1
|
Nair I, Behbod F. Models for Studying Ductal Carcinoma In Situ Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:95-108. [PMID: 39821022 DOI: 10.1007/978-3-031-70875-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
An estimated 55,720 new cases of ductal carcinoma in situ (DCIS) will be diagnosed in 2023 in the USA alone because of the increased use of screening mammography. The treatment goal in DCIS is early detection and treatment with the hope of preventing progression into invasive disease. Previous studies show progression into invasive cancer as well as reduction in mortality from treatment is not as high as previously thought. So, are we overdiagnosing and over-treating DCIS? An understanding of the natural progression of DCIS is paramount to address this. The purpose of this chapter is to describe various models that have been developed to simulate the processes involved in DCIS to invasive ductal carcinoma (IDC) transition. While each model possesses a unique set of strengths and weaknesses, they have collectively contributed to the current understanding of the molecular and cellular mechanisms underlying this transition. Even though much has been learned, continued advancement of the current models to best match the composition of DCIS epithelial and stromal microenvironment including the extracellular matrix (ECM), stromal cell types, and immune microenvironment will be essential. These advances will undoubtedly pave the way toward a full understanding of mechanisms associated with progression and in predicting when a DCIS lesion remains indolent and when triggers tip in the balance toward progression to malignancy.
Collapse
Affiliation(s)
- Isabella Nair
- Department of General Surgery, University of Missouri - Kansas City, Kansas City, MO, USA
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, MS 3045, The University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
2
|
Bu W, Li Y. Advances in Immunocompetent Mouse and Rat Models. Cold Spring Harb Perspect Med 2024; 14:a041328. [PMID: 37217281 PMCID: PMC10810718 DOI: 10.1101/cshperspect.a041328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Rodent models of breast cancer have played critical roles in our understanding of breast cancer development and progression as well as preclinical testing of cancer prevention and therapeutics. In this article, we first review the values and challenges of conventional genetically engineered mouse (GEM) models and newer iterations of these models, especially those with inducible or conditional regulation of oncogenes and tumor suppressors. Then, we discuss nongermline (somatic) GEM models of breast cancer with temporospatial control, made possible by intraductal injection of viral vectors to deliver oncogenes or to manipulate the genome of mammary epithelial cells. Next, we introduce the latest development in precision editing of endogenous genes using in vivo CRISPR-Cas9 technology. We conclude with the recent development in generating somatic rat models for modeling estrogen receptor-positive breast cancer, something that has been difficult to accomplish in mice.
Collapse
Affiliation(s)
- Wen Bu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
3
|
Xie K, Li C, Wang M, Fu S, Cai Y. miR-135a-5p overexpression in peripheral blood-derived exosomes mediates vascular injury in type 2 diabetes patients. Front Endocrinol (Lausanne) 2023; 14:1035029. [PMID: 38027164 PMCID: PMC10657216 DOI: 10.3389/fendo.2023.1035029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Diabetes pathology relies on exosomes (Exos). This study investigated how peripheral blood Exo-containing microRNAs (miRNAs) cause vascular injury in type 2 diabetes (T2D). Methods We removed DEmiRNA from T2D chip data from the GEO database. We isolated Exo from 15 peripheral blood samples from T2D patients and 15 healthy controls and measured Exo DEmiRNA levels. We employed the intersection of Geneards and mirWALK database queries to find T2D peripheral blood mRNA-related chip target genes. Next, we created a STRING database candidate target gene interaction network map. Next, we performed GO and KEGG enrichment analysis on T2D-related potential target genes using the ClusterProfiler R package. Finally, we selected T2D vascular damage core genes and signaling pathways using GSEA and PPI analysis. Finally, we used HEK293 cells for luciferase assays, co-cultured T2D peripheral blood-derived Exo with HVSMC, and detected HVSMC movement alterations. Results We found 12 T2D-related DEmiRNAs in GEO. T2D patient-derived peripheral blood Exo exhibited significantly up-regulated miR-135a-3p by qRT-PCR. Next, we projected miR-135a-3p's downstream target mRNA and screened 715 DEmRNAs to create a regulatory network diagram. DEmRNAs regulated biological enzyme activity and vascular endothelial cells according to GO function and KEGG pathway analysis. ErbB signaling pathway differences stood out. PPI network study demonstrated that DEmRNA ATM genes regulate the ErbB signaling pathway. The luciferase experiment validated miR-135a-3p and ATM target-binding. Co-culture of T2D patient-derived peripheral blood Exo with HVSMC cells increases HVSMC migration, ErbB2, Bcl-2, and VEGF production, and decreases BAX and ATM. However, miR-135a-3p can reverse the production of the aforesaid functional proteins and impair HVSMC cell movement. Conclusion T2D patient-derived peripheral blood Exo carrying miR-135a-3p enter HVSMC, possibly targeting and inhibiting ATM, activating the ErbB signaling pathway, promoting abnormal HVSMC proliferation and migration, and aggravating vascular damage.
Collapse
Affiliation(s)
| | | | | | | | - Ying Cai
- National Clinical Research Center for Geriatric Disorders, Department of Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Ghelli Luserna Di Rorà A, Ghetti M, Ledda L, Ferrari A, Bocconcelli M, Padella A, Napolitano R, Fontana MC, Liverani C, Imbrogno E, Bochicchio MT, Paganelli M, Robustelli V, Sanogo S, Cerchione C, Fumagalli M, Rondoni M, Imovilli A, Musuraca G, Martinelli G, Simonetti G. Exploring the ATR-CHK1 pathway in the response of doxorubicin-induced DNA damages in acute lymphoblastic leukemia cells. Cell Biol Toxicol 2023; 39:795-811. [PMID: 34519926 PMCID: PMC10406704 DOI: 10.1007/s10565-021-09640-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/23/2021] [Indexed: 11/26/2022]
Abstract
Doxorubicin (Dox) is one of the most commonly used anthracyclines for the treatment of solid and hematological tumors such as B-/T cell acute lymphoblastic leukemia (ALL). Dox compromises topoisomerase II enzyme functionality, thus inducing structural damages during DNA replication and causes direct damages intercalating into DNA double helix. Eukaryotic cells respond to DNA damages by activating the ATM-CHK2 and/or ATR-CHK1 pathway, whose function is to regulate cell cycle progression, to promote damage repair, and to control apoptosis. We evaluated the efficacy of a new drug schedule combining Dox and specific ATR (VE-821) or CHK1 (prexasertib, PX) inhibitors in the treatment of human B-/T cell precursor ALL cell lines and primary ALL leukemic cells. We found that ALL cell lines respond to Dox activating the G2/M cell cycle checkpoint. Exposure of Dox-pretreated ALL cell lines to VE-821 or PX enhanced Dox cytotoxic effect. This phenomenon was associated with the abrogation of the G2/M cell cycle checkpoint with changes in the expression pCDK1 and cyclin B1, and cell entry in mitosis, followed by the induction of apoptosis. Indeed, the inhibition of the G2/M checkpoint led to a significant increment of normal and aberrant mitotic cells, including those showing tripolar spindles, metaphases with lagging chromosomes, and massive chromosomes fragmentation. In conclusion, we found that the ATR-CHK1 pathway is involved in the response to Dox-induced DNA damages and we demonstrated that our new in vitro drug schedule that combines Dox followed by ATR/CHK1 inhibitors can increase Dox cytotoxicity against ALL cells, while using lower drug doses. • Doxorubicin activates the G2/M cell cycle checkpoint in acute lymphoblastic leukemia (ALL) cells. • ALL cells respond to doxorubicin-induced DNA damages by activating the ATR-CHK1 pathway. • The inhibition of the ATR-CHK1 pathway synergizes with doxorubicin in the induction of cytotoxicity in ALL cells. • The inhibition of ATR-CHK1 pathway induces aberrant chromosome segregation and mitotic spindle defects in doxorubicin-pretreated ALL cells.
Collapse
Affiliation(s)
- Andrea Ghelli Luserna Di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy.
| | - Martina Ghetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Lorenzo Ledda
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Anna Ferrari
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Matteo Bocconcelli
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Antonella Padella
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Roberta Napolitano
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Maria Chiara Fontana
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Chiara Liverani
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Enrica Imbrogno
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Maria Teresa Bochicchio
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Matteo Paganelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Valentina Robustelli
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Seydou Sanogo
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Claudio Cerchione
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Monica Fumagalli
- Hematology Division and Bone Marrow Transplantation Unit, San Gerardo Hospital, Monza, Italy
| | - Michela Rondoni
- Hematology Unit, Ospedale Santa Maria delle Croci, Ravenna, Italy
| | | | - Gerardo Musuraca
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| |
Collapse
|
5
|
Bu W, Li Y. In Vivo Gene Delivery into Mouse Mammary Epithelial Cells Through Mammary Intraductal Injection. J Vis Exp 2023:10.3791/64718. [PMID: 36847377 PMCID: PMC10874126 DOI: 10.3791/64718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Mouse mammary glands comprise ductal trees, which are lined by epithelial cells and have one opening at the tip of each nipple. The epithelial cells play a major role in mammary gland function and are the origin of most mammary tumors. Introducing genes of interest into mouse mammary epithelial cells is a critical step in evaluating gene function in epithelial cells and generating mouse mammary tumor models. This goal can be accomplished through the intraductal injection of a viral vector carrying the genes of interest into the mouse mammary ductal tree. The injected virus subsequently infects mammary epithelial cells, bringing in the genes of interest. The viral vector can be lentiviral, retroviral, adenoviral, or adenovirus-associated viral (AAV). This study demonstrates how a gene of interest is delivered into mammary epithelial cells through mouse mammary intraductal injection of a viral vector. A lentivirus carrying GFP is used to show stable expression of a delivered gene, and a retrovirus carrying Erbb2 (HER2/Neu) is used to demonstrate oncogene-induced atypical hyperplastic lesions and mammary tumors.
