1
|
Morioka S, Oishi T, Hatazawa S, Kakuta T, Ogoshi T, Umeda K, Kodera N, Kurumizaka H, Shibata M. High-Speed Atomic Force Microscopy Reveals the Nucleosome Sliding and DNA Unwrapping/Wrapping Dynamics of Tail-less Nucleosomes. NANO LETTERS 2024; 24:5246-5254. [PMID: 38602428 DOI: 10.1021/acs.nanolett.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Each nucleosome contains four types of histone proteins, each with a histone tail. These tails are essential for the epigenetic regulation of gene expression through post-translational modifications (PTMs). However, their influence on nucleosome dynamics at the single-molecule level remains undetermined. Here, we employed high-speed atomic force microscopy to visualize nucleosome dynamics in the absence of the N-terminal tail of each histone or all of the N-terminal tails. Loss of all tails stripped 6.7 base pairs of the nucleosome from the histone core, and the DNA entry-exit angle expanded by 18° from that of wild-type nucleosomes. Tail-less nucleosomes, particularly those without H2B and H3 tails, showed a 10-fold increase in dynamics, such as nucleosome sliding and DNA unwrapping/wrapping, within 0.3 s, emphasizing their role in histone-DNA interactions. Our findings illustrate that N-terminal histone tails stabilize the nucleosome structure, suggesting that histone tail PTMs modulate nucleosome dynamics.
Collapse
Affiliation(s)
- Shin Morioka
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takumi Oishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Suguru Hatazawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takahiro Kakuta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomoki Ogoshi
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Mikihiro Shibata
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
2
|
Somashekara SC, Muniyappa K. Dual targeting of Saccharomyces cerevisiae Pso2 to mitochondria and the nucleus, and its functional relevance in the repair of DNA interstrand crosslinks. G3 (BETHESDA, MD.) 2022; 12:jkac066. [PMID: 35482533 PMCID: PMC9157068 DOI: 10.1093/g3journal/jkac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/15/2022] [Indexed: 11/12/2022]
Abstract
Repair of DNA interstrand crosslinks involves a functional interplay among different DNA surveillance and repair pathways. Previous work has shown that interstrand crosslink-inducing agents cause damage to Saccharomyces cerevisiae nuclear and mitochondrial DNA, and its pso2/snm1 mutants exhibit a petite phenotype followed by loss of mitochondrial DNA integrity and copy number. Complex as it is, the cause and underlying molecular mechanisms remains elusive. Here, by combining a wide range of approaches with in vitro and in vivo analyses, we interrogated the subcellular localization and function of Pso2. We found evidence that the nuclear-encoded Pso2 contains 1 mitochondrial targeting sequence and 2 nuclear localization signals (NLS1 and NLS2), although NLS1 resides within the mitochondrial targeting sequence. Further analysis revealed that Pso2 is a dual-localized interstrand crosslink repair protein; it can be imported into both nucleus and mitochondria and that genotoxic agents enhance its abundance in the latter. While mitochondrial targeting sequence is essential for mitochondrial Pso2 import, either NLS1 or NLS2 is sufficient for its nuclear import; this implies that the 2 nuclear localization signal motifs are functionally redundant. Ablation of mitochondrial targeting sequence abrogated mitochondrial Pso2 import, and concomitantly, raised its levels in the nucleus. Strikingly, mutational disruption of both nuclear localization signal motifs blocked the nuclear Pso2 import; at the same time, they enhanced its translocation into the mitochondria, consistent with the notion that the relationship between mitochondrial targeting sequence and nuclear localization signal motifs is competitive. However, the nuclease activity of import-deficient species of Pso2 was not impaired. The potential relevance of dual targeting of Pso2 into 2 DNA-bearing organelles is discussed.
Collapse
Affiliation(s)
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
3
|
Loïodice I, Garnier M, Nikolov I, Taddei A. An Inducible System for Silencing Establishment Reveals a Stepwise Mechanism in Which Anchoring at the Nuclear Periphery Precedes Heterochromatin Formation. Cells 2021; 10:cells10112810. [PMID: 34831033 PMCID: PMC8616196 DOI: 10.3390/cells10112810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
In eukaryotic cells, silent chromatin is mainly found at the nuclear periphery forming subnuclear compartments that favor silencing establishment. Here, we set up an inducible system to monitor silencing establishment at an ectopic locus in relation with its subnuclear localization in budding yeast. We previously showed that introducing LacI bound lacO arrays in proximity to gene flanked by HML silencers favors the recruitment of the yeast silencing complex SIR at this locus, leading to its silencing and anchoring at the nuclear periphery. Using an inducible version of this system, we show that silencing establishment is a stepwise process occurring over several cell cycles, with the progressive recruitment of the SIR complex. In contrast, we observed a rapid, SIR-independent perinuclear anchoring, induced by the high amount of LacI binding at the lacO array leading to nucleosome eviction at this array and to the phosphorylation of H2A in the neighboring nucleosomes by Mec1 kinase. While the initial phosphorylation of H2A (H2A-P) and perinuclear anchoring are independent of the SIR complex, its latter recruitment stabilizes H2A-P and reinforces the perinuclear anchoring. Finally, we showed that Sir3 spreading stabilizes nucleosomes and limits the access of specific DNA-binding protein to DNA.
Collapse
Affiliation(s)
- Isabelle Loïodice
- Nuclear Dynamics Unit, CNRS, Institut Curie, PSL University, Sorbonne Université, 75005 Paris, France; (I.L.); (M.G.); (I.N.)
| | - Mickael Garnier
- Nuclear Dynamics Unit, CNRS, Institut Curie, PSL University, Sorbonne Université, 75005 Paris, France; (I.L.); (M.G.); (I.N.)
| | - Ivaylo Nikolov
- Nuclear Dynamics Unit, CNRS, Institut Curie, PSL University, Sorbonne Université, 75005 Paris, France; (I.L.); (M.G.); (I.N.)
| | - Angela Taddei
- Nuclear Dynamics Unit, CNRS, Institut Curie, PSL University, Sorbonne Université, 75005 Paris, France; (I.L.); (M.G.); (I.N.)
- Cogitamus Laboratory, F-75005 Paris, France
- Correspondence:
| |
Collapse
|
4
|
Ruault M, Scolari VF, Lazar-Stefanita L, Hocher A, Loïodice I, Koszul R, Taddei A. Sir3 mediates long-range chromosome interactions in budding yeast. Genome Res 2021; 31:411-425. [PMID: 33579753 PMCID: PMC7919453 DOI: 10.1101/gr.267872.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/30/2020] [Indexed: 11/24/2022]
Abstract
Physical contacts between distant loci contribute to regulate genome function. However, the molecular mechanisms responsible for settling and maintaining such interactions remain poorly understood. Here, we investigate the well-conserved interactions between heterochromatin loci. In budding yeast, the 32 telomeres cluster in 3–5 foci in exponentially growing cells. This clustering is functionally linked to the formation of heterochromatin in subtelomeric regions through the recruitment of the silencing SIR complex composed of Sir2/3/4. Combining microscopy and Hi-C on strains expressing different alleles of SIR3, we show that the binding of Sir3 directly promotes long-range contacts between distant regions, including the rDNA, telomeres, and internal Sir3-bound sites. Furthermore, we unveil a new property of Sir3 in promoting rDNA compaction. Finally, using a synthetic approach, we demonstrate that Sir3 can bond loci belonging to different chromosomes together, when targeted to these loci, independently of its interaction with its known partners (Rap1, Sir4), Sir2 activity, or chromosome context. Altogether, these data suggest that Sir3 acts as a molecular bridge that stabilizes long-range interactions.
Collapse
Affiliation(s)
- Myriam Ruault
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France
| | - Vittore F Scolari
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France.,Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, C3BI USR 3756, F-75015 Paris, France
| | - Luciana Lazar-Stefanita
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, C3BI USR 3756, F-75015 Paris, France.,Sorbonne Université, collège Doctoral, F-75005 Paris, France
| | - Antoine Hocher
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France
| | - Isabelle Loïodice
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France
| | - Romain Koszul
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, C3BI USR 3756, F-75015 Paris, France.,Cogitamus Laboratory, F-75005 Paris, France
| | - Angela Taddei
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France.,Cogitamus Laboratory, F-75005 Paris, France
| |
Collapse
|
5
|
Targeting Methionine Synthase in a Fungal Pathogen Causes a Metabolic Imbalance That Impacts Cell Energetics, Growth, and Virulence. mBio 2020; 11:mBio.01985-20. [PMID: 33051366 PMCID: PMC7554668 DOI: 10.1128/mbio.01985-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fungal pathogens are responsible for millions of life-threatening infections on an annual basis worldwide. The current repertoire of antifungal drugs is very limited and, worryingly, resistance has emerged and already become a serious threat to our capacity to treat fungal diseases. The first step to develop new drugs is often to identify molecular targets in the pathogen whose inhibition during infection can prevent its growth. However, the current models are not suitable to validate targets in established infections. Here, we have characterized the promising antifungal target methionine synthase in great detail, using the prominent fungal pathogen Aspergillus fumigatus as a model. We have uncovered the underlying reason for its essentiality and confirmed its druggability. Furthermore, we have optimized the use of a genetic system to show a beneficial effect of targeting methionine synthase in established infections. Therefore, we believe that antifungal drugs to target methionine synthase should be pursued and additionally, we provide a model that permits gaining information about the validity of antifungal targets in established infections. There is an urgent need to develop novel antifungals to tackle the threat fungal pathogens pose to human health. Here, we have performed a comprehensive characterization and validation of the promising target methionine synthase (MetH). We show that in Aspergillus fumigatus the absence of this enzymatic activity triggers a metabolic imbalance that causes a reduction in intracellular ATP, which prevents fungal growth even in the presence of methionine. Interestingly, growth can be recovered in the presence of certain metabolites, which shows that metH is a conditionally essential gene and consequently should be targeted in established infections for a more comprehensive validation. Accordingly, we have validated the use of the tetOFF genetic model in fungal research and improved its performance in vivo to achieve initial validation of targets in models of established infection. We show that repression of metH in growing hyphae halts growth in vitro, which translates into a beneficial effect when targeting established infections using this model in vivo. Finally, a structure-based virtual screening of methionine synthases reveals key differences between the human and fungal structures and unravels features in the fungal enzyme that can guide the design of novel specific inhibitors. Therefore, methionine synthase is a valuable target for the development of new antifungals.
