol 2025; 55:e2451351. [PMID: 40071709 PMCID: PMC11951091 DOI: 10.1002/eji.202451351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/30/2025]
Abstract
Approximately 17% of our genome consists of copies of the retrotransposon "long interspersed element-1" (LINE-1 or L1). Patients with systemic lupus erythematosus (SLE) frequently have autoantibodies against the L1-encoded ORF1 protein (ORF1p), which correlate with disease activity and interferon gene signature. ORF1p is present in neutrophils from patients with active disease in perinuclear ribonucleoprotein particles that also contain Ro60 and nucleic acid sensors. Here, we report that treatment of neutrophils or monocytes with the demethylating agent 5-aza-deoxycytidine, interferon-α, tumor necrosis factor-α, and other cytokines or toll-like receptor agonists, induce a rapid increase in L1 transcripts. This increase was greater in cells from patients with SLE or rheumatoid arthritis (RA) than in cells from healthy donors, except that cells from SLE did not respond to interferon-α, presumably because most SLE patients have elevated type I interferons in vivo. Interferon-α also induced ORF1p in RA neutrophils with a subcellular distribution like that of ORF1p in freshly isolated SLE neutrophils. A luciferase reporter gene driven by the 5' untranslated region of L1, which controls its transcription, was also stimulated by interferon-α. These new insights into L1 transcriptional regulation indicate that it may play a more active role in antiviral immune responses.
Collapse
Affiliation(s)
- Ethan Le
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Fatemeh Moadab
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Xiaoxing Wang
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rayan Najjar
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Alison Bays
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Solovyov A, Behr JM, Hoyos D, Banks E, Drong AW, Thornlow B, Zhong JZ, Garcia-Rivera E, McKerrow W, Chu C, Arisdakessian C, Zaller DM, Kamihara J, Diao L, Fromer M, Greenbaum BD. Pan-cancer multi-omic model of LINE-1 activity reveals locus heterogeneity of retrotransposition efficiency. Nat Commun 2025; 16:2049. [PMID: 40021663 PMCID: PMC11871128 DOI: 10.1038/s41467-025-57271-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 02/12/2025] [Indexed: 03/03/2025] Open
Abstract
Somatic mobilization of LINE-1 (L1) has been implicated in cancer etiology. We analyzed a recent TCGA data release comprised of nearly 5000 pan-cancer paired tumor-normal whole-genome sequencing (WGS) samples and ~9000 tumor RNA samples. We developed TotalReCall an improved algorithm and pipeline for detection of L1 retrotransposition (RT), finding high correlation between L1 expression and "RT burden" per sample. Furthermore, we mathematically model the dual regulatory roles of p53, where mutations in TP53 disrupt regulation of both L1 expression and retrotransposition. We found those with Li-Fraumeni Syndrome (LFS) heritable TP53 pathogenic and likely pathogenic variants bear similarly high L1 activity compared to matched cancers from patients without LFS, suggesting this population be considered in attempts to target L1 therapeutically. Due to improved sensitivity, we detect over 10 genes beyond TP53 whose mutations correlate with L1, including ATRX, suggesting other, potentially targetable, mechanisms underlying L1 regulation in cancer remain to be discovered.
Collapse
Affiliation(s)
- Alexander Solovyov
- Halvorsen Center for Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | | | - David Hoyos
- Halvorsen Center for Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Banks
- ROME Therapeutics, Inc., Boston, MA, USA
- Acorn Biosciences, Cambridge, MA, USA
| | | | | | | | | | | | - Chong Chu
- ROME Therapeutics, Inc., Boston, MA, USA
| | | | | | - Junne Kamihara
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Division of Population Sciences, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - Benjamin D Greenbaum
- Halvorsen Center for Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Physiology, Biophysics & Systems Biology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
13
|
Bravo JI, Zhang L, Benayoun BA. Multi-ancestry GWAS reveals loci linked to human variation in LINE-1- and Alu-insertion numbers. TRANSLATIONAL MEDICINE OF AGING 2025; 9:25-40. [PMID: 40051556 PMCID: PMC11883834 DOI: 10.1016/j.tma.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
LINE-1 (L1) and Alu are two families of transposable elements (TEs) occupying ~17% and ~11% of the human genome, respectively. Though only a small fraction of L1 copies is able to produce the machinery to mobilize autonomously, Alu and degenerate L1s can hijack their functional machinery and mobilize in trans. The expression and subsequent mobilization of L1 and Alu can exert pathological effects on their hosts. These features have made them promising focus subjects in studies of aging where they can become active. However, mechanisms regulating TE activity are incompletely characterized, especially in diverse human populations. To address these gaps, we leveraged genomic data from the 1000 Genomes Project to carry out a trans-ethnic GWAS of L1/Alu insertion singletons. These are rare, recently acquired insertions observed in only one person and which we used as proxies for variation in L1/Alu insertion numbers. Our approach identified SNVs in genomic regions containing genes with potential and known TE regulatory properties, and it enriched for SNVs in regions containing known regulators of L1 expression. Moreover, we identified reference TE copies and structural variants that associated with L1/Alu singletons, suggesting their potential contribution to TE insertion number variation. Finally, a transcriptional analysis of lymphoblastoid cells highlighted potential cell cycle alterations in a subset of samples harboring L1/Alu singletons. Collectively, our results suggest that known TE regulatory mechanisms may be active in diverse human populations, expand the list of loci implicated in TE insertion number variability, and reinforce links between TEs and disease.
Collapse
Affiliation(s)
- Juan I. Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Lucia Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Quantitative and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California, USA
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089, USA
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
14
|
Nielsen MI, Wolters JC, Bringas OGR, Jiang H, Di Stefano LH, Oghbaie M, Hozeifi S, Nitert MJ, van Pijkeren A, Smit M, Ter Morsche L, Mourtzinos A, Deshpande V, Taylor MS, Chait BT, LaCava J. Targeted detection of endogenous LINE-1 proteins and ORF2p interactions. Mob DNA 2025; 16:3. [PMID: 39915890 PMCID: PMC11800616 DOI: 10.1186/s13100-024-00339-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/24/2024] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Both the expression and activities of LINE-1 (L1) retrotransposons are known to occur in numerous cell-types and are implicated in pathobiological contexts such as aging-related inflammation, autoimmunity, and in cancers. L1s encode two proteins that are translated from bicistronic transcripts. The translation product of ORF1 (ORF1p) has been robustly detected by immunoassays and shotgun mass spectrometry (MS). Yet, more sensitive detection methods would enhance the use of ORF1p as a clinical biomarker. In contrast, until now, no direct evidence of endogenous L1 ORF2 translation to protein (ORF2p) has been shown. Instead, assays for ORF2p have been limited to ectopic L1 ORF over-expression contexts and to indirect detection of endogenous ORF2p enzymatic activity, such as by the sequencing of de novo genomic insertions. Immunoassays for endogenous ORF2p have been problematic, producing apparent false positives due to cross-reactivities, and shotgun MS has not yielded reliable evidence of ORF2p peptides in biological samples. RESULTS Here we present targeted mass spectrometry assays, selected and parallel reaction monitoring (SRM and PRM, respectively) to detect and quantify L1 ORF1p and ORF2p at their endogenous abundances. We were able to quantify ORF1p and ORF2p present in our samples down to a range in the low attomoles. Confident in our ability to affinity enrich ORF2p, we describe an interactome associated with endogenous ORF2-containing macromolecular assemblies. CONCLUSIONS This is the first assay to demonstrate sensitive and robust quantitation of endogenous ORF2p. The ability to assay ORF2p directly and quantitatively will improve our understanding of the developmental and diseased cell states where L1 expression and its activity naturally occur. The ability to simultaneously assay endogenous L1 ORF1p and ORF2p is an important step forward for L1 analytical biochemistry. Endogenous ORF2p interactomes can now be presented with confidence that ORF2p is among the enriched proteins.
Collapse
Affiliation(s)
- Mathias I Nielsen
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Justina C Wolters
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Omar G Rosas Bringas
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Luciano H Di Stefano
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mehrnoosh Oghbaie
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Samira Hozeifi
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mats J Nitert
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Alienke van Pijkeren
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marieke Smit
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lars Ter Morsche
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Apostolos Mourtzinos
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Vikram Deshpande
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, MA, USA
| | - Martin S Taylor
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, MA, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA.
