1
|
Barbera S, Schuiling MJA, Sanjaya NA, Pietilä I, Sarén T, Essand M, Dimberg A. Trogocytosis of chimeric antigen receptors between T cells is regulated by their transmembrane domains. Sci Immunol 2025; 10:eado2054. [PMID: 39888980 DOI: 10.1126/sciimmunol.ado2054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 10/05/2024] [Accepted: 12/19/2024] [Indexed: 02/02/2025]
Abstract
Trogocytosis is an exchange of membrane-associated molecules between cells that can either halt or boost immune responses. However, the mechanism that regulates trogocytosis in T cells and its consequences are not yet clear. Here, we demonstrate that T cells can exchange chimeric antigen receptors (CARs) by trogocytosis, thereby arming recipient T cells with the capacity to respond to tumor antigens by up-regulating proteins associated with a cytotoxic response and killing of target cells. We demonstrate that although trogocytosis is dependent on cell-cell contact, the exchange of a specific cell membrane protein does not require a cognate binding partner on the surface of recipient cells. Instead, the probability that a protein is exchanged by trogocytosis is determined by its transmembrane domain. This finding opens new avenues for modulating this process in CAR-T cells.
Collapse
Affiliation(s)
- Stefano Barbera
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Matthijs J A Schuiling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nathaniel A Sanjaya
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ilkka Pietilä
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tina Sarén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Mamun TI, Ali MA, Hosen MN, Rahman J, Islam MA, Akib MG, Zaman K, Rahman MM, Hossain FMA, Ibenmoussa S, Bourhia M, Dawoud TM. Designing a multi-epitope vaccine candidate against human rhinovirus C utilizing immunoinformatics approach. Front Immunol 2025; 15:1364129. [PMID: 39840071 PMCID: PMC11747413 DOI: 10.3389/fimmu.2024.1364129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025] Open
Abstract
Human rhinovirus C (HRV-C) is a significant contributor to respiratory tract infections in children and is implicated in asthma exacerbations across all age groups. Despite its impact, there is currently no licensed vaccine available for HRV-C. Here, we present a novel approach to address this gap by employing immunoinformatics techniques for the design of a multi-epitope-based vaccine against HRV-C. The sequences of the chosen structural proteins VP1 and VP2, along with the non-structural protein 2C of HRV-C, were downloaded in FASTA format from the NCBI server for further analysis. Through an exhaustive analysis of HRV-C genomic sequences, we identified highly conserved immunogenic regions capable of eliciting a protective immune response. Leveraging advanced immunoinformatics tools, we predicted epitopes for B-cells, Cytotoxic T lymphocytes, and Helper T lymphocytes, ensuring broad coverage across different HRV-C strains. The vaccine candidate was constructed by integrating selected antigens with immunogenic epitopes and adjuvants, employing optimal linkers. Three vaccine constructs were developed, with V2 being the most promising, consisting of 480 amino acids residues. V2 exhibited strong antigenicity, non-allergenicity, and solubility, with a solubility score greater than 0.550, and demonstrated excellent structural stability, with 91.9% of residues in the most favorable regions of the Ramachandran plot. Molecular dynamics and simulation studies revealed a stable Vaccine-TLR8 complex, with a binding energy of -296.15 and consistent RMSD values. Furthermore, in silico cloning and sequence optimization ensured efficient expression in E. coli, with a Codon Adaptation Index of 0.99 and GC content of 54.58%. The minimum free energy of the RNA secondary structure was -494.90 kcal/mol. While our findings suggest the potential effectiveness of the designed vaccine candidate against HRV-C, further in vitro and in vivo investigations are warranted to validate its safety and efficacy.
Collapse
Affiliation(s)
- Tajul Islam Mamun
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, Bangladesh
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md. Ahad Ali
- Department Of Chemistry, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Nazmul Hosen
- Department of Pharmacology and Toxicology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Jillur Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md. Anwarul Islam
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md. Golam Akib
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Kamruz Zaman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md. Masudur Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Pathology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Ferdaus Mohd Altaf Hossain
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Dairy Science, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier, France
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | - Turki M. Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Habib A, Liang Y, Xu X, Zhu N, Xie J. Immunoinformatic Identification of Multiple Epitopes of gp120 Protein of HIV-1 to Enhance the Immune Response against HIV-1 Infection. Int J Mol Sci 2024; 25:2432. [PMID: 38397105 PMCID: PMC10889372 DOI: 10.3390/ijms25042432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Acquired Immunodeficiency Syndrome is caused by the Human Immunodeficiency Virus (HIV), and a significant number of fatalities occur annually. There is a dire need to develop an effective vaccine against HIV-1. Understanding the structural proteins of viruses helps in designing a vaccine based on immunogenic peptides. In the current experiment, we identified gp120 epitopes using bioinformatic epitope prediction tools, molecular docking, and MD simulations. The Gb-1 peptide was considered an adjuvant. Consecutive sequences of GTG, GSG, GGTGG, and GGGGS linkers were used to bind the B cell, Cytotoxic T Lymphocytes (CTL), and Helper T Lymphocytes (HTL) epitopes. The final vaccine construct consisted of 315 amino acids and is expected to be a recombinant protein of approximately 35.49 kDa. Based on docking experiments, molecular dynamics simulations, and tertiary structure validation, the analysis of the modeled protein indicates that it possesses a stable structure and can interact with Toll-like receptors. The analysis demonstrates that the proposed vaccine can provoke an immunological response by activating T and B cells, as well as stimulating the release of IgA and IgG antibodies. This vaccine shows potential for HIV-1 prophylaxis. The in-silico design suggests that multiple-epitope constructs can be used as potentially effective immunogens for HIV-1 vaccine development.
Collapse
Affiliation(s)
- Arslan Habib
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; (A.H.); (X.X.); (N.Z.)
| | - Yulai Liang
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; (A.H.); (X.X.); (N.Z.)
| | - Xinyi Xu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; (A.H.); (X.X.); (N.Z.)
| | - Naishuo Zhu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; (A.H.); (X.X.); (N.Z.)
- Institute of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jun Xie
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; (A.H.); (X.X.); (N.Z.)
| |
Collapse
|
4
|
Salahlou R, Farajnia S, Bargahi N, Bakhtiyari N, Elmi F, Shahgolzari M, Fiering S, Venkataraman S. Development of a novel multi‑epitope vaccine against the pathogenic human polyomavirus V6/7 using reverse vaccinology. BMC Infect Dis 2024; 24:177. [PMID: 38336665 PMCID: PMC10854057 DOI: 10.1186/s12879-024-09046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Human polyomaviruses contribute to human oncogenesis through persistent infections, but currently there is no effective preventive measure against the malignancies caused by this virus. Therefore, the development of a safe and effective vaccine against HPyV is of high priority. METHODS First, the proteomes of 2 polyomavirus species (HPyV6 and HPyV7) were downloaded from the NCBI database for the selection of the target proteins. The epitope identification process focused on selecting proteins that were crucial, associated with virulence, present on the surface, antigenic, non-toxic, and non-homologous with the human proteome. Then, the immunoinformatic methods were used to identify cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and B-cell epitopes from the target antigens, which could be used to create epitope-based vaccine. The physicochemical features of the designed vaccine were predicted through various online servers. The binding pattern and stability between the vaccine candidate and Toll-like receptors were analyzed through molecular docking and molecular dynamics (MD) simulation, while the immunogenicity of the designed vaccines was assessed using immune simulation. RESULTS Online tools were utilized to forecast the most optimal epitope from the immunogenic targets, including LTAg, VP1, and VP1 antigens of HPyV6 and HPyV7. A multi-epitope vaccine was developed by combining 10 CTL, 7 HTL, and 6 LBL epitopes with suitable linkers and adjuvant. The vaccine displayed 98.35% of the world's population coverage. The 3D model of the vaccine structure revealed that the majority of residues (87.7%) were located in favored regions of the Ramachandran plot. The evaluation of molecular docking and MD simulation revealed that the constructed vaccine exhibits a strong binding (-1414.0 kcal/mol) towards the host's TLR4. Moreover, the vaccine-TLR complexes remained stable throughout the dynamic conditions present in the natural environment. The immune simulation results demonstrated that the vaccine design had the capacity to elicit robust immune responses in the host. CONCLUSION The multi-parametric analysis revealed that the designed vaccine is capable of inducing sustained immunity against the selected polyomaviruses, although further in-vivo investigations are needed to verify its effectiveness.
