1
|
Kim JH, Jung SH, Park C, Lee JR. T cells in ARAP-deficient mice present defective T cell receptor signaling and reduced severity in an experimentally-induced autoimmune disease. Front Immunol 2025; 16:1556616. [PMID: 40264755 PMCID: PMC12011753 DOI: 10.3389/fimmu.2025.1556616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
We previously reported a novel adaptor protein, ARAP, required for T cell receptor signaling and integrin-mediated adhesion. The present study investigates further the role of ARAP in T cell biology using mice with an ARAP gene deficiency. Similar to wild-type mice, ARAP-deficient mice participate in normal breeding and immune cell development. Similar defects were observed in the T cell receptor signaling and adhesion of ARAP-deficient mice, as shown in previous studies investigating ARAP-suppressed Jurkat T cells. ARAP deficiencies analyzed in vivo presented a less severe clinical course of experimental autoimmune encephalomyelitis (EAE) following immunization of mice with the myelin oligodendrocyte glycoprotein (MOG). Serum levels of MOG-specific antibodies and IFN-γ were also reduced in ARAP-deficient EAE mice compared to wild-type EAE mice. Moreover, adoptive transfer of ARAP-deficient T cells induced less severe EAE in recombination-activating gene 1-deficient mice than wild-type T cell transfer. These results strongly suggest that ARAP positively regulates T cell function, while ARAP deficiency in T cells reduces the severity and incidence of EAE.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Mice
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Mice, Knockout
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/deficiency
- Female
- Mice, Inbred C57BL
- Disease Models, Animal
- Adoptive Transfer
- Humans
- Severity of Illness Index
Collapse
Affiliation(s)
| | | | | | - Jong Ran Lee
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Thompson DA, Wabara YB, Duran S, Reichenbach A, Chen L, Collado K, Yon C, Greally DMed JM, Rastogi D. Single cell analysis identifies distinct CD4 + T cells associated with the pathobiology of pediatric obesity related asthma. Sci Rep 2025; 15:6844. [PMID: 40000680 PMCID: PMC11861978 DOI: 10.1038/s41598-025-88423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Pediatric obesity-related asthma is characterized by non-atopic T helper 1 (Th1) inflammation and steroid resistance. CDC42 upregulation in CD4 + T cells underlies Th1 inflammation but the CD4 + T cell subtype(s) with CDC42 upregulation and their contribution to steroid resistance are not known. Compared to healthy-weight asthma, obesity-alone and healthy-weight controls, single-cell transcriptomics of obese asthma CD4 + T cells revealed CDC42 upregulation in 3 clusters comprised of naïve and central memory T cells, which differed from the cluster enriched for Th1 responses that was comprised of effector T cells. NR3C1, coding for the glucocorticoid receptor, was downregulated, while genes coding for NLRP3 inflammasome were upregulated, in clusters with CDC42 upregulation and Th1 responses. Conserved genes in these clusters correlated with pulmonary function deficits in obese asthma. These findings suggest that several distinct CD4 + T cell subtypes are programmed in obese asthma for CDC42 upregulation, Th1 inflammation, and steroid resistance, and together contribute to the obese asthma phenotype.
Collapse
Affiliation(s)
- David A Thompson
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yvonne B Wabara
- Children's National Hospital, George Washington University, Washington, DC, USA
| | - Sarai Duran
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anna Reichenbach
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Laura Chen
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | - Kayla Collado
- Montefiore Health System, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Changsuek Yon
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John M Greally DMed
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Health System, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deepa Rastogi
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Children's Hospital at Montefiore Albert Einstein College of Medicine, 3415 Bainbridge Ave, Bronx, NY, 10467, USA.
| |
Collapse
|
3
|
Liu W, Yin H, Xie Z, Fang F, Chu J, Yang L, Huang L, Tu S, Cai H, Wu Z, Wei A, Liu C, Hong Y, Tian X, Cheng Y, Pan J, Wang N, Zhang K. FYB1-targeted modulation of CAPG promotes AML progression. Mol Cell Biochem 2025; 480:985-999. [PMID: 38700746 PMCID: PMC11836086 DOI: 10.1007/s11010-024-04992-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/17/2024] [Indexed: 02/19/2025]
Abstract
Acute myeloid leukemia (AML) is a rare and heterogeneous disease. Over the past few decades, patient prognosis has improved with continuous improvements in treatment, but outcomes for some patients with primary drug resistance or relapse after treatment remain poor. Additional therapies to improve outcomes for these patients are urgently needed. FYB1 expression differs substantially between AML tissues and normal tissues. High FYB1 expression is correlated with poorer overall survival (OS), indicating that FYB1 may regulate AML progression. Therefore, understanding the effect of FYB1 on AML could improve the success rate of therapeutic approaches and prognosis for patients with AML. In this study, through analysis of large databases and both in vivo and in vitro experiments, we assessed the expression and role of FYB1 in AML and the relationship of FYB with patient prognosis. Downstream targets of the FYB1 gene were analyzed by RNA-seq. Database mining and in vitro experiments were used to further clarify the effect of the downstream target gelsolin-like actin-capping protein (CAPG) on AML cells and its relationship with patient prognosis. FYB1 expression was significantly higher in AML tissue and corresponded with a poor prognosis. FYB1 knockdown inhibited AML cell proliferation, promoted cell apoptosis, reduced cell adhesion capability and significantly reduced the tumor formation rate in mice. In addition, FYB1 knockdown induced a notable decrease in CAPG expression. The suppression of CAPG significantly inhibited cell proliferation and increased cell apoptosis. The conclusions of this study underscore the pivotal role of the FYB1/CAPG axis in promoting AML. We propose that the FYB1/CAPG axis could serve as a new thread in the development of therapeutic strategies for AML.
Collapse
Affiliation(s)
- Wenyuan Liu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Hongli Yin
- Institute of Pediatric Research, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou City, 215003, China
| | - Zhiwei Xie
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou City, 215003, China
| | - Jinhua Chu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Linhai Yang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Lingling Huang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Songji Tu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Huaju Cai
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Zhengyu Wu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Anbang Wei
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Chengzhu Liu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Yi Hong
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Xiaotong Tian
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Yan Cheng
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China.
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou City, 215003, China.
| | - Ningling Wang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China.
| | - Kunlong Zhang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China.
| |
Collapse
|
4
|
Thompson DA, Wabara YB, Duran S, Reichenbach A, Chen L, Collado K, Yon C, Greally JM, Rastogi D. Single-cell analysis identifies distinct CD4+ T cells associated with the pathobiology of pediatric obesity-related asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607447. [PMID: 39211259 PMCID: PMC11361012 DOI: 10.1101/2024.08.13.607447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pediatric obesity-related asthma is characterized by non-atopic T helper 1 (Th1) inflammation and steroid resistance. CDC42 upregulation in CD4+T cells underliesTh1 inflammation but the CD4+T cell subtype(s) with CDC42 upregulation and their contribution to steroid resistance are not known. Compared to healthy-weight asthma, obesity-alone and healthy-weight controls, single-cell transcriptomics of obese asthma CD4+T cells revealed CDC42 upregulation in 3 clusters comprised of naïve and central memory T cells, which differed from the cluster enriched for Th1 responses that was comprised of effector T cells. NR3C1, coding for glucocorticoid receptor, was downregulated, while genes coding for NLRP3 inflammasome were upregulated, in clusters with CDC42 upregulation and Th1 responses. Conserved genes in these clusters correlated with pulmonary function deficits in obese asthma. These findings suggest that several distinct CD4+T cell subtypes are programmed in obese asthma for CDC42 upregulation, Th1 inflammation, and steroid resistance, and together contribute to obese asthma phenotype. Summary CD4+T cells from obese children with asthma are distinctly programmed for non-allergic immune responses, steroid resistance and inflammasome activation, that underlie the obese asthma phenotype.
Collapse
|
5
|
Li H, Li Y, Zhang Y, Tan B, Huang T, Xiong J, Tan X, Ermolaeva MA, Fu L. MAPK10 Expression as a Prognostic Marker of the Immunosuppressive Tumor Microenvironment in Human Hepatocellular Carcinoma. Front Oncol 2021; 11:687371. [PMID: 34408980 PMCID: PMC8366563 DOI: 10.3389/fonc.2021.687371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains a devastating malignancy worldwide due to lack of effective therapy. The immune-rich contexture of HCC tumor microenvironment (TME) makes this tumor an appealing target for immune-based therapies; however, the immunosuppressive TME is still a major challenge for more efficient immunotherapy in HCC. Using bioinformatics analysis based on the TCGA database, here we found that MAPK10 is frequently down-regulated in HCC tumors and significantly correlates with poor survival of HCC patients. HCC patients with low MAPK10 expression have lower expression scores of tumor infiltration lymphocytes (TILs) and stromal cells in the TME and increased scores of tumor cells than those with high MAPK10 expression. Further transcriptomic analyses revealed that the immune activity in the TME of HCC was markedly reduced in the low-MAPK10 group of HCC patients compared to the high-MAPK10 group. Additionally, we identified 495 differentially expressed immune-associated genes (DIGs), with 482 genes down-regulated and 13 genes up-regulated in parallel with the decrease of MAPK10 expression. GO enrichment and KEGG pathway analyses indicated that the biological functions of these DIGs included cell chemotaxis, leukocyte migration and positive regulation of the response to cytokine–cytokine receptor interaction, T cell receptor activation and MAPK signaling pathway. Protein–protein interaction (PPI) analyses of the 495 DIGs revealed five potential downstream hub genes of MAPK10, including SYK, CBL, VAV1, LCK, and CD3G. Several hub genes such as SYK, LCK, and VAV1 could respond to the immunological costimulatory signaling mediated by the transmembrane protein ICAM1, which was identified as a down-regulated DIG associated with low-MAPK10 expression. Moreover, ectopic overexpression or knock-down of MAPK10 could up-regulate or down-regulate ICAM1 expression via phosphorylation of c-jun at Ser63 in HCC cell lines, respectively. Collectively, our results demonstrated that MAPK10 down-regulation likely contributes to the immunosuppressive TME of HCC, and this gene might serve as a potential immunotherapeutic target and a prognostic factor for HCC patients.
