1
|
Peng P, Fu Y, Che B, Li X, Liu L, Sun J, Luo T, Deng L. Development and evaluation of an electrical impedance tomography (EIT) sensor for real-time monitoring of hemolysis dynamics. Anal Chim Acta 2025; 1350:343812. [PMID: 40155159 DOI: 10.1016/j.aca.2025.343812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Real-time monitoring of hemolysis dynamics is essential for clinical diagnosis, ensuring transfusion safety, and supporting medical device development. Traditional methods such as spectrophotometry have limitations in real-time monitoring capabilities, often posing higher operational costs and restricted temporal resolution. RESULTS This study presents an Electrical Impedance Tomography (EIT) sensor designed for real-time monitoring of hemolysis dynamics. The EIT sensor comprises 16 circular electrodes within a cylindrical test chamber, connected to computer-controlled hardware and software for comprehensive data acquisition and analysis. Experimental validation shows that the EIT sensor can effectively monitor and visually display the dynamic process of hemolysis, irrespective of its underlying cause. Results from EIT measurements align closely with those obtained by the conventional spectrophotometric method. Furthermore, the EIT sensor accurately detects and monitors hemolysis in real-time, even when hemolysis is induced by ultrasound, chemical reagents, or a copper-simulated blood-contacting material with a super glue surface coating, within just 20 min of contact with blood. SIGNIFICANCE This EIT sensor represents a novel approach to hemolysis monitoring, providing valuable insights into hemolytic mechanisms, especially those related to biomaterials application. With its high temporal resolution, low cost, non-invasiveness, and portability, the EIT sensor offers a promising alternative tool for detecting and characterizing hemolysis, with potential applications in fundamental research and clinical practice, such as blood sample collection and long-term preservation.
Collapse
Affiliation(s)
- Piao Peng
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, 213164, China; Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, 213164, China; School of Medical and Health Engineering, Changzhou University, Changzhou, 213164, China
| | - Yue Fu
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, 213164, China; School of Medical and Health Engineering, Changzhou University, Changzhou, 213164, China
| | - Bo Che
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, 213164, China; School of Medical and Health Engineering, Changzhou University, Changzhou, 213164, China
| | - Xuan Li
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, 213164, China; School of Medical and Health Engineering, Changzhou University, Changzhou, 213164, China
| | - Lei Liu
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, 213164, China; School of Medical and Health Engineering, Changzhou University, Changzhou, 213164, China
| | - Jing Sun
- School of Medical and Health Engineering, Changzhou University, Changzhou, 213164, China
| | - Teng Luo
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, 213164, China; School of Medical and Health Engineering, Changzhou University, Changzhou, 213164, China.
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, 213164, China; School of Medical and Health Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
2
|
Karabaliev M, Paarvanova B, Savova G, Tacheva B, Georgieva R. In Situ Monitoring of Morphology Changes and Oxygenation State of Human Erythrocytes During Surfactant-Induced Hemolysis. Cells 2025; 14:469. [PMID: 40214423 PMCID: PMC11987960 DOI: 10.3390/cells14070469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Erythrocytes, the most abundant blood cells, are a prevalent cell model for the analysis of the membrane-damaging effects of different molecules, including drugs. In response to stimuli, erythrocytes can change their morphology, e.g., shape or volume, which in turns influences their main function to transport oxygen. Membrane active molecules can induce hemolysis, i.e., release of hemoglobin into the blood plasma. Free hemoglobin in the blood circulation is toxic causing serious health problems including vasoconstriction, high blood pressure and kidney damage. Therefore, early recognition of the risk of massive hemolysis is highly important. Here, we investigated surfactant induced hemolysis applying UV-vis spectrophotometry. Saponin, sodium dodecyl sulfate and Triton X-100, detergents known to provoke hemolysis at different concentrations and by different mechanisms, were applied to initiate the process. Whole absorption spectra of erythrocyte suspensions in the range 300-750 nm were recorded every 15 s for following the process in real-time. The hemolysis process, with respect to morphological changes in the erythrocytes and their influence on the oxygenation state of hemoglobin, was characterized by the absorbance at 700 nm, the height relative to the background and the wavelength of the Soret peak. The results suggest that these UV-vis spectrophotometry parameters provide reliable information in real-time; not only about the process of hemolysis itself, but also about pre-hemolytic changes in the erythrocytes, even at sub-hemolytic surfactant concentrations.
Collapse
Affiliation(s)
- Miroslav Karabaliev
- Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska, 6000 Stara Zagora, Bulgaria; (B.P.); (G.S.); (B.T.)
| | - Boyana Paarvanova
- Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska, 6000 Stara Zagora, Bulgaria; (B.P.); (G.S.); (B.T.)
| | - Gergana Savova
- Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska, 6000 Stara Zagora, Bulgaria; (B.P.); (G.S.); (B.T.)
| | - Bilyana Tacheva
- Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska, 6000 Stara Zagora, Bulgaria; (B.P.); (G.S.); (B.T.)
| | - Radostina Georgieva
- Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska, 6000 Stara Zagora, Bulgaria; (B.P.); (G.S.); (B.T.)
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
3
|
Wen H, Li X, Lu Y, Liu X, Hu G. Stomatocyte-discocyte-echinocyte transformations of erythrocyte modulated by membrane-cytoskeleton mechanical properties. Biophys J 2025; 124:267-283. [PMID: 39644092 PMCID: PMC11788502 DOI: 10.1016/j.bpj.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/10/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
Stomatocyte-discocyte-echinocyte (SDE) transformations in human red blood cells (RBCs) have significant influences on blood dynamics and related disorders. The mechanical properties of the RBC membrane, such as shear modulus and bending elasticity, play crucial roles in determining RBC shapes. Recent biophysical findings reveal that building a comprehensive model capable of describing SDE shape transformations is a challenging problem. Based on dissipative particle dynamics, this study develops a two-component RBC model considering the detachment between the lipid bilayer and cytoskeleton, as well as the cytoskeletal reorganization during echinocyte formation. This model is validated by comparing RBCs' geometric shape and the apparent membrane tension with previous experimental measurements. Results indicate that a complete SDE sequence represented by six typical shapes can be obtained by modulating the model's mechanical and geometric parameters. Furthermore, a phase diagram based on reduced variables is obtained using principal-component analysis, demonstrating the phase transformations among SDE shapes. Our result suggests that the transformation from discocyte to stomatocyte is primarily influenced by dimensionless bending rigidity, whereas, during echinocyte formation, three key variables, i.e., dimensionless bending rigidity, targeting cytoskeleton shrinkage ratio, and connecting pattern, have joint impacts on the formation of spicules or bumps and the development of the cytoskeletal framework. The present two-component RBC model and the associated findings provide a perspective for a deeper understanding of the SDE transformation mechanism. This framework offers new insights into biological science and potential applications in the field of biomedical engineering.
Collapse
Affiliation(s)
- Haizhou Wen
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai Frontier Science Center of Mechanoinformatics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai, China; Shanghai Institute of Aircraft Mechanics and Control, Shanghai, China
| | - Xuejin Li
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Yu Lu
- School of Mechanical Engineering, Nantong University, Nantong, China
| | - Xinyue Liu
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai Frontier Science Center of Mechanoinformatics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai, China.
| | - Guohui Hu
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai Frontier Science Center of Mechanoinformatics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai, China
| |
Collapse
|
4
|
Gomes FL, Jeong SH, Shin SR, Leijten J, Jonkheijm P. Engineering Synthetic Erythrocytes as Next-Generation Blood Substitutes. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2315879. [PMID: 39386164 PMCID: PMC11460667 DOI: 10.1002/adfm.202315879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 10/12/2024]
Abstract
Blood scarcity is one of the main causes of healthcare disruptions worldwide, with blood shortages occurring at an alarming rate. Over the last decades, blood substitutes has aimed at reinforcing the supply of blood, with several products (e.g., hemoglobin-based oxygen carriers, perfluorocarbons) achieving a limited degree of success. Regardless, there is still no widespread solution to this problem due to persistent challenges in product safety and scalability. In this Review, we describe different advances in the field of blood substitution, particularly in the development of artificial red blood cells, otherwise known as engineered erythrocytes. We categorize the different strategies into natural, synthetic, or hybrid approaches, and discuss their potential in terms of safety and scalability. We identify synthetic engineered erythrocytes as the most powerful approach, and describe erythrocytes from a materials engineering perspective. We review their biological structure and function, as well as explore different methods of assembling a material-based cell. Specifically, we discuss how to recreate size, shape, and deformability through particle fabrication, and how to recreate the functional machinery through synthetic biology and nanotechnology. We conclude by describing the versatile nature of synthetic erythrocytes in medicine and pharmaceuticals and propose specific directions for the field of erythrocyte engineering.
Collapse
Affiliation(s)
- Francisca L Gomes
- Department of Molecules and Materials, Laboratory of Biointerface Chemistry, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, Drienerlolaan 5, Enschede, 7522NB,The Netherlands
- Department of Developmental BioEngineering, Leijten Laboratory, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Seol-Ha Jeong
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Leijten Laboratory, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Pascal Jonkheijm
- Department of Molecules and Materials, Laboratory of Biointerface Chemistry, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, Drienerlolaan 5, Enschede, 7522NB,The Netherlands
| |
Collapse
|
5
|
Caselli N, García-Verdugo M, Calero M, Hernando-Ospina N, Santiago JA, Herráez-Aguilar D, Monroy F. Red blood cell flickering activity locally controlled by holographic optical tweezers. iScience 2024; 27:109915. [PMID: 38832008 PMCID: PMC11145342 DOI: 10.1016/j.isci.2024.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024] Open
Abstract
Red blood cells possess a singular mechanobiology, enabling efficient navigation through capillaries smaller than their own size. Their plasma membrane exhibits non-equilibrium shape fluctuation, often reported as enhanced flickering activity. Such active membrane motion is propelled by motor proteins that mediate interactions between the spectrin skeleton and the lipid bilayer. However, modulating the flickering in living red blood cells without permanently altering their mechanical properties represents a significant challenge. In this study, we developed holographic optical tweezers to generate a force field distributed along the equatorial membrane contour of individual red blood cells. In free-standing red blood cells, we observed heterogeneous flickering activity, attributed to localized membrane kickers. By employing holographic optical forces, these active kickers can be selectively halted under minimal invasion. Our findings shed light on the dynamics of membrane flickering and established a manipulation tool that could open new avenues for investigating mechanotransduction processes in living cells.