Collapse
Affiliation(s)
- Reza Salahlou
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nasrin Bargahi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Bakhtiyari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faranak Elmi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Shahgolzari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine, and Dartmouth Cancer Center, Lebanon, NH, USA
| | | |
Collapse
|
5
|
Schriek P, Villadangos JA. Trogocytosis and cross-dressing in antigen presentation. Curr Opin Immunol 2023; 83:102331. [PMID: 37148582 DOI: 10.1016/j.coi.2023.102331] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/08/2023]
Abstract
Antigen (Ag)-presenting cells capture or synthesize Ags that are processed into peptides bound and displayed on the plasma membrane by major histocompatibility complex (MHC) molecules. Here, we review a mechanism that enables cells to present Ag-loaded MHC molecules that they have not produced themselves, namely trogocytosis. During trogocytosis, a cell acquires fragments from another living cell without, in most cases, affecting the viability of the donor cell. The trogocytic cell can incorporate into its own plasma membrane (becoming cross-dressed) proteins acquired from the donor cell, including intact Ag and MHC molecules. Trogocytosis and cross-dressing expand the immunological functions that immune and nonimmune cells are able to carry out, with both beneficial and deleterious consequences.
Collapse
Affiliation(s)
- Patrick Schriek
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.
| |
Collapse
|
6
|
Tan C, Zhu F, Pan P, Wu A, Li C. Development of multi-epitope vaccines against the monkeypox virus based on envelope proteins using immunoinformatics approaches. Front Immunol 2023; 14:1112816. [PMID: 36993967 PMCID: PMC10040844 DOI: 10.3389/fimmu.2023.1112816] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
BackgroundSince May 2022, cases of monkeypox, a zoonotic disease caused by the monkeypox virus (MPXV), have been increasingly reported worldwide. There are, however, no proven therapies or vaccines available for monkeypox. In this study, several multi-epitope vaccines were designed against the MPXV using immunoinformatics approaches.MethodsThree target proteins, A35R and B6R, enveloped virion (EV) form-derived antigens, and H3L, expressed on the mature virion (MV) form, were selected for epitope identification. The shortlisted epitopes were fused with appropriate adjuvants and linkers to vaccine candidates. The biophysical andbiochemical features of vaccine candidates were evaluated. The Molecular docking and molecular dynamics(MD) simulation were run to understand the binding mode and binding stability between the vaccines and Toll-like receptors (TLRs) and major histocompatibility complexes (MHCs). The immunogenicity of the designed vaccines was evaluated via immune simulation.ResultsFive vaccine constructs (MPXV-1-5) were formed. After the evaluation of various immunological and physicochemical parameters, MPXV-2 and MPXV-5 were selected for further analysis. The results of molecular docking showed that the MPXV-2 and MPXV-5 had a stronger affinity to TLRs (TLR2 and TLR4) and MHC (HLA-A*02:01 and HLA-DRB1*02:01) molecules, and the analyses of molecular dynamics (MD) simulation have further confirmed the strong binding stability of MPXV-2 and MPXV-5 with TLRs and MHC molecules. The results of the immune simulation indicated that both MPXV-2 and MPXV-5 could effectively induce robust protective immune responses in the human body.ConclusionThe MPXV-2 and MPXV-5 have good efficacy against the MPXV in theory, but further studies are required to validate their safety and efficacy.
Collapse
Affiliation(s)
- Caixia Tan
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Changsha, Hunan, China
| | - Fei Zhu
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Changsha, Hunan, China
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
| | - Pinhua Pan
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Changsha, Hunan, China
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- *Correspondence: Chunhui Li, ; Anhua Wu, ; Pinhua Pan,
| | - Anhua Wu
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Changsha, Hunan, China
- *Correspondence: Chunhui Li, ; Anhua Wu, ; Pinhua Pan,
| | - Chunhui Li
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Changsha, Hunan, China
- *Correspondence: Chunhui Li, ; Anhua Wu, ; Pinhua Pan,
| |
Collapse
|
7
|
Moin AT, Singh G, Ahmed N, Saiara SA, Timofeev VI, Ahsan Faruqui N, Sharika Ahsan S, Tabassum A, Nebir SS, Andalib KMS, Araf Y, Ullah MA, Sarkar B, Islam NN, Zohora US. Computational designing of a novel subunit vaccine for human cytomegalovirus by employing the immunoinformatics framework. J Biomol Struct Dyn 2023; 41:833-855. [PMID: 36617426 DOI: 10.1080/07391102.2021.2014969] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human cytomegalovirus (HCMV) is a widespread virus that can cause serious and irreversible neurological damage in newborns and even death in children who do not have the access to much-needed medications. While some vaccines and drugs are found to be effective against HCMV, their extended use has given rise to dose-limiting toxicities and the development of drug-resistant mutants among patients. Despite half a century's worth of research, the lack of a licensed HCMV vaccine heightens the need to develop newer antiviral therapies and vaccine candidates with improved effectiveness and reduced side effects. In this study, the immunoinformatics approach was utilized to design a potential polyvalent epitope-based vaccine effective against the four virulent strains of HCMV. The vaccine was constructed using seven CD8+ cytotoxic T lymphocytes epitopes, nine CD4+ helper T lymphocyte epitopes, and twelve linear B-cell lymphocyte epitopes that were predicted to be antigenic, non-allergenic, non-toxic, fully conserved, and non-human homologous. Subsequently, molecular docking study, protein-protein interaction analysis, molecular dynamics simulation (including the root mean square fluctuation (RMSF) and root mean square deviation (RMSD)), and immune simulation study rendered promising results assuring the vaccine to be stable, safe, and effective. Finally, in silico cloning was conducted to develop an efficient mass production strategy of the vaccine. However, further in vitro and in vivo research studies on the proposed vaccine are required to confirm its safety and efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Gagandeep Singh
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India.,Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Nafisa Ahmed
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | | | - Vladimir I Timofeev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation
| | - Nairita Ahsan Faruqui
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | | | - Afrida Tabassum
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, Bangladesh
| | - Sadman Sakib Nebir
- Department of Microbiology and Immunology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | | | - Yusha Araf
- Community of Biotechnology, Dhaka, Bangladesh.,Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Asad Ullah
- Community of Biotechnology, Dhaka, Bangladesh.,Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Bishajit Sarkar
- Community of Biotechnology, Dhaka, Bangladesh.,Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Umme Salma Zohora
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
8
|
Sarkar B, Ullah MA, Araf Y, Islam NN, Zohora US. Immunoinformatics-guided designing and in silico analysis of epitope-based polyvalent vaccines against multiple strains of human coronavirus (HCoV). Expert Rev Vaccines 2022; 21:1851-1871. [PMID: 33435759 PMCID: PMC7989953 DOI: 10.1080/14760584.2021.1874925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 01/08/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVES The group of human coronaviruses (HCoVs) consists of some highly pathogenic viruses that have caused several outbreaks in the past. The newly emerged strain of HCoV, the SARS-CoV-2 is responsible for the recent global pandemic that has already caused the death of hundreds of thousands of people due to the lack of effective therapeutic options. METHODS In this study, immunoinformatics methods were used to design epitope-based polyvalent vaccines which are expected to be effective against four different pathogenic strains of HCoV i.e., HCoV-OC43, HCoV-SARS, HCoV-MERS, and SARS-CoV-2. RESULTS The constructed vaccines consist of highly antigenic, non-allergenic, nontoxic, conserved, and non-homologous T-cell and B-cell epitopes from all the four viral strains. Therefore, they should be able to provide strong protection against all these strains. Protein-protein docking was performed to predict the best vaccine construct. Later, the MD simulation and immune simulation of the best vaccine construct also predicted satisfactory results. Finally, in silico cloning was performed to develop a mass production strategy of the vaccine. CONCLUSION If satisfactory results are achieved in further in vivo and in vitro studies, then the vaccines designed in this study might be effective as preventative measures against the selected HCoV strains.