Collapse
Affiliation(s)
- Huahui Li
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China.,Group of Homeostasis and Stress Tolerance, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany.,Shenzhen University-Friedrich Schiller Universitat Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, China
| | - Yuting Li
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China.,Group of Homeostasis and Stress Tolerance, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany.,Shenzhen University-Friedrich Schiller Universitat Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, China
| | - Ying Zhang
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Binbin Tan
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Tuxiong Huang
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Jixian Xiong
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiangyu Tan
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Maria A Ermolaeva
- Group of Homeostasis and Stress Tolerance, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Li Fu
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
6
|
Dadwal N, Mix C, Reinhold A, Witte A, Freund C, Schraven B, Kliche S. The Multiple Roles of the Cytosolic Adapter Proteins ADAP, SKAP1 and SKAP2 for TCR/CD3 -Mediated Signaling Events. Front Immunol 2021; 12:703534. [PMID: 34295339 PMCID: PMC8290198 DOI: 10.3389/fimmu.2021.703534] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
T cells are the key players of the adaptive immune response. They coordinate the activation of other immune cells and kill malignant and virus-infected cells. For full activation T cells require at least two signals. Signal 1 is induced after recognition of MHC/peptide complexes presented on antigen presenting cells (APCs) by the clonotypic TCR (T-cell receptor)/CD3 complex whereas Signal 2 is mediated via the co-stimulatory receptor CD28, which binds to CD80/CD86 molecules that are present on APCs. These signaling events control the activation, proliferation and differentiation of T cells. In addition, triggering of the TCR/CD3 complex induces the activation of the integrin LFA-1 (leukocyte function associated antigen 1) leading to increased ligand binding (affinity regulation) and LFA-1 clustering (avidity regulation). This process is termed "inside-out signaling". Subsequently, ligand bound LFA-1 transmits a signal into the T cells ("outside-in signaling") which enhances T-cell interaction with APCs (adhesion), T-cell activation and T-cell proliferation. After triggering of signal transducing receptors, adapter proteins organize the proper processing of membrane proximal and intracellular signals as well as the activation of downstream effector molecules. Adapter proteins are molecules that lack enzymatic or transcriptional activity and are composed of protein-protein and protein-lipid interacting domains/motifs. They organize and assemble macromolecular complexes (signalosomes) in space and time. Here, we review recent findings regarding three cytosolic adapter proteins, ADAP (Adhesion and Degranulation-promoting Adapter Protein), SKAP1 and SKAP2 (Src Kinase Associated Protein 1 and 2) with respect to their role in TCR/CD3-mediated activation, proliferation and integrin regulation.
Collapse
Affiliation(s)
- Nirdosh Dadwal
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Charlie Mix
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| | - Amelie Witte
- Coordination Center of Clinical Trials, University Medicine Greifswald, Greifswald, Germany
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
7
|
Rudd CE. How the Discovery of the CD4/CD8-p56 lck Complexes Changed Immunology and Immunotherapy. Front Cell Dev Biol 2021; 9:626095. [PMID: 33791292 PMCID: PMC8005572 DOI: 10.3389/fcell.2021.626095] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
The past 25 years have seen enormous progress in uncovering the receptors and signaling mechanisms on T-cells that activate their various effecter functions. Until the late 1980s, most studies on T-cells had focused on the influx of calcium and the levels of cAMP/GMP in T-cells. My laboratory then uncovered the interaction of CD4 and CD8 co-receptors with the protein-tyrosine kinase p56lck which are now widely accepted as the initiators of the tyrosine phosphorylation cascade leading to T-cell activation. The finding explained how immune recognition receptors expressed by many immune cells, which lack intrinsic catalytic activity, can transduce activation signals via non-covalent association with non-receptor tyrosine kinases. The discovery also established the concept that a protein tyrosine phosphorylation cascade operated in T-cells. In this vein, we and others then showed that the CD4- and CD8-p56lck complexes phosphorylate the TCR complexes which led to the identification of other protein-tyrosine kinases such as ZAP-70 and an array of substrates that are now central to studies in T-cell immunity. Other receptors such as B-cell receptor, Fc receptors and others were also subsequently found to use src kinases to control cell growth. In T-cells, p56lck driven phosphorylation targets include co-receptors such as CD28 and CTLA-4 and immune cell-specific adaptor proteins such as LAT and SLP-76 which act to integrate signals proximal to surface receptors. CD4/CD8-p56lck regulated events in T-cells include intracellular calcium mobilization, integrin activation and the induction of transcription factors for gene expression. Lastly, the identification of the targets of p56lck in the TCR and CD28 provided the framework for the development of chimeric antigen receptor (CAR) therapy in the treatment of cancer. In this review, I outline a history of the development of events that led to the development of the "TCR signaling paradigm" and its implications to immunology and immunotherapy.
Collapse
Affiliation(s)
- Christopher E. Rudd
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Faculty of Medicine, Universite de Montreal, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University Health Center, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Yang N, Xiong Y, Wang Y, Yi Y, Zhu J, Ma F, Li J, Liu H. ADAP Y571 Phosphorylation Is Required to Prime STAT3 for Activation in TLR4-Stimulated Macrophages. THE JOURNAL OF IMMUNOLOGY 2021; 206:814-826. [PMID: 33431658 DOI: 10.4049/jimmunol.2000569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022]
Abstract
Adhesion and degranulation-promoting adapter protein (ADAP), originally identified as an essential adaptor molecule in TCR signaling and T cell adhesion, has emerged as a critical regulator in innate immune cells such as macrophages; however, its role in macrophage polarization and inflammatory responses remains unknown. In this study, we show that ADAP plays an essential role in TLR4-mediated mouse macrophage polarization via modulation of STAT3 activity. Macrophages from ADAP-deficient mice exhibit enhanced M1 polarization, expression of proinflammatory cytokines and capacity in inducing Th1 responses, but decreased levels of anti-inflammatory cytokines in response to TLR4 activation by LPS. Furthermore, overexpression of ADAP enhances, whereas loss of ADAP reduces, the LPS-mediated phosphorylation and activity of STAT3, suggesting ADAP acts as a coactivator of STAT3 activity and function. Furthermore, the coactivator function of ADAP mostly depends on the tyrosine phosphorylation at Y571 in the motif YDSL induced by LPS. Mutation of Y571 to F severely impairs the stimulating effect of ADAP on STAT3 activity and the ability of ADAP to inhibit M1-like polarization in TLR4-activated mouse macrophages. Moreover, ADAP interacts with STAT3, and loss of ADAP renders mouse macrophages less sensitive to IL-6 stimulation for STAT3 phosphorylation. Collectively, our findings revealed an additional layer of regulation of TLR4-mediated mouse macrophage plasticity whereby ADAP phosphorylation on Y571 is required to prime STAT3 for activation in TLR4-stimulated mouse macrophages.
Collapse
Affiliation(s)
- Naiqi Yang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu Province, China
| | - Yiwei Xiong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Yan Wang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu Province, China
| | - Yulan Yi
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu Province, China
| | - Jingfei Zhu
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; and.,Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Feng Ma
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; and.,Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Jing Li
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu Province, China
| | - Hebin Liu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China; .,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu Province, China
| |
Collapse
|
9
|
Maskalenko N, Nath S, Ramakrishnan A, Anikeeva N, Sykulev Y, Poenie M. The DISC1-Girdin complex - a missing link in signaling to the T cell cytoskeleton. J Cell Sci 2020; 133:jcs242875. [PMID: 32482796 PMCID: PMC7358132 DOI: 10.1242/jcs.242875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/26/2020] [Indexed: 11/20/2022] Open
Abstract
In this study, using Jurkat cells, we show that DISC1 (disrupted in schizophrenia 1) and Girdin (girders of actin filament) are essential for typical actin accumulation at the immunological synapse. Furthermore, DISC1, Girdin and dynein are bound in a complex. Although this complex initially forms as a central patch at the synapse, it relocates to a peripheral ring corresponding to the peripheral supramolecular activation cluster (pSMAC). In the absence of DISC1, the classic actin ring does not form, cell spreading is blocked, and the dynein complex fails to relocate to the pSMAC. A similar effect is seen when Girdin is deleted. When cells are treated with inhibitors of actin polymerization, the dynein-NDE1 complex is lost from the synapse and the microtubule-organizing center fails to translocate, suggesting that actin and dynein might be linked. Upon stimulation of T cell receptors, DISC1 becomes associated with talin, which likely explains why the dynein complex colocalizes with the pSMAC. These results show that the DISC1-Girdin complex regulates actin accumulation, cell spreading and distribution of the dynein complex at the synapse.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nicholas Maskalenko
- Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Adarsh Ramakrishnan
- Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nadia Anikeeva
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yuri Sykulev
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Martin Poenie
- Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
10
|
Saeed MB, Record J, Westerberg LS. Two sides of the coin: Cytoskeletal regulation of immune synapses in cancer and primary immune deficiencies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:1-97. [DOI: 10.1016/bs.ircmb.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Raab M, Strebhardt K, Rudd CE. Immune adaptor SKAP1 acts a scaffold for Polo-like kinase 1 (PLK1) for the optimal cell cycling of T-cells. Sci Rep 2019; 9:10462. [PMID: 31320682 PMCID: PMC6639320 DOI: 10.1038/s41598-019-45627-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
While the immune cell adaptor protein SKAP1 mediates LFA-1 activation induced by antigen-receptor (TCR/CD3) ligation on T-cells, it is unclear whether the adaptor interacts with other mediators of T-cell function. In this context, the serine/threonine kinase, polo-like kinase (PLK1) regulates multiple steps in the mitotic and cell cycle progression of mammalian cells. Here, we show that SKAP1 is phosphorylated by and binds to PLK1 for the optimal cycling of T-cells. PLK1 binds to the N-terminal residue serine 31 (S31) of SKAP1 and the interaction is needed for optimal PLK1 kinase activity. Further, siRNA knock-down of SKAP1 reduced the rate of T-cell division concurrent with a delay in the expression of PLK1, Cyclin A and pH3. Reconstitution of these KD cells with WT SKAP1, but not the SKAP1 S31 mutant, restored normal cell division. SKAP1-PLK1 binding is dynamically regulated during the cell cycle of T-cells. Our findings identify a novel role for SKAP1 in the regulation of PLK1 and optimal cell cycling needed for T-cell clonal expansion in response to antigenic activation.
Collapse
Affiliation(s)
- Monika Raab
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- Cell Signaling Section, Department of Pathology, Tennis Court Road, University of Cambridge, CB2 1Q, Cambridge, UK.
| | - Klaus Strebhardt
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Christopher E Rudd
- Cell Signaling Section, Department of Pathology, Tennis Court Road, University of Cambridge, CB2 1Q, Cambridge, UK.
- Centre de Recherch-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, Quebec, H1T 2M4, Canada.
- Département de Medicine, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada.
| |
Collapse
|
12
|
Roy NH, MacKay JL, Robertson TF, Hammer DA, Burkhardt JK. Crk adaptor proteins mediate actin-dependent T cell migration and mechanosensing induced by the integrin LFA-1. Sci Signal 2018; 11:eaat3178. [PMID: 30538176 PMCID: PMC6333317 DOI: 10.1126/scisignal.aat3178] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
T cell entry into inflamed tissue involves firm adhesion, spreading, and migration of the T cells across endothelial barriers. These events depend on "outside-in" signals through which engaged integrins direct cytoskeletal reorganization. We investigated the molecular events that mediate this process and found that T cells from mice lacking expression of the adaptor protein Crk exhibited defects in phenotypes induced by the integrin lymphocyte function-associated antigen 1 (LFA-1), namely, actin polymerization, leading edge formation, and two-dimensional cell migration. Crk protein was an essential mediator of LFA-1 signaling-induced phosphorylation of the E3 ubiquitin ligase c-Cbl and its subsequent interaction with the phosphatidylinositol 3-kinase (PI3K) subunit p85, thus promoting PI3K activity and cytoskeletal remodeling. In addition, we found that Crk proteins were required for T cells to respond to changes in substrate stiffness, as measured by alterations in cell spreading and differential phosphorylation of the force-sensitive protein CasL. These findings identify Crk proteins as key intermediates coupling LFA-1 signals to actin remodeling and provide mechanistic insights into how T cells sense and respond to substrate stiffness.
