1
|
Antolínez S, Hadden-Perilla JA. All-atom MD simulations of the HPV16 capsid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.22.655575. [PMID: 40475506 PMCID: PMC12139892 DOI: 10.1101/2025.05.22.655575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
Human papillomavirus (HPV) type 16, one of over 200 known genotypes, is a major cause of anogenital and oropharyngeal cancers worldwide. The L1 protein capsid - which represents the exterior shell of the virus - plays essential roles in host cell adhesion and entry, and is the major antigen used in vaccines that protect against HPV. Here we report an all-atom molecular dynamics (MD) simulation of the intact capsid in explicit solvent, a calculation comprising 16.8 million atoms. The detailed motions and emergent biophysical properties revealed by this simulation provide critical insights into capsid function and immunogenicity, establishing a new platform for rational drug design and antibody engineering.
Collapse
Affiliation(s)
- Santiago Antolínez
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | | |
Collapse
|
2
|
Kable B, Portillo-Ledesma S, Popova EY, Jentink N, Swulius M, Li Z, Schlick T, Grigoryev SA. Compromised two-start zigzag chromatin folding in immature mouse retina cells driven by irregularly spaced nucleosomes with short DNA linkers. Nucleic Acids Res 2025; 53:gkaf457. [PMID: 40464692 PMCID: PMC12135184 DOI: 10.1093/nar/gkaf457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/28/2025] [Accepted: 05/20/2025] [Indexed: 06/11/2025] Open
Abstract
The formation of condensed heterochromatin is critical for establishing cell-specific transcriptional programs. To reveal structural transitions underlying heterochromatin formation in maturing mouse rod photoreceptors, we apply cryo-electron microscopy (cryo-EM) tomography, AI-assisted denoising, and molecular modeling. We find that chromatin isolated from immature retina cells contains many closely apposed nucleosomes with extremely short or absent nucleosome linkers, which are inconsistent with the typical two-start zigzag chromatin folding. In mature retina cells, the fraction of short-linker nucleosomes is much lower, supporting stronger chromatin compaction. By cryo-EM-assisted nucleosome interaction capture, we observe that chromatin in immature retina is enriched with i ± 1 interactions, while chromatin in mature retina contains predominantly i ± 2 interactions typical of the two-start zigzag. By mesoscale modeling and computational simulation, we clarify that the unusually short linkers typical of immature retina are sufficient to inhibit the two-start zigzag and chromatin compaction by the interference of very short linkers with linker DNA stems. We propose that this short linker composition renders nucleosome arrays more open in immature retina and that, as the linker DNA length increases in mature retina, chromatin becomes globally condensed via tight zigzag folding. This mechanism may be broadly utilized to introduce higher chromatin folding entropy for epigenomic plasticity.
Collapse
Affiliation(s)
- Brianna Kable
- Department Biochemistry & Molecular Biology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, United States
| | - Stephanie Portillo-Ledesma
- Department of Chemistry and Simons Center for Computational Physical Chemistry, New York University, New York, NY 10003, United States
| | - Evgenya Y Popova
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, United States
| | - Nathan Jentink
- Department Biochemistry & Molecular Biology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, United States
| | - Matthew Swulius
- Department Biochemistry & Molecular Biology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, United States
| | - Zilong Li
- Department of Chemistry and Simons Center for Computational Physical Chemistry, New York University, New York, NY 10003, United States
| | - Tamar Schlick
- Department of Chemistry and Simons Center for Computational Physical Chemistry, New York University, New York, NY 10003, United States
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street New York, NY 10012, United States
- New York University–East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200122, China
| | - Sergei A Grigoryev
- Department Biochemistry & Molecular Biology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, United States
| |
Collapse
|
3
|
Portillo-Ledesma S, Hang M, Schlick T. Regulation of Genome Architecture in Huntington's Disease. Biochemistry 2025; 64:2100-2115. [PMID: 40287840 PMCID: PMC12060273 DOI: 10.1021/acs.biochem.5c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Huntington's disease (HD) is a neurological condition caused by an excessive expansion of CAG repeats in the Huntingtin (HTT) gene. Although experiments have shown an altered epigenetic landscape and chromatin architecture upon HD development, the structural consequences on the HTT gene remain elusive. Structural data are only available for model nucleosome systems and yeast systems with human nucleosomes. Here, we use our experimentally validated nucleosome-resolution mesoscale chromatin model to investigate folding changes of the HTT gene associated with HD. We investigate how the histone fold domain of the variant macroH2A1, a biomarker of HD, affects the genome structure by modeling HD-like systems that contain (i) 100% canonical, (ii) 100% macroH2A1, (iii) 50% canonical and 50% macroH2A1, and (iv) 100% hybrid cores (one canonical H2A and one macroH2A1 per nucleosome). Then, we model the mouse HTT gene in healthy and HD conditions by incorporating the CAG expansion and macroH2A1 cores, reducing the linker histone density and tail acetylation levels, and incorporating genomic contacts. Overall, our results show that the histone fold domain of macroH2A1 affects chromatin compaction in a fiber-dependent manner (i.e., nucleosome distribution dependent) and can thus both enhance or repress HTT gene expression. Our modeling of the HTT gene shows that HTT is less compact in the diseased condition, which could accelerate the production of the mutated protein. By suggesting the structural biophysical consequences of the HTT gene under HD conditions, our findings may help in the development of diagnostic and therapeutic treatments for HD.
Collapse
Affiliation(s)
- Stephanie Portillo-Ledesma
- Department
of Chemistry, New York University, 100 Washington Square East, Silver
Building, New York, New York 10003, United States
- Simons
Center for Computational Physical Chemistry, New York University, 24 Waverly Place, Silver Building, New York, New York 10003, United States
| | - Minna Hang
- Department
of Chemistry, New York University, 100 Washington Square East, Silver
Building, New York, New York 10003, United States
| | - Tamar Schlick
- Department
of Chemistry, New York University, 100 Washington Square East, Silver
Building, New York, New York 10003, United States
- Courant
Institute of Mathematical Sciences, New
York University, 251 Mercer St., New York, New York 10012, United States
- New
York University-East China Normal University Center for Computational
Chemistry, New York University Shanghai, Shanghai 200122, China
- Simons
Center for Computational Physical Chemistry, New York University, 24 Waverly Place, Silver Building, New York, New York 10003, United States
| |
Collapse
|
4
|
Kable B, Portillo-Ledesma S, Popova EY, Jentink N, Swulius M, Li Z, Schlick T, Grigoryev SA. Compromised 2-start zigzag chromatin folding in immature mouse retina cells driven by irregularly spaced nucleosomes with short DNA linkers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633430. [PMID: 39868111 PMCID: PMC11760397 DOI: 10.1101/2025.01.16.633430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The formation of condensed heterochromatin is critical for establishing cell-specific transcriptional programs. To reveal structural transitions underlying heterochromatin formation in maturing mouse rod photoreceptors, we apply cryo-EM tomography, AI-assisted deep denoising, and molecular modeling. We find that chromatin isolated from immature retina cells contains many closely apposed nucleosomes with extremely short or absent nucleosome linkers, which are inconsistent with the typical two-start zigzag chromatin folding. In mature retina cells, the fraction of short-linker nucleosomes is much lower, supporting stronger chromatin compaction. By Cryo-EM-assisted nucleosome interaction capture we observe that chromatin in immature retina is enriched with i±1 interactions while chromatin in mature retina contains predominantly i±2 interactions typical of the two-start zigzag. By mesoscale modeling and computational simulation, we clarify that the unusually short linkers typical of immature retina are sufficient to inhibit the two-start zigzag and chromatin compaction by the interference of very short linkers with linker DNA stems. We propose that this short linker composition renders nucleosome arrays more open in immature retina and that, as the linker DNA length increases in mature retina, chromatin fibers become globally condensed via tight zigzag folding. This mechanism may be broadly utilized to introduce higher chromatin folding entropy for epigenomic plasticity.
Collapse
|
5
|
Matsko NB, Schorb M, Schwab Y. Selective signal enhancement in Fourier space as a tool for discovering ultrastructural organization of macromolecules from in situ TEM. J Struct Biol 2024; 216:108128. [PMID: 39284397 DOI: 10.1016/j.jsb.2024.108128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
We present a Fourier transform (FT) based analytical method that allows to obtain of ultrastructural details from TEM images at sub-nanometer scale applying a selective filtering for singular macromolecule electron microscopy density information. It can be applied to high-pressure frozen, frozen hydrated and epoxy freeze substituted and embedded biological species. Both 2D projections and orthoslices from reconstructed tomograms can be used as a source of structural information. The key to the method is to select the macromolecule or organelle of interest with an accuracy of ≥ 7 - 3 nm (depending on pixel size of initial tilt series or singular image acquisition) and explore both the central low frequency FT intensity and diffraction regions to obtain the spatial structural organization and its dimensional characteristics, respectively. We also introduce a structure-specific selective mask FT filtering approach that can significantly improve image information even in poorly contrasted TEM of resin sections without heavy metal been used. The described method elucidates chromatin architecture without the need of averaging. A zigzag symmetry of 30 nm diameter chromatin fibers which in general is a controversial topic of research has been identified for C. elegans cells in vivo with sub-nanometer details being preserved in the images.