Collapse
Affiliation(s)
- Bishajit Sarkar
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md. Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Umme Salma Zohora
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| |
Collapse
|
9
|
Abstract
Epstein-Barr virus (EBV) is a lymphotropic virus responsible for numerous epithelial and lymphoid cell malignancies, including gastric carcinoma, Hodgkin's lymphoma, nasopharyngeal carcinoma, and Burkitt lymphoma. Hundreds of thousands of people worldwide get infected with this virus, and in most cases, this viral infection leads to cancer. Although researchers are trying to develop potential vaccines and drug therapeutics, there is still no effective vaccine to combat this virus. In this study, the immunoinformatics approach was utilized to develop a potential multiepitope subunit vaccine against the two most common subtypes of EBV, targeting three of their virulent envelope glycoproteins. Eleven cytotoxic T lymphocyte (CTL) epitopes, 11 helper T lymphocyte (HTL) epitopes, and 10 B-cell lymphocyte (BCL) epitopes were predicted to be antigenic, nonallergenic, nontoxic, and fully conserved among the two subtypes, and nonhuman homologs were used for constructing the vaccine after much analysis. Later, further validation experiments, including molecular docking with different immune receptors (e.g., Toll-like receptors [TLRs]), molecular dynamics simulation analyses (including root means square deviation [RMSD], root mean square fluctuation [RMSF], radius of gyration [Rg], principal-component analysis [PCA], dynamic cross-correlation [DCC], definition of the secondary structure of proteins [DSSP], and Molecular Mechanics Poisson-Boltzmann Surface Area [MM-PBSA]), and immune simulation analyses generated promising results, ensuring the safe and stable response of the vaccine with specific immune receptors after potential administration within the human body. The vaccine's high binding affinity with TLRs was revealed in the docking study, and a very stable interaction throughout the simulation proved the potential high efficacy of the proposed vaccine. Further, in silico cloning was also conducted to design an efficient mass production strategy for future bulk industrial vaccine production. IMPORTANCE Epstein-Barr virus (EBV) vaccines have been developing for over 30 years, but polyphyletic and therapeutic vaccines have failed to get licensed. Our vaccine surpasses the limitations of many such vaccines and remains very promising, which is crucial because the infection rate is higher than most viral infections, affecting a whopping 90% of the adult population. One of the major identifications covers a holistic analysis of populations worldwide, giving us crucial information about its effectiveness for everyone's unique immunological system. We targeted three glycoproteins that enhance the virulence of the virus to design an epitope-based polyvalent vaccine against two different strains of EBV, type 1 and 2. Our methodology in this study is nonconventional yet swift to show effective results while designing vaccines.
Collapse
|
10
|
Samad A, Meghla NS, Nain Z, Karpiński TM, Rahman MS. Immune epitopes identification and designing of a multi-epitope vaccine against bovine leukemia virus: a molecular dynamics and immune simulation approaches. Cancer Immunol Immunother 2022; 71:2535-2548. [PMID: 35294591 PMCID: PMC8924353 DOI: 10.1007/s00262-022-03181-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/20/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bovine leukemia virus (BLV) is an oncogenic delta-retrovirus causing bovine leucosis. Studies on BLV have shown the association with human breast cancer. However, the exact molecular mechanism is neither known nor their appropriate preventative measure to halt the disease initiation and progression. In this study, we designed a multi-epitope vaccine against BLV using a computational analyses. METHODS Following a rigorous assessment, the vaccine was constructed using the T-cell epitopes from each BLV-derived protein with suitable adjuvant and linkers. Both physicochemistry and immunogenic potency as well as the safeness of the vaccine candidate were assessed. Population coverage was done to evaluate the vaccine probable efficiency in eliciting the immune response worldwide. After homology modeling, the three-dimensional structure was refined and validated to determine the quality of the designed vaccine. The vaccine protein was then subjected to molecular docking with Toll-like receptor 3 (TLR3) to evaluate the binding efficiency followed by dynamic simulation for stable interaction. RESULTS Our vaccine construct has the potential immune response and good physicochemical properties. The vaccine is antigenic and immunogenic, and has no allergenic or toxic effect on the human body. This novel vaccine contains a significant interactions and binding affinity with the TLR3 receptor. CONCLUSIONS The proposed vaccine candidate would be structurally stable and capable of generating an effective immune response to combat BLV infections. However, experimental evaluations are essential to validate the exact safety and immunogenic profiling of this vaccine.
Collapse
Affiliation(s)
- Abdus Samad
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Nigar Sultana Meghla
- Department of Microbiology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Zulkar Nain
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712, Poznań, Poland.
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
11
|
Aslam S, Ashfaq UA, Zia T, Aslam N, Alrumaihi F, Shahid F, Noor F, Qasim M. Proteome based mapping and reverse vaccinology techniques to contrive multi-epitope based subunit vaccine (MEBSV) against Streptococcus pyogenes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 100:105259. [PMID: 35231667 DOI: 10.1016/j.meegid.2022.105259] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 12/01/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Streptococcus pyogenes is a root cause of human infection like pharyngitis, tonsillitis, scarlet fever, impetigo, and respiratory tract infections. About 11 million individuals in the US suffer from pharyngitis every year. Unfortunately, no vaccine against S. pyogenes is available yet. The purpose of this study is to create a multiepitope-based subunit vaccine (MEBSV) targeting S. pyogenes top four highly antigenic proteins by using a combination of immunological techniques and molecular docking to tackle term group A streptococcal (GAS) infections. T-cell (HTL & CTL), B-cell, and IFN-γ of target proteins were forecasted and epitopes having high antigenic properties being selected for subsequent research. For designing of final vaccine, 5LBL, 9CTL, and 4HTL epitopes were joined by the KK, AAY, and GPGPG linkers. To enhance the immune response, the N-end of the vaccine was linked by adjuvant (Cholera enterotoxin subunit B) with a linker named EAAAK. With the addition of adjuvants and linkers, the construct size was 421 amino acids. IFN-γ and B-cell epitopes illustrate that the modeled construct is optimized for cell-mediated immune or humoral responses. The developed MEBSV structure was assessed to be highly antigenic, non-toxic, and non-allergenic. Moreover, disulphide engineering further enhanced the stability of the final vaccine protein. Molecular docking of the MEBSV with toll-like receptor 4 (TLR4) was conducted to check the vaccine's compatibility with the receptor. Besides, in-silico cloning has been carried out for credibility validation and proper expression of vaccine construct. These findings suggested that the multi-epitope vaccine produced might be a potential immunogenic against Group A streptococcus infections but further experimental testing is required to validate this study.