Collapse
Affiliation(s)
- Nathan H Roy
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joanna L MacKay
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Tanner F Robertson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel A Hammer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Lewis JB, Scangarello FA, Murphy JM, Eidell KP, Sodipo MO, Ophir MJ, Sargeant R, Seminario MC, Bunnell SC. ADAP is an upstream regulator that precedes SLP-76 at sites of TCR engagement and stabilizes signaling microclusters. J Cell Sci 2018; 131:jcs215517. [PMID: 30305305 PMCID: PMC6240300 DOI: 10.1242/jcs.215517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
Antigen recognition by the T cell receptor (TCR) directs the assembly of essential signaling complexes known as SLP-76 (also known as LCP2) microclusters. Here, we show that the interaction of the adhesion and degranulation-promoting adaptor protein (ADAP; also known as FYB1) with SLP-76 enables the formation of persistent microclusters and the stabilization of T cell contacts, promotes integrin-independent adhesion and enables the upregulation of CD69. By analyzing point mutants and using a novel phospho-specific antibody, we show that Y595 is essential for normal ADAP function, that virtually all tyrosine phosphorylation of ADAP is restricted to a Y595-phosphorylated (pY595) pool, and that multivalent interactions between the SLP-76 SH2 domain and its binding sites in ADAP are required to sustain ADAP phosphorylation. Although pY595 ADAP enters SLP-76 microclusters, non-phosphorylated ADAP is enriched in protrusive actin-rich structures. The pre-positioning of ADAP at the contact sites generated by these structures favors the retention of nascent SLP-76 oligomers and their assembly into persistent microclusters. Although ADAP is frequently depicted as an effector of SLP-76, our findings reveal that ADAP acts upstream of SLP-76 to convert labile, Ca2+-competent microclusters into stable adhesive junctions with enhanced signaling potential.
Collapse
Affiliation(s)
- Juliana B Lewis
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Frank A Scangarello
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Medical Scientist Training Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Joanne M Murphy
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Keith P Eidell
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Michelle O Sodipo
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Michael J Ophir
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Ryan Sargeant
- Pacific Immunology Corporation, Ramona, CA 92065, USA
| | | | - Stephen C Bunnell
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
14
|
Cheng J, Jing Y, Kang D, Yang L, Li J, Yu Z, Peng Z, Li X, Wei Y, Gong Q, Miron RJ, Zhang Y, Liu C. The Role of Mst1 in Lymphocyte Homeostasis and Function. Front Immunol 2018; 9:149. [PMID: 29459865 PMCID: PMC5807685 DOI: 10.3389/fimmu.2018.00149] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
The Hippo pathway is an evolutionarily conserved pathway crucial for regulating tissue size and for limiting cancer development. However, recent work has also uncovered key roles for the mammalian Hippo kinases, Mst1/2, in driving appropriate immune responses by directing T cell migration, morphology, survival, differentiation, and activation. In this review, we discuss the classical signaling pathways orchestrated by the Hippo signaling pathway, and describe how Mst1/2 direct T cell function by mechanisms not seeming to involve the classical Hippo pathway. We also discuss why Mst1/2 might have different functions within organ systems and the immune system. Overall, understanding how Mst1/2 transmit signals to discrete biological processes in different cell types might allow for the development of better drug therapies for the treatments of cancers and immune-related diseases.
Collapse
Affiliation(s)
- Jiali Cheng
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukai Jing
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqing Kang
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Yang
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwen Li
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Yu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zican Peng
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingbo Li
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Wei
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Richard J Miron
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chaohong Liu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Jankowska KI, Williamson EK, Roy NH, Blumenthal D, Chandra V, Baumgart T, Burkhardt JK. Integrins Modulate T Cell Receptor Signaling by Constraining Actin Flow at the Immunological Synapse. Front Immunol 2018; 9:25. [PMID: 29403502 PMCID: PMC5778112 DOI: 10.3389/fimmu.2018.00025] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/04/2018] [Indexed: 11/25/2022] Open
Abstract
Full T cell activation requires coordination of signals from multiple receptor–ligand pairs that interact in parallel at a specialized cell–cell contact site termed the immunological synapse (IS). Signaling at the IS is intimately associated with actin dynamics; T cell receptor (TCR) engagement induces centripetal flow of the T cell actin network, which in turn enhances the function of ligand-bound integrins by promoting conformational change. Here, we have investigated the effects of integrin engagement on actin flow, and on associated signaling events downstream of the TCR. We show that integrin engagement significantly decelerates centripetal flow of the actin network. In primary CD4+ T cells, engagement of either LFA-1 or VLA-4 by their respective ligands ICAM-1 and VCAM-1 slows actin flow. Slowing is greatest when T cells interact with low mobility integrin ligands, supporting a predominately drag-based mechanism. Using integrin ligands presented on patterned surfaces, we demonstrate that the effects of localized integrin engagement are distributed across the actin network, and that focal adhesion proteins, such as talin, vinculin, and paxillin, are recruited to sites of integrin engagement. Further analysis shows that talin and vinculin are interdependent upon one another for recruitment, and that ongoing actin flow is required. Suppression of vinculin or talin partially relieves integrin-dependent slowing of actin flow, indicating that these proteins serve as molecular clutches that couple engaged integrins to the dynamic actin network. Finally, we found that integrin-dependent slowing of actin flow is associated with reduction in tyrosine phosphorylation downstream of the TCR, and that this modulation of TCR signaling depends on expression of talin and vinculin. More generally, we found that integrin-dependent effects on actin retrograde flow were strongly correlated with effects on TCR signaling. Taken together, these studies support a model in which ligand-bound integrins engage the actin cytoskeletal network via talin and vinculin, and tune TCR signaling events by modulating actin dynamics at the IS.
Collapse
Affiliation(s)
- Katarzyna I Jankowska
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Edward K Williamson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Nathan H Roy
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Blumenthal
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Vidhi Chandra
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
16
|
Verma NK, Kelleher D. Not Just an Adhesion Molecule: LFA-1 Contact Tunes the T Lymphocyte Program. THE JOURNAL OF IMMUNOLOGY 2017; 199:1213-1221. [PMID: 28784685 DOI: 10.4049/jimmunol.1700495] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022]
Abstract
The αLβ2 integrin LFA-1 is known to play a key role in T lymphocyte migration, which is necessary to mount a local immune response, and is also the main driver of autoimmune diseases. This migration-triggering signaling process in T cells is tightly regulated to permit an immune response that is appropriate to the local trigger, as well as to prevent deleterious tissue-damaging bystander effects. Emerging evidence shows that, in addition to prompting a diverse range of downstream signaling cascades, LFA-1 stimulation in T lymphocytes modulates gene-transcription programs, including genetic signatures of TGF-β and Notch pathways, with multifactorial biological outcomes. This review highlights recent findings and discusses molecular mechanisms by which LFA-1 signaling influence T lymphocyte differentiation into the effector subsets Th1, Th17, and induced regulatory T cells. We argue that LFA-1 contact with a cognate ligand, such as ICAM-1, independent of the immune synapse activates a late divergence in T cells' effector phenotypes, hence fine-tuning their functioning.
Collapse
Affiliation(s)
- Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; and
| | - Dermot Kelleher
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; and .,Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
17
|
Xu X, Han L, Zhao G, Xue S, Gao Y, Xiao J, Zhang S, Chen P, Wu ZY, Ding J, Hu R, Wei B, Wang H. LRCH1 interferes with DOCK8-Cdc42-induced T cell migration and ameliorates experimental autoimmune encephalomyelitis. J Exp Med 2017; 214:209-226. [PMID: 28028151 PMCID: PMC5206493 DOI: 10.1084/jem.20160068] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 08/25/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022] Open
Abstract
Xu et al. show that LRCH1 interferes with the GEF activity of DOCK8 to inhibit Cdc42 activation. Upon chemokine stimulation, DOCK8 is phosphorylated and released from LRCH1 to drive cell migration. LRCH1 overexpression reduces CD4+ T cell migration to the CNS and ameliorates experimental autoimmune encephalomyelitis. Directional autoreactive CD4+ T cell migration into the central nervous system plays a critical role in multiple sclerosis. Recently, DOCK8 was identified as a guanine-nucleotide exchange factor (GEF) for Cdc42 activation and has been associated with human mental retardation. Little is known about whether DOCK8 is related to multiple sclerosis (MS) and how to restrict its GEF activity. Using two screening systems, we found that LRCH1 competes with Cdc42 for interaction with DOCK8 and restrains T cell migration. In response to chemokine stimulation, PKCα phosphorylates DOCK8 at its three serine sites, promoting DOCK8 separation from LRCH1 and translocation to the leading edge to guide T cell migration. Point mutations at the DOCK8 serine sites block chemokine- and PKCα-induced T cell migration. Importantly, Dock8 mutant mice or Lrch1 transgenic mice were protected from MOG (35–55) peptide–induced experimental autoimmune encephalomyelitis (EAE), whereas Lrch1-deficient mice displayed a more severe phenotype. Notably, DOCK8 expression was markedly increased in PBMCs from the acute phase of MS patients. Together, our study demonstrates LRCH1 as a novel effector to restrain PKCα–DOCK8–Cdc42 module–induced T cell migration and ameliorate EAE.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Key Laboratory of Systems Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, CAS, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Han
- Key Laboratory of Systems Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, CAS, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Guixian Zhao
- HuaShan Hospital, Fudan University, Shanghai 200031, China
| | - Shengjie Xue
- Key Laboratory of Systems Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, CAS, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yunzhen Gao
- Key Laboratory of Systems Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, CAS, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Xiao
- Key Laboratory of Systems Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, CAS, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shicheng Zhang
- National Center for Protein Science Shanghai and State Key Laboratory of Biochemistry, CAS, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Peng Chen
- Key Laboratory of Systems Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, CAS, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jianping Ding
- National Center for Protein Science Shanghai and State Key Laboratory of Biochemistry, CAS, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Ronggui Hu
- Key Laboratory of Systems Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, CAS, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Wei
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, CAS, University of Chinese Academy of Sciences, Shanghai 200031, China.,National Center for Protein Science Shanghai and State Key Laboratory of Biochemistry, CAS, University of Chinese Academy of Sciences, Shanghai 201203, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, CAS, Wuhan 430071, China
| | - Hongyan Wang
- Key Laboratory of Systems Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, CAS, University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
18
|
Zhao S, Gu Z, Wang L, Guan L, Wang F, Yang N, Luo L, Gao Z, Song Y, Wang L, Liu D, Gao C. G-CSF inhibits LFA-1-mediated CD4 + T cell functions by inhibiting Lck and ZAP-70. Oncotarget 2017; 8:51578-51590. [PMID: 28881670 PMCID: PMC5584271 DOI: 10.18632/oncotarget.18194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 05/06/2017] [Indexed: 11/25/2022] Open
Abstract
In this study, we showed that G-CSF mobilization increased the frequency of T cells, specifically CD3+CD4+ T cells. G-CSF mobilization decreased the secretion of inflammatory cytokines of CD4+ T cells through the LFA-1/ICAM-1 signaling pathway, whereas it did not alter the TH1/TH2 ratio. We found that G-CSF mobilization inhibited LFA-1-mediated CD4+ T cell polarization and motility. In vitro, G-CSF stimulation also attenuated the polarization and adhesiveness of CD4+ T cells through the LFA-1/ICAM-1 interaction. Further investigation revealed that G-CSF mobilization suppressed LFA-1 signaling by down-regulating Lck and ZAP-70 expression in CD4+ T cells, similar results was also confirmed by in-vitro studies. These findings suggested that G-CSF directly suppressed LFA-1-mediated CD4+ T cell functions through the down-regulation of Lck and ZAP-70. The immunosuppressive effect of G-CSF mobilization deepened our understanding about peripheral blood hematopoietic stem cell transplantation. LFA-1/ICMA-1 pathway may become a potential target for graft-versus-host disease prophylaxis.