Collapse
Affiliation(s)
- Niccolò Caselli
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Translational Biophysics, Instituto de Investigación Sanitaria Hospital Doce de Octubre, 28041 Madrid, Spain
| | - Mario García-Verdugo
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Macarena Calero
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Translational Biophysics, Instituto de Investigación Sanitaria Hospital Doce de Octubre, 28041 Madrid, Spain
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, Villanueva de la Cañada 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, España
| | - Natalia Hernando-Ospina
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Translational Biophysics, Instituto de Investigación Sanitaria Hospital Doce de Octubre, 28041 Madrid, Spain
| | - José A. Santiago
- Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana Cuajimalpa, Vasco de Quiroga 4871, Ciudad de México 05348, México
| | - Diego Herráez-Aguilar
- Instituto de Investigaciones Biosanitarias, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda, Pozuelo de Alarcón, Madrid, Spain
| | - Francisco Monroy
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Translational Biophysics, Instituto de Investigación Sanitaria Hospital Doce de Octubre, 28041 Madrid, Spain
| |
Collapse
|
6
|
Goswami N, Anastasio MA, Popescu G. Quantitative phase imaging techniques for measuring scattering properties of cells and tissues: a review-part II. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22714. [PMID: 39070593 PMCID: PMC11283205 DOI: 10.1117/1.jbo.29.s2.s22714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024]
Abstract
Significance Quantitative phase imaging (QPI) is a non-invasive, label-free technique that provides intrinsic information about the sample under study. Such information includes the structure, function, and dynamics of the sample. QPI overcomes the limitations of conventional fluorescence microscopy in terms of phototoxicity to the sample and photobleaching of the fluorophore. As such, the application of QPI in estimating the three-dimensional (3D) structure and dynamics is well-suited for a range of samples from intracellular organelles to highly scattering multicellular samples while allowing for longer observation windows. Aim We aim to provide a comprehensive review of 3D QPI and related phase-based measurement techniques along with a discussion of methods for the estimation of sample dynamics. Approach We present information collected from 106 publications that cover the theoretical description of 3D light scattering and the implementation of related measurement techniques for the study of the structure and dynamics of the sample. We conclude with a discussion of the applications of the reviewed techniques in the biomedical field. Results QPI has been successfully applied to 3D sample imaging. The scattering-based contrast provides measurements of intrinsic quantities of the sample that are indicative of disease state, stage of growth, or overall dynamics. Conclusions We reviewed state-of-the-art QPI techniques for 3D imaging and dynamics estimation of biological samples. Both theoretical and experimental aspects of various techniques were discussed. We also presented the applications of the discussed techniques as applied to biomedicine and biology research.
Collapse
Affiliation(s)
- Neha Goswami
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Mark A. Anastasio
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Gabriel Popescu
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| |
Collapse
|
7
|
Goswami N, Anastasio MA, Popescu G. Quantitative phase imaging techniques for measuring scattering properties of cells and tissues: a review-part I. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22713. [PMID: 39026612 PMCID: PMC11257415 DOI: 10.1117/1.jbo.29.s2.s22713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 07/20/2024]
Abstract
Significance Quantitative phase imaging (QPI) techniques offer intrinsic information about the sample of interest in a label-free, noninvasive manner and have an enormous potential for wide biomedical applications with negligible perturbations to the natural state of the sample in vitro. Aim We aim to present an in-depth review of the scattering formulation of light-matter interactions as applied to biological samples such as cells and tissues, discuss the relevant quantitative phase measurement techniques, and present a summary of various reported applications. Approach We start with scattering theory and scattering properties of biological samples followed by an exploration of various microscopy configurations for 2D QPI for measurement of structure and dynamics. Results We reviewed 157 publications and presented a range of QPI techniques and discussed suitable applications for each. We also presented the theoretical frameworks for phase reconstruction associated with the discussed techniques and highlighted their domains of validity. Conclusions We provide detailed theoretical as well as system-level information for a wide range of QPI techniques. Our study can serve as a guideline for new researchers looking for an exhaustive literature review of QPI methods and relevant applications.
Collapse
Affiliation(s)
- Neha Goswami
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Mark A. Anastasio
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Gabriel Popescu
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| |
Collapse
|
8
|
Wei Q, Xiong Y, Ma Y, Liu D, Lu Y, Zhang S, Wang X, Huang H, Liu Y, Dao M, Gong X. High-throughput single-cell assay for precise measurement of the intrinsic mechanical properties and shape characteristics of red blood cells. LAB ON A CHIP 2024; 24:305-316. [PMID: 38087958 PMCID: PMC10949978 DOI: 10.1039/d3lc00323j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The intrinsic physical and mechanical properties of red blood cells (RBCs), including their geometric and rheological characteristics, can undergo changes in various circulatory and metabolic diseases. However, clinical diagnosis using RBC biophysical phenotypes remains impractical due to the unique biconcave shape, remarkable deformability, and high heterogeneity within different subpopulations. Here, we combine the hydrodynamic mechanisms of fluid-cell interactions in micro circular tubes with a machine learning method to develop a relatively high-throughput microfluidic technology that can accurately measure the shear modulus of the membrane, viscosity, surface area, and volume of individual RBCs. The present method can detect the subtle changes of mechanical properties in various RBC components at continuum scales in response to different doses of cytoskeletal drugs. We also investigate the correlation between glycosylated hemoglobin and RBC mechanical properties. Our study develops a methodology that combines microfluidic technology and machine learning to explore the material properties of cells based on fluid-cell interactions. This approach holds promise in offering novel label-free single-cell-assay-based biophysical markers for RBCs, thereby enhancing the potential for more robust disease diagnosis.
Collapse
Affiliation(s)
- Qiaodong Wei
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ying Xiong
- Obstetrics and Gynecology Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University Medical School, Shanghai 200240, China
| | - Yuhang Ma
- Endocrinology Department, Shanghai General Hospital, Shanghai 200240, China
| | - Deyun Liu
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yunshu Lu
- Department of Breast Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200433, China
| | - Shenghong Zhang
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaolong Wang
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Huaxiong Huang
- Research Center for Mathematics, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong, 519088, China
- Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College, Zhuhai, Guangdong, 519088, China
- Department of Mathematics and Statistics York University, Toronto, ON, M3J 1P3, Canada
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Xiaobo Gong
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Himbert S, Gaboo D, Brookes E, Nagle JF, Rheinstädter MC. MEDUSA: A cloud-based tool for the analysis of X-ray diffuse scattering to obtain the bending modulus from oriented membrane stacks. PLoS Comput Biol 2024; 20:e1011749. [PMID: 38190400 PMCID: PMC10798642 DOI: 10.1371/journal.pcbi.1011749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/19/2024] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
An important mechanical property of cells is their membrane bending modulus, κ. Here, we introduce MEDUSA (MEmbrane DiffUse Scattering Analysis), a cloud-based analysis tool to determine the bending modulus, κ, from the analysis of X-ray diffuse scattering. MEDUSA uses GPU (graphics processing unit) accelerated hardware and a parallelized algorithm to run the calculations efficiently in a few seconds. MEDUSA's graphical user interface allows the user to upload 2-dimensional data collected from different sources, perform background subtraction and distortion corrections, select regions of interest, run the fitting procedure and output the fitted parameters, the membranes' bending modulus κ, and compressional modulus B.
Collapse
Affiliation(s)
- Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
- Origins Institute, McMaster University, Hamilton, Ontario, Canada
| | - Dorian Gaboo
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
- Origins Institute, McMaster University, Hamilton, Ontario, Canada
| | - Emre Brookes
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana, United States of America
| | - John F. Nagle
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
- Origins Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Kolay J, Zhang P, Zhou X, Wan Z, Chieng A, Wang S. Ligand Binding-Induced Cellular Membrane Deformation is Correlated with the Changes in Membrane Stiffness. J Phys Chem B 2023; 127:9943-9953. [PMID: 37963180 PMCID: PMC10763494 DOI: 10.1021/acs.jpcb.3c06282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Study interaction between ligands and protein receptors is a key step for biomarker research and drug discovery. In situ measurement of cell surface membrane protein binding on whole cells eliminates the cost and pitfalls associated with membrane protein purification. Ligand binding to membrane protein was recently found to induce nanometer-scale cell membrane deformations, which can be monitored with real-time optical imaging to quantify ligand/protein binding kinetics. However, the insight into this phenomenon has still not been fully understood. We hypothesize that ligand binding can change membrane stiffness, which induces membrane deformation. To investigate this, cell height and membrane stiffness changes upon ligand binding are measured using atomic force microscopy (AFM). Wheat germ agglutinin (WGA) is used as a model ligand that binds to the cell surface glycoprotein. The changes in cell membrane stiffness and cell height upon ligand bindings are determined for three different cell lines (human A431, HeLa, and rat RBL-2H3) on two different substrates. AFM results show that cells become stiffer with increased height after WGA modification for all cases studied. The increase in cell membrane stiffness is further confirmed by plasmonic scattering microscopy, which shows an increased cell spring constant upon WGA binding. Therefore, this study provides direct experimental evidence that the membrane stiffness changes are directly correlated with ligand binding-induced cell membrane deformation.
Collapse
Affiliation(s)
- Jayeeta Kolay
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
| | - Pengfei Zhang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
| | - Xinyu Zhou
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Zijian Wan
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
- School of Electrical, Energy and Computer Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Andy Chieng
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
11
|
Kulahava T, Belko N, Parkhats M, Bahdanava A, Lepeshkevich S, Chizhevsky V, Mogilevtsev D. Photostability and phototoxicity of graphene quantum dots interacting with red blood cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 248:112800. [PMID: 37857078 DOI: 10.1016/j.jphotobiol.2023.112800] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Here we discuss fluorescent properties of graphene quantum dots (GQDs) interacting with the membranes of red blood cells. We report the results of spectroscopic, microscopic, and photon-counting measurements of the GQDs in different surroundings for uncovering specific features of the GQD fluorescence, and describe two observed phenomena important for implementation of the GQDs as fluorescent labels and agents for drug delivery. Firstly, the GQDs can suffer from photodegradation but also can be stabilized in the presence of antioxidants (reduced glutathione, N-acetylcysteine, or 1,4-hydroquinone). Secondly, GQDs can accumulate in red blood cell membranes without compromising the viability of the cells but also can induce hemolysis in the presence of visible light. We discuss mechanisms and regimes of the photodegradation, stabilization, interaction of the GQDs with red blood cell membranes, and hemolysis. Notably, photohemolysis for the case is dependent on the light dose and GQD concentration but not caused by the production of reactive oxygen species.