Collapse
Affiliation(s)
- Sidra Aslam
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan
| | - Tuba Zia
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan
| | - Nosheen Aslam
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan
| | - Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan.
| |
Collapse
|
12
|
Damas MSF, Mazur FG, Freire CCDM, da Cunha AF, Pranchevicius MCDS. A Systematic Immuno-Informatic Approach to Design a Multiepitope-Based Vaccine Against Emerging Multiple Drug Resistant Serratia marcescens. Front Immunol 2022; 13:768569. [PMID: 35371033 PMCID: PMC8967166 DOI: 10.3389/fimmu.2022.768569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Serratia marcescens is now an important opportunistic pathogen that can cause serious infections in hospitalized or immunocompromised patients. Here, we used extensive bioinformatic analyses based on reverse vaccinology and subtractive proteomics-based approach to predict potential vaccine candidates against S. marcescens. We analyzed the complete proteome sequence of 49 isolate of Serratia marcescens and identified 5 that were conserved proteins, non-homologous from human and gut flora, extracellular or exported to the outer membrane, and antigenic. The identified proteins were used to select 5 CTL, 12 HTL, and 12 BCL epitopes antigenic, non-allergenic, conserved, hydrophilic, and non-toxic. In addition, HTL epitopes were able to induce interferon-gamma immune response. The selected peptides were used to design 4 multi-epitope vaccines constructs (SMV1, SMV2, SMV3 and SMV4) with immune-modulating adjuvants, PADRE sequence, and linkers. Peptide cleavage analysis showed that antigen vaccines are processed and presented via of MHC class molecule. Several physiochemical and immunological analyses revealed that all multiepitope vaccines were non-allergenic, stable, hydrophilic, and soluble and induced the immunity with high antigenicity. The secondary structure analysis revealed the designed vaccines contain mainly coil structure and alpha helix structures. 3D analyses showed high-quality structure. Molecular docking analyses revealed SMV4 as the best vaccine construct among the four constructed vaccines, demonstrating high affinity with the immune receptor. Molecular dynamics simulation confirmed the low deformability and stability of the vaccine candidate. Discontinuous epitope residues analyses of SMV4 revealed that they are flexible and can interact with antibodies. In silico immune simulation indicated that the designed SMV4 vaccine triggers an effective immune response. In silico codon optimization and cloning in expression vector indicate that SMV4 vaccine can be efficiently expressed in E. coli system. Overall, we showed that SMV4 multi-epitope vaccine successfully elicited antigen-specific humoral and cellular immune responses and may be a potential vaccine candidate against S. marcescens. Further experimental validations could confirm its exact efficacy, the safety and immunogenicity profile. Our findings bring a valuable addition to the development of new strategies to prevent and control the spread of multidrug-resistant Gram-negative bacteria with high clinical relevance.
Collapse
Affiliation(s)
| | - Fernando Gabriel Mazur
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | | | | | - Maria-Cristina da Silva Pranchevicius
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
- Centro de Ciências Biológicas e da Saúde, Biodiversidade Tropical – BIOTROP, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
13
|
Sami SA, Marma KKS, Mahmud S, Khan MAN, Albogami S, El-Shehawi AM, Rakib A, Chakraborty A, Mohiuddin M, Dhama K, Uddin MMN, Hossain MK, Tallei TE, Emran TB. Designing of a Multi-epitope Vaccine against the Structural Proteins of Marburg Virus Exploiting the Immunoinformatics Approach. ACS OMEGA 2021; 6:32043-32071. [PMID: 34870027 PMCID: PMC8638006 DOI: 10.1021/acsomega.1c04817] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 05/08/2023]
Abstract
Marburg virus disease (MVD) caused by the Marburg virus (MARV) generally appears with flu-like symptoms and leads to severe hemorrhagic fever. It spreads via direct contact with infected individuals or animals. Despite being considered to be less threatening in terms of appearances and the number of infected patients, the high fatality rate of this pathogenic virus is a major concern. Until now, no vaccine has been developed to combat this deadly virus. Therefore, vaccination for this virus is necessary to reduce its mortality. Our current investigation focuses on the design and formulation of a multi-epitope vaccine based on the structural proteins of MARV employing immunoinformatics approaches. The screening of potential T-cell and B-cell epitopes from the seven structural proteins of MARV was carried out through specific selection parameters. Afterward, we compiled the shortlisted epitopes by attaching them to an appropriate adjuvant and linkers. Population coverage analysis, conservancy analysis, and MHC cluster analysis of the shortlisted epitopes were satisfactory. Importantly, physicochemical characteristics, human homology assessment, and structure validation of the vaccine construct delineated convenient outcomes. We implemented disulfide bond engineering to stabilize the tertiary or quaternary interactions. Furthermore, stability and physical movements of the vaccine protein were explored using normal-mode analysis. The immune simulation study of the vaccine complexes also exhibited significant results. Additionally, the protein-protein docking and molecular dynamics simulation of the final construct exhibited a higher affinity toward toll-like receptor-4 (TLR4). From simulation trajectories, multiple descriptors, namely, root mean square deviations (rmsd), radius of gyration (Rg), root mean square fluctuations (RMSF), solvent-accessible surface area (SASA), and hydrogen bonds, have been taken into account to demonstrate the inflexible and rigid nature of receptor molecules and the constructed vaccine. Inclusively, our findings suggested the vaccine constructs' ability to regulate promising immune responses against MARV pathogenesis.
Collapse
Affiliation(s)
- Saad Ahmed Sami
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Kay Kay Shain Marma
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Shafi Mahmud
- Microbiology
Laboratory, Bioinformatics Division, Department of Genetic Engineering
and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Asif Nadim Khan
- Department of Biochemistry and Molecular
Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Sarah Albogami
- Department
of Biotechnology, College of Science, Taif
University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. El-Shehawi
- Department
of Biotechnology, College of Science, Taif
University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Rakib
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Agnila Chakraborty
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Mostafah Mohiuddin
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary
Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Mir Muhammad Nasir Uddin
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Mohammed Kamrul Hossain
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Trina Ekawati Tallei
- Department of Biology,
Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi 95115, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
14
|
Charpentier JC, King PD. Mechanisms and functions of endocytosis in T cells. Cell Commun Signal 2021; 19:92. [PMID: 34503523 PMCID: PMC8427877 DOI: 10.1186/s12964-021-00766-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/17/2021] [Indexed: 11/11/2022] Open
Abstract
Once thought of primarily as a means to neutralize pathogens or to facilitate feeding, endocytosis is now known to regulate a wide range of eukaryotic cell processes. Among these are regulation of signal transduction, mitosis, lipid homeostasis, and directed migration, among others. Less well-appreciated are the roles various forms of endocytosis plays in regulating αβ and, especially, γδ T cell functions, such as T cell receptor signaling, antigen discovery by trogocytosis, and activated cell growth. Herein we examine the contribution of both clathrin-mediated and clathrin-independent mechanisms of endocytosis to T cell biology. Video Abstract
Collapse
Affiliation(s)
- John C Charpentier
- Department of Microbiology and Immunology, University of Michigan Medical School, 6606 Med Sci II, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5620, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, 6606 Med Sci II, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5620, USA.
| |
Collapse
|
15
|
Gérard A, Cope AP, Kemper C, Alon R, Köchl R. LFA-1 in T cell priming, differentiation, and effector functions. Trends Immunol 2021; 42:706-722. [PMID: 34266767 PMCID: PMC10734378 DOI: 10.1016/j.it.2021.06.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/19/2022]
Abstract
The integrin LFA-1 is crucial for T cell entry into mammalian lymph nodes and tissues, and for promoting interactions with antigen-presenting cells (APCs). However, it is increasingly evident that LFA-1 has additional key roles beyond the mere support of adhesion between T cells, the endothelium, and/or APCs. These include roles in homotypic T cell-T cell (T-T) communication, the induction of intracellular complement activity underlying Th1 effector cell polarization, and the support of long-lasting T cell memory. Here, we briefly summarize current knowledge of LFA-1 biology, discuss novel cytoskeletal regulators of LFA-1 functions, and review new aspects of LFA-1 mechanobiology that are relevant to its function in immunological synapses and in specific pathologies arising from LFA-1 dysregulation.