Collapse
Affiliation(s)
- Shasha Zhao
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China.,Medical School, Nankai University, Tianjin 300071, China
| | - Zhenyang Gu
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Li Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China.,Department of Hematology and Oncology, Laoshan Branch, No. 401 Hospital of Chinese PLA, Qingdao 266101, China
| | - Lixun Guan
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Feiyan Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Nan Yang
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Lan Luo
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhe Gao
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yingwei Song
- Department of Blood Transfusion, Chinese PLA General Hospital, Beijing 100853, China
| | - Lili Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Daihong Liu
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Chunji Gao
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
19
|
LFA-1 activates focal adhesion kinases FAK1/PYK2 to generate LAT-GRB2-SKAP1 complexes that terminate T-cell conjugate formation. Nat Commun 2017; 8:16001. [PMID: 28699640 PMCID: PMC5510181 DOI: 10.1038/ncomms16001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 05/23/2017] [Indexed: 01/27/2023] Open
Abstract
Lymphocyte function-associated antigen 1 (LFA-1) affinity and avidity changes have been assumed to mediate adhesion to intercellular adhesion molecule-1 for T-cell conjugation to dendritic cells (DC). Although the T-cell receptor (TCR) and LFA-1 can generate intracellular signals, the immune cell adaptor protein linker for the activation of T cells (LAT) couples the TCR to downstream events. Here, we show that LFA-1 can mediate both adhesion and de-adhesion, dependent on receptor clustering. Although increased affinity mediates adhesion, LFA-1 cross-linking induced the association and activation of the protein-tyrosine kinases FAK1/PYK1 that phosphorylated LAT selectively on a single Y-171 site for the binding to adaptor complex GRB-2-SKAP1. LAT-GRB2-SKAP1 complexes were distinct from canonical LAT-GADs-SLP-76 complexes. LFA-1 cross-linking increased the presence of LAT-GRB2-SKAP1 complexes relative to LAT-GADs-SLP-76 complexes. LFA-1-FAK1 decreased T-cell-dendritic cell (DC) dwell times dependent on LAT-Y171, leading to reduced DO11.10 T cell binding to DCs and proliferation to OVA peptide. Overall, our findings outline a new model for LFA-1 in which the integrin can mediate both adhesion and de-adhesion events dependent on receptor cross-linking. The T-cell integrin LFA-1 binds ICAM-1 on antigen presenting cells to affect TCR-MHC interactions. Here the authors show detailed mechanics of how LFA-1 ligation affects T-cell conjugation to dendritic cells to regulate adhesion and de-adhesion of these cells in the context of antigen presentation.
Collapse
|
20
|
Thaker YR, Recino A, Raab M, Jabeen A, Wallberg M, Fernandez N, Rudd CE. Activated Cdc42-associated kinase 1 (ACK1) binds the sterile α motif (SAM) domain of the adaptor SLP-76 and phosphorylates proximal tyrosines. J Biol Chem 2017; 292:6281-6290. [PMID: 28188290 PMCID: PMC5391757 DOI: 10.1074/jbc.m116.759555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/09/2017] [Indexed: 01/24/2023] Open
Abstract
The adaptor protein Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) plays a crucial role in T cell activation by linking antigen receptor (T cell receptor, TCR) signals to downstream pathways. At its N terminus, SLP-76 has three key tyrosines (Tyr-113, Tyr-128, and Tyr-145, "3Y") as well as a sterile α motif (SAM) domain whose function is unclear. We showed previously that the SAM domain has two binding regions that mediate dimer and oligomer formation. In this study, we have identified SAM domain-carrying non-receptor tyrosine kinase, activated Cdc42-associated tyrosine kinase 1 (ACK1; also known as Tnk2, tyrosine kinase non-receptor 2) as a novel binding partner of SLP-76. Co-precipitation, laser-scanning confocal microscopy, and in situ proximity analysis confirmed the binding of ACK1 to SLP-76. Further, the interaction was induced in response to the anti-TCR ligation and abrogated by the deletion of SLP-76 SAM domain (ΔSAM) or mutation of Tyr-113, Tyr-128, and Tyr-145 to phenylalanine (3Y3F). ACK1 induced phosphorylation of the SLP-76 N-terminal tyrosines (3Y) dependent on the SAM domain. Further, ACK1 promoted calcium flux and NFAT-AP1 promoter activity and decreased the motility of murine CD4+ primary T cells on ICAM-1-coated plates, an event reversed by a small molecule inhibitor of ACK1 (AIM-100). These findings identify ACK1 as a novel SLP-76-associated protein-tyrosine kinase that modulates early activation events in T cells.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Motifs
- Amino Acid Substitution
- Animals
- Humans
- Jurkat Cells
- Lymphocyte Activation/physiology
- Mice
- Mutation, Missense
- Phosphoproteins/genetics
- Phosphoproteins/immunology
- Phosphoproteins/metabolism
- Phosphorylation/physiology
- Protein Domains
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/immunology
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tyrosine
Collapse
Affiliation(s)
- Youg R Thaker
- From the Cell Signaling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom,
| | - Asha Recino
- From the Cell Signaling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Monika Raab
- the Department of Obstetrics and Gynecology, School of Medicine, J. W. Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Asma Jabeen
- the School of Biological Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Maja Wallberg
- From the Cell Signaling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Nelson Fernandez
- the School of Biological Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Christopher E Rudd
- From the Cell Signaling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
- the Division of Immunology-Oncology Research Center Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada, and
- the Département de Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
21
|
Thiere M, Kliche S, Müller B, Teuber J, Nold I, Stork O. Integrin Activation Through the Hematopoietic Adapter Molecule ADAP Regulates Dendritic Development of Hippocampal Neurons. Front Mol Neurosci 2016; 9:91. [PMID: 27746719 PMCID: PMC5044701 DOI: 10.3389/fnmol.2016.00091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/13/2016] [Indexed: 11/13/2022] Open
Abstract
Integrin-mediated cell adhesion and signaling is of critical importance for neuronal differentiation. Recent evidence suggests that an “inside-out” activation of β1-integrin, similar to that observed in hematopoietic cells, contributes to the growth and branching of dendrites. In this study, we investigated the role of the hematopoietic adaptor protein adhesion and degranulation promoting adapter protein (ADAP) in these processes. We demonstrate the expression of ADAP in the developing and adult nervous hippocampus, and in outgrowing dendrites of primary hippocampal neurons. We further show that ADAP occurs in a complex with another adaptor protein signal-transducing kinase-associated phosphoprotein-homolog (SKAP-HOM), with the Rap1 effector protein RAPL and the Hippo kinase macrophage-stimulating 1 (MST1), resembling an ADAP/SKAP module that has been previously described in T-cells and is critically involved in “inside-out” activation of integrins. Knock down of ADAP resulted in reduced expression of activated β1-integrin on dendrites. It furthermore reduced the differentiation of developing neurons, as indicated by reduced dendrite growth and decreased expression of the dendritic marker microtubule-associated protein 2 (MAP2). Our data suggest that an ADAP-dependent integrin-activation similar to that described in hematopoietic cells contributes to the differentiation of neuronal cells.
Collapse
Affiliation(s)
- Marlen Thiere
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Germany
| | - Bettina Müller
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Germany
| | - Jan Teuber
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Germany
| | - Isabell Nold
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-UniversityMagdeburg, Germany; Center for Behavioral Brain SciencesMagdeburg, Germany
| |
Collapse
|
22
|
Hashimoto-Tane A, Saito T. Dynamic Regulation of TCR-Microclusters and the Microsynapse for T Cell Activation. Front Immunol 2016; 7:255. [PMID: 27446085 PMCID: PMC4923147 DOI: 10.3389/fimmu.2016.00255] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/15/2016] [Indexed: 11/13/2022] Open
Abstract
The interaction between a T cell and an antigen-presenting cell is the initiating event in T cell-mediated adaptive immunity. The Immunological Synapse (IS) is formed at the interface between these two cell types, and is the site where antigen (Ag)-specific recognition and activation are induced through the T cell receptor (TCR). This occurs at the center of the IS, and cell adhesion is supported through integrins in the area surrounding the TCR. Recently, this model has been revised based on data indicating that the initial Ag-specific activation signal is triggered prior to IS formation at TCR-microclusters (MCs), sites where TCR, kinases and adaptors of TCR proximal downstream signaling molecules accumulate as an activation signaling cluster. TCR-MCs then move into the center of the cell-cell interface to generate the cSMAC. This translocation of TCR-MCs is mediated initially by the actin cytoskeleton and then by dynein-induced movement along microtubules. The translocation of TCR-MCs and cSMAC formation is induced upon strong TCR stimulation through the assembly of a TCR-dynein super complex with microtubules. The Ag-specific activation signal is induced at TCR-MCs, but the adhesion signal is now shown to be induced by generating a "microsynapse," which is composed of a core of TCR-MCs and the surrounding adhesion ring of integrin and focal adhesion molecules. Since the microsynapse is critical for activation, particularly under weak TCR stimulation, this structure supports a weak TCR signal through a cell-cell adhesion signal. The microsynapse has a structure similar to the IS but on a micro-scale and regulates Ag-specific activation as well as cell-cell adhesion. We describe here the dynamic regulation of TCR-MCs, responsible for inducing Ag-specific activation signals, and the microsynapse, responsible for adhesion signals critical for cell-cell interactions, and their interrelationship.
Collapse
Affiliation(s)
- Akiko Hashimoto-Tane
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences , Yokohama , Japan
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences , Yokohama , Japan
| |
Collapse
|
23
|
Smith X, Taylor A, Rudd CE. T-cell immune adaptor SKAP1 regulates the induction of collagen-induced arthritis in mice. Immunol Lett 2016; 176:122-7. [PMID: 27181093 PMCID: PMC4965781 DOI: 10.1016/j.imlet.2016.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 04/02/2016] [Accepted: 04/12/2016] [Indexed: 11/30/2022]
Abstract
Skap1-deficient (skap1-/-) mice are resistant to the induction of collagen induced arthritis (CIA). Skap1-/- mice show a reduction in presence of IL-17+ (Th17) T-cells in response to CII peptide. No effect was seen on the production of other cytokines such as IL-10. Our findings implicate SKAP1 as a novel upstream regulator murine autoimmune arthritis.
SKAP1 is an immune cell adaptor that couples the T-cell receptor with the ‘inside-out’ signalling pathway for LFA-1 mediated adhesion in T-cells. A connection of SKAP1 to the regulation of an autoimmune disorder has not previously been reported. In this study, we show that Skap1-deficient (skap1-/-) mice are highly resistant to the induction of collagen-induced arthritis (CIA), both in terms of incidence or severity. Skap1-/- T-cells were characterised by a selective reduction in the presence IL-17+ (Th17) in response to CII peptide and a marked reduction of joint infiltrating T-cells in Skap1-/- mice. SKAP1 therefore represents a novel connection to Th17 producing T-cells and is new potential target in the therapeutic intervention in autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Xin Smith
- Cell Signalling Section, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1Q, UK
| | - Alison Taylor
- Cell Signalling Section, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1Q, UK
| | - Christopher E Rudd
- Cell Signalling Section, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1Q, UK.
| |
Collapse
|
24
|
Rajasekaran K, Riese MJ, Rao S, Wang L, Thakar MS, Sentman CL, Malarkannan S. Signaling in Effector Lymphocytes: Insights toward Safer Immunotherapy. Front Immunol 2016; 7:176. [PMID: 27242783 PMCID: PMC4863891 DOI: 10.3389/fimmu.2016.00176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/20/2016] [Indexed: 12/15/2022] Open
Abstract
Receptors on T and NK cells systematically propagate highly complex signaling cascades that direct immune effector functions, leading to protective immunity. While extensive studies have delineated hundreds of signaling events that take place upon receptor engagement, the precise molecular mechanism that differentially regulates the induction or repression of a unique effector function is yet to be fully defined. Such knowledge can potentiate the tailoring of signal transductions and transform cancer immunotherapies. Targeted manipulations of signaling cascades can augment one effector function such as antitumor cytotoxicity while contain the overt generation of pro-inflammatory cytokines that contribute to treatment-related toxicity such as “cytokine storm” and “cytokine-release syndrome” or lead to autoimmune diseases. Here, we summarize how individual signaling molecules or nodes may be optimally targeted to permit selective ablation of toxic immune side effects.