Collapse
Affiliation(s)
- Wen Bu
- Lester & Sue Smith Breast Center, Baylor College of Medicine; Department of Medicine, Baylor College of Medicine;
| | - Yi Li
- Lester & Sue Smith Breast Center, Baylor College of Medicine; Department of Molecular & Cellular Biology, Baylor College of Medicine;
| |
Collapse
|
6
|
Albarakati N, Al‐Shareeda A, Ramadan M, Al‐Sowayan B, Negm O, Nedjadi T. Interaction between HER2 and ATM predicts poor survival in bladder cancer patients. J Cell Mol Med 2022; 26:4959-4973. [PMID: 36056635 PMCID: PMC9549494 DOI: 10.1111/jcmm.17512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/16/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022] Open
Abstract
Human Epidermal Growth Factor Receptor 2 (HER2) overexpression is considered one of the interesting prognostic biomarkers in bladder cancer. However, the mechanism of bladder cancer development in relation to HER2 status remains to be elucidated. In this study, we investigated HER2-Ataxia telangiectasia mutated (ATM) kinase interaction and their impact on patient survival and cancer aggressiveness. Using the Cancer Genome Atlas (TCGA) cohorts, we demonstrated that ATM expression (protein/mRNA) is increased in HER2 deficient compared with proficient HER2 patients. This finding was then validated using the Gene Expression Omnibus database (GEO). Correlation analysis (using low expression vs high expression as a discriminator) revealed a significant association of ATM low and HER2 high status with several clinicopathological variables such as high tumour grade, late disease stage and tumour shape. Kaplan-Meier survival analysis indicated that ATM low and HER2 high is a powerful prognosticator of both overall survival (OS) and disease-free survival (DFS). Furthermore, using bioinformatics and protein/protein interaction analyses, we identified 66 putative overlapping proteins with direct link between HER2 and ATM most of which are functionally involved in transcription regulation, apoptotic process and cell proliferation. Interestingly, the results showed that these proteins are strongly linked with PI3K-Akt pathway, p53 pathway and microRNAs in cancer. Altogether, our data pinpoint an important biological role of the interconnection between HER2 and ATM. The latter appear to be an independent prognostic biomarker and may serve as targets to develop novel combination therapies to improve the outcome of patients with bladder cancer.
Collapse
Affiliation(s)
- Nada Albarakati
- Department of Cellular Therapy and Cancer ResearchKing Abdullah International Medical Research CenterJeddahSaudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Ministry of the National Guard – Health AffairsRiyadhSaudi Arabia
| | - Alaa Al‐Shareeda
- King Saud bin Abdulaziz University for Health Sciences, Ministry of the National Guard – Health AffairsRiyadhSaudi Arabia
- Department of Cellular Therapy and Cancer ResearchKing Abdullah International Medical Research CenterRiyadhSaudi Arabia
- Department of the Saudi BiobankKing Abdullah International Medical Research CenterRiyadhSaudi Arabia
| | - Majed Ramadan
- King Saud bin Abdulaziz University for Health Sciences, Ministry of the National Guard – Health AffairsRiyadhSaudi Arabia
- Department of Population Health ResearchKing Abdullah International Medical Research CenterJeddahSaudi Arabia
| | - Batla Al‐Sowayan
- King Saud bin Abdulaziz University for Health Sciences, Ministry of the National Guard – Health AffairsRiyadhSaudi Arabia
- Department of Cellular Therapy and Cancer ResearchKing Abdullah International Medical Research CenterRiyadhSaudi Arabia
| | - Ola Negm
- School of MedicineUniversity of NottinghamNottinghamUK
- Microbiology and Immunology Department, Faculty of MedicineMansoura UniversityMansouraEgypt
| | - Taoufik Nedjadi
- Department of Cellular Therapy and Cancer ResearchKing Abdullah International Medical Research CenterJeddahSaudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Ministry of the National Guard – Health AffairsRiyadhSaudi Arabia
| |
Collapse
|
7
|
Ghaleb A, Roa L, Marchenko N. Low-dose but not high-dose γ-irradiation elicits the dominant-negative effect of mutant p53 in vivo. Cancer Lett 2022; 530:128-141. [DOI: 10.1016/j.canlet.2022.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/05/2022] [Accepted: 01/15/2022] [Indexed: 12/17/2022]
|
8
|
Georgakopoulou E, Evangelou K, Gorgoulis VG. Premalignant lesions and cellular senescence. CELLULAR SENESCENCE IN DISEASE 2022:29-60. [DOI: 10.1016/b978-0-12-822514-1.00001-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Young A, Bu W, Jiang W, Ku A, Kapali J, Dhamne S, Qin L, Hilsenbeck SG, Du YCN, Li Y. Targeting the Pro-Survival Protein BCL-2 to Prevent Breast Cancer. Cancer Prev Res (Phila) 2021; 15:3-10. [PMID: 34667127 DOI: 10.1158/1940-6207.capr-21-0031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
Current chemopreventive strategies require 3-5 years of continuous treatment and have the concerns of significant side effects; therefore, new chemopreventive agents that require shorter and safer treatments are urgently needed. In this study, we developed a new murine model of breast cancer that mimics human breast cancer initiation and is ideal for testing the efficacy of chemopreventive therapeutics. In this model, introduction of lentivirus carrying a PIK3CA gene mutant commonly found in breast cancers infects a small number of the mammary cells, leading to atypia first and then to ductal carcinomas that are positive for both estrogen receptor and progesterone receptor. Venetoclax is a BH3 mimetic that blocks the anti-apoptotic protein BCL-2 and has efficacy in treating breast cancer. We found that venetoclax treatment of atypia-bearing mice delayed the progression to tumors, improved overall survival, and reduced pulmonary metastasis. Therefore, prophylactic treatment to inhibit the pro-survival protein BCL-2 may provide an alternative to the currently available regimens in breast cancer prevention.
Collapse
Affiliation(s)
- Adelaide Young
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Wen Bu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Weiyu Jiang
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Amy Ku
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Jyoti Kapali
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Sagar Dhamne
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas
| | - Lan Qin
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Susan G Hilsenbeck
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Yi Li
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
10
|
Prognostic and Therapeutic Potential of the OIP5 Network in Papillary Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13174483. [PMID: 34503297 PMCID: PMC8431695 DOI: 10.3390/cancers13174483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Papillary renal cell carcinoma (pRCC) is an aggressive but minor type of RCC. The current understanding and management of pRCC remain poor. We report here OIP5 being a novel oncogenic factor and possessing robust prognostic values and therapeutic potential. OIP5 upregulation is observed in pRCC. The upregulation is associated with pRCC adverse features (T1P < T2P < CIMP, Stage1 + 2 < Stage 3 < Stage 4, and N0 < N1) and effectively stratifies the fatality risk. OIP5 promotes ACHN pRCC cell proliferation and xenograft formation; the latter is correlated with network alterations related to immune regulation, metabolism, and hypoxia. A set of differentially expressed genes (DEFs) was derived from ACHN OIP5 xenografts and primary pRCCs (n = 282) contingent to OIP5 upregulation; both DEG sets share 66 overlap genes. Overlap66 effectively predicts overall survival (p < 2 × 10-16) and relapse (p < 2 × 10-16) possibilities. High-risk tumors stratified by Overlap66 risk score possess an immune suppressive environment, evident by elevations in Treg cells and PD1 in CD8 T cells. Upregulation of PLK1 occurs in both xenografts and primary pRCC tumors with OIP5 elevations. PLK1 displays a synthetic lethality relationship with OIP5. PLK1 inhibitor BI2356 inhibits the growth of xenografts formed by ACHN OIP5 cells. Collectively, the OIP5 network can be explored for personalized therapies in management of pRCC patients.
Collapse
|
11
|
Bu W, Li Y. Intraductal Injection of Lentivirus Vectors for Stably Introducing Genes into Rat Mammary Epithelial Cells in Vivo. J Mammary Gland Biol Neoplasia 2020; 25:389-396. [PMID: 33165800 PMCID: PMC7965254 DOI: 10.1007/s10911-020-09469-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/18/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
Various retroviral and lentiviral vectors have been used for up-the-teat intraductal injection to deliver markers, oncogenes, and other genes into mammary epithelial cells in mice. These methods along with the large number of genetically engineered mouse lines have greatly helped us learn normal breast development and tumorigenesis. Rats are also valuable models for studying human breast development and cancer. However, genetically engineered rats are still uncommon, and previous reports of intraductal injection of retroviral vectors into rats appear to be inefficient in generating mammary tumors. Here, we report, and describe the method for, stably introducing marker genes and oncogenes into mammary glands in rats using intraductal injection of commonly used lentiviral vectors. This method can infect mammary epithelial cells efficiently, and the infected cells can initiate tumorigenesis, including estrogen receptor-positive and hormone-dependent tumors, which are the most common subtype of human breast cancer but are yet still difficult to model in mice. This technique provides another tool for studying formation, prevention, and treatment of breast cancer, especially estrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Wen Bu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yi Li
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Filipponi D, Emelyanov A, Muller J, Molina C, Nichols J, Bulavin DV. DNA Damage Signaling-Induced Cancer Cell Reprogramming as a Driver of Tumor Relapse. Mol Cell 2019; 74:651-663.e8. [DOI: 10.1016/j.molcel.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/23/2019] [Accepted: 02/28/2019] [Indexed: 12/14/2022]
|
13
|
Hyperprolactinemia-inducing antipsychotics increase breast cancer risk by activating JAK-STAT5 in precancerous lesions. Breast Cancer Res 2018; 20:42. [PMID: 29778097 PMCID: PMC5960176 DOI: 10.1186/s13058-018-0969-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/11/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Psychiatric medications are widely prescribed in the USA. Many antipsychotics cause serum hyperprolactinemia as an adverse side effect; prolactin-Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) signaling both induces cell differentiation and suppresses apoptosis. It is controversial whether these antipsychotics increase breast cancer risk. METHODS We investigated the impact of several antipsychotics on mammary tumorigenesis initiated by retrovirus-mediated delivery of either ErbB2 or HRas or by transgenic expression of Wnt-1. RESULTS We found that the two hyperprolactinemia-inducing antipsychotics, risperidone and pimozide, prompted precancerous lesions to progress to cancer while aripiprazole, which did not cause hyperprolactinemia, did not. We observed that risperidone and pimozide (but not aripiprazole) caused precancerous cells to activate STAT5 and suppress apoptosis while exerting no impact on proliferation. Importantly, we demonstrated that these effects of antipsychotics on early lesions required the STAT5 gene function. Furthermore, we showed that only two-week treatment of mice with ruxolitinib, a JAK1/2 inhibitor, blocked STAT5 activation, restored apoptosis, and prevented early lesion progression. CONCLUSIONS Hyperprolactinemia-inducing antipsychotics instigate precancerous cells to progress to cancer via JAK/STAT5 to suppress the apoptosis anticancer barrier, and these cancer-promoting effects can be prevented by prophylactic anti-JAK/STAT5 treatment. This preclinical work exposes a potential breast cancer risk from hyperprolactinemia-inducing antipsychotics in certain patients and suggests a chemoprevention regime that is relatively easy to implement compared to the standard 5-year anti-estrogenic treatment in women who have or likely have already developed precancerous lesions while also requiring hyperprolactinemia-inducing antipsychotics.
Collapse
|
14
|
WSB1 overcomes oncogene-induced senescence by targeting ATM for degradation. Cell Res 2016; 27:274-293. [PMID: 27958289 DOI: 10.1038/cr.2016.148] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 12/20/2022] Open
Abstract
Oncogene-induced senescence (OIS) or apoptosis through the DNA-damage response is an important barrier of tumorigenesis. Overcoming this barrier leads to abnormal cell proliferation, genomic instability, and cellular transformation, and finally allows cancers to develop. However, it remains unclear how the OIS barrier is overcome. Here, we show that the E3 ubiquitin ligase WD repeat and SOCS box-containing protein 1 (WSB1) plays a role in overcoming OIS. WSB1 expression in primary cells helps the bypass of OIS, leading to abnormal proliferation and cellular transformation. Mechanistically, WSB1 promotes ATM ubiquitination, resulting in ATM degradation and the escape from OIS. Furthermore, we identify CDKs as the upstream kinase of WSB1. CDK-mediated phosphorylation activates WSB1 by promoting its monomerization. In human cancer tissue and in vitro models, WSB1-induced ATM degradation is an early event during tumorigenic progression. We suggest that WSB1 is one of the key players of early oncogenic events through ATM degradation and destruction of the tumorigenesis barrier. Our work establishes an important mechanism of cancer development and progression in premalignant lesions.