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
15
|
Bravo JI, Zhang L, Benayoun BA. Multi-ancestry GWAS reveals loci linked to human variation in LINE-1- and Alu-insertion numbers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.10.612283. [PMID: 39314493 PMCID: PMC11419044 DOI: 10.1101/2024.09.10.612283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
LINE-1 (L1) and Alu are two families of transposable elements (TEs) occupying ~17% and ~11% of the human genome, respectively. Though only a small fraction of L1 copies is able to produce the machinery to mobilize autonomously, Alu and degenerate L1s can hijack their functional machinery and mobilize in trans. The expression and subsequent mobilization of L1 and Alu can exert pathological effects on their hosts. These features have made them promising focus subjects in studies of aging where they can become active. However, mechanisms regulating TE activity are incompletely characterized, especially in diverse human populations. To address these gaps, we leveraged genomic data from the 1000 Genomes Project to carry out a trans-ethnic GWAS of L1/Alu insertion singletons. These are rare, recently acquired insertions observed in only one person and which we used as proxies for variation in L1/Alu insertion numbers. Our approach identified SNVs in genomic regions containing genes with potential and known TE regulatory properties, and it enriched for SNVs in regions containing known regulators of L1 expression. Moreover, we identified reference TE copies and structural variants that associated with L1/Alu singletons, suggesting their potential contribution to TE insertion number variation. Finally, a transcriptional analysis of lymphoblastoid cells highlighted potential cell cycle alterations in a subset of samples harboring L1/Alu singletons. Collectively, our results suggest that known TE regulatory mechanisms may be active in diverse human populations, expand the list of loci implicated in TE insertion number variability, and reinforce links between TEs and disease.
Collapse
Affiliation(s)
- Juan I. Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Lucia Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Quantitative and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California, USA
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089, USA
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
16
|
Corrigan RR, Mashburn-Warren LM, Yoon H, Bedrosian TA. Somatic Mosaicism in Brain Disorders. ANNUAL REVIEW OF PATHOLOGY 2025; 20:13-32. [PMID: 39227323 DOI: 10.1146/annurev-pathmechdis-111523-023528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Research efforts over the past decade have defined the genetic landscape of somatic variation in the brain. Neurons accumulate somatic mutations from development through aging with potentially profound functional consequences. Recent studies have revealed the contribution of somatic mosaicism to various brain disorders including focal epilepsy, neuropsychiatric disease, and neurodegeneration. One notable finding is that the effect of somatic mosaicism on clinical outcomes can vary depending on contextual factors, such as the developmental origin of a variant or the number and type of cells affected. In this review, we highlight current knowledge regarding the role of somatic mosaicism in brain disorders and how biological context can mediate phenotypes. First, we identify the origins of brain somatic variation throughout the lifespan of an individual. Second, we explore recent discoveries that suggest somatic mosaicism contributes to various brain disorders. Finally, we discuss neuropathological associations of brain mosaicism in different biological contexts and potential clinical utility.
Collapse
Affiliation(s)
- Rachel R Corrigan
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA;
| | | | - Hyojung Yoon
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA;
| | - Tracy A Bedrosian
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA;
| |
Collapse
|
17
|
Cuarenta A. Retrotransposons and the brain: Exploring a complex relationship between mobile elements, stress, and neurological health. Neurobiol Stress 2025; 34:100709. [PMID: 39927173 PMCID: PMC11803260 DOI: 10.1016/j.ynstr.2025.100709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/14/2024] [Accepted: 01/13/2025] [Indexed: 02/11/2025] Open
Abstract
Environmental experiences during early life, including stress, can significantly impact brain development and behavior. Early life stress (ELS) is linked to an increased risk for various psychiatric disorders including anxiety, depression, and substance use disorders. Epigenetic mechanisms have increasingly been of interest to understand how environmental factors contribute to reprogramming the brain and alter risk and resilience to developing psychiatric disorders. However, we know very little about mobile elements or the regulation of mobile elements and their contribution to psychiatric disorders. Recently, advances in genomics have contributed to our understanding of mobile elements, including the retrotransposon LINE-1 (L1) and their potential role in mediating environmental experiences. Yet we still do not understand how these elements may contribute to psychiatric disorders. Future research leveraging cutting-edge technologies will deepen our understanding of these mobile elements. By elucidating their role in development and how stress may impact them, we may unlock new avenues for therapeutic and diagnostic innovations.
Collapse
Affiliation(s)
- Amelia Cuarenta
- Neuroscience Institute and the Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
18
|
Arata Y, Jurica P, Parrish N, Sako Y. Bioinformatic Annotation of Transposon DNA Processing Genes on the Long-Read Genome Assembly of Caenorhabditis elegans. Bioinform Biol Insights 2024; 18:11779322241304668. [PMID: 39713040 PMCID: PMC11662393 DOI: 10.1177/11779322241304668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
Transposable elements (TEs) or transposons are thought to play roles in animal physiological processes, such as germline, early embryonic, and brain development, as well as aging. However, their roles have not been systematically investigated through experimental studies. In this study, we created a catalog of genes directly involved in replication, excision, or integration of transposon-coding DNA, which we refer to as transposon DNA processing genes (TDPGs). Specifically, to bridge the gap to experimental studies, we sought potentially functional TDPGs which maintain intact open reading frames and the amino acids at their catalytic cores on the latest long-read genome assembly of Caenorhabditis elegans, VC2010. Among 52 519 TE loci, we identified 145 potentially functional TDPGs encoded in long terminal repeat elements, long interspersed nuclear elements, terminal inverted repeat elements, Helitrons, and Mavericks/Polintons. Our TDPG catalog, which contains a feasible number of genes, allows for the experimental manipulation of TE mobility in vivo, regardless of whether the TEs are autonomous or non-autonomous, thereby potentially promoting the study of the physiological functions of TE mobility.
Collapse
Affiliation(s)
- Yukinobu Arata
- Cellular Informatics Laboratory, Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Peter Jurica
- Cellular Informatics Laboratory, Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Nicholas Parrish
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| |
Collapse
|
19
|
Sun S, You E, Hong J, Hoyos D, Del Priore I, Tsanov KM, Mattagajasingh O, Di Gioacchino A, Marhon SA, Chacon-Barahona J, Li H, Jiang H, Hozeifi S, Rosas-Bringas O, Xu KH, Song Y, Lang ER, Rojas AS, Nieman LT, Patel BK, Murali R, Chanda P, Karacay A, Vabret N, De Carvalho DD, Zenklusen D, LaCava J, Lowe SW, Ting DT, Iacobuzio-Donahue CA, Solovyov A, Greenbaum BD. Cancer cells restrict immunogenicity of retrotransposon expression via distinct mechanisms. Immunity 2024; 57:2879-2894.e11. [PMID: 39577413 PMCID: PMC12022969 DOI: 10.1016/j.immuni.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/28/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024]
Abstract
To thrive, cancer cells must navigate acute inflammatory signaling accompanying oncogenic transformation, such as via overexpression of repeat elements. We examined the relationship between immunostimulatory repeat expression, tumor evolution, and the tumor-immune microenvironment. Integration of multimodal data from a cohort of pancreatic ductal adenocarcinoma (PDAC) patients revealed expression of specific Alu repeats predicted to form double-stranded RNAs (dsRNAs) and trigger retinoic-acid-inducible gene I (RIG-I)-like-receptor (RLR)-associated type-I interferon (IFN) signaling. Such Alu-derived dsRNAs also anti-correlated with pro-tumorigenic macrophage infiltration in late stage tumors. We defined two complementary pathways whereby PDAC may adapt to such anti-tumorigenic signaling. In mutant TP53 tumors, ORF1p from long interspersed nuclear element (LINE)-1 preferentially binds Alus and decreases their expression, whereas adenosine deaminases acting on RNA 1 (ADAR1) editing primarily reduces dsRNA formation in wild-type TP53 tumors. Depletion of either LINE-1 ORF1p or ADAR1 reduced tumor growth in vitro. The fact that tumors utilize multiple pathways to mitigate immunostimulatory repeats implies the stress from their expression is a fundamental phenomenon to which PDAC, and likely other tumors, adapt.