Collapse
Affiliation(s)
- Nadejda B Matsko
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Max-Planck Institute for Medical Research, Department of Biomolecular Mechanisms, Jahn-Str. 29, D-69120 Heidelberg, Germany.
| | - Martin Schorb
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
6
|
Aljahani A, Mauksch C, Oudelaar AM. The relationship between nucleosome positioning and higher-order genome folding. Curr Opin Cell Biol 2024; 89:102398. [PMID: 38991477 DOI: 10.1016/j.ceb.2024.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024]
Abstract
Eukaryotic genomes are organized into 3D structures, which range from small-scale nucleosome arrays to large-scale chromatin domains. These structures have an important role in the regulation of transcription and other nuclear processes. Despite advances in our understanding of the properties, functions, and underlying mechanisms of genome structures, there are many open questions about the interplay between these structures across scales. In particular, it is not well understood if and how 1D features of nucleosome arrays influence large-scale 3D genome folding patterns. In this review, we discuss recent studies that address these questions and summarize our current understanding of the relationship between nucleosome positioning and higher-order genome folding.
Collapse
Affiliation(s)
- Abrar Aljahani
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Göttingen, Germany; University of Göttingen, Göttingen, Germany
| | - Clemens Mauksch
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Göttingen, Germany; University of Göttingen, Göttingen, Germany
| | - A Marieke Oudelaar
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Göttingen, Germany.
| |
Collapse
|
7
|
Clerkin AB, Pagane N, West DW, Spakowitz AJ, Risca VI. Determining mesoscale chromatin structure parameters from spatially correlated cleavage data using a coarse-grained oligonucleosome model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605011. [PMID: 39131347 PMCID: PMC11312488 DOI: 10.1101/2024.07.28.605011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The three-dimensional structure of chromatin has emerged as an important feature of eukaryotic gene regulation. Recent technological advances in DNA sequencing-based assays have revealed locus- and chromatin state-specific structural patterns at the length scale of a few nucleosomes (~1 kb). However, interpreting these data sets remains challenging. Radiation-induced correlated cleavage of chromatin (RICC-seq) is one such chromatin structure assay that maps DNA-DNA-contacts at base pair resolution by sequencing single-stranded DNA fragments released from irradiated cells. Here, we develop a flexible modeling and simulation framework to enable the interpretation of RICC-seq data in terms of oligonucleosome structure ensembles. Nucleosomes are modeled as rigid bodies with excluded volume and adjustable DNA wrapping, connected by linker DNA modeled as a worm-like chain. We validate the model's parameters against cryo-electron microscopy and sedimentation data. Our results show that RICC-seq is sensitive to nucleosome spacing, nucleosomal DNA wrapping, and the strength of inter-nucleosome interactions. We show that nucleosome repeat lengths consistent with orthogonal assays can be extracted from experimental RICC-seq data using a 1D convolutional neural net trained on RICC-seq signal predicted from simulated ensembles. We thus provide a suite of analysis tools that add quantitative structural interpretability to RICC-seq experiments.
Collapse
Affiliation(s)
- Ariana Brenner Clerkin
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
- Tri-Institutional PhD Program in Computational Biology and Medicine, Cornell University, New York, NY
| | - Nicole Pagane
- Present affiliation: Computational and Systems Biology PhD Program, Massachusetts Institute of Technology, Cambridge, MA
| | - Devany W. West
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| | | | - Viviana I. Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| |
Collapse
|
8
|
Portillo-Ledesma S, Schlick T. Regulation of chromatin architecture by protein binding: insights from molecular modeling. Biophys Rev 2024; 16:331-343. [PMID: 39099845 PMCID: PMC11297222 DOI: 10.1007/s12551-024-01195-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/22/2024] [Indexed: 08/06/2024] Open
Abstract
Histone and non-histone proteins play key roles in the activation and repression of genes. In addition to experimental studies of their regulation of gene expression, molecular modeling at the nucleosome, chromatin, and chromosome levels can contribute insights into the molecular mechanisms involved. In this review, we provide an overview for protein-bound chromatin modeling, and describe how our group has integrated protein binding into genome systems across the scales, from all-atom to coarse-grained models, using explicit to implicit descriptions. We describe the associated applications to protein binding effects and biological mechanisms of genome folding and gene regulation. We end by illustrating the application of machine learning tools like AlphaFold2 to proteins relevant to chromatin systems.
Collapse
Affiliation(s)
- Stephanie Portillo-Ledesma
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 USA
- Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York University, New York, NY 10003 USA
| | - Tamar Schlick
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 USA
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 USA
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, 200122 China
- Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York University, New York, NY 10003 USA
| |
Collapse
|
9
|
Mondal B, Chakraborty D, Hori N, Nguyen HT, Thirumalai D. Competition between Stacking and Divalent Cation-Mediated Electrostatic Interactions Determines the Conformations of Short DNA Sequences. J Chem Theory Comput 2024; 20:2934-2946. [PMID: 38498914 DOI: 10.1021/acs.jctc.3c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Interplay between divalent cations (Mg2+ and Ca2+) and single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), as well as stacking interactions, is important in nucleosome stability and phase separation in nucleic acids. Quantitative techniques accounting for ion-DNA interactions are needed to obtain insights into these and related problems. Toward this end, we created a sequence-dependent computational TIS-ION model that explicitly accounts for monovalent and divalent ions. Simulations of the rigid 24 base-pair (bp) dsDNA and flexible ssDNA sequences, dT30 and dA30, with varying amounts of the divalent cations show that the calculated excess number of ions around the dsDNA and ssDNA agree quantitatively with ion-counting experiments. Using an ensemble of all-atom structures generated from coarse-grained simulations, we calculated the small-angle X-ray scattering profiles, which are in excellent agreement with experiments. Although ion-counting experiments mask the differences between Mg2+ and Ca2+, we find that Mg2+ binds to the minor grooves and phosphate groups, whereas Ca2+ binds specifically to the minor groove. Both Mg2+ and Ca2+ exhibit a tendency to bind to the minor groove of DNA as opposed to the major groove. The dA30 conformations are dominated by stacking interactions, resulting in structures with considerable helical order. The near cancellation of the favorable stacking and unfavorable electrostatic interactions leads to dT30 populating an ensemble of heterogeneous conformations. The successful applications of the TIS-ION model are poised to confront many problems in DNA biophysics.
Collapse
Affiliation(s)
- Balaka Mondal
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| | - Debayan Chakraborty
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| | - Naoto Hori
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Hung T Nguyen
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| | - D Thirumalai
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
- Department of Physics, The University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Song K, Wang Y, Dong W, Li Z, Xia Q, Zhu P, He H. Decoding silkworm spinning programmed by pH and metal ions. Sci Bull (Beijing) 2024; 69:792-802. [PMID: 38245448 DOI: 10.1016/j.scib.2023.12.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 11/11/2023] [Accepted: 12/28/2023] [Indexed: 01/22/2024]
Abstract
Silk is one of the toughest fibrous materials known despite spun at ambient temperature and pressure with water as a solvent. It is a great challenge to reproduce high-performance artificial fibers comparable to natural silk by bionic for the incomplete understanding of silkworm spinning in vivo. Here, we found that amphipol and digitonin stabilized the structure of natural silk fibroin (NSF) by a large-scale screening in vitro, and then studied the close-to-native ultrastructure and hierarchical assembly of NSF in the silk gland lumen. Our study showed that NSF formed reversible flexible nanofibrils mainly composed of random coils with a sedimentation coefficient of 5.8 S and a diameter of about 4 nm, rather than a micellar or rod-like structure assembled by the aggregation of globular NSF molecules. Metal ions were required for NSF nanofibril formation. The successive pH decrease from posterior silk gland (PSG) to anterior silk gland (ASG) resulted in a gradual increase in NSF hydrophobicity, thus inducing the sol-gelation transition of NSF nanofibrils. NSF nanofibrils were randomly dispersed from PSG to ASG-1, and self-assembled into anisotropic herringbone patterns at ASG-2 near the spinneret ready for silkworm spinning. Our findings reveal the controlled self-assembly mechanism of the multi-scale hierarchical architecture of NSF from nanofibrils to herringbone patterns programmed by metal ions and pH gradient, which provides novel insights into the spinning mechanism of silk-secreting animals and bioinspired design of high-performance fibers.
Collapse
Affiliation(s)
- Kai Song
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yejing Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Wenjie Dong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenzhen Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| | - Ping Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huawei He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Chongqing 400715, China.
| |
Collapse
|
11
|
Abstract
DNA nanotechnology is a rapidly developing field that uses DNA as a building material for nanoscale structures. Key to the field's development has been the ability to accurately describe the behavior of DNA nanostructures using simulations and other modeling techniques. In this Review, we present various aspects of prediction and control in DNA nanotechnology, including the various scales of molecular simulation, statistical mechanics, kinetic modeling, continuum mechanics, and other prediction methods. We also address the current uses of artificial intelligence and machine learning in DNA nanotechnology. We discuss how experiments and modeling are synergistically combined to provide control over device behavior, allowing scientists to design molecular structures and dynamic devices with confidence that they will function as intended. Finally, we identify processes and scenarios where DNA nanotechnology lacks sufficient prediction ability and suggest possible solutions to these weak areas.