Collapse
|
15
|
Johnson CA, Collis SJ. Ciliogenesis and the DNA damage response: a stressful relationship. Cilia 2016; 5:19. [PMID: 27335639 PMCID: PMC4916530 DOI: 10.1186/s13630-016-0040-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/22/2016] [Indexed: 01/27/2023] Open
Abstract
Both inherited and sporadic mutations can give rise to a plethora of human diseases. Through myriad diverse cellular processes, sporadic mutations can arise through a failure to accurately replicate the genetic code or by inaccurate separation of duplicated chromosomes into daughter cells. The human genome has therefore evolved to encode a large number of proteins that work together with regulators of the cell cycle to ensure that it remains error-free. This is collectively known as the DNA damage response (DDR), and genome stability mechanisms involve a complex network of signalling and processing factors that ensure redundancy and adaptability of these systems. The importance of genome stability mechanisms is best illustrated by the dramatic increased risk of cancer in individuals with underlying disruption to genome maintenance mechanisms. Cilia are microtubule-based sensory organelles present on most vertebrate cells, where they facilitate transduction of external signals into the cell. When not embedded within the specialised ciliary membrane, components of the primary cilium's basal body help form the microtubule organising centre that controls cellular trafficking and the mitotic segregation of chromosomes. Ciliopathies are a collection of diseases associated with functional disruption to cilia function through a variety of different mechanisms. Ciliopathy phenotypes can vary widely, and although some cellular overgrowth phenotypes are prevalent in a subset of ciliopathies, an increased risk of cancer is not noted as a clinical feature. However, recent studies have identified surprising genetic and functional links between cilia-associated proteins and genome maintenance factors. The purpose of this mini-review is to therefore highlight some of these discoveries and discuss their implications with regards to functional crosstalk between the DDR and ciliogenesis pathways, and how this may impact on the development of human disease.
Collapse
Affiliation(s)
- Colin A. Johnson
- />Section of Ophthalmology and Neurosciences, Wellcome Trust Brenner Building, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds, LS9 7TF UK
| | - Spencer J. Collis
- />Genome Stability Group, Department of Oncology and Metabolism, Academic Unit of Molecular Oncology, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX UK
| |
Collapse
|
16
|
Lyckesvärd MN, Kapoor N, Ingeson-Carlsson C, Carlsson T, Karlsson JO, Postgård P, Himmelman J, Forssell-Aronsson E, Hammarsten O, Nilsson M. Linking loss of sodium-iodide symporter expression to DNA damage. Exp Cell Res 2016; 344:120-131. [PMID: 27108928 DOI: 10.1016/j.yexcr.2016.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 12/11/2022]
Abstract
Radiotherapy of thyroid cancer with I-131 is abrogated by inherent loss of radioiodine uptake due to loss of sodium iodide symporter (NIS) expression in poorly differentiated tumor cells. It is also known that ionizing radiation per se down-regulates NIS (the stunning effect), but the mechanism is unknown. Here we investigated whether loss of NIS-mediated iodide transport may be elicited by DNA damage. Calicheamicin, a fungal toxin that specifically cleaves double-stranded DNA, induced a full scale DNA damage response mediated by the ataxia-telangiectasia mutated (ATM) kinase in quiescent normal thyrocytes. At sublethal concentrations (<1nM) calicheamicin blocked NIS mRNA expression and transepithelial iodide transport as stimulated by thyrotropin; loss of function occurred at a much faster rate than after I-131 irradiation. KU-55933, a selective ATM kinase inhibitor, partly rescued NIS expression and iodide transport in DNA-damaged cells. Prolonged ATM inhibition in healthy cells also repressed NIS-mediated iodide transport. ATM-dependent loss of iodide transport was counteracted by IGF-1. Together, these findings indicate that NIS, the major iodide transporter of the thyroid gland, is susceptible to DNA damage involving ATM-mediated mechanisms. This uncovers novel means of poor radioiodine uptake in thyroid cells subjected to extrinsic or intrinsic genotoxic stress.
Collapse
Affiliation(s)
- Madeleine Nordén Lyckesvärd
- Sahlgrenska Cancer Center, University of Gothenburg, Göteborg, Sweden; Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg, Sweden
| | - Nirmal Kapoor
- Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg, Sweden
| | - Camilla Ingeson-Carlsson
- Sahlgrenska Cancer Center, University of Gothenburg, Göteborg, Sweden; Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg, Sweden
| | - Therese Carlsson
- Sahlgrenska Cancer Center, University of Gothenburg, Göteborg, Sweden; Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg, Sweden
| | - Jan-Olof Karlsson
- Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg, Sweden
| | - Per Postgård
- Department of Radiation Physics, University of Gothenburg, Göteborg, Sweden
| | - Jakob Himmelman
- Department of Radiation Physics, University of Gothenburg, Göteborg, Sweden
| | | | - Ola Hammarsten
- Department of Clinical Chemistry, University of Gothenburg, Göteborg, Sweden
| | - Mikael Nilsson
- Sahlgrenska Cancer Center, University of Gothenburg, Göteborg, Sweden; Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg, Sweden.
| |
Collapse
|
17
|
Hoopes JI, Cortez LM, Mertz TM, Malc EP, Mieczkowski PA, Roberts SA. APOBEC3A and APOBEC3B Preferentially Deaminate the Lagging Strand Template during DNA Replication. Cell Rep 2016; 14:1273-1282. [PMID: 26832400 DOI: 10.1016/j.celrep.2016.01.021] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
APOBEC family cytidine deaminases have recently been implicated as powerful mutators of cancer genomes. How APOBECs, which are ssDNA-specific enzymes, gain access to chromosomal DNA is unclear. To ascertain the chromosomal ssDNA substrates of the APOBECs, we expressed APOBEC3A and APOBEC3B, the two most probable APOBECs mediating cancer mutagenesis, in a yeast model system. We demonstrate, using mutation reporters and whole genome sequencing, that APOBEC3A- and APOBEC3B-induced mutagenesis primarily results from the deamination of the lagging strand template during DNA replication. Moreover, our results indicate that both genetic deficiencies in replication fork-stabilizing proteins and chemical induction of replication stress greatly augment the mutagenesis of APOBEC3A and APOBEC3B. Taken together, these results strongly indicate that ssDNA formed during DNA lagging strand synthesis is a major substrate for APOBECs and may be the principal substrate in human cancers experiencing replication stress.
Collapse
Affiliation(s)
- James I Hoopes
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Luis M Cortez
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Tony M Mertz
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Ewa P Malc
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Steven A Roberts
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
18
|
Dong J, Zhao W, Shi A, Toneff M, Lydon J, So D, Li Y. The PR status of the originating cell of ER/PR-negative mouse mammary tumors. Oncogene 2015; 35:4149-54. [PMID: 26640140 DOI: 10.1038/onc.2015.465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 09/29/2015] [Accepted: 10/19/2015] [Indexed: 01/01/2023]
Abstract
Progesterone receptor (PR) is usually co-localized with estrogen receptor (ER) in normal mammary cells. It is not known whether ER/PR-negative human breast cancer arises from an ER/PR-negative cell or from an ER/PR-positive cell that later lost ER/PR. Using intraductal injection of a lentivirus to deliver both an oncogene (ErbB2) and a floxed green fluorescent protein (GFP) in PR(Cre/+)mice, whose Cre gene is under the control of the PR promoter, we were able to trace the PR status of the infected cells as they progressed to cancer. We found that the resulting early lesions stained negative for PR in most of the cells and usually retained GFP. The resulting tumors lacked ER and PR, and 75% (15/20) of them retained the GFP signal in all tumor cells, suggesting PR was never expressed throughout the evolution of a majority of these tumors. In conclusion, our data demonstrate that ErbB2-initiated ER/PR-negative mammary tumors primarily originate from the subset of the mammary epithelium that is negative for PR and probably ER as well. These findings also provide an explanation for why antihormonal therapy fails to prevent ER-negative breast cancers.
Collapse
Affiliation(s)
- J Dong
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - W Zhao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - A Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.,Department of Breast Surgery, First Hospital of Jilin University, Changchun, China
| | - M Toneff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - J Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - D So
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Y Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
19
|
A Novel Aspect of Tumorigenesis-BMI1 Functions in Regulating DNA Damage Response. Biomolecules 2015; 5:3396-415. [PMID: 26633535 PMCID: PMC4693283 DOI: 10.3390/biom5043396] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/23/2015] [Accepted: 11/26/2015] [Indexed: 12/27/2022] Open
Abstract
BMI1 plays critical roles in maintaining the self-renewal of hematopoietic, neural, intestinal stem cells, and cancer stem cells (CSCs) for a variety of cancer types. BMI1 promotes cell proliferative life span and epithelial to mesenchymal transition (EMT). Upregulation of BMI1 occurs in multiple cancer types and is associated with poor prognosis. Mechanistically, BMI1 is a subunit of the Polycomb repressive complex 1 (PRC1), and binds the catalytic RING2/RING1b subunit to form a functional E3 ubiquitin ligase. Through mono-ubiquitination of histone H2A at lysine 119 (H2A-K119Ub), BMI1 represses multiple gene loci; among these, the INK4A/ARF locus has been most thoroughly investigated. The locus encodes the p16INK4A and p14/p19ARF tumor suppressors that function in the pRb and p53 pathways, respectively. Its repression contributes to BMI1-derived tumorigenesis. BMI1 also possesses other oncogenic functions, specifically its regulative role in DNA damage response (DDR). In this process, BMI1 ubiquitinates histone H2A and γH2AX, thereby facilitating the repair of double-stranded DNA breaks (DSBs) through stimulating homologous recombination and non-homologous end joining. Additionally, BMI1 compromises DSB-induced checkpoint activation independent of its-associated E3 ubiquitin ligase activity. We review the emerging role of BMI1 in DDR regulation and discuss its impact on BMI1-derived tumorigenesis.