Collapse
Affiliation(s)
- Kamalakannan Rajasekaran
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute , Milwaukee, WI , USA
| | - Matthew J Riese
- Laboratory of Lymphocyte Biology, Blood Research Institute, Milwaukee, WI, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Laboratory of Stem Cell Transcriptional Regulation, Blood Research Institute, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Li Wang
- Department of Medicine, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Charles L Sentman
- Department of Microbiology and Immunology, Center for Synthetic Immunity at the Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
25
|
Benvenuti F. The Dendritic Cell Synapse: A Life Dedicated to T Cell Activation. Front Immunol 2016; 7:70. [PMID: 27014259 PMCID: PMC4780025 DOI: 10.3389/fimmu.2016.00070] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/15/2016] [Indexed: 01/30/2023] Open
Abstract
T-cell activation within immunological synapses is a complex process whereby different types of signals are transmitted from antigen-presenting cells to T cells. The molecular strategies developed by T cells to interpret and integrate these signals have been systematically dissected in recent years and are now in large part understood. On the other side of the immune synapse, dendritic cells (DCs) participate actively in synapse formation and maintenance by remodeling of membrane receptors and intracellular content. However, the details of such changes have been only partially characterized. The DCs actin cytoskeleton has been one of the first systems to be identified as playing an important role in T-cell priming and some of the underlying mechanisms have been elucidated. Similarly, the DCs microtubule cytoskeleton undergoes major spatial changes during synapse formation that favor polarization of the DCs subcellular space toward the interacting T cell. Recently, we have begun to investigate the trafficking machinery that controls polarized delivery of endosomal vesicles at the DC–T immune synapse with the aim of understanding the functional relevance of polarized secretion of soluble factors during T-cell priming. Here, we will review the current knowledge of events occurring in DCs during synapse formation and discuss the open questions that still remain unanswered.
Collapse
Affiliation(s)
- Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology , Trieste , Italy
| |
Collapse
|
26
|
Comrie WA, Burkhardt JK. Action and Traction: Cytoskeletal Control of Receptor Triggering at the Immunological Synapse. Front Immunol 2016; 7:68. [PMID: 27014258 PMCID: PMC4779853 DOI: 10.3389/fimmu.2016.00068] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/12/2016] [Indexed: 01/03/2023] Open
Abstract
It is well known that F-actin dynamics drive the micron-scale cell shape changes required for migration and immunological synapse (IS) formation. In addition, recent evidence points to a more intimate role for the actin cytoskeleton in promoting T cell activation. Mechanotransduction, the conversion of mechanical input into intracellular biochemical changes, is thought to play a critical role in several aspects of immunoreceptor triggering and downstream signal transduction. Multiple molecules associated with signaling events at the IS have been shown to respond to physical force, including the TCR, costimulatory molecules, adhesion molecules, and several downstream adapters. In at least some cases, it is clear that the relevant forces are exerted by dynamics of the T cell actomyosin cytoskeleton. Interestingly, there is evidence that the cytoskeleton of the antigen-presenting cell also plays an active role in T cell activation, by countering the molecular forces exerted by the T cell at the IS. Since actin polymerization is itself driven by TCR and costimulatory signaling pathways, a complex relationship exists between actin dynamics and receptor activation. This review will focus on recent advances in our understanding of the mechanosensitive aspects of T cell activation, paying specific attention to how F-actin-directed forces applied from both sides of the IS fit into current models of receptor triggering and activation.
Collapse
Affiliation(s)
- William A Comrie
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
27
|
Lim D, Lu Y, Rudd CE. Non-cleavable talin rescues defect in the T-cell conjugation of T-cells deficient in the immune adaptor SKAP1. Immunol Lett 2016; 172:40-6. [PMID: 26905930 PMCID: PMC4860717 DOI: 10.1016/j.imlet.2016.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 11/09/2022]
Abstract
Skap1−/− T-cells show impaired talin and RIAM localization at the anti-CD3 beads. Talin cleavage is altered in Skap1−/− T-cells. Cleavage resistant talin (L432G) restored normal conjugation of Skap1−/− T-cells. Immune cell adaptor SKAP1 interfaces with regulation of talin and RIAM in T-cells.
While the cytoskeletal protein talin binds to the β-chain of LFA-1, the immune cell adaptor SKAP1 (SKAP-55) binds to the α-chain of the same integrin via RapL. Whereas calpain protease cleavage of talin is important for LFA-1 activation, it has been unclear whether SKAP1 can alter the function of talin or its associated adaptor RIAM in T-cells. In this paper, we report that Skap1−/− T-cells showed a reduction in the translocation of talin and RIAM to the contact interface of T-cells with antigenic beads or dendritic cells (DCs) presenting OVA peptide to OT-1 T-cells. In addition, Skap1−/− T-cells show an altered pattern of talin cleavage, while the expression of a cleavage resistant form of talin (L432G) restored the impaired adhesion of OT1 transgenic Skap1−/− T-cells with DCs. SKAP1 therefore can affect the function of talin in T-cells needed for optimal T-cell/DC conjugation.
Collapse
Affiliation(s)
- Daina Lim
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK; Cambridge Institute of Medical Research, Hills Road, CB2 OXY Cambridge, UK
| | - Yuning Lu
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK; Cambridge Institute of Medical Research, Hills Road, CB2 OXY Cambridge, UK
| | - Christopher E Rudd
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK; Cambridge Institute of Medical Research, Hills Road, CB2 OXY Cambridge, UK.
| |
Collapse
|
28
|
Serum biomarkers VEGF-C and IL-6 are associated with severe human Peripheral Artery Stenosis. JOURNAL OF INFLAMMATION-LONDON 2015; 12:50. [PMID: 26283889 PMCID: PMC4538759 DOI: 10.1186/s12950-015-0095-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 08/04/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND Emerging reports propose possible biomarkers that are related to inflammation, nutrition and lipid parameters for detection of the progression of atherosclerotic plaques, peripheral artery disease (PAD) and particularly peripheral artery stenosis (PAS). However, it remains unclear which biomarkers in serum are associated with the severity of PAS. FINDINGS In this study, we measured serum levels of inflammatory biomarkers along with lipid and nutritional parameters in 53 patients who suffered different degrees of PAS. Serum concentrations of vascular endothelial growth factor-c (VEGF-C) and IL-6 (Interleukin 6) were significantly increased in patients showing moderate or severe PAS. Furthermore, the number of blood monocytes from PAS patients was significantly increased, which showed elevated adhesion to plate-coated fibrinogen. Compared to healthy subjects, freshly isolated or LPS (lipopolysaccharide)-stimulated blood monocytes from PAS patients could produce VEGF-C and IL-6 at higher levels. CONCLUSIONS Our study suggests that the increased number of blood monocytes might play key roles during the development of severe PAS, which enhance adhesion at the local narrowed peripheral artery and secret high levels of VEGF-C and IL-6. We suggest that serum concentrations of VEGF-C and IL-6 might be used as biomarkers for diagnosis severe PAS in combination with clinical imaging examination.
Collapse
|
29
|
The Immune Adaptor ADAP Regulates Reciprocal TGF-β1-Integrin Crosstalk to Protect from Influenza Virus Infection. PLoS Pathog 2015; 11:e1004824. [PMID: 25909459 PMCID: PMC4409120 DOI: 10.1371/journal.ppat.1004824] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/20/2015] [Indexed: 11/19/2022] Open
Abstract
Highly pathogenic avian influenza virus (HPAI, such as H5N1) infection causes severe cytokine storm and fatal respiratory immunopathogenesis in human and animal. Although TGF-β1 and the integrin CD103 in CD8+ T cells play protective roles in H5N1 virus infection, it is not fully understood which key signaling proteins control the TGF-β1-integrin crosstalk in CD8+ T cells to protect from H5N1 virus infection. This study showed that ADAP (Adhesion and Degranulation-promoting Adapter Protein) formed a complex with TRAF6 and TAK1 in CD8+ T cells, and activated SMAD3 to increase autocrine TGF-β1 production. Further, TGF-β1 induced CD103 expression via an ADAP-, TRAF6- and SMAD3-dependent manner. In response to influenza virus infection (i.e. H5N1 or H1N1), lung infiltrating ADAP-/- CD8+ T cells significantly reduced the expression levels of TGF-β1, CD103 and VLA-1. ADAP-/- mice as well as Rag1-/- mice receiving ADAP-/- T cells enhanced mortality with significant higher levels of inflammatory cytokines and chemokines in lungs. Together, we have demonstrated that ADAP regulates the positive feedback loop of TGF-β1 production and TGF-β1-induced CD103 expression in CD8+ T cells via the TβRI-TRAF6-TAK1-SMAD3 pathway and protects from influenza virus infection. It is critical to further explore whether the SNP polymorphisms located in human ADAP gene are associated with disease susceptibility in response to influenza virus infection.
Collapse
|
30
|
Comrie WA, Li S, Boyle S, Burkhardt JK. The dendritic cell cytoskeleton promotes T cell adhesion and activation by constraining ICAM-1 mobility. ACTA ACUST UNITED AC 2015; 208:457-73. [PMID: 25666808 PMCID: PMC4332244 DOI: 10.1083/jcb.201406120] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integrity of the dendritic cell (DC) actin cytoskeleton is essential for T cell priming, but the underlying mechanisms are poorly understood. We show that the DC F-actin network regulates the lateral mobility of intracellular cell adhesion molecule 1 (ICAM-1), but not MHCII. ICAM-1 mobility and clustering are regulated by maturation-induced changes in the expression and activation of moesin and α-actinin-1, which associate with actin filaments and the ICAM-1 cytoplasmic domain. Constrained ICAM-1 mobility is important for DC function, as DCs expressing a high-mobility ICAM-1 mutant lacking the cytoplasmic domain exhibit diminished antigen-dependent conjugate formation and T cell priming. These defects are associated with inefficient induction of leukocyte functional antigen 1 (LFA-1) affinity maturation, which is consistent with a model in which constrained ICAM-1 mobility opposes forces on LFA-1 exerted by the T cell cytoskeleton, whereas ICAM-1 clustering enhances valency and further promotes ligand-dependent LFA-1 activation. Our results reveal an important new mechanism through which the DC cytoskeleton regulates receptor activation at the immunological synapse.