Collapse
Affiliation(s)
- Marcello DeLuca
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Sebastian Sensale
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Po-An Lin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Gaurav Arya
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
12
|
Lin X, Zhang B. Explicit ion modeling predicts physicochemical interactions for chromatin organization. eLife 2024; 12:RP90073. [PMID: 38289342 PMCID: PMC10945522 DOI: 10.7554/elife.90073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Molecular mechanisms that dictate chromatin organization in vivo are under active investigation, and the extent to which intrinsic interactions contribute to this process remains debatable. A central quantity for evaluating their contribution is the strength of nucleosome-nucleosome binding, which previous experiments have estimated to range from 2 to 14 kBT. We introduce an explicit ion model to dramatically enhance the accuracy of residue-level coarse-grained modeling approaches across a wide range of ionic concentrations. This model allows for de novo predictions of chromatin organization and remains computationally efficient, enabling large-scale conformational sampling for free energy calculations. It reproduces the energetics of protein-DNA binding and unwinding of single nucleosomal DNA, and resolves the differential impact of mono- and divalent ions on chromatin conformations. Moreover, we showed that the model can reconcile various experiments on quantifying nucleosomal interactions, providing an explanation for the large discrepancy between existing estimations. We predict the interaction strength at physiological conditions to be 9 kBT, a value that is nonetheless sensitive to DNA linker length and the presence of linker histones. Our study strongly supports the contribution of physicochemical interactions to the phase behavior of chromatin aggregates and chromatin organization inside the nucleus.
Collapse
Affiliation(s)
- Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
13
|
Zhao H, Wu H, Guseman A, Abeykoon D, Camara CM, Dalal Y, Fushman D, Papoian GA. The role of cryptic ancestral symmetry in histone folding mechanisms across Eukarya and Archaea. PLoS Comput Biol 2024; 20:e1011721. [PMID: 38181064 PMCID: PMC10796010 DOI: 10.1371/journal.pcbi.1011721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/18/2024] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
Histones compact and store DNA in both Eukarya and Archaea, forming heterodimers in Eukarya and homodimers in Archaea. Despite this, the folding mechanism of histones across species remains unclear. Our study addresses this gap by investigating 11 types of histone and histone-like proteins across humans, Drosophila, and Archaea through multiscale molecular dynamics (MD) simulations, complemented by NMR and circular dichroism experiments. We confirm and elaborate on the widely applied "folding upon binding" mechanism of histone dimeric proteins and report a new alternative conformation, namely, the inverted non-native dimer, which may be a thermodynamically metastable configuration. Protein sequence analysis indicated that the inverted conformation arises from the hidden ancestral head-tail sequence symmetry underlying all histone proteins, which is congruent with the previously proposed histone evolution hypotheses. Finally, to explore the potential formations of homodimers in Eukarya, we utilized MD-based AWSEM and AI-based AlphaFold-Multimer models to predict their structures and conducted extensive all-atom MD simulations to examine their respective structural stabilities. Our results suggest that eukaryotic histones may also form stable homodimers, whereas their disordered tails bring significant structural asymmetry and tip the balance towards the formation of commonly observed heterotypic dimers.
Collapse
Affiliation(s)
- Haiqing Zhao
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hao Wu
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
| | - Alex Guseman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - Dulith Abeykoon
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - Christina M. Camara
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David Fushman
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - Garegin A. Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
14
|
Lin X, Zhang B. Explicit Ion Modeling Predicts Physicochemical Interactions for Chromatin Organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541030. [PMID: 37293007 PMCID: PMC10245791 DOI: 10.1101/2023.05.16.541030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecular mechanisms that dictate chromatin organization in vivo are under active investigation, and the extent to which intrinsic interactions contribute to this process remains debatable. A central quantity for evaluating their contribution is the strength of nucleosome-nucleosome binding, which previous experiments have estimated to range from 2 to 14 kBT. We introduce an explicit ion model to dramatically enhance the accuracy of residue-level coarse-grained modeling approaches across a wide range of ionic concentrations. This model allows for de novo predictions of chromatin organization and remains computationally efficient, enabling large-scale conformational sampling for free energy calculations. It reproduces the energetics of protein-DNA binding and unwinding of single nucleosomal DNA, and resolves the differential impact of mono and divalent ions on chromatin conformations. Moreover, we showed that the model can reconcile various experiments on quantifying nucleosomal interactions, providing an explanation for the large discrepancy between existing estimations. We predict the interaction strength at physiological conditions to be 9 kBT, a value that is nonetheless sensitive to DNA linker length and the presence of linker histones. Our study strongly supports the contribution of physicochemical interactions to the phase behavior of chromatin aggregates and chromatin organization inside the nucleus.
Collapse
Affiliation(s)
- Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
15
|
Hou Z, Nightingale F, Zhu Y, MacGregor-Chatwin C, Zhang P. Structure of native chromatin fibres revealed by Cryo-ET in situ. Nat Commun 2023; 14:6324. [PMID: 37816746 PMCID: PMC10564948 DOI: 10.1038/s41467-023-42072-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
The structure of chromatin plays pivotal roles in regulating gene transcription, DNA replication and repair, and chromosome segregation. This structure, however, remains elusive. Here, using cryo-FIB and cryo-ET, we delineate the 3D architecture of native chromatin fibres in intact interphase human T-lymphoblasts and determine the in situ structures of nucleosomes in different conformations. These chromatin fibres are not structured as uniform 30 nm one-start or two-start filaments but are composed of relaxed, variable zigzag organizations of nucleosomes connected by straight linker DNA. Nucleosomes with little H1 and linker DNA density are distributed randomly without any spatial preference. This work will inspire future high-resolution investigations on native chromatin structures in situ at both a single-nucleosome level and a population level under many different cellular conditions in health and disease.
Collapse
Affiliation(s)
- Zhen Hou
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Frank Nightingale
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yanan Zhu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Jentink N, Purnell C, Kable B, Swulius MT, Grigoryev SA. Cryoelectron tomography reveals the multiplex anatomy of condensed native chromatin and its unfolding by histone citrullination. Mol Cell 2023; 83:3236-3252.e7. [PMID: 37683647 PMCID: PMC10566567 DOI: 10.1016/j.molcel.2023.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/31/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023]
Abstract
Nucleosome chains fold and self-associate to form higher-order structures whose internal organization is unknown. Here, cryoelectron tomography (cryo-ET) of native human chromatin reveals intrinsic folding motifs such as (1) non-uniform nucleosome stacking, (2) intermittent parallel and perpendicular orientations of adjacent nucleosome planes, and (3) a regressive nucleosome chain path, which deviates from the direct zigzag topology seen in reconstituted nucleosomal arrays. By examining the self-associated structures, we observed prominent nucleosome stacking in cis and anti-parallel nucleosome interactions, which are consistent with partial nucleosome interdigitation in trans. Histone citrullination strongly inhibits nucleosome stacking and self-association with a modest effect on chromatin folding, whereas the reconstituted arrays undergo a dramatic unfolding into open zigzag chains induced by histone citrullination. This study sheds light on the internal structure of compact chromatin nanoparticles and suggests a mechanism for how epigenetic changes in chromatin folding are retained across both open and condensed forms.
Collapse
Affiliation(s)
- Nathan Jentink
- Penn State University College of Medicine, Department of Biochemistry & Molecular Biology, H171, Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033, USA
| | - Carson Purnell
- Penn State University College of Medicine, Department of Biochemistry & Molecular Biology, H171, Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033, USA
| | - Brianna Kable
- Penn State University College of Medicine, Department of Biochemistry & Molecular Biology, H171, Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033, USA
| | - Matthew T Swulius
- Penn State University College of Medicine, Department of Biochemistry & Molecular Biology, H171, Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033, USA.
| | - Sergei A Grigoryev
- Penn State University College of Medicine, Department of Biochemistry & Molecular Biology, H171, Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
17
|
Li Z, Portillo-Ledesma S, Schlick T. Brownian dynamics simulations of mesoscale chromatin fibers. Biophys J 2023; 122:2884-2897. [PMID: 36116007 PMCID: PMC10397810 DOI: 10.1016/j.bpj.2022.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The relationship between chromatin architecture and function defines a central problem in biology and medicine. Many computational chromatin models with atomic, coarse-grained, mesoscale, and polymer resolution have been used to shed light onto the mechanisms that dictate genome folding and regulation of gene expression. The associated simulation techniques range from Monte Carlo to molecular, Brownian, and Langevin dynamics. Here, we present an efficient Compute Unified Device Architecture (CUDA) implementation of Brownian dynamics (BD) to simulate chromatin fibers at the nucleosome resolution with our chromatin mesoscale model. With the CUDA implementation for computer architectures with graphic processing units (GPUs), we significantly accelerate compute-intensive hydrodynamic tensor calculations in the BD simulations by massive parallelization, boosting the performance a hundred-fold compared with central processing unit calculations. We validate our BD simulation approach by reproducing experimental trends on fiber diffusion and structure as a function of salt, linker histone binding, and histone-tail composition, as well as Monte Carlo equilibrium sampling results. Our approach proves to be physically accurate with performance that makes feasible the study of chromatin fibers in the range of kb or hundreds of nucleosomes (small gene). Such simulations are essential to advance the study of biological processes such as gene regulation and aberrant genome-structure related diseases.