Collapse
|
6
|
Saurabh S, Jang YH, Lansac Y, Maiti PK. Orientation Dependence of Inter-NCP Interaction: Insights into the Behavior of Liquid Crystal Phase and Chromatin Fiber Organization. J Phys Chem B 2019; 124:314-323. [DOI: 10.1021/acs.jpcb.9b07898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Suman Saurabh
- GREMAN, University of Tours, CNRS UMR 7347, 37200 Tours, France
- Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans, France
| | - Yun Hee Jang
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | - Yves Lansac
- GREMAN, University of Tours, CNRS UMR 7347, 37200 Tours, France
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris Saclay, 91405 Orsay cedex, France
| | - Prabal K. Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
7
|
Abstract
Repair of damaged DNA plays a crucial role in maintaining genomic integrity and normal cell function. The base excision repair (BER) pathway is primarily responsible for removing modified nucleobases that would otherwise cause deleterious and mutagenic consequences and lead to disease. The BER process is initiated by a DNA glycosylase, which recognizes and excises the target nucleobase lesion, and is completed via downstream enzymes acting in a well-coordinated manner. A majority of our current understanding about how BER enzymes function comes from in vitro studies using free duplex DNA as a simplified model. In eukaryotes, however, BER is challenged by the packaging of genomic DNA into chromatin. The fundamental structural repeating unit of chromatin is the nucleosome, which presents a more complex substrate context than free duplex DNA for repair. In this chapter, we discuss how BER enzymes, particularly glycosylases, engage in the context of packaged DNA with insights obtained from both in vivo and in vitro studies. Furthermore, we review factors and mechanisms that can modify chromatin architecture and/or influence DNA accessibility to BER machinery, such as the geometric location of the damage site, nucleosomal DNA unwrapping, histone post-translational modifications, histone variant incorporation, and chromatin remodeling.
Collapse
Affiliation(s)
- Chuxuan Li
- Department of Chemistry, Brown University, Providence, RI, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
8
|
The Capability of O-Acetyl-ADP-Ribose, an Epigenetic Metabolic Small Molecule, on Promoting the Further Spreading of Sir3 along the Telomeric Chromatin. Genes (Basel) 2019; 10:genes10080577. [PMID: 31366171 PMCID: PMC6723988 DOI: 10.3390/genes10080577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 11/17/2022] Open
Abstract
O-acetyl-ADP-ribose (AAR) is a metabolic small molecule relevant in epigenetics that is generated by NAD-dependent histone deacetylases, such as Sir2. The formation of silent heterochromatin in yeast requires histone deacetylation by Sir2, structural rearrangement of SIR complexes, spreading of SIR complexes along the chromatin, and additional maturation processing. AAR affects the interactions of the SIR-nucleosome in vitro and enhances the chromatin epigenetic silencing effect in vivo. In this study, using isothermal titration calorimetry (ITC) and dot blotting methods, we showed the direct interaction of AAR with Sir3. Furthermore, through chromatin immunoprecipitation (ChIP)-on-chip and chromatin affinity purification (ChAP)-on chip assays, we discovered that AAR is capable of increasing the extended spreading of Sir3 along telomeres, but not Sir2. In addition, the findings of a quantitative real-time polymerase chain reaction (qRT-PCR) and examinations of an in vitro assembly system of SIR-nucleosome heterochromatin filament were consistent with these results. This study provides evidence indicating another important effect of AAR in vivo. AAR may play a specific modulating role in the formation of silent SIR-nucleosome heterochromatin in yeast.
Collapse
|
9
|
Brunk CF, Martin WF. Archaeal Histone Contributions to the Origin of Eukaryotes. Trends Microbiol 2019; 27:703-714. [PMID: 31076245 DOI: 10.1016/j.tim.2019.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
The eukaryotic lineage arose from bacterial and archaeal cells that underwent a symbiotic merger. At the origin of the eukaryote lineage, the bacterial partner contributed genes, metabolic energy, and the building blocks of the endomembrane system. What did the archaeal partner donate that made the eukaryotic experiment a success? The archaeal partner provided the potential for complex information processing. Archaeal histones were crucial in that regard by providing the basic functional unit with which eukaryotes organize DNA into nucleosomes, exert epigenetic control of gene expression, transcribe genes with CCAAT-box promoters, and a manifest cell cycle with condensed chromosomes. While mitochondrial energy lifted energetic constraints on eukaryotic protein production, histone-based chromatin organization paved the path to eukaryotic genome complexity, a critical hurdle en route to the evolution of complex cells.
Collapse
Affiliation(s)
- Clifford F Brunk
- Department of Ecology and Evolutionary Biology and Molecular Biology Institute University of California Los Angeles, Los Angeles, USA
| | - William F Martin
- Institute of Molecular Evolution Heinrich-Heine-Universitaet Duesseldorf, Dusseldorf, Germany.
| |
Collapse
|
10
|
Hocher A, Ruault M, Kaferle P, Descrimes M, Garnier M, Morillon A, Taddei A. Expanding heterochromatin reveals discrete subtelomeric domains delimited by chromatin landscape transitions. Genome Res 2018; 28:1867-1881. [PMID: 30355601 PMCID: PMC6280759 DOI: 10.1101/gr.236554.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/20/2018] [Indexed: 01/20/2023]
Abstract
The eukaryotic genome is divided into chromosomal domains of heterochromatin and euchromatin. Transcriptionally silent heterochromatin is found at subtelomeric regions, leading to the telomeric position effect (TPE) in yeast, fly, and human. Heterochromatin generally initiates and spreads from defined loci, and diverse mechanisms prevent the ectopic spread of heterochromatin into euchromatin. Here, we overexpressed the silencing factor Sir3 at varying levels in yeast and found that Sir3 spreads into extended silent domains (ESDs), eventually reaching saturation at subtelomeres. We observed the spread of Sir3 into subtelomeric domains associated with specific histone marks in wild-type cells, and stopping at zones of histone mark transitions including H3K79 trimethylation levels. Our study shows that the conserved H3K79 methyltransferase Dot1 is essential in restricting Sir3 spread beyond ESDs, thus ensuring viability upon overexpression of Sir3. Last, our analyses of published data demonstrate how ESDs unveil uncharacterized discrete domains isolating structural and functional subtelomeric features from the rest of the genome. Our work offers a new approach on how to separate subtelomeres from the core chromosome.
Collapse
Affiliation(s)
- Antoine Hocher
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Myriam Ruault
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Petra Kaferle
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Marc Descrimes
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Mickaël Garnier
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Antonin Morillon
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Angela Taddei
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| |
Collapse
|
11
|
García-Pichardo D, Cañas JC, García-Rubio ML, Gómez-González B, Rondón AG, Aguilera A. Histone Mutants Separate R Loop Formation from Genome Instability Induction. Mol Cell 2017; 66:597-609.e5. [PMID: 28575656 DOI: 10.1016/j.molcel.2017.05.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/03/2017] [Accepted: 05/15/2017] [Indexed: 01/02/2023]
Abstract
R loops have positive physiological roles, but they can also be deleterious by causing genome instability, and the mechanisms for this are unknown. Here we identified yeast histone H3 and H4 mutations that facilitate R loops but do not cause instability. R loops containing single-stranded DNA (ssDNA), versus RNA-DNA hybrids alone, were demonstrated using ssDNA-specific human AID and bisulfite. Notably, they are similar size regardless of whether or not they induce genome instability. Contrary to mutants causing R loop-mediated instability, these histone mutants do not accumulate H3 serine-10 phosphate (H3S10-P). We propose a two-step mechanism in which, first, an altered chromatin facilitates R loops, and second, chromatin is modified, including H3S10-P, as a requisite for compromising genome integrity. Consistently, these histone mutations suppress the high H3S10 phosphorylation and genomic instability of hpr1 and sen1 mutants. Therefore, contrary to what was previously believed, R loops do not cause genome instability by themselves.