Collapse
Affiliation(s)
- Audrey Gérard
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andrew P Cope
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK
| | - Claudia Kemper
- National Heart, Lung and Blood Institute (NHLBI), National Institute of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA; Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Ronen Alon
- The Weizmann Institute of Science, Rehovot, Israel
| | - Robert Köchl
- Peter Gorer Department of Immunobiology, King's College London, London, UK.
| |
Collapse
|
16
|
Nakayama M, Hori A, Toyoura S, Yamaguchi SI. Shaping of T Cell Functions by Trogocytosis. Cells 2021; 10:cells10051155. [PMID: 34068819 PMCID: PMC8151334 DOI: 10.3390/cells10051155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Trogocytosis is an active process whereby plasma membrane proteins are transferred from one cell to the other cell in a cell-cell contact-dependent manner. Since the discovery of the intercellular transfer of major histocompatibility complex (MHC) molecules in the 1970s, trogocytosis of MHC molecules between various immune cells has been frequently observed. For instance, antigen-presenting cells (APCs) acquire MHC class I (MHCI) from allografts, tumors, and virally infected cells, and these APCs are subsequently able to prime CD8+ T cells without antigen processing via the preformed antigen-MHCI complexes, in a process called cross-dressing. T cells also acquire MHC molecules from APCs or other target cells via the immunological synapse formed at the cell-cell contact area, and this phenomenon impacts T cell activation. Compared with naïve and effector T cells, T regulatory cells have increased trogocytosis activity in order to remove MHC class II and costimulatory molecules from APCs, resulting in the induction of tolerance. Accumulating evidence suggests that trogocytosis shapes T cell functions in cancer, transplantation, and during microbial infections. In this review, we focus on T cell trogocytosis and the related inflammatory diseases.
Collapse
|
17
|
Hossan MI, Chowdhury AS, Hossain MU, Khan MA, Mahmood TB, Mizan S. Immunoinformatics aided-design of novel multi-epitope based peptide vaccine against Hendra henipavirus through proteome exploration. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
18
|
Sarkar B, Ullah MA, Araf Y, Rahman MS. Engineering a novel subunit vaccine against SARS-CoV-2 by exploring immunoinformatics approach. INFORMATICS IN MEDICINE UNLOCKED 2020; 21:100478. [PMID: 33200088 PMCID: PMC7656168 DOI: 10.1016/j.imu.2020.100478] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 02/08/2023] Open
Abstract
As the number of infections and deaths caused by the recent COVID-19 pandemic is increasing dramatically day-by-day, scientists are rushing towards developing possible countermeasures to fight the deadly virus, SARS-CoV-2. Although many efforts have already been put forward for developing potential vaccines; however, most of them are proved to possess negative consequences. Therefore, in this study, immunoinformatics methods were exploited to design a novel epitope-based subunit vaccine against the SARS-CoV-2, targeting four essential proteins of the virus i.e., spike glycoprotein, nucleocapsid phosphoprotein, membrane glycoprotein, and envelope protein. The highly antigenic, non-allergenic, non-toxic, non-human homolog, and 100% conserved (across other isolates from different regions of the world) epitopes were used for constructing the vaccine. In total, fourteen CTL epitopes and eighteen HTL epitopes were used to construct the vaccine. Thereafter, several in silico validations i.e., the molecular docking, molecular dynamics simulation (including the RMSF and RMSD studies), and immune simulation studies were also performed which predicted that the designed vaccine should be quite safe, effective, and stable within the biological environment. Finally, in silico cloning and codon adaptation studies were also conducted to design an effective mass production strategy of the vaccine. However, more in vitro and in vivo studies are required on the predicted vaccine to finally validate its safety and efficacy.
Collapse
Affiliation(s)
- Bishajit Sarkar
- COVID Research Cell (CRC), Wazed Miah Science Research Centre (WMSRC), Jahangirnagar University, Savar, Dhaka, Bangladesh
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md Asad Ullah
- COVID Research Cell (CRC), Wazed Miah Science Research Centre (WMSRC), Jahangirnagar University, Savar, Dhaka, Bangladesh
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Yusha Araf
- COVID Research Cell (CRC), Wazed Miah Science Research Centre (WMSRC), Jahangirnagar University, Savar, Dhaka, Bangladesh
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mohammad Shahedur Rahman
- COVID Research Cell (CRC), Wazed Miah Science Research Centre (WMSRC), Jahangirnagar University, Savar, Dhaka, Bangladesh
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| |
Collapse
|
19
|
Sarkar B, Ullah MA, Araf Y, Das S, Hosen MJ. Blueprint of epitope-based multivalent and multipathogenic vaccines: targeted against the dengue and zika viruses. J Biomol Struct Dyn 2020; 39:6882-6902. [PMID: 32772811 DOI: 10.1080/07391102.2020.1804456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Both dengue virus (DENV) and zika virus (ZIKV) belong to the highly infectious Flaviviridae family that has already caused several outbreaks and epidemics in many countries. DENV and ZIKV cause two of the most wide spread mosquito-borne viral diseases in the world, dengue fever (DENF) and zika fever (ZIKF), respectively. In many regions around the world, both of these diseases can outbreak together and can be lethal as well as life-threatening. Unfortunately, there is no functional and satisfactory vaccine available to combat these viruses. Therefore, in this study, we have attempted to design a blue print of potential multivalent and multipathogenic vaccines using immunoinformatics approach, which can combat both the DENV and ZIKV infections, simultaneously. Initially, three vaccines were designed; containing highly antigenic, non-allergenic, and non-toxic epitopes of T-cell (100% conserved) and B-cell from all the four DENV serotypes and ZIKV. In total, nine cytotoxic T-lymphocytic (CTL), nine helper T-lymphocytic (HTL), and seven B-cell lymphocytic (BCL) epitopes were used to construct three vaccines using three different adjuvants, designated as 'V1', 'V2', and 'V3'. Later, V3 was found to be the best vaccine construct, determined by molecular docking analysis. Thereafter, several in silico validation studies including molecular dynamics simulation and immune simulation were performed which indicated that V3 might be quite stable and should generate substantial immune response in the biological environment. However, further in vivo and in vitro validation might be required to finally confirm the safety and efficacy of our suggested vaccine constructs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bishajit Sarkar
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Md Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Sowmen Das
- Department of Computer Science and Engineering, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mohammad Jakir Hosen
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
20
|
Sarkar B, Ullah MA, Araf Y, Das S, Rahman MH, Moin AT. Designing novel epitope-based polyvalent vaccines against herpes simplex virus-1 and 2 exploiting the immunoinformatics approach. J Biomol Struct Dyn 2020; 39:6585-6605. [DOI: 10.1080/07391102.2020.1803969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Bishajit Sarkar
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Md. Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Sowmen Das
- Department of Computer Science and Engineering, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md. Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| |
Collapse
|
21
|
Uhl LFK, Gérard A. Modes of Communication between T Cells and Relevance for Immune Responses. Int J Mol Sci 2020; 21:E2674. [PMID: 32290500 PMCID: PMC7215318 DOI: 10.3390/ijms21082674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 11/16/2022] Open
Abstract
T cells are essential mediators of the adaptive immune system, which constantly patrol the body in search for invading pathogens. During an infection, T cells that recognise the pathogen are recruited, expand and differentiate into subtypes tailored to the infection. In addition, they differentiate into subsets required for short and long-term control of the pathogen, i.e., effector or memory. T cells have a remarkable degree of plasticity and heterogeneity in their response, however, their overall response to a given infection is consistent and robust. Much research has focused on how individual T cells are activated and programmed. However, in order to achieve a critical level of population-wide reproducibility and robustness, neighbouring cells and surrounding tissues have to provide or amplify relevant signals to tune the overall response accordingly. The characteristics of the immune response-stochastic on the individual cell level, robust on the global level-necessitate coordinated responses on a system-wide level, which facilitates the control of pathogens, while maintaining self-tolerance. This global coordination can only be achieved by constant cellular communication between responding cells, and faults in this intercellular crosstalk can potentially lead to immunopathology or autoimmunity. In this review, we will discuss how T cells mount a global, collective response, by describing the modes of T cell-T cell (T-T) communication they use and highlighting their physiological relevance in programming and controlling the T cell response.