Collapse
Affiliation(s)
- Zilong Li
- Department of Chemistry, New York University, New York, New York
| | | | - Tamar Schlick
- Department of Chemistry, New York University, New York, New York; Courant Institute of Mathematical Sciences, New York University, New York, New York; New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, China; Simons Center for Computational Physical Chemistry, New York University, New York, New York.
| |
Collapse
|
18
|
Portillo-Ledesma S, Li Z, Schlick T. Genome modeling: From chromatin fibers to genes. Curr Opin Struct Biol 2023; 78:102506. [PMID: 36577295 PMCID: PMC9908845 DOI: 10.1016/j.sbi.2022.102506] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 12/27/2022]
Abstract
The intricacies of the 3D hierarchical organization of the genome have been approached by many creative modeling studies. The specific model/simulation technique combination defines and restricts the system and phenomena that can be investigated. We present the latest modeling developments and studies of the genome, involving models ranging from nucleosome systems and small polynucleosome arrays to chromatin fibers in the kb-range, chromosomes, and whole genomes, while emphasizing gene folding from first principles. Clever combinations allow the exploration of many interesting phenomena involved in gene regulation, such as nucleosome structure and dynamics, nucleosome-nucleosome stacking, polynucleosome array folding, protein regulation of chromatin architecture, mechanisms of gene folding, loop formation, compartmentalization, and structural transitions at the chromosome and genome levels. Gene-level modeling with full details on nucleosome positions, epigenetic factors, and protein binding, in particular, can in principle be scaled up to model chromosomes and cells to study fundamental biological regulation.
Collapse
Affiliation(s)
- Stephanie Portillo-Ledesma
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, 10003, NY, USA
| | - Zilong Li
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, 10003, NY, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, 10003, NY, USA; Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, 10012, NY, USA; New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Room 340, Geography Building, 3663 North Zhongshan Road, Shanghai, 200122, China; Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York University, New York, 10003, NY, USA.
| |
Collapse
|
19
|
Maheshwaram SK, Shet D, David SR, Lakshminarayana MB, Soni GV. Nanopore Sensing of DNA-Histone Complexes on Nucleosome Arrays. ACS Sens 2022; 7:3876-3884. [PMID: 36441954 DOI: 10.1021/acssensors.2c01865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The location of nucleosomes in DNA and their structural stability are critical in regulating DNA compaction, site accessibility, and epigenetic gene regulation. Here, we combine the nanopore platform-based fast and label-free single-molecule detection technique with a voltage-dependent force rupture assay to detect distinct structures on nucleosomal arrays and then to induce breakdown of individual nucleosome complexes. Specifically, we demonstrate direct measurement of distinct nucleosome structures present on individual 12-mer arrays. A detailed event analysis showed that nucleosomes are present as a combination of complete and partial structures, during translocation through the pore. By comparing with the voltage-dependent translocation of the mononucleosomes, we find that the partial nucleosomes result from voltage-dependent structural disintegration of nucleosomes. High signal-to-noise detection of heterogeneous levels in translocation of 12-mer array molecules quantifies the heterogeneity and nucleosomal substructure sizes on the arrays. These results facilitate the understanding of electrostatic interactions responsible for the integrity of the nucleosome structure and possible mechanisms of its unraveling by chromatin remodeling enzymes. This study also has potential applications in chromatin profiling.
Collapse
Affiliation(s)
| | - Divya Shet
- Raman Research Institute, Bangalore, Karnataka 560080, India
| | - Serene R David
- Raman Research Institute, Bangalore, Karnataka 560080, India
| | | | - Gautam V Soni
- Raman Research Institute, Bangalore, Karnataka 560080, India
| |
Collapse
|
20
|
Portillo-Ledesma S, Wagley M, Schlick T. Chromatin transitions triggered by LH density as epigenetic regulators of the genome. Nucleic Acids Res 2022; 50:10328-10342. [PMID: 36130289 PMCID: PMC9561278 DOI: 10.1093/nar/gkac757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/26/2022] [Accepted: 09/02/2022] [Indexed: 11/14/2022] Open
Abstract
Motivated by experiments connecting linker histone (LH) deficiency to lymphoma progression and retinal disorders, we study by mesoscale chromatin modeling how LH density (ρ) induces gradual, as well sudden, changes in chromatin architecture and how the process depends on DNA linker length, LH binding dynamics and binding mode, salt concentration, tail modifications, and combinations of ρ and linker DNA length. We show that ρ tightly regulates the overall shape and compaction of the fiber, triggering a transition from an irregular disordered state to a compact and ordered structure. Such a structural transition, resembling B to A compartment transition connected with lymphoma of B cells, appears to occur around ρ = 0.5. The associated mechanism is DNA stem formation by LH binding, which is optimal when the lengths of the DNA linker and LH C-terminal domain are similar. Chromatin internal and external parameters are key regulators, promoting or impeding the transition. The LH density thus emerges as a critical tunable variable in controlling cellular functions through structural transitions of the genome.
Collapse
Affiliation(s)
- Stephanie Portillo-Ledesma
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA
| | - Meghna Wagley
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA.,New York University-East China Normal University Center for Computational Chemistry at New York University Shanghai, Room 340, Geography Building, 3663 North Zhongshan Road, Shanghai 200062, China.,Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York, NY 10012, USA.,Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York University, New York, NY 10003 USA
| |
Collapse
|
21
|
Zhang M, Díaz-Celis C, Onoa B, Cañari-Chumpitaz C, Requejo KI, Liu J, Vien M, Nogales E, Ren G, Bustamante C. Molecular organization of the early stages of nucleosome phase separation visualized by cryo-electron tomography. Mol Cell 2022; 82:3000-3014.e9. [PMID: 35907400 DOI: 10.1016/j.molcel.2022.06.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/09/2022] [Accepted: 06/28/2022] [Indexed: 12/16/2022]
Abstract
It has been proposed that the intrinsic property of nucleosome arrays to undergo liquid-liquid phase separation (LLPS) in vitro is responsible for chromatin domain organization in vivo. However, understanding nucleosomal LLPS has been hindered by the challenge to characterize the structure of the resulting heterogeneous condensates. We used cryo-electron tomography and deep-learning-based 3D reconstruction/segmentation to determine the molecular organization of condensates at various stages of LLPS. We show that nucleosomal LLPS involves a two-step process: a spinodal decomposition process yielding irregular condensates, followed by their unfavorable conversion into more compact, spherical nuclei that grow into larger spherical aggregates through accretion of spinodal materials or by fusion with other spherical condensates. Histone H1 catalyzes more than 10-fold the spinodal-to-spherical conversion. We propose that this transition involves exposure of nucleosome hydrophobic surfaces causing modified inter-nucleosome interactions. These results suggest a physical mechanism by which chromatin may transition from interphase to metaphase structures.
Collapse
Affiliation(s)
- Meng Zhang
- Applied Science and Technology Graduate Group, University of California, Berkeley, CA, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - César Díaz-Celis
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Bibiana Onoa
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | | | - Katherinne I Requejo
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael Vien
- Department of Physics, University of California, Berkeley, CA, USA
| | - Eva Nogales
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Carlos Bustamante
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA; Department of Chemistry, University of California, Berkeley, CA, USA; Department of Physics, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Kavli Energy Nanoscience Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
22
|
Williams MR, Xiaokang Y, Hathaway NA, Kireev D. A simulation model of heterochromatin formation at submolecular detail. iScience 2022; 25:104590. [PMID: 35800764 PMCID: PMC9254115 DOI: 10.1016/j.isci.2022.104590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/16/2021] [Accepted: 06/08/2022] [Indexed: 11/15/2022] Open
Abstract
Heterochromatin is a physical state of the chromatin fiber that maintains gene repression during cell development. Although evidence exists on molecular mechanisms involved in heterochromatin formation, a detailed structural mechanism of heterochromatin formation needs a better understanding. We made use of a simple Monte Carlo simulation model with explicit representation of key molecular events to observe molecular self-organization leading to heterochromatin formation. Our simulations provide a structural interpretation of several important traits of the heterochromatinization process. In particular, this study provides a depiction of how small amounts of HP1 are able to induce a highly condensed chromatin state through HP1 dimerization and bridging of sequence-remote nucleosomes. It also elucidates structural roots of a yet poorly understood phenomenon of a nondeterministic nature of heterochromatin formation and subsequent gene repression. Experimental chromatin in vivo assay provides an unbiased estimate of time scale of repressive response to a heterochromatin-triggering event.
Collapse
Affiliation(s)
- Michael R. Williams
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, NC 27513, USA
| | - Yan Xiaokang
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, NC 27513, USA
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Nathaniel A. Hathaway
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, NC 27513, USA
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Dmitri Kireev
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, NC 27513, USA
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
23
|
Krajewski WA. Histone Modifications, Internucleosome Dynamics, and DNA Stresses: How They Cooperate to “Functionalize” Nucleosomes. Front Genet 2022; 13:873398. [PMID: 35571051 PMCID: PMC9096104 DOI: 10.3389/fgene.2022.873398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Tight packaging of DNA in chromatin severely constrains DNA accessibility and dynamics. In contrast, nucleosomes in active chromatin state are highly flexible, can exchange their histones, and are virtually “transparent” to RNA polymerases, which transcribe through gene bodies at rates comparable to that of naked DNA. Defining mechanisms that revert nucleosome repression, in addition to their value for basic science, is of key importance for the diagnosis and treatment of genetic diseases. Chromatin activity is largely regulated by histone posttranslational modifications, ranging from small chemical groups up to the yet understudied “bulky” ubiquitylation and sumoylation. However, it is to be revealed how histone marks are “translated” to permissive or repressive changes in nucleosomes: it is a general opinion that histone modifications act primarily as “signals” for recruiting the regulatory proteins or as a “neutralizer” of electrostatic shielding of histone tails. Here, we would like to discuss recent evidence suggesting that histone ubiquitylation, in a DNA stress–dependent manner, can directly regulate the dynamics of the nucleosome and their primary structure and can promote nucleosome decomposition to hexasome particles or additionally stabilize nucleosomes against unwrapping. In addition, nucleosome repression/ derepression studies are usually performed with single mononucleosomes as a model. We would like to review and discuss recent findings showing that internucleosomal interactions could strongly modulate the dynamics and rearrangements of nucleosomes. Our hypothesis is that bulky histone modifications, nucleosome inherent dynamics, internucleosome interactions, and DNA torsions could act in cooperation to orchestrate the formation of different dynamic states of arrayed nucleosomes and thus promote chromatin functionality and diversify epigenetic programming methods.