Collapse
Affiliation(s)
- Desiré García-Pichardo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
| | - Juan C Cañas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
| | - María L García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
| | - Ana G Rondón
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain.
| |
Collapse
|
12
|
Xue Y, Pradhan SK, Sun F, Chronis C, Tran N, Su T, Van C, Vashisht A, Wohlschlegel J, Peterson CL, Timmers HTM, Kurdistani SK, Carey MF. Mot1, Ino80C, and NC2 Function Coordinately to Regulate Pervasive Transcription in Yeast and Mammals. Mol Cell 2017; 67:594-607.e4. [PMID: 28735899 DOI: 10.1016/j.molcel.2017.06.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/12/2017] [Accepted: 06/23/2017] [Indexed: 01/02/2023]
Abstract
Pervasive transcription initiates from cryptic promoters and is observed in eukaryotes ranging from yeast to mammals. The Set2-Rpd3 regulatory system prevents cryptic promoter function within expressed genes. However, conserved systems that control pervasive transcription within intergenic regions have not been well established. Here we show that Mot1, Ino80 chromatin remodeling complex (Ino80C), and NC2 co-localize on chromatin and coordinately suppress pervasive transcription in S. cerevisiae and murine embryonic stem cells (mESCs). In yeast, all three proteins bind subtelomeric heterochromatin through a Sir3-stimulated mechanism and to euchromatin via a TBP-stimulated mechanism. In mESCs, the proteins bind to active and poised TBP-bound promoters along with promoters of polycomb-silenced genes apparently lacking TBP. Depletion of Mot1, Ino80C, or NC2 by anchor away in yeast or RNAi in mESCs leads to near-identical transcriptome phenotypes, with new subtelomeric transcription in yeast, and greatly increased pervasive transcription in both yeast and mESCs.
Collapse
Affiliation(s)
- Yong Xue
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Suman K Pradhan
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Fei Sun
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Constantinos Chronis
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Nancy Tran
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Trent Su
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Christopher Van
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ajay Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - H T Marc Timmers
- Regenerative Medicine Center and Center for Molecular Medicine, University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Michael F Carey
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae. Genetics 2017; 203:1563-99. [PMID: 27516616 DOI: 10.1534/genetics.112.145243] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/30/2016] [Indexed: 12/31/2022] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae occurs at several genomic sites including the silent mating-type loci, telomeres, and the ribosomal DNA (rDNA) tandem array. Epigenetic silencing at each of these domains is characterized by the absence of nearly all histone modifications, including most prominently the lack of histone H4 lysine 16 acetylation. In all cases, silencing requires Sir2, a highly-conserved NAD(+)-dependent histone deacetylase. At locations other than the rDNA, silencing also requires additional Sir proteins, Sir1, Sir3, and Sir4 that together form a repressive heterochromatin-like structure termed silent chromatin. The mechanisms of silent chromatin establishment, maintenance, and inheritance have been investigated extensively over the last 25 years, and these studies have revealed numerous paradigms for transcriptional repression, chromatin organization, and epigenetic gene regulation. Studies of Sir2-dependent silencing at the rDNA have also contributed to understanding the mechanisms for maintaining the stability of repetitive DNA and regulating replicative cell aging. The goal of this comprehensive review is to distill a wide array of biochemical, molecular genetic, cell biological, and genomics studies down to the "nuts and bolts" of silent chromatin and the processes that yield transcriptional silencing.
Collapse
|
14
|
Bi X, Ren Y, Kath M. Proliferating cell nuclear antigen (PCNA) contributes to the high-order structure and stability of heterochromatin in Saccharomyces cerevisiae. Chromosome Res 2016; 25:89-100. [PMID: 27987109 DOI: 10.1007/s10577-016-9540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
Heterochromatin plays important roles in the structure, maintenance, and function of the eukaryotic genome. It is associated with special histone modifications and specialized non-histone proteins and assumes a more compact structure than euchromatin. Genes embedded in heterochromatin are generally transcriptionally silent. It was found previously that several mutations of proliferating cell nuclear antigen (PCNA), a DNA replication processivity factor, reduce transcriptional silencing at heterochromatin loci in Saccharomyces cerevisiae. However, the notion that PCNA plays a role in transcriptional silencing was recently questioned because of a potential problem concerning the silencing assays used in prior studies. To determine if PCNA is a bona fide contributor to heterochromatin-mediated transcriptional silencing, we examined the effects of PCNA mutations on heterochromatin structure. We found evidence implicating PCNA in the maintenance of the high-order structure and stability of heterochromatin, which indicates a role of DNA replication in heterochromatin maintenance.
Collapse
Affiliation(s)
- Xin Bi
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
| | - Yue Ren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Morgan Kath
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
15
|
Tung SY, Wang SH, Lee SP, Tsai SP, Shen HH, Chen FJ, Wu YY, Hsiao SP, Liou GG. Modulations of SIR-nucleosome interactions of reconstructed yeast silent pre-heterochromatin by O-acetyl-ADP-ribose and magnesium. Mol Biol Cell 2016; 28:381-386. [PMID: 27932495 PMCID: PMC5341722 DOI: 10.1091/mbc.e16-06-0359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/25/2022] Open
Abstract
In vitro–assembled filaments are confirmed as SIR-nucleosome pre-heterochromatin, and AAR acts as a modulator for their formation. Not only is magnesium present in the environmental buffer, but it also is chelated by the SIR-nucleosome pre-heterochromatin to promote its condensation. Yeast silent heterochromatin provides an excellent model with which to study epigenetic inheritance. Previously we developed an in vitro assembly system to demonstrate the formation of filament structures with requirements that mirror yeast epigenetic gene silencing in vivo. However, the properties of these filaments were not investigated in detail. Here we show that the assembly system requires Sir2, Sir3, Sir4, nucleosomes, and O-acetyl-ADP-ribose. We also demonstrate that all Sir proteins and nucleosomes are components of these filaments to prove that they are SIR-nucleosome filaments. Furthermore, we show that the individual localization patterns of Sir proteins on the SIR-nucleosome filament reflect those patterns on telomeres in vivo. In addition, we reveal that magnesium exists in the SIR-nucleosome filament, with a role similar to that for chromatin condensation. These results suggest that a small number of proteins and molecules are sufficient to mediate the formation of a minimal yeast silent pre-heterochromatin in vitro.
Collapse
Affiliation(s)
- Shu-Yun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Sue-Hong Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402, Taiwan
| | - Sue-Ping Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Shu-Ping Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hsiao-Hsuian Shen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| | - Feng-Jung Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| | - Yu-Yi Wu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| | - Sheng-Pin Hsiao
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| | - Gunn-Guang Liou
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan .,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan.,Guang EM Laboratory, New Taipei 242, Taiwan
| |
Collapse
|
16
|
Miao J, Frazier T, Huang L, Zhang X, Zhao B. Identification and Characterization of Switchgrass Histone H3 and CENH3 Genes. FRONTIERS IN PLANT SCIENCE 2016; 7:979. [PMID: 27462323 PMCID: PMC4940616 DOI: 10.3389/fpls.2016.00979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Switchgrass is one of the most promising energy crops and only recently has been employed for biofuel production. The draft genome of switchgrass was recently released; however, relatively few switchgrass genes have been functionally characterized. CENH3, the major histone protein found in centromeres, along with canonical H3 and other histones, plays an important role in maintaining genome stability and integrity. Despite their importance, the histone H3 genes of switchgrass have remained largely uninvestigated. In this study, we identified 17 putative switchgrass histone H3 genes in silico. Of these genes, 15 showed strong homology to histone H3 genes including six H3.1 genes, three H3.3 genes, four H3.3-like genes and two H3.1-like genes. The remaining two genes were found to be homologous to CENH3. RNA-seq data derived from lowland cultivar Alamo and upland cultivar Dacotah allowed us to identify SNPs in the histone H3 genes and compare their differential gene expression. Interestingly, we also found that overexpression of switchgrass histone H3 and CENH3 genes in N. benthamiana could trigger cell death of the transformed plant cells. Localization and deletion analyses of the histone H3 and CENH3 genes revealed that nuclear localization of the N-terminal tail is essential and sufficient for triggering the cell death phenotype. Our results deliver insight into the mechanisms underlying the histone-triggered cell death phenotype and provide a foundation for further studying the variations of the histone H3 and CENH3 genes in switchgrass.