Collapse
Affiliation(s)
- Siyu Sun
- Halvorsen Center for Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Eunae You
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Jungeui Hong
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Hoyos
- Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Isabella Del Priore
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kaloyan M Tsanov
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Om Mattagajasingh
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Andrea Di Gioacchino
- Laboratoire de Physique de l'Ecole Normale Supérieure, Sorbonne Université, Université de Paris, Paris, France
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jonathan Chacon-Barahona
- Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Hao Li
- Halvorsen Center for Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Samira Hozeifi
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Omar Rosas-Bringas
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Katherine H Xu
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Yuhui Song
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Evan R Lang
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Alexandra S Rojas
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Linda T Nieman
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Bidish K Patel
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Rajmohan Murali
- Last Wish Program and Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pharto Chanda
- Last Wish Program and Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ali Karacay
- Last Wish Program and Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicolas Vabret
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Daniel Zenklusen
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - John LaCava
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - David T Ting
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Christine A Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Last Wish Program and Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Solovyov
- Halvorsen Center for Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin D Greenbaum
- Halvorsen Center for Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
20
|
Zhang Z, Hong X, Xiong P, Wang J, Zhou Y, Zhan J. Minimal twister sister-like self-cleaving ribozymes in the human genome revealed by deep mutational scanning. eLife 2024; 12:RP90254. [PMID: 39636683 PMCID: PMC11620745 DOI: 10.7554/elife.90254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Despite their importance in a wide range of living organisms, self-cleaving ribozymes in the human genome are few and poorly studied. Here, we performed deep mutational scanning and covariance analysis of two previously proposed self-cleaving ribozymes (LINE-1 and OR4K15). We found that the regions essential for ribozyme activities are made of two short segments, with a total of 35 and 31 nucleotides only. The discovery makes them the simplest known self-cleaving ribozymes. Moreover, the essential regions are circular permutated with two nearly identical catalytic internal loops, supported by two stems of different lengths. These two self-cleaving ribozymes, which are shaped like lanterns, are similar to the catalytic regions of the twister sister ribozymes in terms of sequence and secondary structure. However, the nucleotides at the cleavage site have shown that mutational effects on two twister sister-like (TS-like) ribozymes are different from the twister sister ribozyme. The discovery of TS-like ribozymes reveals a ribozyme class with the simplest and, perhaps, the most primitive structure needed for self-cleavage.
Collapse
Affiliation(s)
- Zhe Zhang
- Institute for Systems and Physical Biology, Shenzhen Bay LaboratoryShenzhenChina
- University of Science and Technology of ChinaHefeiChina
- Institute for Biomedicine and Glycomics, Griffith UniversitySouthportAustralia
| | - Xu Hong
- Institute for Systems and Physical Biology, Shenzhen Bay LaboratoryShenzhenChina
- University of Science and Technology of ChinaHefeiChina
| | - Peng Xiong
- University of Science and Technology of ChinaHefeiChina
- Institute for Biomedicine and Glycomics, Griffith UniversitySouthportAustralia
- Suzhou Institute for Advanced Research, University of Science and Technology of ChinaSuzhouChina
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of SciencesHefeiChina
- Institute of Physical Science and Information Technology, Anhui UniversityHefeiChina
| | - Yaoqi Zhou
- Institute for Systems and Physical Biology, Shenzhen Bay LaboratoryShenzhenChina
- Institute for Biomedicine and Glycomics, Griffith UniversitySouthportAustralia
- School of Information and Communication Technology, Griffith UniversitySouthportAustralia
| | - Jian Zhan
- Institute for Systems and Physical Biology, Shenzhen Bay LaboratoryShenzhenChina
- Institute for Biomedicine and Glycomics, Griffith UniversitySouthportAustralia
- Ribopeutic Inc, Guangzhou International Bio IslandGuangzhouChina
| |
Collapse
|
21
|
Rodriguez JM, Maquedano M, Cerdan-Velez D, Calvo E, Vazquez J, Tress ML. A deep audit of the PeptideAtlas database uncovers evidence for unannotated coding genes and aberrant translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623419. [PMID: 39605392 PMCID: PMC11601488 DOI: 10.1101/2024.11.14.623419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The human genome has been the subject of intense scrutiny by experimental and manual curation projects for more than two decades. Novel coding genes have been proposed from large-scale RNASeq, ribosome profiling and proteomics experiments. Here we carry out an in-depth analysis of an entire proteomics database. We analysed the proteins, peptides and spectra housed in the human build of the PeptideAtlas proteomics database to identify coding regions that are not yet annotated in the GENCODE reference gene set. We find support for hundreds of missing alternative protein isoforms and unannotated upstream translations, and evidence of cross-contamination from other species. There was reliable peptide evidence for 34 novel unannotated open reading frames (ORFs) in PeptideAtlas. We find that almost half belong to coding genes that are missing from GENCODE and other reference sets. Most of the remaining ORFs were not conserved beyond human, however, and their peptide confirmation was restricted to cancer cell lines. We show that this is strong evidence for aberrant translation, raising important questions about the extent of aberrant translation and how these ORFs should be annotated in reference genomes.
Collapse
Affiliation(s)
- Jose Manuel Rodriguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Miguel Maquedano
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Daniel Cerdan-Velez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Enrique Calvo
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Jesús Vazquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Michael L Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| |
Collapse
|
22
|
Tu Z, Bassal MA, Bell GW, Zhang Y, Hu Y, Quintana LM, Gokul D, Tenen DG, Karnoub AE. Tumor-suppressive activities for pogo transposable element derived with KRAB domain via ribosome biogenesis restriction. Mol Cell 2024; 84:4209-4223.e6. [PMID: 39481384 DOI: 10.1016/j.molcel.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 11/02/2024]
Abstract
Transposable elements (TEs) are indispensable for human development, with critical functions in pluripotency and embryogenesis. TE sequences also contribute to human pathologies, especially cancer, with documented activities as cis/trans transcriptional regulators, as sources of non-coding RNAs, and as mutagens that disrupt tumor suppressors. Despite this knowledge, little is known regarding the involvement of TE-derived genes (TEGs) in tumor pathogenesis. Here, systematic analyses of TEG expression across human cancer reveal a prominent role for pogo TE derived with KRAB domain (POGK). We show that POGK acts as a tumor suppressor in triple-negative breast cancer (TNBC) cells and that it couples with the co-repressor TRIM28 to directly block the transcription of ribosomal genes RPS16 and RPS29, in turn causing widespread inhibition of ribosomal biogenesis. We report that POGK undergoes deactivation by isoform switching in clinical TNBC, altogether revealing its exapted activities in tumor growth control.
Collapse
Affiliation(s)
- Zhenbo Tu
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mahmoud A Bassal
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - George W Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Yanzhou Zhang
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Yi Hu
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Liza M Quintana
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Deeptha Gokul
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel G Tenen
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Antoine E Karnoub
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Boston Veterans Affairs Healthcare System, Boston, MA 02132, USA.
| |
Collapse
|
23
|
Kogan V, Molodtsov I, Fleyshman DI, Leontieva OV, Koman IE, Gudkov AV. The reconstruction of evolutionary dynamics of processed pseudogenes indicates deep silencing of "retrobiome" in naked mole rat. Proc Natl Acad Sci U S A 2024; 121:e2313581121. [PMID: 39467133 PMCID: PMC11551321 DOI: 10.1073/pnas.2313581121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/02/2024] [Indexed: 10/30/2024] Open
Abstract
Approximately half of mammalian genomes are occupied by retrotransposons, highly repetitive interspersed genetic elements expanded through the mechanism of reverse transcription. The evolution of this "retrobiome" involved a series of explosive amplifications, presumably associated with high mutation rates, interspersed with periods of silencing. A by-product of retrotransposon activity is the formation of processed pseudogenes (PPGs)-intron-less, promoter-less DNA copies of messenger RNA (mRNA). We examined the proportion of PPGs with varying degrees of deviation from their ancestor mRNAs as an indicator of the intensity of retrotranspositions at different times in the past. Our analysis revealed a high proportion of "young'' (recently acquired) PPGs in the DNA of mice and rats, indicating significant retrobiome activity during the recent evolution of these species. The ongoing process of new PPG entries in mouse germ line DNA was confirmed by identifying diversity in PPG content within the single strain of mice, C57BL/6. In contrast, the highly abundant PPGs of the naked mole rat (NMR) exhibited substantial deviation from their mRNAs, with a near-complete lack of PPGs without mutations, indicative of the silencing of the retrobiome in the most recent evolutionary past, preceded by a period of high activity. This distinctive feature of the NMR genome was confirmed through the analysis of a broad range of mammalian species. The peculiar evolutionary dynamics of PPGs in the NMR, an organism with exceptional longevity and resistance to cancer, may reflect the role played by the retrobiome in aging and cancer.
Collapse
Affiliation(s)
- Valeria Kogan
- Institute for Personalized and Translational Medicine, Adelson School of Medicine, Ariel University, Ariel4070000, Israel
| | - Ivan Molodtsov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
| | - Daria I. Fleyshman
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
| | - Olga V. Leontieva
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
| | - Igor E. Koman
- Institute for Personalized and Translational Medicine, Adelson School of Medicine, Ariel University, Ariel4070000, Israel
| | - Andrei V. Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
| |
Collapse
|
24
|
Dasgupta N, Arnold R, Equey A, Gandhi A, Adams PD. The role of the dynamic epigenetic landscape in senescence: orchestrating SASP expression. NPJ AGING 2024; 10:48. [PMID: 39448585 PMCID: PMC11502686 DOI: 10.1038/s41514-024-00172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Senescence and epigenetic alterations stand out as two well-characterized hallmarks of aging. When cells become senescent, they cease proliferation and release inflammatory molecules collectively termed the Senescence-Associated Secretory Phenotype (SASP). Senescence and SASP are implicated in numerous age-related diseases. Senescent cell nuclei undergo epigenetic reprogramming, which intricately regulates SASP expression. This review outlines the current understanding of how senescent cells undergo epigenetic changes and how these alterations govern SASP expression.