Collapse
|
24
|
Huertas J, Woods EJ, Collepardo-Guevara R. Multiscale modelling of chromatin organisation: Resolving nucleosomes at near-atomistic resolution inside genes. Curr Opin Cell Biol 2022; 75:102067. [DOI: 10.1016/j.ceb.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
|
25
|
Swygert SG, Lin D, Portillo-Ledesma S, Lin PY, Hunt DR, Kao CF, Schlick T, Noble WS, Tsukiyama T. Local chromatin fiber folding represses transcription and loop extrusion in quiescent cells. eLife 2021; 10:e72062. [PMID: 34734806 PMCID: PMC8598167 DOI: 10.7554/elife.72062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
A longstanding hypothesis is that chromatin fiber folding mediated by interactions between nearby nucleosomes represses transcription. However, it has been difficult to determine the relationship between local chromatin fiber compaction and transcription in cells. Further, global changes in fiber diameters have not been observed, even between interphase and mitotic chromosomes. We show that an increase in the range of local inter-nucleosomal contacts in quiescent yeast drives the compaction of chromatin fibers genome-wide. Unlike actively dividing cells, inter-nucleosomal interactions in quiescent cells require a basic patch in the histone H4 tail. This quiescence-specific fiber folding globally represses transcription and inhibits chromatin loop extrusion by condensin. These results reveal that global changes in chromatin fiber compaction can occur during cell state transitions, and establish physiological roles for local chromatin fiber folding in regulating transcription and chromatin domain formation.
Collapse
Affiliation(s)
- Sarah G Swygert
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Dejun Lin
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | | | - Po-Yen Lin
- Institute of Cellular and Organismic Biology, Academia SinicaTaipeiTaiwan
| | - Dakota R Hunt
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia SinicaTaipeiTaiwan
| | - Tamar Schlick
- Department of Chemistry, New York UniversityNew YorkUnited States
- Courant Institute of Mathematical Sciences, New York UniversityNew YorkUnited States
- New York University-East China Normal University Center for Computational Chemistry at New York University ShanghaiShanghaiChina
| | - William S Noble
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Paul G. Allen School of Computer Science and Engineering, University of WashingtonSeattleUnited States
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
26
|
Arimura Y, Shih RM, Froom R, Funabiki H. Structural features of nucleosomes in interphase and metaphase chromosomes. Mol Cell 2021; 81:4377-4397.e12. [PMID: 34478647 PMCID: PMC8571072 DOI: 10.1016/j.molcel.2021.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022]
Abstract
Structural heterogeneity of nucleosomes in functional chromosomes is unknown. Here, we devise the template-, reference- and selection-free (TRSF) cryo-EM pipeline to simultaneously reconstruct cryo-EM structures of protein complexes from interphase or metaphase chromosomes. The reconstructed interphase and metaphase nucleosome structures are on average indistinguishable from canonical nucleosome structures, despite DNA sequence heterogeneity, cell-cycle-specific posttranslational modifications, and interacting proteins. Nucleosome structures determined by a decoy-classifying method and structure variability analyses reveal the nucleosome structural variations in linker DNA, histone tails, and nucleosome core particle configurations, suggesting that the opening of linker DNA, which is correlated with H2A C-terminal tail positioning, is suppressed in chromosomes. High-resolution (3.4-3.5 Å) nucleosome structures indicate DNA-sequence-independent stabilization of superhelical locations ±0-1 and ±3.5-4.5. The linker histone H1.8 preferentially binds to metaphase chromatin, from which chromatosome cryo-EM structures with H1.8 at the on-dyad position are reconstituted. This study presents the structural characteristics of nucleosomes in chromosomes.
Collapse
Affiliation(s)
- Yasuhiro Arimura
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Rochelle M Shih
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Ruby Froom
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
27
|
Itoh Y, Woods EJ, Minami K, Maeshima K, Collepardo-Guevara R. Liquid-like chromatin in the cell: What can we learn from imaging and computational modeling? Curr Opin Struct Biol 2021; 71:123-135. [PMID: 34303931 DOI: 10.1016/j.sbi.2021.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022]
Abstract
Chromatin in eukaryotic cells is a negatively charged long polymer consisting of DNA, histones, and various associated proteins. With its highly charged and heterogeneous nature, chromatin structure varies greatly depending on various factors (e.g. chemical modifications and protein enrichment) and the surrounding environment (e.g. cations): from a 10-nm fiber, a folded 30-nm fiber, to chromatin condensates/droplets. Recent advanced imaging has observed that chromatin exhibits a dynamic liquid-like behavior and undergoes structural variations within the cell. Current computational modeling has made it possible to reconstruct the liquid-like chromatin in the cell by dealing with a number of nucleosomes on multiscale levels and has become a powerful technique to inspect the molecular mechanisms giving rise to the observed behavior, which imaging methods cannot do on their own. Based on new findings from both imaging and modeling studies, we discuss the dynamic aspect of chromatin in living cells and its functional relevance.
Collapse
Affiliation(s)
- Yuji Itoh
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Esmae J Woods
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Katsuhiko Minami
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan.
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK; Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| |
Collapse
|
28
|
Lin X, Qi Y, Latham AP, Zhang B. Multiscale modeling of genome organization with maximum entropy optimization. J Chem Phys 2021; 155:010901. [PMID: 34241389 PMCID: PMC8253599 DOI: 10.1063/5.0044150] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) organization of the human genome plays an essential role in all DNA-templated processes, including gene transcription, gene regulation, and DNA replication. Computational modeling can be an effective way of building high-resolution genome structures and improving our understanding of these molecular processes. However, it faces significant challenges as the human genome consists of over 6 × 109 base pairs, a system size that exceeds the capacity of traditional modeling approaches. In this perspective, we review the progress that has been made in modeling the human genome. Coarse-grained models parameterized to reproduce experimental data via the maximum entropy optimization algorithm serve as effective means to study genome organization at various length scales. They have provided insight into the principles of whole-genome organization and enabled de novo predictions of chromosome structures from epigenetic modifications. Applications of these models at a near-atomistic resolution further revealed physicochemical interactions that drive the phase separation of disordered proteins and dictate chromatin stability in situ. We conclude with an outlook on the opportunities and challenges in studying chromosome dynamics.
Collapse
Affiliation(s)
- Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yifeng Qi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrew P. Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
29
|
Farr SE, Woods EJ, Joseph JA, Garaizar A, Collepardo-Guevara R. Nucleosome plasticity is a critical element of chromatin liquid-liquid phase separation and multivalent nucleosome interactions. Nat Commun 2021; 12:2883. [PMID: 34001913 PMCID: PMC8129070 DOI: 10.1038/s41467-021-23090-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) is an important mechanism that helps explain the membraneless compartmentalization of the nucleus. Because chromatin compaction and LLPS are collective phenomena, linking their modulation to the physicochemical features of nucleosomes is challenging. Here, we develop an advanced multiscale chromatin model-integrating atomistic representations, a chemically-specific coarse-grained model, and a minimal model-to resolve individual nucleosomes within sub-Mb chromatin domains and phase-separated systems. To overcome the difficulty of sampling chromatin at high resolution, we devise a transferable enhanced-sampling Debye-length replica-exchange molecular dynamics approach. We find that nucleosome thermal fluctuations become significant at physiological salt concentrations and destabilize the 30-nm fiber. Our simulations show that nucleosome breathing favors stochastic folding of chromatin and promotes LLPS by simultaneously boosting the transient nature and heterogeneity of nucleosome-nucleosome contacts, and the effective nucleosome valency. Our work puts forward the intrinsic plasticity of nucleosomes as a key element in the liquid-like behavior of nucleosomes within chromatin, and the regulation of chromatin LLPS.
Collapse
Affiliation(s)
- Stephen E Farr
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Esmae J Woods
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Jerelle A Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
30
|
Brouwer T, Pham C, Kaczmarczyk A, de Voogd WJ, Botto M, Vizjak P, Mueller-Planitz F, van Noort J. A critical role for linker DNA in higher-order folding of chromatin fibers. Nucleic Acids Res 2021; 49:2537-2551. [PMID: 33589918 PMCID: PMC7969035 DOI: 10.1093/nar/gkab058] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 12/04/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleosome-nucleosome interactions drive the folding of nucleosomal arrays into dense chromatin fibers. A better physical account of the folding of chromatin fibers is necessary to understand the role of chromatin in regulating DNA transactions. Here, we studied the unfolding pathway of regular chromatin fibers as a function of single base pair increments in linker length, using both rigid base-pair Monte Carlo simulations and single-molecule force spectroscopy. Both computational and experimental results reveal a periodic variation of the folding energies due to the limited flexibility of the linker DNA. We show that twist is more restrictive for nucleosome stacking than bend, and find the most stable stacking interactions for linker lengths of multiples of 10 bp. We analyzed nucleosomes stacking in both 1- and 2-start topologies and show that stacking preferences are determined by the length of the linker DNA. Moreover, we present evidence that the sequence of the linker DNA also modulates nucleosome stacking and that the effect of the deletion of the H4 tail depends on the linker length. Importantly, these results imply that nucleosome positioning in vivo not only affects the phasing of nucleosomes relative to DNA but also directs the higher-order structure of chromatin.