Collapse
Affiliation(s)
- Jiamin Miao
- Department of Horticulture, Virginia TechBlacksburg, VA, USA
- Department of Grassland Science, Sichuan Agricultural UniversityYa'an, China
| | - Taylor Frazier
- Department of Horticulture, Virginia TechBlacksburg, VA, USA
| | - Linkai Huang
- Department of Grassland Science, Sichuan Agricultural UniversityYa'an, China
| | - Xinquan Zhang
- Department of Grassland Science, Sichuan Agricultural UniversityYa'an, China
| | - Bingyu Zhao
- Department of Horticulture, Virginia TechBlacksburg, VA, USA
| |
Collapse
|
17
|
Wakamori M, Fujii Y, Suka N, Shirouzu M, Sakamoto K, Umehara T, Yokoyama S. Intra- and inter-nucleosomal interactions of the histone H4 tail revealed with a human nucleosome core particle with genetically-incorporated H4 tetra-acetylation. Sci Rep 2015; 5:17204. [PMID: 26607036 PMCID: PMC4660432 DOI: 10.1038/srep17204] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/27/2015] [Indexed: 01/07/2023] Open
Abstract
Post-translational modifications (PTMs) of histones, such as lysine acetylation of the N-terminal tails, play crucial roles in controlling gene expression. Due to the difficulty in reconstituting site-specifically acetylated nucleosomes with crystallization quality, structural analyses of histone acetylation are currently performed using synthesized tail peptides. Through engineering of the genetic code, translation termination, and cell-free protein synthesis, we reconstituted human H4-mono- to tetra-acetylated nucleosome core particles (NCPs), and solved the crystal structures of the H4-K5/K8/K12/K16-tetra-acetylated NCP and unmodified NCP at 2.4 Å and 2.2 Å resolutions, respectively. The structure of the H4-tetra-acetylated NCP resembled that of the unmodified NCP, and the DNA wrapped the histone octamer as precisely as in the unmodified NCP. However, the B-factors were significantly increased for the peripheral DNAs near the N-terminal tail of the intra- or inter-nucleosomal H4. In contrast, the B-factors were negligibly affected by the H4 tetra-acetylation in histone core residues, including those composing the acidic patch, and at H4-R23, which interacts with the acidic patch of the neighboring NCP. The present study revealed that the H4 tetra-acetylation impairs NCP self-association by changing the interactions of the H4 tail with DNA, and is the first demonstration of crystallization quality NCPs reconstituted with genuine PTMs.
Collapse
Affiliation(s)
- Masatoshi Wakamori
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Yoshifumi Fujii
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan,RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Noriyuki Suka
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan,School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Kensaku Sakamoto
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Takashi Umehara
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan,
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan,RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan,
| |
Collapse
|
18
|
Nucleosome avidities and transcriptional silencing in yeast. Curr Biol 2015; 25:1215-20. [PMID: 25891403 DOI: 10.1016/j.cub.2015.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 02/02/2015] [Accepted: 03/05/2015] [Indexed: 11/22/2022]
Abstract
A classical example of "transcriptional silencing" is found in the yeast S. cerevisiae mating-type switch [1, 2]. The gene pairs a1/a2 and α1/α2, positioned at the loci HMR and HML, respectively, are silenced by Sir proteins recruited by proteins that bind sites flanking each locus. Transfer of either gene pair to the Sir-free MAT locus, or mutation of the Sirs, allows expression of those genes at levels sufficient to foster yeast mating. Here we confirm that, in the absence of Sirs, a1 and a2 at HMR are expressed at low levels [3]. This level is low because, we show, the relevant transcriptional activators, which work from regulatory sites located between the divergently transcribed genes, are weak. That property-weak activation-is a prerequisite for effective silencing upon recruitment of Sirs. We use our quantitative nucleosome occupancy assay to show that Sirs (which bind nucleosomes) increase the avidities with which those nucleosomes form at the promoters. That increase can account for at least part of the repressive effects of the Sirs and can explain why silencing is effective in countering weak activation only. We suggest that "silencing" in higher eukaryotes (e.g., by Polycomb or HP1) follows similar rules [4, 5] and note where such effects could be important.
Collapse
|
19
|
Xue Y, Van C, Pradhan SK, Su T, Gehrke J, Kuryan BG, Kitada T, Vashisht A, Tran N, Wohlschlegel J, Peterson CL, Kurdistani SK, Carey MF. The Ino80 complex prevents invasion of euchromatin into silent chromatin. Genes Dev 2015; 29:350-5. [PMID: 25691465 PMCID: PMC4335291 DOI: 10.1101/gad.256255.114] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Here we show that the Ino80 chromatin remodeling complex (Ino80C) directly prevents euchromatin from invading transcriptionally silent chromatin within intergenic regions and at the border of euchromatin and heterochromatin. Deletion of Ino80C subunits leads to increased H3K79 methylation and noncoding RNA polymerase II (Pol II) transcription centered at the Ino80C-binding sites. The effect of Ino80C is direct, as it blocks H3K79 methylation by Dot1 in vitro. Heterochromatin stimulates the binding of Ino80C in vitro and in vivo. Our data reveal that Ino80C serves as a general silencing complex that restricts transcription to gene units in euchromatin.
Collapse
Affiliation(s)
- Yong Xue
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Christopher Van
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Suman K Pradhan
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Trent Su
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Jason Gehrke
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Benjamin G Kuryan
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Tasuku Kitada
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Ajay Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Nancy Tran
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Michael F Carey
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA;
| |
Collapse
|
20
|
Azad GK, Tomar RS. Proteolytic clipping of histone tails: the emerging role of histone proteases in regulation of various biological processes. Mol Biol Rep 2015; 41:2717-30. [PMID: 24469733 DOI: 10.1007/s11033-014-3181-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chromatin is a dynamic DNA scaffold structure that responds to a variety of external and internal stimuli to regulate the fundamental biological processes. Majority of the cases chromatin dynamicity is exhibited through chemical modifications and physical changes between DNA and histones. These modifications are reversible and complex signaling pathways involving chromatin-modifying enzymes regulate the fluidity of chromatin. Fluidity of chromatin can also be impacted through irreversible change, proteolytic processing of histones which is a poorly understood phenomenon. In recent studies, histone proteolysis has been implicated as a regulatory process involved in the permanent removal of epigenetic marks from histones. Activities responsible for clipping of histone tails and their significance in various biological processes have been observed in several organisms. Here, we have reviewed the properties of some of the known histone proteases, analyzed their significance in biological processes and have provided future directions.
Collapse
Affiliation(s)
- Gajendra Kumar Azad
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462023, India
| | | |
Collapse
|
21
|
Bi X. Heterochromatin structure: lessons from the budding yeast. IUBMB Life 2014; 66:657-66. [PMID: 25355678 DOI: 10.1002/iub.1322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/12/2014] [Accepted: 10/14/2014] [Indexed: 12/28/2022]
Abstract
The eukaryotic genome can be roughly divided into euchromatin and heterochromatin domains that are structurally and functionally distinct. Heterochromatin is characterized by its high compactness and its inhibitory effect on DNA transactions such as gene expression. Formation of heterochromatin involves special histone modifications and the recruitment and spread of silencing complexes and causes changes in the primary and higher order structures of chromatin. The past two decades have seen dramatic advances in dissecting the molecular aspects of heterochromatin because of the identification of the histone code for heterochromatin as well as its writers and erasers (histone-modifying enzymes) and readers (silencing factors recognizing histone modifications). How heterochromatic histone modifications and silencing factors contribute to the special primary and higher order structures of heterochromatin has begun to be understood. The budding yeast Saccharomyces cerevisiae has long been used as a model organism for heterochromatin studies. Results from these studies have contributed significantly to the elucidation of the general principles governing the formation, maintenance, and function of heterochromatin. This review is focused on investigations into the structural aspects of heterochromatin in S. cerevisiae. Current understanding of other aspects of heterochromatin including how it promotes gene silencing and its epigenetic inheritance is briefly summarized.
Collapse
Affiliation(s)
- Xin Bi
- Department of Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
22
|
Abstract
Heterochromatin imparts regional, promoter-independent repression of genes and is epigenetically heritable. Understanding how silencing achieves this regional repression is a fundamental problem in genetics and development. Current models of yeast silencing posit that Sir proteins, recruited by transcription factors bound to the silencers, spread throughout the silenced region. To test this model directly at high resolution, we probed the silenced chromatin architecture by chromatin immunoprecipitation (ChIP) followed by next-generation sequencing (ChIP-seq) of Sir proteins, histones, and a key histone modification, H4K16-acetyl. These analyses revealed that Sir proteins are strikingly concentrated at and immediately adjacent to the silencers, with lower levels of enrichment over the promoters at HML and HMR, the critical targets for transcriptional repression. The telomeres also showed discrete peaks of Sir enrichment yet a continuous domain of hypoacetylated histone H4K16. Surprisingly, ChIP-seq of cross-linked chromatin revealed a distribution of nucleosomes at silenced loci that was similar to Sir proteins, whereas native nucleosome maps showed a regular distribution throughout silenced loci, indicating that cross-linking captured a specialized chromatin organization imposed by Sir proteins. This specialized chromatin architecture observed in yeast informs the importance of a steric contribution to regional repression in other organisms.