Collapse
Affiliation(s)
- Tatsiana Kulahava
- Institute for Nuclear Problems of the Belarusian State University, Bobruiskaya str. 11, Minsk 220006, Belarus
| | - Nikita Belko
- B.I. Stepanov Institute of Physics, NAS of Belarus, Nezavisimosty ave. 68, Minsk 220072, Belarus.
| | - Marina Parkhats
- B.I. Stepanov Institute of Physics, NAS of Belarus, Nezavisimosty ave. 68, Minsk 220072, Belarus
| | - Anastasiya Bahdanava
- Institute for Nuclear Problems of the Belarusian State University, Bobruiskaya str. 11, Minsk 220006, Belarus
| | - Sergei Lepeshkevich
- B.I. Stepanov Institute of Physics, NAS of Belarus, Nezavisimosty ave. 68, Minsk 220072, Belarus
| | - Vyacheslav Chizhevsky
- B.I. Stepanov Institute of Physics, NAS of Belarus, Nezavisimosty ave. 68, Minsk 220072, Belarus
| | - Dmitri Mogilevtsev
- B.I. Stepanov Institute of Physics, NAS of Belarus, Nezavisimosty ave. 68, Minsk 220072, Belarus.
| |
Collapse
|
12
|
Sun F, Fang C, Shao X, Gao H, Lin Y. A mechanism-based theory of cellular and tissue plasticity. Proc Natl Acad Sci U S A 2023; 120:e2305375120. [PMID: 37871208 PMCID: PMC10622945 DOI: 10.1073/pnas.2305375120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/12/2023] [Indexed: 10/25/2023] Open
Abstract
Plastic deformation in cells and tissues has been found to play crucial roles in collective cell migration, cancer metastasis, and morphogenesis. However, the fundamental question of how plasticity is initiated in individual cells and then propagates within the tissue remains elusive. Here, we develop a mechanism-based theory of cellular and tissue plasticity that accounts for all key processes involved, including the activation and development of active contraction at different scales as well as the formation of endocytic vesicles on cell junctions and show that this theory achieves quantitative agreement with all existing experiments. Specifically, it reveals that, in response to optical or mechanical stimuli, the myosin contraction and thermal fluctuation-assisted formation and pinching of endocytic vesicles could lead to permanent shortening of cell junctions and that such plastic constriction can stretch neighboring cells and trigger their active contraction through mechanochemical feedbacks and eventually their plastic deformations as well. Our theory predicts that endocytic vesicles with a size around 1 to 2 µm will most likely be formed and a higher irreversible shortening of cell junctions could be achieved if a long stimulation is split into multiple short ones, all in quantitative agreement with experiments. Our analysis also shows that constriction of cells in tissue can undergo elastic/unratcheted to plastic/ratcheted transition as the magnitude and duration of active contraction increases, ultimately resulting in the propagation of plastic deformation waves within the monolayer with a constant speed which again is consistent with experimental observations.
Collapse
Affiliation(s)
- Fuqiang Sun
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation, Shenzhen518057, China
| | - Chao Fang
- School of Science, Harbin Institute of Technology, Shenzhen518055, China
| | - Xueying Shao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong, China
| | - Huajian Gao
- College of Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation, Shenzhen518057, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
13
|
Liu R, Shao M, Ke Z, Li C, Lu F, Zhong MC, Mao Y, Wei X, Zhong Z, Zhou J. Measurement of red blood cell deformability during morphological changes using rotating-glass-plate-based scanning optical tweezers. BIOMEDICAL OPTICS EXPRESS 2023; 14:4979-4989. [PMID: 37791257 PMCID: PMC10545211 DOI: 10.1364/boe.499018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023]
Abstract
It is important to measure the deformability of red blood cells (RBCs) before transfusion, which is a key factor in the gas transport ability of RBCs and changes during storage of RBCs in vitro. Moreover, the morphology of RBCs also changes during storage. It is proposed that the change in morphology is related to the change in deformability. However, the efficiency of typical methods that use particles as handles is low, especially in the deformability measurement of echinocyte and spherocytes. Therefore, the deformability of RBCs with different morphologies is hard to be measured and compared in the same experiment. In this study, we developed a cost-effective and efficient rotating-glass-plate-based scanning optical tweezers device for the measurement of deformability of RBCs. The performance of this device was evaluated, and the deformability of three types of RBCs was measured using this device. Our results clearly show that the change of erythrocyte morphology from discocyte to echinocyte and spherocyte during storage in vitro is accompanied by a decrease in deformability.
Collapse
Affiliation(s)
- Rui Liu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Meng Shao
- School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zeyu Ke
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Changxu Li
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Fengya Lu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Min-Cheng Zhong
- School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yuxin Mao
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Xunbin Wei
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
- Biomedical Engineering Department, Peking University, Beijing 100081, China
| | - Zhensheng Zhong
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Jinhua Zhou
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
- 3D-Printing and Tissue Engineering Center, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
14
|
Wei Q, Wang X, Zhang C, Dao M, Gong X. Evolution of surface area and membrane shear modulus of matured human red blood cells during mechanical fatigue. Sci Rep 2023; 13:8563. [PMID: 37237001 DOI: 10.1038/s41598-023-34605-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Mechanical properties of red blood cells (RBCs) change during their senescence which supports numerous physiological or pathological processes in circulatory systems by providing crucial cellular mechanical environments of hemodynamics. However, quantitative studies on the aging and variations of RBC properties are largely lacking. Herein, we investigate morphological changes, softening or stiffening of single RBCs during aging using an in vitro mechanical fatigue model. Using a microfluidic system with microtubes, RBCs are repeatedly subjected to stretch and relaxation as they squeeze into and out of a sudden contraction region. Geometric parameters and mechanical properties of healthy human RBCs are characterized systematically upon each mechanical loading cycle. Our experimental results identify three typical shape transformations of RBCs during mechanical fatigue, which are all strongly associated with the loss of surface area. We constructed mathematical models for the evolution of surface area and membrane shear modulus of single RBCs during mechanical fatigue, and quantitatively developed an ensemble parameter to evaluate the aging status of RBCs. This study provides not only a novel in vitro fatigue model for investigating the mechanical behavior of RBCs, but also an index closely related to the age and inherent physical properties for a quantitative differentiation of individual RBCs.
Collapse
Affiliation(s)
- Qiaodong Wei
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolong Wang
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ce Zhang
- Institute of Photonics and Photon Technology, State Key Laboratory of Photon-Technology in Western China Energy, Northwest University, Xi'an, 710100, China
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xiaobo Gong
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
15
|
Roy S, Vaippully R, Lokesh M, Nalupurackal G, Yadav V, Chakraborty S, Gopalakrishnan M, Rayappan George Edwin PE, Bajpai SK, Roy B. Comparison of thermal and athermal dynamics of the cell membrane slope fluctuations in the presence and absence of Latrunculin-B. Phys Biol 2023; 20:10.1088/1478-3975/accef1. [PMID: 37080214 PMCID: PMC7614533 DOI: 10.1088/1478-3975/accef1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/20/2023] [Indexed: 04/22/2023]
Abstract
Conventionally, only the normal cell membrane fluctuations have been studied and used to ascertain membrane properties like the bending rigidity. A new concept, the membrane local slope fluctuations was introduced recently (Vaippullyet al2020Soft Matter167606), which can be modelled as a gradient of the normal fluctuations. It has been found that the power spectral density (PSD) of slope fluctuations behave as (frequency)-1while the normal fluctuations yields (frequency)-5/3even on the apical cell membrane in the high frequency region. In this manuscript, we explore a different situation where the cell is applied with the drug Latrunculin-B which inhibits actin polymerization and find the effect on membrane fluctuations. We find that even as the normal fluctuations show a power law (frequency)-5/3as is the case for a free membrane, the slope fluctuations PSD remains (frequency)-1, with exactly the same coefficient as the case when the drug was not applied. Moreover, while sometimes, when the normal fluctuations at high frequency yield a power law of (frequency)-4/3, the pitch PSD still yields (frequency)-1. Thus, this presents a convenient opportunity to study membrane parameters like bending rigidity as a function of time after application of the drug, while the membrane softens. We also investigate the active athermal fluctuations of the membrane appearing in the PSD at low frequencies and find active timescales of slower than 1 s.
Collapse
Affiliation(s)
- Srestha Roy
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Rahul Vaippully
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Muruga Lokesh
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Gokul Nalupurackal
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Vandana Yadav
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | | | | | | | | | - Basudev Roy
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
16
|
Hagemans F, Camerin F, Hazra N, Lammertz J, Dux F, Del Monte G, Laukkanen OV, Crassous JJ, Zaccarelli E, Richtering W. Buckling and Interfacial Deformation of Fluorescent Poly( N-isopropylacrylamide) Microgel Capsules. ACS NANO 2023; 17:7257-7271. [PMID: 37053566 DOI: 10.1021/acsnano.2c10164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Hollow microgels are fascinating model systems at the crossover between polymer vesicles, emulsions, and colloids as they deform, interpenetrate, and eventually shrink at higher volume fraction or when subjected to an external stress. Here, we introduce a system consisting of microgels with a micrometer-sized cavity enabling a straightforward characterization in situ using fluorescence microscopy techniques. Similarly to elastic capsules, these systems are found to reversibly buckle above a critical osmotic pressure, conversely to smaller hollow microgels, which were previously reported to deswell at high volume fraction. Simulations performed on monomer-resolved in silico hollow microgels confirm the buckling transition and show that the presented microgels can be described with a thin shell model theory. When brought to an interface, these microgels, that we define as microgel capsules, strongly deform and we thus propose to utilize them to locally probe interfacial properties within a theoretical framework adapted from the Johnson-Kendall-Roberts (JKR) theory. Besides their capability to sense their environment and to address fundamental questions on the elasticity and permeability of microgel systems, microgel capsules can be further envisioned as model systems mimicking anisotropic responsive biological systems such as red blood and epithelial cells thanks to the possibility offered by microgels to be synthesized with custom-designed properties.
Collapse
Affiliation(s)
- Fabian Hagemans
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Fabrizio Camerin
- CNR-ISC, Sapienza University of Rome, p.le A. Moro 2, 00185 Roma, Italy
- Department of Physics, Sapienza University of Rome, p.le A. Moro 2 00185 Roma, Italy
| | - Nabanita Hazra
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Janik Lammertz
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Frédéric Dux
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Giovanni Del Monte
- CNR-ISC, Sapienza University of Rome, p.le A. Moro 2, 00185 Roma, Italy
- Department of Physics, Sapienza University of Rome, p.le A. Moro 2 00185 Roma, Italy
| | - Olli-Ville Laukkanen
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
- VTT Technical Research Centre of Finland Ltd, Koivurannantie 1, 40400 Jyväskylä, Finland
| | - Jérôme J Crassous
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Emanuela Zaccarelli
- CNR-ISC, Sapienza University of Rome, p.le A. Moro 2, 00185 Roma, Italy
- Department of Physics, Sapienza University of Rome, p.le A. Moro 2 00185 Roma, Italy
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| |
Collapse
|
17
|
Scanning Electron and Atomic Force Microscopic Analysis of Erythrocytes in a Cohort of Atopic Asthma Patients—A Pilot Study. HEMATO 2023. [DOI: 10.3390/hemato4010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Background: Non-communicable diseases are often associated with chronic inflammation, placing patients suffering from these conditions at a higher risk of thrombosis and other complications. The pathophysiology of asthma and/or atopic asthma is also linked to chronic inflammation, which consequently may alter blood parameters including erythrocyte structure and function. Methodology: The objective of this study was to evaluate differences in erythrocytes between patients with atopic asthma (n = 30) and healthy individuals (n = 30) by evaluating routine haematological parameters; structures and axial ratios of erythrocytes using light microscopy; erythrocyte membrane elasticity using atomic force microscopy; and erythrocyte ultrastructure using scanning electron microscopy. Results: The haematological findings of healthy participants and patients suffering from asthma were within normal clinical ranges together with significantly higher levels of circulating monocytes (p = 0.0066), erythrocytes (p = 0.0004), haemoglobin (p = 0.0057), and haematocrit (p = 0.0049) in asthma patients. The analysis of eosin-stained erythrocytes by light microscopy showed more echinocytes, acanthocytes, and ovalocytes compared to controls and a significant difference in axial ratios (p < 0.0001). Atomic force microscopy findings showed reduced erythrocyte membrane elasticity in asthmatic erythrocytes (p = 0.001). Ultrastructural differences in erythrocytes were visible in the asthma group compared to controls. Conclusion: Altered erythrocyte ultrastructural morphology and a significant change in the haematological profile are evident in atopic asthma and may influence common complications associated with asthma. The impact of these changes on the physiological mechanisms of coagulation and the pathophysiology of asthma needs to be further elucidated.