Collapse
Affiliation(s)
- Thomas Brouwer
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Chi Pham
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Artur Kaczmarczyk
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Willem-Jan de Voogd
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Margherita Botto
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Petra Vizjak
- Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Felix Mueller-Planitz
- Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany.,Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - John van Noort
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| |
Collapse
|
31
|
Phengchat R, Malac M, Hayashida M. Chromosome inner structure investigation by electron tomography and electron diffraction in a transmission electron microscope. Chromosome Res 2021; 29:63-80. [PMID: 33733375 DOI: 10.1007/s10577-021-09661-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
Our understanding of the inner structure of metaphase chromosomes remains inconclusive despite intensive studies using multiple imaging techniques. Transmission electron microscopy has been extensively used to visualize chromosome ultrastructure. This review summarizes recent results obtained using two transmission electron microscopy-based techniques: electron tomography and electron diffraction. Electron tomography allows advanced three-dimensional imaging of chromosomes, while electron diffraction detects the presence of periodic structures within chromosomes. The combination of these two techniques provides results contributing to the understanding of local structural organization of chromatin fibers within chromosomes.
Collapse
Affiliation(s)
- Rinyaporn Phengchat
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe, 657-8501, Japan.
| | - Marek Malac
- Nanotechnology Research Centre, National Research of Council, 11421 Saskatchewan Drive, T6G 2 M9, Edmonton, Alberta, Canada.,Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Misa Hayashida
- Nanotechnology Research Centre, National Research of Council, 11421 Saskatchewan Drive, T6G 2 M9, Edmonton, Alberta, Canada
| |
Collapse
|
32
|
Woods DC, Rodríguez-Ropero F, Wereszczynski J. The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array. J Mol Biol 2021; 433:166902. [PMID: 33667509 DOI: 10.1016/j.jmb.2021.166902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 02/08/2023]
Abstract
Linker histones bind to nucleosomes and modify chromatin structure and dynamics as a means of epigenetic regulation. Biophysical studies have shown that chromatin fibers can adopt a plethora of conformations with varying levels of compaction. Linker histone condensation, and its specific binding disposition, has been associated with directly tuning this ensemble of states. However, the atomistic dynamics and quantification of this mechanism remains poorly understood. Here, we present molecular dynamics simulations of octa-nucleosome arrays, based on a cryo-EM structure of the 30-nm chromatin fiber, with and without the globular domains of the H1 linker histone to determine how they influence fiber structures and dynamics. Results show that when bound, linker histones inhibit DNA flexibility and stabilize repeating tetra-nucleosomal units, giving rise to increased chromatin compaction. Furthermore, upon the removal of H1, there is a significant destabilization of this compact structure as the fiber adopts less strained and untwisted states. Interestingly, linker DNA sampling in the octa-nucleosome is exaggerated compared to its mono-nucleosome counterparts, suggesting that chromatin architecture plays a significant role in DNA strain even in the absence of linker histones. Moreover, H1-bound states are shown to have increased stiffness within tetra-nucleosomes, but not between them. This increased stiffness leads to stronger long-range correlations within the fiber, which may result in the propagation of epigenetic signals over longer spatial ranges. These simulations highlight the effects of linker histone binding on the internal dynamics and global structure of poly-nucleosome arrays, while providing physical insight into a mechanism of chromatin compaction.
Collapse
Affiliation(s)
- Dustin C Woods
- Department of Chemistry and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, United States
| | - Francisco Rodríguez-Ropero
- Department of Physics and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, United States
| | - Jeff Wereszczynski
- Department of Physics and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, United States.
| |
Collapse
|
33
|
Zhurkin VB, Norouzi D. Topological polymorphism of nucleosome fibers and folding of chromatin. Biophys J 2021; 120:577-585. [PMID: 33460599 PMCID: PMC7896024 DOI: 10.1016/j.bpj.2021.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 01/19/2023] Open
Abstract
We discuss recent observations of polymorphic chromatin packaging at the oligonucleosomal level and compare them with computer simulations. Our computations reveal two topologically different families of two-start 30-nm fiber conformations distinguished by the linker length L; fibers with L ≈ 10n and L ≈ 10n+5 basepairs have DNA linking numbers per nucleosome of ΔLk ≈ -1.5 and -1.0, respectively (where n is a natural number). Although fibers with ΔLk ≈ -1.5 were observed earlier, the topoisomer with ΔLk ≈ -1.0 is novel. These predictions were confirmed experimentally for circular nucleosome arrays with precisely positioned nucleosomes. We suggest that topological polymorphism of chromatin may play a role in transcription, with the {10n+5} fibers producing transcriptionally competent chromatin structures. This hypothesis is consistent with available data for yeast and, partially, for fly. We show that both fiber topoisomers (with ΔLk ≈ -1.5 and -1.0) have to be taken into account to interpret experimental data obtained using new techniques: genome-wide Micro-C, Hi-CO, and RICC-seq, as well as self-association of nucleosome arrays in vitro. The relative stability of these topoisomers is likely to depend on epigenetic histone modifications modulating the strength of internucleosome interactions. Potentially, our findings may reflect a general tendency of functionally distinct parts of the genome to retain topologically different higher-order structures.
Collapse
Affiliation(s)
- Victor B Zhurkin
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Davood Norouzi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
34
|
Portillo-Ledesma S, Tsao LH, Wagley M, Lakadamyali M, Cosma MP, Schlick T. Nucleosome Clutches are Regulated by Chromatin Internal Parameters. J Mol Biol 2020; 433:166701. [PMID: 33181171 DOI: 10.1016/j.jmb.2020.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 01/17/2023]
Abstract
Nucleosomes cluster together when chromatin folds in the cell to form heterogeneous groups termed "clutches". These structural units add another level of chromatin regulation, for example during cell differentiation. Yet, the mechanisms that regulate their size and compaction remain obscure. Here, using our chromatin mesoscale model, we dissect clutch patterns in fibers with different combinations of nucleosome positions, linker histone density, and acetylation levels to investigate their role in clutch regulation. First, we isolate the effect of each chromatin parameter by studying systems with regular nucleosome spacing; second, we design systems with naturally-occurring linker lengths that fold onto specific clutch patterns; third, we model gene-encoding fibers to understand how these combined factors contribute to gene structure. Our results show how these chromatin parameters act together to produce different-sized nucleosome clutches. The length of nucleosome free regions (NFRs) profoundly affects clutch size, while the length of linker DNA has a moderate effect. In general, higher linker histone densities produce larger clutches by a chromatin compaction mechanism, while higher acetylation levels produce smaller clutches by a chromatin unfolding mechanism. We also show that it is possible to design fibers with naturally-occurring DNA linkers and NFRs that fold onto specific clutch patterns. Finally, in gene-encoding systems, a complex combination of variables dictates a gene-specific clutch pattern. Together, these results shed light into the mechanisms that regulate nucleosome clutches and suggest a new epigenetic mechanism by which chromatin parameters regulate transcriptional activity via the three-dimensional folded state of the genome at a nucleosome level.
Collapse
Affiliation(s)
- Stephanie Portillo-Ledesma
- Department of Chemistry, New York University, 1021 Silver, 100 Washington Square East, New York, NY, 10003, USA
| | - Lucille H Tsao
- Department of Chemistry, New York University, 1021 Silver, 100 Washington Square East, New York, NY, 10003, USA
| | - Meghna Wagley
- Department of Chemistry, New York University, 1021 Silver, 100 Washington Square East, New York, NY, 10003, USA
| | - Melike Lakadamyali
- Perelman School of Medicine, Department of Physiology, University of Pennsylvania, Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104, USA; Perelman School of Medicine, Department of Cell and Developmental Biology, University of Pennsylvania, Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Tamar Schlick
- Department of Chemistry, New York University, 1021 Silver, 100 Washington Square East, New York, NY, 10003, USA; New York University-East China Normal University Center for Computational Chemistry at New York University Shanghai, Room 340, Geography Building, 3663 North Zhongshan Road, Shanghai, 200062, China; Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York, NY, 10012, USA.
| |
Collapse
|
35
|
Meluzzi D, Arya G. Computational approaches for inferring 3D conformations of chromatin from chromosome conformation capture data. Methods 2020; 181-182:24-34. [PMID: 31470090 PMCID: PMC7044057 DOI: 10.1016/j.ymeth.2019.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/24/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023] Open
Abstract
Chromosome conformation capture (3C) and its variants are powerful experimental techniques for probing intra- and inter-chromosomal interactions within cell nuclei at high resolution and in a high-throughput, quantitative manner. The contact maps derived from such experiments provide an avenue for inferring the 3D spatial organization of the genome. This review provides an overview of the various computational methods developed in the past decade for addressing the very important but challenging problem of deducing the detailed 3D structure or structure population of chromosomal domains, chromosomes, and even entire genomes from 3C contact maps.