Collapse
Affiliation(s)
- Nirmalya Dasgupta
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Rouven Arnold
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anais Equey
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Armin Gandhi
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Peter D Adams
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
25
|
Snowbarger J, Koganti P, Spruck C. Evolution of Repetitive Elements, Their Roles in Homeostasis and Human Disease, and Potential Therapeutic Applications. Biomolecules 2024; 14:1250. [PMID: 39456183 PMCID: PMC11506328 DOI: 10.3390/biom14101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Repeating sequences of DNA, or repetitive elements (REs), are common features across both prokaryotic and eukaryotic genomes. Unlike many of their protein-coding counterparts, the functions of REs in host cells remained largely unknown and have often been overlooked. While there is still more to learn about their functions, REs are now recognized to play significant roles in both beneficial and pathological processes in their hosts at the cellular and organismal levels. Therefore, in this review, we discuss the various types of REs and review what is known about their evolution. In addition, we aim to classify general mechanisms by which REs promote processes that are variously beneficial and harmful to host cells/organisms. Finally, we address the emerging role of REs in cancer, aging, and neurological disorders and provide insights into how RE modulation could provide new therapeutic benefits for these specific conditions.
Collapse
Affiliation(s)
| | | | - Charles Spruck
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (J.S.); (P.K.)
| |
Collapse
|
26
|
Karttunen K, Patel D, Sahu B. Transposable elements as drivers of dedifferentiation: Connections between enhancers in embryonic stem cells, placenta, and cancer. Bioessays 2024; 46:e2400059. [PMID: 39073128 DOI: 10.1002/bies.202400059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Transposable elements (TEs) have emerged as important factors in establishing the cell type-specific gene regulatory networks and evolutionary novelty of embryonic and placental development. Recently, studies on the role of TEs and their dysregulation in cancers have shed light on the transcriptional, transpositional, and regulatory activity of TEs, revealing that the activation of developmental transcriptional programs by TEs may have a role in the dedifferentiation of cancer cells to the progenitor-like cell states. This essay reviews the recent evidence of the cis-regulatory TEs (henceforth crTE) in normal development and malignancy as well as the key transcription factors and regulatory pathways that are implicated in both cell states, and presents existing gaps remaining to be studied, limitations of current technologies, and therapeutic possibilities.
Collapse
Affiliation(s)
- Konsta Karttunen
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Divyesh Patel
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Biswajyoti Sahu
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
27
|
Horváth V, Garza R, Jönsson ME, Johansson PA, Adami A, Christoforidou G, Karlsson O, Castilla Vallmanya L, Koutounidou S, Gerdes P, Pandiloski N, Douse CH, Jakobsson J. Mini-heterochromatin domains constrain the cis-regulatory impact of SVA transposons in human brain development and disease. Nat Struct Mol Biol 2024; 31:1543-1556. [PMID: 38834915 PMCID: PMC11479940 DOI: 10.1038/s41594-024-01320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/17/2024] [Indexed: 06/06/2024]
Abstract
SVA (SINE (short interspersed nuclear element)-VNTR (variable number of tandem repeats)-Alu) retrotransposons remain active in humans and contribute to individual genetic variation. Polymorphic SVA alleles harbor gene regulatory potential and can cause genetic disease. However, how SVA insertions are controlled and functionally impact human disease is unknown. Here we dissect the epigenetic regulation and influence of SVAs in cellular models of X-linked dystonia parkinsonism (XDP), a neurodegenerative disorder caused by an SVA insertion at the TAF1 locus. We demonstrate that the KRAB zinc finger protein ZNF91 establishes H3K9me3 and DNA methylation over SVAs, including polymorphic alleles, in human neural progenitor cells. The resulting mini-heterochromatin domains attenuate the cis-regulatory impact of SVAs. This is critical for XDP pathology; removal of local heterochromatin severely aggravates the XDP molecular phenotype, resulting in increased TAF1 intron retention and reduced expression. Our results provide unique mechanistic insights into how human polymorphic transposon insertions are recognized and how their regulatory impact is constrained by an innate epigenetic defense system.
Collapse
Affiliation(s)
- Vivien Horváth
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Marie E Jönsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Pia A Johansson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anita Adami
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Georgia Christoforidou
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ofelia Karlsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Laura Castilla Vallmanya
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Symela Koutounidou
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Patricia Gerdes
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ninoslav Pandiloski
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Christopher H Douse
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Johan Jakobsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
28
|
Li X, Yu H, Li D, Liu N. LINE-1 transposable element renaissance in aging and age-related diseases. Ageing Res Rev 2024; 100:102440. [PMID: 39059477 DOI: 10.1016/j.arr.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Transposable elements (TEs) are essential components of eukaryotic genomes and subject to stringent regulatory mechanisms to avoid their potentially deleterious effects. However, numerous studies have verified the resurrection of TEs, particularly long interspersed nuclear element-1 (LINE-1), during preimplantation development, aging, cancer, and other age-related diseases. The LINE-1 family has also been implicated in several aging-related processes, including genomic instability, loss of heterochromatin, DNA methylation, and the senescence-associated secretory phenotype (SASP). Additionally, the role of the LINE-1 family in cancer development has also been substantiated. Research in this field has offered valuable insights into the functional mechanisms underlying LINE-1 activity, enhancing our understanding of aging regulation. This review provides a comprehensive summary of current findings on LINE-1 and their roles in aging and age-related diseases.
Collapse
Affiliation(s)
- Xiang Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Huaxin Yu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Dong Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Na Liu
- School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
29
|
Wang ZY, Ge LP, Ouyang Y, Jin X, Jiang YZ. Targeting transposable elements in cancer: developments and opportunities. Biochim Biophys Acta Rev Cancer 2024; 1879:189143. [PMID: 38936517 DOI: 10.1016/j.bbcan.2024.189143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Transposable elements (TEs), comprising nearly 50% of the human genome, have transitioned from being perceived as "genomic junk" to key players in cancer progression. Contemporary research links TE regulatory disruptions with cancer development, underscoring their therapeutic potential. Advances in long-read sequencing, computational analytics, single-cell sequencing, proteomics, and CRISPR-Cas9 technologies have enriched our understanding of TEs' clinical implications, notably their impact on genome architecture, gene regulation, and evolutionary processes. In cancer, TEs, including long interspersed element-1 (LINE-1), Alus, and long terminal repeat (LTR) elements, demonstrate altered patterns, influencing both tumorigenic and tumor-suppressive mechanisms. TE-derived nucleic acids and tumor antigens play critical roles in tumor immunity, bridging innate and adaptive responses. Given their central role in oncology, TE-targeted therapies, particularly through reverse transcriptase inhibitors and epigenetic modulators, represent a novel avenue in cancer treatment. Combining these TE-focused strategies with existing chemotherapy or immunotherapy regimens could enhance efficacy and offer a new dimension in cancer treatment. This review delves into recent TE detection advancements, explores their multifaceted roles in tumorigenesis and immune regulation, discusses emerging diagnostic and therapeutic approaches centered on TEs, and anticipates future directions in cancer research.
Collapse
Affiliation(s)
- Zi-Yu Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li-Ping Ge
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Ouyang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
30
|
Betancourt AJ, Wei KHC, Huang Y, Lee YCG. Causes and Consequences of Varying Transposable Element Activity: An Evolutionary Perspective. Annu Rev Genomics Hum Genet 2024; 25:1-25. [PMID: 38603565 PMCID: PMC12105613 DOI: 10.1146/annurev-genom-120822-105708] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Transposable elements (TEs) are genomic parasites found in nearly all eukaryotes, including humans. This evolutionary success of TEs is due to their replicative activity, involving insertion into new genomic locations. TE activity varies at multiple levels, from between taxa to within individuals. The rapidly accumulating evidence of the influence of TE activity on human health, as well as the rapid growth of new tools to study it, motivated an evaluation of what we know about TE activity thus far. Here, we discuss why TE activity varies, and the consequences of this variation, from an evolutionary perspective. By studying TE activity in nonhuman organisms in the context of evolutionary theories, we can shed light on the factors that affect TE activity. While the consequences of TE activity are usually deleterious, some have lasting evolutionary impacts by conferring benefits on the host or affecting other evolutionary processes.