Collapse
|
18
|
Binsley JL, Myers TO, Pagliara S, Ogrin FY. Herringbone micromixers for particle filtration. BIOMICROFLUIDICS 2023; 17:014106. [PMID: 36704613 PMCID: PMC9873379 DOI: 10.1063/5.0134431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Herringbone micromixers are a powerful tool for introducing advection into microfluidic systems. While these mixers are typically used for mixing fluids faster than the rate of diffusion, there has been recent interest in using the device to enhance interactions between suspended particles and channel walls. We show how the common approximations applied to herringbone micromixer theory can have a significant impact on results. We show that the inclusion of gravity can greatly alter the interaction probability between suspended particles and channel walls. We also investigate the proposed impedance matching condition and the inclusion of imperfect binding using numerical methods, and investigate transient behaviors using an experimental system. These results indicate that while traditional methods, such as simple streamline analysis, remain powerful tools, it should not be considered predictive in the general case.
Collapse
Affiliation(s)
- Jacob L. Binsley
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Thomas O. Myers
- Platform Kinetics Limited, Pegholme, Wharfebank Mills, Otley LS21 3JP, United Kingdom
| | - Stefano Pagliara
- University of Exeter, Living Systems Institute and Biosciences, Exeter EX4 4QD, United Kingdom
| | - Feodor Y. Ogrin
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| |
Collapse
|
19
|
Dabbiru VAS, Manu E, Biedenweg D, Nestler P, Pires RH, Otto O. Cell-surface contacts determine volume and mechanical properties of human embryonic kidney 293 T cells. Cytoskeleton (Hoboken) 2023; 80:21-33. [PMID: 36310101 DOI: 10.1002/cm.21735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
Abstract
Alterations in the organization of the cytoskeleton precede the escape of adherent cells from the framework of cell-cell and cell-matrix interactions into suspension. With cytoskeletal dynamics being linked to cell mechanical properties, many studies elucidated this relationship under either native adherent or suspended conditions. In contrast, tethered cells that mimic the transition between both states have not been the focus of recent research. Using human embryonic kidney 293 T cells we investigated all three conditions in the light of alterations in cellular shape, volume, as well as mechanical properties and relate these findings to the level, structure, and intracellular localization of filamentous actin (F-actin). For cells adhered to a substrate, our data shows that seeding density affects cell size but does not alter their elastic properties. Removing surface contacts leads to cell stiffening that is accompanied by changes in cell shape, and a reduction in cellular volume but no alterations in F-actin density. Instead, we observe changes in the organization of F-actin indicated by the appearance of blebs in the semi-adherent state. In summary, our work reveals an interplay between molecular and mechanical alterations when cells detach from a surface that is mainly dominated by cell morphology.
Collapse
Affiliation(s)
- Venkata A S Dabbiru
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Greifswald, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. Standort Greifswald, Universitätsmedizin Greifswald, Greifswald, Germany.,Institut für Physik, Universität Greifswald, Greifswald, Germany
| | - Emmanuel Manu
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Greifswald, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. Standort Greifswald, Universitätsmedizin Greifswald, Greifswald, Germany.,Institut für Physik, Universität Greifswald, Greifswald, Germany
| | - Doreen Biedenweg
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Greifswald, Germany.,Institut für Physik, Universität Greifswald, Greifswald, Germany
| | - Peter Nestler
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Greifswald, Germany.,Institut für Physik, Universität Greifswald, Greifswald, Germany
| | - Ricardo H Pires
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Greifswald, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. Standort Greifswald, Universitätsmedizin Greifswald, Greifswald, Germany.,Institut für Physik, Universität Greifswald, Greifswald, Germany
| | - Oliver Otto
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Greifswald, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. Standort Greifswald, Universitätsmedizin Greifswald, Greifswald, Germany.,Institut für Physik, Universität Greifswald, Greifswald, Germany
| |
Collapse
|
20
|
Piontek MC, Roos WH. Lipoprotein particles exhibit distinct mechanical properties. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e68. [PMID: 38938600 PMCID: PMC11080718 DOI: 10.1002/jex2.68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/12/2022] [Accepted: 11/23/2022] [Indexed: 06/29/2024]
Abstract
Lipoproteins (LPs) are micelle-like structures with a similar size to extracellular vesicles (EVs) and are therefore often co-isolated, as intensively discussed within the EV community. LPs from human blood plasma are of particular interest as they are responsible for the deposition of cholesterol ester and other fats in the artery, causing lesions, and eventually atherosclerosis. Plasma lipoproteins can be divided according to their size, density and composition into chylomicrons (CM), very-low-density lipoproteins (VLDL), low-density lipoproteins (LDL) and high-density lipoproteins (HDL). Here, we use atomic force microscopy for mechanical characterization of LPs. We show that the nanoindentation approach used for EV analysis can also be used to characterize LPs, revealing specific differences between some of the particles. Comparing LPs with each other, LDL exhibit a higher bending modulus as compared to CM and VLDL, which is likely related to differences in cholesterol and apolipoproteins. Furthermore, CM typically collapse on the surface after indentation and HDL exhibit a very low height after surface adhesion both being indications for the presence of LPs in an EV sample. Our analysis provides new systematic insights into the mechanical characteristics of LPs.
Collapse
Affiliation(s)
- Melissa C. Piontek
- Moleculaire BiofysicaZernike Instituut, Rijksuniversiteit GroningenGroningenThe Netherlands
| | - Wouter H. Roos
- Moleculaire BiofysicaZernike Instituut, Rijksuniversiteit GroningenGroningenThe Netherlands
| |
Collapse
|
21
|
Cheng Z, Zhang Y, Liu X, Guo C, He C, Liu G, Song H. Time-Resolved Four-Channel Jones Matrix Measurement of Birefringent Materials Using an Ultrafast Laser. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7813. [PMID: 36363406 PMCID: PMC9654291 DOI: 10.3390/ma15217813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
A method for ultrafast time-resolved four-channel Jones matrix measurement of birefringent materials using an ultrafast laser is investigated. This facilitated the acquisition of a four-channel angular multiplexing hologram in a single shot. The Jones matrix information of a birefringent sample was retrieved from the spatial spectrum of a hologram. The feasibility of this approach was established by measuring the Jones matrix of starch granules in microfluidic chips and the complex amplitude distribution and phase delay distribution of liquid crystal cell at different voltages. Moreover, when the picosecond laser was switched to a femtosecond laser, ultrafast measurements were possible provided that the time interval between two detection pulses was larger than the pulse width.
Collapse
Affiliation(s)
- Zhenjia Cheng
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Yuqin Zhang
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Xuan Liu
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Chengshan Guo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Changwei He
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Guiyuan Liu
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Hongsheng Song
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| |
Collapse
|
22
|
Douglass PM, O'Connor T, Javidi B. Automated sickle cell disease identification in human red blood cells using a lensless single random phase encoding biosensor and convolutional neural networks. OPTICS EXPRESS 2022; 30:35965-35977. [PMID: 36258535 DOI: 10.1364/oe.469199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
We present a compact, field portable, lensless, single random phase encoding biosensor for automated classification between healthy and sickle cell disease human red blood cells. Microscope slides containing 3 µl wet mounts of whole blood samples from healthy and sickle cell disease afflicted human donors are input into a lensless single random phase encoding (SRPE) system for disease identification. A partially coherent laser source (laser diode) illuminates the cells under inspection wherein the object complex amplitude propagates to and is pseudorandomly encoded by a diffuser, then the intensity of the diffracted complex waveform is captured by a CMOS image sensor. The recorded opto-biological signatures are transformed using local binary pattern map generation during preprocessing then input into a pretrained convolutional neural network for classification between healthy and disease-states. We further provide analysis that compares the performance of several neural network architectures to optimize our classification strategy. Additionally, we assess the performance and computational savings of classifying on subsets of the opto-biological signatures with substantially reduced dimensionality, including one dimensional cropping of the recorded signatures. To the best of our knowledge, this is the first report of a lensless SRPE biosensor for human disease identification. As such, the presented approach and results can be significant for low-cost disease identification both in the field and for healthcare systems in developing countries which suffer from constrained resources.
Collapse
|
23
|
Himbert S, Rheinstädter MC. Structural and mechanical properties of the red blood cell's cytoplasmic membrane seen through the lens of biophysics. Front Physiol 2022; 13:953257. [PMID: 36171967 PMCID: PMC9510598 DOI: 10.3389/fphys.2022.953257] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022] Open
Abstract
Red blood cells (RBCs) are the most abundant cell type in the human body and critical suppliers of oxygen. The cells are characterized by a simple structure with no internal organelles. Their two-layered outer shell is composed of a cytoplasmic membrane (RBC cm ) tethered to a spectrin cytoskeleton allowing the cell to be both flexible yet resistant against shear stress. These mechanical properties are intrinsically linked to the molecular composition and organization of their shell. The cytoplasmic membrane is expected to dominate the elastic behavior on small, nanometer length scales, which are most relevant for cellular processes that take place between the fibrils of the cytoskeleton. Several pathologies have been linked to structural and compositional changes within the RBC cm and the cell's mechanical properties. We review current findings in terms of RBC lipidomics, lipid organization and elastic properties with a focus on biophysical techniques, such as X-ray and neutron scattering, and Molecular Dynamics simulations, and their biological relevance. In our current understanding, the RBC cm 's structure is patchy, with nanometer sized liquid ordered and disordered lipid, and peptide domains. At the same time, it is surprisingly soft, with bending rigidities κ of 2-4 kBT. This is in strong contrast to the current belief that a high concentration of cholesterol results in stiff membranes. This extreme softness is likely the result of an interaction between polyunsaturated lipids and cholesterol, which may also occur in other biological membranes. There is strong evidence in the literature that there is no length scale dependence of κ of whole RBCs.