Collapse
|
20
|
Cordeiro-Stone M, McNulty JJ, Sproul CD, Chastain PD, Gibbs-Flournoy E, Zhou Y, Carson C, Rao S, Mitchell DL, Simpson DA, Thomas NE, Ibrahim JG, Kaufmann WK. Effective intra-S checkpoint responses to UVC in primary human melanocytes and melanoma cell lines. Pigment Cell Melanoma Res 2015; 29:68-80. [PMID: 26437005 DOI: 10.1111/pcmr.12426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/25/2015] [Indexed: 11/29/2022]
Abstract
The objective of this study was to assess potential functional attenuation or inactivation of the intra-S checkpoint during melanoma development. Proliferating cultures of skin melanocytes, fibroblasts, and melanoma cell lines were exposed to increasing fluences of UVC and intra-S checkpoint responses were quantified. Melanocytes displayed stereotypic intra-S checkpoint responses to UVC qualitatively and quantitatively equivalent to those previously demonstrated in skin fibroblasts. In comparison with fibroblasts, primary melanocytes displayed reduced UVC-induced inhibition of DNA strand growth and enhanced degradation of p21Waf1 after UVC, suggestive of enhanced bypass of UVC-induced DNA photoproducts. All nine melanoma cell lines examined, including those with activating mutations in BRAF or NRAS oncogenes, also displayed proficiency in activation of the intra-S checkpoint in response to UVC irradiation. The results indicate that bypass of oncogene-induced senescence during melanoma development was not associated with inactivation of the intra-S checkpoint response to UVC-induced DNA replication stress.
Collapse
Affiliation(s)
- Marila Cordeiro-Stone
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.,Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, NC, USA
| | - John J McNulty
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | - Paul D Chastain
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Eugene Gibbs-Flournoy
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Yingchun Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Craig Carson
- Department of Dermatology, University of North Carolina, Chapel Hill, NC, USA
| | - Shangbang Rao
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - David L Mitchell
- Science Park - Research Division, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Dennis A Simpson
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Nancy E Thomas
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, NC, USA.,Department of Dermatology, University of North Carolina, Chapel Hill, NC, USA
| | - Joseph G Ibrahim
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - William K Kaufmann
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.,Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Morancho B, Martínez-Barriocanal Á, Villanueva J, Arribas J. Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence. Breast Cancer Res 2015; 17:106. [PMID: 26260680 PMCID: PMC4532141 DOI: 10.1186/s13058-015-0619-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 07/16/2015] [Indexed: 01/07/2023] Open
Abstract
Introduction Cellular senescence is a terminal cell proliferation arrest that can be triggered by oncogenes. One of the traits of oncogene-induced senescence (OIS) is the so-called senescence-associated secretory phenotype or senescence secretome. Depending on the context, the non-cell autonomous effects of OIS may vary from tumor suppression to promotion of metastasis. Despite being such a physiological and pathologically relevant effector, the mechanisms of generation of the senescence secretome are largely unknown. Methods We analyzed by label-free proteomics the secretome of p95HER2-induced senescent cells and compared the levels of the membrane-anchored proteins with their transcript levels. Then, protein and RNA levels of ADAM17 were evaluated by using Western blot and reverse transcription-polymerase chain reaction, its localization by using biotin labeling and immunofluorescence, and its activity by using alkaline phosphatase-tagged substrates. The p95HER2-expressing cell lines, senescent MCF7 and proliferating MCF10A, were analyzed to study ADAM17 regulation. Finally, we knocked down ADAM17 to determine its contribution to the senescence-associated secretome. The effect of this secretome was evaluated in migration assays in vitro and in nude mice by assessing the metastatic ability of orthotopically co-injected non-senescent cells. Results Using breast cancer cells expressing p95HER2, a constitutively active fragment of the proto-oncogene HER2 that induces OIS, we show that the extracellular domains of a variety of membrane-bound proteins form part of the senescence secretome. We determine that these proteins are regulated transcriptionally and, in addition, that their shedding is limited by the protease ADAM17. The activity of the sheddase is constrained, at least in part, by the accumulation of cellular cholesterol. The blockade of ADAM17 abrogates several prometastatic effects of the p95HER2-induced senescence secretome, both in vitro and in vivo. Conclusions Considering these findings, we conclude that ectodomain shedding is tightly regulated in oncogene-induced senescent cells by integrating transcription of the shedding substrates with limiting ADAM17 activity. The remaining activity of ADAM17 contributes to the non-cell autonomous protumorigenic effects of p95HER2-induced senescent cells. Because ADAM17 is druggable, these results represent an approximation to the pharmacological regulation of the senescence secretome. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0619-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Beatriz Morancho
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Psg. Vall d'Hebron 119-129, Barcelona, 08035, Spain.
| | - Águeda Martínez-Barriocanal
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Psg. Vall d'Hebron 119-129, Barcelona, 08035, Spain.
| | - Josep Villanueva
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Psg. Vall d'Hebron 119-129, Barcelona, 08035, Spain.
| | - Joaquín Arribas
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Psg. Vall d'Hebron 119-129, Barcelona, 08035, Spain. .,Department of Biochemistry and Molecular Biology, Building M, Campus UAB, Bellaterra (Cerdanyola del Valles), Barcelona, 08193, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
22
|
Shi A, Dong J, Hilsenbeck S, Bi L, Zhang H, Li Y. The Status of STAT3 and STAT5 in Human Breast Atypical Ductal Hyperplasia. PLoS One 2015; 10:e0132214. [PMID: 26146825 PMCID: PMC4492667 DOI: 10.1371/journal.pone.0132214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/11/2015] [Indexed: 01/19/2023] Open
Abstract
Signal Transducer and Activation of Transcription factors (STAT3 and STAT5) play important roles in breast epithelial cell differentiation, proliferation, and apoptosis. They have been investigated extensively in established breast cancer, but their activation status in precancerous lesions has not been reported. Formalin-fixed, paraffin-embedded archival tissues from 59 cases of atypical ductal hyperplasia (ADH) and 31 cases of normal human breast tissue as well as 21 cases of usual ductal hyperplasias (UDH) were obtained from the First Hospital of Jilin University, China, and stained for pSTAT3 and pSTAT5 by immunohistochemistry. The median percentage of pSTAT5+ cells in ADH was 12%, not significantly deviant from that in normal breast. The median percentage of pSTAT3+ cells in ADH was 30%, significantly higher than that of normal breast. pSTAT3 and pSTAT5 were exclusive of each other—they were detected in different ADHs or in different cells within the same ADHs. In addition, both pSTAT3 and pSTAT5 were produced in similar percentages of cells in ADHs from cancer-free patients vs. ADHs that were adjacent to an invasive cancer. Our finding of a complementary expression pattern of pSTAT3 and pSTAT5 in ADH suggests that these two transcription factors may have feedback inhibitory effects on each other during early stages of breast cancer evolution, and that disruption of this inverse relationship may be important in the progression from early lesions to cancer, which exhibits positive association between pSTAT3 and pSTAT5.
Collapse
Affiliation(s)
- Aiping Shi
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jie Dong
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Susan Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lirong Bi
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hong Zhang
- Department of Pathology, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Yaglom JA, McFarland C, Mirny L, Sherman MY. Oncogene-triggered suppression of DNA repair leads to DNA instability in cancer. Oncotarget 2015; 5:8367-78. [PMID: 25252808 PMCID: PMC4226689 DOI: 10.18632/oncotarget.2259] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DNA instability is an important contributor to cancer development. Previously, defects in the chromosome segregation and excessive DNA double strand breaks due to the replication or oxidative stresses were implicated in DNA instability in cancer. Here, we demonstrate that DNA instability can directly result from the oncogene-induced senescence signaling. Expression of the activated form of Her2 oncogene, NeuT, in immortalized breast epithelial cells led to downregulation of the major DNA repair factor histone H2AX and a number of other components of the HR and NHEJ double strand DNA breaks repair pathways. H2AX expression was regulated at the transcriptional level via a senescence pathway involving p21-mediated regulation of CDK and Rb1. The p21-dependent downregulation of H2AX was seen both in cell culture and the MMTV-neu mouse model of Her2-positive breast cancer. Importantly, downregulation of H2AX upon Her2/NeuT expression impaired repair of double strand DNA breaks. This impairment resulted in both increased DNA instability in the form of somatic copy number alterations, and in increased sensitivity to the chemotherapeutic drug doxorubicin. Overall, these findings indicate that the Her2/NeuT oncogene signaling directly potentiates DNA instability and increases sensitivity to DNA damaging treatments.
Collapse
Affiliation(s)
- Julia A Yaglom
- Department Biochemistry, Boston University School of Medicine, Boston, MA
| | | | - Leonid Mirny
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA
| | - Michael Y Sherman
- Department Biochemistry, Boston University School of Medicine, Boston, MA
| |
Collapse
|
24
|
Hein SM, Haricharan S, Johnston AN, Toneff MJ, Reddy JP, Dong J, Bu W, Li Y. Luminal epithelial cells within the mammary gland can produce basal cells upon oncogenic stress. Oncogene 2015; 35:1461-7. [PMID: 26096929 PMCID: PMC4688047 DOI: 10.1038/onc.2015.206] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 05/04/2015] [Accepted: 05/04/2015] [Indexed: 01/05/2023]
Abstract
In the normal mammary gland, the basal epithelium is known to be bipotent and can generate either basal or luminal cells, whereas the luminal epithelium has not been demonstrated to contribute to the basal compartment in an intact and normally developed mammary gland. It is not clear whether cellular heterogeneity within a breast tumor results from transformation of bipotent basal cells or from transformation and subsequent basal conversion of the more differentiated luminal cells. Here we used a retroviral vector to express an oncogene specifically in a small number of the mammary luminal epithelial cells and tested their potential to produce basal cells during tumorigenesis. This in-vivo lineage-tracing work demonstrates that luminal cells are capable of producing basal cells on activation of either polyoma middle T antigen or ErbB2 signaling. These findings reveal the plasticity of the luminal compartment during tumorigenesis and provide an explanation for cellular heterogeneity within a cancer.
Collapse
Affiliation(s)
- S M Hein
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - S Haricharan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - A N Johnston
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - M J Toneff
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - J P Reddy
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - J Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - W Bu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Y Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
25
|
Zacarias-Fluck MF, Morancho B, Vicario R, Luque Garcia A, Escorihuela M, Villanueva J, Rubio IT, Arribas J. Effect of cellular senescence on the growth of HER2-positive breast cancers. J Natl Cancer Inst 2015; 107:djv020. [PMID: 25972601 DOI: 10.1093/jnci/djv020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/20/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Oncogene-induced senescence (OIS) is a tumor suppressor mechanism. However, senescent cells remain viable and display a distinct secretome (also known as senescence-associated secretory phenotype [SASP] or senescence messaging secretome, [SMS]) that, paradoxically, includes protumorigenic factors. OIS can be triggered by ectopic overexpression of HER2, a receptor tyrosine kinase and the driving oncogene in a subtype of human breast cancer. However, cellular senescence has not been characterized in HER2-positive tumors. METHODS Using an approach based on their inability to proliferate, we isolated naturally occurring senescent cells from a variety of tumor models including HER2-positive cells, transgenic mice (n = 3), and patient-derived xenografts (PDXs) (n = 6 mice per group from one PDX derived from one patient). Using different biochemical and cell biological techniques, we characterized the secretome of these senescent cells. All statistical tests were two-sided. RESULTS We found that senescent cells arise constantly in different models of advanced breast cancers overexpressing HER2 and constitute approximately 5% of tumor cells. In these models, IL-6 and other cytokines were expressed mainly, if not exclusively, by the naturally occurring senescent cells (95.1% and 45.0% of HCC1954 cells and cells from a HER2-positive PDX expressing a senescent marker expressed IL-6, respectively). Furthermore, inhibition of IL-6 impaired the growth of the HER2-positive PDX (mean tumor volume at day 101, control vs anti-huIL-6 treated, 332.2mm(3) [95% confidence interval {CI} = 216.6 to 449.8] vs 114.4mm(3) [95% CI = 12.79 to 216.0], P = .005). CONCLUSIONS Senescent cells can contribute to the growth of tumors by providing cytokines not expressed by proliferating cells, but required by these to thrive.