Collapse
Affiliation(s)
- Andrea J Betancourt
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Kevin H-C Wei
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Yuh Chwen G Lee
- Center for Complex Biological Systems, University of California, Irvine, California, USA;
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| |
Collapse
|
31
|
Frost B, Dubnau J. The Role of Retrotransposons and Endogenous Retroviruses in Age-Dependent Neurodegenerative Disorders. Annu Rev Neurosci 2024; 47:123-143. [PMID: 38663088 DOI: 10.1146/annurev-neuro-082823-020615] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Over 40% of the human genome is composed of retrotransposons, DNA species that hold the potential to replicate via an RNA intermediate and are evolutionarily related to retroviruses. Retrotransposons are most studied for their ability to jump within a genome, which can cause DNA damage and novel insertional mutations. Retrotransposon-encoded products, including viral-like proteins, double-stranded RNAs, and extrachromosomal circular DNAs, can also be potent activators of the innate immune system. A growing body of evidence suggests that retrotransposons are activated in age-related neurodegenerative disorders and that such activation causally contributes to neurotoxicity. Here we provide an overview of retrotransposon biology and outline evidence of retrotransposon activation in age-related neurodegenerative disorders, with an emphasis on those involving TAR-DNA binding protein-43 (TDP-43) and tau. Studies to date provide the basis for ongoing clinical trials and hold promise for innovative strategies to ameliorate the adverse effects of retrotransposon dysregulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Bess Frost
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, and Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA;
| | - Josh Dubnau
- Department of Anesthesiology and Department of Neurobiology and Behavior, Stony Brook School of Medicine, Stony Brook, New York, USA;
| |
Collapse
|
32
|
Bai X, Yao HC, Wu B, Liu LR, Ding YY, Xiao CL. DeepBAM: a high-accuracy single-molecule CpG methylation detection tool for Oxford nanopore sequencing. Brief Bioinform 2024; 25:bbae413. [PMID: 39177264 PMCID: PMC11342253 DOI: 10.1093/bib/bbae413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Recent nanopore sequencing system (R10.4) has enhanced base calling accuracy and is being increasingly utilized for detecting CpG methylation state. However, the robustness and universality of the methylation calling model in officially supplied Dorado remains poorly tested. In this study, we obtained heterogeneous datasets from human and plant sources to carry out comprehensive evaluations, which showed that Dorado performed significantly different across datasets. We therefore developed deep neural networks and implemented several optimizations in training a new model called DeepBAM. DeepBAM achieved superior and more stable performances compared with Dorado, including higher area under the ROC curves (98.47% on average and up to 7.36% improvement) and F1 scores (94.97% on average and up to 16.24% improvement) across the datasets. DeepBAM-based whole genome methylation frequencies have achieved >0.95 correlations with BS-seq on four of five datasets, outperforming Dorado in all instances. It enables unraveling allele-specific methylation patterns, including regions of transposable elements. The enhanced performance of DeepBAM paves the way for broader applications of nanopore sequencing in CpG methylation studies.
Collapse
Affiliation(s)
- Xin Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 7 Jinsui Road, Tianhe District, Guangzhou 510060, China
| | - Hui-Cong Yao
- School of Artificial Intelligence, Sun Yat-Sen University, Gaoxin District, Zhuhai 519000, China
| | - Bo Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 7 Jinsui Road, Tianhe District, Guangzhou 510060, China
| | - Luo-Ran Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 7 Jinsui Road, Tianhe District, Guangzhou 510060, China
| | - Yu-Ying Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 7 Jinsui Road, Tianhe District, Guangzhou 510060, China
| | - Chuan-Le Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 7 Jinsui Road, Tianhe District, Guangzhou 510060, China
| |
Collapse
|
33
|
Moadab F, Sohrabi S, Wang X, Najjar R, Wolters JC, Jiang H, Miao W, Romero D, Zaller DM, Tran M, Bays A, Taylor MS, Kapeller R, LaCava J, Mustelin T. Subcellular location of L1 retrotransposon-encoded ORF1p, reverse transcription products, and DNA sensors in lupus granulocytes. Mob DNA 2024; 15:14. [PMID: 38937837 PMCID: PMC11212426 DOI: 10.1186/s13100-024-00324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with an unpredictable course of recurrent exacerbations alternating with more stable disease. SLE is characterized by broad immune activation and autoantibodies against double-stranded DNA and numerous proteins that exist in cells as aggregates with nucleic acids, such as Ro60, MOV10, and the L1 retrotransposon-encoded ORF1p. RESULTS Here we report that these 3 proteins are co-expressed and co-localized in a subset of SLE granulocytes and are concentrated in cytosolic dots that also contain DNA: RNA heteroduplexes and the DNA sensor ZBP1, but not cGAS. The DNA: RNA heteroduplexes vanished from the neutrophils when they were treated with a selective inhibitor of the L1 reverse transcriptase. We also report that ORF1p granules escape neutrophils during the extrusion of neutrophil extracellular traps (NETs) and, to a lesser degree, from neutrophils dying by pyroptosis, but not apoptosis. CONCLUSIONS These results bring new insights into the composition of ORF1p granules in SLE neutrophils and may explain, in part, why proteins in these granules become targeted by autoantibodies in this disease.
Collapse
Affiliation(s)
- Fatemeh Moadab
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Sepideh Sohrabi
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Xiaoxing Wang
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rayan Najjar
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Justina C Wolters
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | | | | | | | - Megan Tran
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Alison Bays
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA.
- University of Washington, 750 Republican Street, Room E507, Seattle, WA, 98109, USA.
| |
Collapse
|
34
|
Talley MJ, Longworth MS. Retrotransposons in embryogenesis and neurodevelopment. Biochem Soc Trans 2024; 52:1159-1171. [PMID: 38716891 PMCID: PMC11346457 DOI: 10.1042/bst20230757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/27/2024]
Abstract
Retrotransposable elements (RTEs) are genetic elements that can replicate and insert new copies into different genomic locations. RTEs have long been identified as 'parasitic genes', as their mobilization can cause mutations, DNA damage, and inflammation. Interestingly, high levels of retrotransposon activation are observed in early embryogenesis and neurodevelopment, suggesting that RTEs may possess functional roles during these stages of development. Recent studies demonstrate that RTEs can function as transcriptional regulatory elements through mechanisms such as chromatin organization and noncoding RNAs. It is clear, however, that RTE expression and activity must be restrained at some level during development, since overactivation of RTEs during neurodevelopment is associated with several developmental disorders. Further investigation is needed to understand the importance of RTE expression and activity during neurodevelopment and the balance between RTE-regulated development and RTE-mediated pathogenesis.
Collapse
Affiliation(s)
- Mary Jo Talley
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, U.S.A
| | - Michelle S. Longworth
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, U.S.A
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44195, U.S.A
| |
Collapse
|
35
|
Deaville LA, Berrens RV. Technology to the rescue: how to uncover the role of transposable elements in preimplantation development. Biochem Soc Trans 2024; 52:1349-1362. [PMID: 38752836 PMCID: PMC11346443 DOI: 10.1042/bst20231262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/27/2024]
Abstract
Transposable elements (TEs) are highly expressed in preimplantation development. Preimplantation development is the phase when the cells of the early embryo undergo the first cell fate choice and change from being totipotent to pluripotent. A range of studies have advanced our understanding of TEs in preimplantation, as well as their epigenetic regulation and functional roles. However, many questions remain about the implications of TE expression during early development. Challenges originate first due to the abundance of TEs in the genome, and second because of the limited cell numbers in preimplantation. Here we review the most recent technological advancements promising to shed light onto the role of TEs in preimplantation development. We explore novel avenues to identify genomic TE insertions and improve our understanding of the regulatory mechanisms and roles of TEs and their RNA and protein products during early development.