Collapse
Affiliation(s)
- Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
24
|
Nguyen TL, Pradeep S, Judson-Torres RL, Reed J, Teitell MA, Zangle TA. Quantitative Phase Imaging: Recent Advances and Expanding Potential in Biomedicine. ACS NANO 2022; 16:11516-11544. [PMID: 35916417 PMCID: PMC10112851 DOI: 10.1021/acsnano.1c11507] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Quantitative phase imaging (QPI) is a label-free, wide-field microscopy approach with significant opportunities for biomedical applications. QPI uses the natural phase shift of light as it passes through a transparent object, such as a mammalian cell, to quantify biomass distribution and spatial and temporal changes in biomass. Reported in cell studies more than 60 years ago, ongoing advances in QPI hardware and software are leading to numerous applications in biology, with a dramatic expansion in utility over the past two decades. Today, investigations of cell size, morphology, behavior, cellular viscoelasticity, drug efficacy, biomass accumulation and turnover, and transport mechanics are supporting studies of development, physiology, neural activity, cancer, and additional physiological processes and diseases. Here, we review the field of QPI in biology starting with underlying principles, followed by a discussion of technical approaches currently available or being developed, and end with an examination of the breadth of applications in use or under development. We comment on strengths and shortcomings for the deployment of QPI in key biomedical contexts and conclude with emerging challenges and opportunities based on combining QPI with other methodologies that expand the scope and utility of QPI even further.
Collapse
|
25
|
Himbert S, D’Alessandro A, Qadri SM, Majcher MJ, Hoare T, Sheffield WP, Nagao M, Nagle JF, Rheinstädter MC. The bending rigidity of the red blood cell cytoplasmic membrane. PLoS One 2022; 17:e0269619. [PMID: 35913930 PMCID: PMC9342732 DOI: 10.1371/journal.pone.0269619] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
An important mechanical property of cells is the membrane bending modulus, κ. In the case of red blood cells (RBCs) there is a composite membrane consisting of a cytoplasmic membrane and an underlying spectrin network. Literature values of κ are puzzling, as they are reported over a wide range, from 5 kBT to 230 kBT. To disentangle the contribution of the cytoplasmic membrane from the spectrin network, we investigated the bending of red blood cell cytoplasmic membranes (RBCcm) in the absence of spectrin and adenosine triphosphate (ATP). We used a combination of X-ray diffuse scattering (XDS), neutron spin-echo (NSE) spectrometry and Molecular Dynamics (MD) simulations. Our results indicate values of κ of order 4 kBT to 6 kBT, relatively small compared to literature values for most single component lipid bilayers. We suggest two ways this relative softness might confer biological advantage.
Collapse
Affiliation(s)
- Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| | - Angelo D’Alessandro
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, New York, United States of America
- University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Syed M. Qadri
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada
| | - Michael J. Majcher
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - William P. Sheffield
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Michihiro Nagao
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, United States of America
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, United States of America
- Department of Physics and Astronomy, University of Delaware, Newark, DE, United States of America
| | - John F. Nagle
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
26
|
Pan Y, Shi LZ, Yoon CW, Preece D, Gomez‐Godinez V, Lu S, Carmona C, Woo S, Chien S, Berns MW, Liu L, Wang Y. Mechanosensor Piezo1 mediates bimodal patterns of intracellular calcium and FAK signaling. EMBO J 2022; 41:e111799. [PMID: 35844093 PMCID: PMC9433934 DOI: 10.15252/embj.2022111799] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/19/2022] [Accepted: 06/28/2022] [Indexed: 01/18/2023] Open
Abstract
Piezo1 belongs to mechano-activatable cation channels serving as biological force sensors. However, the molecular events downstream of Piezo1 activation remain unclear. In this study, we used biosensors based on fluorescence resonance energy transfer (FRET) to investigate the dynamic modes of Piezo1-mediated signaling and revealed a bimodal pattern of Piezo1-induced intracellular calcium signaling. Laser-induced shockwaves (LIS) and its associated shear stress can mechanically activate Piezo1 to induce transient intracellular calcium (Ca[i] ) elevation, accompanied by an increase in FAK activity. Interestingly, multiple pulses of shockwave stimulation caused a more sustained calcium increase and a decrease in FAK activity. Similarly, tuning the degree of Piezo1 activation by titrating either the dosage of Piezo1 ligand Yoda1 or the expression level of Piezo1 produced a similar bimodal pattern of FAK responses. Further investigations revealed that SHP2 serves as an intermediate regulator mediating this bimodal pattern in Piezo1 sensing and signaling. These results suggest that the degrees of Piezo1 activation induced by both mechanical LIS and chemical ligand stimulation may determine downstream signaling characteristics.
Collapse
Affiliation(s)
- Yijia Pan
- Department of BioengineeringUniversity of California, San DiegoLa JollaCAUSA
| | - Linda Zhixia Shi
- Institute of Engineering in MedicineUniversity of California, San DiegoLa JollaCAUSA
| | - Chi Woo Yoon
- Department of BioengineeringUniversity of California, San DiegoLa JollaCAUSA
| | - Daryl Preece
- Institute of Engineering in MedicineUniversity of California, San DiegoLa JollaCAUSA
| | | | - Shaoying Lu
- Department of BioengineeringUniversity of California, San DiegoLa JollaCAUSA
| | - Christopher Carmona
- Department of BioengineeringUniversity of California, San DiegoLa JollaCAUSA
| | - Seung‐Hyun Woo
- Department of Cell Biology, Dorris Neuroscience CenterThe Scripps Research InstituteLa JollaCAUSA,Genomic Institute of the Novartis Research FoundationSan DiegoCAUSA
| | - Shu Chien
- Department of BioengineeringUniversity of California, San DiegoLa JollaCAUSA,Institute of Engineering in MedicineUniversity of California, San DiegoLa JollaCAUSA,Department of MedicineUniversity of California, San DiegoLa JollaCAUSA
| | - Michael W Berns
- Institute of Engineering in MedicineUniversity of California, San DiegoLa JollaCAUSA,Beckman Laser Institute and Medical ClinicUniversity of California, IrvineIrvineCAUSA
| | - Longwei Liu
- Department of BioengineeringUniversity of California, San DiegoLa JollaCAUSA,Institute of Engineering in MedicineUniversity of California, San DiegoLa JollaCAUSA
| | - Yingxiao Wang
- Department of BioengineeringUniversity of California, San DiegoLa JollaCAUSA,Institute of Engineering in MedicineUniversity of California, San DiegoLa JollaCAUSA
| |
Collapse
|
27
|
Zhu C, Niu Q, Yuan X, Chong J, Ren L. NonFreezable Preservation of Human Red Blood Cells at -8 °C. ACS Biomater Sci Eng 2022; 8:2644-2653. [PMID: 35536888 DOI: 10.1021/acsbiomaterials.2c00141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Red blood cell (RBC) preservation is very important in human health. The RBCs are usually preserved at 4 ± 2 °C without freezing or at a very low temperature (-80 °C or liquid nitrogen) with deep freezing. Herein, non freezable preservation of RBCs at a subzero temperature is reported to prolong the preservation time compared with that at 4 ± 2 °C. By adding glycerol and poly(ethylene glycol) (PEG) (average number molecular weight 400, PEG-400) into the preservation solution, the freezing point is decreased and the hemolysis is kept low. The cell metabolism of stored RBCs at -8 °C is reduced, and the shelf life of RBCs extends up to at least 70 days. At the end of preservation, the pH decreases a little bit to demonstrate the low metabolic rate of RBCs stored at subzero temperatures. After quick washing, the RBC survival rate is ca. 95%. The adenosine triphosphate, 2,3-diphosphoglycerate, and cell deformation ability of the washed RBCs are maintained at a high level, while the malondialdehyde is relatively low, which verifies the high quality of RBCs stored at this condition.
Collapse
Affiliation(s)
- Chenhui Zhu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Qingjing Niu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | | | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
28
|
Introini V, Govendir MA, Rayner JC, Cicuta P, Bernabeu M. Biophysical Tools and Concepts Enable Understanding of Asexual Blood Stage Malaria. Front Cell Infect Microbiol 2022; 12:908241. [PMID: 35711656 PMCID: PMC9192966 DOI: 10.3389/fcimb.2022.908241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/02/2022] Open
Abstract
Forces and mechanical properties of cells and tissues set constraints on biological functions, and are key determinants of human physiology. Changes in cell mechanics may arise from disease, or directly contribute to pathogenesis. Malaria gives many striking examples. Plasmodium parasites, the causative agents of malaria, are single-celled organisms that cannot survive outside their hosts; thus, thost-pathogen interactions are fundamental for parasite’s biological success and to the host response to infection. These interactions are often combinations of biochemical and mechanical factors, but most research focuses on the molecular side. However, Plasmodium infection of human red blood cells leads to changes in their mechanical properties, which has a crucial impact on disease pathogenesis because of the interaction of infected red blood cells with other human tissues through various adhesion mechanisms, which can be probed and modelled with biophysical techniques. Recently, natural polymorphisms affecting red blood cell biomechanics have also been shown to protect human populations, highlighting the potential of understanding biomechanical factors to inform future vaccines and drug development. Here we review biophysical techniques that have revealed new aspects of Plasmodium falciparum invasion of red blood cells and cytoadhesion of infected cells to the host vasculature. These mechanisms occur differently across Plasmodium species and are linked to malaria pathogenesis. We highlight promising techniques from the fields of bioengineering, immunomechanics, and soft matter physics that could be beneficial for studying malaria. Some approaches might also be applied to other phases of the malaria lifecycle and to apicomplexan infections with complex host-pathogen interactions.
Collapse
Affiliation(s)
- Viola Introini
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Viola Introini,
| | - Matt A. Govendir
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Maria Bernabeu
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Constitutive Equations for Analyzing Stress Relaxation and Creep of Viscoelastic Materials Based on Standard Linear Solid Model Derived with Finite Loading Rate. Polymers (Basel) 2022; 14:polym14102124. [PMID: 35632006 PMCID: PMC9143375 DOI: 10.3390/polym14102124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
The viscoelastic properties of materials such as polymers can be quantitatively evaluated by measuring and analyzing the viscoelastic behaviors such as stress relaxation and creep. The standard linear solid model is a classical and commonly used mathematical model for analyzing stress relaxation and creep behaviors. Traditionally, the constitutive equations for analyzing stress relaxation and creep behaviors based on the standard linear solid model are derived using the assumption that the loading is a step function, implying that the loading rate used in the loading process of stress relaxation and creep tests is infinite. Using such constitutive equations may cause significant errors in analyses since the loading rate must be finite (no matter how fast it is) in a real stress relaxation or creep experiment. The purpose of this paper is to introduce the constitutive equations for analyzing stress relaxation and creep behaviors based on the standard linear solid model derived with a finite loading rate. The finite element computational simulation results demonstrate that the constitutive equations derived with a finite loading rate can produce accurate results in the evaluation of all viscoelastic parameters regardless of the loading rate in most cases. It is recommended that the constitutive equations derived with a finite loading rate should replace the traditional ones derived with an infinite loading rate to analyze stress relaxation and creep behaviors for quantitatively evaluating the viscoelastic properties of materials.