Collapse
Affiliation(s)
| | - Audrey Gérard
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK;
| |
Collapse
|
22
|
Nain Z, Abdulla F, Rahman MM, Karim MM, Khan MSA, Sayed SB, Mahmud S, Rahman SMR, Sheam MM, Haque Z, Adhikari UK. Proteome-wide screening for designing a multi-epitope vaccine against emerging pathogen Elizabethkingia anophelis using immunoinformatic approaches. J Biomol Struct Dyn 2019; 38:4850-4867. [PMID: 31709929 DOI: 10.1080/07391102.2019.1692072] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Elizabethkingia anophelis is an emerging human pathogen causing neonatal meningitis, catheter-associated infections and nosocomial outbreaks with high mortality rates. Besides, they are resistant to most antibiotics used in empirical therapy. In this study, therefore, we used immunoinformatic approaches to design a prophylactic peptide vaccine against E. anophelis as an alternative preventive measure. Initially, cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and linear B-lymphocyte (LBL) epitopes were predicted from the highest antigenic protein. The CTL and HTL epitopes together had a population coverage of 99.97% around the world. Eventually, six CTL, seven HTL, and two LBL epitopes were selected and used to construct a multi-epitope vaccine. The vaccine protein was found to be highly immunogenic, non-allergenic, and non-toxic. Codon adaptation and in silico cloning were performed to ensure better expression within E. coli K12 host system. The stability of the vaccine structure was also improved by disulphide bridging. In addition, molecular docking and dynamics simulation revealed strong and stable binding affinity between the vaccine and toll-like receptor 4 (TLR4) molecule. The immune simulation showed higher levels of T-cell and B-cell activities which was in coherence with actual immune response. Repeated exposure simulation resulted in higher clonal selection and faster antigen clearance. Nevertheless, experimental validation is required to ensure the immunogenic potency and safety of this vaccine to control E. anophelis infection in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zulkar Nain
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Faruq Abdulla
- Department of Statistics, Faculty of Sciences, Islamic University, Kushtia, Bangladesh
| | - M Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Mohammad Minnatul Karim
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Md Shakil Ahmed Khan
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Sifat Bin Sayed
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Shafi Mahmud
- Department of Biotechnology and Genetic Engineering, Faculty of Life and Earth Science, Rajshahi University, Rajshahi, Bangladesh
| | - S M Raihan Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Md Moinuddin Sheam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Zahurul Haque
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | | |
Collapse
|
23
|
Nonspecific CD8 + T Cells and Dendritic Cells/Macrophages Participate in Formation of CD8 + T Cell-Mediated Clusters against Malaria Liver-Stage Infection. Infect Immun 2018; 86:IAI.00717-17. [PMID: 29426043 DOI: 10.1128/iai.00717-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/25/2018] [Indexed: 12/12/2022] Open
Abstract
CD8+ T cells are the major effector cells that protect against malaria liver-stage infection, forming clusters around Plasmodium-infected hepatocytes and eliminating parasites after a prolonged interaction with these hepatocytes. We aimed to investigate the roles of specific and nonspecific CD8+ T cells in cluster formation and protective immunity. To this end, we used Plasmodium berghei ANKA expressing ovalbumin as well as CD8+ T cells from transgenic mice expressing a T cell receptor specific for ovalbumin (OT-I) and CD8+ T cells specific for an unrelated antigen, respectively. While antigen-specific CD8+ T cells were essential for cluster formation, both antigen-specific and nonspecific CD8+ T cells joined the clusters. However, nonspecific CD8+ T cells did not significantly contribute to protective immunity. In the livers of infected mice, specific CD8+ T cells expressed high levels of CD25, compatible with a local, activated effector phenotype. In vivo imaging of the liver revealed that specific CD8+ T cells interact with CD11c+ cells around infected hepatocytes. The depletion of CD11c+ cells virtually eliminated the clusters in the liver, leading to a significant decrease in protection. These experiments reveal an essential role of hepatic CD11c+ dendritic cells and presumably macrophages in the formation of CD8+ T cell clusters around Plasmodium-infected hepatocytes. Once cluster formation is triggered by parasite-specific CD8+ T cells, specific and unrelated activated CD8+ T cells join the clusters in a chemokine- and dendritic cell-dependent manner. Nonspecific CD8+ T cells seem to play a limited role in protective immunity against Plasmodium parasites.
Collapse
|
24
|
Gilmartin AA, Petri WA. Exploring the mechanism of amebic trogocytosis: the role of amebic lysosomes. MICROBIAL CELL 2017; 5:1-3. [PMID: 29354646 PMCID: PMC5772035 DOI: 10.15698/mic2018.01.606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Allissia A Gilmartin
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - William A Petri
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA.,Department of Medicine, University of Virginia, Charlottesville, VA, USA.,Department of Pathology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
25
|
Vaccine-induced protection against orthopoxvirus infection is mediated through the combined functions of CD4 T cell-dependent antibody and CD8 T cell responses. J Virol 2014; 89:1889-99. [PMID: 25428875 DOI: 10.1128/jvi.02572-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Antibody production by B cells in the absence of CD4 T cell help has been shown to be necessary and sufficient for protection against secondary orthopoxvirus (OPV) infections. This conclusion is based on short-term depletion of leukocyte subsets in vaccinated animals, in addition to passive transfer of immune serum to naive hosts that are subsequently protected from lethal orthopoxvirus infection. Here, we show that CD4 T cell help is necessary for neutralizing antibody production and virus control during a secondary ectromelia virus (ECTV) infection. A crucial role for CD4 T cells was revealed when depletion of this subset was extended beyond the acute phase of infection. Sustained depletion of CD4 T cells over several weeks in vaccinated animals during a secondary infection resulted in gradual diminution of B cell responses, including neutralizing antibody, contemporaneous with a corresponding increase in the viral load. Long-term elimination of CD8 T cells alone delayed virus clearance, but prolonged depletion of both CD4 and CD8 T cells resulted in death associated with uncontrolled virus replication. In the absence of CD4 T cells, perforin- and granzyme A- and B-dependent effector functions of CD8 T cells became critical. Our data therefore show that both CD4 T cell help for antibody production and CD8 T cell effector function are critical for protection against secondary OPV infection. These results are consistent with the notion that the effectiveness of the smallpox vaccine is related to its capacity to induce both B and T cell memory. IMPORTANCE Smallpox eradication through vaccination is one of the most successful public health endeavors of modern medicine. The use of various orthopoxvirus (OPV) models to elucidate correlates of vaccine-induced protective immunity showed that antibody is critical for protection against secondary infection, whereas the role of T cells is unclear. Short-term leukocyte subset depletion in vaccinated animals or transfer of immune serum to naive, immunocompetent hosts indicates that antibody alone is necessary and sufficient for protection. We show here that long-term depletion of CD4 T cells over several weeks in vaccinated animals during secondary OPV challenge reveals an important role for CD4 T cell-dependent antibody responses in effective virus control. Prolonged elimination of CD8 T cells alone delayed virus clearance, but depletion of both T cell subsets resulted in death associated with uncontrolled virus replication. Thus, vaccinated individuals who subsequently acquire T cell deficiencies may not be protected against secondary OPV infection.