Collapse
Affiliation(s)
- Lauryn A. Deaville
- Institute for Developmental and Regenerative Medicine, Oxford University, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Oxford OX3 7TY, U.K
- Department of Paediatrics, Oxford University, Level 2, Children's Hospital, John Radcliffe Headington, Oxford OX3 9DU, U.K
- MRC Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Oxford OX3 9DS, U.K
| | - Rebecca V. Berrens
- Institute for Developmental and Regenerative Medicine, Oxford University, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Oxford OX3 7TY, U.K
- Department of Paediatrics, Oxford University, Level 2, Children's Hospital, John Radcliffe Headington, Oxford OX3 9DU, U.K
| |
Collapse
|
36
|
Jourdy Y, Chatron N, Frétigny M, Zawadzki C, Lienhart A, Stieltjes N, Rohrlich PS, Thauvin-Robinet C, Volot F, Hamida YF, Hariti G, Leuci A, Dargaud Y, Sanlaville D, Vinciguerra C. Whole F8 gene sequencing identified pathogenic structural variants in the remaining unsolved patients with severe hemophilia A. J Thromb Haemost 2024; 22:1616-1626. [PMID: 38484912 DOI: 10.1016/j.jtha.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND No F8 genetic abnormality is detected in approximately 1% to 2% of patients with severe hemophilia A (HA) using conventional genetic approaches. In these patients, deep intronic variation or F8 disrupting genomic rearrangement could be causal. OBJECTIVES The study aimed to identify the causal variation in families with a history of severe HA for whom genetic investigations failed. METHODS We performed whole F8 gene sequencing in 8 propositi. Genomic rearrangements were confirmed by Sanger sequencing of breakpoint junctions and/or quantitative polymerase chain reaction. RESULTS A structural variant disrupting F8 was found in each propositus, so that all the 815 families with a history of severe HA registered in our laboratory received a conclusive genetic diagnosis. These structural variants consisted of 3 balanced inversions, 3 large insertions of gained regions, and 1 retrotransposition of a mobile element. The 3 inversions were 105 Mb, 1.97 Mb, and 0.362 Mb in size. Among the insertions of gained regions, one corresponded to the insertion of a 34 kb gained region from chromosome 6q27 in F8 intron 6, another was the insertion of a 447 kb duplicated region from chromosome 9p22.1 in F8 intron 14, and the last one was the insertion of an Xq28 349 kb gained in F8 intron 5. CONCLUSION All the genetically unsolved cases of severe HA in this cohort were due to structural variants disrupting F8. This study highlights the effectiveness of whole F8 sequencing to improve the molecular diagnosis of HA when the conventional approach fails.
Collapse
Affiliation(s)
- Yohann Jourdy
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France; Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France.
| | - Nicolas Chatron
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service de génétique, Bron, France; Université Claude Bernard Lyon 1 - CNRS UMR 5261 -INSERM U1315, Institute NeuroMyoGène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, Lyon, France
| | - Mathilde Frétigny
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France
| | - Christophe Zawadzki
- Pôle de Biologie Pathologie Génétique, Institut d'Hématologie - Transfusion, CHU Lille, Lille, France
| | - Anne Lienhart
- Hospices Civils de Lyon, Lyon Hemophilia Center and Clinical Haemostasis Unit, Bron, France
| | | | | | - Christel Thauvin-Robinet
- Centre de Génétique, Centre de Référence, Déficiences Intellectuelles de Causes Rares, Hôpital d'Enfants, CHU Dijon Bourgogne, Dijon, France
| | | | | | - Ghania Hariti
- Laboratoire de recherche en hémostase, Université d'Alger 1, Alger, Algérie
| | - Alexandre Leuci
- Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France
| | - Yesim Dargaud
- Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France; Hospices Civils de Lyon, Lyon Hemophilia Center and Clinical Haemostasis Unit, Bron, France
| | - Damien Sanlaville
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service de génétique, Bron, France; Université Claude Bernard Lyon 1 - CNRS UMR 5261 -INSERM U1315, Institute NeuroMyoGène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, Lyon, France
| | - Christine Vinciguerra
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France; Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France
| |
Collapse
|
37
|
Bravo JI, Mizrahi CR, Kim S, Zhang L, Suh Y, Benayoun BA. An eQTL-based approach reveals candidate regulators of LINE-1 RNA levels in lymphoblastoid cells. PLoS Genet 2024; 20:e1011311. [PMID: 38848448 PMCID: PMC11189215 DOI: 10.1371/journal.pgen.1011311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/20/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Long interspersed element 1 (LINE-1; L1) are a family of transposons that occupy ~17% of the human genome. Though a small number of L1 copies remain capable of autonomous transposition, the overwhelming majority of copies are degenerate and immobile. Nevertheless, both mobile and immobile L1s can exert pleiotropic effects (promoting genome instability, inflammation, or cellular senescence) on their hosts, and L1's contributions to aging and aging diseases is an area of active research. However, because of the cell type-specific nature of transposon control, the catalogue of L1 regulators remains incomplete. Here, we employ an eQTL approach leveraging transcriptomic and genomic data from the GEUVADIS and 1000Genomes projects to computationally identify new candidate regulators of L1 RNA levels in lymphoblastoid cell lines. To cement the role of candidate genes in L1 regulation, we experimentally modulate the levels of top candidates in vitro, including IL16, STARD5, HSD17B12, and RNF5, and assess changes in TE family expression by Gene Set Enrichment Analysis (GSEA). Remarkably, we observe subtle but widespread upregulation of TE family expression following IL16 and STARD5 overexpression. Moreover, a short-term 24-hour exposure to recombinant human IL16 was sufficient to transiently induce subtle, but widespread, upregulation of L1 subfamilies. Finally, we find that many L1 expression-associated genetic variants are co-associated with aging traits across genome-wide association study databases. Our results expand the catalogue of genes implicated in L1 RNA control and further suggest that L1-derived RNA contributes to aging processes. Given the ever-increasing availability of paired genomic and transcriptomic data, we anticipate this new approach to be a starting point for more comprehensive computational scans for regulators of transposon RNA levels.
Collapse
Affiliation(s)
- Juan I. Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- Graduate program in the Biology of Aging, University of Southern California, Los Angeles, California, United States of America
| | - Chanelle R. Mizrahi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- USC Gerontology Enriching MSTEM to Enhance Diversity in Aging Program, University of Southern California, Los Angeles, California, United States of America
| | - Seungsoo Kim
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Lucia Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- Quantitative and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California, United States of America
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California, United States of America
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, California, United States of America
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, California, United States of America
- USC Stem Cell Initiative, Los Angeles, California, United States of America
| |
Collapse
|
38
|
Zhang X, Celic I, Mitchell H, Stuckert S, Vedula L, Han J. Comprehensive profiling of L1 retrotransposons in mouse. Nucleic Acids Res 2024; 52:5166-5178. [PMID: 38647072 PMCID: PMC11109951 DOI: 10.1093/nar/gkae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/25/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024] Open
Abstract
L1 elements are retrotransposons currently active in mammals. Although L1s are typically silenced in most normal tissues, elevated L1 expression is associated with a variety of conditions, including cancer, aging, infertility and neurological disease. These associations have raised interest in the mapping of human endogenous de novo L1 insertions, and a variety of methods have been developed for this purpose. Adapting these methods to mouse genomes would allow us to monitor endogenous in vivo L1 activity in controlled, experimental conditions using mouse disease models. Here, we use a modified version of transposon insertion profiling, called nanoTIPseq, to selectively enrich young mouse L1s. By linking this amplification step with nanopore sequencing, we identified >95% annotated L1s from C57BL/6 genomic DNA using only 200 000 sequencing reads. In the process, we discovered 82 unannotated L1 insertions from a single C57BL/6 genome. Most of these unannotated L1s were near repetitive sequence and were not found with short-read TIPseq. We used nanoTIPseq on individual mouse breast cancer cells and were able to identify the annotated and unannotated L1s, as well as new insertions specific to individual cells, providing proof of principle for using nanoTIPseq to interrogate retrotransposition activity at the single-cell level in vivo.
Collapse
Affiliation(s)
- Xuanming Zhang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ivana Celic
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hannah Mitchell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Sam Stuckert
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lalitha Vedula
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jeffrey S Han
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
39
|
Esposito S, Zollo I, Villella VR, Scialò F, Giordano S, Esposito MV, Salemme N, Di Domenico C, Cernera G, Zarrilli F, Castaldo G, Amato F. Identification of an ultra-rare Alu insertion in the CFTR gene: Pitfalls and challenges in genetic test interpretation. Clin Chim Acta 2024; 558:118317. [PMID: 38580140 DOI: 10.1016/j.cca.2024.118317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Cystic fibrosis (CF) is a life-limiting genetic disorder characterized by defective chloride ion transport due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Early detection through newborn screening programs significantly improves outcomes for individuals with CF by enabling timely intervention. Here, we report the identification of an Alu element insertion within the exon 15 of CFTR gene, initially overlooked in standard next-generation sequencing analyses. However, using traditional molecular techniques, based on polymerase chain reaction and Sanger sequencing, allowed the identification of the Alu element and the reporting of a correct diagnosis. Our analysis, based on bioinformatics tools and molecular techniques, revealed that the Alu element insertion severely affects the gene expression, splicing patterns, and structure of CFTR protein. In conclusion, this study emphasizes the importance of how the integration of human expertise and modern technologies represents a pivotal step forward in genomic medicine, ensuring the delivery of precision healthcare to individuals affected by genetic diseases.