Collapse
Affiliation(s)
- Dario Meluzzi
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
36
|
Singh PB, Belyakin SN, Laktionov PP. Biology and Physics of Heterochromatin- Like Domains/Complexes. Cells 2020; 9:E1881. [PMID: 32796726 PMCID: PMC7465696 DOI: 10.3390/cells9081881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 11/17/2022] Open
Abstract
The hallmarks of constitutive heterochromatin, HP1 and H3K9me2/3, assemble heterochromatin-like domains/complexes outside canonical constitutively heterochromatic territories where they regulate chromatin template-dependent processes. Domains are more than 100 kb in size; complexes less than 100 kb. They are present in the genomes of organisms ranging from fission yeast to human, with an expansion in size and number in mammals. Some of the likely functions of domains/complexes include silencing of the donor mating type region in fission yeast, preservation of DNA methylation at imprinted germline differentially methylated regions (gDMRs) and regulation of the phylotypic progression during vertebrate development. Far cis- and trans-contacts between micro-phase separated domains/complexes in mammalian nuclei contribute to the emergence of epigenetic compartmental domains (ECDs) detected in Hi-C maps. A thermodynamic description of micro-phase separation of heterochromatin-like domains/complexes may require a gestalt shift away from the monomer as the "unit of incompatibility" that determines the sign and magnitude of the Flory-Huggins parameter, χ. Instead, a more dynamic structure, the oligo-nucleosomal "clutch", consisting of between 2 and 10 nucleosomes is both the long sought-after secondary structure of chromatin and its unit of incompatibility. Based on this assumption we present a simple theoretical framework that enables an estimation of χ for domains/complexes flanked by euchromatin and thereby an indication of their tendency to phase separate. The degree of phase separation is specified by χN, where N is the number of "clutches" in a domain/complex. Our approach could provide an additional tool for understanding the biophysics of the 3D genome.
Collapse
Affiliation(s)
- Prim B. Singh
- Nazarbayev University School of Medicine, Nur-Sultan City 010000, Kazakhstan
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Stepan N. Belyakin
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Genomics laboratory, Institute of molecular and cellular biology SD RAS, Lavrentyev ave, 8/2, 630090 Novosibirsk, Russia; (S.N.B.); (P.P.L.)
| | - Petr P. Laktionov
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Genomics laboratory, Institute of molecular and cellular biology SD RAS, Lavrentyev ave, 8/2, 630090 Novosibirsk, Russia; (S.N.B.); (P.P.L.)
| |
Collapse
|
37
|
Boopathi R, Dimitrov S, Hamiche A, Petosa C, Bednar J. Cryo-electron microscopy of the chromatin fiber. Curr Opin Struct Biol 2020; 64:97-103. [PMID: 32717688 DOI: 10.1016/j.sbi.2020.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023]
Abstract
The three-dimensional (3D) organization of chromatin plays a crucial role in the regulation of gene expression. Chromatin conformation is strongly affected by the composition, structural features and dynamic properties of the nucleosome, which in turn determine the nature and geometry of interactions that can occur between neighboring nucleosomes. Understanding how chromatin is spatially organized above the nucleosome level is thus essential for understanding how gene regulation is achieved. Towards this end, great effort has been made to understand how an array of nucleosomes folds into a regular chromatin fiber. This review summarizes new insights into the 3D structure of the chromatin fiber that were made possible by recent advances in cryo-electron microscopy.
Collapse
Affiliation(s)
- Ramachandran Boopathi
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante´ - Allée des Alpes, 38700 La Tronche, France; Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante´ - Allée des Alpes, 38700 La Tronche, France; Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balcova, Izmir 35330, Turkey
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France
| | - Carlo Petosa
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Jan Bednar
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante´ - Allée des Alpes, 38700 La Tronche, France; Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague 2, Czech Republic.
| |
Collapse
|
38
|
Ma W, Gu C, Ma L, Fan C, Zhang C, Sun Y, Li C, Yang G. Mixed secondary chromatin structure revealed by modeling radiation-induced DNA fragment length distribution. SCIENCE CHINA-LIFE SCIENCES 2020; 63:825-834. [PMID: 32279284 DOI: 10.1007/s11427-019-1638-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/20/2020] [Indexed: 10/24/2022]
Abstract
Spatial chromatin structure plays fundamental roles in many vital biological processes including DNA replication, transcription, damage and repair. However, the current understanding of the secondary structure of chromatin formed by local nucleosome-nucleosome interactions remains controversial, especially for the existence and conformation of 30 nm structure. Since chromatin structure influences the fragment length distribution (FLD) of ionizing radiation-induced DNA strand breaks, a 3D chromatin model fitting FLD patterns can help to distinguish different models of chromatin structure. Here, we developed a novel "30-C" model combining 30 nm chromatin structure models with Hi-C data, which measured the spatial contact frequency between different loci in the genome. We first reconstructed the 3D coordinates of the 25 kb bins from Hi-C heatmaps. Within the 25 kb bins, lower level chromatin structures supported by recent studies were filled. Simulated FLD patterns based on the 30-C model were compared to published FLD patterns induced by heavy ion radiation to validate the models. Importantly, the 30-C model predicted that the most probable chromatin fiber structure for human interphase fibroblasts in vivo was 45% zig-zag 30 nm fibers and 55% 10 nm fibers.
Collapse
Affiliation(s)
- Wenzong Ma
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| | - Chenyang Gu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China.,Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Lin Ma
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China.,Medical Artificial Intelligence and Automation, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Caoqi Fan
- Center for Bioinformatics, School of Life Sciences and Center for Statistical Science, Peking University, Beijing, 100871, China
| | - Chao Zhang
- Center for Bioinformatics, School of Life Sciences and Center for Statistical Science, Peking University, Beijing, 100871, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences and Center for Statistical Science, Peking University, Beijing, 100871, China.
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China.
| |
Collapse
|
39
|
Mesoscale organization of the chromatin fiber. Curr Opin Genet Dev 2020; 61:32-36. [DOI: 10.1016/j.gde.2020.02.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/13/2020] [Accepted: 02/22/2020] [Indexed: 12/11/2022]
|
40
|
Krietenstein N, Abraham S, Venev SV, Abdennur N, Gibcus J, Hsieh THS, Parsi KM, Yang L, Maehr R, Mirny LA, Dekker J, Rando OJ. Ultrastructural Details of Mammalian Chromosome Architecture. Mol Cell 2020; 78:554-565.e7. [PMID: 32213324 DOI: 10.1016/j.molcel.2020.03.003] [Citation(s) in RCA: 353] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 11/18/2022]
Abstract
Over the past decade, 3C-related methods have provided remarkable insights into chromosome folding in vivo. To overcome the limited resolution of prior studies, we extend a recently developed Hi-C variant, Micro-C, to map chromosome architecture at nucleosome resolution in human ESCs and fibroblasts. Micro-C robustly captures known features of chromosome folding including compartment organization, topologically associating domains, and interactions between CTCF binding sites. In addition, Micro-C provides a detailed map of nucleosome positions and localizes contact domain boundaries with nucleosomal precision. Compared to Hi-C, Micro-C exhibits an order of magnitude greater dynamic range, allowing the identification of ∼20,000 additional loops in each cell type. Many newly identified peaks are localized along extrusion stripes and form transitive grids, consistent with their anchors being pause sites impeding cohesin-dependent loop extrusion. Our analyses comprise the highest-resolution maps of chromosome folding in human cells to date, providing a valuable resource for studies of chromosome organization.
Collapse
Affiliation(s)
- Nils Krietenstein
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sameer Abraham
- Insitute for Medical Engineering and Sciences and Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Center for 3D Structure and Physics of the Genome, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Sergey V Venev
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nezar Abdennur
- Insitute for Medical Engineering and Sciences and Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Center for 3D Structure and Physics of the Genome, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Johan Gibcus
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tsung-Han S Hsieh
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Krishna Mohan Parsi
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Liyan Yang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - René Maehr
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Leonid A Mirny
- Insitute for Medical Engineering and Sciences and Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Center for 3D Structure and Physics of the Genome, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Job Dekker
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
41
|
Emergence of chromatin hierarchical loops from protein disorder and nucleosome asymmetry. Proc Natl Acad Sci U S A 2020; 117:7216-7224. [PMID: 32165536 DOI: 10.1073/pnas.1910044117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein flexibility and disorder is emerging as a crucial modulator of chromatin structure. Histone tail disorder enables transient binding of different molecules to the nucleosomes, thereby promoting heterogeneous and dynamic internucleosome interactions and making possible recruitment of a wide-range of regulatory and remodeling proteins. On the basis of extensive multiscale modeling we reveal the importance of linker histone H1 protein disorder for chromatin hierarchical looping. Our multiscale approach bridges microsecond-long bias-exchange metadynamics molecular dynamics simulations of atomistic 211-bp nucleosomes with coarse-grained Monte Carlo simulations of 100-nucleosome systems. We show that the long C-terminal domain (CTD) of H1-a ubiquitous nucleosome-binding protein-remains disordered when bound to the nucleosome. Notably, such CTD disorder leads to an asymmetric and dynamical nucleosome conformation that promotes chromatin structural flexibility and establishes long-range hierarchical loops. Furthermore, the degree of condensation and flexibility of H1 can be fine-tuned, explaining chromosomal differences of interphase versus metaphase states that correspond to partial and hyperphosphorylated H1, respectively. This important role of H1 protein disorder in large-scale chromatin organization has a wide range of biological implications.