Collapse
|
26
|
Tagne RS, Telefo BP, Njina SN, Bala B, Goka SMC, Yemele DM, Lienou LL, Mbemya GT, Donfack NJ, Kamdje AHN, Moundipa PF. In vivo anti-androgenic, anti-estrogenic and antioxidant activities of the aqueous extract of Eremomastax speciosa. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014; 4:S952-S956. [DOI: 10.1016/s2222-1808(14)60765-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Shen ZT, Nguyen TT, Daniels KA, Welsh RM, Stern LJ. Disparate epitopes mediating protective heterologous immunity to unrelated viruses share peptide-MHC structural features recognized by cross-reactive T cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:5139-52. [PMID: 24127554 DOI: 10.4049/jimmunol.1300852] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Closely related peptide epitopes can be recognized by the same T cells and contribute to the immune response against pathogens encoding those epitopes, but sometimes cross-reactive epitopes share little homology. The degree of structural homology required for such disparate ligands to be recognized by cross-reactive TCRs remains unclear. In this study, we examined the mechanistic basis for cross-reactive T cell responses between epitopes from unrelated and pathogenic viruses, lymphocytic choriomeningitis virus (LCMV) and vaccinia virus. Our results show that the LCMV cross-reactive T cell response toward vaccinia virus is dominated by a shared asparagine residue, together with other shared structural elements conserved in the crystal structures of K(b)-VV-A11R and K(b)-LCMV-gp34. Based on analysis of the crystal structures and the specificity determinants for the cross-reactive T cell response, we were able to manipulate the degree of cross-reactivity of the T cell response, and to predict and generate a LCMV cross-reactive response toward a variant of a null OVA-derived peptide. These results indicate that protective heterologous immune responses can occur for disparate epitopes from unrelated viruses.
Collapse
Affiliation(s)
- Zu T Shen
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | | | | | | | | |
Collapse
|
28
|
Curado S, Kumari S, Dustin ML. "Cell biology meets physiology: functional organization of vertebrate plasma membranes"--the immunological synapse. CURRENT TOPICS IN MEMBRANES 2013; 72:313-46. [PMID: 24210434 PMCID: PMC4878826 DOI: 10.1016/b978-0-12-417027-8.00009-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immunological synapse (IS) is an excellent example of cell-cell communication, where signals are exchanged between two cells, resulting in a well-structured line of defense during adaptive immune response. This process has been the focus of several studies that aimed at understanding its formation and subsequent events and has led to the realization that it relies on a well-orchestrated molecular program that only occurs when specific requirements are met. The development of more precise and controllable T cell activation systems has led to new insights including the role of mechanotransduction in the process of formation of the IS and T cell activation. Continuous advances in our understanding of the IS formation, particularly in the context of T cell activation and differentiation, as well the development of new T cell activation systems are being applied to the establishment and improvement of immune therapeutical approaches.
Collapse
Affiliation(s)
- Silvia Curado
- Skirball Institute of Biomolecular Medicine, and Department of Pathology, New York University School of Medicine, 540 First Ave, New York, NY 10016, USA and Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Roosevelt Drive, Headington, Oxfordshire, OX3 7FY, UK
| | - Sudha Kumari
- Skirball Institute of Biomolecular Medicine, and Department of Pathology, New York University School of Medicine, 540 First Ave, New York, NY 10016, USA and Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Roosevelt Drive, Headington, Oxfordshire, OX3 7FY, UK
| | - Michael L. Dustin
- Skirball Institute of Biomolecular Medicine, and Department of Pathology, New York University School of Medicine, 540 First Ave, New York, NY 10016, USA and Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Roosevelt Drive, Headington, Oxfordshire, OX3 7FY, UK
| |
Collapse
|
29
|
Gérard A, Beemiller P, Friedman RS, Jacobelli J, Krummel MF. Evolving immune circuits are generated by flexible, motile, and sequential immunological synapses. Immunol Rev 2013; 251:80-96. [PMID: 23278742 PMCID: PMC3539221 DOI: 10.1111/imr.12021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The immune system is made up of a diverse collection of cells, each of which has distinct sets of triggers that elicit unique and overlapping responses. It is correctly described as a 'system' because its overall properties (e.g. 'tolerance', 'allergy') emerge from multiple interactions of its components cells. To mobilize a response where needed, the majority of the cells of the system are obligatorily highly motile and so must communicate with one another over both time and space. Here, we discuss the flexibility of the primary immunological synapse (IS) with respect to motility. We then consider the primary IS as an initiating module that licenses 'immunological circuits': the latter consisting of two or more cell-cell synaptic interactions. We discuss how two or three component immunological circuits interact might with one another in sequence and how the timing, stoichiometry, milieu, and duration of assembly of immunological circuits are likely to be key determinants in the emergent outcome and thus the system-wide immune response. An evolving consideration of immunological circuits, with an emphasis on the cell-cell modules that complement T-antigen-presenting cell interaction, provides a fundamental starting point for systems analysis of the immune response.
Collapse
Affiliation(s)
- Audrey Gérard
- Department of Pathology, University of California, San Francisco, CA 94143-0511, USA
| | | | | | | | | |
Collapse
|
30
|
Kremer M, Suezer Y, Volz A, Frenz T, Majzoub M, Hanschmann KM, Lehmann MH, Kalinke U, Sutter G. Critical role of perforin-dependent CD8+ T cell immunity for rapid protective vaccination in a murine model for human smallpox. PLoS Pathog 2012; 8:e1002557. [PMID: 22396645 PMCID: PMC3291617 DOI: 10.1371/journal.ppat.1002557] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 01/15/2012] [Indexed: 11/30/2022] Open
Abstract
Vaccination is highly effective in preventing various infectious diseases, whereas the constant threat of new emerging pathogens necessitates the development of innovative vaccination principles that also confer rapid protection in a case of emergency. Although increasing evidence points to T cell immunity playing a critical role in vaccination against viral diseases, vaccine efficacy is mostly associated with the induction of antibody responses. Here we analyze the immunological mechanism(s) of rapidly protective vaccinia virus immunization using mousepox as surrogate model for human smallpox. We found that fast protection against lethal systemic poxvirus disease solely depended on CD4 and CD8 T cell responses induced by vaccination with highly attenuated modified vaccinia virus Ankara (MVA) or conventional vaccinia virus. Of note, CD4 T cells were critically required to allow for MVA induced CD8 T cell expansion and perforin-mediated cytotoxicity was a key mechanism of MVA induced protection. In contrast, selected components of the innate immune system and B cell-mediated responses were fully dispensable for prevention of fatal disease by immunization given two days before challenge. In conclusion, our data clearly demonstrate that perforin-dependent CD8 T cell immunity plays a key role in MVA conferred short term protection against lethal mousepox. Rapid induction of T cell immunity might serve as a new paradigm for treatments that need to fit into a scenario of protective emergency vaccination. Prophylactic use of vaccinia virus allowed eradication of human smallpox, one of the greatest successes in medicine. However there are concerns that variola virus, the infectious agent of smallpox, may be used as bioterroristic weapon and zoonotic monkeypox or cowpox remain threatening infections in humans. Thus, new developments of safe and rapidly protecting orthopoxvirus-specific vaccines have been initiated. The candidate vaccine modified vaccinia virus Ankara (MVA) was recently shown to protect against lethal systemic poxvirus disease even when applied shortly before or after infection of mice with ectromelia virus, the probably best animal model for human smallpox. Surprisingly, little is known about the protective mechanism of early immune responses elicited against orthopoxvirus infections. Here, we used the mousepox model to analyze the immunological basis of rapidly protective MVA vaccination. In contrast to common understanding of orthopoxvirus vaccine efficacy relying mainly on antibody mediated immunity, we observed unimpaired protection also in absence of B cells. Surprisingly, rapid protection by vaccination with MVA or conventional vaccinia virus was solely dependent on T cells, irrespective of the route of injection. Thus, our study suggests a key role for T cell immunity in rapidly protective immunization against orthopoxviruses and potentially other infectious agents.