Collapse
Affiliation(s)
- William A Comrie
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19102
| | - Shuixing Li
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19102
| | - Sarah Boyle
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19102
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19102
| |
Collapse
|
31
|
Comrie WA, Babich A, Burkhardt JK. F-actin flow drives affinity maturation and spatial organization of LFA-1 at the immunological synapse. ACTA ACUST UNITED AC 2015; 208:475-91. [PMID: 25666810 PMCID: PMC4332248 DOI: 10.1083/jcb.201406121] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The T cell actin network generates mechanical forces that regulate LFA-1 activity at the immunological synapse. Integrin-dependent interactions between T cells and antigen-presenting cells are vital for proper T cell activation, effector function, and memory. Regulation of integrin function occurs via conformational change, which modulates ligand affinity, and receptor clustering, which modulates valency. Here, we show that conformational intermediates of leukocyte functional antigen 1 (LFA-1) form a concentric array at the immunological synapse. Using an inhibitor cocktail to arrest F-actin dynamics, we show that organization of this array depends on F-actin flow and ligand mobility. Furthermore, F-actin flow is critical for maintaining the high affinity conformation of LFA-1, for increasing valency by recruiting LFA-1 to the immunological synapse, and ultimately for promoting intracellular cell adhesion molecule 1 (ICAM-1) binding. Finally, we show that F-actin forces are opposed by immobilized ICAM-1, which triggers LFA-1 activation through a combination of induced fit and tension-based mechanisms. Our data provide direct support for a model in which the T cell actin network generates mechanical forces that regulate LFA-1 activity at the immunological synapse.
Collapse
Affiliation(s)
- William A Comrie
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Alexander Babich
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
32
|
Rowan AG, Suemori K, Fujiwara H, Yasukawa M, Tanaka Y, Taylor GP, Bangham CRM. Cytotoxic T lymphocyte lysis of HTLV-1 infected cells is limited by weak HBZ protein expression, but non-specifically enhanced on induction of Tax expression. Retrovirology 2014; 11:116. [PMID: 25499803 PMCID: PMC4282740 DOI: 10.1186/s12977-014-0116-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/27/2014] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Immunogenetic evidence indicates that cytotoxic T lymphocytes (CTLs) specific for the weak CTL antigen HBZ limit HTLV-1 proviral load in vivo, whereas there is no clear relationship between the proviral load and the frequency of CTLs specific for the immunodominant antigen Tax. In vivo, circulating HTLV-1-infected cells express HBZ mRNA in contrast, Tax expression is typically low or undetectable. To elucidate the virus-suppressing potential of CTLs targeting HBZ, we compared the ability of HBZ- and Tax-specific CTLs to lyse naturally-infected cells, by co-incubating HBZ- and Tax-specific CTL clones with primary CD4(+) T cells from HLA-matched HTLV-1-infected donors. We quantified lysis of infected cells, and tested whether specific virus-induced host cell surface molecules determine the susceptibility of infected cells to CTL-mediated lysis. RESULTS Primary infected cells upregulated HLA-A*02, ICAM-1, Fas and TRAIL-R1/2 in concert with Tax expression, forming efficient targets for both HTLV-1-specific CTLs and CTLs specific for an unrelated virus. We detected expression of HBZ mRNA (spliced isoform) in both Tax-expressing and non-expressing infected cells, and the HBZ26-34 epitope was processed and presented by cells transfected with an HBZ expression plasmid. However, when coincubated with primary cells, a high-avidity HBZ-specific CTL clone killed significantly fewer infected cells than were killed by a Tax-specific CTL clone. Finally, incubation with Tax- or HBZ-specific CTLs resulted in a significant decrease in the frequency of cells expressing high levels of HLA-A*02. CONCLUSIONS HTLV-1 gene expression in primary CD4(+) T cells non-specifically increases susceptibility to CTL lysis. Despite the presence of HBZ spliced-isoform mRNA, HBZ epitope presentation by primary cells is significantly less efficient than that of Tax.
Collapse
Affiliation(s)
- Aileen G Rowan
- Section of Virology, Department of Medicine, Imperial College London, London, W2 1PG, UK.
| | - Koichiro Suemori
- Department of Bioregulatory Medicine, Graduate School of Medicine, Ehime University, and Ehime University Proteomedicine Research Center, Toh-on city, Ehime, Japan.
| | - Hiroshi Fujiwara
- Department of Bioregulatory Medicine, Graduate School of Medicine, Ehime University, and Ehime University Proteomedicine Research Center, Toh-on city, Ehime, Japan.
| | - Masaki Yasukawa
- Department of Bioregulatory Medicine, Graduate School of Medicine, Ehime University, and Ehime University Proteomedicine Research Center, Toh-on city, Ehime, Japan.
| | - Yuetsu Tanaka
- Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Graham P Taylor
- Section of Virology, Department of Medicine, Imperial College London, London, W2 1PG, UK.
| | - Charles R M Bangham
- Section of Virology, Department of Medicine, Imperial College London, London, W2 1PG, UK.
| |
Collapse
|
33
|
Verma NK, Kelleher D. Adaptor regulation of LFA-1 signaling in T lymphocyte migration: Potential druggable targets for immunotherapies? Eur J Immunol 2014; 44:3484-99. [PMID: 25251823 DOI: 10.1002/eji.201344428] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 09/16/2014] [Accepted: 09/22/2014] [Indexed: 01/24/2023]
Abstract
The integrin lymphocyte function associated antigen-1 (LFA-1) plays a key role in leukocyte trafficking and in adaptive immune responses through interactions with adhesive ligands, such as ICAM-1. Specific blockade of these interactions has validated LFA-1 as a therapeutic target in many chronic inflammatory diseases, however LFA-1 antagonists have not been clinically successful due to the development of a general immunosuppression, causing fatal side effects. Growing evidence has now established that LFA-1 mediates an array of intracellular signaling pathways by triggering a number of downstream molecules. In this context, a class of multimodular domain-containing proteins capable of recruiting two or more effector molecules, collectively known as "adaptor proteins," has emerged as important mediators in LFA-1 signal transduction. Here, we provide an overview of the adaptor proteins involved in the intracellular signaling cascades by which LFA-1 regulates T-cell motility and immune responses. The complexity of the LFA-1-associated signaling delineated in this review suggests that it may be an important and challenging focus for future research, enabling the identification of "tunable" targets for the development of immunotherapies.
Collapse
Affiliation(s)
- Navin K Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Singapore Eye Research Institute, Singapore, Singapore
| | | |
Collapse
|
34
|
Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M, Budd A, Gibson TJ, Davey NE. Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chem Rev 2014; 114:6733-78. [DOI: 10.1021/cr400585q] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kim Van Roey
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Bora Uyar
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Robert J. Weatheritt
- MRC
Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Holger Dinkel
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Markus Seiler
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Aidan Budd
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Toby J. Gibson
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Norman E. Davey
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Department
of Physiology, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
35
|
Cheng WY, Ou Yang TH, Anastassiou D. Development of a prognostic model for breast cancer survival in an open challenge environment. Sci Transl Med 2013; 5:181ra50. [PMID: 23596202 DOI: 10.1126/scitranslmed.3005974] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The accuracy with which cancer phenotypes can be predicted by selecting and combining molecular features is compromised by the large number of potential features available. In an effort to design a robust prognostic model to predict breast cancer survival, we hypothesized that signatures consisting of genes that are coexpressed in multiple cancer types should correspond to molecular events that are prognostic in all cancers, including breast cancer. We previously identified several such signatures--called attractor metagenes--in an analysis of multiple tumor types. We then tested our attractor metagene hypothesis as participants in the Sage Bionetworks-DREAM Breast Cancer Prognosis Challenge. Using a rich training data set that included gene expression and clinical features for breast cancer patients, we developed a prognostic model that was independently validated in a newly generated patient data set. We describe our model, which was based on three attractor metagenes associated with mitotic chromosomal instability, mesenchymal transition, or lymphocyte-based immune recruitment.
Collapse
Affiliation(s)
- Wei-Yi Cheng
- Center for Computational Biology and Bioinformatics and Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
36
|
Dong B, Zhang SS, Gao W, Su H, Chen J, Jin F, Bhargava A, Chen X, Jorgensen L, Alberts AS, Zhang J, Siminovitch KA. Mammalian diaphanous-related formin 1 regulates GSK3β-dependent microtubule dynamics required for T cell migratory polarization. PLoS One 2013; 8:e80500. [PMID: 24260404 PMCID: PMC3832380 DOI: 10.1371/journal.pone.0080500] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022] Open
Abstract
The mammalian diaphanous-related formin (mDia1), a Rho-regulated cytoskeletal modulator, has been shown to promote T lymphocyte chemotaxis and interaction with antigen presenting cells, but the mechanisms underpinning mDia1 roles in these processes have not been defined. Here we show that mDia1(-/-) T cells exhibit impaired lymphocyte function-associated antigen 1 (LFA-1)-mediated T cell adhesion, migration and in vivo trafficking. These defects are associated with impaired microtubule (MT) polarization and stabilization, altered MT dynamics and reduced peripheral clustering of the MT plus-end-protein, adenomatous polyposis coli (APC) in migrating T cells following LFA-1-engagement. Loss of mDia1 also leads to impaired inducible inactivation of the glycogen synthase kinase (GSK) 3β as well as hyperphosphorylation and reduced levels of APC in migrating T cells. These findings identify essential roles for the mDia1 formin in modulating GSK3β-dependent MT contributions to induction of T-cell polarity, adhesion and motility.
Collapse
Affiliation(s)
- Baoxia Dong
- Departments of Immunology and Molecular Genetics, University of Toronto, Mount Sinai Hospital, Samuel Lunenfeld Research Institute and Toronto General Research Institutes, Toronto, Ontario, Canada ; Department of Hematology, Xijing Hospital, Xian, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
CD25 and CD69 induction by α4β1 outside-in signalling requires TCR early signalling complex proteins. Biochem J 2013; 454:109-21. [PMID: 23758320 PMCID: PMC3749870 DOI: 10.1042/bj20130485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Distinct signalling pathways producing diverse cellular outcomes can utilize similar subsets of proteins. For example, proteins from the TCR (T-cell receptor) ESC (early signalling complex) are also involved in interferon-α receptor signalling. Defining the mechanism for how these proteins function within a given pathway is important in understanding the integration and communication of signalling networks with one another. We investigated the contributions of the TCR ESC proteins Lck (lymphocyte-specific kinase), ZAP-70 (ζ-chain-associated protein of 70 kDa), Vav1, SLP-76 [SH2 (Src homology 2)-domain-containing leukocyte protein of 76 kDa] and LAT (linker for activation of T-cells) to integrin outside-in signalling in human T-cells. Lck, ZAP-70, SLP-76, Vav1 and LAT were activated by α4β1 outside-in signalling, but in a manner different from TCR signalling. TCR stimulation recruits ESC proteins to activate the mitogen-activated protein kinase ERK (extracellular-signal-regulated kinase). α4β1 outside-in-mediated ERK activation did not require TCR ESC proteins. However, α4β1 outside-in signalling induced CD25 and co-stimulated CD69 and this was dependent on TCR ESC proteins. TCR and α4β1 outside-in signalling are integrated through the common use of TCR ESC proteins; however, these proteins display functionally distinct roles in these pathways. These novel insights into the cross-talk between integrin outside-in and TCR signalling pathways are highly relevant to the development of therapeutic strategies to overcome disease associated with T-cell deregulation.