Collapse
Affiliation(s)
- Mariano F Zacarias-Fluck
- Preclinical Research (MZF, BM, RV, ALG, ME, JV, JA) and Clinical Research Programs (ITR), Vall d'Hebron Institute of Oncology, Barcelona, Spain; Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Campus de la UAB, Bellaterra, Spain (JA); Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (JA).
| | - Beatriz Morancho
- Preclinical Research (MZF, BM, RV, ALG, ME, JV, JA) and Clinical Research Programs (ITR), Vall d'Hebron Institute of Oncology, Barcelona, Spain; Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Campus de la UAB, Bellaterra, Spain (JA); Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (JA)
| | - Rocio Vicario
- Preclinical Research (MZF, BM, RV, ALG, ME, JV, JA) and Clinical Research Programs (ITR), Vall d'Hebron Institute of Oncology, Barcelona, Spain; Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Campus de la UAB, Bellaterra, Spain (JA); Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (JA)
| | - Antonio Luque Garcia
- Preclinical Research (MZF, BM, RV, ALG, ME, JV, JA) and Clinical Research Programs (ITR), Vall d'Hebron Institute of Oncology, Barcelona, Spain; Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Campus de la UAB, Bellaterra, Spain (JA); Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (JA)
| | - Marta Escorihuela
- Preclinical Research (MZF, BM, RV, ALG, ME, JV, JA) and Clinical Research Programs (ITR), Vall d'Hebron Institute of Oncology, Barcelona, Spain; Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Campus de la UAB, Bellaterra, Spain (JA); Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (JA)
| | - Josep Villanueva
- Preclinical Research (MZF, BM, RV, ALG, ME, JV, JA) and Clinical Research Programs (ITR), Vall d'Hebron Institute of Oncology, Barcelona, Spain; Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Campus de la UAB, Bellaterra, Spain (JA); Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (JA)
| | - Isabel T Rubio
- Preclinical Research (MZF, BM, RV, ALG, ME, JV, JA) and Clinical Research Programs (ITR), Vall d'Hebron Institute of Oncology, Barcelona, Spain; Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Campus de la UAB, Bellaterra, Spain (JA); Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (JA)
| | - Joaquín Arribas
- Preclinical Research (MZF, BM, RV, ALG, ME, JV, JA) and Clinical Research Programs (ITR), Vall d'Hebron Institute of Oncology, Barcelona, Spain; Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Campus de la UAB, Bellaterra, Spain (JA); Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (JA)
| |
Collapse
|
26
|
ATM kinase sustains HER2 tumorigenicity in breast cancer. Nat Commun 2015; 6:6886. [PMID: 25881002 DOI: 10.1038/ncomms7886] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 03/09/2015] [Indexed: 12/15/2022] Open
Abstract
ATM kinase preserves genomic stability by acting as a tumour suppressor. However, its identification as a component of several signalling networks suggests a dualism for ATM in cancer. Here we report that ATM expression and activity promotes HER2-dependent tumorigenicity in vitro and in vivo. We reveal a correlation between ATM activation and the reduced time to recurrence in patients diagnosed with invasive HER2-positive breast cancer. Furthermore, we identify ATM as a novel modulator of HER2 protein stability that acts by promoting a complex of HER2 with the chaperone HSP90, therefore preventing HER2 ubiquitination and degradation. As a consequence, ATM sustains AKT activation downstream of HER2 and may modulate the response to therapeutic approaches, suggesting that the status of ATM activity may be informative for the treatment and prognosis of HER2-positive tumours. Our findings provide evidence for ATM's tumorigenic potential revising the canonical role of ATM as a pure tumour suppressor.
Collapse
|
27
|
Holloway KR, Sinha VC, Toneff MJ, Bu W, Hilsenbeck SG, Li Y. Krt6a-positive mammary epithelial progenitors are not at increased vulnerability to tumorigenesis initiated by ErbB2. PLoS One 2015; 10:e0117239. [PMID: 25635772 PMCID: PMC4311910 DOI: 10.1371/journal.pone.0117239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/22/2014] [Indexed: 12/01/2022] Open
Abstract
While most breast cancers are thought to arise from the luminal layer of the breast tissue, it remains unclear which specific cells in the luminal layer are the cells of origin of breast cancer. We have previously reported that WAP-positive luminal epithelial cells are at increased susceptibility to tumor initiation by ErbB2 compared to the bulk population, while the mammary cells with canonical Wnt signaling activity fail to evolve into tumors upon ErbB2 activation. Here, we used retrovirus to introduce ErbB2 into the Krt6a-positive mammary progenitor subset of the luminal epithelium and, for comparison, into the mammary luminal epithelium indiscriminately. Tumors developed from both groups of cells with a similar latency. These data indicate that the Krt6a-positive subset of mammary epithelial cells can be induced to form cancer by ErbB2 but it is not more susceptible to tumorigenesis initiated by ErbB2 than the bulk population of the luminal epithelium.
Collapse
Affiliation(s)
- Kimberly R. Holloway
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Vidya C. Sinha
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Michael J. Toneff
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Wen Bu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Susan G. Hilsenbeck
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Yi Li
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
28
|
Cornelissen B, Able S, Kartsonaki C, Kersemans V, Allen PD, Cavallo F, Cazier JB, Iezzi M, Knight J, Muschel R, Smart S, Vallis KA. Imaging DNA damage allows detection of preneoplasia in the BALB-neuT model of breast cancer. J Nucl Med 2014; 55:2026-31. [PMID: 25453049 DOI: 10.2967/jnumed.114.142083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED A prominent feature of many human cancers is oncogene-driven activation of the DNA damage response (DDR) during early tumorigenesis. It has been shown previously that noninvasive imaging of the phosphorylated histone H2A variant H2AX, γH2AX, a DNA damage signaling protein, is possible using (111)In-labeled anti-γH2AX antibody conjugated to the cell-penetrating peptide transactivator of transcription (TAT). The purpose of this study was to investigate whether (111)In-anti-γH2AX-TAT detects the DDR during mammary oncogenesis in BALB-neuT mice. METHODS Mammary fat pads from BALB-neuT and wild-type mice (age, 40-106 d) were immunostained for γH2AX. (111)In-anti-γH2AX-TAT or a control probe was administered intravenously to BALB-neuT mice. SPECT was performed weekly and compared with tumor detection using palpation and dynamic contrast-enhanced MR imaging. RESULTS γH2AX expression was elevated in hyperplastic lesions in the mammary fat pads of BALB-neuT mice aged 76-106 d, compared with normal fat pads from younger mice and carcinomas from older mice (13.5 ± 1.2 γH2AX foci/cell vs. 5.2 ± 1.5 [P < 0.05] and 3.4 ± 1.1 [P < 0.001], respectively). Serial SPECT imaging revealed a 2.5-fold increase in (111)In-anti-γH2AX-TAT accumulation in the mammary fat pads of mice aged 76-106 d, compared with control probe (P = 0.01). The median time to detection of neoplastic lesions by (111)In-anti-γH2AX-TAT (defined as >5% injected dose per gram of tissue) was 96 d, compared with 120 and 131 d for dynamic contrast-enhanced MR imaging and palpation, respectively (P < 0.001). CONCLUSION DDR imaging using (111)In-anti-γH2AX-TAT identified mammary tumors significantly earlier than MR imaging. Imaging the DDR holds promise for the detection of preneoplasia and as a technique for screening cancer-prone individuals.
Collapse
Affiliation(s)
- Bart Cornelissen
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Oxford University, Oxford, United Kingdom
| | - Sarah Able
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Oxford University, Oxford, United Kingdom
| | - Christiana Kartsonaki
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Oxford University, Oxford, United Kingdom
| | - Veerle Kersemans
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Oxford University, Oxford, United Kingdom
| | - P Danny Allen
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Oxford University, Oxford, United Kingdom
| | - Federica Cavallo
- Molecular Biotechnology Center, University of Turin, Turin, Italy; and
| | - Jean-Baptiste Cazier
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Oxford University, Oxford, United Kingdom
| | - Manuela Iezzi
- CeSI Foundation, University G. d' Annunzio, Chieti, Italy
| | - James Knight
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Oxford University, Oxford, United Kingdom
| | - Ruth Muschel
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Oxford University, Oxford, United Kingdom
| | - Sean Smart
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Oxford University, Oxford, United Kingdom
| | - Katherine A Vallis
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Oxford University, Oxford, United Kingdom
| |
Collapse
|
29
|
The MRE11 complex: An important source of stress relief. Exp Cell Res 2014; 329:162-9. [DOI: 10.1016/j.yexcr.2014.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 12/11/2022]
|
30
|
Yeh ES, Vernon-Grey A, Martin H, Chodosh LA. Tetracycline-regulated mouse models of cancer. Cold Spring Harb Protoc 2014; 2014:pdb.top069823. [PMID: 25275112 DOI: 10.1101/pdb.top069823] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genetically engineered mouse models (GEMMs) have proven essential to the study of mammalian gene function in both development and disease. However, traditional constitutive transgenic mouse model systems are limited by the temporal and spatial characteristics of the experimental promoter used to drive transgene expression. To address this limitation, considerable effort has been dedicated to developing conditional and inducible mouse model systems. Although a number of approaches to generating inducible GEMMs have been pursued, several have been restricted by toxic or undesired physiological side effects of the compounds used to activate gene expression. The development of tetracycline (tet)-dependent regulatory systems has allowed for circumvention of these issues resulting in the widespread adoption of these systems as an invaluable tool for modeling the complex nature of cancer progression.