Collapse
Affiliation(s)
- Deborah M Thurtle
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
23
|
Xue Y, Vashisht AA, Tan Y, Su T, Wohlschlegel JA. PRB1 is required for clipping of the histone H3 N terminal tail in Saccharomyces cerevisiae. PLoS One 2014; 9:e90496. [PMID: 24587380 PMCID: PMC3938757 DOI: 10.1371/journal.pone.0090496] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/03/2014] [Indexed: 11/18/2022] Open
Abstract
Cathepsin L, a lysosomal protein in mouse embryonic stem cells has been shown to clip the histone H3 N- terminus, an activity associated with gene activity during mouse cell development. Glutamate dehydrogenase (GDH) was also identified as histone H3 specific protease in chicken liver, which has been connected to gene expression during aging. In baker's yeast, Saccharomyces cerevisiae, clipping the histone H3 N-terminus has been associated with gene activation in stationary phase but the protease responsible for the yeast histone H3 endopeptidase activity had not been identified. In searching for a yeast histone H3 endopeptidase, we found that yeast vacuolar protein Prb1 is present in the cellular fraction enriched for the H3 N-terminus endopeptidase activity and this endopeptidase activity is lost in the PRB1 deletion mutant (prb1Δ). In addition, like Cathepsin L and GDH, purified Prb1 from yeast cleaves H3 between Lys23 and Ala24 in the N-terminus in vitro as shown by Edman degradation. In conclusion, our data argue that PRB1 is required for clipping of the histone H3 N-terminal tail in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Yong Xue
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| | - Ajay A. Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yuliang Tan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Trent Su
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
24
|
Iwasaki W, Miya Y, Horikoshi N, Osakabe A, Taguchi H, Tachiwana H, Shibata T, Kagawa W, Kurumizaka H. Contribution of histone N-terminal tails to the structure and stability of nucleosomes. FEBS Open Bio 2013; 3:363-9. [PMID: 24251097 PMCID: PMC3821030 DOI: 10.1016/j.fob.2013.08.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/15/2013] [Accepted: 08/15/2013] [Indexed: 12/17/2022] Open
Abstract
Histones are the protein components of the nucleosome, which forms the basic architecture of eukaryotic chromatin. Histones H2A, H2B, H3, and H4 are composed of two common regions, the "histone fold" and the "histone tail". Many efforts have been focused on the mechanisms by which the post-translational modifications of histone tails regulate the higher-order chromatin architecture. On the other hand, previous biochemical studies have suggested that histone tails also affect the structure and stability of the nucleosome core particle itself. However, the precise contributions of each histone tail are unclear. In the present study, we determined the crystal structures of four mutant nucleosomes, in which one of the four histones, H2A, H2B, H3, or H4, lacked the N-terminal tail. We found that the deletion of the H2B or H3 N-terminal tail affected histone-DNA interactions and substantially decreased nucleosome stability. These findings provide important information for understanding the complex roles of histone tails in regulating chromatin structure.
Collapse
Affiliation(s)
- Wakana Iwasaki
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan ; RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Grunstein M, Gasser SM. Epigenetics in Saccharomyces cerevisiae. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a017491. [PMID: 23818500 DOI: 10.1101/cshperspect.a017491] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Saccharomyces cerevisiae provides a well-studied model system for heritable silent chromatin, in which a nonhistone protein complex--the SIR complex--represses genes by spreading in a sequence-independent manner, much like heterochromatin in higher eukaryotes. The ability to study mutations in histones and to screen genome-wide for mutations that impair silencing has yielded an unparalleled depth of detail about this system. Recent advances in the biochemistry and structural biology of the SIR-chromatin complex bring us much closer to a molecular understanding of how Sir3 selectively recognizes the deacetylated histone H4 tail and demethylated histone H3 core. The existence of appropriate mutants has also shown how components of the silencing machinery affect physiological processes beyond transcriptional repression.
Collapse
Affiliation(s)
- Michael Grunstein
- University of California, Los Angeles, Los Angeles, California 90095, USA
| | | |
Collapse
|
26
|
Tung SY, Lee KW, Hong JY, Lee SP, Shen HH, Liou GG. Changes in the genome-wide localization pattern of Sir3 in Saccharomyces cerevisiae during different growth stages. Comput Struct Biotechnol J 2013; 7:e201304001. [PMID: 24688731 PMCID: PMC3962127 DOI: 10.5936/csbj.201304001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/14/2013] [Accepted: 05/19/2013] [Indexed: 12/03/2022] Open
Abstract
In budding yeast, the Sir2, Sir3 and Sir4 proteins form SIR complexes, required for the assembly of silent heterochromatin domains, and which mediate transcription silencing at the telomeres as well as at silent mating type loci. In this study, under fluorescence microscopy, we found most Sir3-GFP expressions in the logarithmic phase cells appeared as multiple punctations as expected. However, some differences in the distribution of fluorescent signals were detected in the diauxic~early stationary phase cells. To clarify these, we then used ChIP on chip assays to investigate the genome-wide localization of Sir3. In general, Sir3 binds to all 32 telomere proximal regions, the silent mating type loci and also binds to the rDNA region. However, the genome-wide localization patterns of Sir3 are different between these two distinct growth phases. We also confirmed that Sir3 binds to a recently identified secondary binding site, PAU genes, and further identified 349 Sir3-associated cluster regions. These results provide additional support in roles for Sir3 in the modulation of gene expression during physical conditions such as diauxic~early stationary phase growing. Moreover, they imply that Sir3 may be not only involved in the formation of conventional silent heterochromatin, but also able to associate with some other chromatin regions involved in epigenetic regulation.
Collapse
Affiliation(s)
- Shu-Yun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC ; These authors contributed equally to this work
| | - Kuan-Wei Lee
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC ; These authors contributed equally to this work
| | - Jia-Yang Hong
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC ; These authors contributed equally to this work
| | - Sue-Ping Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC ; These authors contributed equally to this work
| | - Hsiao-Hsuian Shen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Gunn-Guang Liou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC ; Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan, ROC
| |
Collapse
|
27
|
Kitada T, Kuryan BG, Tran NNH, Song C, Xue Y, Carey M, Grunstein M. Mechanism for epigenetic variegation of gene expression at yeast telomeric heterochromatin. Genes Dev 2012; 26:2443-55. [PMID: 23124068 PMCID: PMC3490002 DOI: 10.1101/gad.201095.112] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/07/2012] [Indexed: 11/24/2022]
Abstract
Yeast contains heterochromatin at telomeres and the silent mating-type loci (HML/HMR). Genes positioned within the telomeric heterochromatin of Saccharomyces cerevisiae switch stochastically between epigenetically bistable ON and OFF expression states. Important aspects of the mechanism of variegated gene expression, including the chromatin structure of the natural ON state and the mechanism by which it is maintained, are unknown. To address this issue, we developed approaches to select cells in the ON and OFF states. We found by chromatin immunoprecipitation (ChIP) that natural ON telomeres are associated with Rap1 binding and, surprisingly, also contain known characteristics of OFF telomeres, including significant amounts of Sir3 and H4K16 deacetylated nucleosomes. Moreover, we found that H3K79 methylation (H3K79me), H3K4me, and H3K36me, which are depleted from OFF telomeres, are enriched at ON telomeres. We demonstrate in vitro that H3K79me, but not H3K4me or H3K36me, disrupts transcriptional silencing. Importantly, H3K79me does not significantly reduce Sir complex binding in vivo or in vitro. Finally, we show that maintenance of H3K79me at ON telomeres is dependent on transcription. Therefore, although Sir proteins are required for silencing, we propose that epigenetic variegation of telomeric gene expression is due to the bistable enrichment/depletion of H3K79me and not the fluctuation in the amount of Sir protein binding to nucleosomes.
Collapse
Affiliation(s)
- Tasuku Kitada
- Department of Biological Chemistry, David Geffen School of Medicine
- the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Benjamin G. Kuryan
- Department of Biological Chemistry, David Geffen School of Medicine
- the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Nancy Nga Huynh Tran
- Department of Biological Chemistry, David Geffen School of Medicine
- the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Chunying Song
- Department of Biological Chemistry, David Geffen School of Medicine
- the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Yong Xue
- Department of Biological Chemistry, David Geffen School of Medicine
- the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Michael Carey
- Department of Biological Chemistry, David Geffen School of Medicine
- the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Michael Grunstein
- Department of Biological Chemistry, David Geffen School of Medicine
- the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
28
|
Gómez-Herreros F, de Miguel-Jiménez L, Morillo-Huesca M, Delgado-Ramos L, Muñoz-Centeno MC, Chávez S. TFIIS is required for the balanced expression of the genes encoding ribosomal components under transcriptional stress. Nucleic Acids Res 2012; 40:6508-19. [PMID: 22544605 PMCID: PMC3413141 DOI: 10.1093/nar/gks340] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcription factor IIS (TFIIS) stimulates RNA cleavage by RNA polymerase II by allowing backtracked enzymes to resume transcription elongation. Yeast cells do not require TFIIS for viability, unless they suffer severe transcriptional stress due to NTP-depleting drugs like 6-azauracil or mycophenolic acid. In order to broaden our knowledge on the role of TFIIS under transcriptional stress, we carried out a genetic screening for suppressors of TFIIS-lacking cells’ sensitivity to 6-azauracil and mycophenolic acid. Five suppressors were identified, four of which were related to the transcriptional regulation of those genes encoding ribosomal components [rRNAs and ribosomal proteins (RP)], including global regulator SFP1. This led us to discover that RNA polymerase II is hypersensitive to the absence of TFIIS under NTP scarcity conditions when transcribing RP genes. The absence of Sfp1 led to a profound alteration of the transcriptional response to NTP-depletion, thus allowing the expression of RP genes to resist these stressful conditions in the absence of TFIIS. We discuss the effect of transcriptional stress on ribosome biogenesis and propose that TFIIS contributes to prevent a transcriptional imbalance between rDNA and RP genes.