Collapse
Affiliation(s)
- Speranza Esposito
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Immacolata Zollo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Valeria Rachela Villella
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Filippo Scialò
- CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy; Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Sonia Giordano
- AORN Ospedali dei Colli-Monaldi-Cotugno-CTO, Naples, Italy
| | | | - Nunzia Salemme
- San Giuseppe and Melorio Hospital, Santa Maria Capua Vetere, Caserta, Italy
| | | | - Gustavo Cernera
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Federica Zarrilli
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Felice Amato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy.
| |
Collapse
|
40
|
D'Ordine AM, Jogl G, Sedivy JM. Identification and characterization of small molecule inhibitors of the LINE-1 retrotransposon endonuclease. Nat Commun 2024; 15:3883. [PMID: 38719805 PMCID: PMC11078990 DOI: 10.1038/s41467-024-48066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
The long interspersed nuclear element-1 (LINE-1 or L1) retrotransposon is the only active autonomously replicating retrotransposon in the human genome. L1 harms the cell by inserting new copies, generating DNA damage, and triggering inflammation. Therefore, L1 inhibition could be used to treat many diseases associated with these processes. Previous research has focused on inhibition of the L1 reverse transcriptase due to the prevalence of well-characterized inhibitors of related viral enzymes. Here we present the L1 endonuclease as another target for reducing L1 activity. We characterize structurally diverse small molecule endonuclease inhibitors using computational, biochemical, and biophysical methods. We also show that these inhibitors reduce L1 retrotransposition, L1-induced DNA damage, and inflammation reinforced by L1 in senescent cells. These inhibitors could be used for further pharmacological development and as tools to better understand the life cycle of this element and its impact on disease processes.
Collapse
Affiliation(s)
- Alexandra M D'Ordine
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
41
|
Hong Y, Bie L, Zhang T, Yan X, Jin G, Chen Z, Wang Y, Li X, Pei G, Zhang Y, Hong Y, Gong L, Li P, Xie W, Zhu Y, Shen X, Liu N. SAFB restricts contact domain boundaries associated with L1 chimeric transcription. Mol Cell 2024; 84:1637-1650.e10. [PMID: 38604171 DOI: 10.1016/j.molcel.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Long interspersed element-1 (LINE-1 or L1) comprises 17% of the human genome, continuously generates genetic variations, and causes disease in certain cases. However, the regulation and function of L1 remain poorly understood. Here, we uncover that L1 can enrich RNA polymerase IIs (RNA Pol IIs), express L1 chimeric transcripts, and create contact domain boundaries in human cells. This impact of L1 is restricted by a nuclear matrix protein scaffold attachment factor B (SAFB) that recognizes transcriptionally active L1s by binding L1 transcripts to inhibit RNA Pol II enrichment. Acute inhibition of RNA Pol II transcription abolishes the domain boundaries associated with L1 chimeric transcripts, indicating a transcription-dependent mechanism. Deleting L1 impairs domain boundary formation, and L1 insertions during evolution have introduced species-specific domain boundaries. Our data show that L1 can create RNA Pol II-enriched regions that alter genome organization and that SAFB regulates L1 and RNA Pol II activity to preserve gene regulation.
Collapse
Affiliation(s)
- Yaqiang Hong
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Luyao Bie
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tao Zhang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohan Yan
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangpu Jin
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhuo Chen
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yang Wang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiufeng Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gaofeng Pei
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yongyan Zhang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yantao Hong
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Liang Gong
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Pilong Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Xie
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanfen Zhu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xiaohua Shen
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Nian Liu
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
42
|
Ransom LS, Liu CS, Dunsmore E, Palmer CR, Nicodemus J, Ziomek D, Williams N, Chun J. Human brain small extracellular vesicles contain selectively packaged, full-length mRNA. Cell Rep 2024; 43:114061. [PMID: 38578831 DOI: 10.1016/j.celrep.2024.114061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/12/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
Brain cells release and take up small extracellular vesicles (sEVs) containing bioactive nucleic acids. sEV exchange is hypothesized to contribute to stereotyped spread of neuropathological changes in the diseased brain. We assess mRNA from sEVs of postmortem brain from non-diseased (ND) individuals and those with Alzheimer's disease (AD) using short- and long-read sequencing. sEV transcriptomes are distinct from those of bulk tissue, showing enrichment for genes including mRNAs encoding ribosomal proteins and transposable elements such as human-specific LINE-1 (L1Hs). AD versus ND sEVs show enrichment of inflammation-related mRNAs and depletion of synaptic signaling mRNAs. sEV mRNAs from cultured murine primary neurons, astrocytes, or microglia show similarities to human brain sEVs and reveal cell-type-specific packaging. Approximately 80% of neural sEV transcripts sequenced using long-read sequencing are full length. Motif analyses of sEV-enriched isoforms elucidate RNA-binding proteins that may be associated with sEV loading. Collectively, we show that mRNA in brain sEVs is intact, selectively packaged, and altered in disease.
Collapse
Affiliation(s)
- Linnea S Ransom
- Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Christine S Liu
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Emily Dunsmore
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Carter R Palmer
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Juliet Nicodemus
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Derya Ziomek
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nyssa Williams
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jerold Chun
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
43
|
Janecki DM, Sen R, Szóstak N, Kajdasz A, Kordyś M, Plawgo K, Pandakov D, Philips A, Warkocki Z. LINE-1 mRNA 3' end dynamics shape its biology and retrotransposition potential. Nucleic Acids Res 2024; 52:3327-3345. [PMID: 38197223 PMCID: PMC11014359 DOI: 10.1093/nar/gkad1251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
LINE-1 (L1) retrotransposons are mobile genetic elements that create new genomic insertions by a copy-paste mechanism involving L1 RNA/RNP intermediates. L1 encodes two ORFs, of which L1-ORF2p nicks genomic DNA and reverse transcribes L1 mRNA using the nicked DNA as a primer which base-pairs with poly(A) tail of L1 mRNA. To better understand the importance of non-templated L1 3' ends' dynamics and the interplay between L1 3' and 5' ends, we investigated the effects of genomic knock-outs and temporal knock-downs of XRN1, DCP2, and other factors. We hypothesized that in the absence of XRN1, the major 5'→3' exoribonuclease, there would be more L1 mRNA and retrotransposition. Conversely, we observed that loss of XRN1 decreased L1 retrotransposition. This occurred despite slight stabilization of L1 mRNA, but with decreased L1 RNP formation. Similarly, loss of DCP2, the catalytic subunit of the decapping complex, lowered retrotransposition despite increased steady-state levels of L1 proteins. In both XRN1 and DCP2 depletions we observed shortening of L1 3' poly(A) tails and their increased uridylation by TUT4/7. We explain the observed reduction of L1 retrotransposition by the changed qualities of non-templated L1 mRNA 3' ends demonstrating the important role of L1 3' end dynamics in L1 biology.
Collapse
Affiliation(s)
- Damian M Janecki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Raneet Sen
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Natalia Szóstak
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Arkadiusz Kajdasz
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Martyna Kordyś
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Kinga Plawgo
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Dmytro Pandakov
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Philips
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Zbigniew Warkocki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
44
|
Jin SW, Seong Y, Yoon D, Kwon YS, Song H. Dissolution of ribonucleoprotein condensates by the embryonic stem cell protein L1TD1. Nucleic Acids Res 2024; 52:3310-3326. [PMID: 38165001 PMCID: PMC11014241 DOI: 10.1093/nar/gkad1244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024] Open
Abstract
L1TD1 is a cytoplasmic RNA-binding protein specifically expressed in pluripotent stem cells and, unlike its mouse ortholog, is essential for the maintenance of stemness in human cells. Although L1TD1 is the only known protein-coding gene domesticated from a LINE-1 (L1) retroelement, the functional legacy of its ancestral protein, ORF1p of L1, and how it is manifested in L1TD1 are still unknown. Here, we determined RNAs associated with L1TD1 and found that, like ORF1p, L1TD1 binds L1 RNAs and localizes to high-density ribonucleoprotein (RNP) condensates. Unexpectedly, L1TD1 enhanced the translation of a subset of mRNAs enriched in the condensates. L1TD1 depletion promoted the formation of stress granules in embryonic stem cells. In HeLa cells, ectopically expressed L1TD1 facilitated the dissolution of stress granules and granules formed by pathological mutations of TDP-43 and FUS. The glutamate-rich domain and the ORF1-homology domain of L1TD1 facilitated dispersal of the RNPs and induced autophagy, respectively. These results provide insights into how L1TD1 regulates gene expression in pluripotent stem cells. We propose that the ability of L1TD1 to dissolve stress granules may provide novel opportunities for treatment of neurodegenerative diseases caused by disturbed stress granule dynamics.