Collapse
Affiliation(s)
- Elizabeth S Yeh
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Ann Vernon-Grey
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Heather Martin
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Lewis A Chodosh
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
31
|
Sinha VC, Qin L, Li Y. A p53/ARF-dependent anticancer barrier activates senescence and blocks tumorigenesis without impacting apoptosis. Mol Cancer Res 2014; 13:231-8. [PMID: 25253740 DOI: 10.1158/1541-7786.mcr-14-0481-t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
UNLABELLED In response to oncogene activation and oncogene-induced aberrant proliferation, mammalian cells activate apoptosis and senescence, usually via the p53-ARF tumor-suppressor pathway. Apoptosis is a known barrier to cancer and is usually downregulated before full malignancy, but senescence as an anticancer barrier is controversial due to its presence in the tumor environment. In addition, senescence may aid cancer progression via releasing senescence-associated factors that instigate neighboring tumor cells. Here, it is demonstrated that apoptosis unexpectedly remains robust in ErbB2 (ERBB2/HER2)-initiated mammary early lesions arising in adult mice null for either p53 or ARF. These early lesions, however, downregulate senescence significantly. This diminished senescence response is associated with accelerated progression to cancer in ARF-null mice compared with ARF-wild-type mice. Thus, the ARF-p53 pathway is dispensable for the apoptosis anticancer barrier in the initiation of ErbB2 breast cancer, the apoptosis barrier alone cannot halt mammary tumorigenesis, and senescence is a key barrier against carcinogenesis. IMPLICATIONS Findings in this relevant mouse model of HER2-driven breast cancer suggest that effective prevention relies upon preserving both ARF/p53-independent apoptosis and ARF/p53-dependent senescence.
Collapse
Affiliation(s)
- Vidya C Sinha
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Lan Qin
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas. Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
32
|
Stagni V, Oropallo V, Fianco G, Antonelli M, Cinà I, Barilà D. Tug of war between survival and death: exploring ATM function in cancer. Int J Mol Sci 2014; 15:5388-409. [PMID: 24681585 PMCID: PMC4013570 DOI: 10.3390/ijms15045388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/07/2014] [Accepted: 03/20/2014] [Indexed: 12/19/2022] Open
Abstract
Ataxia-telangiectasia mutated (ATM) kinase is a one of the main guardian of genome stability and plays a central role in the DNA damage response (DDR). The deregulation of these pathways is strongly linked to cancer initiation and progression as well as to the development of therapeutic approaches. These observations, along with reports that identify ATM loss of function as an event that may promote tumor initiation and progression, point to ATM as a bona fide tumor suppressor. The identification of ATM as a positive modulator of several signalling networks that sustain tumorigenesis, including oxidative stress, hypoxia, receptor tyrosine kinase and AKT serine-threonine kinase activation, raise the question of whether ATM function in cancer may be more complex. This review aims to give a complete overview on the work of several labs that links ATM to the control of the balance between cell survival, proliferation and death in cancer.
Collapse
Affiliation(s)
- Venturina Stagni
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00179 Rome, Italy.
| | - Veronica Oropallo
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00179 Rome, Italy.
| | - Giulia Fianco
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00179 Rome, Italy.
| | - Martina Antonelli
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00179 Rome, Italy.
| | - Irene Cinà
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00179 Rome, Italy.
| | - Daniela Barilà
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00179 Rome, Italy.
| |
Collapse
|
33
|
Roberts SA, Gordenin DA. Clustered and genome-wide transient mutagenesis in human cancers: Hypermutation without permanent mutators or loss of fitness. Bioessays 2014; 36:382-393. [PMID: 24615916 DOI: 10.1002/bies.201300140] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The gain of a selective advantage in cancer as well as the establishment of complex traits during evolution require multiple genetic alterations, but how these mutations accumulate over time is currently unclear. There is increasing evidence that a mutator phenotype perpetuates the development of many human cancers. While in some cases the increased mutation rate is the result of a genetic disruption of DNA repair and replication or environmental exposures, other evidence suggests that endogenous DNA damage induced by AID/APOBEC cytidine deaminases can result in transient localized hypermutation generating simultaneous, closely spaced (i.e. "clustered") multiple mutations. Here, we discuss mechanisms that lead to mutation cluster formation, the biological consequences of their formation in cancer and evidence suggesting that APOBEC mutagenesis can also occur genome-wide. This raises the possibility that dysregulation of these enzymes may enable rapid malignant transformation by increasing mutation rates without the loss of fitness associated with permanent mutators.
Collapse
Affiliation(s)
- Steven A Roberts
- Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Durham, NC, USA
| | | |
Collapse
|
34
|
Haricharan S, Li Y. STAT signaling in mammary gland differentiation, cell survival and tumorigenesis. Mol Cell Endocrinol 2014; 382:560-569. [PMID: 23541951 PMCID: PMC3748257 DOI: 10.1016/j.mce.2013.03.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/18/2013] [Indexed: 01/10/2023]
Abstract
The mammary gland is a unique organ that undergoes extensive and profound changes during puberty, menstruation, pregnancy, lactation and involution. The changes that take place during puberty involve large-scale proliferation and invasion of the fat-pad. During pregnancy and lactation, the mammary cells are exposed to signaling pathways that inhibit apoptosis, induce proliferation and invoke terminal differentiation. Finally, during involution the mammary gland is exposed to milk stasis, programmed cell death and stromal reorganization to clear the differentiated milk-producing cells. Not surprisingly, the signaling pathways responsible for bringing about these changes in breast cells are often subverted during the process of tumorigenesis. The STAT family of proteins is involved in every stage of mammary gland development, and is also frequently implicated in breast tumorigenesis. While the roles of STAT3 and STAT5 during mammary gland development and tumorigenesis are well studied, others members, e.g. STAT1 and STAT6, have only recently been observed to play a role in mammary gland biology. Continued investigation into the STAT protein network in the mammary gland will likely yield new biomarkers and risk factors for breast cancer, and may also lead to novel prophylactic or therapeutic strategies against breast cancer.
Collapse
Affiliation(s)
- S Haricharan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Y Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
35
|
Haricharan S, Dong J, Hein S, Reddy JP, Du Z, Toneff M, Holloway K, Hilsenbeck SG, Huang S, Atkinson R, Woodward W, Jindal S, Borges VF, Gutierrez C, Zhang H, Schedin PJ, Osborne CK, Tweardy DJ, Li Y. Mechanism and preclinical prevention of increased breast cancer risk caused by pregnancy. eLife 2013; 2:e00996. [PMID: 24381245 PMCID: PMC3874103 DOI: 10.7554/elife.00996] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
While a first pregnancy before age 22 lowers breast cancer risk, a pregnancy after age 35 significantly increases life-long breast cancer risk. Pregnancy causes several changes to the normal breast that raise barriers to transformation, but how pregnancy can also increase cancer risk remains unclear. We show in mice that pregnancy has different effects on the few early lesions that have already developed in the otherwise normal breast—it causes apoptosis evasion and accelerated progression to cancer. The apoptosis evasion is due to the normally tightly controlled STAT5 signaling going astray—these precancerous cells activate STAT5 in response to pregnancy/lactation hormones and maintain STAT5 activation even during involution, thus preventing the apoptosis normally initiated by oncoprotein and involution. Short-term anti-STAT5 treatment of lactation-completed mice bearing early lesions eliminates the increased risk after a pregnancy. This chemoprevention strategy has important implications for preventing increased human breast cancer risk caused by pregnancy. DOI:http://dx.doi.org/10.7554/eLife.00996.001 Pregnancy changes the probability that a woman will later develop breast cancer. If a woman’s first pregnancy occurs before her 22nd birthday, the chances of developing breast cancer are reduced. However, if the first pregnancy occurs after her 35th birthday, there is an increased risk of breast cancer. It is not clear why this age-related difference exists, but as more women wait until their 30s to start a family, there is greater urgency to understand this difference. Breasts undergo extensive changes during pregnancy. This remodeling makes their cells less likely to multiply, and also less likely to develop tumors, which could explain the protective effect of pregnancy for younger women. But why would older women not reap the same benefits? One hypothesis is that older first-time mothers are more likely than younger first-time mothers to already have breast tissue with cells carrying cancer-causing mutations, or to have clusters of abnormal precancerous cells. Now, Haricharan et al. have tested this hypothesis by inserting two cancer-causing genes into female mice. Half of the mice were then made pregnant and allowed to nurse their young, whilst the other half were never mated. Although, both groups of mice later developed tumors, the mice that had been pregnant developed more tumors and did so faster. The increased cancer levels in the mice that had been pregnant were not due to them having more precancerous cells at the early stages of pregnancy than the unmated mice of the same age. Further, the precancerous cells in the impregnated mice did not proliferate faster than those in the mice that were never pregnant. Instead, pregnancy weakened the protective process that culls pre-existing precancerous cells. These cells evaded destruction by activating a signaling pathway called the STAT5 pathway in response to pregnancy hormones. Haricharan et al. also examined tissue samples from women with a very early form of breast cancer and found elevated levels of STAT5 in tumors from women who had been pregnant compared to those who had not been pregnant. The good news is that precancerous cells do not always become cancerous. However, for those women with a high risk of developing breast cancer, Haricharan et al. suggest that temporarily reducing STAT5 activity after pregnancy with medication might reduce this risk. Treating mice with anti-STAT5 drugs for a few weeks after they finished nursing their young lessened the elevated cancer risk, and so the next challenge is to see if this approach will also be effective in human clinical trials. DOI:http://dx.doi.org/10.7554/eLife.00996.002
Collapse
Affiliation(s)
- Svasti Haricharan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bu W, Zhang X, Dai H, Huang S, Li Y. Mammary cells with active Wnt signaling resist ErbB2-induced tumorigenesis. PLoS One 2013; 8:e78720. [PMID: 24265712 PMCID: PMC3827100 DOI: 10.1371/journal.pone.0078720] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/20/2013] [Indexed: 11/23/2022] Open
Abstract
Aberrant activation of Wnt signaling is frequent in human malignancies. In normal epithelial tissues, including the breast, Wnt signaling is active only in a subset of cells, but it is unknown whether this subset of Wnt signaling-active cells is at increased risk of carcinogenesis. We created transgenic mice (TOP-tva) in which the synthetic Wnt-responsive promoter TOP controlled the gene encoding TVA, which confers susceptibility to infection by the retroviral vector RCAS. Thus, only cells in which Wnt signaling is active will express tva and be targeted by RCAS. Surprisingly, we found that RCAS-mediated delivery of cDNA encoding a constitutively activated version of ErbB2 (HER2/Neu) into the small number of TVA+ mammary epithelial cells in TOP-tva mice failed to induce tumor, while the same virus readily induced mammary tumors after it was delivered into a comparable number of cells in our previously reported mouse line MMTV-tva, whose tva is broadly expressed in mammary epithelium. Furthermore, we could not even detect any early lesions or infected cells in TOP-tva mice at the time of necropsy. Therefore, we conclude that the Wnt pathway-active cell subset in the normal mammary epithelium does not evolve into tumors following ErbB2 activation–rather, they apparently die due to apoptosis, an anticancer “barrier” that we have reported to be erected in some mammary cells followed ErbB2 activation. In accord with these mouse model data, we found that unlike the basal subtype, ErbB2+ human breast cancers rarely involve aberrant activation of Wnt signaling. This is the first report of a defined sub-population of mammalian cells that is “protected” from tumorigenesis by a potent oncogene, and provides direct in vivo evidence that mammary epithelial cells are not equal in their response to oncogene-initiated transformation.