Collapse
Affiliation(s)
- Fernando Gómez-Herreros
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6. E-41012 Seville, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Biswas M, Voltz K, Smith JC, Langowski J. Role of histone tails in structural stability of the nucleosome. PLoS Comput Biol 2011; 7:e1002279. [PMID: 22207822 PMCID: PMC3240580 DOI: 10.1371/journal.pcbi.1002279] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 10/04/2011] [Indexed: 12/03/2022] Open
Abstract
Histone tails play an important role in nucleosome structure and dynamics. Here we investigate the effect of truncation of histone tails H3, H4, H2A and H2B on nucleosome structure with 100 ns all-atom molecular dynamics simulations. Tail domains of H3 and H2B show propensity of -helics formation during the intact nucleosome simulation. On truncation of H4 or H2B tails no structural change occurs in histones. However, H3 or H2A tail truncation results in structural alterations in the histone core domain, and in both the cases the structural change occurs in the H2A3 domain. We also find that the contacts between the histone H2A C terminal docking domain and surrounding residues are destabilized upon H3 tail truncation. The relation between the present observations and corresponding experiments is discussed. Histone tails are the most common sites of post-translational modifications. Tail modifications alter both inter and intra nucleosomal interactions to disrupt the condensed chromatin structure, thereby playing crucial role in gene access. Here we investigated histone tail functions on the stability of a single nucleosome in atomic detail by selectively truncating tail domains in molecular dynamics simulations. Our study revealed that truncation of H3 or H2A tail results in structural alterations in the nucleosome core whereas truncation of H4 or H2B tail does not. A potential role of H2A C terminal tail in regulating nucleosome stability is discussed. Finally, an -helical domain formation was observed in one of the H3 tails and, upon truncation of this tail, structural changes occurred in closely lying histone domains. The correlation between tail-truncation and structural changes likely sheds light on allosteric regulation of nucleosome stability.
Collapse
Affiliation(s)
- Mithun Biswas
- Computational Molecular Biophysics, Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Heidelberg, Germany
| | - Karine Voltz
- Biophysics of Macromolecules, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeremy C. Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Jörg Langowski
- Biophysics of Macromolecules, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
30
|
Profile of Michael Grunstein. Proc Natl Acad Sci U S A 2011; 108:18597-9. [DOI: 10.1073/pnas.1116909108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
The C-terminus of histone H2B is involved in chromatin compaction specifically at telomeres, independently of its monoubiquitylation at lysine 123. PLoS One 2011; 6:e22209. [PMID: 21829450 PMCID: PMC3146481 DOI: 10.1371/journal.pone.0022209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 06/17/2011] [Indexed: 12/11/2022] Open
Abstract
Telomeric heterochromatin assembly in budding yeast propagates through the association of Silent Information Regulator (SIR) proteins with nucleosomes, and the nucleosome array has been assumed to fold into a compacted structure. It is believed that the level of compaction and gene repression within heterochromatic regions can be modulated by histone modifications, such as acetylation of H3 lysine 56 and H4 lysine 16, and monoubiquitylation of H2B lysine 123. However, it remains unclear as to whether or not gene silencing is a direct consequence of the compaction of chromatin. Here, by investigating the role of the carboxy-terminus of histone H2B in heterochromatin formation, we identify that the disorderly compaction of chromatin induced by a mutation at H2B T122 specifically hinders telomeric heterochromatin formation. H2B T122 is positioned within the highly conserved AVTKY motif of the αC helix of H2B. Heterochromatin containing the T122E substitution in H2B remains inaccessible to ectopic dam methylase with dramatically increased mobility in sucrose gradients, indicating a compacted chromatin structure. Genetic studies indicate that this unique phenotype is independent of H2B K123 ubiquitylation and Sir4. In addition, using ChIP analysis, we demonstrate that telomere structure in the mutant is further disrupted by a defect in Sir2/Sir3 binding and the resulting invasion of euchromatic histone marks. Thus, we have revealed that the compaction of chromatin per se is not sufficient for heterochromatin formation. Instead, these results suggest that an appropriately arrayed chromatin mediated by H2B C-terminus is required for SIR binding and the subsequent formation of telomeric chromatin in yeast, thereby identifying an intrinsic property of the nucleosome that is required for the establishment of telomeric heterochromatin. This requirement is also likely to exist in higher eukaryotes, as the AVTKY motif of H2B is evolutionarily conserved.
Collapse
|
32
|
Topoisomerase II binds nucleosome-free DNA and acts redundantly with topoisomerase I to enhance recruitment of RNA Pol II in budding yeast. Proc Natl Acad Sci U S A 2011; 108:12693-8. [PMID: 21771901 DOI: 10.1073/pnas.1106834108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA topoisomerases are believed to promote transcription by removing excessive DNA supercoils produced during elongation. However, it is unclear how topoisomerases in eukaryotes are recruited and function in the transcription pathway in the context of nucleosomes. To address this problem we present high-resolution genome-wide maps of one of the major eukaryotic topoisomerases, Topoisomerase II (Top2) and nucleosomes in the budding yeast, Saccharomyces cerevisiae. Our data indicate that at promoters Top2 binds primarily to DNA that is nucleosome-free. However, although nucleosome loss enables Top2 occupancy, the opposite is not the case and the loss of Top2 has little effect on nucleosome density. We also find that Top2 is involved in transcription. Not only is Top2 enriched at highly transcribed genes, but Top2 is required redundantly with Top1 for optimal recruitment of RNA polymerase II at their promoters. These findings and the examination of candidate-activated genes suggest that nucleosome loss induced by nucleosome remodeling factors during gene activation enables Top2 binding, which in turn acts redundantly with Top1 to enhance recruitment of RNA polymerase II.
Collapse
|
33
|
Dubarry M, Loïodice I, Chen CL, Thermes C, Taddei A. Tight protein-DNA interactions favor gene silencing. Genes Dev 2011; 25:1365-70. [PMID: 21724830 PMCID: PMC3134080 DOI: 10.1101/gad.611011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 05/23/2011] [Indexed: 12/20/2022]
Abstract
The heterochromatin-like structure formed by the yeast silent information regulator complex (SIR) represses transcription at the silent mating type loci and telomeres. Here, we report that tight protein-DNA complexes induce ectopic recruitment of the SIR complex, promoting gene silencing and changes in subnuclear localization when cis-acting elements are nearby. Importantly, lack of the replication fork-associated helicase Rrm3 enhances this induced gene repression. Additionally, Sir3 and Sir4 are enriched genome-wide at natural replication pause sites, including tRNA genes. Consistently, inserting a tRNA gene promotes SIR-mediated silencing of a nearby gene. These results reveal that replication stress arising from tight DNA-protein interactions favors heterochromatin formation.
Collapse
Affiliation(s)
- Marion Dubarry
- Institut Curie, Paris, F-75248 France
- CNRS, UMR 218, Paris, F-75248 France
- UPMC, Paris, F-75248 France
| | - Isabelle Loïodice
- Institut Curie, Paris, F-75248 France
- CNRS, UMR 218, Paris, F-75248 France
- UPMC, Paris, F-75248 France
| | - Chunlong L. Chen
- Centre de Génétique Moléculaire, CNRS, UPR3404, Gif-sur-Yvette F-91198, France
| | - Claude Thermes
- Centre de Génétique Moléculaire, CNRS, UPR3404, Gif-sur-Yvette F-91198, France
| | - Angela Taddei
- Institut Curie, Paris, F-75248 France
- CNRS, UMR 218, Paris, F-75248 France
- UPMC, Paris, F-75248 France
| |
Collapse
|
34
|
A region of the nucleosome required for multiple types of transcriptional silencing in Saccharomyces cerevisiae. Genetics 2011; 188:535-48. [PMID: 21546544 DOI: 10.1534/genetics.111.129197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extended heterochromatin domains, which are repressive to transcription and help define centromeres and telomeres, are formed through specific interactions between silencing proteins and nucleosomes. This study reveals that in Saccharomyces cerevisiae, the same nucleosomal surface is critical for the formation of multiple types of heterochromatin, but not for local repression mediated by a related transcriptional repressor. Thus, this region of the nucleosome may be generally important to long-range silencing. In S. cerevisiae, the Sir proteins perform long-range silencing, whereas the Sum1 complex acts locally to repress specific genes. A mutant form of Sum1p, Sum1-1p, achieves silencing in the absence of Sir proteins. A genetic screen identified mutations in histones H3 and H4 that disrupt Sum1-1 silencing and fall in regions of the nucleosome previously known to disrupt Sir silencing and rDNA silencing. In contrast, no mutations were identified that disrupt wild-type Sum1 repression. Mutations that disrupt silencing fall in two regions of the nucleosome, the tip of the H3 tail and a surface of the nucleosomal core (LRS domain) and the adjacent base of the H4 tail. The LRS/H4 tail region interacts with the Sir3p bromo-adjacent homology (BAH) domain to facilitate Sir silencing. By analogy, this study is consistent with the LRS/H4 tail region interacting with Orc1p, a paralog of Sir3p, to facilitate Sum1-1 silencing. Thus, the LRS/H4 tail region of the nucleosome may be relatively accessible and facilitate interactions between silencing proteins and nucleosomes to stabilize long-range silencing.