Collapse
|
30
|
Cino EA, Tieleman DP. Curvature-based sorting of eight lipid types in asymmetric buckled plasma membrane models. Biophys J 2022; 121:2060-2068. [PMID: 35524412 DOI: 10.1016/j.bpj.2022.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 11/02/2022] Open
Abstract
Curvature is a fundamental property of biological membranes and has essential roles in cellular function. Bending of membranes can be induced by their lipid and protein compositions, as well as peripheral proteins, such as those that make up the cytoskeleton. An important aspect of membrane function is the grouping of lipid species into microdomains, or rafts, which serve as platforms for specific biochemical processes. The fluid mosaic model of membranes has evolved to recognize the importance of curvature and leaflet asymmetry, and there are efforts towards evaluating their functional roles. This work investigates the effect of curvature on the sorting of lipids in buckled asymmetric bilayers containing eight lipid types, approximating an average mammalian plasma membrane, through coarse-grained (CG) molecular dynamics (MD) simulations with the Martini force field. The simulations reveal that i) leaflet compositional asymmetry can induce curvature asymmetry, ii) lipids are sorted by curvature to different extents, and iii) curvature-based partitioning trends show moderate to strong correlations with lipid molecular volumes and head to tail bead ratios, respectively. The findings provide unique insights into the role of curvature in membrane organization, and the curvature-based sorting trends should be useful references for later investigations, and potentially interpreting the functional roles of specific lipids.
Collapse
Affiliation(s)
- Elio A Cino
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
31
|
Lu T, Lee CH, Anvari B. Morphological Characteristics, Hemoglobin Content, and Membrane Mechanical Properties of Red Blood Cell Delivery Systems. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18219-18232. [PMID: 35417121 PMCID: PMC9926936 DOI: 10.1021/acsami.2c03472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Red blood cell (RBC)-based systems are under extensive development as platforms for the delivery of various biomedical agents. While the importance of the membrane biochemical characteristics in relation to circulation kinetics of RBC delivery systems has been recognized, the membrane mechanical properties of such carriers have not been extensively studied. Using optical methods in conjunction with image analysis and mechanical modeling, we have quantified the morphological and membrane mechanical characteristics of RBC-derived microparticles containing the near-infrared cargo indocyanine green (ICG). We find that these particles have a significantly lower surface area, volume, and deformability as compared to normal RBCs. The residual hemoglobin has a spatially distorted distribution in the particles. The membrane bending modulus of the particles is about twofold higher as compared to normal RBCs and exhibits greater resistance to flow. The induced increase in the viscous characteristics of the membrane is dominant over the elastic and entropic effects of ICG. Our results suggest that changes to the membrane mechanical properties are a result of impaired membrane-cytoskeleton attachment in these particles. We provide a mechanistic explanation to suggest that the compromised membrane-cytoskeleton attachment and altered membrane compositional and structural asymmetry induce curvature changes to the membrane, resulting in mechanical remodeling of the membrane. These findings highlight the importance of membrane mechanical properties as an important criterion in the design and engineering of future generations of RBC-based delivery systems to achieve prolonged circulation.
Collapse
Affiliation(s)
- Thompson Lu
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| | - Chi-Hua Lee
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
32
|
A new membrane formulation for modelling the flow of stomatocyte, discocyte, and echinocyte red blood cells. Biomech Model Mechanobiol 2022; 21:899-917. [PMID: 35412191 PMCID: PMC9132841 DOI: 10.1007/s10237-022-01567-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/16/2022] [Indexed: 11/06/2022]
Abstract
In this work, a numerical model that enables simulation of the deformation and flow behaviour of differently aged Red Blood Cells (RBCs) is developed. Such cells change shape and decrease in deformability as they age, thus impacting their ability to pass through the narrow capillaries in the body. While the body filters unviable cells from the blood naturally, cell aging poses key challenges for blood stored for transfusions. Therefore, understanding the influence RBC morphology and deformability have on their flow is vital. While several existing models represent young Discocyte RBC shapes well, a limited number of numerical models are developed to model aged RBC morphologies like Stomatocytes and Echinocytes. The existing models are also limited to shear and stretching simulations. Flow characteristics of these morphologies are yet to be investigated. This paper aims to develop a new membrane formulation for the numerical modelling of Stomatocyte, Discocytes and Echinocyte RBC morphologies to investigate their deformation and flow behaviour. The model used represents blood plasma using the Lattice Boltzmann Method (LBM) and the RBC membrane using the discrete element method (DEM). The membrane and the plasma are coupled by the Immersed Boundary Method (IBM). Previous LBM-IBM-DEM formulations represent RBC membrane response based on forces generated from changes in the local area, local length, local bending, and cell volume. In this new model, two new force terms are added: the local area difference force and the local curvature force, which are specially incorporated to model the flow and deformation behaviour of Stomatocytes and Echinocytes. To verify the developed model, the deformation behaviour of the three types of RBC morphologies are compared to well-characterised stretching and shear experiments. The flow modelling capabilities of the method are then demonstrated by modelling the flow of each cell through a narrow capillary. The developed model is found to be as accurate as benchmark Smoothed Particle Hydrodynamics (SPH) approaches while being significantly more computationally efficient.
Collapse
|
33
|
Groomes PV, Kanjee U, Duraisingh MT. RBC membrane biomechanics and Plasmodium falciparum invasion: probing beyond ligand-receptor interactions. Trends Parasitol 2022; 38:302-315. [PMID: 34991983 PMCID: PMC8917059 DOI: 10.1016/j.pt.2021.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
A critical step in malaria blood-stage infections is the invasion of red blood cells (RBCs) by merozoite forms of the Plasmodium parasite. Much progress has been made in defining the parasite ligands and host receptors that mediate this critical step. However, less well understood are the RBC biophysical determinants that influence parasite invasion. In this review we explore how Plasmodium falciparum merozoites interact with the RBC membrane during invasion to modulate RBC deformability and facilitate invasion. We further highlight RBC biomechanics-related polymorphisms that might have been selected for in human populations due to their ability to reduce parasite invasion. Such an understanding will reveal the translational potential of targeting host pathways affecting RBC biomechanical properties for the treatment of malaria.
Collapse
Affiliation(s)
- Patrice V Groomes
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Usheer Kanjee
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Manoj T Duraisingh
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Stevens-Hernandez CJ, Bruce LJ. Reticulocyte Maturation. MEMBRANES 2022; 12:311. [PMID: 35323786 PMCID: PMC8953437 DOI: 10.3390/membranes12030311] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023]
Abstract
Changes to the membrane proteins and rearrangement of the cytoskeleton must occur for a reticulocyte to mature into a red blood cell (RBC). Different mechanisms of reticulocyte maturation have been proposed to reduce the size and volume of the reticulocyte plasma membrane and to eliminate residual organelles. Lysosomal protein degradation, exosome release, autophagy and the extrusion of large autophagic-endocytic hybrid vesicles have been shown to contribute to reticulocyte maturation. These processes may occur simultaneously or perhaps sequentially. Reticulocyte maturation is incompletely understood and requires further investigation. RBCs with membrane defects or cation leak disorders caused by genetic variants offer an insight into reticulocyte maturation as they present characteristics of incomplete maturation. In this review, we compare the structure of the mature RBC membrane with that of the reticulocyte. We discuss the mechanisms of reticulocyte maturation with a focus on incomplete reticulocyte maturation in red cell variants.
Collapse
Affiliation(s)
- Christian J Stevens-Hernandez
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol BS34 7QH, UK
- School of Biochemistry, University of Bristol, Bristol BS8 ITD, UK
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol BS34 7QH, UK
| |
Collapse
|
35
|
Molaei M, Kandy SK, Graber ZT, Baumgart T, Radhakrishnan R, Crocker JC. Probing lipid membrane bending mechanics using gold nanorod tracking. PHYSICAL REVIEW RESEARCH 2022; 4:L012027. [PMID: 35373142 PMCID: PMC8975244 DOI: 10.1103/physrevresearch.4.l012027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Lipid bilayer membranes undergo rapid bending undulations with wavelengths from tens of nanometers to tens of microns due to thermal fluctuations. Here, we probe such undulations and the membranes' mechanics by measuring the time-varying orientation of single gold nanorods (GNRs) adhered to the membrane, using high-speed dark field microscopy. In a lipid vesicle, such measurements allow the determination of the membrane's viscosity, bending rigidity, and tension as well as the friction coefficient for sliding of the monolayers over one another. The in-plane rotation of the GNR is hindered by undulations in a tension dependent manner, consistent with simulations. The motion of single GNRs adhered to the plasma membrane of living cultured cells similarly reveals the membrane's complex physics and coupling to the cell's actomyosin cortex.
Collapse
Affiliation(s)
- Mehdi Molaei
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sreeja Kutti Kandy
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zachary T. Graber
- Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tobias Baumgart
- Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ravi Radhakrishnan
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John C. Crocker
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Corresponding author:
| |
Collapse
|
36
|
Mierke CT. Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction. Front Cell Dev Biol 2022; 10:789841. [PMID: 35223831 PMCID: PMC8864183 DOI: 10.3389/fcell.2022.789841] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Viscoelasticity and its alteration in time and space has turned out to act as a key element in fundamental biological processes in living systems, such as morphogenesis and motility. Based on experimental and theoretical findings it can be proposed that viscoelasticity of cells, spheroids and tissues seems to be a collective characteristic that demands macromolecular, intracellular component and intercellular interactions. A major challenge is to couple the alterations in the macroscopic structural or material characteristics of cells, spheroids and tissues, such as cell and tissue phase transitions, to the microscopic interferences of their elements. Therefore, the biophysical technologies need to be improved, advanced and connected to classical biological assays. In this review, the viscoelastic nature of cytoskeletal, extracellular and cellular networks is presented and discussed. Viscoelasticity is conceptualized as a major contributor to cell migration and invasion and it is discussed whether it can serve as a biomarker for the cells' migratory capacity in several biological contexts. It can be hypothesized that the statistical mechanics of intra- and extracellular networks may be applied in the future as a powerful tool to explore quantitatively the biomechanical foundation of viscoelasticity over a broad range of time and length scales. Finally, the importance of the cellular viscoelasticity is illustrated in identifying and characterizing multiple disorders, such as cancer, tissue injuries, acute or chronic inflammations or fibrotic diseases.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
37
|
Zhao Y, Gu L, Sun H, Sha X, Li WJ. Physical Cytometry: Detecting Mass-Related Properties of Single Cells. ACS Sens 2022; 7:21-36. [PMID: 34978200 DOI: 10.1021/acssensors.1c01787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The physical properties of a single cell, such as mass, volume, and density, are important indications of the cell's metabolic characteristics and homeostasis. Precise measurement of a single cell's mass has long been a challenge due to its minute size. It is only in the past 10 years that a variety of instruments for measuring living cellular mass have emerged with the development of MEMS, microfluidics, and optics technologies. In this review, we discuss the current developments of physical cytometry for quantifying mass-related physical properties of single cells, highlighting the working principle, applications, and unique merits. The review mainly covers these measurement methods: single-cell mass cytometry, levitation image cytometry, suspended microchannel resonator, phase-shifting interferometry, and opto-electrokinetics cell manipulation. Comparisons are made between these methods in terms of throughput, content, invasiveness, compatibility, and precision. Some typical applications of these methods in pathological diagnosis, drug efficacy evaluation, disease treatment, and other related fields are also discussed in this work.