Collapse
Affiliation(s)
- Wen Bu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xiang Zhang
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hua Dai
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Physiology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yi Li
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
37
|
The Mre11 complex suppresses oncogene-driven breast tumorigenesis and metastasis. Mol Cell 2013; 52:353-65. [PMID: 24120666 DOI: 10.1016/j.molcel.2013.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/07/2013] [Accepted: 08/30/2013] [Indexed: 12/20/2022]
Abstract
The DNA damage response (DDR) is activated by oncogenic stress, but the mechanisms by which this occurs, and the particular DDR functions that constitute barriers to tumorigenesis, remain unclear. We established a mouse model of sporadic oncogene-driven breast tumorigenesis in a series of mutant mouse strains with specific DDR deficiencies to reveal a role for the Mre11 complex in the response to oncogene activation. We demonstrate that an Mre11-mediated DDR restrains mammary hyperplasia by effecting an oncogene-induced G2 arrest. Impairment of Mre11 complex functions promotes the progression of mammary hyperplasias into invasive and metastatic breast cancers, which are often associated with secondary inactivation of the Ink4a-Arf (CDKN2a) locus. These findings provide insight into the mechanism of DDR engagement by activated oncogenes and highlight genetic interactions between the DDR and Ink4a-Arf pathways in suppression of oncogene-driven tumorigenesis and metastasis.
Collapse
|
38
|
Xia Y, Yang W, Bu W, Ji H, Zhao X, Zheng Y, Lin X, Li Y, Lu Z. Differential regulation of c-Jun protein plays an instrumental role in chemoresistance of cancer cells. J Biol Chem 2013; 288:19321-9. [PMID: 23678002 DOI: 10.1074/jbc.m113.475442] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The chemotherapeutic drug cisplatin (cis-diamminedichloroplatinum(II) (CDDP)) is widely used in the treatment of human cancers. However, the mechanism underlying intrinsic tumor resistance to CDDP remains elusive. Here, we demonstrate that treatment with CDDP resulted in down-regulation of c-Jun expression via caspase-9-dependent cleavage of c-Jun at Asp-65 and MEKK1-mediated ubiquitylation and degradation of c-Jun in CDDP-sensitive cancer cells. In contrast, activation of JNK2 (but not JNK1) phosphorylated and up-regulated the expression of c-Jun in CDDP-resistant cells. Activated c-Jun bound to the promoter regions of the MDR1 gene and promoted the expression of MDR1. Expression of a cleavage-resistant c-Jun mutant (D65A) suppressed CDDP-induced apoptosis of CDDP-sensitive cells, whereas depletion of JNK2, c-Jun, or MDR1 in CDDP-resistant cancer cells promoted apoptosis upon CDDP treatment. In addition, mammary gland tumors induced by polyomavirus middle T antigen in JNK2(-/-) mice were more sensitive to CDDP compared with those in JNK2(+/+) mice. These findings highlight the instrumental role of c-Jun in the resistance of tumors to treatment with CDDP and indicate that c-Jun is a molecular target for improving cancer therapy.
Collapse
Affiliation(s)
- Yan Xia
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Angelini PD, Zacarias Fluck MF, Pedersen K, Parra-Palau JL, Guiu M, Bernadó Morales C, Vicario R, Luque-García A, Navalpotro NP, Giralt J, Canals F, Gomis RR, Tabernero J, Baselga J, Villanueva J, Arribas J. Constitutive HER2 signaling promotes breast cancer metastasis through cellular senescence. Cancer Res 2013; 73:450-8. [PMID: 23288917 DOI: 10.1158/0008-5472.can-12-2301] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Senescence, a terminal cell proliferation arrest, can be triggered by oncogenes. Oncogene-induced senescence is classically considered a tumor defense barrier. However, several findings show that, under certain circumstances, senescent cells may favor tumor progression because of their secretory phenotype. Here, we show that the expression in different breast epithelial cell lines of p95HER2, a constitutively active fragment of the tyrosine kinase receptor HER2, results in either increased proliferation or senescence. In senescent cells, p95HER2 elicits a secretome enriched in proteases, cytokines, and growth factors. This secretory phenotype is not a mere consequence of the senescence status and requires continuous HER2 signaling to be maintained. Underscoring the functional relevance of the p95HER2-induced senescence secretome, we show that p95HER2-induced senescent cells promote metastasis in vivo in a non-cell-autonomous manner.
Collapse
Affiliation(s)
- Pier Davide Angelini
- Preclinical Research, Vall d'Hebron Institute of Oncology (VHIO, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Tumor suppressor p53 is critical for suppressing all types of human cancers, including breast cancer. The p53 gene is somatically mutated in over half of all human cancers. The majority of the p53 mutations are missense mutations, leading to the expression of the full-length p53 mutants. Several hotspot mutations, including R175H, are frequently detected in human breast cancer. P53 cancer mutants not only lose tumor suppression activity but, more problematically, also gain new oncogenic activities. Despite correlation of the expression of p53 cancer mutants and the poor prognosis of human breast cancer patients, the roles of p53 cancer mutants in promoting breast cancer remain unclear. We used the humanized p53 cancer mutant knock-in (R175H) mice and mouse mammary tumor virus (MMTV)-Wnt-1 transgenic (mWnt-1) mice to specifically address the gain of function of R175H in promoting breast cancer. Although both R175H/R175HmWnt-1(R175HmWnt-1) and p53(-/-)mWnt-1 mice died from mammary tumor at the same kinetics, which was much earlier than mWnt-1 mice, most of the R175HmWnt-1 mice developed multiple mammary tumors per mouse, whereas p53(-/-)mWnt-1 and mWnt-1 mice mostly developed one tumor per mouse. The multiple mammary tumors arose in the same R175HmWnt-1 mouse exhibited different histological characters. Moreover, R175H gain-of-function mutant expands the mammary epithelial stem cells (MESCs) that give rise to the mammary tumors. As ATM suppresses the expansion of MESCs, the inactivation of ATM by R175H in mammary epithelial cells (MECs) could contribute to the expansion of MESCs in R175HmWnt-1 mice. These findings provide the basis for R175H to promote the initiation of breast cancer by expanding MESCs.
Collapse
|
41
|
Ye J, Qi Y, Wang W, Sun F, Wei Q, Su T, Zhou W, Jiang Y, Yuan W, Cai J, Cui B, Ning G. Lower expression of ATM and gene deletion is more frequent in adrenocortical carcinomas than adrenocortical adenomas. Endocrine 2012; 41:479-86. [PMID: 22311173 DOI: 10.1007/s12020-012-9593-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 12/24/2011] [Indexed: 11/24/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy accounting for approximately 0.02-0.2% of all cancer deaths. The molecular pathogenesis of ACC has been the hot topic of recent reviews but it is still poorly understood. It is imperative to have a better understanding on the pathophysiology of ACC so as to establish precise diagnosis and effective treatment. This study aims to identify the molecular markers between ACCs and adrenocortical adenomas (ACAs). With MLPA, we checked on 10 ACA and 9 ACC tissue samples. The MLPA results showed deletion on chromosomes 18q, 11q, 11p, and 13q and duplication on chromosomes 3q, 4q, 6p, and 19p. There was a significant difference in the number of aberration copies of the ataxia telangiectasia-mutated (ATM) gene located on chromosome 11q22-q23 between ACCs and ACAs. Five out of 9 (56%) ACC specimens had deletion of ATM (P = 0.011). RT-PCR result then demonstrated that ATM mRNA level is lower in ACCs than in ACAs (P < 0.001). In addition, immunohistochemistry (IHC) study of the 19 ACA and 18 ACC samples confirmed lower expression of ATM protein in ACCs than in ACAs (P < 0.001). The study demonstrated that ATM expression was diminished in ACC than in ACA, suggesting an important role of ATM in the tumorigenesis of ACC.
Collapse
Affiliation(s)
- Junna Ye
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, 197 RuiJin Er Lu, Shanghai, 200025, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Menendez JA, Cufí S, Oliveras-Ferraros C, Martin-Castillo B, Joven J, Vellon L, Vazquez-Martin A. Metformin and the ATM DNA damage response (DDR): accelerating the onset of stress-induced senescence to boost protection against cancer. Aging (Albany NY) 2012; 3:1063-77. [PMID: 22170748 PMCID: PMC3249452 DOI: 10.18632/aging.100407] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
By activating the ataxia telangiectasia mutated (ATM)-mediated DNA Damage Response (DDR), the AMPK agonist metformin might sensitize cells against further damage, thus mimicking the precancerous stimulus that induces an intrinsic barrier against carcinogenesis. Herein, we present the new hypothesis that metformin might function as a tissue sweeper of pre-malignant cells before they gain stem cell/tumor initiating properties. Because enhanced glycolysis (the Warburg effect) plays a causal role in the gain of stem-like properties of tumor-initiating cells by protecting them from the pro-senescent effects of mitochondrial respiration-induced oxidative stress, metformin's ability to disrupt the glycolytic metabotype may generate a cellular phenotype that is metabolically protected against immortalization. The bioenergetic crisis imposed by metformin, which may involve enhanced mitochondrial biogenesis and oxidative stress, can lower the threshold for cellular senescence by pre-activating an ATM-dependent pseudo-DDR. This allows an accelerated onset of cellular senescence in response to additional oncogenic stresses. By pushing cancer cells to use oxidative phosphorylation instead of glycolysis, metformin can rescue cell surface major histocompatibility complex class I (MHC-I) expression that is downregulated by oncogenic transformation, a crucial adaptation of tumor cells to avoid the adaptive immune response by cytotoxic T-lymphocytes (CTLs). Aside from restoration of tumor immunosurveillance at the cell-autonomous level, metformin can activate a senescence-associated secretory phenotype (SASP) to reinforce senescence growth arrest, which might trigger an immune-mediated clearance of the senescent cells in a non-cell-autonomous manner. By diminishing the probability of escape from the senescence anti-tumor barrier, the net effect of metformin should be a significant decrease in the accumulation of dysfunctional, pre-malignant cells in tissues, including those with the ability to initiate tumors. As life-long or late-life removal of senescent cells has been shown to prevent or delay the onset or progression of age-related disorders, the tissue sweeper function of metformin may inhibit the malignant/metastatic progression of pre-malignant/senescent tumor cells and increase the human lifespan.
Collapse
Affiliation(s)
- Javier A Menendez
- Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia, Spain.
| | | | | | | | | | | | | |
Collapse
|
43
|
Zhu YH, Bulavin DV. Wip1-dependent signaling pathways in health and diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:307-25. [PMID: 22340722 DOI: 10.1016/b978-0-12-396456-4.00001-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Spatial and temporal regulation of protein phosphorylation is key to the control of different molecular networks. This regulation is achieved in part through dephosphorylation of numerous signaling molecules, and emerging evidence highlights the importance of a new member of the PP2C family of phosphatase, Wild-type p53 induced phosphatase 1 (Wip1), in regulating stress-induced and DNA damage-induced networks. In recent years, analysis of Wip1 has focused primarily on its role in tumorigenesis because of its overexpression in human tumors and a profound tumor-resistant phenotype of Wip1-deficient mice. Recently, Wip1 has also been shown to play an important role in several physiological processes including adult neurogenesis and organismal aging. This review addresses how Wip1 phosphatase regulates different signaling networks in a spatial and temporal manner and how these differences contribute to various biological outcomes in the context of physiological and pathological conditions.