Collapse
|
35
|
Takahashi YH, Schulze JM, Jackson J, Hentrich T, Seidel C, Jaspersen SL, Kobor MS, Shilatifard A. Dot1 and histone H3K79 methylation in natural telomeric and HM silencing. Mol Cell 2011; 42:118-26. [PMID: 21474073 PMCID: PMC3085244 DOI: 10.1016/j.molcel.2011.03.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 12/02/2010] [Accepted: 02/16/2011] [Indexed: 11/18/2022]
Abstract
The expression of genes residing near telomeres is attenuated through telomere position-effect variegation (TPEV). By using a URA3 reporter located at TEL-VII-L of Saccharomyces cerevisiae, it was proposed that the disruptor of telomeric silencing-1 (Dot1) regulates TPEV by catalyzing H3K79 methylation. URA3 reporter assays also indicated that H3K79 methylation is required for HM silencing. Surprisingly, a genome-wide expression analysis of H3K79 methylation-defective mutants identified only a few telomeric genes, such as COS12 at TEL-VII-L, to be subject to H3K79 methylation-dependent natural silencing. Consistently, loss of Dot1 did not globally alter Sir2 or Sir3 occupancy in subtelomeric regions, but only led to some telomere-specific changes. Furthermore, H3K79 methylation by Dot1 did not play a role in the maintenance of natural HML silencing. Therefore, commonly used URA3 reporter assays may not report on natural PEV, and therefore, studies concerning the epigenetic mechanism of silencing in yeast should also employ assays reporting on natural gene expression patterns.
Collapse
Affiliation(s)
- Yoh-Hei Takahashi
- Stowers Institute for Medical Research, 1000 East 50 Street, Kansas City, MO 64110
| | - Julia M. Schulze
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jessica Jackson
- Department of Biochemistry, St. Louis University School of Medicine, St. Louis, MO 63104
| | - Thomas Hentrich
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Chris Seidel
- Stowers Institute for Medical Research, 1000 East 50 Street, Kansas City, MO 64110
| | - Sue L. Jaspersen
- Stowers Institute for Medical Research, 1000 East 50 Street, Kansas City, MO 64110
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Ali Shilatifard
- Stowers Institute for Medical Research, 1000 East 50 Street, Kansas City, MO 64110
| |
Collapse
|
36
|
Abstract
Transcriptional silencing in Saccharomyces cerevisiae is mediated by heterochromatin. There is a plethora of information regarding the roles of histone residues in transcriptional silencing, but exactly how histone residues contribute to heterochromatin structure is not resolved. We address this question by testing the effects of a series of histone H3 and H4 mutations involving residues in their aminoterminal tails, on the solvent-accessible and lateral surfaces of the nucleosome, and at the interface of the H3/H4 tetramer and H2A/H2B dimer on heterochromatin structure and transcriptional silencing. The general state, stability, and conformational heterogeneity of chromatin are examined with a DNA topology-based assay, and the primary chromatin structure is probed by micrococcal nuclease. We demonstrate that the histone mutations differentially affect heterochromatin. Mutations of lysine 16 of histone H4 (H4-K16) and residues in the LRS (loss of rDNA silencing) domain of nucleosome surface markedly alter heterochromatin structure, supporting the notion that H4-K16 and LRS play key roles in heterochromatin formation. Deletion of the aminoterminal tail of H3 moderately alters heterochromatin structure. Interestingly, a group of mutations in the globular domains of H3 and H4 that abrogate or greatly reduce transcriptional silencing increase the conformational heterogeneity and/or reduce the stability of heterochromatin without affecting its overall structure. Surprisingly, yet another series of mutations abolish or reduce silencing without significantly affecting the structure, stability, or conformational heterogeneity of heterochromatin. Therefore, histone residues may contribute to the structure, stability, conformational heterogeneity, or other yet-to-be-characterized features of heterochromatin important for transcriptional silencing.
Collapse
|
37
|
Radman-Livaja M, Ruben G, Weiner A, Friedman N, Kamakaka R, Rando OJ. Dynamics of Sir3 spreading in budding yeast: secondary recruitment sites and euchromatic localization. EMBO J 2011; 30:1012-26. [PMID: 21336256 DOI: 10.1038/emboj.2011.30] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/20/2011] [Indexed: 11/10/2022] Open
Abstract
Chromatin domains are believed to spread via a polymerization-like mechanism in which modification of a given nucleosome recruits a modifying complex, which can then modify the next nucleosome in the polymer. In this study, we carry out genome-wide mapping of the Sir3 component of the Sir silencing complex in budding yeast during a time course of establishment of heterochromatin. Sir3 localization patterns do not support a straightforward model for nucleation and polymerization, instead showing strong but spatially delimited binding to silencers, and weaker and more variable Ume6-dependent binding to novel secondary recruitment sites at the seripauperin (PAU) genes. Genome-wide nucleosome mapping revealed that Sir binding to subtelomeric regions was associated with overpackaging of subtelomeric promoters. Sir3 also bound to a surprising number of euchromatic sites, largely at genes expressed at high levels, and was dynamically recruited to GAL genes upon galactose induction. Together, our results indicate that heterochromatin complex localization cannot simply be explained by nucleation and linear polymerization, and show that heterochromatin complexes associate with highly expressed euchromatic genes in many different organisms.
Collapse
Affiliation(s)
- Marta Radman-Livaja
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | |
Collapse
|
38
|
Kashiwagi K, Nimura K, Ura K, Kaneda Y. DNA methyltransferase 3b preferentially associates with condensed chromatin. Nucleic Acids Res 2011; 39:874-88. [PMID: 20923784 PMCID: PMC3035464 DOI: 10.1093/nar/gkq870] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 09/03/2010] [Accepted: 09/15/2010] [Indexed: 11/13/2022] Open
Abstract
In mammals, DNA methylation is catalyzed by DNA methyltransferases (DNMTs) encoded by Dnmt1, Dnmt3a and Dnmt3b. Since, the mechanisms of regulation of Dnmts are still largely unknown, the physical interaction between Dnmt3b and chromatin was investigated in vivo and in vitro. In embryonic stem cell nuclei, Dnmt3b preferentially associated with histone H1-containing heterochromatin without any significant enrichment of silent-specific histone methylation. Recombinant Dnmt3b preferentially associated with nucleosomal DNA rather than naked DNA. Incorporation of histone H1 into nucleosomal arrays promoted the association of Dnmt3b with chromatin, whereas histone acetylation reduced Dnmt3b binding in vitro. In addition, Dnmt3b associated with histone deacetylase SirT1 in the nuclease resistant chromatin. These findings suggest that Dnmt3b is preferentially recruited into hypoacetylated and condensed chromatin. We propose that Dnmt3b is a 'reader' of higher-order chromatin structure leading to gene silencing through DNA methylation.
Collapse
Affiliation(s)
- Katsunobu Kashiwagi
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871 and PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Keisuke Nimura
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871 and PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Kiyoe Ura
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871 and PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871 and PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
39
|
Kitada T, Schleker T, Sperling AS, Xie W, Gasser SM, Grunstein M. γH2A is a component of yeast heterochromatin required for telomere elongation. Cell Cycle 2011; 10:293-300. [PMID: 21212735 PMCID: PMC3033431 DOI: 10.4161/cc.10.2.14536] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/17/2010] [Indexed: 11/19/2022] Open
Abstract
Histones of heterochromatin are deacetylated in yeast and methylated in more complex eukaryotes to regulate heterochromatin structure and gene silencing. Here, we report that histone H2A phosphorylated at serine 129 (γH2A) in Saccharomyces cerevisiae is a conceptually new type of heterochromatin modification that functions downstream of silent chromatin assembly. We show that γH2A is enriched throughout yeast telomeric and silent mating locus (HM) heterochromatin where γH2A results from the action of kinases Tel1 and Mec1. Interestingly, mutation of γH2A has no apparent effect on the binding of Sir (silent information regulator) complex or on gene silencing. In contrast, deletion of SIR3 abolishes the formation of γH2A at heterochromatin. To address the function of γH2A, we used a Δrif1 mutant strain in which telomeres are excessively elongated to show that γH2A is required for the optimal recruitment of Cdc13, a regulator of telomere elongation, and for telomere elongation itself. Thus, a histone modification that parallels Sir3 protein binding is shown here to be dispensable for the formation of a silent structure but is important for a crucial heterochromatin-specific downstream function in telomere homeostasis.