Collapse
|
38
|
Engelmann S, Togni M, Thielitz A, Reichardt P, Kliche S, Reinhold D, Schraven B, Reinhold A. T cell-independent modulation of experimental autoimmune encephalomyelitis in ADAP-deficient mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:4950-9. [PMID: 24101551 DOI: 10.4049/jimmunol.1203340] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The adhesion- and degranulation-promoting adaptor protein (ADAP), expressed in T cells, myeloid cells, and platelets, is known to regulate receptor-mediated inside-out signaling leading to integrin activation and adhesion. In this study, we demonstrate that, upon induction of active experimental autoimmune encephalomyelitis (EAE) by immunization with the myelin oligodendrocyte glycoprotein35-55 peptide, ADAP-deficient mice developed a significantly milder clinical course of EAE and showed markedly less inflammatory infiltrates in the CNS than wild-type mice. Moreover, ADAP-deficient recipients failed to induce EAE after adoptive transfer of myelin oligodendrocyte glycoprotein-specific TCR-transgenic T cells (2D2 T cells). In addition, ex vivo fully activated 2D2 T cells induced significantly less severe EAE in ADAP-deficient recipients. The ameliorated disease in the absence of ADAP was not due to expansion or deletion of a particular T cell subset but rather because of a strong reduction of all inflammatory leukocyte populations invading the CNS. Monitoring the adoptively transferred 2D2 T cells over time demonstrated that they accumulated within the lymph nodes of ADAP-deficient hosts. Importantly, transfer of complete wild-type bone marrow or even bone marrow of 2D2 TCR-transgenic mice was unable to reconstitute EAE in the ADAP-deficient animals, indicating that the milder EAE was dependent on (a) radio-resistant nonhematopoietic cell population(s). Two-photon microscopy of lymph node explants revealed that adoptively transferred lymphocytes accumulated at lymphatic vessels in the lymph nodes of ADAP-deficient mice. Thus, our data identify a T cell-independent mechanism of EAE modulation in ADAP-deficient mice.
Collapse
Affiliation(s)
- Swen Engelmann
- Institute of Molecular and Clinical Immunology, Otto von Guericke University, 39120 Magdeburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wei B, Han L, Abbink TEM, Groppelli E, Lim D, Thaker YR, Gao W, Zhai R, Wang J, Lever A, Jolly C, Wang H, Rudd CE. Immune adaptor ADAP in T cells regulates HIV-1 transcription and cell-cell viral spread via different co-receptors. Retrovirology 2013; 10:101. [PMID: 24047317 PMCID: PMC3851709 DOI: 10.1186/1742-4690-10-101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/12/2013] [Indexed: 11/25/2022] Open
Abstract
Background Immune cell adaptor protein ADAP (adhesion and degranulation-promoting adaptor protein) mediates aspects of T-cell adhesion and proliferation. Despite this, a connection between ADAP and infection by the HIV-1 (human immunodeficiency virus-1) has not been explored. Results In this paper, we show for the first time that ADAP and its binding to SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) regulate HIV-1 infection via two distinct mechanisms and co-receptors. siRNA down-regulation of ADAP, or expression of a mutant that is defective in associating to its binding partner SLP-76 (termed M12), inhibited the propagation of HIV-1 in T-cell lines and primary human T-cells. In one step, ADAP and its binding to SLP-76 were needed for the activation of NF-κB and its transcription of the HIV-1 long terminal repeat (LTR) in cooperation with ligation of co-receptor CD28, but not LFA-1. In a second step, the ADAP-SLP-76 module cooperated with LFA-1 to regulate conjugate formation between T-cells and dendritic cells or other T-cells as well as the development of the virological synapse (VS) and viral spread between immune cells. Conclusions These findings indicate that ADAP regulates two steps of HIV-1 infection cooperatively with two distinct receptors, and as such, serves as a new potential target in the blockade of HIV-1 infection.
Collapse
Affiliation(s)
- Bin Wei
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Multipoint binding of the SLP-76 SH2 domain to ADAP is critical for oligomerization of SLP-76 signaling complexes in stimulated T cells. Mol Cell Biol 2013; 33:4140-51. [PMID: 23979596 DOI: 10.1128/mcb.00410-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The adapter molecules SLP-76 and LAT play central roles in T cell activation by recruiting enzymes and other adapters into multiprotein complexes that coordinate highly regulated signal transduction pathways. While many of the associated proteins have been characterized, less is known concerning the mechanisms of assembly for these dynamic and potentially heterogeneous signaling complexes. Following T cell receptor (TCR) stimulation, SLP-76 is found in structures called microclusters, which contain many signaling complexes. Previous studies showed that a mutation to the SLP-76 C-terminal SH2 domain nearly abolished SLP-76 microclusters, suggesting that the SH2 domain facilitates incorporation of signaling complexes into microclusters. S. C. Bunnell, A. L. Singer, D. I. Hong, B. H. Jacque, M. S. Jordan, M. C. Seminario, V. A. Barr, G. A. Koretzky, and L. E. Samelson, Mol. Cell. Biol., 26:7155-7166, 2006). Using biophysical methods, we demonstrate that the adapter, ADAP, contains three binding sites for SLP-76, and that multipoint binding to ADAP fragments oligomerizes the SLP-76 SH2 domain in vitro. These results were complemented with confocal imaging and functional studies of cells expressing ADAP with various mutations. Our results demonstrate that all three binding sites are critical for SLP-76 microcluster assembly, but any combination of two sites will partially induce microclusters. These data support a model whereby multipoint binding of SLP-76 to ADAP facilitates the assembly of SLP-76 microclusters. This model has implications for the regulation of SLP-76 and LAT microclusters and, as a result, T cell signaling.
Collapse
|
41
|
Smith X, Schneider H, Köhler K, Liu H, Lu Y, Rudd CE. The chemokine CXCL12 generates costimulatory signals in T cells to enhance phosphorylation and clustering of the adaptor protein SLP-76. Sci Signal 2013; 6:ra65. [PMID: 23901140 DOI: 10.1126/scisignal.2004018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The CXC chemokine CXCL12 mediates the chemoattraction of T cells and enhances the stimulation of T cells through the T cell receptor (TCR). The adaptor SLP-76 [Src homology 2 (SH2) domain-containing leukocyte protein of 76 kD] has two key tyrosine residues, Tyr(113) and Tyr(128), that mediate signaling downstream of the TCR. We investigated the effect of CXCL12 on SLP-76 phosphorylation and the TCR-dependent formation of SLP-76 microclusters. Although CXCL12 alone failed to induce SLP-76 cluster formation, it enhanced the number, stability, and phosphorylation of SLP-76 microclusters formed in response to stimulation of the TCR by an activating antibody against CD3, a component of the TCR complex. Addition of CXCL12 to anti-CD3-stimulated cells resulted in F-actin polymerization that stabilized SLP-76 microclusters in the cells' periphery at the interface with antibody-coated coverslips and increased the interaction between SLP-76 clusters and those containing ZAP-70, the TCR-associated kinase that phosphorylates SLP-76, as well as increased TCR-dependent gene expression. Costimulation with CXCL12 and anti-CD3 increased the extent of phosphorylation of SLP-76 at Tyr(113) and Tyr(128), but not that of other TCR-proximal components, and mutation of either one of these residues impaired the CXCL12-dependent effect on SLP-76 microcluster formation, F-actin polymerization, and TCR-dependent gene expression. The effects of CXCL12 on SLP-76 microcluster formation were dependent on the coupling of its receptor CXCR4 to G(i)-family G proteins (heterotrimeric guanine nucleotide-binding proteins). Thus, we identified a costimulatory mechanism by which CXCL12 and antigen converge at SLP-76 microcluster formation to enhance T cell responses.
Collapse
Affiliation(s)
- Xin Smith
- Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 OXY, UK
| | | | | | | | | | | |
Collapse
|
42
|
Exon array analysis of alternative splicing of genes in SOD1G93A transgenic mice. Appl Biochem Biotechnol 2013; 170:301-19. [PMID: 23508861 DOI: 10.1007/s12010-013-0155-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 02/18/2013] [Indexed: 01/15/2023]
Abstract
Alternative splicing is a common strategy for creating functional diversities of proteins. While conventional identification of splice variants generally targets individual genes in amyotrophic lateral sclerosis, we present a novel exon-centric array that allows genome-wide identification of splice variants and concurrently provides analysis of gene expression. Compare 1 was asymptomatic SOD1G93A transgenic mice with nontransgenic littermates; compare 2 was symptomatic with asymptomatic transgenic mice. RT-PCR was performed to validate. Pathway and GO analysis were performed on abnormal genes. These findings could guide us to demonstrated the potential influence of mutant human CuZn-SOD1 and of splicing regulation in pathological processes.
Collapse
|
43
|
Chen EJH, Shaffer MH, Williamson EK, Huang Y, Burkhardt JK. Ezrin and moesin are required for efficient T cell adhesion and homing to lymphoid organs. PLoS One 2013; 8:e52368. [PMID: 23468835 PMCID: PMC3585410 DOI: 10.1371/journal.pone.0052368] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/12/2012] [Indexed: 01/13/2023] Open
Abstract
T cell trafficking between the blood and lymphoid organs is a complex, multistep process that requires several highly dynamic and coordinated changes in cyto-architecture. Members of the ezrin, radixin and moesin (ERM) family of actin-binding proteins have been implicated in several aspects of this process, but studies have yielded conflicting results. Using mice with a conditional deletion of ezrin in CD4+ cells and moesin-specific siRNA, we generated T cells lacking ERM proteins, and investigated the effect on specific events required for T cell trafficking. ERM-deficient T cells migrated normally in multiple in vitro and in vivo assays, and could undergo efficient diapedesis in vitro. However, these cells were impaired in their ability to adhere to the β1 integrin ligand fibronectin, and to polarize appropriately in response to fibronectin and VCAM-1 binding. This defect was specific for β1 integrins, as adhesion and polarization in response to ICAM-1 were normal. In vivo, ERM-deficient T cells showed defects in homing to lymphoid organs. Taken together, these results show that ERM proteins are largely dispensable for T cell chemotaxis, but are important for β1 integrin function and homing to lymphoid organs.
Collapse
Affiliation(s)
- Emily J. H. Chen
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Meredith H. Shaffer
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Edward K. Williamson
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yanping Huang
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Janis K. Burkhardt
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
44
|
Biomolecular events in cancer revealed by attractor metagenes. PLoS Comput Biol 2013; 9:e1002920. [PMID: 23468608 PMCID: PMC3581797 DOI: 10.1371/journal.pcbi.1002920] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022] Open
Abstract
Mining gene expression profiles has proven valuable for identifying signatures serving as surrogates of cancer phenotypes. However, the similarities of such signatures across different cancer types have not been strong enough to conclude that they represent a universal biological mechanism shared among multiple cancer types. Here we present a computational method for generating signatures using an iterative process that converges to one of several precise attractors defining signatures representing biomolecular events, such as cell transdifferentiation or the presence of an amplicon. By analyzing rich gene expression datasets from different cancer types, we identified several such biomolecular events, some of which are universally present in all tested cancer types in nearly identical form. Although the method is unsupervised, we show that it often leads to attractors with strong phenotypic associations. We present several such multi-cancer attractors, focusing on three that are prominent and sharply defined in all cases: a mesenchymal transition attractor strongly associated with tumor stage, a mitotic chromosomal instability attractor strongly associated with tumor grade, and a lymphocyte-specific attractor. Cancer is known to be characterized by several unifying biological capabilities or “hallmarks.” However, attempts to computationally identify patterns, such as gene expression signatures, shared across many different cancer types have been largely unsuccessful. A typical approach has been to classify samples into mutually exclusive subtypes, each of which is characterized by a particular gene signature. Although occasional similarities of such signatures in different cancer types exist, these similarities have not been sufficiently strong to conclude that they reflect the same biological event. By contrast, we have developed a computational methodology that has identified some signatures of co-expressed genes exhibiting remarkable similarity across many different cancer types. These signatures appear as stable “attractors” of an iterative computational procedure that tends to collect mutually associated genes, so that its convergence can point to the core (“heart”) of the underlying biological co-expression mechanism. One of these “pan-cancer” attractors corresponds to a transdifferentiation of cancer cells empowering them with invasiveness and motility. Another represents a mitotic chromosomal instability of cancer cells. A third attractor is lymphocyte-specific.