Collapse
Affiliation(s)
- Yun-Hua Zhu
- Cell Cycle Control and Tumorigenesis Group, Institute of Molecular and Cell Biology, Proteos, Singapore
| | | |
Collapse
|
44
|
Sherman MY, Meng L, Stampfer M, Gabai VL, Yaglom JA. Oncogenes induce senescence with incomplete growth arrest and suppress the DNA damage response in immortalized cells. Aging Cell 2011; 10:949-61. [PMID: 21824272 DOI: 10.1111/j.1474-9726.2011.00736.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Activation of the Her2 (ErbB2) oncogene is implicated in the development of breast, ovary and other cancers. Here, we show that expression of NeuT, a mutant-activated rodent isoform of Her2, in immortalized breast epithelial cells, while promoting senescence-associated morphological changes, up-regulation of senescence-associated β-galactosidase activity, and accumulation of the cyclin-dependent kinase inhibitor p21, failed to trigger the major senescence end-point, i.e. permanent growth arrest. Similar senescence-associated phenotype with incomplete growth arrest, which we dubbed senescence with incomplete growth arrest (SWING), could also be triggered by the expression of the Ras oncogene. SWING phenotype was stable, and persisted in tumor xenografts established from NeuT-transduced cells. Furthermore, a significant population of cells in SWING state was found in tumors in the MMTV/NeuT transgenic mouse model. SWING cells showed downregulation of histone H2AX, critical for repair of double-stranded DNA breaks, and impaired activation of Chk1 kinase. Overall, SWING cells were characterized by increased DNA instability and hypersensitivity to genotoxic stresses. We propose that the SWING state could be a stage in the process of cancer development.
Collapse
Affiliation(s)
- Michael Y Sherman
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | |
Collapse
|
45
|
Blagosklonny MV. Molecular damage in cancer: an argument for mTOR-driven aging. Aging (Albany NY) 2011; 3:1130-41. [PMID: 22246147 PMCID: PMC3273893 DOI: 10.18632/aging.100422] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 12/31/2011] [Indexed: 12/12/2022]
Abstract
Despite common belief, accumulation of molecular damage does not play a key role in aging. Still, cancer (an age-related disease) is initiated by molecular damage. Cancer and aging share a lot in common including the activation of the TOR pathway. But the role of molecular damage distinguishes cancer and aging. Furthermore, an analysis of the role of both damage and aging in cancer argues against "a decline, caused by accumulation of molecular damage" as a cause of aging. I also discuss how random molecular damage, via rounds of multiplication and selection, brings about non-random hallmarks of cancer.
Collapse
Affiliation(s)
- Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
46
|
Krause K, Prawitt S, Eszlinger M, Ihling C, Sinz A, Schierle K, Gimm O, Dralle H, Steinert F, Sheu SY, Schmid KW, Fuhrer D. Dissecting molecular events in thyroid neoplasia provides evidence for distinct evolution of follicular thyroid adenoma and carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:3066-74. [PMID: 21983636 DOI: 10.1016/j.ajpath.2011.08.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 08/22/2011] [Accepted: 08/26/2011] [Indexed: 12/24/2022]
Abstract
Benign hypofunctional cold thyroid nodules (CTNs) are a frequent scintiscan finding and need to be distinguished from thyroid carcinomas. The origin of CTNs with follicular morphologic features is unresolved. The DNA damage response might act as a physiologic barrier, inhibiting the progression of preneoplastic lesions to neoplasia. We investigated the following in hypofunctional follicular adenoma (FA) and follicular thyroid cancer (FTC): i) the mutation rate of frequently activated oncogenes, ii) the activation of DNA damage response checkpoints, and iii) the differential proteomic pattern between FA and FTC. Both FTC and FA, which did not harbor RAS, phosphoinositide-3-kinase, or PAX/peroxisome proliferator activated receptor-γ mutations, express various proteins in common and others that are more distinctly expressed in FTC rather than in FA or normal thyroid tissue. This finding is in line with the finding of constitutive DNA damage checkpoint activation (p-Chk2, γ-H2AX) and evidence for replicative stress causing genomic instability (increased cyclin E, retinoblastoma, or E2F1 mRNA expression) in FTC but not FA. We discuss the findings of the increased expression of translationally controlled tumor protein, phosphatase 2A inhibitor, and DJ-1 in FTC compared with FA identified by proteomics and their potential implication in follicular thyroid carcinogenesis. Our present findings argue for the definition of FA as a truly benign entity and against progressive development of FA to FTC.
Collapse
Affiliation(s)
- Kerstin Krause
- Clinic for Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Reddy JP, Li Y. Oncogene-induced senescence and its role in tumor suppression. J Mammary Gland Biol Neoplasia 2011; 16:247-56. [PMID: 21681694 DOI: 10.1007/s10911-011-9221-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/07/2011] [Indexed: 01/14/2023] Open
Abstract
While senescence has been known for some time as an inevitable result of repeated DNA replication, oncogene-induced senescence (OIS) represents a relatively new phenomenon. OIS, like apoptosis, has emerged to represent a putative barrier to tumorigenesis in many tissues, including the breast. Here we discuss signals that initiate OIS, evidence for its role in tumor suppression, and mechanisms for its evasion in tumorigenesis.
Collapse
Affiliation(s)
- Jay P Reddy
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
48
|
Somatic expression of PyMT or activated ErbB2 induces estrogen-independent mammary tumorigenesis. Neoplasia 2011; 12:718-26. [PMID: 20824048 DOI: 10.1593/neo.10516] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 11/18/2022] Open
Abstract
Estrogen signaling is required for the proliferation of normal breast epithelial cells. However, prophylactic inhibition of estrogen signaling fails to prevent 56% of human breast cancer cases. The underlying mechanism is not well understood. Aberrant activation of growth factor signaling is known to provide alternative proliferation pathways in breast cells that are fully transformed, but it is not known whether activation of growth factor signaling can substitute for estrogen signaling in causing aberrant proliferation in the normal breast epithelium. Here, we report that in a retrovirus-based somatic mouse model (replication-competent ALV-LTR splice acceptor/tumor virus A) that closely mimics the evolution of sporadic human breast cancers, mammary epithelial cells harboring PyMT or activated ErbB2 evolve into tumors independent of estrogen or other ovarian functions in contrast to previous observations of estrogen-dependent cancer formation in germ line mouse models of ErbB2 activation. Importantly, ErbB2 activation in normal mammary cells causes estrogen-independent proliferation in both estrogen receptor (ER)-negative cells as well as in normally quiescent ER-positive cells. Therefore, aberrant activation of growth factor signaling contributes to estrogen-independent proliferation of both preneoplastic and cancerous mammary cells, and prophylactic therapy against both growth factor signaling and estrogen signaling may need to be considered in women with increased risk of breast cancer.
Collapse
|
49
|
The enigmatic roles of caspases in tumor development. Cancers (Basel) 2010; 2:1952-79. [PMID: 24281211 PMCID: PMC3840446 DOI: 10.3390/cancers2041952] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 11/16/2010] [Accepted: 11/23/2010] [Indexed: 12/25/2022] Open
Abstract
One function ascribed to apoptosis is the suicidal destruction of potentially harmful cells, such as cancerous cells. Hence, their growth depends on evasion of apoptosis, which is considered as one of the hallmarks of cancer. Apoptosis is ultimately carried out by the sequential activation of initiator and executioner caspases, which constitute a family of intracellular proteases involved in dismantling the cell in an ordered fashion. In cancer, therefore, one would anticipate caspases to be frequently rendered inactive, either by gene silencing or by somatic mutations. From clinical data, however, there is little evidence that caspase genes are impaired in cancer. Executioner caspases have only rarely been found mutated or silenced, and also initiator caspases are only affected in particular types of cancer. There is experimental evidence from transgenic mice that certain initiator caspases, such as caspase-8 and -2, might act as tumor suppressors. Loss of the initiator caspase of the intrinsic apoptotic pathway, caspase-9, however, did not promote cellular transformation. These data seem to question a general tumor-suppressive role of caspases. We discuss several possible ways how tumor cells might evade the need for alterations of caspase genes. First, alternative splicing in tumor cells might generate caspase variants that counteract apoptosis. Second, in tumor cells caspases might be kept in check by cellular caspase inhibitors such as c-FLIP or XIAP. Third, pathways upstream of caspase activation might be disrupted in tumor cells. Finally, caspase-independent cell death mechanisms might abrogate the selection pressure for caspase inactivation during tumor development. These scenarios, however, are hardly compatible with the considerable frequency of spontaneous apoptosis occurring in several cancer types. Therefore, alternative concepts might come into play, such as compensatory proliferation. Herein, apoptosis and/or non-apoptotic functions of caspases may even promote tumor development. Moreover, experimental evidence suggests that caspases might play non-apoptotic roles in processes that are crucial for tumorigenesis, such as cell proliferation, migration, or invasion. We thus propose a model wherein caspases are preserved in tumor cells due to their functional contributions to development and progression of tumors.
Collapse
|
50
|
Dong J, Tong T, Reynado AM, Rosen JM, Huang S, Li Y. Genetic manipulation of individual somatic mammary cells in vivo reveals a master role of STAT5a in inducing alveolar fate commitment and lactogenesis even in the absence of ovarian hormones. Dev Biol 2010; 346:196-203. [PMID: 20691178 DOI: 10.1016/j.ydbio.2010.07.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 06/23/2010] [Accepted: 07/16/2010] [Indexed: 01/14/2023]
Abstract
Assessing the molecular control of development and cell fate in individual cells in the intact mammary epithelium has not been possible to date. By exploiting an intraductal retrovirus (RCAS)-mediated gene delivery method to introduce a marker gene, we found that ductal epithelial cells are turned over with a half time of approximately 1month in adult virgin mice. However, following RCAS-mediated introduction of a constitutively activated STAT5a (caSTAT5a), caSTAT5a-activated ductal epithelial cells expand and replace other cells in the epithelium, eventually forming a mammary gland resembling that in a late pregnant mouse, suggesting that STAT5a activation alone is sufficient to mediate pregnancy-induced mammary cell expansion, alveolar cell fate commitment, and lactogenesis. Furthermore, such caSTAT5a-induced alveolar differentiation does not require ovarian functions, although caSTAT5a-induced cell proliferation is partly reduced in ovariectomized mice. In conclusion, in this first report of studying the developmental role of a gene in a few cells in a normally developed virgin mammary ductal tree, STAT5a activation causes alveolar fate commitment and lactogenesis, and with the help of ovarian hormones, drives alveolar expansion.
Collapse
Affiliation(s)
- Jie Dong
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|