Collapse
Affiliation(s)
- Tasuku Kitada
- Department of Biological Chemistry; David Geffen School of Medicine; and the Molecular Biology Institute; University of California at Los Angeles; Los Angeles, CA USA
| | - Thomas Schleker
- Friedrich Miescher Institute for Biomedical Research; Basel, Switzerland
| | - Adam S Sperling
- Department of Biological Chemistry; David Geffen School of Medicine; and the Molecular Biology Institute; University of California at Los Angeles; Los Angeles, CA USA
| | - Wei Xie
- Department of Biological Chemistry; David Geffen School of Medicine; and the Molecular Biology Institute; University of California at Los Angeles; Los Angeles, CA USA
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research; Basel, Switzerland
| | - Michael Grunstein
- Department of Biological Chemistry; David Geffen School of Medicine; and the Molecular Biology Institute; University of California at Los Angeles; Los Angeles, CA USA
| |
Collapse
|
40
|
Chang JS, Winston F. Spt10 and Spt21 are required for transcriptional silencing in Saccharomyces cerevisiae. EUKARYOTIC CELL 2011; 10:118-29. [PMID: 21057056 PMCID: PMC3019801 DOI: 10.1128/ec.00246-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 10/26/2010] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, transcriptional silencing occurs at three classes of genomic regions: near the telomeres, at the silent mating type loci, and within the ribosomal DNA (rDNA) repeats. In all three cases, silencing depends upon several factors, including specific types of histone modifications. In this work we have investigated the roles in silencing for Spt10 and Spt21, two proteins previously shown to control transcription of particular histone genes. Building on a recent study showing that Spt10 is required for telomeric silencing, our results show that in both spt10 and spt21 mutants, silencing is reduced near telomeres and at HMLα, while it is increased at the rDNA. Both spt10 and spt21 mutations cause modest effects on Sir protein recruitment and histone modifications at telomeric regions, and they cause significant changes in chromatin structure, as judged by its accessibility to dam methylase. These silencing and chromatin changes are not seen upon deletion of HTA2-HTB2, the primary histone locus regulated by Spt10 and Spt21. These results suggest that Spt10 and Spt21 control silencing in S. cerevisiae by altering chromatin structure through roles beyond the control of histone gene expression.
Collapse
Affiliation(s)
- Jennifer S. Chang
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115
| | - Fred Winston
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115
| |
Collapse
|
41
|
Zill OA, Scannell D, Teytelman L, Rine J. Co-evolution of transcriptional silencing proteins and the DNA elements specifying their assembly. PLoS Biol 2010; 8:e1000550. [PMID: 21151344 PMCID: PMC2994660 DOI: 10.1371/journal.pbio.1000550] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 10/18/2010] [Indexed: 01/18/2023] Open
Abstract
Co-evolution of transcriptional regulatory proteins and their sites of action has been often hypothesized but rarely demonstrated. Here we provide experimental evidence of such co-evolution in yeast silent chromatin, a finding that emerged from studies of hybrids formed between two closely related Saccharomyces species. A unidirectional silencing incompatibility between S. cerevisiae and S. bayanus led to a key discovery: asymmetrical complementation of divergent orthologs of the silent chromatin component Sir4. In S. cerevisiae/S. bayanus interspecies hybrids, ChIP-Seq analysis revealed a restriction against S. cerevisiae Sir4 associating with most S. bayanus silenced regions; in contrast, S. bayanus Sir4 associated with S. cerevisiae silenced loci to an even greater degree than did S. cerevisiae's own Sir4. Functional changes in silencer sequences paralleled changes in Sir4 sequence and a reduction in Sir1 family members in S. cerevisiae. Critically, species-specific silencing of the S. bayanus HMR locus could be reconstituted in S. cerevisiae by co-transfer of the S. bayanus Sir4 and Kos3 (the ancestral relative of Sir1) proteins. As Sir1/Kos3 and Sir4 bind conserved silencer-binding proteins, but not specific DNA sequences, these rapidly evolving proteins served to interpret differences in the two species' silencers presumably involving emergent features created by the regulatory proteins that bind sequences within silencers. The results presented here, and in particular the high resolution ChIP-Seq localization of the Sir4 protein, provided unanticipated insights into the mechanism of silent chromatin assembly in yeast.
Collapse
Affiliation(s)
- Oliver A. Zill
- Department of Molecular and Cell Biology, and California Institute for Quantitative Biosciences, University of California–Berkeley, Berkeley, California, United States of America
- * E-mail: (JR); (OAZ)
| | - Devin Scannell
- Department of Molecular and Cell Biology, and California Institute for Quantitative Biosciences, University of California–Berkeley, Berkeley, California, United States of America
| | - Leonid Teytelman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Jasper Rine
- Department of Molecular and Cell Biology, and California Institute for Quantitative Biosciences, University of California–Berkeley, Berkeley, California, United States of America
- * E-mail: (JR); (OAZ)
| |
Collapse
|
42
|
Irizar A, Yu Y, Reed SH, Louis EJ, Waters R. Silenced yeast chromatin is maintained by Sir2 in preference to permitting histone acetylations for efficient NER. Nucleic Acids Res 2010; 38:4675-86. [PMID: 20385597 PMCID: PMC2919727 DOI: 10.1093/nar/gkq242] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 11/13/2022] Open
Abstract
Very little is currently known about how nucleotide excision repair (NER) functions at the ends of chromosomes. To examine this, we introduced the URA3 gene into either transcriptionally active or repressed subtelomeric regions of the yeast genome. This enabled us to examine the repair of ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPDs) in identical sequences under both circumstances. We found that NER is significantly more efficient in the non-repressed subtelomere than the repressed one. At the non-repressed subtelomere, UV radiation stimulates both histones H3 and H4 acetylation in a similar fashion to that seen at other regions of the yeast genome. These modifications occur regardless of the presence of the Sir2 histone deacetylase. On the other hand, at the repressed subtelomere, where repair is much less efficient, UV radiation is unable to stimulate histone H4 or H3 acetylation in the presence of Sir2. In the absence of Sir2 both of these UV-induced modifications are detected, resulting in a significant increase in NER efficiency in the region. Our experiments reveal that there are instances in the yeast genome where the maintenance of the existing chromatin structures dominates over the action of chromatin modifications associated with efficient NER.
Collapse
Affiliation(s)
- Agurtzane Irizar
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN and Institute of Genetics, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Yachuan Yu
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN and Institute of Genetics, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Simon H. Reed
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN and Institute of Genetics, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Edward J. Louis
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN and Institute of Genetics, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Raymond Waters
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN and Institute of Genetics, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
43
|
Toussaint M, Wellinger RJ, Conconi A. Differential participation of homologous recombination and nucleotide excision repair in yeast survival to ultraviolet light radiation. Mutat Res 2010; 698:52-9. [PMID: 20348017 DOI: 10.1016/j.mrgentox.2010.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 02/16/2010] [Accepted: 03/20/2010] [Indexed: 01/17/2023]
Abstract
AIMS The purpose of this research was to assess the ultraviolet light (UV) phenotype of yeast sirDelta cells vs. WT cells, and to determine whether de-silenced chromatin or the intrinsic pseudoploidy of sirDelta mutants contributes to their response to UV. Additional aims were to study the participation of HR and NER in promoting UV survival during the cell cycle, and to define the extent of the co-participation for both repair pathways. MAIN METHODS The sensitivity of yeast Saccharomyces cerevisiae to UV light was determined using a method based on automatic measurements of optical densities of very small (100mul) liquid cell cultures. KEY FINDINGS We show that pseudo-diploidy of sirDelta strains promotes resistance to UV irradiation and that HR is the main mechanism that is responsible for this phenotype. In addition, HR together with GG-NER renders cells in the G2-phase of the cell cycle more resistant to UV irradiation than cells in the G1-phase, which underscore the importance of HR when two copies of the chromosomes are present. Nevertheless, in asynchronously growing cells NER is the main repair pathway that responds to UV induced DNA damage. SIGNIFICANCE This study provides detailed and quantitative information on the co-participation of HR and NER in UV survival of yeast cells.
Collapse
Affiliation(s)
- Martin Toussaint
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | | | | |
Collapse
|
44
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
45
|
Rpd3-dependent boundary formation at telomeres by removal of Sir2 substrate. Proc Natl Acad Sci U S A 2010; 107:5522-7. [PMID: 20133733 DOI: 10.1073/pnas.0909169107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Boundaries between euchromatic and heterochromatic regions until now have been associated with chromatin-opening activities. Here, we identified an unexpected role for histone deacetylation in this process. Significantly, the histone deacetylase (HDAC) Rpd3 was necessary for boundary formation in Saccharomyces cerevisiae. rpd3Delta led to silent information regulator (SIR) spreading and repression of subtelomeric genes. In the absence of a known boundary factor, the histone acetyltransferase complex SAS-I, rpd3Delta caused inappropriate SIR spreading that was lethal to yeast cells. Notably, Rpd3 was capable of creating a boundary when targeted to heterochromatin. Our data suggest a mechanism for boundary formation whereby histone deacetylation by Rpd3 removes the substrate for the HDAC Sir2, so that Sir2 no longer can produce O-acetyl-ADP ribose (OAADPR) by consumption of NAD(+) in the deacetylation reaction. In essence, OAADPR therefore is unavailable for binding to Sir3, preventing SIR propagation.
Collapse
|