Collapse
Affiliation(s)
- Melanie Kremer
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Muenchen, Germany
| | | | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Muenchen, Germany
| | - Theresa Frenz
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and Hannover Medical School, Hannover, Germany
| | - Monir Majzoub
- Institute of Veterinary Pathology, University of Munich LMU, Muenchen, Germany
| | | | - Michael H. Lehmann
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Muenchen, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and Hannover Medical School, Hannover, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Muenchen, Germany
- * E-mail:
| |
Collapse
|
31
|
Ling ZL, Combes V, Grau GE, King NJC. Microparticles as immune regulators in infectious disease - an opinion. Front Immunol 2011; 2:67. [PMID: 22566856 PMCID: PMC3342294 DOI: 10.3389/fimmu.2011.00067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/11/2011] [Indexed: 01/06/2023] Open
Abstract
Despite their clear relationship to immunology, few existing studies have examined the potential role of microparticles (MP) in infectious disease. MP have a different size range from exosomes and apoptotic bodies, with which they are often grouped and arise by different mechanisms in association with inflammatory cytokine action or stress on the source cell. Infection with pathogens usually leads to the expression of a range of inflammatory cytokines and chemokines, as well as significant stress in both infected and uninfected cells. It is thus reasonable to infer that infection-associated inflammation also leads to MP production. MP are produced by most of the major cell types in the immune system, and appear to be involved at both innate and adaptive levels, potentially serving different functions in each. Thus, they do not appear to have a universal function; instead their functions are source- or stimulus-dependent, although likely to be primarily either pro- or anti-inflammatory. We argue that in infectious diseases, MP may be able to deliver antigen, derived from the biological cargo acquired from their cells of origin, to antigen-presenting cells. Another potential benefit of MP would be to transfer and/or disseminate phenotype and function to target cells. However, MP may also potentially be manipulated, particularly by intracellular pathogens, for survival advantage.
Collapse
Affiliation(s)
- Zheng Lung Ling
- Discipline of Pathology, Bosch Institute, School of Medical Sciences, Sydney Medical School, University of Sydney Sydney, NSW, Australia
| | | | | | | |
Collapse
|
32
|
Spesock AH, Barefoot BE, Ray CA, Kenan DJ, Gunn MD, Ramsburg EA, Pickup DJ. Cowpox virus induces interleukin-10 both in vitro and in vivo. Virology 2011; 417:87-97. [PMID: 21658738 PMCID: PMC3212434 DOI: 10.1016/j.virol.2011.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/17/2010] [Accepted: 05/18/2011] [Indexed: 12/24/2022]
Abstract
Cowpox virus infection induces interleukin-10 (IL-10) production from mouse bone marrow-derived dendritic cells (BMDCs) or cells of the mouse macrophage line (RAW264.7) at about 1800 pg/ml, whereas infections with vaccinia virus (strains WR or MVA) induced much less IL-10. Similarly, in vivo, IL-10 levels in bronchoalveolar lavage fluids of mice infected with cowpox virus were significantly higher than those after vaccinia virus infection. However, after intranasal cowpox virus infection, although dendritic and T-cell accumulations in the lungs of IL-10 deficient mice were greater than those in wild-type mice, weight-loss and viral burdens were not significantly different. IL-10 deficient mice were more susceptible than wild-type mice to re-infection with cowpox virus even though titers of neutralizing antibodies and virus-specific CD8 T cells were similar between IL-10 deficient and wild-type mice. Greater bronchopneumonia in IL-10 deficient mice than wild-type mice suggests that IL-10 contributes to the suppression of immunopathology in the lungs.
Collapse
Affiliation(s)
- April H Spesock
- Department of Molecular Genetics and Microbiology, Box 3020, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Shen ZT, Brehm MA, Daniels KA, Sigalov AB, Selin LK, Welsh RM, Stern LJ. Bi-specific MHC heterodimers for characterization of cross-reactive T cells. J Biol Chem 2010; 285:33144-33153. [PMID: 20729210 PMCID: PMC2963422 DOI: 10.1074/jbc.m110.141051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/25/2010] [Indexed: 11/06/2022] Open
Abstract
T cell cross-reactivity describes the phenomenon whereby a single T cell can recognize two or more different peptide antigens presented in complex with MHC proteins. Cross-reactive T cells have previously been characterized at the population level by cytokine secretion and MHC tetramer staining assays, but single-cell analysis is difficult or impossible using these methods. In this study, we describe development of a novel peptide-MHC heterodimer specific for cross-reactive T cells. MHC-peptide monomers were independently conjugated to hydrazide or aldehyde-containing cross-linkers using thiol-maleimide coupling at cysteine residues introduced into recombinant MHC heavy chain proteins. Hydrazone formation provided bi-specific MHC heterodimers carrying two different peptides. Using this approach we prepared heterodimers of the murine class I MHC protein H-2K(b) carrying peptides from lymphocytic choriomeningitis virus and vaccinia virus, and used these to identify cross-reactive CD8+ T cells recognizing both lymphocytic choriomeningitis virus and vaccinia virus antigens. A similar strategy could be used to develop reagents to analyze cross-reactive T cell responses in humans.
Collapse
Affiliation(s)
- Zu T Shen
- From the Department of Pathology, Worcester, Massachusetts 01655
| | | | - Keith A Daniels
- From the Department of Pathology, Worcester, Massachusetts 01655
| | | | - Liisa K Selin
- From the Department of Pathology, Worcester, Massachusetts 01655
| | - Raymond M Welsh
- From the Department of Pathology, Worcester, Massachusetts 01655
| | - Lawrence J Stern
- From the Department of Pathology, Worcester, Massachusetts 01655; Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655.
| |
Collapse
|
34
|
Yewdell JW. Designing CD8+ T cell vaccines: it's not rocket science (yet). Curr Opin Immunol 2010; 22:402-10. [PMID: 20447814 PMCID: PMC2908899 DOI: 10.1016/j.coi.2010.04.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 04/12/2010] [Indexed: 01/09/2023]
Abstract
CD8+ T cells play important roles in clearing viral infections and eradicating tumors. Designing vaccines that elicit effective CD8+ T cell responses requires a thorough knowledge of the pathways of antigen presentation in vivo. Here, I review recent progress in understanding the activation of naïve CD8+ T cells in vivo, with particular emphasis on cross-priming, the presentation of protein antigens acquired by dendritic cells from their environment. With the rapid advances in this area of research, the dawn of rational vaccine design is at hand.
Collapse
|
35
|
Cytotoxic T cells. Handing over the baton. Immunol Cell Biol 2010; 88:505-6. [PMID: 20386558 DOI: 10.1038/icb.2010.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Panchanathan V, Chaudhri G, Karupiah G. Antiviral protection following immunization correlates with humoral but not cell-mediated immunity. Immunol Cell Biol 2010; 88:461-7. [PMID: 20066003 DOI: 10.1038/icb.2009.110] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Smallpox was a deadly disease when it was rife yet despite its eradication more than 30 years ago, the possibility of accidental or intentional release has driven research in search of better definitions of correlates of protective immunity. Mousepox, a disease caused by ectromelia virus (ECTV), is arguably one of the best surrogate small animal models for smallpox. Correlates of protection in mousepox are well defined during primary infection, whereas those in a secondary infection, which have definite relevance to vaccination strategies, are less well understood. We previously established that neutralizing antibody (Ab), which is generated far more rapidly during a secondary infection compared with a primary infection, has a key role during a secondary virus challenge. In this study, we show that the route of immunization or the use of homologous or heterologous virus vaccines for immunization does not influence the ability of mice to control high-dose virulent ECTV challenge or to mount a substantial secondary neutralizing Ab response. In contrast, the recall cytotoxic T lymphocyte (CTL) responses generated under these regimes of immunization were varied and did not correlate with virus control. Furthermore, unlike the recall Ab response that was generated rapidly, the kinetics of the secondary antiviral CTL response was no different to a primary infection and peaked only at day 8 post-challenge. This finding further underscores the importance of Ab in conferring protection during secondary poxvirus infection. This information could potentially prove useful in the design of safer and more efficacious vaccines against poxviruses or other diseases using poxvirus vectors.
Collapse
Affiliation(s)
- Vijay Panchanathan
- Infection and Immunity Group, Program in Immunology, John Curtin School of Medical Research, Australian National University, Australian Capital Territory, Australia
| | | | | |
Collapse
|