Collapse
Affiliation(s)
- Yuliang Zhao
- School of Control Engineering, Northeastern University, Qinhuangdao 066004, China
| | - Lijia Gu
- School of Control Engineering, Northeastern University, Qinhuangdao 066004, China
| | - Hui Sun
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, 999077 Hong Kong, China
| | - Xiaopeng Sha
- School of Control Engineering, Northeastern University, Qinhuangdao 066004, China
| | - Wen Jung Li
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, 999077 Hong Kong, China
| |
Collapse
|
38
|
Memmolo P, Aprea G, Bianco V, Russo R, Andolfo I, Mugnano M, Merola F, Miccio L, Iolascon A, Ferraro P. Differential diagnosis of hereditary anemias from a fraction of blood drop by digital holography and hierarchical machine learning. Biosens Bioelectron 2022; 201:113945. [PMID: 35032844 DOI: 10.1016/j.bios.2021.113945] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 01/25/2023]
Abstract
Anemia affects about the 25% of the global population and can provoke severe diseases, ranging from weakness and dizziness to pregnancy problems, arrhythmias and hearth failures. About 10% of the patients are affected by rare anemias of which 80% are hereditary. Early differential diagnosis of anemia enables prescribing patients a proper treatment and diet, which is effective to mitigate the associated symptoms. Nevertheless, the differential diagnosis of these conditions is often difficult due to shared and overlapping phenotypes. Indeed, the complete blood count and unaided peripheral blood smear observation cannot always provide a reliable differential diagnosis, so that biomedical assays and genetic tests are needed. These procedures are not error-free, require skilled personnel, and severely impact the financial resources of national health systems. Here we show a differential screening system for hereditary anemias that relies on holographic imaging and artificial intelligence. Label-free holographic imaging is aided by a hierarchical machine learning decider that works even in the presence of a very limited dataset but is enough accurate for discerning between different anemia classes with minimal morphological dissimilarities. It is worth to notice that only a few tens of cells from each patient are sufficient to obtain a correct diagnosis, with the advantage of significantly limiting the volume of blood drawn. This work paves the way to a wider use of home screening systems for point of care blood testing and telemedicine with lab-on-chip platforms.
Collapse
Affiliation(s)
- Pasquale Memmolo
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy
| | - Genny Aprea
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy
| | - Vittorio Bianco
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy.
| | - Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, Italy; CEINGE-Biotecnologie Avanzate, Napoli, Italy
| | - Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, Italy; CEINGE-Biotecnologie Avanzate, Napoli, Italy
| | - Martina Mugnano
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy
| | - Francesco Merola
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy
| | - Lisa Miccio
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, Italy; CEINGE-Biotecnologie Avanzate, Napoli, Italy
| | - Pietro Ferraro
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy
| |
Collapse
|
39
|
Sirotin MA, Romodina MN, Lyubin EV, Soboleva IV, Fedyanin AA. Single-cell all-optical coherence elastography with optical tweezers. BIOMEDICAL OPTICS EXPRESS 2022; 13:14-25. [PMID: 35154850 PMCID: PMC8803033 DOI: 10.1364/boe.444813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 06/01/2023]
Abstract
The elastic properties of cells are important for many of their functions, however the development of label free noninvasive cellular elastography method is a challenging topic. We present a novel single-cell all-optical coherence elastography method that combines optical tweezers producing mechanical excitation on the cell membrane or organelle and phase-sensitive optical coherence microscopy measuring sample response and determining its mechanical properties. The method allows living cells imaging with a lateral resolution of 0.5 μm and an axial resolution up to 10 nm, making it possible to detect nanometer displacements of the cell organelles and to record the propagation of mechanical wave along the cell membrane in response to optical tweezers excitation. We also demonstrate applicability of the method on single living red blood cells, yeast and cancer cells. The all-optical nature of the method developed makes it a promising and easily applicable tool for studying cellular and subcellular mechanics in vivo.
Collapse
Affiliation(s)
- Maxim A. Sirotin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Maria N. Romodina
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Evgeny V. Lyubin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Irina V. Soboleva
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Andrey A. Fedyanin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
40
|
Son M, Lee YS, Lee MJ, Park Y, Bae HR, Lee SY, Shin MG, Yang S. Effects of osmolality and solutes on the morphology of red blood cells according to three-dimensional refractive index tomography. PLoS One 2021; 16:e0262106. [PMID: 34972199 PMCID: PMC8719701 DOI: 10.1371/journal.pone.0262106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Phosphate-buffered saline (PBS) and Alsever's solution (AS) are frequently used as media in blood-related studies, while 0.9% normal saline (NS) is frequently used in transfusion medicine. Despite the frequent use, the effects of these solutions on the shape and volume of red blood cells (RBCs) have not been reported. We collected blood samples from five healthy adults and used three-dimensional refractive index tomography to investigate the changes in the morphology of RBCs caused by changes in osmolality and solutes at the single-cell level. After diluting 2 μL of RBCs 200-fold with each solution (PBS, AS, and 0.9% NS), 40 randomly selected RBCs were microscopically observed. RBC shape was measured considering sphericity, which is a dimensionless quantity ranging from 0 (flat) to 1 (spherical). RBCs in plasma or AS showed a biconcave shape with a small sphericity, whereas those in 0.9% NS or PBS showed a spherical shape with a large sphericity. Moreover, we confirmed that sodium chloride alone could not elicit the biconcave shape of RBCs, which could be maintained only in the presence of an osmotic pressure-maintaining substance, such as glucose or mannitol. Although 0.9% NS solution is one of the most commonly used fluids in hematology and transfusion medicine, RBCs in 0.9% NS or PBS are not biconcave. Therefore, as the debate on the use of NS continues, future clinical studies or applications should consider the effect of glucose or mannitol on the shape of RBCs.
Collapse
Affiliation(s)
- Minkook Son
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Ye Sung Lee
- School of Mechanical Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Mahn Jae Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hae-Rahn Bae
- Department of Physiology, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Seung Yeob Lee
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Myung-Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Sung Yang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- School of Mechanical Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
41
|
Kumar D, Schroeder CM. Nonlinear Transient and Steady State Stretching of Deflated Vesicles in Flow. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13976-13984. [PMID: 34813335 DOI: 10.1021/acs.langmuir.1c01275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Membrane-bound vesicles and organelles exhibit a wide array of nonspherical shapes at equilibrium, including biconcave and tubular morphologies. Despite recent progress, the stretching dynamics of deflated vesicles is not fully understood, particularly far from equilibrium where complex nonspherical shapes undergo large deformations in flow. Here, we directly observe the transient and steady-state nonlinear stretching dynamics of deflated vesicles in extensional flow using a Stokes trap. Automated flow control is used to observe vesicle dynamics over a wide range of flow rates, shape anisotropy, and viscosity contrast. Our results show that deflated vesicle membranes stretch into highly deformed shapes in flow above a critical capillary number Cac1. We further identify a second critical capillary number Cac2, above which vesicle stretch diverges in flow. Vesicles are robust to multiple nonlinear stretch-relax cycles, evidenced by relaxation of dumbbell-shaped vesicles containing thin lipid tethers following flow cessation. An analytical model is developed for vesicle deformation in flow, which enables comparison of nonlinear steady-state stretching results with theories for different reduced volumes. Our results show that the model captures the steady-state stretching of moderately deflated vesicles; however, it underpredicts the steady-state nonlinear stretching of highly deflated vesicles. Overall, these results provide a new understanding of the nonlinear stretching dynamics and membrane mechanics of deflated vesicles in flow.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Charles M Schroeder
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
42
|
Ben Baruch S, Rotman-Nativ N, Baram A, Greenspan H, Shaked NT. Cancer-Cell Deep-Learning Classification by Integrating Quantitative-Phase Spatial and Temporal Fluctuations. Cells 2021; 10:3353. [PMID: 34943859 PMCID: PMC8699730 DOI: 10.3390/cells10123353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/26/2022] Open
Abstract
We present a new classification approach for live cells, integrating together the spatial and temporal fluctuation maps and the quantitative optical thickness map of the cell, as acquired by common-path quantitative-phase dynamic imaging and processed with a deep-learning framework. We demonstrate this approach by classifying between two types of cancer cell lines of different metastatic potential originating from the same patient. It is based on the fact that both the cancer-cell morphology and its mechanical properties, as indicated by the cell temporal and spatial fluctuations, change over the disease progression. We tested different fusion methods for inputting both the morphological optical thickness maps and the coinciding spatio-temporal fluctuation maps of the cells to the classifying network framework. We show that the proposed integrated triple-path deep-learning architecture improves over deep-learning classification that is based only on the cell morphological evaluation via its quantitative optical thickness map, demonstrating the benefit in the acquisition of the cells over time and in extracting their spatio-temporal fluctuation maps, to be used as an input to the classifying deep neural network.
Collapse
Affiliation(s)
| | | | | | | | - Natan T. Shaked
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; (S.B.B.); (N.R.-N.); (A.B.); (H.G.)
| |
Collapse
|
43
|
The effect of pupil transmittance on axial resolution of reflection phase microscopy. Sci Rep 2021; 11:22774. [PMID: 34815473 PMCID: PMC8610988 DOI: 10.1038/s41598-021-02188-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/09/2021] [Indexed: 11/23/2022] Open
Abstract
A reflection phase microscope (RPM) can be equipped with the capability of depth selection by employing a gating mechanism. However, it is difficult to achieve an axial resolution close to the diffraction limit in real implementation. Here, we systematically investigated the uneven interference contrast produced by pupil transmittance of the objective lens and found that it was the main cause of the practical limit that prevents the axial resolution from reaching its diffraction limit. Then we modulated the power of illumination light to obtain a uniform interference contrast over the entire pupil. Consequently, we could achieve an axial resolution fairly close to the diffraction limit set by the experimental conditions.