Collapse
Affiliation(s)
- Sang Woo Jin
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Youngmo Seong
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Dayoung Yoon
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Young-Soo Kwon
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Hoseok Song
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
45
|
Zehrbach NM, Oh N, Ishak CA. Insights into LINE-1 reverse transcription guide therapy development. Trends Cancer 2024; 10:286-288. [PMID: 38499453 DOI: 10.1016/j.trecan.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
Subsets of long interspersed nuclear element 1 (LINE-1) retrotransposons can 'retrotranspose' throughout the human genome at a cost to host cell fitness, as observed in some cancers. Pharmacological inhibition of LINE-1 retrotransposition requires a comprehensive understanding of the LINE-1 ORF2p reverse transcriptase. Two recent publications, by Thawani et al. and Baldwin et al., report structures of LINE-1 ORF2p and address long-standing mechanistic gaps regarding LINE-1 retrotransposition. Both studies will be critical to design new specific inhibitors of the LINE-1 ORF2p reverse transcriptase.
Collapse
Affiliation(s)
- Nicholas M Zehrbach
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nakyung Oh
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles A Ishak
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
46
|
Zhao H, Liu LL, Sun J, Jin L, Xie HB, Li JB, Xu H, Wu DD, Zhuang XL, Peng MS, Guo YJ, Qian WZ, Otecko NO, Sun WJ, Qu LH, He J, Chen ZL, Liu R, Chen CS, Zhang YP. A human-specific insertion promotes cell proliferation and migration by enhancing TBC1D8B expression. SCIENCE CHINA. LIFE SCIENCES 2024; 67:765-777. [PMID: 38110796 DOI: 10.1007/s11427-023-2442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/28/2023] [Indexed: 12/20/2023]
Abstract
Human-specific insertions play important roles in human phenotypes and diseases. Here we reported a 446-bp insertion (Insert-446) in intron 11 of the TBC1D8B gene, located on chromosome X, and traced its origin to a portion of intron 6 of the EBF1 gene on chromosome 5. Interestingly, Insert-446 was present in the human Neanderthal and Denisovans genomes, and was fixed in humans after human-chimpanzee divergence. We have demonstrated that Insert-446 acts as an enhancer through binding transcript factors that promotes a higher expression of human TBC1D8B gene as compared with orthologs in macaques. In addition, over-expression TBC1D8B promoted cell proliferation and migration through "a dual finger" catalytic mechanism (Arg538 and Gln573) in the TBC domain in vitro and knockdown of TBC1D8B attenuated tumorigenesis in vivo. Knockout of Insert-446 prevented cell proliferation and migration in cancer and normal cells. Our results reveal that the human-specific Insert-446 promotes cell proliferation and migration by upregulating the expression of TBC1D8B gene. These findings provide a significant insight into the effects of human-specific insertions on evolution.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resource, School of Life Sciences, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
| | - Lin-Lin Liu
- State Key Laboratory for Conservation and Utilization of Bio-resource, School of Life Sciences, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Jian Sun
- The Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lian Jin
- State Key Laboratory for Conservation and Utilization of Bio-resource, School of Life Sciences, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Hai-Bing Xie
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jian-Bo Li
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Hui Xu
- The Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiao-Lin Zhuang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ya-Jun Guo
- National Engineering Research Center for Antibody Medicine and Shanghai Key Laboratory of Cell Engineering and Antibody, Shanghai, 201203, China
| | - Wei-Zhu Qian
- National Engineering Research Center for Antibody Medicine and Shanghai Key Laboratory of Cell Engineering and Antibody, Shanghai, 201203, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Wei-Jie Sun
- State Key Laboratory for Conservation and Utilization of Bio-resource, School of Life Sciences, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Liang-Hu Qu
- The Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jie He
- Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhao-Li Chen
- Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ce-Shi Chen
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
- The Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Ya-Ping Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resource, School of Life Sciences, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
47
|
Lee M, Ahmad SF, Xu J. Regulation and function of transposable elements in cancer genomes. Cell Mol Life Sci 2024; 81:157. [PMID: 38556602 PMCID: PMC10982106 DOI: 10.1007/s00018-024-05195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
Over half of human genomic DNA is composed of repetitive sequences generated throughout evolution by prolific mobile genetic parasites called transposable elements (TEs). Long disregarded as "junk" or "selfish" DNA, TEs are increasingly recognized as formative elements in genome evolution, wired intimately into the structure and function of the human genome. Advances in sequencing technologies and computational methods have ushered in an era of unprecedented insight into how TE activity impacts human biology in health and disease. Here we discuss the current views on how TEs have shaped the regulatory landscape of the human genome, how TE activity is implicated in human cancers, and how recent findings motivate novel strategies to leverage TE activity for improved cancer therapy. Given the crucial role of methodological advances in TE biology, we pair our conceptual discussions with an in-depth review of the inherent technical challenges in studying repeats, specifically related to structural variation, expression analyses, and chromatin regulation. Lastly, we provide a catalog of existing and emerging assays and bioinformatic software that altogether are enabling the most sophisticated and comprehensive investigations yet into the regulation and function of interspersed repeats in cancer genomes.
Collapse
Affiliation(s)
- Michael Lee
- Department of Pediatrics, Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA.
| | - Syed Farhan Ahmad
- Department of Pathology, Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, 262 Danny Thomas Place - MS 345, Memphis, TN, 38105, USA
| | - Jian Xu
- Department of Pathology, Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, 262 Danny Thomas Place - MS 345, Memphis, TN, 38105, USA.
| |
Collapse
|
48
|
Deng X, Liang S, Tang Y, Li Y, Xu R, Luo L, Wang Q, Zhang X, Liu Y. Adverse effects of bisphenol A and its analogues on male fertility: An epigenetic perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123393. [PMID: 38266695 DOI: 10.1016/j.envpol.2024.123393] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/11/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
In recent years, there has been growing concern about the adverse effects of endocrine disrupting chemicals (EDCs) on male fertility. Epigenetic modification is critical for male germline development, and has been suggested as a potential mechanism for impaired fertility induced by EDCs. Bisphenol A (BPA) has been recognized as a typical EDC. BPA and its analogues, which are still widely used in various consumer products, have garnered increasing attention due to their reproductive toxicity and the potential to induce epigenetic alteration. This literature review provides an overview of studies investigating the adverse effects of bisphenol exposures on epigenetic modifications and male fertility. Existing studies provide evidence that exposure to bisphenols can lead to adverse effects on male fertility, including declined semen quality, altered reproductive hormone levels, and adverse reproductive outcomes. Epigenetic patterns, including DNA methylation, histone modification, and non-coding RNA expression, can be altered by bisphenol exposures. Transgenerational effects, which influence the fertility and epigenetic patterns of unexposed generations, have also been identified. However, the magnitude and direction of certain outcomes varied across different studies. Investigations into the dynamics of histopathological and epigenetic alterations associated with bisphenol exposures during developmental stages can enhance the understanding of the epigenetic effects of bisphenols, the implication of epigenetic alteration on male fertility, and the health of successive generation.
Collapse
Affiliation(s)
- Xinyi Deng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Sihan Liang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuqian Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lu Luo
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qiling Wang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Xinzong Zhang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
49
|
Le Breton A, Bettencourt MP, Gendrel AV. Navigating the brain and aging: exploring the impact of transposable elements from health to disease. Front Cell Dev Biol 2024; 12:1357576. [PMID: 38476259 PMCID: PMC10927736 DOI: 10.3389/fcell.2024.1357576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that constitute on average 45% of mammalian genomes. Their presence and activity in genomes represent a major source of genetic variability. While this is an important driver of genome evolution, TEs can also have deleterious effects on their hosts. A growing number of studies have focused on the role of TEs in the brain, both in physiological and pathological contexts. In the brain, their activity is believed to be important for neuronal plasticity. In neurological and age-related disorders, aberrant activity of TEs may contribute to disease etiology, although this remains unclear. After providing a comprehensive overview of transposable elements and their interactions with the host, this review summarizes the current understanding of TE activity within the brain, during the aging process, and in the context of neurological and age-related conditions.
Collapse
Affiliation(s)
| | | | - Anne-Valerie Gendrel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
50
|
Fukuda K. The role of transposable elements in human evolution and methods for their functional analysis: current status and future perspectives. Genes Genet Syst 2024; 98:289-304. [PMID: 37866889 DOI: 10.1266/ggs.23-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
Transposable elements (TEs) are mobile DNA sequences that can insert themselves into various locations within the genome, causing mutations that may provide advantages or disadvantages to individuals and species. The insertion of TEs can result in genetic variation that may affect a wide range of human traits including genetic disorders. Understanding the role of TEs in human biology is crucial for both evolutionary and medical research. This review discusses the involvement of TEs in human traits and disease susceptibility, as well as methods for functional analysis of TEs.
Collapse
Affiliation(s)
- Kei Fukuda
- Integrative Genomics Unit, The University of Melbourne
| |
Collapse
|