Collapse
|
42
|
Chikhirzhina EV, Starkova TY, Polyanichko AM. The Role of Linker Histones in Chromatin Structural Organization. 2. Interaction with DNA and Nuclear Proteins. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920020049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
43
|
Bendandi A, Dante S, Zia SR, Diaspro A, Rocchia W. Chromatin Compaction Multiscale Modeling: A Complex Synergy Between Theory, Simulation, and Experiment. Front Mol Biosci 2020; 7:15. [PMID: 32158765 PMCID: PMC7051991 DOI: 10.3389/fmolb.2020.00015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/27/2020] [Indexed: 12/24/2022] Open
Abstract
Understanding the mechanisms that trigger chromatin compaction, its patterns, and the factors they depend on, is a fundamental and still open question in Biology. Chromatin compacts and reinforces DNA and is a stable but dynamic structure, to make DNA accessible to proteins. In recent years, computational advances have provided larger amounts of data and have made large-scale simulations more viable. Experimental techniques for the extraction and reconstitution of chromatin fibers have improved, reinvigorating theoretical and experimental interest in the topic and stimulating debate on points previously considered as certainties regarding chromatin. A great assortment of approaches has emerged, from all-atom single-nucleosome or oligonucleosome simulations to various degrees of coarse graining, to polymer models, to fractal-like structures and purely topological models. Different fiber-start patterns have been studied in theory and experiment, as well as different linker DNA lengths. DNA is a highly charged macromolecule, making ionic and electrostatic interactions extremely important for chromatin topology and dynamics. Indeed, the repercussions of varying ionic concentration have been extensively examined at the computational level, using all-atom, coarse-grained, and continuum techniques. The presence of high-curvature AT-rich segments in DNA can cause conformational variations, attesting to the fact that the role of DNA is both structural and electrostatic. There have been some tentative attempts to describe the force fields governing chromatin conformational changes and the energy landscapes of these transitions, but the intricacy of the system has hampered reaching a consensus. The study of chromatin conformations is an intrinsically multiscale topic, influenced by a wide range of biological and physical interactions, spanning from the atomic to the chromosome level. Therefore, powerful modeling techniques and carefully planned experiments are required for an overview of the most relevant phenomena and interactions. The topic provides fertile ground for interdisciplinary studies featuring a synergy between theoretical and experimental scientists from different fields and the cross-validation of respective results, with a multi-scale perspective. Here, we summarize some of the most representative approaches, and focus on the importance of electrostatics and solvation, often overlooked aspects of chromatin modeling.
Collapse
Affiliation(s)
- Artemi Bendandi
- Physics Department, University of Genoa, Genoa, Italy
- Nanophysics & NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Silvia Dante
- Nanophysics & NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Syeda Rehana Zia
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Alberto Diaspro
- Physics Department, University of Genoa, Genoa, Italy
- Nanophysics & NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Walter Rocchia
- Concept Lab, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
44
|
Öztürk MA, De M, Cojocaru V, Wade RC. Chromatosome Structure and Dynamics from Molecular Simulations. Annu Rev Phys Chem 2020; 71:101-119. [PMID: 32017651 DOI: 10.1146/annurev-physchem-071119-040043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromatosomes are fundamental units of chromatin structure that are formed when a linker histone protein binds to a nucleosome. The positioning of the linker histone on the nucleosome influences the packing of chromatin. Recent simulations and experiments have shown that chromatosomes adopt an ensemble of structures that differ in the geometry of the linker histone-nucleosome interaction. In this article we review the application of Brownian, Monte Carlo, and molecular dynamics simulations to predict the structure of linker histone-nucleosome complexes, to study the binding mechanisms involved, and to predict how this binding affects chromatin fiber structure. These simulations have revealed the sensitivityof the chromatosome structure to variations in DNA and linker histone sequence, as well as to posttranslational modifications, thereby explaining the structural variability observed in experiments. We propose that a concerted application of experimental and computational approaches will reveal the determinants of chromatosome structural variability and how it impacts chromatin packing.
Collapse
Affiliation(s)
- Mehmet Ali Öztürk
- Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany;
| | - Madhura De
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; .,Department of Biophysics of Macromolecules, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; .,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Vlad Cojocaru
- In Silico Biomolecular Structure and Dynamics, Hubrecht Institute, 3584 CT Utrecht, The Netherlands; .,Computational Structural Biology Group, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; .,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.,Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR), 69120 Heidelberg, Germany
| |
Collapse
|
45
|
Nizovtseva EV, Polikanov YS, Kulaeva OI, Clauvelin N, Postnikov YV, Olson WK, Studitsky VM. [Opposite Effects of Histone H1 and HMGN5 Protein on Distant Interactions in Chromatin]. Mol Biol (Mosk) 2020; 53:1038-1048. [PMID: 31876282 DOI: 10.1134/s0026898419060132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/14/2019] [Indexed: 11/23/2022]
Abstract
Transcriptional enhancers in the cell nuclei typically interact with the target promoters in cis over long stretches of chromatin, but the mechanism of this communication remains unknown. Previously we have developed a defined in vitro system for quantitative analysis of the rate of distant enhancer-promoter communication (EPC) and have shown that the chromatin fibers maintain efficient distant EPC in cis. Here we investigate the roles of linker histone H1 and HMGN5 protein in EPC. A considerable negative effect of histone H1 on EPC depending on its C- and N-tails was shown. Protein HMGN5 that affects chromatin compaction and is associated with active chromatin counteracts EPC inhibition by H1. The data suggest that the efficiency of the interaction between the enhancer and the promoter depends on the structure and dynamics of the chromatin fiber localized between them and can be regulated by proteins associated with chromatin.
Collapse
Affiliation(s)
- E V Nizovtseva
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19422 USA
| | - Y S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA.,Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - O I Kulaeva
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19422 USA
| | - N Clauvelin
- Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Y V Postnikov
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892 USA
| | - W K Olson
- Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854 USA
| | - V M Studitsky
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19422 USA.,Faculty of Biology, Moscow State University, Moscow, 119991 Russia.,
| |
Collapse
|
46
|
|
47
|
Kharerin H, Bhat PJ, Padinhateeri R. Role of nucleosome positioning in 3D chromatin organization and loop formation. J Biosci 2020; 45:14. [PMID: 31965992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present a physics-based polymer model that can investigate 3D organization of chromatin accounting for DNA elasticity, DNA-bending due to nucleosomes, and 1D organization of nucleosomes along DNA. We find that the packing density of chromatin oscillates between densities corresponding to highly folded and extended configurations as we change the nucleosome organization (length of linker DNA). We compute the looping probability of chromatin and show that the presence of nucleosomes increases the looping probability of the chain compared to that of a bare DNA. We also show that looping probability has a large variability depending on the nature of nucleosome organization and density of linker histones.
Collapse
Affiliation(s)
- Hungyo Kharerin
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | | | | |
Collapse
|
48
|
Nizovtseva EV, Polikanov YS, Kulaeva OI, Clauvelin N, Postnikov YV, Olson WK, Studitsky VM. Opposite Effects of Histone H1 and HMGN5 Protein on Distant Interactions in Chromatin. Mol Biol 2019. [DOI: 10.1134/s002689331906013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Grigoryev SA, Popova EY. Attraction of Likenesses: Mechanisms of Self-Association and Compartmentalization of Eukaryotic Chromatin. Mol Biol 2019. [DOI: 10.1134/s0026893319060050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Perišić O, Portillo-Ledesma S, Schlick T. Sensitive effect of linker histone binding mode and subtype on chromatin condensation. Nucleic Acids Res 2019; 47:4948-4957. [PMID: 30968131 PMCID: PMC6547455 DOI: 10.1093/nar/gkz234] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022] Open
Abstract
The complex role of linker histone (LH) on chromatin compaction regulation has been highlighted by recent discoveries of the effect of LH binding variability and isoforms on genome structure and function. Here we examine the effect of two LH variants and variable binding modes on the structure of chromatin fibers. Our mesoscale modeling considers oligonucleosomes with H1C and H1E, bound in three different on and off-dyad modes, and spanning different LH densities (0.5–1.6 per nucleosome), over a wide range of physiologically relevant nucleosome repeat lengths (NRLs). Our studies reveal an LH-variant and binding-mode dependent heterogeneous ensemble of fiber structures with variable packing ratios, sedimentation coefficients, and persistence lengths. For maximal compaction, besides dominantly interacting with parental DNA, LHs must have strong interactions with nonparental DNA and promote tail/nonparental core interactions. An off-dyad binding of H1E enables both; others compromise compaction for bendability. We also find that an increase of LH density beyond 1 is best accommodated in chromatosomes with one on-dyad and one off-dyad LH. We suggest that variable LH binding modes and concentrations are advantageous, allowing tunable levels of chromatin condensation and DNA accessibility/interactions. Thus, LHs add another level of epigenetic regulation of chromatin.
Collapse
Affiliation(s)
- Ognjen Perišić
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA
| | - Stephanie Portillo-Ledesma
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA.,Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA.,New York University ECNU - Center for Computational Chemistry at NYU Shanghai, 3663 North Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|