Collapse
|
44
|
Klontzas ME, Protonotarios A. High-Resolution Imaging for the Analysis and Reconstruction of 3D Microenvironments for Regenerative Medicine: An Application-Focused Review. Bioengineering (Basel) 2021; 8:182. [PMID: 34821748 PMCID: PMC8614770 DOI: 10.3390/bioengineering8110182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
The rapid evolution of regenerative medicine and its associated scientific fields, such as tissue engineering, has provided great promise for multiple applications where replacement and regeneration of damaged or lost tissue is required. In order to evaluate and optimise the tissue engineering techniques, visualisation of the material of interest is crucial. This includes monitoring of the cellular behaviour, extracellular matrix composition, scaffold structure, and other crucial elements of biomaterials. Non-invasive visualisation of artificial tissues is important at all stages of development and clinical translation. A variety of preclinical and clinical imaging methods-including confocal multiphoton microscopy, optical coherence tomography, magnetic resonance imaging (MRI), and computed tomography (CT)-have been used for the evaluation of artificial tissues. This review attempts to present the imaging methods available to assess the composition and quality of 3D microenvironments, as well as their integration with human tissues once implanted in the human body. The review provides tissue-specific application examples to demonstrate the applicability of such methods on cardiovascular, musculoskeletal, and neural tissue engineering.
Collapse
Affiliation(s)
- Michail E. Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, 71110, Heraklion, Crete, Greece
- Computational Biomedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (FORTH), 70013 Heraklion, Crete, Greece
- Department of Radiology, School of Medicine, Voutes Campus, University of Crete, 71003 Heraklion, Crete, Greece
| | | |
Collapse
|
45
|
Palaia I, Paraschiv A, Debets VE, Storm C, Šarić A. Durotaxis of Passive Nanoparticles on Elastic Membranes. ACS NANO 2021; 15:15794-15802. [PMID: 34550677 DOI: 10.1101/2021.04.01.438065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The transport of macromolecules and nanoscopic particles to a target cellular site is a crucial aspect in many physiological processes. This directional motion is generally controlled via active mechanical and chemical processes. Here we show, by means of molecular dynamics simulations and an analytical theory, that completely passive nanoparticles can exhibit directional motion when embedded in nonuniform mechanical environments. Specifically, we study the motion of a passive nanoparticle adhering to a mechanically nonuniform elastic membrane. We observe a nonmonotonic affinity of the particle to the membrane as a function of the membrane's rigidity, which results in the particle transport. This transport can be both up or down the rigidity gradient, depending on the absolute values of the rigidities that the gradient spans across. We conclude that rigidity gradients can be used to direct average motion of passive macromolecules and nanoparticles on deformable membranes, resulting in the preferential accumulation of the macromolecules in regions of certain mechanical properties.
Collapse
Affiliation(s)
- Ivan Palaia
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Alexandru Paraschiv
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Vincent E Debets
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Cornelis Storm
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Anđela Šarić
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
46
|
Palaia I, Paraschiv A, Debets VE, Storm C, Šarić A. Durotaxis of Passive Nanoparticles on Elastic Membranes. ACS NANO 2021; 15:15794-15802. [PMID: 34550677 DOI: 10.1021/acsnano.1c02777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The transport of macromolecules and nanoscopic particles to a target cellular site is a crucial aspect in many physiological processes. This directional motion is generally controlled via active mechanical and chemical processes. Here we show, by means of molecular dynamics simulations and an analytical theory, that completely passive nanoparticles can exhibit directional motion when embedded in nonuniform mechanical environments. Specifically, we study the motion of a passive nanoparticle adhering to a mechanically nonuniform elastic membrane. We observe a nonmonotonic affinity of the particle to the membrane as a function of the membrane's rigidity, which results in the particle transport. This transport can be both up or down the rigidity gradient, depending on the absolute values of the rigidities that the gradient spans across. We conclude that rigidity gradients can be used to direct average motion of passive macromolecules and nanoparticles on deformable membranes, resulting in the preferential accumulation of the macromolecules in regions of certain mechanical properties.
Collapse
Affiliation(s)
- Ivan Palaia
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Alexandru Paraschiv
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Vincent E Debets
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Cornelis Storm
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Anđela Šarić
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
47
|
Muhammed E, Cooper J, Devito D, Mushi R, del Pilar Aguinaga M, Erenso D, Crogman H. Elastic property of sickle cell anemia and sickle cell trait red blood cells. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210188R. [PMID: 34590447 PMCID: PMC8479689 DOI: 10.1117/1.jbo.26.9.096502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/02/2021] [Indexed: 05/14/2023]
Abstract
SIGNIFICANCE We introduce a model for better calibration of the trapping force using an equal but oppositely directed drag force acting on a trapped red blood cell (RBC). We demonstrate this approach by studying RBCs' elastic properties from deidentified sickle cell anemia (SCA) and sickle cell trait (SCT) blood samples. AIM A laser trapping (LT) force was formulated and analytically calculated in a cylindrical model. Using this trapping force relative percent difference, the maximum (longitudinal) and minimum (transverse) radius rate and stiffness were used to study the elasticity. APPROACH The elastic property of SCA and SCT RBCs was analyzed using LT technique with computer controlled piezo-driven stage, in order to trap and stretch the RBCs. RESULTS For all parameters, the results show that the SCT RBC samples have higher elastic property than the SCA RBCs. The higher rigidity in the SCA cell may be due to the lipid composition of the membrane, which was affected by the cholesterol concentration. CONCLUSIONS By developing a theoretical model for different trapping forces, we have also studied the elasticity of RBCs in SCT (with hemoglobin type HbAS) and in SCA (with hemoglobin type HbSS). The results for the quantities describing the elasticity of the cells consistently showed that the RBCs in the SCT display lower rigidity and higher deformability than the RBCs with SCA.
Collapse
Affiliation(s)
- Endris Muhammed
- Addis Ababa University, Department of Physics, Addis Ababa, Ethiopia
| | - James Cooper
- Middle Tennessee State University, Department of Physics, Murfreesboro, Tennessee, United States
| | - Daniel Devito
- Middle Tennessee State University, Department of Physics, Murfreesboro, Tennessee, United States
| | - Robert Mushi
- Meharry Medical College, Meharry Sickle Cell Center, Department of Internal Medicine, Nashville, Tennessee, United States
| | - Maria del Pilar Aguinaga
- Meharry Medical College, Meharry Sickle Cell Center, Department of Internal Medicine, Nashville, Tennessee, United States
- Meharry Medical College, Department of Obstetrics and Gynecology, Nashville, Tennessee, United States
| | - Daniel Erenso
- Middle Tennessee State University, Department of Physics, Murfreesboro, Tennessee, United States
| | - Horace Crogman
- California State University Dominguez Hills, Department of Physics, Carson, California, United States
| |
Collapse
|
48
|
Lateral Deformation of Human Red Blood Cells by Optical Tweezers. MICROMACHINES 2021; 12:mi12091024. [PMID: 34577667 PMCID: PMC8468094 DOI: 10.3390/mi12091024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022]
Abstract
In this paper, we studied the lateral deformation of human red blood cells (RBCs) during lateral indentation by an optically trapped silica bead with a diameter of 4.5 µm (Bangs Laboratories, Inc. Fishers, IN, USA). The images were captured using a CCD camera and the Boltzmann statistics method was used for force calibration. Using the Hertz model, we calculated and compared the elastic stiffness resulting from the lateral force, showing that the differences are important and that the force should be considered. Besides the lateral component, this setup also allowed us to examine the lateral cell–bead interaction. The mean values of the cell shear stiffness measured during indentation were 3.37 ± 0.40 µN/m for biconcave RBCs, 3.48 ± 0.23 µN/m for spherical RBCs, and 3.80 ± 0.22 µN/m for crenelated RBCs, respectively. These results show that this approach can be used as a routine method for RBC study, because it enabled us to manipulate the cell without contact with the wall.
Collapse
|
49
|
Takesue T. Correction and quantification of MTF in scanning laser microscopy. J Microsc 2021; 283:178-191. [PMID: 33971017 DOI: 10.1111/jmi.13017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/05/2021] [Accepted: 04/27/2021] [Indexed: 11/26/2022]
Abstract
Observations using conventional microscopy often lack information related to the fine structures of an object, such as intensity and phase, because of limitations in the lens aperture. In this study, the intensity and phase information are appropriately converted into an electrical signal using laser scanning and photodetectors. Intensity and phase are completely separated, and the missing information is restored based on the frequency of the electrical signal. Using this method, the original intensity and phase information of the object to be observed can be correctly restored. Therefore, we propose a novel method to calculate the degree of intensity and phase modulation by calculating the direct and alternating current components obtained from the output of the sum and difference of the two photodetectors. The degree of spatial frequency modulation is corrected according to the electrical signal frequency to detect transparent or unstained cells. We first performed laser scanning of an object. Then, signals were detected using two photodetectors placed in the far-field, separated by the optical axis as the boundary. The output signals of the photodetectors were processed and the intensity and phase were unambiguously separated, thus allowing the visualization of the phase information of the transparent bodies and unstained cells. Spatial frequency correction was performed to correct the modulation. Our method successfully separated the information related to the intensity and optical path difference (OPD). In future work, by accurately correcting the intensity and OPD, it will be possible to separate the absorption rate from the ratio of the irradiation light intensity to the observed intensity and to separate the OPD into the refractive index and the thickness information. This method allows the accurate determination of these parameters in a noninvasive manner.
Collapse
|
50
|
Chen X, Kandel ME, Popescu G. Spatial light interference microscopy: principle and applications to biomedicine. ADVANCES IN OPTICS AND PHOTONICS 2021; 13:353-425. [PMID: 35494404 PMCID: PMC9048520 DOI: 10.1364/aop.417837] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this paper, we review spatial light interference microscopy (SLIM), a common-path, phase-shifting interferometer, built onto a phase-contrast microscope, with white-light illumination. As one of the most sensitive quantitative phase imaging (QPI) methods, SLIM allows for speckle-free phase reconstruction with sub-nanometer path-length stability. We first review image formation in QPI, scattering, and full-field methods. Then, we outline SLIM imaging from theory and instrumentation to diffraction tomography. Zernike's phase-contrast microscopy, phase retrieval in SLIM, and halo removal algorithms are discussed. Next, we discuss the requirements for operation, with a focus on software developed in-house for SLIM that enables high-throughput acquisition, whole slide scanning, mosaic tile registration, and imaging with a color camera. We introduce two methods for solving the inverse problem using SLIM, white-light tomography, and Wolf phase tomography. Lastly, we review the applications of SLIM in basic science and clinical studies. SLIM can study cell dynamics, cell growth and proliferation, cell migration, mass transport, etc. In clinical settings, SLIM can assist with cancer studies, reproductive technology, blood testing, etc. Finally, we review an emerging trend, where SLIM imaging in conjunction with artificial intelligence brings computational specificity and, in turn, offers new solutions to outstanding challenges in cell biology and pathology.
Collapse
|