Collapse
|
45
|
Multimolecular signaling complexes enable Syk-mediated signaling of CD36 internalization. Dev Cell 2013; 24:372-83. [PMID: 23395392 DOI: 10.1016/j.devcel.2013.01.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 12/20/2012] [Accepted: 01/10/2013] [Indexed: 12/16/2022]
Abstract
CD36 is a versatile receptor known to play a central role in the development of atherosclerosis, the pathogenesis of malaria, and the removal of apoptotic cells. Remarkably, the short cytosolically exposed regions of CD36 lack identifiable motifs, which has hampered elucidation of its mode of signaling. Using a combination of phosphoprotein isolation, mass spectrometry, superresolution imaging, and gene silencing, we have determined that the receptor induces ligand internalization through a heteromeric complex consisting of CD36, β1 and/or β2 integrins, and the tetraspanins CD9 and/or CD81. This receptor complex serves to link CD36 to the adaptor FcRγ, which bears an immunoreceptor tyrosine activation motif. By coupling to FcRγ, CD36 is able to engage Src-family kinases and Syk, which in turn drives the internalization of CD36 and its bound ligands.
Collapse
|
46
|
Yang W, Tang H, Zhang Y, Tang X, Zhang J, Sun L, Yang J, Cui Y, Zhang L, Hirankarn N, Cheng H, Pan HF, Gao J, Lee TL, Sheng Y, Lau CS, Li Y, Chan TM, Yin X, Ying D, Lu Q, Leung AMH, Zuo X, Chen X, Tong KL, Zhou F, Diao Q, Tse NKC, Xie H, Mok CC, Hao F, Wong SN, Shi B, Lee KW, Hui Y, Ho MHK, Liang B, Lee PPW, Cui H, Guo Q, Chung BHY, Pu X, Liu Q, Zhang X, Zhang C, Chong CY, Fang H, Wong RWS, Sun Y, Mok MY, Li XP, Avihingsanon Y, Zhai Z, Rianthavorn P, Deekajorndej T, Suphapeetiporn K, Gao F, Shotelersuk V, Kang X, Ying SKY, Zhang L, Wong WHS, Zhu D, Fung SKS, Zeng F, Lai WM, Wong CM, Ng IOL, Garcia-Barceló MM, Cherny SS, Shen N, Tam PKH, Sham PC, Ye DQ, Yang S, Zhang X, Lau YL. Meta-analysis followed by replication identifies loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with systemic lupus erythematosus in Asians. Am J Hum Genet 2013; 92:41-51. [PMID: 23273568 DOI: 10.1016/j.ajhg.2012.11.018] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/12/2012] [Accepted: 11/28/2012] [Indexed: 11/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototype autoimmune disease with a strong genetic involvement and ethnic differences. Susceptibility genes identified so far only explain a small portion of the genetic heritability of SLE, suggesting that many more loci are yet to be uncovered for this disease. In this study, we performed a meta-analysis of genome-wide association studies on SLE in Chinese Han populations and followed up the findings by replication in four additional Asian cohorts with a total of 5,365 cases and 10,054 corresponding controls. We identified genetic variants in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with the disease. These findings point to potential roles of cell-cycle regulation, autophagy, and DNA demethylation in SLE pathogenesis. For the region involving TET3 and that involving CDKN1B, multiple independent SNPs were identified, highlighting a phenomenon that might partially explain the missing heritability of complex diseases.
Collapse
Affiliation(s)
- Wanling Yang
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Alenghat FJ, Baca QJ, Rubin NT, Pao LI, Matozaki T, Lowell CA, Golan DE, Neel BG, Swanson KD. Macrophages require Skap2 and Sirpα for integrin-stimulated cytoskeletal rearrangement. J Cell Sci 2012; 125:5535-45. [PMID: 22976304 DOI: 10.1242/jcs.111260] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Macrophages migrate to sites of insult during normal inflammatory responses. Integrins guide such migration, but the transmission of signals from integrins into the requisite cytoskeletal changes is poorly understood. We have discovered that the hematopoietic adaptor protein Skap2 is necessary for macrophage migration, chemotaxis, global actin reorganization and local actin reorganization upon integrin engagement. Binding of phosphatidylinositol [3,4,5]-triphosphate to the Skap2 pleckstrin-homology (PH) domain, which relieves its conformational auto-inhibition, is critical for this integrin-driven cytoskeletal response. Skap2 enables integrin-induced tyrosyl phosphorylation of Src-family kinases (SFKs), Adap, and Sirpα, establishing their roles as signaling partners in this process. Furthermore, macrophages lacking functional Sirpα unexpectedly have impaired local integrin-induced responses identical to those of Skap2(-/-) macrophages, and Skap2 requires Sirpα for its recruitment to engaged integrins and for coordinating downstream actin rearrangement. By revealing the positive-regulatory role of Sirpα in a Skap2-mediated mechanism connecting integrin engagement with cytoskeletal rearrangement, these data demonstrate that Sirpα is not exclusively immunoinhibitory, and illuminate previously unexplained observations implicating Skap2 and Sirpα in mouse models of inflammatory disease.
Collapse
Affiliation(s)
- Francis J Alenghat
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kuras Z, Yun YH, Chimote AA, Neumeier L, Conforti L. KCa3.1 and TRPM7 channels at the uropod regulate migration of activated human T cells. PLoS One 2012; 7:e43859. [PMID: 22952790 PMCID: PMC3428288 DOI: 10.1371/journal.pone.0043859] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
The migration of T lymphocytes is an essential part of the adaptive immune response as T cells circulate around the body to carry out immune surveillance. During the migration process T cells polarize, forming a leading edge at the cell front and a uropod at the cell rear. Our interest was in studying the involvement of ion channels in the migration of activated human T lymphocytes as they modulate intracellular Ca(2+) levels. Ca(2+) is a key regulator of cellular motility. To this purpose, we created protein surfaces made of the bio-polymer PNMP and coated with ICAM-1, ligand of LFA-1. The LFA-1 and ICAM-1 interaction facilitates T cell movement from blood into tissues and it is critical in immune surveillance and inflammation. Activated human T lymphocytes polarized and migrated on ICAM-1 surfaces by random walk with a mean velocity of ∼6 µm/min. Confocal microscopy indicated that Kv1.3, CRAC, and TRPM4 channels positioned in the leading-edge, whereas KCa3.1 and TRPM7 channels accumulated in the uropod. The localization of KCa3.1 and TRPM7 at the uropod was associated with oscillations in intracellular Ca(2+) levels that we measured in this cell compartment. Further studies with blockers against Kv1.3 (ShK), KCa3.1 (TRAM-34), CRAC (SKF-96365), TRPM7 (2-APB), and TRPM4 (glibenclamide) indicated that blockade of KCa3.1 and TRPM7, and not Kv1.3, CRAC or TRPM4, inhibits the T cell migration. The involvement of TRPM7 in cell migration was confirmed with siRNAs against TRPM7. Downregulation of TRPM7 significantly reduced the number of migrating T cells and the mean velocity of the migrating T cells. These results indicate that KCa3.1 and TRPM7 selectively localize at the uropod of migrating T lymphocytes and are key components of the T cell migration machinery.
Collapse
Affiliation(s)
- Zerrin Kuras
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Yeo-Heung Yun
- Department of Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, United States of America
| | - Ameet A. Chimote
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Lisa Neumeier
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Laura Conforti
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
49
|
Kim HS, Long EO. Complementary phosphorylation sites in the adaptor protein SLP-76 promote synergistic activation of natural killer cells. Sci Signal 2012; 5:ra49. [PMID: 22786724 DOI: 10.1126/scisignal.2002754] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The cytotoxic effects of natural killer (NK) cells and their ability to secrete cytokines require synergistic signals from specific pairs of co-activation receptors, such as CD314 (also known as NKG2D) and CD244 (2B4), which bind to distinct ligands present on target cells. These signals are required to overcome inhibition mediated by the E3 ubiquitin ligase c-Cbl of the guanine nucleotide exchange factor Vav1, which promotes activation of NK cells. Here, we showed that the adaptor protein SLP-76 (Src homology 2 domain-containing leukocyte phosphoprotein of 76 kilodaltons) was required for this synergy and that distinct tyrosine residues in SLP-76 were phosphorylated by each member of a pair of synergistic receptors. Selective phosphorylation of tyrosine 113 or tyrosine 128 in SLP-76 enabled binding of SLP-76 to Vav1. Selective phosphorylation of SLP-76 at these residues was restricted to receptors that stimulated ligand-dependent target cell killing; antibody-dependent stimulation of the Fc receptor CD16 promoted phosphorylation at both sites. Knockdown and reconstitution experiments with SLP-76 mutant proteins showed the distinct role of each tyrosine in the synergistic mobilization of Ca2+, revealing an unexpected degree of selectivity in the phosphorylation of SLP-76 by NK cell co-activation receptors. Together, these data suggest that combined phosphorylation of separate tyrosine residues in SLP-76 forms the basis of synergistic NK cell activation.
Collapse
Affiliation(s)
- Hun Sik Kim
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| | | |
Collapse
|
50
|
Togni M, Engelmann S, Reinhold D, Schraven B, Reinhold A. The adapter protein ADAP is required for selected dendritic cell functions. Cell Commun Signal 2012; 10:14. [PMID: 22672517 PMCID: PMC3403907 DOI: 10.1186/1478-811x-10-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/06/2012] [Indexed: 11/17/2022] Open
Abstract
Background The cytosolic adaptor protein ADAP (adhesion and degranulation promoting adapter protein) is expressed by T cells, natural killer cells, myeloid cells and platelets. ADAP is involved in T-cell-receptor-mediated inside-out signaling, which leads to integrin activation, adhesion and reorganization of the actin cytoskeleton. However, little is known about the role of ADAP in myeloid cells. In the present study, we analyzed the function of ADAP in bone-marrow-derived dendritic cells (BMDCs) from ADAP-deficient mice. Results ADAP-deficient BMDCs showed almost normal levels of antigen uptake, adhesion, maturation, migration from the periphery to the draining lymph nodes, antigen-specific T-cell activation, and production of the proinflammatory cytokines IL-6 and TNF-∝. Furthermore, we provide evidence that the activation of signaling pathways after lipopolysaccharide (LPS) stimulation are not affected by the loss of ADAP. In contrast, ADAP-deficient BMDCs showed defects in CD11c-mediated cellular responses, with significantly diminished production of IL-6, TNF-∝ and IL-10. Actin polymerization was enhanced after CD11c integrin stimulation. Conclusions In summary, we propose that the adapter molecule ADAP is critical for selected CD11c integrin-mediated functions of dendritic cells.
Collapse
Affiliation(s)
- Mauro Togni
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|